TWI517261B - Semiconductor process - Google Patents

Semiconductor process Download PDF

Info

Publication number
TWI517261B
TWI517261B TW100143271A TW100143271A TWI517261B TW I517261 B TWI517261 B TW I517261B TW 100143271 A TW100143271 A TW 100143271A TW 100143271 A TW100143271 A TW 100143271A TW I517261 B TWI517261 B TW I517261B
Authority
TW
Taiwan
Prior art keywords
layer
gate
substrate
thickness
cap
Prior art date
Application number
TW100143271A
Other languages
Chinese (zh)
Other versions
TW201322344A (en
Inventor
蔡仁傑
徐韶華
白啟宏
周盈宏
蘇仕豪
徐世杰
王智禾
吳宏益
呂水煙
Original Assignee
聯華電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 聯華電子股份有限公司 filed Critical 聯華電子股份有限公司
Priority to TW100143271A priority Critical patent/TWI517261B/en
Publication of TW201322344A publication Critical patent/TW201322344A/en
Application granted granted Critical
Publication of TWI517261B publication Critical patent/TWI517261B/en

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

半導體製程Semiconductor process

本發明係關於一種半導體製程,且特別係關於一種半導體製程,其形成材質異於硬遮罩層的蓋層,且利用材料層覆蓋二閘極並再回蝕刻,俾使二閘極等高。The present invention relates to a semiconductor process, and more particularly to a semiconductor process for forming a cap layer having a material different from that of a hard mask layer, and covering the two gates with a material layer and etching back, so that the two gates are equal in height.

隨著半導體製程進入到深次微米時代,例如65奈米(nm)以下之製程,對於MOS電晶體元件的驅動電流(drive current)的提昇已顯得日益重要。為了改善元件的效能,目前業界已發展出所謂的「應變矽(strained-silicon)技術」,其原理主要是使閘極通道部分的矽晶格產生應變,使電荷在通過此應變之閘極通道時的移動力增加,進而達到使MOS電晶體運作更快的目的。一般在閘極側邊的基底中形成一磊晶層以使矽晶格產生應變時,需先形成一第一間隙壁以定義磊晶層的位置,然後蝕刻基底以形成一凹槽,接著再於凹槽中形成磊晶層。在形成磊晶層之後,須將第一間隙壁完全移除,以再重新形成一第二間隙壁,用以定義位於閘極側邊之基底中的源/汲極區的位置。As semiconductor processes enter the deep submicron era, such as processes below 65 nanometers (nm), the drive current of MOS transistor components has become increasingly important. In order to improve the performance of components, the so-called "strained-silicon technology" has been developed in the industry. The principle is mainly to strain the germanium lattice of the gate channel portion, so that the charge passes through the strain gate channel. The movement force at the time increases, thereby achieving the purpose of making the MOS transistor operate faster. Generally, when an epitaxial layer is formed in the substrate on the side of the gate to strain the germanium lattice, a first spacer is formed to define the position of the epitaxial layer, and then the substrate is etched to form a recess, and then An epitaxial layer is formed in the recess. After the epitaxial layer is formed, the first spacer must be completely removed to re-form a second spacer to define the location of the source/drain regions in the substrate on the side of the gate.

對於一互補式金氧半導體(complementary metal-oxide semiconductor,CMOS)元件或者一靜態隨機存取記憶體(Static Random Access Memory,SRAM,SRAM)而言,一NMOS電晶體以及一PMOS電晶體係位於相對之兩側,而PMOS電晶體與NMOS電晶體所需形成之磊晶層的材質及其製程又各不相同。例如,PMOS電晶體須形成一矽鍺磊晶層於閘極側邊的基底中,而NMOS電晶體則不適於形成矽鍺磊晶層,甚至NMOS電晶體可能要再另外形成矽碳磊晶層等。當僅在PMOS電晶體之閘極側邊的基底中形成矽鍺磊晶層時,則僅在PMOS電晶體進行一微影蝕刻製程,以形成第一間隙壁並再形成一凹槽,並於形成磊晶層之後,還要將第一間隙壁蝕刻移除。在形成矽鍺磊晶層的這些步驟中,都會蝕刻到PMOS電晶體之蓋層,而導致NMOS電晶體以及PMOS電晶體的閘極之厚度不一。並且,當PMOS電晶體之蓋層蝕刻過度時,可能致使蓋層下方之閘極層裸露或者第一間隙壁無法完全移除。For a complementary metal-oxide semiconductor (CMOS) component or a static random access memory (SRAM), an NMOS transistor and a PMOS transistor system are located relative to each other. On both sides, the material of the epitaxial layer and the process of forming the PMOS transistor and the NMOS transistor are different. For example, a PMOS transistor must form a germanium epitaxial layer in the substrate on the side of the gate, while an NMOS transistor is not suitable for forming a germanium epitaxial layer, and even an NMOS transistor may have an additional germanium carbon epitaxial layer. Wait. When a germanium epitaxial layer is formed only in the substrate on the gate side of the PMOS transistor, a lithography process is performed only on the PMOS transistor to form the first spacer and form a recess, and After the epitaxial layer is formed, the first spacer is also etched away. In these steps of forming the germanium epitaxial layer, the cap layer of the PMOS transistor is etched, resulting in different thicknesses of the gates of the NMOS transistor and the PMOS transistor. Moreover, when the cap layer of the PMOS transistor is excessively etched, the gate layer under the cap layer may be exposed or the first spacer may not be completely removed.

再者,以靜態隨機存取記憶體而言,現今解決NMOS電晶體以及PMOS電晶體的閘極之厚度不一的方法,例如為再進行一微影蝕刻製程,以薄化NMOS電晶體上之蓋層,但此薄化過程製程繁複,並且二次微影蝕刻製程之光阻亦會在NMOS電晶體以及PMOS電晶體的交界處產生對不準的問題,導致交界處之蓋層蝕刻過度或者未蓋層而殘留,劣化所形成之元件品質。Furthermore, in the case of a static random access memory, a method of solving the difference in the thickness of the gate of the NMOS transistor and the PMOS transistor is, for example, performing a photolithography etching process to thin the NMOS transistor. The capping layer, but the thinning process is complicated, and the photoresist of the secondary lithography process also causes a problem of inaccuracy at the junction of the NMOS transistor and the PMOS transistor, resulting in over-etching of the cap layer at the junction or Remains without covering, degrading the quality of the components formed.

因此,現今產業亟需一種半導體製程,其可解決應變矽製程中,所造成之二電晶體的閘極厚度不一,以及製程過程中之間隙壁無法完全移除或者閘極層裸露的問題。Therefore, in today's industry, there is a need for a semiconductor process that can solve the problem of the gate thickness of the two transistors caused by the strain 矽 process, and the problem that the spacers in the process cannot be completely removed or the gate layer is exposed.

本發明提出一種半導體製程,其係以不同於硬遮罩層之材料作為蓋層,俾使硬遮罩層可在製程中完全移除,並且以材料層覆蓋二閘極並再回蝕刻的方法,俾使二閘極等高。The invention provides a semiconductor process, which uses a material different from the hard mask layer as a cap layer, so that the hard mask layer can be completely removed in the process, and the material layer covers the two gates and is etched back again. , so that the two gates are equal.

本發明提供一種半導體製程,包含有下述步驟。首先,形成一第一閘極以及一第二閘極於一基底上,其中第一閘極包含一第一閘極層位於基底上以及一第一蓋層位於第一閘極層上,而第二閘極包含一第二閘極層位於基底上以及一第二蓋層位於第二閘極層上。接著,形成一硬遮罩層,覆蓋第一閘極以及第二閘極,其中硬遮罩層與第一蓋層以及第二蓋層的材質不同。接續,進行一微影暨蝕刻製程,圖案化位於第二閘極的硬遮罩層,以形成一第一間隙壁於第二閘極的側邊,並於第一間隙壁側邊的基底中形成一凹槽。續之,形成一磊晶層於凹槽。然後,進行一蝕刻製程,完全移除剩下的硬遮罩層以及第一間隙壁。之後,分別形成一第二間隙壁於第一閘極以及第二閘極的側邊。The present invention provides a semiconductor process comprising the steps described below. First, a first gate and a second gate are formed on a substrate, wherein the first gate includes a first gate layer on the substrate and a first cap layer on the first gate layer, and The second gate includes a second gate layer on the substrate and a second cap layer on the second gate layer. Next, a hard mask layer is formed to cover the first gate and the second gate, wherein the hard mask layer is different from the material of the first cover layer and the second cover layer. Continuing, performing a lithography and etching process to pattern the hard mask layer on the second gate to form a first spacer on the side of the second gate and in the substrate on the side of the first spacer A groove is formed. Continued, an epitaxial layer is formed in the recess. Then, an etching process is performed to completely remove the remaining hard mask layer and the first spacer. Thereafter, a second spacer is formed on the sides of the first gate and the second gate, respectively.

本發明提供一種半導體製程,包含有下述步驟。首先,提供一基底,具有一第一閘極以及一第二閘極,其中第一閘極包含一第一閘極層位於基底上、一第一氮化層位於第一閘極層上以及一第一氧化層位於第一氮化層上,而第二閘極包含一第二閘極層位於基底上以及一第二氮化層位於第二閘極層上。然後,形成一材料層,全面覆蓋第一閘極以及第二閘極。而後,回蝕刻材料層、第一閘極以及第二閘極,以至暴露出第一氮化層以及第二氮化層。The present invention provides a semiconductor process comprising the steps described below. First, a substrate is provided, having a first gate and a second gate, wherein the first gate includes a first gate layer on the substrate, a first nitride layer on the first gate layer, and a first gate layer The first oxide layer is on the first nitride layer, and the second gate includes a second gate layer on the substrate and a second nitride layer on the second gate layer. Then, a material layer is formed to completely cover the first gate and the second gate. Then, the material layer, the first gate and the second gate are etched back to expose the first nitride layer and the second nitride layer.

基於上述,本發明提供一種半導體製程,其形成一異於硬遮罩層之材質的蓋層於閘極上,因此可完全移除硬遮罩層,且不會有蓋層應過蝕刻而暴露其下方之閘極層的問題。另外,本發明係以形成材料層再將其回蝕刻的方法,以平整地移除複數個具有不同厚度之閘極的蓋層,使閘極具有相同之厚度,因而可促使研磨製程均勻地研磨層間介電層以及接觸洞蝕刻停止層至暴露出閘極層。Based on the above, the present invention provides a semiconductor process that forms a cap layer different from the material of the hard mask layer on the gate, so that the hard mask layer can be completely removed without the cap layer being over-etched and exposed The problem of the gate layer. In addition, the present invention is to form a layer of material and then etch it back to planarly remove a plurality of cap layers having gates having different thicknesses so that the gates have the same thickness, thereby facilitating uniform polishing of the polishing process. The interlayer dielectric layer and the contact hole etch stop layer expose the gate layer.

第1-13圖係繪示本發明一實施例之半導體製程之剖面示意圖。如第1圖所示,提供一基底110。基底110例如是一矽基底、一含矽基底、三五族覆矽基底(例如GaN-on-silicon)、石墨烯覆矽基底(graphene-on-silicon)或一矽覆絕緣(silicon-on-insulator,SOI)基底等半導體基底。形成一絕緣結構10於基底110中,其中絕緣結構10例如為一淺溝絕緣結構,其可以淺溝絕緣技術(shallow trench isolation technology)形成。形成一介電層120’於基底110上。在一採用後置高介電常數介電層之後閘極製程(Gate Last for High-K Last process)之實施例中,介電層120’可例如為一氧化層;在一採用前置高介電常數介電層之後閘極製程(Gate Last for High-K First process)之實施例中,介電層120’可例如為一高介電常數介電層,其中高介電常數介電層例如為一含金屬介電層,其可包含有鉿(Hafnium)氧化物、鋯(Zirconium)氧化物,但本發明不以此為限。更進一步而言,高介電常數閘極介電層係可選自氧化鉿(hafnium oxide,HfO2)、矽酸鉿氧化合物(hafnium silicon oxide,HfSiO4)、矽酸鉿氮氧化合物(hafnium silicon oxynitride,HfSiON)、氧化鋁(aluminum oxide,Al2O3)、氧化鑭(lanthanum oxide,La2O3)、氧化鉭(tantalum oxide,Ta2O5)、氧化釔(yttrium oxide,Y2O3)、氧化鋯(zirconium oxide,ZrO2)、鈦酸鍶(strontium titanate oxide,SrTiO3)、矽酸鋯氧化合物(zirconium silicon oxide,ZrSiO4)、鋯酸鉿(hafnium zirconium oxide,HfZrO4)、鍶鉍鉭氧化物(strontium bismuth tantalate,SrBi2Ta2O9,SBT)、鋯鈦酸鉛(lead zirconate titanate,PbZrxTi1-xO3,PZT)與鈦酸鋇鍶(barium strontium titanate,BaxSr1-xTiO3,BST)所組成之群組,但本發明不以此為限。另外,一緩衝層(未繪示)可選擇性地形成於介電層120’與基底110之間。1-13 are schematic cross-sectional views showing a semiconductor process according to an embodiment of the present invention. As shown in Fig. 1, a substrate 110 is provided. The substrate 110 is, for example, a substrate, a germanium-containing substrate, a three-five-layer overlay substrate (eg, GaN-on-silicon), a graphene-on-silicon, or a silicon-on-silicone-on-silicon. A semiconductor substrate such as an insulator (SOI) substrate. An insulating structure 10 is formed in the substrate 110, wherein the insulating structure 10 is, for example, a shallow trench insulating structure, which can be formed by a shallow trench isolation technology. A dielectric layer 120' is formed on the substrate 110. In an embodiment using a Gate Last for High-K Last process, the dielectric layer 120' may be, for example, an oxide layer; In an embodiment of the Gate Last for High-K First process, the dielectric layer 120' may be, for example, a high-k dielectric layer, such as a high-k dielectric layer, for example It is a metal-containing dielectric layer, which may contain a hafnium oxide or a zirconium oxide, but the invention is not limited thereto. Furthermore, the high dielectric constant gate dielectric layer may be selected from the group consisting of hafnium oxide (HfO 2 ), hafnium silicon oxide (HfSiO 4 ), and niobium oxynitride (hafnium). Silicon oxynitride, HfSiON), aluminum oxide (Al 2 O 3 ), lanthanum oxide (La 2 O 3 ), tantalum oxide (Ta 2 O 5 ), yttrium oxide (Y 2 ) O 3 ), zirconium oxide (ZrO 2 ), strontium titanate oxide (SrTiO 3 ), zirconium silicon oxide (ZrSiO 4 ), hafnium zirconium oxide (HfZrO 4 ) ), strontium bismuth tantalate (SrBi 2 Ta 2 O 9 , SBT), lead zirconate titanate (PbZr x Ti 1-x O 3 , PZT) and barium strontium A group consisting of titanate, Ba x Sr 1-x TiO 3 , BST), but the invention is not limited thereto. In addition, a buffer layer (not shown) may be selectively formed between the dielectric layer 120' and the substrate 110.

接著,形成一閘極層130’於基底110上。在本實施例中,閘極層130’為一犧牲閘極層,將於後續製程中被金屬閘極所取代,但本發明不以此為限,其中犧牲閘極層可例如為一多晶矽層。然後,先選擇性地形成一蓋層142’於閘極層130’上,再形成一蓋層144’於蓋層142’上。本實施例包含二層蓋層142’以及144’,但其他實施例之蓋層亦可為一層或多層,視實際需求而定。在本實施例中,蓋層142’為一氮化層,而蓋層144’為一氧化層。Next, a gate layer 130' is formed on the substrate 110. In this embodiment, the gate layer 130' is a sacrificial gate layer, which will be replaced by a metal gate in a subsequent process, but the invention is not limited thereto, and the sacrificial gate layer may be, for example, a polysilicon layer. . Then, a cap layer 142' is selectively formed on the gate layer 130' to form a cap layer 144' on the cap layer 142'. This embodiment includes two cover layers 142' and 144', but the cover layers of other embodiments may also be one or more layers, depending on actual needs. In this embodiment, the cap layer 142' is a nitride layer and the cap layer 144' is an oxide layer.

如第2圖所示,依序圖案化蓋層144’、蓋層142’、閘極層130’以及介電層120’,以形成一第一閘極G1以及一第二閘極G2於基底110上。如此一來,第一閘極G1則可包含一第一介電層120a與一第一閘極層130a堆疊於基底110上以及一第一蓋層144a位於第一閘極層130a上,而第二閘極G2包含一第二介電層120b與一第二閘極層130b堆疊於基底110上以及一第二蓋層144b位於第二閘極層130b上。在本實施例中,第一閘極G1又可包含一第三蓋層142a位於第一閘極層130a以及第一蓋層144a之間,以及第二閘極G2又可包含一第四蓋層142b位於第二閘極層130b以及第二蓋層144b之間。在本實施例中,第一蓋層144a為一第一氧化層,而第二蓋層144b為一第二氧化層;第三蓋層142a為一第一氮化層,而第四蓋層142b為一第二氮化層,但本發明不以此為限。再者,分別形成一側壁子150a、150b於第一閘極G1以及第二閘極G2的側邊,其中側壁子150a以及150b可例如由熱氧化或沉積製程形成。As shown in FIG. 2, the cap layer 144', the cap layer 142', the gate layer 130', and the dielectric layer 120' are sequentially patterned to form a first gate G1 and a second gate G2 on the substrate. 110 on. As such, the first gate G1 may include a first dielectric layer 120a and a first gate layer 130a stacked on the substrate 110 and a first cap layer 144a on the first gate layer 130a. The second gate G2 includes a second dielectric layer 120b and a second gate layer 130b stacked on the substrate 110 and a second cap layer 144b on the second gate layer 130b. In this embodiment, the first gate G1 may further include a third cap layer 142a between the first gate layer 130a and the first cap layer 144a, and the second gate G2 may further include a fourth cap layer. 142b is located between the second gate layer 130b and the second cap layer 144b. In this embodiment, the first cap layer 144a is a first oxide layer, and the second cap layer 144b is a second oxide layer; the third cap layer 142a is a first nitride layer, and the fourth cap layer 142b It is a second nitride layer, but the invention is not limited thereto. Furthermore, a side wall 150a, 150b is formed on the side of the first gate G1 and the second gate G2, respectively, wherein the sidewall spacers 150a and 150b can be formed, for example, by a thermal oxidation or deposition process.

如第3圖所示,形成一硬遮罩層160覆蓋第一閘極G1以及第二閘極G2,其中硬遮罩層160與第一蓋層144a以及第二蓋層144b的材質不同。在本實施例中,硬遮罩層160係為一氮化矽層,其不同於第一蓋層144a以及第二蓋層144b的材質。硬遮罩層160採用材質不同於第一蓋層144a以及第二蓋層144b的目的,係為使後續進行之微影暨蝕刻製程或蝕刻製程對於第一蓋層144a以及第二蓋層144b與硬遮罩層160的蝕刻率不同,俾使硬遮罩層160可完全移除。將詳細說明於後。As shown in FIG. 3, a hard mask layer 160 is formed to cover the first gate G1 and the second gate G2, wherein the hard mask layer 160 is different in material from the first cap layer 144a and the second cap layer 144b. In the present embodiment, the hard mask layer 160 is a tantalum nitride layer which is different from the material of the first cap layer 144a and the second cap layer 144b. The hard mask layer 160 is made of a material different from the first cap layer 144a and the second cap layer 144b for the subsequent lithography and etching process or etching process for the first cap layer 144a and the second cap layer 144b. The etch rate of the hard mask layer 160 is different, so that the hard mask layer 160 can be completely removed. It will be described in detail later.

如第4圖所示,進行一微影暨蝕刻製程P1,圖案化位於第二閘極G2的硬遮罩層160。具體而言,可先覆蓋並圖案化光阻層(未繪示)以形成一光阻層H,其僅覆蓋一第一閘極區域A1,而暴露出一第二閘極區域A2。圖案化位於第二閘極G2的硬遮罩層160,而形成一第一間隙壁160b於第二閘極G2的側邊,並於第二閘極區域A2留下剩餘的硬遮罩層160a。然後,再利用第一間隙壁160b為硬遮罩,自動對準以於第一間隙壁160b側邊的基底110中至少形成一凹槽R。As shown in FIG. 4, a lithography and etching process P1 is performed to pattern the hard mask layer 160 of the second gate G2. Specifically, a photoresist layer (not shown) may be overlaid and patterned to form a photoresist layer H covering only a first gate region A1 and exposing a second gate region A2. The hard mask layer 160 located on the second gate G2 is patterned to form a first spacer 160b on the side of the second gate G2, and the remaining hard mask layer 160a is left in the second gate region A2. . Then, the first spacer 160b is used as a hard mask, and is automatically aligned to form at least one groove R in the substrate 110 on the side of the first spacer 160b.

本發明所選用之第二蓋層144b及硬遮罩層160的材質不同,例如可搭配選用微影暨蝕刻製程P1對於第二蓋層144b的蝕刻率小於硬遮罩層160的蝕刻率的材質,以減少第二蓋層144b在微影暨蝕刻製程的損害,俾使第一間隙壁160b及凹槽R能完整地形成。詳細而言,在進行微影暨蝕刻製程P1時,第二閘極G2頂部的硬遮罩層160已被移除,而暴露出第二閘極G2。在一般實施態樣下,在進行微影暨蝕刻製程P1時,第二閘極G2會被部分蝕刻,造成第一閘極G1的厚度t1大於第二閘極G2的厚度t2。此時,二者之厚度差為一第一厚度差t3。The material of the second cap layer 144b and the hard mask layer 160 used in the present invention are different. For example, the material having the etch rate of the second cap layer 144b is smaller than the etching rate of the hard mask layer 160 by using the lithography and etching process P1. In order to reduce the damage of the second cap layer 144b in the lithography and etching process, the first spacer 160b and the recess R can be completely formed. In detail, when the lithography and etching process P1 is performed, the hard mask layer 160 on the top of the second gate G2 has been removed, and the second gate G2 is exposed. In a general implementation, when the lithography and etching process P1 is performed, the second gate G2 is partially etched, causing the thickness t1 of the first gate G1 to be greater than the thickness t2 of the second gate G2. At this time, the difference in thickness between the two is a first thickness difference t3.

如第5圖所示,形成一磊晶層170於凹槽R中。在本實施例中,磊晶層170可包含一矽鍺磊晶層,適於形成一PMOS電晶體,而此時第一閘極G1則為一NMOS電晶體的閘極。反之,如磊晶層170包含一矽碳磊晶層,則第二閘極G2為一NMOS電晶體的閘極,而第一閘極G1則為形成一PMOS電晶體的閘極。As shown in FIG. 5, an epitaxial layer 170 is formed in the recess R. In this embodiment, the epitaxial layer 170 may include a germanium epitaxial layer suitable for forming a PMOS transistor, and the first gate G1 is a gate of an NMOS transistor. Conversely, if the epitaxial layer 170 includes a germanium carbon epitaxial layer, the second gate G2 is the gate of an NMOS transistor, and the first gate G1 is a gate forming a PMOS transistor.

如第6圖所示,不使用遮罩,全面性對基底110進行一蝕刻製程P2,以完全移除剩下的硬遮罩層160a以及第一間隙壁160b。蝕刻製程P2包含一濕蝕刻製程,其例如為一含磷酸的濕蝕刻製程。本發明所選用之第二蓋層144b及硬遮罩層160的材質不同,例如可選用蝕刻製程P2對於第二蓋層144b的蝕刻率小於硬遮罩層160的蝕刻率的材質,俾完全移除剩下的硬遮罩層160a以及第一間隙壁160b。在進行蝕刻製程P2時,第二閘極G2被部分蝕刻,造成第一閘極G1與第二閘極G2的厚度差t4大於第一厚度差t3。As shown in FIG. 6, an etching process P2 is performed on the substrate 110 in a comprehensive manner without using a mask to completely remove the remaining hard mask layer 160a and the first spacer 160b. The etching process P2 includes a wet etching process, which is, for example, a wet etching process containing phosphoric acid. The material of the second cap layer 144b and the hard mask layer 160 used in the present invention are different. For example, a material having an etching rate P2 for the second cap layer 144b and an etching rate lower than that of the hard mask layer 160 may be selected. The remaining hard mask layer 160a and the first spacer 160b are removed. When the etching process P2 is performed, the second gate G2 is partially etched, causing the thickness difference t4 of the first gate G1 and the second gate G2 to be greater than the first thickness difference t3.

在此強調,本發明係藉由採用不同於硬遮罩層160材質之第二蓋層144b,例如使第二蓋層144b在微影暨蝕刻製程P1或蝕刻製程P2中的蝕刻率低於硬遮罩層160,以完全移除剩下的硬遮罩層160a以及第一間隙壁160b,而不會有第一間隙壁160b殘留,導致後續之第二間隙壁的寬度定義不準,或者有蝕刻缺口產生的問題。並且,亦不會有第二蓋層144b蝕刻過度而暴露出第二閘極層130b的問題。在本實施例中,第一蓋層144a及第二蓋層144b接由蓋層144’所形成,故二者的材質相同,但在其他實施例中,第一蓋層144a及第二蓋層144b的材質可不同。本發明可藉由單獨選用第二蓋層144b的材質,以完全移除第一間隙壁160b。It is emphasized herein that the present invention utilizes a second cap layer 144b different from the material of the hard mask layer 160, for example, the etching rate of the second cap layer 144b in the lithography and etching process P1 or the etching process P2 is lower than that of the hard layer. The mask layer 160 is completely removed to completely remove the remaining hard mask layer 160a and the first spacer 160b without leaving the first spacer 160b remaining, resulting in the definition of the width of the subsequent second spacer being inaccurate, or The problem caused by etching the gap. Moreover, there is no problem that the second cap layer 144b is excessively etched to expose the second gate layer 130b. In this embodiment, the first cap layer 144a and the second cap layer 144b are formed by the cap layer 144', so the materials of the two are the same, but in other embodiments, the first cap layer 144a and the second cap layer. The material of 144b can be different. The present invention can completely remove the first spacer 160b by separately selecting the material of the second cap layer 144b.

在本實施例中,第三蓋層142a的厚度較佳小於第一蓋層144a的厚度,且第四蓋層142b的厚度較佳小於第二蓋層144b的厚度。在一較佳的實施例中,第三蓋層142a或第四蓋層142b的厚度例如為200埃(angstroms),而第一蓋層144a或第二蓋層144b的厚度例如為650埃(angstroms)。或者,第三蓋層142a或第四蓋層142b的厚度例如為100埃(angstroms),而第一蓋層144a或第二蓋層144b的厚度例如為750埃(angstroms)。如此,第一蓋層144a或第二蓋層144b則不會在圖案化形成第一閘極G1及第二閘極G2時即被消耗殆盡。是以,其可在微影暨蝕刻製程P1或蝕刻製程P2中,防止第一閘極層130a及第二閘極層130b暴露出,劣化閘極之電性品質。In this embodiment, the thickness of the third cap layer 142a is preferably smaller than the thickness of the first cap layer 144a, and the thickness of the fourth cap layer 142b is preferably smaller than the thickness of the second cap layer 144b. In a preferred embodiment, the thickness of the third cap layer 142a or the fourth cap layer 142b is, for example, 200 angstroms, and the thickness of the first cap layer 144a or the second cap layer 144b is, for example, 650 angstroms (angstroms). ). Alternatively, the thickness of the third cap layer 142a or the fourth cap layer 142b is, for example, 100 angstroms, and the thickness of the first cap layer 144a or the second cap layer 144b is, for example, 750 angstroms. Thus, the first cap layer 144a or the second cap layer 144b is not consumed when the first gate G1 and the second gate G2 are patterned. Therefore, in the lithography and etching process P1 or the etching process P2, the first gate layer 130a and the second gate layer 130b are prevented from being exposed, and the electrical quality of the gate is deteriorated.

如第7圖所示,分別形成一第二間隙壁180於第一閘極G1以及第二閘極G2的側邊。第二間隙壁180可包含一氧化層182位於第一閘極G1以及第二閘極G2的外側,以及一氮化層184位於氧化層182的外側,但本發明不以此為限。之後,進行相對應之離子佈植製程,以分別於第一閘極G1以及第二閘極G2側邊的基底110中形成所需的源極與汲極(圖未示)。As shown in FIG. 7, a second spacer 180 is formed on the side of the first gate G1 and the second gate G2, respectively. The second spacer 180 may include an oxide layer 182 on the outer side of the first gate G1 and the second gate G2, and a nitride layer 184 on the outer side of the oxide layer 182, but the invention is not limited thereto. Thereafter, a corresponding ion implantation process is performed to form a desired source and drain (not shown) in the substrate 110 on the side of the first gate G1 and the second gate G2, respectively.

如第8圖所示,在形成第二間隙壁180、源極與汲極於第一閘極G1以及第二閘極G2的側邊後,可再進行一清洗製程P3,清洗第一閘極G1、第二閘極G2以及基底110的表面。在進行清洗製程P3時,第二蓋層144b會被移除。清洗製程P3包含一金屬矽化物的前清洗製程,例如一含氨(NH3)及三氟化氮(NF3)的清洗製程。例如:含氨(NH3)及三氟化氮(NF3)的清洗製程的清洗反應可如下:As shown in FIG. 8, after the second spacer 180, the source and the drain are formed on the sides of the first gate G1 and the second gate G2, a cleaning process P3 may be performed to clean the first gate. G1, second gate G2, and the surface of the substrate 110. When the cleaning process P3 is performed, the second cap layer 144b is removed. P3 before cleaning processes comprising a washing process of metal silicide, such as an ammonia (NH 3) and nitrogen trifluoride (NF 3) cleaning processes. For example, the cleaning reaction of a cleaning process containing ammonia (NH 3 ) and nitrogen trifluoride (NF3) can be as follows:

(1)混合氣體的電漿反應:(1) Plasma reaction of mixed gas:

NF3+NH3→NH4F+NH4FHFNF 3 +NH 3 →NH 4 F+NH 4 F HF

(2)蝕刻反應(一般在30℃下進行):(2) Etching reaction (generally carried out at 30 ° C):

NH4F+NH4FHF+SiO2→(NH4)2SiF6(s)+H2ONH 4 F+NH 4 F HF+SiO 2 →(NH 4 ) 2 SiF 6 (s)+H 2 O

(3)昇華反應(一般在大於100℃下進行):(3) Sublimation reaction (generally carried out at more than 100 ° C):

(NH4)2SiF6(s)→SiF4(g)+NH3(g)(NH 4 ) 2 SiF 6 (s)→SiF 4 (g)+NH 3 (g)

在進行清洗製程P3之後,可再進行一金屬矽化物製程,以形成金屬矽化物層20於基底110中。After the cleaning process P3 is performed, a metal germanide process can be performed to form the metal telluride layer 20 in the substrate 110.

如第9圖所示,選擇性地形成一保護層190,全面覆蓋第一閘極G1以及第二閘極G2。在本實施例中,保護層190較佳與第二間隙壁180、第三蓋層142a以及第四蓋層142b為相同材質者,例如為一氮化矽層,以使其在後續製程中與第二間隙壁180的氮化層184、第三蓋層142a及第四蓋層142b一併移除,但本發明不以此為限。As shown in FIG. 9, a protective layer 190 is selectively formed to completely cover the first gate G1 and the second gate G2. In this embodiment, the protective layer 190 is preferably the same material as the second spacer 180, the third cap layer 142a, and the fourth cap layer 142b, for example, a tantalum nitride layer, so as to be in a subsequent process. The nitride layer 184, the third cap layer 142a, and the fourth cap layer 142b of the second spacer 180 are removed together, but the invention is not limited thereto.

如第10圖所示,形成一材料層F,全面覆蓋第一閘極G1以及第二閘極G2。材料層F可例如為一光阻層。As shown in FIG. 10, a material layer F is formed to completely cover the first gate G1 and the second gate G2. The material layer F can be, for example, a photoresist layer.

如第11圖所示,回蝕刻部份之材料層F、保護層190、第一閘極G1以及第二閘極G2,以至暴露出第三蓋層142a以及第四蓋層142b。此時,第一閘極G1上方之第一蓋層144a會同時被移除。回蝕刻的方法可包含以含氧或含氟的乾蝕刻製程蝕刻,例如一氧電漿乾蝕刻製程,但本發明不以此為限。As shown in FIG. 11, the material layer F of the portion, the protective layer 190, the first gate G1, and the second gate G2 are etched back to expose the third cap layer 142a and the fourth cap layer 142b. At this time, the first cap layer 144a above the first gate G1 is simultaneously removed. The etch back method may include a dry etching process including oxygen or fluorine, such as an oxygen plasma dry etching process, but the invention is not limited thereto.

如第12圖所示,依序移除剩下的材料層F、第三蓋層142a、第四蓋層142b以及第二間隙壁180中的氮化層184。由於本實施例之保護層190亦為一氮化矽層,其與氮化層184、第三蓋層142a以及第四蓋層142b之材質相同,因此可一併被移除。As shown in FIG. 12, the remaining material layer F, the third cap layer 142a, the fourth cap layer 142b, and the nitride layer 184 in the second spacer 180 are sequentially removed. Since the protective layer 190 of the present embodiment is also a tantalum nitride layer, which is the same material as the nitride layer 184, the third cap layer 142a, and the fourth cap layer 142b, it can be removed together.

如第13圖所示,形成一接觸洞蝕刻停止層30(contact etch stop layer,CESL),全面覆蓋第一閘極G1以及第二閘極G2,其中覆蓋第一閘極G1以及第二閘極G2的接觸洞蝕刻停止層30之材質或摻雜可不相同,俾對第一閘極G1以及第二閘極G2於後續所形成之電晶體(例如第一閘極G1可用以形成一PMOS電晶體以及第二閘極G2可用以形成一NMOS電晶體)施加不同應力。再者,接觸洞蝕刻停止層30可為單層或雙層,視實際需要而定。形成一層間介電層40,覆蓋接觸洞蝕刻停止層30。進行一平坦化製程P4,例如一化學機械研磨製程,平坦化部分層間介電層40以及部分接觸洞蝕刻停止層30,以至暴露出第一閘極層130a及第二閘極層130b。接觸洞蝕刻停止層30可包含一已摻雜之氮化矽層,並可對於閘極通道C1、C2產生不同的應力,而層間介電層40可例如為一氧化層,但本發明非限於此。由於本發明事先形成材料層F並將其回蝕刻,使第一閘極G1以及第二閘極G2具有相同之高度,因此可使研磨製程P4均勻地研磨部分層間介電層40以及部分接觸洞蝕刻停止層30,而增加研磨後之半導體結構100的電性品質與製程良率。As shown in FIG. 13, a contact etch stop layer 30 (CESL) is formed to cover the first gate G1 and the second gate G2, and covers the first gate G1 and the second gate. The material or doping of the contact hole etch stop layer 30 of G2 may be different, and the first gate G1 and the second gate G2 may be formed on the subsequently formed transistor (for example, the first gate G1 may be used to form a PMOS transistor). And the second gate G2 can be used to form an NMOS transistor to apply different stresses. Furthermore, the contact hole etch stop layer 30 can be a single layer or a double layer, depending on actual needs. An interlayer dielectric layer 40 is formed to cover the contact hole etch stop layer 30. A planarization process P4 is performed, such as a chemical mechanical polishing process, planarizing a portion of the interlayer dielectric layer 40 and a portion of the contact hole etch stop layer 30 to expose the first gate layer 130a and the second gate layer 130b. The contact hole etch stop layer 30 may comprise a doped tantalum nitride layer and may generate different stresses for the gate channels C1, C2, and the interlayer dielectric layer 40 may be, for example, an oxide layer, but the invention is not limited thereto. this. Since the present invention forms the material layer F in advance and etches back the first gate G1 and the second gate G2 to have the same height, the polishing process P4 can uniformly polish a part of the interlayer dielectric layer 40 and a part of the contact hole. The stop layer 30 is etched to increase the electrical quality and process yield of the polished semiconductor structure 100.

當然,可再進行後續之半導體製程,例如移除第一閘極層130a及第二閘極層130b,在依序填入阻障層、功函數金屬層以及主金屬電極層等,其為本領域所熟知之技術,故不再贅述。Of course, the subsequent semiconductor process can be performed, for example, the first gate layer 130a and the second gate layer 130b are removed, and the barrier layer, the work function metal layer, and the main metal electrode layer are sequentially filled in, etc. The techniques well known in the art are not repeated here.

另外,本發明亦可以應用於其他之半導體製程,以一靜態隨機存取記憶體為例,第14-15圖係繪示一實施例之靜態隨機存取記憶體之剖面示意圖。第16-19圖係繪示另一實施例之靜態隨機存取記憶體之剖面示意圖。In addition, the present invention can also be applied to other semiconductor processes, taking a static random access memory as an example, and FIGS. 14-15 are schematic cross-sectional views of a static random access memory according to an embodiment. 16-19 are schematic cross-sectional views showing a static random access memory of another embodiment.

如第14圖所示,一絕緣結構50,例如一淺溝絕緣結構,位於一NMOS電晶體220以及一PMOS電晶體240之間。在PMOS電晶體240形成磊晶層(未繪示)之後,PMOS電晶體240之一蓋層242的厚度將小於NMOS電晶體220之一蓋層244的厚度。因此,常須再進行一微影蝕刻製程,以薄化蓋層244。然而,微影蝕刻製程所形成之一光阻層60會產生對不準的問題,例如向右偏移,而導致其邊緣區B1重複蝕刻。如第15圖所示,邊緣區B1的一蓋層246的厚度小於蓋層242、244,暴露出一閘極層232的一上半部232p。暴露出的上半部232p會導致後續金屬矽化物形成於其上,造成閘極層232難以移除或各閘極層232彼此電連接而短路。As shown in FIG. 14, an insulating structure 50, such as a shallow trench insulating structure, is located between an NMOS transistor 220 and a PMOS transistor 240. After the PMOS transistor 240 forms an epitaxial layer (not shown), the thickness of one of the cap layers 242 of the PMOS transistor 240 will be less than the thickness of one of the cap layers 244 of the NMOS transistor 220. Therefore, it is often necessary to perform a photolithography process to thin the cap layer 244. However, one of the photoresist layers 60 formed by the lithography process may cause a problem of misalignment, such as shifting to the right, resulting in repeated etching of the edge region B1. As shown in Fig. 15, a cap layer 246 of the edge region B1 has a thickness smaller than that of the cap layers 242, 244, exposing an upper portion 232p of a gate layer 232. The exposed upper half 232p causes subsequent metal halide formation thereon, causing the gate layer 232 to be difficult to remove or the gate layers 232 to be electrically connected to each other and shorted.

相反地,如第16圖所示,若向左偏移,則此微影蝕刻製程所形成之光阻層60所產生的對不準問題,亦可能導致邊緣區B2應光阻層60覆蓋而沒有蝕刻到一蓋層248以及一硬遮罩層250。如第17圖所示,邊緣區B2的蓋層248的厚度大於蓋層242、244,且用以形成磊晶層(未繪示)之硬遮罩層250殘留於蓋層248上。如第18圖所示,因硬遮罩層250殘留,後續應形成於一閘極230上之一第二間隙壁260則直接形成於硬遮罩層250上,其中第二間隙壁260包含一氧化層262位於硬遮罩層250的外側以及一氮化層264位於氧化層262的外側。如第19圖所示,在移除第二間隙壁260時,未被氧化層262所覆蓋的硬遮罩層250則會被部分蝕刻,形成缺口d1、d2,降低了靜態隨機存取記憶體之電性品質。Conversely, as shown in FIG. 16, if it is shifted to the left, the problem of misalignment caused by the photoresist layer 60 formed by the lithography process may also cause the edge region B2 to be covered by the photoresist layer 60. A cap layer 248 and a hard mask layer 250 are not etched. As shown in FIG. 17, the thickness of the cap layer 248 of the edge region B2 is greater than that of the cap layers 242, 244, and the hard mask layer 250 for forming an epitaxial layer (not shown) remains on the cap layer 248. As shown in FIG. 18, because the hard mask layer 250 remains, a second spacer 260 which is subsequently formed on a gate 230 is directly formed on the hard mask layer 250, wherein the second spacer 260 includes a The oxide layer 262 is on the outside of the hard mask layer 250 and a nitride layer 264 is on the outside of the oxide layer 262. As shown in FIG. 19, when the second spacer 260 is removed, the hard mask layer 250 not covered by the oxide layer 262 is partially etched to form the notches d1 and d2, which reduces the static random access memory. Electrical quality.

承上,由於採用二此微影蝕刻製程而造成之交界處的對不準問題,在本發明可一併解決。類似如第6圖所示,本發明即利用硬遮罩層250為一氮化矽層,其不同於蓋層242以及蓋層244的材質,因而可不使用遮罩,全面性對基底110進行一蝕刻製程。如此,採用本發明之半導體製程所形成之靜態隨機存取記憶體不會有缺口d1、d2的問題,因為本發明係僅採用一次微影蝕刻製程,即可完全移除硬遮罩層250。According to the above, the problem of the misalignment at the junction caused by the use of the two lithography etching processes can be solved in the present invention. Similarly, as shown in FIG. 6, the present invention utilizes the hard mask layer 250 as a tantalum nitride layer, which is different from the material of the cap layer 242 and the cap layer 244, so that the substrate 110 can be comprehensively used without using a mask. Etching process. Thus, the static random access memory formed by the semiconductor process of the present invention does not have the problem of the notches d1, d2, because the present invention completely removes the hard mask layer 250 by using only one photolithography process.

綜上所述,本發明提供一種半導體製程,其形成一異於硬遮罩層之材質的蓋層於閘極上,因此可完全移除硬遮罩層(及其所形成之間隙壁),且不會有蓋層因過度蝕刻而暴露其下方之閘極層的問題。是以,本發明可提升後續形成於閘極上之接觸洞蝕刻停止層之效能。並且,本發明之僅採用一次微影蝕刻製程即可完全移除硬遮罩層,因此不會有靜態隨機存取記憶體之交界處對不準的問題。In summary, the present invention provides a semiconductor process that forms a cap layer different from the material of the hard mask layer on the gate, thereby completely removing the hard mask layer (and the spacer formed thereby), and There is no problem with the cap layer being exposed to the underlying gate layer due to over-etching. Therefore, the present invention can improve the performance of the contact hole etch stop layer formed on the gate later. Moreover, the present invention can completely remove the hard mask layer by using only one photolithography etching process, so there is no problem of the alignment of the static random access memory.

另外,本發明係以形成材料層再將其回蝕刻的方法,以平整地移除複數個具有不同厚度之閘極的蓋層,使閘極具有相同之高度,因而可促使研磨製程均勻地研磨層間介電層以及接觸洞蝕刻停止層至暴露出閘極層,進而改善所形成之半導體結構的電性品質。In addition, the present invention is to form a layer of material and then etch it back to planarly remove a plurality of cap layers having gates having different thicknesses so that the gates have the same height, thereby facilitating uniform grinding of the polishing process. The interlayer dielectric layer and the contact hole etch stop layer expose the gate layer, thereby improving the electrical quality of the formed semiconductor structure.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。The above are only the preferred embodiments of the present invention, and all changes and modifications made to the scope of the present invention should be within the scope of the present invention.

10...絕緣結構10. . . Insulation structure

20...金屬矽化物層20. . . Metal telluride layer

30...接觸洞蝕刻停止層30. . . Contact hole etch stop layer

40...層間介電層40. . . Interlayer dielectric layer

50...絕緣結構50. . . Insulation structure

60、H...光阻層60, H. . . Photoresist layer

100...半導體結構100. . . Semiconductor structure

110...基底110. . . Base

120’...介電層120’. . . Dielectric layer

120a...第一介電層120a. . . First dielectric layer

120b...第二介電層120b. . . Second dielectric layer

130’、232...閘極層130’, 232. . . Gate layer

130a...第一閘極層130a. . . First gate layer

130b...第二閘極層130b. . . Second gate layer

142’、144’、242、244、246、248...蓋層142', 144', 242, 244, 246, 248. . . Cover

142a...第三蓋層142a. . . Third cover

142b...第四蓋層142b. . . Fourth cover

144a...第一蓋層144a. . . First cover

144b...第二蓋層144b. . . Second cover

150a、150b...側壁子150a, 150b. . . Side wall

160、160a、250...硬遮罩層160, 160a, 250. . . Hard mask layer

160b...第一間隙壁160b. . . First spacer

170...磊晶層170. . . Epitaxial layer

180、260...第二間隙壁180, 260. . . Second spacer

182、262...氧化層182, 262. . . Oxide layer

184、264...氮化層184, 264. . . Nitride layer

190...保護層190. . . The protective layer

220...NMOS電晶體220. . . NMOS transistor

230...閘極230. . . Gate

232p...上半部232p. . . Upper half

240...PMOS電晶體240. . . PMOS transistor

A1...第一閘極區域A1. . . First gate region

A2...第二閘極區域A2. . . Second gate region

B1、B2...邊緣區B1, B2. . . Marginal zone

C1、C2...閘極通道C1, C2. . . Gate channel

d1、d2...缺口D1, d2. . . gap

F...材料層F. . . Material layer

G1...第一閘極G1. . . First gate

G2...第二閘極G2. . . Second gate

P1...微影暨蝕刻製程P1. . . Photolithography and etching process

P2...蝕刻製程P2. . . Etching process

P3...清洗製程P3. . . Cleaning process

P4...平坦化製程P4. . . Flattening process

R...凹槽R. . . Groove

t1、t2...厚度T1, t2. . . thickness

t3...第一厚度差T3. . . First thickness difference

t4...厚度差T4. . . Thickness difference

第1-13圖係繪示本發明一實施例之半導體製程之剖面示意圖。1-13 are schematic cross-sectional views showing a semiconductor process according to an embodiment of the present invention.

第14-15圖係繪示一實施例之靜態隨機存取記憶體之剖面示意圖。14-15 are schematic cross-sectional views showing a static random access memory according to an embodiment.

第16-19圖係繪示另一實施例之靜態隨機存取記憶體之剖面示意圖。16-19 are schematic cross-sectional views showing a static random access memory of another embodiment.

10‧‧‧絕緣結構 10‧‧‧Insulation structure

20‧‧‧金屬矽化物層 20‧‧‧metal telluride layer

30‧‧‧接觸洞蝕刻停止層 30‧‧‧Contact hole etch stop layer

40‧‧‧層間介電層 40‧‧‧Interlayer dielectric layer

100‧‧‧半導體結構 100‧‧‧Semiconductor structure

110‧‧‧基底 110‧‧‧Base

130a‧‧‧第一閘極層 130a‧‧‧First gate layer

130b‧‧‧第二閘極層 130b‧‧‧second gate layer

150a、150b‧‧‧側壁子 150a, 150b‧‧‧ side wall

170‧‧‧磊晶層 170‧‧‧ epitaxial layer

182‧‧‧氧化層 182‧‧‧Oxide layer

120a‧‧‧第一介電層 120a‧‧‧First dielectric layer

120b‧‧‧第二介電層 120b‧‧‧Second dielectric layer

A1‧‧‧第一閘極區域 A1‧‧‧ first gate area

A2‧‧‧第二閘極區域 A2‧‧‧second gate area

C1、C2‧‧‧閘極通道 C1, C2‧‧‧ gate channel

G1‧‧‧第一閘極 G1‧‧‧ first gate

G2‧‧‧第二閘極 G2‧‧‧second gate

P4‧‧‧研磨製程 P4‧‧‧ Grinding process

Claims (17)

一種半導體製程,包含有:形成一第一閘極以及一第二閘極於一基底上,其中該第一閘極包含一第一閘極層位於該基底上以及一第一蓋層位於該第一閘極層上,而該第二閘極包含一第二閘極層位於該基底上以及一第二蓋層位於該第二閘極層上,其中該第一蓋層包含一第一氧化層位於該第一閘極層上,而該第二蓋層包含一第二氧化層位於該第二閘極層上,且一第一氮化層位於該第一氧化層以及該第一閘極層之間,以及一第二氮化層位於該第二氧化層以及該第二閘極層之間,該第一氮化層的厚度小於該第一氧化層的厚度,且該第二氮化層的厚度小於該第二氧化層的厚度;形成一硬遮罩層,覆蓋該第一閘極以及該第二閘極,其中該硬遮罩層與該第一蓋層以及該第二蓋層的材質不同;進行一微影暨蝕刻製程,圖案化位於該第二閘極的硬遮罩層,以形成一第一間隙壁於該第二閘極的側邊,並於該第一間隙壁側邊的該基底中形成一凹槽;形成一磊晶層於該凹槽;進行一蝕刻製程,完全移除剩下的該硬遮罩層以及該第一間隙壁;以及分別形成一第二間隙壁於該第一閘極以及該第二閘極的側邊。 A semiconductor process includes: forming a first gate and a second gate on a substrate, wherein the first gate comprises a first gate layer on the substrate and a first cap layer is located on the substrate a gate layer, the second gate layer includes a second gate layer on the substrate, and a second cap layer on the second gate layer, wherein the first cap layer comprises a first oxide layer Located on the first gate layer, the second cap layer includes a second oxide layer on the second gate layer, and a first nitride layer is located on the first oxide layer and the first gate layer And a second nitride layer is between the second oxide layer and the second gate layer, the first nitride layer has a thickness smaller than a thickness of the first oxide layer, and the second nitride layer The thickness of the second oxide layer is smaller than the thickness of the second oxide layer; forming a hard mask layer covering the first gate and the second gate, wherein the hard mask layer and the first cap layer and the second cap layer Different materials; performing a lithography and etching process to pattern a hard mask layer on the second gate to form a first a spacer is formed on a side of the second gate, and a recess is formed in the substrate on the side of the first spacer; an epitaxial layer is formed on the recess; an etching process is performed, and the remaining portion is completely removed. The hard mask layer and the first spacer; and a second spacer formed on a side of the first gate and the second gate, respectively. 如申請專利範圍第1項所述之半導體製程,其中形成該第一閘極 以及該第二閘極於該基底上的步驟,包含:形成一閘極層於該基底上;形成一蓋層於該閘極層上;以及依序圖案化該蓋層以及該閘極層,以形成該第一閘極以及該第二閘極於該基底上。 The semiconductor process of claim 1, wherein the first gate is formed And the step of forming the second gate on the substrate, comprising: forming a gate layer on the substrate; forming a cap layer on the gate layer; and sequentially patterning the cap layer and the gate layer, Forming the first gate and the second gate on the substrate. 如申請專利範圍第1項所述之半導體製程,其中該微影暨蝕刻製程對於該第二蓋層的蝕刻率小於該硬遮罩層的蝕刻率。 The semiconductor process of claim 1, wherein the lithography and etching process has an etch rate for the second cap layer that is less than an etch rate of the hard mask layer. 如申請專利範圍第1項所述之半導體製程,其中該蝕刻製程對於該第二蓋層的蝕刻率小於該硬遮罩層的蝕刻率。 The semiconductor process of claim 1, wherein the etching process has an etch rate for the second cap layer that is less than an etch rate of the hard mask layer. 如申請專利範圍第1項所述之半導體製程,其中在進行該微影暨蝕刻製程時,該第二閘極頂部的該硬遮罩層被移除,而暴露出該第二閘極。 The semiconductor process of claim 1, wherein the hard mask layer on the top of the second gate is removed while the lithography and etching process is performed to expose the second gate. 如申請專利範圍第5項所述之半導體製程,其中在進行該微影暨蝕刻製程時,該第二閘極被部分蝕刻,造成該第一閘極的厚度大於該第二閘極的厚度,且二者之厚度差為一第一厚度差。 The semiconductor process of claim 5, wherein the second gate is partially etched during the lithography and etching process, such that the thickness of the first gate is greater than the thickness of the second gate. And the difference in thickness between the two is a first thickness difference. 如申請專利範圍第6項所述之半導體製程,其中在進行該蝕刻製程時,該第二閘極被部分蝕刻,造成該第一閘極與該第二閘極的厚度差大於該第一厚度差。 The semiconductor process of claim 6, wherein the second gate is partially etched during the etching process, such that a difference in thickness between the first gate and the second gate is greater than the first thickness difference. 如申請專利範圍第1項所述之半導體製程,其中該第一氮化層以及該第二氮化層的厚度包含200埃(angstroms),而該第一氧化層以及該第二氧化層的厚度包含650埃(angstroms)。 The semiconductor process of claim 1, wherein the first nitride layer and the second nitride layer have a thickness of 200 angstroms, and the first oxide layer and the second oxide layer have a thickness. Contains 650 angstroms. 如申請專利範圍第1項所述之半導體製程,其中該第一氮化層以及該第二氮化層的厚度包含100埃(angstroms),而該第一氧化層以及該第二氧化層的厚度包含750埃(angstroms)。 The semiconductor process of claim 1, wherein the first nitride layer and the second nitride layer have a thickness of 100 angstroms, and the first oxide layer and the second oxide layer have a thickness. Contains 750 angstroms. 如申請專利範圍第1項所述之半導體製程,其中在形成該第二間隙壁於該第一閘極以及該第二閘極的側邊後,更包含進行一清洗製程,清洗該第一閘極、該第二閘極以及該基底的表面,並同時移除該第二氧化層。 The semiconductor process of claim 1, wherein after forming the second spacer on the side of the first gate and the second gate, further comprising performing a cleaning process to clean the first gate a pole, the second gate, and a surface of the substrate, and simultaneously removing the second oxide layer. 如申請專利範圍第10項所述之半導體製程,其中該清洗製程包含一金屬矽化物的前清洗製程。 The semiconductor process of claim 10, wherein the cleaning process comprises a metal telluride pre-cleaning process. 如申請專利範圍第11項所述之半導體製程,其中該清洗製程包含一含氨(NH3)及三氟化氮(NF3)的清洗製程。 The semiconductor process of claim 11, wherein the cleaning process comprises a cleaning process comprising ammonia (NH 3 ) and nitrogen trifluoride (NF 3 ). 如申請專利範圍第1項所述之半導體製程,其中該蝕刻製程包含一含磷酸的濕蝕刻製程。 The semiconductor process of claim 1, wherein the etching process comprises a wet etching process comprising phosphoric acid. 一種半導體製程,包含有:提供一基底,具有一第一閘極以及一第二閘極,其中該第一閘極包含一第一閘極層位於該基底上、一第一氮化層位於該第一閘極層上以及一第一氧化層位於該第一氮化層上,而該第二閘極包含一第二閘極層位於該基底上以及一第二氮化層位於該第二閘極層上;形成一材料層,全面覆蓋該第一閘極以及該第二閘極;以及回蝕刻該材料層、該第一閘極以及該第二閘極,以至暴露出該第一氮化層以及該第二氮化層,其中該材料層包含一光阻層,而該回蝕刻包含含氧或含氟的乾蝕刻製程。 A semiconductor process includes: providing a substrate having a first gate and a second gate, wherein the first gate comprises a first gate layer on the substrate, and a first nitride layer is located on the substrate A first gate layer and a first oxide layer are disposed on the first nitride layer, and the second gate electrode includes a second gate layer on the substrate and a second nitride layer on the second gate Forming a material layer covering the first gate and the second gate; and etching back the material layer, the first gate and the second gate to expose the first nitride And a second nitride layer, wherein the material layer comprises a photoresist layer, and the etch back comprises a dry etching process comprising oxygen or fluorine. 如申請專利範圍第14項所述之半導體製程,其中在形成該材料層之前,更包含形成一保護層,全面覆蓋該第一閘極以及該第二閘極。 The semiconductor process of claim 14, wherein before forming the material layer, further comprising forming a protective layer covering the first gate and the second gate. 如申請專利範圍第14項所述之半導體製程,其中在回蝕刻該材料層、該第一閘極以及該第二閘極,以至暴露出該第一氮化層以及該第二氮化層時,該第一氧化層同時被移除。 The semiconductor process of claim 14, wherein the material layer, the first gate, and the second gate are etched back to expose the first nitride layer and the second nitride layer. The first oxide layer is simultaneously removed. 如申請專利範圍第14項所述之半導體製程,在提供該基底後更包含分別形成一第二間隙壁該第一閘極以及該第二閘極的側邊,且在回蝕刻該材料層、該第一閘極以及該第二閘極之後,更包含:依序移除剩下的該材料層以及該第二間隙壁;形成一接觸洞蝕刻停止層,全面覆蓋該第一閘極以及該第二閘 極;形成一層間介電層,覆蓋該接觸洞蝕刻停止層;以及平坦化部分該層間介電層以及部分該接觸洞蝕刻停止層,以至暴露出該第一閘極層以及該第二閘極層。 The semiconductor process of claim 14, further comprising forming a second spacer, a side of the first gate and the second gate, and etching the material layer, After the first gate and the second gate, the method further includes: sequentially removing the remaining material layer and the second spacer; forming a contact hole etch stop layer, completely covering the first gate and the Second gate Forming an interlevel dielectric layer covering the contact hole etch stop layer; and planarizing a portion of the interlayer dielectric layer and a portion of the contact hole etch stop layer to expose the first gate layer and the second gate Floor.
TW100143271A 2011-11-25 2011-11-25 Semiconductor process TWI517261B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100143271A TWI517261B (en) 2011-11-25 2011-11-25 Semiconductor process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100143271A TWI517261B (en) 2011-11-25 2011-11-25 Semiconductor process

Publications (2)

Publication Number Publication Date
TW201322344A TW201322344A (en) 2013-06-01
TWI517261B true TWI517261B (en) 2016-01-11

Family

ID=49032474

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100143271A TWI517261B (en) 2011-11-25 2011-11-25 Semiconductor process

Country Status (1)

Country Link
TW (1) TWI517261B (en)

Also Published As

Publication number Publication date
TW201322344A (en) 2013-06-01

Similar Documents

Publication Publication Date Title
US9875901B2 (en) Manufacturing method of metal oxide semiconductor transistor
US9230864B1 (en) Method of forming a semiconductor device having a metal gate
US8691651B2 (en) Method of forming non-planar FET
US20160336194A1 (en) Method of forming semiconductor device
TW201714208A (en) Semiconductor device and method for fabricating the same
US8643069B2 (en) Semiconductor device having metal gate and manufacturing method thereof
US9093465B2 (en) Method of fabricating semiconductor device
US9646889B1 (en) Method of removing a hard mask layer on a gate structure while forming a protective layer on the surface of a substrate
US8980701B1 (en) Method of forming semiconductor device
US20160126139A1 (en) Semiconductor device and method for fabricating the same
US8211775B1 (en) Method of making transistor having metal gate
US10446448B2 (en) Semiconductor device and method for fabricating the same
JP2009152342A (en) Method of manufacturing semiconductor device
US20120241873A1 (en) Semiconductor device
US8709930B2 (en) Semiconductor process
US8350332B2 (en) Semiconductor device and method of manufacturing the same
US9589846B1 (en) Method of forming semiconductor device
US8883621B2 (en) Semiconductor structure and method of fabricating MOS device
US9018087B2 (en) Method of fabricating semiconductor device
US20160126334A1 (en) Semiconductor structure and manufacturing method thereof
US8558321B2 (en) Semiconductor device having gate insulating film including high dielectric material
TWI517261B (en) Semiconductor process
TWI575576B (en) Method for fabricating semiconductor device
TWI515798B (en) Method of forming non-planar fet
TWI552209B (en) Method of fabricating semiconductor device