TWI551036B - Method and circuit for detecting frequency deviation of oscillator - Google Patents

Method and circuit for detecting frequency deviation of oscillator Download PDF

Info

Publication number
TWI551036B
TWI551036B TW102130050A TW102130050A TWI551036B TW I551036 B TWI551036 B TW I551036B TW 102130050 A TW102130050 A TW 102130050A TW 102130050 A TW102130050 A TW 102130050A TW I551036 B TWI551036 B TW I551036B
Authority
TW
Taiwan
Prior art keywords
frequency
self
mixing
signal
oscillating
Prior art date
Application number
TW102130050A
Other languages
Chinese (zh)
Other versions
TW201509116A (en
Inventor
黃銘崇
劉興龍
Original Assignee
瑞昱半導體股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞昱半導體股份有限公司 filed Critical 瑞昱半導體股份有限公司
Priority to TW102130050A priority Critical patent/TWI551036B/en
Publication of TW201509116A publication Critical patent/TW201509116A/en
Application granted granted Critical
Publication of TWI551036B publication Critical patent/TWI551036B/en

Links

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)

Description

振盪頻率偏移偵測方法以及振盪頻率偏移偵測電路 Oscillation frequency offset detection method and oscillation frequency offset detection circuit

本發明係相關於一振盪電路,尤指一種振盪頻率偏移偵測方法以及相關電路。 The invention relates to an oscillating circuit, in particular to an oscillating frequency offset detecting method and related circuits.

請參考第1圖,第1圖為一晶體振盪器(crystal oscillator)所輸出的一振盪頻率和相對應的一溫度的曲線圖。在溫度變化的時候,該晶體振盪器所輸出的該振盪頻率也會有偏移的現象。如第1圖所示,該振盪頻率和該相對應溫度的曲線會呈現S形,即S曲線。該振盪頻率的偏移現象會對電子裝置造成影響,特別是某些對振盪器頻率偏移要求極為嚴格的系統或是應用,例如全球衛星定位系統(global positioning system,GPS)。 Please refer to FIG. 1. FIG. 1 is a graph showing an oscillation frequency and a corresponding temperature outputted by a crystal oscillator. When the temperature changes, the oscillation frequency output by the crystal oscillator is also offset. As shown in Fig. 1, the curve of the oscillation frequency and the corresponding temperature will exhibit an S-shape, i.e., an S-curve. This oscillating frequency shift can affect electronic devices, especially some systems or applications that require extremely stringent oscillator frequency offsets, such as the Global Positioning System (GPS).

一種傳統的補償方法係採用溫度補償型晶體振盪器(temperature compensated crystal oscillator,TCXO)以改善這個問題。溫度補償型晶體振盪器的原理係在生產時預先量測出一晶體振盪器的一S曲線並將該S曲線儲存於額外的一晶片中,該晶片可依據該S曲線來計算出一反曲線並產生該反曲線的模型,且該反曲線可完全抵消該S曲線以補償該晶體振盪器原本的頻率偏移,然而溫度補償型晶體振盪器的成本遠高於一般的晶體振盪器,且該晶片所儲存的S曲線是固定的,因此隨著使用次數與時間的增長,可能會由於某些因素造成晶體振盪器的S曲線產生變化而造成該晶片無法準確地補償,也就是說,傳統的溫度補償型晶體振盪器具有一定的壽命。另一種傳統的補償方法也需要預先量測出S曲線,然後使用額外的數位電路來對其補償,然而這種方式需要相當繁瑣的控制機制,且亦存在壽命的問題。 A conventional compensation method uses a temperature compensated crystal oscillator (TCXO) to improve this problem. The principle of the temperature-compensated crystal oscillator is to pre-measure an S-curve of a crystal oscillator during production and store the S-curve in an additional wafer, and the wafer can calculate a inverse curve according to the S-curve. And generating a model of the inverse curve, and the inverse curve can completely cancel the S curve to compensate the original frequency offset of the crystal oscillator, but the cost of the temperature compensation crystal oscillator is much higher than a general crystal oscillator, and the The S-curve stored in the wafer is fixed, so as the number of uses and time increases, the S-curve of the crystal oscillator may change due to some factors, which may cause the wafer to be accurately compensated, that is, the conventional The temperature compensated crystal oscillator has a certain lifetime. Another conventional compensation method also requires pre-measuring the S-curve and then using an additional digital circuit to compensate for it. However, this approach requires a rather cumbersome control mechanism and also has a lifetime problem.

因此,需要一種創新的振盪頻率偏移偵測機制,其可動態地計算一晶體振盪器的頻率偏移而不需要預先測量該晶體振盪器的S曲線,之後,再根據所得到的頻率偏移來對該晶體振盪器進行補償。 Therefore, there is a need for an innovative oscillating frequency offset detection mechanism that dynamically calculates the frequency offset of a crystal oscillator without pre-measuring the S-curve of the crystal oscillator, and then based on the resulting frequency offset. To compensate for the crystal oscillator.

本發明之一目的為提供一種振盪頻率偏移偵測之方法以及相關電路以解決上述的問題。 An object of the present invention is to provide a method for detecting oscillation frequency offset and related circuits to solve the above problems.

本發明之一實施例揭露一種振盪頻率偏移偵測方法,包含:接收具有一振盪頻率之一振盪訊號;根據該振盪訊號來產生一自混合訊號;對該自混合訊號進行除頻來產生一降頻自混合訊號;求出該降頻自混合訊號的一特定頻率範圍內具有最大能量的一降頻自混合頻率;以及至少根據該振盪頻率以及該降頻自混合頻率來計算該振盪頻率的一頻率偏移量。 An embodiment of the present invention discloses an oscillating frequency offset detecting method, including: receiving an oscillating signal having an oscillating frequency; generating a self-mixing signal according to the oscillating signal; and performing frequency division on the self-mixing signal to generate a Deactivating a self-mixing signal; determining a down-converting self-mixing frequency having a maximum energy in a specific frequency range of the down-converted self-mixing signal; and calculating the oscillation frequency based on the at least the oscillating frequency and the down-converting self-mixing frequency A frequency offset.

本發明之另一實施例揭露一種振盪頻率偏移偵測電路,包含:一自混合器,根據所接收之具有一振盪頻率之一振盪訊號來產生一自混合訊號;以及一除頻電路,對該自混合訊號進行除頻來產生一降頻自混合訊號;以及一控制電路,求出該降頻自混合訊號的一特定頻率範圍內具有最大能量的一降頻自混合頻率,至少根據該振盪頻率以及該降頻自混合頻率來計算該振盪頻率的一頻率偏移量。 Another embodiment of the present invention discloses an oscillation frequency offset detecting circuit, comprising: a self-mixer, generating a self-mixing signal according to an received oscillation signal having an oscillation frequency; and a frequency dividing circuit, The self-mixing signal is frequency-divided to generate a down-converted self-mixing signal; and a control circuit is configured to determine a down-converting self-mixing frequency having a maximum energy in a specific frequency range of the down-converted self-mixing signal, at least according to the oscillation The frequency and the down-converted self-mixing frequency are used to calculate a frequency offset of the oscillation frequency.

藉由上述之實施例,可以藉由簡單的電路來動態地偵測晶體振盪器的頻率偏移並加以補償,以達到精準、低成本以及較長使用年限的目標。 With the above embodiments, the frequency offset of the crystal oscillator can be dynamically detected and compensated by a simple circuit to achieve the goals of accuracy, low cost, and long service life.

200‧‧‧振盪頻率偏移偵測電路 200‧‧‧Oscillating frequency offset detection circuit

201‧‧‧數位類比轉換器 201‧‧‧Digital Analog Converter

203、305、409‧‧‧頻率混合器 203, 305, 409‧‧‧ frequency mixer

205‧‧‧自混合器 205‧‧‧Self mixer

207‧‧‧除頻電路 207‧‧‧ Frequency dividing circuit

209‧‧‧增益放大器 209‧‧‧Gain Amplifier

210‧‧‧控制電路 210‧‧‧Control circuit

211‧‧‧類比數位轉換器 211‧‧‧ Analog Digital Converter

213‧‧‧頻率計算器 213‧‧‧ Frequency Calculator

215‧‧‧運算電路 215‧‧‧Operating circuit

216‧‧‧晶體振盪器 216‧‧‧ crystal oscillator

217‧‧‧頻率合成器 217‧‧‧ frequency synthesizer

300‧‧‧振盪頻率偏移補償電路 300‧‧‧Oscillation frequency offset compensation circuit

400、601‧‧‧訊號收發電路 400, 601‧‧‧ signal transceiver circuit

401‧‧‧功率放大器 401‧‧‧Power Amplifier

407‧‧‧低雜訊放大器 407‧‧‧Low noise amplifier

413‧‧‧開關元件 413‧‧‧Switching elements

600‧‧‧電子裝置 600‧‧‧Electronic devices

602‧‧‧天線 602‧‧‧Antenna

603‧‧‧溫度感測器 603‧‧‧temperature sensor

605‧‧‧收發控制器 605‧‧‧Transceiver controller

610‧‧‧訊號收發模組 610‧‧‧ Signal Transceiver Module

611‧‧‧儲存裝置 611‧‧‧Storage device

第1圖為一晶體振盪器所輸出的一振盪頻率和相對應的一溫度的曲線圖。 Figure 1 is a graph of an oscillation frequency and a corresponding temperature output by a crystal oscillator.

第2圖為本發明振盪頻率偏移偵測電路的示範性實施例的架構圖。 2 is an architectural diagram of an exemplary embodiment of an oscillation frequency offset detecting circuit of the present invention.

第3圖為本發明振盪頻率偏移補償電路的示範性實施例的架構圖。 3 is an architectural diagram of an exemplary embodiment of an oscillation frequency offset compensation circuit of the present invention.

第4圖為本發明振盪頻率偏移偵測電路使用於訊號收發電路的架構圖。 FIG. 4 is a structural diagram of the oscillating frequency offset detecting circuit used in the signal transmitting and receiving circuit of the present invention.

第5圖為本發明振盪頻率偏移偵測方法的示範性實施例的流程圖。 FIG. 5 is a flow chart of an exemplary embodiment of an oscillation frequency offset detecting method of the present invention.

第6圖為使用第4圖所示之訊號收發電路的電子裝置的示意圖。 Fig. 6 is a view showing an electronic device using the signal transmitting and receiving circuit shown in Fig. 4.

第7圖為本發明振盪頻率偏移補償的示範性實施例的流程圖。 Figure 7 is a flow chart of an exemplary embodiment of oscillation frequency offset compensation of the present invention.

在說明書及後續的申請專利範圍當中使用了某些詞彙來指稱特定的元件。所屬領域中具有通常知識者應可理解,製造商可能會用不同的名詞來稱呼同樣的元件。本說明書及後續的申請專利範圍並不以名稱的差異來作為區分元件的方式,而是以元件在功能上的差異來作為區分的準則。在通篇說明書及後續的請求項當中所提及的「包含」係為一開放式的用語,故應解釋成「包含但不限定於」。另外,「耦接」一詞在此係包含任何直接及間接的電氣連接手段。因此,若文中描述一第一裝置耦接於一第二裝置,則代表該第一裝置可直接電氣連接於該第二裝置,或透過其他裝置或連接手段間接地電氣連接至該第二裝置。 Certain terms are used throughout the description and following claims to refer to particular elements. It should be understood by those of ordinary skill in the art that manufacturers may refer to the same elements by different nouns. The scope of this specification and the subsequent patent application do not use the difference of the names as the means for distinguishing the elements, but the difference in function of the elements as the criterion for distinguishing. The term "including" as used throughout the specification and subsequent claims is an open term and should be interpreted as "including but not limited to". In addition, the term "coupled" is used herein to include any direct and indirect electrical connection. Therefore, if a first device is coupled to a second device, it means that the first device can be directly electrically connected to the second device or indirectly electrically connected to the second device through other devices or connection means.

請參考第2圖,第2圖為本發明振盪頻率偏移偵測電路的第一示範性實施例的架構圖。本示範性實施例中,振盪頻率偏移偵測電路200包含一數位類比轉換器(digital-to-analog converter,DAC)201、一頻率混合器(mixer)203、一自混合器205、一除頻電路(frequency divider)207、一增益放大器(gain amplifier)209以及一控制電路210,其中控制電路210包含一類比數位轉換器(analog-to-digital converter,ADC)211、一頻率計算器213以及一運算電路215。頻率混合器203係用來將一振盪訊號Sosc以及由數位類比轉換器201所轉換出的具有一輸入頻率fin之一輸入訊號Sin進行混合,來產生一混合訊號Smix,其中振盪訊號Sosc具有一振盪頻率fosc。接著,混合訊號Smix傳輸 到自混合器205(例如使用耦合的方式),而自混合器205會對混合訊號Smix進行自混合以產生一自混合訊號Ssm,再透過具有一除頻因數N的除頻電路207來對自混合訊號Ssm進行除頻,以產生一降頻自混合訊號Sdcsm,隨後透過一增益放大器209來將降頻自混合訊號Sdcsm的振幅調整至適當的範圍以避免後續的類比數位轉換器211發生利用率不佳或是飽和(saturation)的情況,並輸出一增益放大訊號Sga且經由類比數位轉換器211的取樣而從一類比定義域(analog domain)進入一數位定義域(digital domain),最後輸出一類比數位轉換器訊號Sadc。接著利用頻率計算器213來對類比數位轉換器訊號Sadc進行運算以求得一特定頻率範圍內具有最大能量的一降頻自混合頻率fdcsm,然後經由運算電路215來至少依據降頻自混合頻率fdcsm、除頻因數N以及振盪頻率fosc來求得一頻率偏移量fs。其中,可以利用一傅利葉轉換(Fourier transformer)來對類比數位轉換器訊號Sadc進行運算以求得一特定頻率範圍內具有最大能量的一降頻自混合頻率fdcsm;或是可以使用預先設定好的複數個頻率來和類比數位轉換器訊號Sadc進行一型態相關(pattern correlation)運算,以計算出該特定頻率範圍內具有最大能量之降頻自混合頻率fdcsm。然而應注意的是,本發明並非受限於使用特定方法來計算出該特定頻率範圍內具有最大能量的降頻自混合頻率fdcsm,實際上任何其他能夠取得主要頻率的不同作法都應屬本發明之範疇,例如使用變化後的傅利葉轉換或是使用類似於型態相關運算的其他運算方式。在此示範性實施例中,一晶體振盪器216會輸出具有一晶體振盪器頻率fcrystal的一晶體振盪器訊號Scrystal,並經過一頻率合成器(frequency synthesizer)217將晶體振盪器頻率fcrystal倍頻至振盪頻率fosc,即輸出振盪訊號Sosc,換句話說,晶體振盪器訊號Scrystal所產生的一頻率偏移亦經過頻率合成器217倍頻而成為一倍頻頻率偏移,應注意的是,在本實施例中所探討以及計算的頻率偏移量fs係指該倍頻頻率偏移。 Please refer to FIG. 2, which is a block diagram of a first exemplary embodiment of an oscillation frequency offset detecting circuit according to the present invention. In the exemplary embodiment, the oscillating frequency offset detecting circuit 200 includes a digital-to-analog converter (DAC) 201, a frequency mixer 203, a self-mixer 205, and a a frequency divider 207, a gain amplifier 209, and a control circuit 210, wherein the control circuit 210 includes an analog-to-digital converter (ADC) 211, a frequency calculator 213, and An arithmetic circuit 215. The frequency mixer 203 is configured to mix an oscillation signal S osc and an input signal S in which an input frequency f in is converted by the digital analog converter 201 to generate a mixed signal S mix , wherein the oscillation signal S osc has an oscillation frequency f osc . Then, the mixed signal S mix is transmitted to the self-mixer 205 (for example, using a coupling method), and the self-mixing device 205 self-mixes the mixed signal S mix to generate a self-mixing signal S sm , and then has a frequency dividing factor. The frequency dividing circuit 207 of N divides the self-mixing signal S sm to generate a down- converted self-mixing signal S dcsm , and then adjusts the amplitude of the down- converted self-mixing signal S dcsm to an appropriate range through a gain amplifier 209. In order to avoid the situation that the subsequent analog-to-digital converter 211 is underutilized or saturated, and outputting a gain amplification signal S ga and sampling from the analog-to-digital converter 211 from an analog domain. Enters a digital domain and finally outputs an analog-to-digital converter signal Sadc . Then, the frequency calculator 213 is used to calculate the analog-to-digital converter signal Sadc to obtain a down- converted self-mixing frequency f dcsm having the maximum energy in a specific frequency range, and then at least according to the frequency reduction self-mixing via the operation circuit 215. The frequency f dcsm , the frequency dividing factor N, and the oscillation frequency f osc are used to find a frequency offset f s . Wherein, the Fourier transform (Fourier transformer) can be used to calculate the analog-to-digital converter signal Sadc to obtain a down- converted self-mixing frequency f dcsm having the maximum energy in a specific frequency range; or can be preset the frequency for a plurality of correlation patterns (pattern correlation) operation and the analog to digital converter signal S adc, to calculate the specific frequency within the range having the maximum energy of the frequency down mixing frequencies from f dcsm. It should be noted, however, that the present invention is not limited to the use of a particular method to calculate the down- converted self-mixing frequency f dcsm having the greatest energy in that particular frequency range. In fact, any other different approach that can achieve the dominant frequency should be The scope of the invention, for example, using a modified Fourier transform or using other computational methods similar to the type correlation operation. In this exemplary embodiment, a crystal oscillator 216 outputs a crystal oscillator having a frequency f crystal of a crystal oscillator signal S crystal, and after a frequency synthesizer (frequency synthesizer) 217 to the crystal oscillator frequency f crystal Multiplying to the oscillating frequency f osc , that is, outputting the oscillation signal S osc , in other words, a frequency offset generated by the crystal oscillator signal S crystal is also multiplied by the frequency synthesizer 217 to become a frequency doubling frequency offset, Note that the frequency offset f s discussed and calculated in this embodiment refers to the frequency doubling frequency offset.

輸入訊號Sin以及振盪訊號Sosc透過頻率混合器203混合產生混 合訊號Smix的操作可以用以下方程式表示:S in =cos(2πf in t) The operation of the input signal S in and the oscillation signal S osc mixed by the frequency mixer 203 to generate the mixed signal S mix can be expressed by the following formula: S in =cos(2 πf in t )

S osc =cos(2πf osc t) S osc =cos(2 πf osc t )

S mix =cos(2πf in t)*cos[2π(f osc )t] S mix =cos(2 πf in t )*cos[2 π ( f osc ) t ]

加入頻率偏移量fs至振盪訊號Sosc時,頻率混合器201混合產生混合訊號Smix的操作可以用以下方程式表示: When the frequency offset f s is added to the oscillation signal S osc , the operation of mixing the frequency mixer 201 to generate the mixed signal S mix can be expressed by the following program:

又混合訊號Smix經過混合器205進行自混合以產生自混合訊號Ssm的操作可以用以下方程式表示:令a=c=cos[2π(f in -f osc -f s )t] The operation of mixing the mixed signal S mix by the mixer 205 to generate the self-mixing signal S sm can be expressed by the following formula: let a = c = cos[2 π ( f in - f osc - f s ) t ]

b=d=cos[2π(f in +f osc +f s )t] b = d =cos[2 π ( f in + f osc + f s ) t ]

then

其中 among them

ad+bc=cos[2π*2(2f osc +2f s )t]+cos(2π*2f in t) Ad + bc =cos[2 π *2(2 f osc +2 f s ) t ]+cos(2 π *2 f in t )

因此根據以上關係式的推導,自混合訊號Ssm會產生五個頻率成分,亦即一第一頻率、一第二頻率、一第三頻率、一第四頻率以及一第五頻率,其中該第一頻率為直流成份,該第二頻率為2*fin,即兩倍輸入頻率fin,該第三頻率為2*fosc+2*fs-2*fin,該第四頻率為2*fosc+2*fs,該第五頻率為2*fosc+2*fs+2*fin,而在這五個頻率成分當中,該第三、第四以及第五頻率具有頻率偏移量fs的資訊,也就是說,可以用來當作計算頻率偏移量fs的資訊。 Therefore, according to the derivation of the above relationship, the self-mixing signal S sm generates five frequency components, that is, a first frequency, a second frequency, a third frequency, a fourth frequency, and a fifth frequency, wherein the first A frequency is a DC component, the second frequency is 2*f in , that is, twice the input frequency f in , the third frequency is 2*f osc +2*f s -2*f in , and the fourth frequency is 2 *f osc +2*f s , the fifth frequency is 2*f osc +2*f s +2*f in , and among the five frequency components, the third, fourth, and fifth frequencies have a frequency The information of the offset f s , that is, can be used as information for calculating the frequency offset f s .

因為本示範性實施例欲利用數位信號處理的便利來進行頻率域(frequency domain)與時域(time domain)的轉換,以偵測甚至是補償頻率偏移量fs,故需要將自混合訊號Ssm先轉換到數位定義域中,然而由於輸出振盪訊號Sosc係由頻率合成器217將晶體振盪器頻率fcrystal倍頻至振盪頻率fosc,因此振盪頻率fosc係處於一個很高的頻率,並且以現今的技術無法在實作上生產出此實施例中需要在這樣高的頻率之下進行取樣之特定位元數的類比數位轉換器,所以自混合訊號Ssm必須先經過除頻電路207以除頻因數N來進行降頻處理,以將混合訊號Ssm的頻率降低至一個合理的頻率範圍,也就是說,混合訊號Ssm的五個頻率成分全部都會以除頻因數N來進行降頻處理,接下來才會進行增益放大以及類比數位轉換的處理,之後再得到類比數位轉換器訊號Sade。應注意的是,任何利用本發明上述方程式或演算法來計算、偵測或是補償頻率偏移的方法,無論使用數位或是類比的電路架構都屬於本發明的專利範圍,並不限定最終需以數位訊號處理的方法來完成複利葉轉換。在進入到數位定義域之後,我們便可以單純使用一個頻率計算器來計算出降頻後的該第三、第四以及第五頻率其中的任一個,之後再由運算電路215來計算出頻率偏移量fs。 Since the present exemplary embodiment wants to perform frequency domain and time domain conversion using the convenience of digital signal processing to detect or even compensate the frequency offset fs, the self-mixing signal Ssm is required. First converted to the digital definition domain, however, since the output oscillation signal Sosc is frequency multiplexed by the frequency synthesizer 217 to the oscillation frequency fosc, the oscillation frequency fosc is at a very high frequency, and with the current technology The analog digital converter of the specific number of bits that need to be sampled at such a high frequency in this embodiment cannot be produced in practice, so the self-mixing signal Ssm must first pass through the frequency dividing circuit 207 to remove the frequency factor N. Performing a frequency reduction process to reduce the frequency of the mixed signal Ssm to a reasonable frequency range, that is, all five frequency components of the mixed signal Ssm are down-converted by the frequency dividing factor N, and then proceed Gain amplification and analog digital conversion processing, followed by the analog digital converter signal Sade. It should be noted that any method for calculating, detecting, or compensating for frequency offset using the above equations or algorithms of the present invention, regardless of the digital or analog circuit architecture, is within the scope of the present invention, and does not limit the final need. The multi-leaf conversion is accomplished by digital signal processing. After entering the digit definition field, we can simply use a frequency calculator to calculate any of the third, fourth, and fifth frequencies after the down-conversion, and then calculate the frequency offset by the operation circuit 215. The amount of shift fs.

在此實施例中,可以採用降頻後之該第四頻率來作為目標,亦即(2/N)*(fosc+fs),由於頻率偏移量fs通常較小,因此我們在已知的(2/N)*fosc周 圍的一特定範圍中一定可以尋找到降頻後之該第四頻率(2/N)*(fosc+fs),並且該特定範圍不需要太大。換句話說,在該特定範圍中,具有最大能量的頻率即為降頻後之該第四頻率。在得到降頻後之該第四頻率(2/N)*(fosc+fs)之後,使用運算電路215來對降頻後之該第四頻率進行一簡單運算(在此為乘上N除以2,以及減去fosc)後,即可得到頻率偏移量fs。應注意的是,運算順序與上述範例不同,但可達成相同目的的簡單變化,均應包含在本發明所涵蓋的範圍之內。 In this embodiment, the fourth frequency after down-conversion can be used as the target, that is, (2/N)*(f osc +f s ), since the frequency offset f s is usually small, we are The fourth frequency (2/N)*(f osc +f s ) after frequency reduction must be found in a specific range around the known (2/N)*f osc , and the specific range does not need to be too Big. In other words, in this particular range, the frequency with the largest energy is the fourth frequency after the frequency reduction. After obtaining the fourth frequency (2/N)*(f osc +f s ) after down- conversion , the operation circuit 215 is used to perform a simple operation on the fourth frequency after the down-conversion (here, multiplying N) After dividing by 2 and subtracting f osc ), the frequency offset f s is obtained . It should be noted that the order of operations is different from the above-described examples, but simple changes that can achieve the same object are included in the scope of the present invention.

在另一實施例中,可以使用降頻後之該第三頻率來作為目標,亦即(2/N)*(fosc+fs-fin),相似地,我們在已知的(2/N)*(fosc-fin)周圍之該特定範圍中一定可以尋找到降頻後之該第三頻率(2/N)*(fosc+fs-fin)),並且該特定範圍不需要太大。換句話說,在該特定範圍中,具有最大能量的頻率即為降頻後之該第三頻率。在得到降頻後之該第三頻率(2/N)*(fosc+fs-fin))之後,使用運算電路215來對降頻後之該第三頻率進行一簡單運算(在此為乘上N除以2,以及減去fosc和加上fin)後,即可得到頻率偏移量fs,和上述實施例不同的是,多了一個fin的頻率成分,好處是fin為已知並且可以任意的改變,因此在實際的應用上,本實施例多了一些頻帶選擇的彈性,例如在某個頻帶範圍中剛好具有較大雜訊,且此頻帶範圍剛好和所欲進行運算的頻帶範圍發生重疊,此時便可以利用fin來避開這樣的雜訊。應注意的是,若僅偵測該第四頻率,而不使用該第三以及第五頻率,則不受到輸入頻率fin的影響。在此情況下,第2圖所示之實施例不需要輸入訊號Sin,僅以具有振盪頻率Sosc的訊號進行自混合即可求出頻率偏移量fs,換句話說,頻率混合器203在此情況下可予以省略,此一設計變化亦屬於本發明的範疇。 In another embodiment, the third frequency after down-conversion can be used as the target, that is, (2/N)*(f osc +f s -f in ), similarly, we are known (2 /N)*(f osc -f in ) around the specific range, the third frequency (2/N)*(f osc +f s -f in ) after the down-conversion can be found, and the specific The range does not need to be too large. In other words, in this particular range, the frequency with the largest energy is the third frequency after the frequency reduction. After obtaining the third frequency (2/N)*(f osc +f s -f in ) after down- conversion , the operation circuit 215 is used to perform a simple operation on the third frequency after down-conversion (here) To multiply N by 2, and subtract f osc and add f in ), the frequency offset f s can be obtained. What is different from the above embodiment is that a frequency component of f in is added, and the advantage is that F in is known and can be arbitrarily changed, so in practical applications, this embodiment has more flexibility in band selection, such as having a large amount of noise in a certain frequency band, and the band range is just right. If the frequency bands to be calculated overlap, then f in can be used to avoid such noise. It should be noted that if only the fourth frequency is detected without using the third and fifth frequencies, it is not affected by the input frequency f in . In this case, the embodiment shown in FIG. 2 does not require the input signal S in , and the frequency offset f s can be obtained only by self-mixing with the signal having the oscillation frequency S osc , in other words, the frequency mixer 203 can be omitted in this case, and this design change is also within the scope of the present invention.

請參考第3圖,第3圖為本發明振盪頻率偏移補償電路的示範性實施例的架構圖。振盪頻率偏移補償電路300的操作為將需要補償的降頻自 混合訊號Sdcsm轉換至數位定義域的類比數位轉換器訊號Sadc後,以ejωt之形式(其中ω=2*π*(±fs),而fs為前述的頻率偏移量)將其輸入至位於正常訊號接收路徑上之一頻率混合器305,即可補償類比數位轉換器訊號Sadc。請注意,上述之振盪頻率偏移補償操作僅作為範例說明而非本發明的限制,實際上,任何基於第2圖所示之振盪頻率偏移偵測機制所求得之頻率偏移量來進行的振盪頻率偏移補償操作均屬於本發明的範疇。 Please refer to FIG. 3, which is a block diagram of an exemplary embodiment of an oscillation frequency offset compensation circuit of the present invention. Operation of the oscillation frequency offset compensation circuit 300 is to be compensated down from the mixed signal S dcsm converted to analog to digital converter signal S adc the digital domain in the form of e jωt of (where ω = 2 * π * ( ±f s ), and f s is the aforementioned frequency offset), which is input to a frequency mixer 305 located on the normal signal receiving path, thereby compensating for the analog digital converter signal S adc . Please note that the above-mentioned oscillation frequency offset compensation operation is merely illustrative and not a limitation of the present invention. In fact, any frequency offset obtained based on the oscillation frequency offset detection mechanism shown in FIG. 2 is performed. The oscillation frequency offset compensation operation is within the scope of the present invention.

請參考第4圖,第4圖為本發明振盪頻率偏移偵測電路使用於訊號收發電路之一示範性實施例的架構圖。如第4圖所示,在不影響本發明技術揭露之下,振盪頻率偏移偵測電路200中一部份的電路元件係顯示於第4圖,以揭示元件共用的技術特徵。如圖所示,訊號收發電路400中的功率放大器401、頻率混合器203以及數位類比轉換器201構成一訊號傳送路徑,而訊號收發電路400中的低雜訊放大器407、頻率混合器409以及類比數位轉換器211則形成了一訊號接收路徑。此外,訊號收發電路400更包含了頻率混合器205、開關元件413、頻率計算器213以及頻率混合器307(亦可視為一補償單元)。在一頻率偏移偵測模式下,開關元件413使訊號接收路徑耦接到頻率計算器213,如此一來,頻率混合器203、205以及頻率計算器213便形成了如第2圖所示的振盪頻率偏移偵測電路的一部份,因而可偵測振盪頻率Sosc的振盪頻率偏移,舉例來說,可以將不同溫度下偵測到的頻率偏移儲存於一儲存裝置(例如一非揮發性記憶體)中,換句話說,可以在該非揮發性記憶體當中建立一溫度與相對應頻率偏移的查找表(look-up table)以便之後可直接經由比對該查找表來補償頻率偏移,而不需要重複地計算頻率偏移,舉例來說,當晶體振盪器216再一次操作於之前偵測過的溫度時,控制電路210係直接使用所儲存之對應該溫度的頻率偏移量,而無需執行額外的訊號處理與數值計算。然而,應注意的是,上述範例僅供說明用途,任何可達成上述相同目的的簡單變化,均應包含在本發明所涵蓋的範圍之內。 Please refer to FIG. 4, which is a block diagram of an exemplary embodiment of an oscillating frequency offset detecting circuit used in a signal transceiving circuit according to the present invention. As shown in FIG. 4, a portion of the circuit components of the oscillating frequency offset detecting circuit 200 are shown in FIG. 4 to reveal the technical features shared by the components without affecting the disclosure of the present technology. As shown, the power amplifier 401, the frequency mixer 203, and the digital analog converter 201 in the signal transceiver circuit 400 constitute a signal transmission path, and the low noise amplifier 407, the frequency mixer 409, and the analogy in the signal transceiver circuit 400. The digital converter 211 forms a signal receiving path. In addition, the signal transceiving circuit 400 further includes a frequency mixer 205, a switching element 413, a frequency calculator 213, and a frequency mixer 307 (which can also be regarded as a compensation unit). In a frequency offset detection mode, the switching element 413 couples the signal receiving path to the frequency calculator 213, so that the frequency mixers 203, 205 and the frequency calculator 213 form a picture as shown in FIG. The oscillation frequency offset detecting circuit can detect the oscillation frequency offset of the oscillation frequency S osc . For example, the frequency offset detected at different temperatures can be stored in a storage device (for example, In non-volatile memory, in other words, a look-up table of temperature and corresponding frequency offset can be established in the non-volatile memory so that it can be compensated directly by comparing the lookup table. The frequency offset does not require repeated calculation of the frequency offset. For example, when the crystal oscillator 216 is again operated on the previously detected temperature, the control circuit 210 directly uses the stored frequency offset corresponding to the temperature. Move without having to perform additional signal processing and numerical calculations. However, it should be noted that the above examples are for illustrative purposes only, and any simple changes that achieve the same objectives described above are intended to be included within the scope of the present invention.

另外,在一正常訊號收發模式下,該訊號傳送路徑係用以發送一傳送訊號Stx,而該訊號接收路徑用來接收一接收訊號Srx,而開關元件413使訊號接收路徑耦接到頻率混合器305,並且在溫度發生變化而造成振盪頻率偏移時進行補償。 In addition, in a normal signal transmission and reception mode, the signal transmission path is used to transmit a transmission signal S tx , and the signal reception path is used to receive a reception signal S rx , and the switching element 413 couples the signal reception path to the frequency. The mixer 305 compensates when the temperature changes to cause the oscillation frequency to shift.

第5圖為本發明振盪頻率偏移偵測方法的第一示範性實施例的流程圖,倘若大體上可達到相同的結果,並不一定需要按照第5圖所示之流程中的步驟順序來進行,且第5圖所示之步驟不一定要連續進行,亦即其他步驟亦可插入其中。此外,第5圖中的某些步驟可根據不同實施例或設計需求省略之。振盪頻率偏移偵測方法500包含有以下步驟:步驟501:接收具有一輸入頻率之一輸入訊號;步驟503:接收具有一振盪頻率之一振盪訊號;步驟505:將該振盪訊號以及該輸入訊號進行混合來產生一混合訊號;步驟507:對該混合訊號進行自混合以產生該自混合訊號;步驟509:對該自混合訊號進行除頻來產生一降頻自混合訊號;步驟511:求出該降頻自混合訊號的一特定頻率範圍內具有最大能量的一降頻自混合頻率;步驟513:根據該振盪頻率、該輸入頻率以及該降頻自混合頻率來計算出該頻率偏移量。 5 is a flow chart of a first exemplary embodiment of the method for detecting an oscillation frequency offset according to the present invention. If the same result is substantially achieved, it is not necessarily required to follow the sequence of steps in the flow shown in FIG. The steps shown in Figure 5 do not have to be performed continuously, that is, other steps can be inserted therein. Moreover, some of the steps in Figure 5 may be omitted in accordance with different embodiments or design requirements. The oscillating frequency offset detecting method 500 includes the following steps: Step 501: Receive an input signal having an input frequency; Step 503: Receive an oscillating signal having an oscillating frequency; Step 505: Receive the oscillating signal and the input signal Mixing to generate a mixed signal; Step 507: self-mixing the mixed signal to generate the self-mixing signal; Step 509: De-frequencying the self-mixing signal to generate a down-converted self-mixing signal; Step 511: Finding The down-converted self-mixing frequency having the maximum energy in a specific frequency range of the self-mixing signal; step 513: calculating the frequency offset according to the oscillating frequency, the input frequency, and the down-converted self-mixing frequency.

由於參考以上關於振盪頻率偏移偵測電路200的描述後應可輕易理解第5圖所示振盪頻率偏移偵測方法的流程,為求簡單明瞭,故在此省略其說明。應注意的是,如前所述,於一設計變化中可不使用輸入訊號Sin,在此情況下,步驟501、505可予以省略,而步驟513則可修改成:根據該振盪 頻率以及該降頻自混合頻率來計算出該頻率偏移量。 Since the flow of the oscillation frequency offset detecting method shown in FIG. 5 can be easily understood by referring to the above description of the oscillation frequency offset detecting circuit 200, the description thereof will be omitted here for brevity. It should be noted that, as mentioned above, the input signal S in may not be used in a design change, in which case steps 501, 505 may be omitted, and step 513 may be modified to: according to the oscillation frequency and the drop The frequency is self-mixed to calculate the frequency offset.

第6圖為使用第4圖所示之訊號收發電路的一電子裝置的示意圖。如第6圖所示,電子裝置600包含了一訊號收發電路601以及一天線602,其中訊號收發電路601包含有一訊號收發模組610、一儲存裝置611以及前述的晶體振盪器216與控制電路210。訊號收發電路601包含了第4圖與第2圖所示的電路結構(亦即,訊號收發電路601除了原本訊號收發功能之外,另具有振盪頻率偏移偵測與補償的能力),且另包含一溫度感測器(temperature sensor)603和一收發控制器(transceiver controller)605。訊號收發電路601可在一偵測模式下偵測晶體振盪器216之振盪頻率偏移,以及可在一正常模式下進行訊號的收發及/或振盪頻率偏移的補償。本實施例中,溫度感測器603可偵測晶體振盪器216的一溫度T,並且透過收發控制器605傳送給控制電路210(例如傳送至控制電路210中的運算電路210)。接著,控制電路210會將所得到的振盪頻率偏移fs以及溫度感測器603所感測到的溫度T之對應關係儲存至儲存裝置(例如非揮發性記憶體)611。當儲存裝置611儲存了頻率偏移fs以及溫度T之相對應關係後,控制電路210後續便可直接依據溫度T來從儲存裝置611讀取相對應的頻率偏移量,並經由前述的頻率混合器305來進行頻率偏移補償。 Fig. 6 is a view showing an electronic device using the signal transmitting and receiving circuit shown in Fig. 4. As shown in FIG. 6, the electronic device 600 includes a signal transceiver circuit 601 and an antenna 602. The signal transceiver circuit 601 includes a signal transceiver module 610, a storage device 611, and the foregoing crystal oscillator 216 and control circuit 210. . The signal transmitting and receiving circuit 601 includes the circuit structures shown in FIG. 4 and FIG. 2 (that is, the signal transmitting and receiving circuit 601 has the capability of detecting and compensating the oscillation frequency offset in addition to the original signal transmitting and receiving function), and another A temperature sensor 603 and a transceiver controller 605 are included. The signal transceiver circuit 601 can detect the oscillation frequency offset of the crystal oscillator 216 in a detection mode, and can compensate for signal transmission and/or oscillation frequency offset in a normal mode. In this embodiment, the temperature sensor 603 can detect a temperature T of the crystal oscillator 216 and transmit it to the control circuit 210 through the transceiver controller 605 (eg, to the arithmetic circuit 210 in the control circuit 210). Next, the control circuit 210 stores the correspondence between the obtained oscillation frequency offset fs and the temperature T sensed by the temperature sensor 603 to a storage device (for example, non-volatile memory) 611. After the storage device 611 stores the corresponding relationship between the frequency offset f s and the temperature T, the control circuit 210 can directly read the corresponding frequency offset from the storage device 611 according to the temperature T, and via the aforementioned frequency. The mixer 305 performs frequency offset compensation.

第7圖為本發明振盪頻率偏移補償方法的一示範性實施例的流程圖。倘若大體上可達到相同的結果,並不一定需要按照第7圖所示之流程中的步驟順序來進行,且第7圖所示之步驟不一定要連續進行,亦即其他步驟亦可插入其中。此外,第7圖中的某些步驟可根據不同實施例或設計需求省略之。振盪頻率偏移補償方法700可由第6圖所示之電子裝置600來執行,並包含有以下步驟:步驟703:偵測晶體振盪器的溫度; 步驟705:判斷現今溫度T下之頻率偏移量是否為已知?若是,則進入步驟711,若否,則進入步驟707;步驟707:偵測溫度T下的振盪頻率偏移;步驟709:儲存溫度T以及相對應的振盪頻率偏移fs之對應關係;步驟711:補償數位定義域中的振盪頻率偏移。 Figure 7 is a flow chart of an exemplary embodiment of an oscillation frequency offset compensation method of the present invention. If the same result can be substantially achieved, it does not necessarily need to be performed in the order of steps in the flow shown in FIG. 7, and the steps shown in FIG. 7 do not have to be performed continuously, that is, other steps can be inserted therein. . Moreover, some of the steps in Figure 7 may be omitted in accordance with different embodiments or design requirements. The oscillating frequency offset compensation method 700 can be performed by the electronic device 600 shown in FIG. 6 and includes the following steps: Step 703: Detecting the temperature of the crystal oscillator; Step 705: Determining the frequency offset at the current temperature T Is it known? If yes, go to step 711, if no, go to step 707; step 707: detect the oscillation frequency offset under temperature T; step 709: store the temperature T and the corresponding oscillation frequency offset f s correspondence; 711: Compensating for the oscillation frequency offset in the digital definition domain.

請注意,本發明亦可以即時的偵測溫度T以及相對應的振盪頻率偏移,然後不儲存而直接進入步驟711來進行補償,也就是說,於本發明之另一實施例中,步驟709可予以省略。 Please note that the present invention can also detect the temperature T and the corresponding oscillation frequency offset in real time, and then directly enter step 711 to perform compensation without storing, that is, in another embodiment of the present invention, step 709 Can be omitted.

本發明的振盪頻率偏移偵測電路並不限於偵測因為溫度T所引起的振盪頻率偏移,而是其可偵測任何因素所引起的頻率偏移,舉例來說,晶體振盪器本身的老化或是晶體振盪器於製造時發生的製程漂移。藉由本發明所揭示的頻率偏移偵測與補償機制,可以透過簡單的電路來動態地偵測晶體振盪器的頻率偏移並加以補償,或是直接對照先前紀錄好的查照表來得到相對應於所處溫度之下的補償值,如此一來達到精準、低成本以及較長使用年限的目標。 The oscillation frequency offset detecting circuit of the present invention is not limited to detecting the oscillation frequency offset caused by the temperature T, but it can detect the frequency offset caused by any factor, for example, the crystal oscillator itself. Aging or process drift that occurs when a crystal oscillator is manufactured. The frequency offset detection and compensation mechanism disclosed by the present invention can dynamically detect and compensate the frequency offset of the crystal oscillator through a simple circuit, or directly compare the previously recorded lookup table to obtain a corresponding The compensation value below the temperature is such that the goal of precision, low cost and long service life is achieved.

另外,本發明的實施例中,該些電路可有多種實施方式,例如:控制電路211可利用硬體描述語言(Verilog或是VHDL)來完成整個電路、或是利用中央控制電路(CPU)配合軟體、或是微控制電路(controller)配合韌體(firmware),皆可直接完成上述運算、流程圖等操作。熟習此項技藝者應可輕易衍伸出其他變化,例如,若將混合訊號進行自混合二次,則可於有其他倍振盪頻率附近範圍內的尋找另一個自混合頻率,再進行相對應的運算仍可實現本發明;又例如:自混合的對象由混合訊號變更為輸入訊號,再進行相對應的運算亦可輕易完成本發明。 In addition, in the embodiment of the present invention, the circuits may have various implementation manners. For example, the control circuit 211 may use a hardware description language (Verilog or VHDL) to complete the entire circuit or use a central control circuit (CPU). Software, or a micro-controller (controller) with firmware, can directly complete the above operations, flowcharts and other operations. Those skilled in the art should be able to easily derive other changes. For example, if the mixed signal is self-mixed twice, another self-mixing frequency can be found in the vicinity of other times of oscillation frequency, and then corresponding The present invention can still be implemented by the operation; for example, the self-mixing object is changed from the mixed signal to the input signal, and the corresponding operation can be performed to easily complete the present invention.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.

200‧‧‧振盪頻率偏移偵測電路 200‧‧‧Oscillating frequency offset detection circuit

201‧‧‧數位類比轉換器 201‧‧‧Digital Analog Converter

203‧‧‧頻率混合器 203‧‧‧ frequency mixer

205‧‧‧自混合器 205‧‧‧Self mixer

207‧‧‧除頻電路 207‧‧‧ Frequency dividing circuit

209‧‧‧增益放大器 209‧‧‧Gain Amplifier

210‧‧‧控制電路 210‧‧‧Control circuit

211‧‧‧類比數位轉換器 211‧‧‧ Analog Digital Converter

213‧‧‧頻率計算器 213‧‧‧ Frequency Calculator

215‧‧‧運算電路 215‧‧‧Operating circuit

216‧‧‧晶體振盪器 216‧‧‧ crystal oscillator

217‧‧‧頻率合成器 217‧‧‧ frequency synthesizer

Claims (18)

一種振盪頻率偏移偵測方法,包含:接收具有一振盪頻率之一振盪訊號;根據該振盪訊號來產生一自混合訊號;對該自混合訊號進行除頻來產生一降頻自混合訊號;求出該降頻自混合訊號的一特定頻率範圍內具有最大能量的一降頻自混合頻率;以及至少根據該振盪頻率以及該降頻自混合頻率來計算該振盪頻率的一頻率偏移量。 An oscillating frequency offset detecting method includes: receiving an oscillating signal having an oscillating frequency; generating a self-mixing signal according to the oscillating signal; and performing frequency division on the self-mixing signal to generate a down-converted self-mixing signal; And a frequency-down self-mixing frequency having a maximum energy in a specific frequency range of the down-converted self-mixing signal; and calculating a frequency offset of the oscillation frequency based on at least the oscillating frequency and the down-converting self-mixing frequency. 如申請專利範圍第1項所述之振盪頻率偏移偵測方法,另包含:接收具有一輸入頻率之一輸入訊號;其中根據該振盪訊號來產生該自混合訊號之步驟包含:將該振盪訊號以及該輸入訊號進行混合來產生一混合訊號,並對該混合訊號進行自混合以產生該自混合訊號;以及計算該頻率偏移量的步驟包含:根據該振盪頻率、該輸入頻率以及該降頻自混合頻率來計算出該頻率偏移量。 The method for detecting an oscillating frequency offset according to claim 1, further comprising: receiving an input signal having an input frequency; wherein the step of generating the self-mixing signal according to the oscillating signal comprises: omitting the oscillating signal And the input signal is mixed to generate a mixed signal, and the mixed signal is self-mixed to generate the self-mixing signal; and the step of calculating the frequency offset comprises: according to the oscillation frequency, the input frequency, and the frequency reduction The frequency offset is calculated from the mixing frequency. 如申請專利範圍第1項所述之振盪頻率偏移偵測方法,其中該振盪訊號係由一晶體振盪器所產生,以及該振盪頻率偏移偵測方法另包含:偵測該晶體振盪器之一溫度;以及儲存該頻率偏移量與相對應之該溫度。 The oscillating frequency offset detecting method according to claim 1, wherein the oscillating signal is generated by a crystal oscillator, and the oscillating frequency offset detecting method further comprises: detecting the crystal oscillator a temperature; and storing the frequency offset and corresponding to the temperature. 如申請專利範圍第3項所述之振盪頻率偏移偵測方法,另包含:當該晶體振盪器再一次操作於該溫度時,直接使用所儲存之該頻率偏移 量。 The method for detecting an oscillating frequency offset as described in claim 3, further comprising: directly using the stored frequency offset when the crystal oscillator is again operated at the temperature the amount. 如申請專利範圍第1項所述之振盪頻率偏移偵測方法,其中求出該降頻自混合訊號的該特定頻率範圍內具有最大能量的該降頻自混合頻率之步驟包含:使該降頻自混合訊號進入一數位域;以及計算該降頻自混合訊號在一特定頻率範圍內的具有最大能量的該降頻自混合頻率。 The oscillating frequency offset detecting method of claim 1, wherein the step of determining the down-converted self-mixing frequency having the maximum energy in the specific frequency range of the down-converted self-mixing signal comprises: causing the falling The frequency self-mixing signal enters a digit field; and the down-converted self-mixing frequency having the maximum energy of the down-converted self-mixing signal in a specific frequency range is calculated. 如申請專利範圍第5項所述之振盪頻率偏移偵測方法,其中計算該降頻自混合訊號的具有最大能量的該降頻自混合頻率之步驟包含:對該降頻自混合訊號進行一傅利葉轉換來計算一特定頻率範圍內具有最大能量的該降頻自混合頻率。 The method for detecting an oscillating frequency offset according to claim 5, wherein the step of calculating the down-converted self-mixing frequency of the down-converted self-mixing signal having the maximum energy comprises: performing the down-converted self-mixing signal The Fourier transform is used to calculate the down-converted self-mixing frequency with the largest energy in a particular frequency range. 如申請專利範圍第5項所述之振盪頻率偏移偵測方法,其中計算該降頻自混合訊號的具有最大能量的該降頻自混合頻率之步驟另包含:對該降頻自混合訊號進行一型態相關運算來計算一特定頻率範圍內具有最大能量的該降頻自混合頻率。 The method for detecting an oscillating frequency offset according to claim 5, wherein the step of calculating the down-converted self-mixing frequency of the down-converted self-mixing signal having the maximum energy further comprises: performing the down-converted self-mixing signal A type correlation operation calculates the down-converted self-mixing frequency having the largest energy in a particular frequency range. 如申請專利範圍第1項所述之振盪頻率偏移偵測方法,其中該降頻自混合訊號係經由以一除頻因數對該自混合訊號進行除頻所產生;以及計算該振盪頻率的該頻率偏移量之步驟包含:將該降頻自混合頻率乘上該除頻因數並除以2,並與該振盪頻率比較來求得該頻率偏移量。 The oscillating frequency offset detecting method of claim 1, wherein the down-converted self-mixing signal is generated by dividing the self-mixing signal by a dividing factor; and calculating the oscillating frequency The step of frequency offset includes multiplying the down-converted self-mixing frequency by the dividing factor and dividing by 2, and comparing the oscillation frequency to obtain the frequency offset. 如申請專利範圍第1項所述之振盪頻率偏移偵測方法,其中該特定頻率範 圍係位於在2倍振盪頻率附近的固定範圍。 The method for detecting an oscillation frequency offset according to claim 1, wherein the specific frequency is The enclosure is located in a fixed range around 2 times the oscillation frequency. 一種振盪頻率偏移偵測電路,包含:一自混合器,用以根據所接收之具有一振盪頻率之一振盪訊號來產生一自混合訊號;一除頻電路,用以對該自混合訊號進行除頻來產生一降頻自混合訊號;以及一控制電路,用以求出該降頻自混合訊號的一特定頻率範圍內具有最大能量的一降頻自混合頻率,並至少根據該振盪頻率以及該降頻自混合頻率來計算該振盪頻率的一頻率偏移量。 An oscillating frequency offset detecting circuit includes: a self-mixer for generating a self-mixing signal according to an received oscillating signal having an oscillating frequency; and a frequency dividing circuit for performing the self-mixing signal Decoupling to generate a down-converted self-mixing signal; and a control circuit for determining a down-converted self-mixing frequency having a maximum energy in a specific frequency range of the down-converted self-mixing signal, and based at least on the oscillation frequency and The down-converting self-mixing frequency calculates a frequency offset of the oscillating frequency. 如申請專利範圍第10項所述之振盪頻率偏移偵測電路,另包含:一頻率混合器,用以將該振盪訊號以及所接收具有一輸入頻率之一輸入訊號進行混合來產生一混合訊號;其中該自混合器對該混合訊號進行自混合以產生該自混合訊號;以及該控制電路更根據該振盪頻率、該輸入頻率以及該降頻自混合頻率來計算出該頻率偏移量。 The oscillating frequency offset detecting circuit of claim 10, further comprising: a frequency mixer for mixing the oscillating signal and the received input signal having an input frequency to generate a mixed signal Wherein the self-mixer self-mixes the mixed signal to generate the self-mixing signal; and the control circuit further calculates the frequency offset according to the oscillation frequency, the input frequency, and the down-converted self-mixing frequency. 如申請專利範圍第10項所述之振盪頻率偏移偵測電路,另包含:一溫度探測器,用以偵測該晶體振盪器之一溫度;以及一儲存裝置,用以儲存該頻率偏移量與相對應之該溫度。 The oscillating frequency offset detecting circuit according to claim 10, further comprising: a temperature detector for detecting a temperature of the crystal oscillator; and a storage device for storing the frequency offset The amount corresponds to the temperature. 如申請專利範圍第12項所述之振盪頻率偏移偵測電路,其中當該晶體振盪器再一次操作於該溫度時,該控制電路係直接使用所儲存之該頻率偏移量。 The oscillating frequency offset detecting circuit of claim 12, wherein the control circuit directly uses the stored frequency offset when the crystal oscillator is again operated at the temperature. 如申請專利範圍第10項所述之振盪頻率偏移偵測電路,其中該控制電路包含:一類比數位轉換器,用來使該降頻自混合訊號進入一數位域;以及一頻率計算器,用以計算該降頻自混合訊號的具有最大能量的該降頻自混合頻率。 The oscillating frequency offset detecting circuit of claim 10, wherein the control circuit comprises: an analog-to-digital converter for causing the down-converted self-mixing signal to enter a digit field; and a frequency calculator, The down-converted self-mixing frequency having the maximum energy for calculating the down-converted self-mixing signal. 如申請專利範圍第14項所述之振盪頻率偏移偵測電路,其中該頻率計算器係對該降頻自混合訊號進行一傅利葉轉換來計算一特定頻率範圍內具有最大能量的該降頻自混合頻率。 The oscillating frequency offset detecting circuit according to claim 14, wherein the frequency calculator performs a Fourier transform on the down-converted self-mixing signal to calculate the down-converted maximum energy in a specific frequency range. Mixed frequency. 如申請專利範圍第14項所述之振盪頻率偏移偵測電路,其中該頻率計算器係對該降頻自混合訊號進行一型態相關(pattern correlation)運算來計算一特定頻率範圍內具有最大能量的該降頻自混合頻率。 The oscillating frequency offset detecting circuit according to claim 14, wherein the frequency calculator performs a pattern correlation operation on the down-converted self-mixing signal to calculate a maximum in a specific frequency range. This frequency of energy is self-mixing frequency. 如申請專利範圍第10項所述之振盪頻率偏移偵測電路,其中該降頻自混合訊號係經由具有一除頻因數之該除頻電路對該自混合訊號進行除頻所產生;以及該控制電路包含:一運算電路,用來將該降頻自混合頻率乘上該除頻因數並除以2,並與該振盪頻率比較來求得該頻率偏移量。 The oscillating frequency offset detecting circuit of claim 10, wherein the down-converted self-mixing signal is generated by dividing the self-mixing signal by the frequency dividing circuit having a frequency dividing factor; and The control circuit includes: an arithmetic circuit for multiplying the down-converted self-mixing frequency by the dividing factor and dividing by 2, and comparing the oscillation frequency to obtain the frequency offset. 如申請專利範圍第10項所述之振盪頻率偏移偵測電路,其中該特定頻率範圍係位於在2倍振盪頻率附近的頻率範圍。 The oscillating frequency offset detecting circuit according to claim 10, wherein the specific frequency range is located in a frequency range around 2 times the oscillating frequency.
TW102130050A 2013-08-22 2013-08-22 Method and circuit for detecting frequency deviation of oscillator TWI551036B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW102130050A TWI551036B (en) 2013-08-22 2013-08-22 Method and circuit for detecting frequency deviation of oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW102130050A TWI551036B (en) 2013-08-22 2013-08-22 Method and circuit for detecting frequency deviation of oscillator

Publications (2)

Publication Number Publication Date
TW201509116A TW201509116A (en) 2015-03-01
TWI551036B true TWI551036B (en) 2016-09-21

Family

ID=53186401

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102130050A TWI551036B (en) 2013-08-22 2013-08-22 Method and circuit for detecting frequency deviation of oscillator

Country Status (1)

Country Link
TW (1) TWI551036B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7124417B2 (en) * 2018-04-24 2022-08-24 セイコーエプソン株式会社 Circuit devices, oscillators, electronic devices and moving bodies

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4994762A (en) * 1989-11-20 1991-02-19 Motorola, Inc. Multiloop synthesizer with optimal spurious performance
TW469719B (en) * 1998-05-06 2001-12-21 Philips Corp DC offset compensation for zero if quadrature demodulator
US20020030549A1 (en) * 2000-05-26 2002-03-14 Murata Manufacturing Co., Ltd. Nonreciprocal circuit device and communication apparatus including the same
TW507424B (en) * 1998-10-29 2002-10-21 Lucent Technologies Inc Direct digital synthesizer
US20120303307A1 (en) * 2011-05-25 2012-11-29 Ming-Chung Huang Circuit and method for detecting oscillating frequency drift

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4994762A (en) * 1989-11-20 1991-02-19 Motorola, Inc. Multiloop synthesizer with optimal spurious performance
TW469719B (en) * 1998-05-06 2001-12-21 Philips Corp DC offset compensation for zero if quadrature demodulator
TW507424B (en) * 1998-10-29 2002-10-21 Lucent Technologies Inc Direct digital synthesizer
US20020030549A1 (en) * 2000-05-26 2002-03-14 Murata Manufacturing Co., Ltd. Nonreciprocal circuit device and communication apparatus including the same
US20120303307A1 (en) * 2011-05-25 2012-11-29 Ming-Chung Huang Circuit and method for detecting oscillating frequency drift

Also Published As

Publication number Publication date
TW201509116A (en) 2015-03-01

Similar Documents

Publication Publication Date Title
USRE48613E1 (en) Dynamic measurement of frequency synthesizer noise spurs or phase noise
US10469184B1 (en) Radio frequency ranging using phase difference
JP7301771B2 (en) PHASE CORRECTOR, RANGING DEVICE AND PHASE VARIATION DETECTION DEVICE
US8508266B2 (en) Digital phase locked loop circuits with multiple digital feedback loops
US9520890B1 (en) Dual digital to time converter (DTC) based differential correlated double sampling DTC calibration
US9344096B2 (en) Method for detecting frequency offset of oscillator and associated circuit
JP6381656B2 (en) Signal generation circuit
JP2007033447A (en) Spectrum analyzer for correcting frequency error and method for the same
JPWO2012127770A1 (en) Oscillation frequency adjusting device, oscillation frequency adjusting method, and wireless communication device
US11513209B2 (en) Radio frequency ranging using phase difference
CN112204421B (en) Radar apparatus, control circuit, and program storage medium
TWI551036B (en) Method and circuit for detecting frequency deviation of oscillator
US9000855B2 (en) Circuit and method for detecting oscillating frequency drift
US10944409B2 (en) Phase-locked loop and method for the same
KR20100009846A (en) Method and apparatus for improving linearity of fmcw(frequency-modulated continuous wave) radar system
TWI456903B (en) Communication apparatus and wireless communication module
JP2010141519A (en) Phase-locked loop and communication device
JP2009177259A (en) Pll circuit, radio terminal device and frequency detection method
US9083318B2 (en) Digitally controlled oscillator and output frequency control method
JP3968357B2 (en) Vector modulation signal generator
WO2017090116A1 (en) Frequency detection circuit
JP2004015292A (en) Frequency converter
JP2006067516A (en) Ripple characteristic correction circuit and ripple characteristic correction method