TWI509713B - Methods of forming bonded semiconductor structures, and semiconductor structures formed by such methods - Google Patents

Methods of forming bonded semiconductor structures, and semiconductor structures formed by such methods Download PDF

Info

Publication number
TWI509713B
TWI509713B TW101107761A TW101107761A TWI509713B TW I509713 B TWI509713 B TW I509713B TW 101107761 A TW101107761 A TW 101107761A TW 101107761 A TW101107761 A TW 101107761A TW I509713 B TWI509713 B TW I509713B
Authority
TW
Taiwan
Prior art keywords
semiconductor structure
semiconductor
bonded
material layer
wafer interconnect
Prior art date
Application number
TW101107761A
Other languages
Chinese (zh)
Other versions
TW201243965A (en
Inventor
Mariam Sadaka
Original Assignee
Soitec Silicon On Insulator
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/077,292 external-priority patent/US20120248621A1/en
Priority claimed from FR1153083A external-priority patent/FR2973938A1/en
Application filed by Soitec Silicon On Insulator filed Critical Soitec Silicon On Insulator
Publication of TW201243965A publication Critical patent/TW201243965A/en
Application granted granted Critical
Publication of TWI509713B publication Critical patent/TWI509713B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Wire Bonding (AREA)

Description

形成結合的半導體結構之方法及用該方法所形成之半導體結構Method of forming a bonded semiconductor structure and semiconductor structure formed by the method

本發明之實施例大體而言係關於用於形成結合的半導體結構之方法,且係關於使用此等方法形成之所得結合的半導體結構。Embodiments of the invention relate generally to methods for forming bonded semiconductor structures, and to resulting bonded semiconductor structures formed using such methods.

兩個或兩個以上半導體結構之三維(3D)整合可對微電子應用產生若干個益處。舉例而言,微電子組件之3D整合可導致改良之電效能及電力消耗同時減小裝置佔用面積。舉例而言,參見P.Garrou等人「The Handbook of 3D Integration」,Wiley-VCH(2008)。Three-dimensional (3D) integration of two or more semiconductor structures can yield several benefits for microelectronic applications. For example, 3D integration of microelectronic components can result in improved electrical performance and power consumption while reducing device footprint. See, for example, P. Garrou et al. "The Handbook of 3D Integration", Wiley-VCH (2008).

半導體結構之3D整合可藉由一半導體晶粒至一或多個額外半導體晶粒(亦即,晶粒至晶粒(D2D))、一半導體晶粒至一或多個半導體晶圓(亦即,晶粒至晶圓(D2W))以及一半導體晶圓至一或多個額外半導體晶圓(亦即,晶圓至晶圓(W2W))之附接或其之一組合而發生。The 3D integration of the semiconductor structure can be performed by a semiconductor die to one or more additional semiconductor dies (ie, die-to-die (D2D)), a semiconductor die to one or more semiconductor wafers (ie, , die-to-wafer (D2W) and a combination of a semiconductor wafer to one or more additional semiconductor wafers (ie, wafer-to-wafer (W2W)) or a combination thereof.

通常,個別半導體結構(例如,晶粒或晶圓)可係相對薄的且難以藉助用於處理半導體結構之設備來處置。因此,所謂的「載體」晶粒或晶圓可附接至其中包含操作半導體裝置之主動及被動組件之實際半導體結構。載體晶粒或晶圓通常不包含欲形成之一半導體裝置之任何主動或被動組件。此等載體晶粒及晶圓在本文中稱為「載體基板」。載體基板藉由處理用以處理附接至其之半導體結構(其將包含欲製作於其上之一半導體裝置之主動及被動組件)中之 主動及/或被動組件之設備而增加半導體結構之總厚度且促進對半導體結構之處置(藉由提供對相對較薄半導體結構之結構支撐)。包含欲製作於其上之一半導體裝置之主動及/或被動組件或在完成製造製程時將最終包含欲製作於其上之一半導體裝置之主動及/或被動組件的此等半導體結構在本文中稱為「裝置基板」。In general, individual semiconductor structures (eg, dies or wafers) can be relatively thin and difficult to handle by means of equipment for processing semiconductor structures. Thus, so-called "carrier" dies or wafers can be attached to the actual semiconductor structure in which the active and passive components of the semiconductor device are operated. The carrier die or wafer typically does not contain any active or passive components that are intended to form one of the semiconductor devices. Such carrier dies and wafers are referred to herein as "carrier substrates." The carrier substrate is processed to process the semiconductor structure attached thereto (which will contain the active and passive components of the semiconductor device to be fabricated thereon) Active and/or passive component devices increase the overall thickness of the semiconductor structure and facilitate handling of the semiconductor structure (by providing structural support for relatively thinner semiconductor structures). In this document, an active and/or passive component of a semiconductor device to be fabricated thereon or which will ultimately comprise an active and/or passive component of a semiconductor device to be fabricated upon completion of the fabrication process is herein It is called "device substrate".

在將一個半導體結構結合至另一半導體結構中使用之結合技術可以不同方式分類,一個係在兩個半導體結構之間是否提供有一中間材料層以將其結合在一起,且第二個係結合界面是否允許電子(亦即,電流)通過該界面。所謂的「直接結合方法」係如下方法:其中在兩個半導體結構之間建立一直接固體至固體化學結合以將其結合在一起而不在該兩個半導體結構之間使用一中間結合材料來將其結合在一起。直接金屬至金屬結合方法已經開發而用於將一第一半導體結構之一表面處之金屬材料結合至一第二半導體結構之一表面處之金屬材料。The bonding technique used in bonding one semiconductor structure to another semiconductor structure can be classified in different ways, one whether an intermediate material layer is provided between the two semiconductor structures to bond them together, and the second system bonding interface Whether electrons (ie, current) are allowed to pass through the interface. The so-called "direct bonding method" is a method in which a direct solid to solid chemical bond is established between two semiconductor structures to bond them together without using an intermediate bonding material between the two semiconductor structures. integrate. Direct metal to metal bonding methods have been developed for bonding metal materials at the surface of one of the first semiconductor structures to the metal material at one of the surfaces of a second semiconductor structure.

直接金屬至金屬結合方法亦可按實施每一方法所處之溫度範圍來分類。舉例而言,某些直接金屬至金屬結合方法係在相對高溫下實施,從而導致結合界面處之金屬材料之至少部分熔化。此等直接結合製程可能不期望供在結合包含一或多個裝置結構之經處理半導體結構中使用,此乃因相對高溫可不利地影響較早形成之裝置結構。Direct metal to metal bonding methods can also be classified according to the temperature range in which each method is implemented. For example, certain direct metal to metal bonding processes are performed at relatively high temperatures, resulting in at least partial melting of the metallic material at the bonding interface. Such direct bonding processes may not be desirable for use in conjunction with processed semiconductor structures that include one or more device structures, as relatively high temperatures can adversely affect earlier formed device structures.

「熱壓縮」結合方法係如下直接結合方法:其中在介於攝氏200度(200℃)與約攝氏500度(500℃)(且通常介於約攝 氏300度(300℃)與約攝氏400度(400℃))之間的升高之溫度下在結合表面之間施加壓力。The "hot compression" bonding method is a direct combination of the following: in the range of 200 degrees Celsius (200 ° C) and about 500 degrees Celsius (500 ° C) (and usually between about A pressure is applied between the bonding surfaces at an elevated temperature between 300 degrees (300 ° C) and about 400 degrees Celsius (400 ° C).

已開發可在攝氏200度(200℃)或小於攝氏200度之溫度下實施之額外直接結合方法。在攝氏200度(200℃)或小於攝氏200度之溫度下實施之此等直接結合製程在本文中稱為「超低溫」直接結合方法。可藉由仔細移除表面雜質及表面化合物(例如,自然氧化物)及藉由以原子標度增加兩個表面之間的緊密接觸區而實施超低溫直接結合方法。通常藉由以下方式實現兩個表面之間的緊密接觸區:對結合表面進行拋光以將表面粗糙度減小至接近原子標度之值;在結合表面之間施加壓力從而導致塑膠變形;或對結合表面進行拋光及施加壓力兩者以獲得此塑膠變形。Additional direct bonding methods have been developed that can be implemented at temperatures of 200 degrees Celsius (200 ° C) or less than 200 degrees Celsius. Such direct bonding processes carried out at temperatures of 200 degrees Celsius (200 ° C) or less than 200 degrees Celsius are referred to herein as "ultra-low temperature" direct bonding methods. The ultra-low temperature direct bonding method can be carried out by carefully removing surface impurities and surface compounds (for example, natural oxides) and by increasing the close contact area between the two surfaces on an atomic scale. The intimate contact zone between the two surfaces is typically achieved by polishing the bonding surface to reduce the surface roughness to a value close to the atomic scale; applying pressure between the bonding surfaces to cause deformation of the plastic; or The bonding surface is polished and pressure is applied to obtain the plastic deformation.

某些超低溫直接結合方法可在不在結合界面處之結合表面之間施加壓力之情況下實施,但在其他超低溫直接結合方法中可在結合界面處之結合表面之間施加壓力以達成結合界面處之適合結合強度。其中在結合表面之間施加壓力之超低溫直接結合方法在此項技術中通常稱為「表面輔助結合」或「SAB」方法。因此,如本文中所使用,術語「表面輔助結合」及「SAB」意指且包含如下任一直接結合製程:其中藉由抵靠一第二材料鄰接一第一材料及在攝氏200度(200℃)或小於攝氏200度之一溫度下在結合界面處之結合表面之間施加壓力而將該第一材料直接結合至該第二材料。Some ultra-low temperature direct bonding methods can be carried out without applying pressure between the bonding surfaces at the bonding interface, but in other ultra-low temperature direct bonding methods, pressure can be applied between the bonding surfaces at the bonding interface to achieve a bonding interface. Suitable for bonding strength. Ultra-low temperature direct bonding methods in which pressure is applied between bonding surfaces are commonly referred to in the art as "surface assisted bonding" or "SAB" methods. Thus, as used herein, the terms "surface assisted bonding" and "SAB" mean and include any direct bonding process in which a first material is abutted against a second material and at 200 degrees Celsius (200 degrees Celsius). The first material is directly bonded to the second material by applying pressure between the bonding surfaces at the bonding interface at a temperature of °C) or less than 200 degrees Celsius.

通常使用一黏合劑來將載體基板附接至裝置基板。亦可 使用類似結合方法來將其中包含一或多個半導體裝置之主動及/或被動組件之一個半導體結構固定至其中亦包含一或多個半導體裝置之主動及/或被動組件之另一半導體結構。A binder is typically used to attach the carrier substrate to the device substrate. Can also A similar bonding method is used to secure one semiconductor structure including active and/or passive components of one or more semiconductor devices to another semiconductor structure that also includes active and/or passive components of one or more semiconductor devices.

半導體晶粒可具有不匹配欲將其連接至之其他半導體結構上之連接之電連接。可將一插入件(亦即,一額外結構)放置於兩個半導體結構之間或任一半導體晶粒與一半導體封裝之間以重新路由並對準適當電連接。該插入件可具有用以在所期望半導體結構之間進行適當接觸之一或多個傳導跡線及通孔。The semiconductor die may have electrical connections that do not match the connections on other semiconductor structures to which it is to be connected. An insert (i.e., an additional structure) can be placed between the two semiconductor structures or between any of the semiconductor dies and a semiconductor package to reroute and align the appropriate electrical connections. The insert can have one or more conductive traces and vias for proper contact between the desired semiconductor structures.

本發明之實施例可提供用於形成半導體結構之方法及結構,且更特定而言提供用於形成結合的半導體結構之方法及結構。提供本發明內容以按一簡化形式介紹在本發明之實施例之詳細說明中進一步闡述之概念的一選擇。本發明內容既不意欲識別所主張標的物之關鍵特徵或基本特徵,亦不意欲用以限制所主張標的物之範疇。Embodiments of the present invention can provide methods and structures for forming semiconductor structures, and more particularly, methods and structures for forming bonded semiconductor structures. The present invention is provided to introduce a selection of concepts in the detailed description of the embodiments of the invention in a simplified form. The present invention is not intended to identify key features or essential features of the claimed subject matter, and is not intended to limit the scope of the claimed subject matter.

在某些實施例中,本發明包含形成結合的半導體結構之方法。根據此等方法,提供包含至少一個裝置結構之一第一半導體結構。在低於約400℃之一溫度或若干溫度下將一第二半導體結構結合至該第一半導體結構。穿過該第二半導體結構且進入至該第一半導體結構中至該至少一個裝置結構形成至少一個穿晶圓互連件。將該第二半導體結構在其與該第一半導體結構相對之一側上結合至一第三半導 體結構。In certain embodiments, the invention comprises a method of forming a bonded semiconductor structure. According to such methods, a first semiconductor structure comprising one of at least one device structure is provided. A second semiconductor structure is bonded to the first semiconductor structure at a temperature below about 400 ° C or at a temperature. Passing through the second semiconductor structure and into the first semiconductor structure to the at least one device structure forming at least one through-wafer interconnect. Bonding the second semiconductor structure to a third semiconductor on one side thereof opposite the first semiconductor structure Body structure.

在形成結合的半導體結構之方法之額外實施例中,提供包含至少一個裝置結構之一第一半導體結構。將離子植入至一第二半導體結構中以在該第二半導體結構內形成一離子植入平面。將該第二半導體結構結合至該第一半導體結構,且沿該離子植入平面將該第二半導體結構斷裂。該第二半導體結構之一部分保持結合至該第一半導體結構。穿過保持結合至該第一半導體結構的該第二半導體結構之該部分、進入至該第一半導體結構中且至該至少一個裝置結構形成至少一個穿晶圓互連件。將該第二半導體結構在其與該第一半導體結構相對之一側上結合至一第三半導體結構。In an additional embodiment of the method of forming a bonded semiconductor structure, a first semiconductor structure comprising one of at least one device structure is provided. The ions are implanted into a second semiconductor structure to form an ion implantation plane within the second semiconductor structure. The second semiconductor structure is bonded to the first semiconductor structure and the second semiconductor structure is broken along the ion implantation plane. A portion of the second semiconductor structure remains bonded to the first semiconductor structure. The at least one through-wafer interconnect is formed through the portion of the second semiconductor structure that remains bonded to the first semiconductor structure, into the first semiconductor structure, and to the at least one device structure. The second semiconductor structure is bonded to a third semiconductor structure on a side thereof opposite the first semiconductor structure.

在其他實施例中,本發明包含作為本文中所闡述之方法之部分形成之半導體結構。舉例而言,一結合的半導體結構包含:一第一半導體結構,其包括至少一個裝置結構;及一第二半導體結構,其結合至該第一半導體結構。該第二半導體結構包括一斷裂之相對較厚半導體結構之一部分。至少一個穿晶圓互連件延伸穿過該第二半導體結構、至少部分地穿過該第一半導體結構且延伸至該至少一個裝置結構。In other embodiments, the invention encompasses semiconductor structures formed as part of the methods set forth herein. For example, a bonded semiconductor structure includes: a first semiconductor structure including at least one device structure; and a second semiconductor structure bonded to the first semiconductor structure. The second semiconductor structure includes a portion of a relatively thick semiconductor structure that is broken. At least one through-wafer interconnect extends through the second semiconductor structure, at least partially through the first semiconductor structure, and extends to the at least one device structure.

可參考本發明之實施例之以下詳細說明及附圖更全面地理解本發明之實施例。Embodiments of the present invention can be more fully understood from the following detailed description and appended claims.

本文中所呈現之圖解說明並非意欲為任一特定材料、裝 置、系統或方法之實際視圖而僅係用以闡述本發明之實施例之理想化表示。The illustrations presented herein are not intended to be a specific material, The actual views of the embodiments, which are merely illustrative of the embodiments of the invention.

本文中所使用之任何標題皆不應視為限制如由下文申請專利範圍及其合法等效物定義的本發明之實施例之範疇。貫穿整個說明書,在任一特定標題中闡述之概念通常適用於其他部分中。The use of any of the headings herein is not to be construed as limiting the scope of the embodiments of the invention as defined by the appended claims. Throughout the specification, the concepts set forth in any particular heading generally apply to other parts.

相對於本文中所主張之標的物之本發明,任何所引用之參考(無論在本文中如何表徵)皆不承認為先前技術。Any reference to a reference to the subject matter claimed herein, regardless of how it is characterized herein, is not admitted as prior art.

如本文中所使用,術語「半導體結構」意指且包含在形成一半導體裝置中使用之任一結構。舉例而言,半導體結構包含晶粒及晶圓(舉例而言,載體基板及裝置基板)以及包含彼此三維地整合在一起之兩個或兩個以上晶粒及/或晶圓之總成或複合結構。半導體結構亦包含經完全製作之半導體裝置以及在製作半導體裝置期間形成之中間結構。As used herein, the term "semiconductor structure" means and encompasses any structure used in forming a semiconductor device. For example, a semiconductor structure includes a die and a wafer (for example, a carrier substrate and a device substrate) and an assembly or composite of two or more dies and/or wafers that are three-dimensionally integrated with each other. structure. The semiconductor structure also includes a fully fabricated semiconductor device and an intermediate structure formed during fabrication of the semiconductor device.

如本文中所使用,術語「經處理半導體結構」意指且包含含有一或多個至少部分地形成之裝置結構之任一半導體結構。經處理半導體結構係半導體結構之一子集,且所有經處理半導體結構皆係半導體結構。As used herein, the term "processed semiconductor structure" means and includes any semiconductor structure that includes one or more at least partially formed device structures. A subset of the semiconductor structure semiconductor structures are processed, and all of the processed semiconductor structures are semiconductor structures.

如本文中所使用,術語「結合的半導體結構」意指且包含含有附接在一起之兩個或兩個以上半導體結構之任一結構。結合的半導體結構係半導體結構之一子集,且所有結合的半導體結構皆係半導體結構。此外,包含一或多個經處理半導體結構之結合的半導體結構亦係經處理半導體結構。As used herein, the term "bonded semiconductor structure" means and includes any structure comprising two or more semiconductor structures attached together. The bonded semiconductor structure is a subset of the semiconductor structure, and all of the bonded semiconductor structures are semiconductor structures. In addition, a semiconductor structure comprising a combination of one or more processed semiconductor structures is also a processed semiconductor structure.

如本文中所使用,術語「裝置結構」意指且包含一經處理半導體結構之任一部分,亦即,包含或界定欲在半導體結構上或在其中形成之一半導體裝置之一主動或被動組件之至少一部分。舉例而言,裝置結構包含積體電路之主動及被動組件,例如電晶體、轉換器、電容器、電阻器、傳導線、傳導通孔及傳導接觸墊。As used herein, the term "device structure" means and includes any portion of a processed semiconductor structure, that is, includes or defines at least one active or passive component of a semiconductor device to be formed on or in a semiconductor structure. portion. For example, the device structure includes active and passive components of the integrated circuit, such as transistors, converters, capacitors, resistors, conductive lines, conductive vias, and conductive contact pads.

如本文中所使用,術語「穿晶圓互連件」或「TWI」意指且包含延伸穿過一第一半導體結構之至少一部分之任一傳導通孔,該傳導通孔用以跨越該第一半導體結構與一第二半導體結構之間的一界面提供該第一半導體結構與該第二半導體結構之間的一結構及/或一電互連件。穿晶圓互連件在此項技術中亦稱為其他術語,諸如「穿矽/基板通孔」或「TSV」及「穿晶圓通孔」或「TWV」。TWI通常沿大體垂直於一半導體結構之大體平坦主表面之一方向(沿平行於Z軸之一方向)延伸穿過該半導體結構。As used herein, the term "through-wafer interconnect" or "TWI" means and includes any conductive via extending through at least a portion of a first semiconductor structure for crossing the first An interface between a semiconductor structure and a second semiconductor structure provides a structure and/or an electrical interconnection between the first semiconductor structure and the second semiconductor structure. Through-wafer interconnects are also referred to in the art as other terms such as "via/substrate vias" or "TSVs" and "through-wafer vias" or "TWVs". The TWI typically extends through the semiconductor structure in a direction generally perpendicular to one of the generally planar major surfaces of a semiconductor structure (in a direction parallel to one of the Z axes).

如本文中所使用,術語「作用表面」在結合一經處理半導體結構使用時意指且包含該經處理半導體結構之一經曝露主表面,該經處理半導體結構已經處理或將經處理以在該經處理半導體結構之該經曝露主表面中及/或在其上形成一或多個裝置結構。As used herein, the term "active surface", when used in connection with a treated semiconductor structure, means and includes one of the processed semiconductor structures exposed to the major surface, the processed semiconductor structure has been processed or will be processed to be processed in the process. One or more device structures are formed in and/or on the exposed major surface of the semiconductor structure.

如本文中所使用,術語「背表面」在結合一經處理半導體結構使用時意指且包含該經處理半導體結構之一經曝露主表面,該經曝露主表面位於與該半導體結構之一作用表面相對的該經處理半導體結構之一側上。As used herein, the term "back surface", when used in connection with a treated semiconductor structure, means and includes one of the treated semiconductor structures exposed to the major surface, the exposed major surface being located opposite the active surface of the semiconductor structure. One side of the treated semiconductor structure.

如本文中所使用,術語「III-V型半導體材料」意指且包含主要由來自週期表之IIIA族之一或多種元素(B、Al、Ga、In及Ti)及來自週期表之VA族之一或多種元素(N、P、As、Sb及Bi)構成之任一材料。As used herein, the term "III-V type semiconductor material" means and includes one or more elements (B, Al, Ga, In, and Ti) from Group IIIA of the periodic table and VA from the periodic table. Any of a number of elements (N, P, As, Sb, and Bi).

如本文中所使用,術語「熱膨脹係數」在關於一材料或結構使用時意指該材料或結構在室溫下之平均線性熱膨脹係數。As used herein, the term "coefficient of thermal expansion" when used in reference to a material or structure means the average linear coefficient of thermal expansion of the material or structure at room temperature.

本發明之實施例包括用於形成半導體結構之方法及結構,且更特定而言包括包含結合的半導體結構之半導體結構及形成此等結合的半導體結構之方法。可在此等半導體結構內形成穿晶圓互連件,且可代替結構之間的分離插入件使用該等穿晶圓互連件。可自一作用表面完全地形成穿晶圓互連件,或可自作用表面及背表面兩者分級地形成該等穿晶圓互連件。Embodiments of the invention include methods and structures for forming semiconductor structures, and more particularly semiconductor structures including bonded semiconductor structures and methods of forming such bonded semiconductor structures. Through-wafer interconnects may be formed within such semiconductor structures, and such through-wafer interconnects may be used in place of separate interposers between structures. The through-wafer interconnects may be completely formed from an active surface, or the through-wafer interconnects may be formed hierarchically from both the active surface and the back surface.

在某些實施例中,可使用穿晶圓互連件及/或經電隔離熱管理結構來改良結合的半導體結構中之熱阻。在某些實施例中,可使用穿晶圓互連件及/或經電隔離熱管理結構來改良一半導體結構與該半導體結構可附接至之其他結構之間的熱膨脹係數之不匹配。可出於各種目的,例如3D整合製程及為形成3D整合結構而利用本發明之方法及結構之實施例。藉由本發明之實施例之方法形成之多個半導體結構可一個位於另一個上地堆疊,從而連接一個半導體結構之作用表面或背表面與另一半導體結構之作用表面或背表面。每一結構之剩餘表面可附接至額外結構。In some embodiments, through-wafer interconnects and/or electrically isolated thermal management structures can be used to improve the thermal resistance in bonded semiconductor structures. In some embodiments, a through-wafer interconnect and/or an electrically isolated thermal management structure can be used to improve the mismatch in thermal expansion coefficient between a semiconductor structure and other structures to which the semiconductor structure can be attached. Embodiments of the methods and structures of the present invention may be utilized for a variety of purposes, such as 3D integration processes and for forming 3D integrated structures. The plurality of semiconductor structures formed by the method of the embodiments of the present invention may be stacked one on another to connect the active or back surface of one semiconductor structure to the active or back surface of another semiconductor structure. The remaining surface of each structure can be attached to an additional structure.

下文參考圖1至圖39闡述本發明之實例性實施例。Exemplary embodiments of the present invention are described below with reference to FIGS. 1 through 39.

在一項實施例中,本發明包含提供具有一作用表面102及一背表面104之一第一半導體結構100,如圖1中所示。作用表面102可位於第一半導體結構100之一第一側上,其中背表面104位於一第二相對側上。第一半導體結構100可包含形成於一基板106中及/或其上方之至少一個裝置結構108。舉例而言,基板106可包括一或多種半導體材料,諸如矽(Si)、鍺(Ge)、一III-V半導體材料等。此外,基板106可包括一單晶半導體材料且可包括一或多個半導體材料磊晶層。在額外實施例中,基板106可包括一或多種電介質材料,諸如一種氧化物(舉例而言,二氧化矽(SiO2 )或氧化鋁(Al2 O3 ))、一種氮化物(舉例而言,氮化矽(Si3 N4 )、氮化硼(BN))等。In one embodiment, the invention includes providing a first semiconductor structure 100 having an active surface 102 and a back surface 104, as shown in FIG. The active surface 102 can be located on a first side of the first semiconductor structure 100 with the back surface 104 on a second opposing side. The first semiconductor structure 100 can include at least one device structure 108 formed in and/or over a substrate 106. For example, substrate 106 can include one or more semiconductor materials such as germanium (Si), germanium (Ge), a III-V semiconductor material, and the like. Additionally, substrate 106 can comprise a single crystalline semiconductor material and can include one or more epitaxial layers of semiconductor material. In additional embodiments, substrate 106 may comprise one or more dielectric materials such as an oxide (for example, cerium oxide (SiO 2 ) or aluminum oxide (Al 2 O 3 )), a nitride (for example, , tantalum nitride (Si 3 N 4 ), boron nitride (BN), and the like.

簡單參考圖5,可在第一半導體結構100之作用表面102上方(例如,在其上)提供一第二半導體結構112以形成一結合的半導體結構500。第二半導體結構112可包括一相對薄材料層,諸如上文結合基板106所提及之彼等材料中之任一者。以舉例而非限制方式,第二半導體結構112可具有約1微米或小於1微米、約0.5微米或小於0.5微米或者甚至約0.07微米或小於0.07微米之一平均厚度。Referring briefly to FIG. 5, a second semiconductor structure 112 can be provided over (eg, over) the active surface 102 of the first semiconductor structure 100 to form a bonded semiconductor structure 500. The second semiconductor structure 112 can include a relatively thin layer of material, such as any of the materials mentioned above in connection with the substrate 106. By way of example and not limitation, second semiconductor structure 112 can have an average thickness of about 1 micron or less, about 0.5 micron or less than 0.5 micron, or even about 0.07 micron or less than 0.07 micron.

作為一非限制性實例,可使用在此項技術中稱為SMART-CUTTM 製程之製程來在第一半導體結構100之作用表面102上方提供第二半導體結構112。舉例而言,如圖3中所示,可形成包含一結合層110之一半導體結構300。結 合層110可包括一或多個結合材料層,例如氧化矽、氮化矽及其混合物。可在第一半導體結構100之作用表面102上方形成結合層110以形成一經平坦化作用表面,藉此改良至隨後半導體結構之結合。As a non-limiting example, may be referred to as a SMART-CUT TM using the process of the process in the art to the action of the first upper surface 102 of the semiconductor structure 100 provides a second semiconductor structure 112. For example, as shown in FIG. 3, a semiconductor structure 300 including a bonding layer 110 can be formed. Bonding layer 110 can include one or more layers of bonding material, such as hafnium oxide, tantalum nitride, and mixtures thereof. Bonding layer 110 can be formed over active surface 102 of first semiconductor structure 100 to form a planarized surface, thereby improving the bonding to subsequent semiconductor structures.

結合層110可安置於第一半導體結構100之作用表面102與另一半導體材料層111之間,且可用以將第一半導體結構100結合至半導體材料層111。可在約400℃或小於400℃或者甚至在約350℃或小於350℃之一溫度下使用結合層110來將第一半導體結構100結合至半導體材料層111以避免致使對第一半導體結構100中之裝置結構108之熱損壞。The bonding layer 110 can be disposed between the active surface 102 of the first semiconductor structure 100 and another semiconductor material layer 111 and can be used to bond the first semiconductor structure 100 to the semiconductor material layer 111. The bonding layer 110 can be used to bond the first semiconductor structure 100 to the semiconductor material layer 111 at a temperature of about 400 ° C or less or even about 350 ° C or less than 350 ° C to avoid causing the first semiconductor structure 100 to be The device structure 108 is thermally damaged.

在本發明之某些實施例中,半導體材料層111可包括一體半導體基板,例如矽、鍺或一III-V化合物半導體。在某些實施例中,半導體材料層111可包括安置於彼此上從而形成一半導體層結構之一或多個磊晶層。在本發明之某些實施例中,半導體材料層111可附接至一選用犧牲基板115,如圖3中之虛影中所示。選用犧牲基板115可在其與第一半導體結構100相對之一側上附接至半導體材料層111。In certain embodiments of the invention, the layer of semiconductor material 111 may comprise an integral semiconductor substrate, such as germanium, germanium or a III-V compound semiconductor. In some embodiments, the layer of semiconductor material 111 can include one or more epitaxial layers disposed on one another to form a semiconductor layer structure. In some embodiments of the invention, the layer of semiconductor material 111 can be attached to an optional sacrificial substrate 115, as shown in the ghost image of FIG. The sacrificial substrate 115 may be attached to the semiconductor material layer 111 on one side thereof opposite to the first semiconductor structure 100.

可自半導體材料層111移除半導體材料層111之一部分113(連同選用犧牲基板115一起),從而留下一第二半導體結構112。換言之,可自半導體材料層111之部分113(在利用之情況下連同選用犧牲基板115一起)移除半導體結構200(圖2)及第二半導體結構112以形成一中間結構400,如圖4中所示。A portion 113 of the semiconductor material layer 111 (along with the sacrificial substrate 115) may be removed from the semiconductor material layer 111, leaving a second semiconductor structure 112. In other words, the semiconductor structure 200 (FIG. 2) and the second semiconductor structure 112 can be removed from the portion 113 of the semiconductor material layer 111 (in conjunction with the optional sacrificial substrate 115) to form an intermediate structure 400, as in FIG. Shown.

以舉例而非限制方式,可使用SMART-CUTTM 製程來將半導體材料層111之部分113(及犧牲基板115(在利用之情況下))與半導體結構200及半導體結構112分離。舉例而言,在以下專利中詳細闡述了此等製程:Bruel之第RE39,484號美國專利(2007年2月6日頒佈)、Aspar等人之第6,303,468號美國專利(2001年10月16日頒佈)、Aspar等人之第6,335,258號美國專利(2002年1月1日頒佈)、Moriceau等人之第6,756,286號美國專利(2004年6月29日頒佈)、Aspar等人之第6,809,044號美國專利(2004年10月26日頒佈)、及Aspar等人之第6,946,365號美國專利(2005年9月20日)。By way of example and not limitation, the SMART-CUT (TM) process can be used to separate portions 113 of semiconductor material layer 111 (and sacrificial substrate 115 (where utilized) from semiconductor structure 200 and semiconductor structure 112. For example, such processes are described in detail in the following patents: U.S. Patent No. RE 39,484, issued to Bruel, issued on Feb. 6, 2007, and U.S. Patent No. 6,303,468, issued to Aspar et al. U.S. Patent No. 6,335,258 issued to Aspar et al. (issued Jan. 1, 2002), U.S. Patent No. 6,756,286 to Morriceau et al. (issued on June 29, 2004), and U.S. Patent No. 6,809,044 to Aspar et al. (Promulgated on October 26, 2004), and U.S. Patent No. 6,946,365 to Aspar et al. (September 20, 2005).

簡言之,可將複數個離子(例如,氫離子、氦離子或惰性氣體離子中之一或多者)植入至半導體材料層111中。在本發明之某些實施例中,可在將半導體材料層111結合至半導體結構200之前將該複數個離子植入至半導體材料層111中。舉例而言,可在結合之前將離子自定位於毗鄰表面105的半導體材料層111之一側上之一離子源(未展示)植入至半導體材料層111中,如圖3中所圖解說明。In short, a plurality of ions (eg, one or more of hydrogen ions, helium ions, or inert gas ions) may be implanted into the semiconductor material layer 111. In some embodiments of the invention, the plurality of ions may be implanted into the layer of semiconductor material 111 prior to bonding the layer of semiconductor material 111 to the semiconductor structure 200. For example, an ion source (not shown) that is self-localized on one side of the layer of semiconductor material 111 adjacent the surface 105 can be implanted into the layer of semiconductor material 111 prior to bonding, as illustrated in FIG.

可沿實質上垂直於半導體材料層111之一方向植入離子。如此項技術中已知,該等離子植入至半導體材料層111中之深度至少部分地係該等離子藉助其植入至半導體材料層111中之能量之一函數。大體而言,藉助較小能量植入之離子將植入於相對較淺深度處,而藉助較高能量植入之離子將植入於相對較深深度處。The ions may be implanted in a direction substantially perpendicular to one of the layers of the semiconductor material 111. As is known in the art, the depth of implantation of the plasma into the layer of semiconductor material 111 is at least partially a function of the energy with which the plasma is implanted into the layer of semiconductor material 111. In general, ions implanted with less energy will be implanted at a relatively shallow depth, while ions implanted with higher energy will be implanted at a relatively deeper depth.

可藉助一預定能量將離子植入至半導體材料層111中, 該預定能量經選擇以將該等離子植入於半導體材料層111內之一所期望深度處。可在將半導體材料層111結合至第一半導體結構100之前或之後將該等離子植入至半導體材料層111中。作為一項特定非限制性實例,離子植入平面117可安置於半導體材料層111內於距離表面105之一深度處,使得第二半導體結構112之平均厚度介於自約1000奈米(1000 nm)延伸至約100奈米(100 nm)之一範圍內。如此項技術中已知,不可避免地,至少某些離子可能植入於不同於所期望植入深度之深度處,且隨距離半導體材料層111之經曝露表面105(例如,在結合之前)的至半導體材料層111中之深度而變的離子濃度之一圖表可展現在所期望植入深度處具有一最大值之一大體鐘形(對稱或不對稱的)曲線。The ions can be implanted into the semiconductor material layer 111 by a predetermined energy, The predetermined energy is selected to implant the plasma at a desired depth within one of the layers of semiconductor material 111. The plasma may be implanted into the semiconductor material layer 111 before or after the semiconductor material layer 111 is bonded to the first semiconductor structure 100. As a specific, non-limiting example, the ion implantation plane 117 can be disposed within the semiconductor material layer 111 at a depth from one of the surfaces 105 such that the average thickness of the second semiconductor structure 112 is between about 1000 nm (1000 nm) ) extends to a range of approximately 100 nanometers (100 nm). As is known in the art, inevitably, at least some of the ions may be implanted at a depth other than the desired implant depth, and with the exposed surface 105 of the semiconductor material layer 111 (eg, prior to bonding) A graph of ion concentration as a function of depth in the layer of semiconductor material 111 may exhibit a generally bell-shaped (symmetric or asymmetrical) curve having a maximum at a desired implant depth.

在將離子植入至半導體材料層111中時,該等離子可在半導體材料層111內界定一離子植入平面117(在圖3中圖解說明為一虛線)。離子植入平面117可包括與半導體結構300內之具有最大離子濃度之平面對準(例如,以其為中心)的半導體材料層111內之一層或區域。離子植入平面117可在半導體結構300內界定一薄弱分區,沿該薄弱分區半導體結構300可在一隨後製程中裂開或斷裂。舉例而言,可將半導體結構300加熱以致使半導體結構300沿離子植入平面117裂開或斷裂。然而,在此裂開製程期間,可將半導體結構300之溫度維持在約400℃或小於400℃下或者甚至在約350℃或小於350℃下以避免損壞第一半導體結構100 中之任何裝置結構108。視情況,可以機械方式施加力至半導體結構300以致使或幫助半導體結構300沿離子植入平面117裂開。When ions are implanted into the layer of semiconductor material 111, the plasma can define an ion implantation plane 117 (illustrated as a dashed line in FIG. 3) within the layer of semiconductor material 111. The ion implantation plane 117 can include a layer or region within the layer of semiconductor material 111 that is aligned (e.g., centered) with the plane having the greatest ion concentration within the semiconductor structure 300. The ion implantation plane 117 can define a weakened partition within the semiconductor structure 300 along which the thinned semiconductor structure 300 can be cracked or broken during a subsequent process. For example, the semiconductor structure 300 can be heated to cause the semiconductor structure 300 to crack or break along the ion implantation plane 117. However, during this cleavage process, the temperature of the semiconductor structure 300 can be maintained at about 400 ° C or less, or even at about 350 ° C or less, to avoid damaging the first semiconductor structure 100. Any device structure 108 in it. Optionally, a force can be applied to the semiconductor structure 300 to cause or assist in rupturing the semiconductor structure 300 along the ion implantation plane 117.

在額外實施例中,可藉由將一相對厚材料層(例如,具有大於約100微米之一平均厚度之一層)結合至第一半導體結構100且隨後自該相對厚材料層之與第一半導體結構100相對之側將其薄化來在第一半導體結構100之作用表面102上方提供第二半導體結構112。舉例而言,如圖2中所示,可在第一半導體結構100之作用表面102上方(例如,在其上)提供包括一或多種結合材料之結合層110(諸如一個氧化物層)。如圖4中所示,可將一第二半導體結構112之一結合表面114結合至作用表面102上之結合層110。在額外實施例中,可在第二半導體結構112之結合表面114上或者在第一半導體結構100之作用表面102及第二半導體結構112之結合表面114兩者上提供結合層110。In an additional embodiment, the first semiconductor structure 100 can be bonded to the first semiconductor structure 100 and then to the first semiconductor from the relatively thick material layer by a relatively thick layer of material (eg, one having an average thickness of greater than about 100 microns) The structure 100 is thinned relative to the side to provide a second semiconductor structure 112 over the active surface 102 of the first semiconductor structure 100. For example, as shown in FIG. 2, a bonding layer 110 (such as an oxide layer) including one or more bonding materials may be provided over (eg, over) the active surface 102 of the first semiconductor structure 100. As shown in FIG. 4, a bonding surface 114 of a second semiconductor structure 112 can be bonded to the bonding layer 110 on the active surface 102. In an additional embodiment, the bonding layer 110 can be provided on the bonding surface 114 of the second semiconductor structure 112 or on both the active surface 102 of the first semiconductor structure 100 and the bonding surface 114 of the second semiconductor structure 112.

可藉由自第二半導體結構112之一經曝露主表面移除材料來將第二半導體結構112薄化,舉例而言,可使用一化學製程(例如,一濕式或乾式化學蝕刻製程)、一機械製程(例如,一研磨或磨光製程)或者藉由一化學-機械拋光(CMP)製程來將第二半導體結構112薄化。可在約400℃或小於400℃或者甚至約350℃或小於350℃之一溫度或若干溫度下實施此等製程以避免損壞第一半導體結構100中之任何裝置結構108。The second semiconductor structure 112 can be thinned by exposing the primary surface removal material from one of the second semiconductor structures 112, for example, a chemical process (eg, a wet or dry chemical etch process), The second semiconductor structure 112 is thinned by a mechanical process (e.g., a grinding or buffing process) or by a chemical-mechanical polishing (CMP) process. These processes can be performed at a temperature of about 400 ° C or less or even about 350 ° C or less than 350 ° C or at a temperature to avoid damaging any device structure 108 in the first semiconductor structure 100 .

在又一些實施例中,可在第一半導體結構100之作用表 面102上方(例如,在其上)原位形成第二半導體結構112。舉例而言,可藉由在第一半導體結構100之作用表面102上沈積第二半導體結構112之材料(諸如矽、多晶矽或非晶矽中之一或多者)至一所期望厚度而形成第二半導體112。以舉例而非限制方式,第二半導體結構112可具有約1微米或小於1微米、約0.5微米或小於0.5微米或者甚至約0.3微米或小於0.3微米之一平均厚度。在此等實施例中,可在約400℃或小於400℃或者甚至約350℃或小於350℃之一溫度或若干溫度下執行該沈積製程以避免損壞第一半導體結構100中之任何裝置結構108。舉例而言,可藉由利用電漿增強化學汽相沈積製程(如此項技術中已知)而執行用於形成第二半導體結構112之一低溫沈積製程。In still other embodiments, the action table of the first semiconductor structure 100 can be A second semiconductor structure 112 is formed in situ over the face 102 (eg, thereon). For example, a material of the second semiconductor structure 112 (such as one or more of germanium, polysilicon or amorphous germanium) may be deposited on the active surface 102 of the first semiconductor structure 100 to a desired thickness. Two semiconductors 112. By way of example and not limitation, second semiconductor structure 112 can have an average thickness of about 1 micron or less, about 0.5 micron or less than 0.5 micron, or even about 0.3 micron or less than 0.3 micron. In such embodiments, the deposition process can be performed at a temperature of about 400 ° C or less or even about 350 ° C or less than 350 ° C or at a temperature to avoid damaging any device structure 108 in the first semiconductor structure 100 . . For example, a low temperature deposition process for forming a second semiconductor structure 112 can be performed by utilizing a plasma enhanced chemical vapor deposition process, as is known in the art.

如圖5中所示,可穿過第二半導體結構112至第一半導體結構100與一導電裝置結構108在結構上連接且電連接地形成至少一個穿晶圓互連件116。換言之,每一穿晶圓互連件116可延伸至一或多個裝置結構108,使得在穿晶圓互連件116與一或多個裝置結構108之間建立實體及電接觸。As shown in FIG. 5, at least one through-wafer interconnect 116 can be formed structurally and electrically connected through the second semiconductor structure 112 to the first semiconductor structure 100 and a conductive device structure 108. In other words, each through-wafer interconnect 116 can extend to one or more device structures 108 such that physical and electrical contact is established between the through-wafer interconnect 116 and one or more device structures 108.

可藉由穿過第二半導體結構112至第一半導體結構100蝕刻一洞或通孔且隨後用一或多種導電材料填充該洞或通孔或者藉由此項技術中已知之任何其他方法形成穿晶圓互連件116。視情況,可在一低溫(例如,約400℃或小於400℃或者甚至約350℃或小於350℃)製程中在第二半導體結構112之經曝露主表面上提供另一結合層118(諸如一個氧化物層),從而形成圖5之半導體結構500。可在形成至少一 個穿晶圓互連件116之前在第二半導體結構112上方形成結合層118。同樣,可在約400℃或小於400℃或者甚至約350℃或小於350℃之一溫度或若干溫度下實施用以形成穿晶圓互連件116之製程中之每一者(包含形成該洞或通孔及用導電材料填充該洞或通孔)以避免損壞裝置結構108。The hole or via may be etched through the second semiconductor structure 112 to the first semiconductor structure 100 and then filled with one or more conductive materials or formed by any other method known in the art. Wafer interconnect 116. Optionally, another bonding layer 118 (such as one) may be provided on the exposed major surface of the second semiconductor structure 112 in a low temperature process (eg, about 400 ° C or less or even about 350 ° C or less than 350 ° C). The oxide layer) forms the semiconductor structure 500 of FIG. Can form at least one A bonding layer 118 is formed over the second semiconductor structure 112 prior to the through wafer interconnect 116. Likewise, each of the processes for forming the through-wafer interconnects 116 can be performed at a temperature of about 400 ° C or less or even about 350 ° C or less than 350 ° C (including forming the hole) Or through holes and fill the holes or vias with a conductive material to avoid damaging the device structure 108.

如圖6中所示,可透過結合界面119將一第三半導體結構120結合至半導體結構500之作用表面102'以形成結合的半導體結構600。可在約400℃或小於400℃或者甚至約350℃或小於350℃之一低溫下實施此結合製程以避免損壞裝置結構108。在某些實施例中,第三半導體結構120可至少實質上類似於圖5中所示之半導體結構500(且可如上文結合半導體結構500所闡述地形成)。第三半導體結構120可至少實質上類似於半導體結構500,但可包括裝置結構108'之一不同配置。As shown in FIG. 6, a third semiconductor structure 120 can be bonded to the active surface 102' of the semiconductor structure 500 through the bonding interface 119 to form a bonded semiconductor structure 600. This bonding process can be carried out at a low temperature of about 400 ° C or less or even about 350 ° C or less than 350 ° C to avoid damaging the device structure 108. In some embodiments, the third semiconductor structure 120 can be at least substantially similar to the semiconductor structure 500 shown in FIG. 5 (and can be formed as described above in connection with the semiconductor structure 500). The third semiconductor structure 120 can be at least substantially similar to the semiconductor structure 500, but can include a different configuration of one of the device structures 108'.

第三半導體結構120可具有位於第三半導體結構120之一第一側上之一作用表面及位於一第二相對側上之一背表面。該第三半導體結構可包括一基板106'及形成於基板106'中及/或其上方之至少一個裝置結構108'。第二半導體結構112可用作第三半導體結構120與第一半導體結構100之間的一插入件。如圖6中所示,第三半導體結構120亦可包含如上文所闡述之一第二半導體結構112',第二半導體結構112'亦可用作第三半導體結構120與半導體結構500之間的一插入件。The third semiconductor structure 120 can have one of the active surfaces on one of the first sides of the third semiconductor structure 120 and one of the back surfaces on a second opposing side. The third semiconductor structure can include a substrate 106' and at least one device structure 108' formed in and/or over the substrate 106'. The second semiconductor structure 112 can serve as an interposer between the third semiconductor structure 120 and the first semiconductor structure 100. As shown in FIG. 6, the third semiconductor structure 120 may also include a second semiconductor structure 112' as described above, and the second semiconductor structure 112' may also serve as a relationship between the third semiconductor structure 120 and the semiconductor structure 500. An insert.

第三半導體結構120可與半導體結構500之至少一個穿晶 圓互連件116進行電接觸。舉例而言,可透過結合界面119將第三半導體結構120之穿晶圓互連件116'結合至穿晶圓互連件116(例如,與其在結構上耦合且電耦合)以形成半導體結構500。The third semiconductor structure 120 can be interpenetrated with at least one of the semiconductor structures 500 The round interconnect 116 makes electrical contact. For example, the through-wafer interconnect 116' of the third semiconductor structure 120 can be bonded to the through-wafer interconnect 116 (eg, structurally coupled and electrically coupled thereto) through the bonding interface 119 to form the semiconductor structure 500. .

在某些實施例中,可藉由以下方式將穿晶圓互連件116'結合至穿晶圓互連件116:在穿晶圓互連件116'及穿晶圓互連件116中之一者或兩者上提供金屬材料傳導凸塊或球(例如,一焊料合金);及將該等金屬材料傳導凸塊或球加熱以致使傳導凸塊或球中之金屬材料熔化並回流;在此之後可將該金屬材料冷卻並固化以形成穿晶圓互連件116'與穿晶圓互連件116之間的一結合。在此等實施例中,金屬材料傳導凸塊或球中之金屬材料可具有低於約400℃或甚至低於約350℃之一熔點以允許在此相對低溫下實施該結合製程以避免損壞裝置結構108、108'。In some embodiments, the through-wafer interconnect 116' can be bonded to the through-wafer interconnect 116 in the following manner: in the through-wafer interconnect 116' and the through-wafer interconnect 116 Providing a metal material conductive bump or ball (for example, a solder alloy) on one or both; and heating the metal material conductive bump or ball to cause the conductive bump or the metal material in the ball to melt and reflow; The metal material can then be cooled and cured to form a bond between the through wafer interconnect 116' and the through wafer interconnect 116. In such embodiments, the metal material conductive bump or metal material in the ball may have a melting point below about 400 ° C or even below about 350 ° C to allow the bonding process to be performed at this relatively low temperature to avoid damage to the device. Structures 108, 108'.

在額外實施例中,可在一直接金屬至金屬結合製程中將穿晶圓互連件116'直接結合至穿晶圓互連件116而無需在其之間提供任何黏合劑或其他結合材料。舉例而言,此一直接結合製程可包括一熱壓縮直接結合製程、一超低溫直接結合製程及一表面輔助直接結合製程中之任一者,如本文中先前已定義此等製程。In additional embodiments, the through-wafer interconnect 116' can be bonded directly to the through-wafer interconnect 116 in a direct metal-to-metal bonding process without the need to provide any adhesive or other bonding material therebetween. For example, the direct bonding process can include any of a thermal compression direct bonding process, an ultra-low temperature direct bonding process, and a surface assisted direct bonding process, as previously defined herein.

在某些實施例中,可使用結合層118(諸如一個氧化物層)或其他結合材料來將第三半導體結構120結合至半導體結構500。同樣,可在低於約400℃或甚至低於約350℃之一溫度或若干溫度下實施此一結合製程以避免損壞裝置結 構108、108'。In some embodiments, the bonding layer 118 (such as an oxide layer) or other bonding material can be used to bond the third semiconductor structure 120 to the semiconductor structure 500. Likewise, the bonding process can be carried out at temperatures below about 400 ° C or even below about 350 ° C or at several temperatures to avoid damaging the device junction. Structure 108, 108'.

在一項實施例中,可與另一基板122(諸如一電路板)電接觸地放置半導體結構500,如圖7中所示。半導體結構500可具有將半導體結構500連接至基板122之傳導凸塊123。傳導凸塊123可由金、銅、銀或另一傳導金屬製成且可藉由將材料沈積至穿晶圓互連件116上、藉由將材料沈積至基板122上或藉由此項技術中已知之任何其他方法而形成。在此一實施例中,第二半導體結構112亦用作第一半導體結構100與基板122之間的一插入件。In one embodiment, the semiconductor structure 500 can be placed in electrical contact with another substrate 122, such as a circuit board, as shown in FIG. The semiconductor structure 500 can have conductive bumps 123 that connect the semiconductor structure 500 to the substrate 122. Conductive bumps 123 may be made of gold, copper, silver, or another conductive metal and may be deposited onto the vial interconnect 116 by depositing material onto the substrate 122 or by the art. Formed by any other method known. In this embodiment, the second semiconductor structure 112 also serves as an interposer between the first semiconductor structure 100 and the substrate 122.

在展示為圖8中之半導體結構800之另一實施例中,可在第二半導體結構112中形成至少一個熱管理結構124。可藉由在第二半導體結構112中蝕刻一洞或通孔且隨後用一或多種導電材料填充該洞或通孔或者藉由此項技術中已知之任何其他方法形成熱管理結構124。熱管理結構124可延伸至第一半導體結構100或延伸至第一半導體結構100中,如圖8中所示。In another embodiment, shown as semiconductor structure 800 in FIG. 8, at least one thermal management structure 124 can be formed in second semiconductor structure 112. The thermal management structure 124 can be formed by etching a hole or via in the second semiconductor structure 112 and then filling the hole or via with one or more conductive materials or by any other method known in the art. The thermal management structure 124 can extend into the first semiconductor structure 100 or into the first semiconductor structure 100, as shown in FIG.

圖9圖解說明類似於半導體結構800之一半導體結構900之一額外實施例,但在半導體結構900中熱管理結構124係完全安置於第二半導體結構112內。在半導體結構800及900中,熱管理結構124可包括由一相對導熱材料(諸如與任何裝置結構108電隔離之一金屬)形成之至少一個「虛設」墊或結構。FIG. 9 illustrates an additional embodiment of one of the semiconductor structures 900 similar to the semiconductor structure 800, but in the semiconductor structure 900 the thermal management structure 124 is completely disposed within the second semiconductor structure 112. In semiconductor structures 800 and 900, thermal management structure 124 can include at least one "dummy" pad or structure formed from a relatively thermally conductive material, such as a metal that is electrically isolated from any device structure 108.

圖10用以圖解說明類似於先前所闡述之用以將一第三半導體結構120附接至圖8之半導體結構800(或圖9之半導體 結構900)以形成圖10中所示之一所得半導體結構1000的一方法。第三半導體120本身可包含結合至第三半導體結構120之作用表面之一第四半導體結構112'。至少一個穿晶圓互連件116可穿過第二半導體結構112及第四半導體結構112'將半導體結構500連接至第三半導體結構120。Figure 10 is a diagram illustrating the attachment of a third semiconductor structure 120 to the semiconductor structure 800 of Figure 8 (or the semiconductor of Figure 9) as previously described. Structure 900) is a method of forming the resulting semiconductor structure 1000 of one of the ones shown in FIG. The third semiconductor 120 itself may comprise a fourth semiconductor structure 112' bonded to one of the active surfaces of the third semiconductor structure 120. The at least one through wafer interconnect 116 can connect the semiconductor structure 500 to the third semiconductor structure 120 through the second semiconductor structure 112 and the fourth semiconductor structure 112'.

熱管理結構124可用以藉由平衡垂直熱阻與橫向熱擴散而改良系統之熱管理。藉由改變熱管理結構124之大小、數目、組合物、放置、形狀或深度,可將包括其中具有熱管理結構124之第二半導體結構112之插入件所展現的熱膨脹係數修整為一所期望值。Thermal management structure 124 can be used to improve thermal management of the system by balancing vertical thermal resistance with lateral thermal diffusion. The thermal expansion coefficient exhibited by the insert including the second semiconductor structure 112 having the thermal management structure 124 can be tailored to a desired value by varying the size, number, composition, placement, shape or depth of the thermal management structure 124.

舉例而言,可修整該插入件之熱膨脹係數以至少實質上匹配該插入件所附接至之第一半導體結構100之熱膨脹係數,或至少實質上匹配半導體結構800或900可附接至之另一結構(例如,圖10之第三半導體結構120)之熱膨脹係數。熱管理結構124可由一或多種金屬形成,諸如銅、鎢、鋁或基於一或多種此等金屬之一合金或者相對導熱之任何其他材料。亦可改變穿晶圓互連件116之大小、數目、組合物、放置、形狀或深度以致使插入件展現一所期望熱膨脹係數。在某些實施例中,插入件(其中具有熱管理結構124之第二半導體結構112)之熱膨脹係數與第一半導體結構100之熱膨脹係數之比率可介於自約0.67延伸至約1.5之一範圍內、介於自約0.9延伸至約1.1之一範圍內或該比率可係大約1.0。亦即,插入件之熱膨脹係數可至少實質上等於第一半導體結構100之熱膨脹係數。For example, the thermal expansion coefficient of the insert can be trimmed to at least substantially match the coefficient of thermal expansion of the first semiconductor structure 100 to which the insert is attached, or at least substantially match the semiconductor structure 800 or 900 to which it can be attached The coefficient of thermal expansion of a structure (e.g., the third semiconductor structure 120 of FIG. 10). Thermal management structure 124 may be formed from one or more metals, such as copper, tungsten, aluminum, or any other material based on one or more of these metals or relatively thermally conductive. The size, number, composition, placement, shape or depth of the through-wafer interconnects 116 can also be varied to cause the insert to exhibit a desired coefficient of thermal expansion. In some embodiments, the ratio of the thermal expansion coefficient of the interposer (the second semiconductor structure 112 having the thermal management structure 124) to the thermal expansion coefficient of the first semiconductor structure 100 can range from about 0.67 to about 1.5. Within, extending from about 0.9 to about 1.1 or the ratio may be about 1.0. That is, the coefficient of thermal expansion of the insert can be at least substantially equal to the coefficient of thermal expansion of the first semiconductor structure 100.

在本發明之某些實施例中,可自一半導體結構之相對側形成兩組穿晶圓互連件。亦即,一個可穿過如上文所闡述之作用表面形成,且另一個可穿過一背表面形成。該等穿晶圓互連件可在半導體結構內彼此連接,且可透過該等半導體結構將電信號傳遞至其他裝置結構。In some embodiments of the invention, two sets of through-wafer interconnects can be formed from opposite sides of a semiconductor structure. That is, one can be formed through the active surface as set forth above and the other can be formed through a back surface. The through-wafer interconnects can be connected to one another within the semiconductor structure and can transmit electrical signals to other device structures through the semiconductor structures.

舉例而言,一半導體結構1100(如圖11中所示)具有在半導體結構1100之一第一側上之一作用表面202及在半導體結構1100之一第二相對側上之一背表面204。半導體結構1100可具有形成於一基板206中及/或其上方之至少一個裝置結構208。基板206可包括一半導體210及一絕緣體212。基板206可進一步包括一或多個額外層214,諸如一額外半導體材料層。半導體210可包括一或多種半導體材料(諸如矽(Si)、鍺(Ge)、一III-V半導體材料等)之一層。此外,基板206可包括一半導體材料單晶或一半導體材料磊晶層。絕緣體212可包括一或多個電介質材料層,諸如氧化物(舉例而言,二氧化矽(SiO2 )或氧化鋁(Al2 O3 ))、一種氮化物(舉例而言,氮化矽(Si3 N4 )或氮化硼(BN))等。For example, a semiconductor structure 1100 (shown in FIG. 11) has one of the active surfaces 202 on a first side of the semiconductor structure 1100 and one back surface 204 on a second opposite side of the semiconductor structure 1100. The semiconductor structure 1100 can have at least one device structure 208 formed in and/or over a substrate 206. The substrate 206 can include a semiconductor 210 and an insulator 212. Substrate 206 may further include one or more additional layers 214, such as an additional layer of semiconductor material. Semiconductor 210 can include one or more layers of a semiconductor material such as germanium (Si), germanium (Ge), a III-V semiconductor material, and the like. Additionally, substrate 206 can comprise a single crystal material or a layer of epitaxial semiconductor material. The insulator 212 may include one or more layers of dielectric material such as an oxide (for example, cerium oxide (SiO 2 ) or aluminum oxide (Al 2 O 3 )), a nitride (for example, tantalum nitride ( Si 3 N 4 ) or boron nitride (BN)).

可穿過半導體結構1100形成至少一個第一穿晶圓互連件216以形成半導體結構1200,如圖12中所示。可自作用表面202部分地穿過基板206與至少一個裝置結構208連接地形成至少一個第一穿晶圓互連件216。換言之,每一第一穿晶圓互連件216可延伸至一或多個裝置結構208,使得在第一穿晶圓互連件216與一或多個裝置結構208之間建立實體及電接觸。可藉由穿過半導體結構1100蝕刻一洞或通孔 且隨後用一或多種導電材料填充該洞或通孔或者藉由此項技術中已知之任何其他方法形成第一穿晶圓互連件216。可在約400℃或小於400℃或者甚至低於350℃或小於350℃之一溫度或若干溫度下實施此等製程,如先前所論述。At least one first through wafer interconnect 216 can be formed through the semiconductor structure 1100 to form the semiconductor structure 1200, as shown in FIG. At least one first through-wafer interconnect 216 can be formed from the active surface 120 in part through the substrate 206 in connection with the at least one device structure 208. In other words, each first through-wafer interconnect 216 can extend to one or more device structures 208 such that physical and electrical contact is established between the first through-wafer interconnect 216 and one or more device structures 208 . A hole or via can be etched through the semiconductor structure 1100 The via or via is then filled with one or more conductive materials or the first through wafer interconnect 216 is formed by any other method known in the art. These processes can be carried out at a temperature of about 400 ° C or less or even less than 350 ° C or less than 350 ° C or several temperatures, as previously discussed.

視情況,可將一或多個額外層217添加至半導體結構1200之作用表面,如圖13中所示。一或多個額外層217可包括若干額外結合層。可利用該等額外結合層來平坦化半導體結構1200之作用表面202以幫助將半導體結構1200結合至一載體基板220。在添加額外層217時,最後添加之層包括作用表面202。可將作用表面202結合至載體基板220之一結合表面218以形成圖13之半導體結構1300。在載體基板220提供結構支撐之情況下,可藉由使用(舉例而言)一化學機械拋光(CMP)製程或此項技術中已知之任何其他方法自半導體結構1300之基板206移除材料而將基板206薄化。亦可在約400℃或小於400℃或者甚至低於約350℃或小於350℃之一溫度或若干溫度下實施此等製程,如先前所論述。Optionally, one or more additional layers 217 may be added to the active surface of the semiconductor structure 1200, as shown in FIG. One or more additional layers 217 can include several additional bonding layers. The additional bonding layers can be utilized to planarize the active surface 202 of the semiconductor structure 1200 to help bond the semiconductor structure 1200 to a carrier substrate 220. When additional layer 217 is added, the last added layer includes active surface 202. The active surface 202 can be bonded to one of the bonding surfaces 218 of the carrier substrate 220 to form the semiconductor structure 1300 of FIG. Where the carrier substrate 220 provides structural support, the material may be removed from the substrate 206 of the semiconductor structure 1300 by, for example, a chemical mechanical polishing (CMP) process or any other method known in the art. The substrate 206 is thinned. These processes may also be carried out at a temperature of about 400 ° C or less or even less than about 350 ° C or less than 350 ° C or several temperatures, as previously discussed.

如圖14及圖15中所示,可穿過經薄化基板206之一部分形成至少一個第二穿晶圓互連件222。可將第二穿晶圓互連件222定位並定向使得在第二穿晶圓互連件222與第一穿晶圓互連件216之間建立實體及電接觸。因此,透過第一穿晶圓互連件216在裝置結構208與第二穿晶圓互連件222之間建立電連接。As shown in FIGS. 14 and 15, at least one second through-wafer interconnect 222 can be formed through a portion of the thinned substrate 206. The second through-wafer interconnect 222 can be positioned and oriented such that physical and electrical contact is established between the second through-wafer interconnect 222 and the first through-wafer interconnect 216. Thus, an electrical connection is established between the device structure 208 and the second through-wafer interconnect 222 through the first through-wafer interconnect 216.

第二穿晶圓互連件222可具有不同於第一穿晶圓互連件 216之一剖面大小及/或形狀。舉例而言,第二穿晶圓互連件222可在剖面大小上小於第一穿晶圓互連件216,如圖14之半導體結構1400中所圖解說明。在額外實施例中,第二穿晶圓互連件222可在剖面大小上大於第一穿晶圓互連件216,如圖15之半導體結構1500中所圖解說明。在又一些實施例中,第二穿晶圓互連件222可具有與第一穿晶圓互連件216相同之剖面大小。可藉由改變第一穿晶圓互連件216、第二穿晶圓互連件222或第一穿晶圓互連件216及第二穿晶圓互連件222兩者之大小、數目、組合物、放置及/或深度而將半導體結構1400及1500之熱膨脹係數修整為一所期望值。The second through wafer interconnect 222 can have a different than the first through wafer interconnect One of the cross-sectional sizes and/or shapes of 216. For example, the second through-wafer interconnect 222 can be smaller in cross-sectional size than the first through-wafer interconnect 216, as illustrated in the semiconductor structure 1400 of FIG. In an additional embodiment, the second through-wafer interconnect 222 can be larger in cross-sectional size than the first through-wafer interconnect 216, as illustrated in the semiconductor structure 1500 of FIG. In still other embodiments, the second through-wafer interconnect 222 can have the same cross-sectional size as the first through-wafer interconnect 216. The size and number of both the first through wafer interconnect 216, the second through wafer interconnect 222 or the first through wafer interconnect 216 and the second through wafer interconnect 222 can be changed by The thermal expansion coefficients of the semiconductor structures 1400 and 1500 are tailored to a desired value by composition, placement, and/or depth.

與在一個單一步驟中完全穿過半導體結構1100(圖11)之基板206形成一穿晶圓互連件相比,與第一穿晶圓互連件216分離地形成第二穿晶圓互連件222可產生較高良率。與第一穿晶圓互連件分離地形成第二穿晶圓互連件222可藉由降低蝕刻製程之縱橫比(AR)且由於第二穿晶圓互連件222可係完全穿過一單一種同質材料形成而改良良率。Forming a second through-wafer interconnect separately from the first through-wafer interconnect 216 is compared to forming a through-wafer interconnect through the substrate 206 that completely passes through the semiconductor structure 1100 (FIG. 11) in a single step Piece 222 can produce a higher yield. Forming the second through-wafer interconnect 222 separately from the first through-wafer interconnect can be achieved by reducing the aspect ratio (AR) of the etch process and because the second through-wafer interconnect 222 can pass completely through A single homogeneous material is formed to improve yield.

可使用先前所闡述之方法在約400℃或小於400℃或者甚至低於約350℃或小於350℃之一溫度或若干溫度下形成第二穿晶圓互連件222。The second through-wafer interconnect 222 can be formed at a temperature of about 400 ° C or less or even less than about 350 ° C or less than 350 ° C or a number of temperatures using the methods set forth previously.

在某些實施例中,可在一半導體結構內將一第一穿晶圓互連件216形成為不同深度。亦即,可穿過比上文所闡述之較多或較少個材料層形成第一穿晶圓互連件216。接著可形成一第二穿晶圓互連件222使得其碰到第一穿晶圓互 連件216且進行電接觸。In some embodiments, a first through-wafer interconnect 216 can be formed to a different depth within a semiconductor structure. That is, the first through wafer interconnect 216 can be formed through more or less layers of material than those set forth above. A second through wafer interconnect 222 can then be formed such that it touches the first through wafer The piece 216 is in electrical contact.

舉例而言,如圖16中所示,半導體結構1600具有在半導體結構1600之一第一側上之一作用表面202及在半導體結構1600之一第二相對側上之一背表面204。半導體結構1600可具有形成於一基板206中及/或其上方之至少一個裝置結構208。基板206可包括一半導體210及一絕緣體212。基板206可進一步包括一或多個額外層214,諸如一額外半導體材料層。半導體210可包括一或多種半導體材料(諸如矽(Si)、鍺(Ge)、一III-V半導體材料等)之一層。此外,基板206可包括一半導體材料單晶或一半導體材料磊晶層。絕緣體212可包括一或多個電介質材料層,諸如氧化物(舉例而言,二氧化矽(SiO2 )或氧化鋁(Al2 O3 ))、一種氮化物(舉例而言,氮化矽(Si3 N4 )或氮化硼(BN))等。For example, as shown in FIG. 16, semiconductor structure 1600 has one of active surface 202 on one of the first sides of semiconductor structure 1600 and one back surface 204 on one of the second opposite sides of semiconductor structure 1600. The semiconductor structure 1600 can have at least one device structure 208 formed in and/or over a substrate 206. The substrate 206 can include a semiconductor 210 and an insulator 212. Substrate 206 may further include one or more additional layers 214, such as an additional layer of semiconductor material. Semiconductor 210 can include one or more layers of a semiconductor material such as germanium (Si), germanium (Ge), a III-V semiconductor material, and the like. Additionally, substrate 206 can comprise a single crystal material or a layer of epitaxial semiconductor material. The insulator 212 may include one or more layers of dielectric material such as an oxide (for example, cerium oxide (SiO 2 ) or aluminum oxide (Al 2 O 3 )), a nitride (for example, tantalum nitride ( Si 3 N 4 ) or boron nitride (BN)).

可穿過半導體結構1600(自作用表面202穿過半導體210且至少部分地穿過絕緣體212)形成一第一穿晶圓互連件216。第一穿晶圓互連件216可如上文所闡述地形成且可延伸穿過一或多個裝置結構208或延伸至一或多個裝置結構208。A first through wafer interconnect 216 can be formed through the semiconductor structure 1600 (through the semiconductor 210 from the active surface 202 and at least partially through the insulator 212). The first through wafer interconnect 216 can be formed as described above and can extend through one or more device structures 208 or to one or more device structures 208.

視情況,可將一或多個額外層217(例如,額外結合層)添加至半導體結構1600之作用表面202以形成圖17中所示之半導體結構1700。在添加額外層217時,最後添加之層包括作用表面202。可將作用表面202結合至一載體基板220之一結合表面218以形成半導體結構1700。在載體基板220提供結構支撐之情況下,可使用(舉例而言)化學機械剖 光或此項技術中已知之任何其他方法藉由自半導體結構1700之基板206移除材料而將基板206薄化。Optionally, one or more additional layers 217 (eg, additional bonding layers) may be added to the active surface 202 of the semiconductor structure 1600 to form the semiconductor structure 1700 shown in FIG. When additional layer 217 is added, the last added layer includes active surface 202. The active surface 202 can be bonded to one of the bonding surfaces 218 of a carrier substrate 220 to form a semiconductor structure 1700. Where structural support is provided by the carrier substrate 220, for example, chemical mechanical sectioning may be used Light or any other method known in the art thins the substrate 206 by removing material from the substrate 206 of the semiconductor structure 1700.

接著可穿過一或多個額外層214及絕緣體212形成至少一個第二穿晶圓互連件222以形成圖18及圖19中之半導體結構1800及1900。第二穿晶圓互連件222可具有在大小及形狀中之至少一者上不同於第一穿晶圓互連件216之一剖面的一剖面。舉例而言,第二穿晶圓互連件222之剖面可小於第一穿晶圓互連件216之剖面(如在圖18之半導體結構1800中)或大於第一穿晶圓互連件216之剖面(如在圖19之半導體結構1900)。在額外實施例中,第二穿晶圓互連件222可具有與第一穿晶圓互連件216之剖面係相同大小及形狀之一剖面。可藉由改變第一穿晶圓互連件216、第二穿晶圓互連件222或兩者之大小、數目、組合物、放置、形狀或深度而將半導體結構1800及1900之熱膨脹係數修整為一所期望值。At least one second through-wafer interconnect 222 can then be formed through one or more additional layers 214 and insulator 212 to form semiconductor structures 1800 and 1900 of FIGS. 18 and 19. The second through wafer interconnect 222 can have a cross-section that is different from a cross-section of the first through-wafer interconnect 216 in at least one of size and shape. For example, the cross-section of the second through-wafer interconnect 222 can be smaller than the cross-section of the first through-wafer interconnect 216 (as in the semiconductor structure 1800 of FIG. 18) or larger than the first through-wafer interconnect 216. The profile (as in the semiconductor structure 1900 of Figure 19). In additional embodiments, the second through-wafer interconnect 222 can have a cross-section that is the same size and shape as the cross-section of the first through-wafer interconnect 216. The thermal expansion coefficients of the semiconductor structures 1800 and 1900 can be tailored by varying the size, number, composition, placement, shape or depth of the first through wafer interconnect 216, the second through wafer interconnect 222, or both. For an expected value.

可在約400℃或小於400℃或者甚至約350℃或小於350℃之一溫度或若干溫度下形成第一穿晶圓互連件216及第二穿晶圓互連件222以避免損壞裝置結構208,如先前所論述。The first through wafer interconnect 216 and the second through wafer interconnect 222 may be formed at a temperature of about 400 ° C or less or even about 350 ° C or less than 350 ° C or a plurality of temperatures to avoid damage to the device structure 208, as previously discussed.

圖20展示圖18之半導體結構1800之一部分之一放大視圖,且圖21展示圖20中所示之虛線圈內之部分之一放大視圖。如圖21中所示,在某些實施例中,可在半導體210與絕緣體212之間安置一蝕刻停止件224以幫助形成第一穿晶圓互連件216及第二穿晶圓互連件222,如下文所論述。20 shows an enlarged view of one of the portions of the semiconductor structure 1800 of FIG. 18, and FIG. 21 shows an enlarged view of a portion of the dotted circle shown in FIG. As shown in FIG. 21, in some embodiments, an etch stop 224 can be disposed between the semiconductor 210 and the insulator 212 to help form the first through wafer interconnect 216 and the second through wafer interconnect. 222, as discussed below.

可以類似於先前參考圖12所闡述之一方式形成第一穿晶圓互連件216。然而,在下文所闡述之實施例中,添加一蝕刻停止件224可幫助穿晶圓互連件製作。舉例而言,可將一經圖案化遮罩層(未展示)施加至作用表面202以保護不欲蝕刻之區。接著可使用一濕式化學蝕刻製程、一乾式反應性離子蝕刻製程或此項技術中已知之任何其他蝕刻製程來使透過該經圖案化遮罩層曝露之結構經受一選擇性蝕刻劑。可選擇性地蝕刻該結構至蝕刻停止件224,從而在該結構中形成一洞或通孔。換言之,該蝕刻製程將蝕刻穿過半導體結構1800且選擇性停止於蝕刻停止件224上。蝕刻停止件224可包括將不蝕刻或將以實質上低於周圍材料之一速率蝕刻之一材料層。以舉例而非限制方式,蝕刻停止件224可包括一種氮化物材料(諸如氮化矽(Si3 N4 ))之一層。蝕刻停止件224可位於基板206之若干層之間,在此情形下可與該結構一起蝕刻一或多個層。一旦已在該結構中蝕刻一洞或通孔至蝕刻停止件224,便可用一或多種導電材料填充該洞或通孔以形成第一穿晶圓互連件216。The first through wafer interconnect 216 can be formed in a manner similar to that previously described with reference to FIG. However, in the embodiments set forth below, the addition of an etch stop 224 can aid in the fabrication of the through-wafer interconnect. For example, a patterned mask layer (not shown) can be applied to the active surface 202 to protect areas that are not to be etched. The structure exposed through the patterned mask layer can then be subjected to a selective etchant using a wet chemical etching process, a dry reactive ion etching process, or any other etching process known in the art. The structure can be selectively etched to etch stop 224 to form a hole or via in the structure. In other words, the etch process will etch through the semiconductor structure 1800 and selectively stop on the etch stop 224. Etch stop 224 can include a layer of material that will not be etched or will be etched at a rate substantially lower than one of the surrounding materials. By way of example and not limitation, etch stop 224 may comprise a layer of a nitride material such as tantalum nitride (Si 3 N 4 ). Etch stop 224 may be located between several layers of substrate 206, in which case one or more layers may be etched with the structure. Once a hole or via has been etched into the structure to the etch stop 224, the hole or via may be filled with one or more conductive materials to form the first through wafer interconnect 216.

可以一類似方式形成第二穿晶圓互連件222。首先,可將一經圖案化遮罩層(未展示)施加至背表面204以保護不欲蝕刻之區。接著可使用一濕式化學蝕刻製程、一乾式反應性離子蝕刻製程或此項技術中已知之任何其他蝕刻製程來使透過該經圖案化遮罩層曝露之基板206經受一選擇性蝕刻劑。可選擇性地蝕刻基板206至蝕刻停止件224。該蝕刻製程將蝕刻穿過半導體結構且選擇性停止於蝕刻停止件 224上。為連接第二穿晶圓互連件與第一穿晶圓互連件,可移除在通孔或洞內曝露的蝕刻停止件224之材料。如先前所提及,蝕刻停止件224可由實質上不滲透用以穿過該結構及基板206形成洞或通孔之蝕刻劑之一材料製成。換言之,一所選擇蝕刻製程穿過該蝕刻停止件之蝕刻速率可實質上慢於穿過該結構及基板206之蝕刻速率。為移除蝕刻停止件224且允許穿晶圓互連件216與穿晶圓互連件222之電連接,可選擇一不同蝕刻製程或化學製程。該不同蝕刻製程可以實質上高於用以穿過該結構及基板206形成洞或通孔之蝕刻製程之蝕刻速率的一速率移除蝕刻停止件224。此不同蝕刻製程對蝕刻該結構及基板206之其他材料可係無效的。The second through wafer interconnect 222 can be formed in a similar manner. First, a patterned mask layer (not shown) can be applied to the back surface 204 to protect areas that are not to be etched. The substrate 206 exposed through the patterned mask layer can then be subjected to a selective etchant using a wet chemical etching process, a dry reactive ion etching process, or any other etching process known in the art. Substrate 206 can be selectively etched to etch stop 224. The etch process etches through the semiconductor structure and selectively stops at the etch stop 224. To connect the second through wafer interconnect to the first through wafer interconnect, the material of the etch stop 224 exposed within the via or hole can be removed. As previously mentioned, the etch stop 224 can be made of a material that is substantially impermeable to one of the etchants used to form holes or vias through the structure and substrate 206. In other words, the etch rate of a selected etch process through the etch stop can be substantially slower than the etch rate through the structure and substrate 206. To remove the etch stop 224 and allow electrical connection between the through wafer interconnect 216 and the through wafer interconnect 222, a different etch process or chemical process can be selected. The different etch process can be substantially higher than a rate removal etch stop 224 for the etch rate of the etch process used to form holes or vias through the structure and substrate 206. This different etching process may be ineffective for etching the structure and other materials of the substrate 206.

在圖21中,將裝置結構208之實例展示為包括源極區域230、閘極電極231及汲極區域232之電晶體208'。此等特徵僅係舉例而言且並不意欲限制半導體結構1800中之裝置結構208之類型。可毗鄰(例如,圍繞)第一穿晶圓互連件216安置至少一個淺溝槽隔離結構226。淺溝槽隔離結構226可將穿晶圓互連件216及222與至少一個裝置結構208隔離,並且將額外裝置結構(未展示)與裝置結構208'隔離。In FIG. 21, an example of device structure 208 is shown as a transistor 208' that includes a source region 230, a gate electrode 231, and a drain region 232. These features are by way of example only and are not intended to limit the type of device structure 208 in semiconductor structure 1800. At least one shallow trench isolation structure 226 can be disposed adjacent (eg, around) the first through wafer interconnect 216. Shallow trench isolation structure 226 can isolate through-wafer interconnects 216 and 222 from at least one device structure 208 and isolate additional device structures (not shown) from device structure 208'.

在某些實施例中,第二穿晶圓互連件222之至少一部分可橫向延伸並重疊半導體210之一部分,且第二穿晶圓互連件222可橫向延伸超出淺溝槽隔離結構226之一周邊邊界,如圖21中所示。In some embodiments, at least a portion of the second through-wafer interconnect 222 can extend laterally and overlap a portion of the semiconductor 210, and the second through-wafer interconnect 222 can extend laterally beyond the shallow trench isolation structure 226 A peripheral boundary, as shown in FIG.

在某些實施例中,淺溝槽隔離結構226可寬於第二穿晶 圓互連件222之一寬度。舉例而言,在圖22中,第二穿晶圓互連件222可在橫向剖面上窄於淺溝槽隔離結構226且因此可不重疊形成第一穿晶圓互連件216及淺溝槽隔離結構226之後剩餘之半導體210。在其他實施例中,在圖23中展示,第二穿晶圓互連件222可在橫向剖面上窄於第一穿晶圓互連件216。換言之,第二穿晶圓互連件222之剖面面積可小於第一穿晶圓互連件216之剖面面積。形成第二穿晶圓互連件222之後剩餘的蝕刻停止件224之部分可因此疊加於第一穿晶圓互連件216之一部分上,如圖23中所示。In some embodiments, the shallow trench isolation structure 226 can be wider than the second transgranular One of the widths of the circular interconnects 222. For example, in FIG. 22, the second through-wafer interconnect 222 can be narrower than the shallow trench isolation structure 226 in a lateral cross-section and thus can form the first through-wafer interconnect 216 and shallow trench isolation without overlapping. The semiconductor 210 remaining after the structure 226. In other embodiments, shown in FIG. 23, the second through-wafer interconnect 222 can be narrower than the first through-wafer interconnect 216 in a lateral cross-section. In other words, the cross-sectional area of the second through-wafer interconnect 222 can be smaller than the cross-sectional area of the first through-wafer interconnect 216. Portions of the etch stop 224 remaining after forming the second through wafer interconnect 222 may thus be overlaid on a portion of the first through wafer interconnect 216, as shown in FIG.

在其他實施例中,半導體結構可具有不同數目個材料層。舉例而言,當與圖20中之半導體結構1800之基板206相比時,半導體結構2400之基板(在圖24中展示)缺少額外層214。然而,可以一至少實質上類似方式形成穿晶圓互連件216及222。可形成不具有額外層214之半導體結構2400或者可在形成至少一個第二穿晶圓互連件222之前完全移除額外層214。不具有額外層214之一個優點係可穿過一單一種同質材料而非穿過兩個或兩個以上不同層執行蝕刻製程。穿過不同材料蝕刻劑可具有不同蝕刻速率。因此,穿過一同質材料進行蝕刻可比穿過不同材料進行蝕刻更連貫。如參考圖21所闡述,第二穿晶圓互連件222可橫向延伸超出淺溝槽隔離結構226之一橫向周邊,如圖25中所示。在其他實施例中,第二穿晶圓互連件222可以不橫向延伸超出淺溝槽隔離結構226之一橫向周邊但可寬於第一穿晶圓互連件216,如圖26中所示。第二穿晶圓互連件 222亦可具有小於第一穿晶圓互連件216之一剖面面積,如圖27中所示。In other embodiments, the semiconductor structure can have a different number of material layers. For example, when compared to the substrate 206 of the semiconductor structure 1800 of FIG. 20, the substrate of the semiconductor structure 2400 (shown in FIG. 24) lacks an additional layer 214. However, through-wafer interconnects 216 and 222 can be formed in at least substantially similar manner. The semiconductor structure 2400 without the additional layer 214 may be formed or the additional layer 214 may be completely removed prior to forming the at least one second through wafer interconnect 222. One advantage of having no additional layer 214 is that the etching process can be performed through a single homogeneous material rather than through two or more different layers. Etchants that pass through different materials can have different etch rates. Thus, etching through a homogenous material can be more etched than etching through different materials. As illustrated with reference to FIG. 21, the second through-wafer interconnect 222 can extend laterally beyond one of the lateral perimeters of the shallow trench isolation structure 226, as shown in FIG. In other embodiments, the second through-wafer interconnect 222 may not extend laterally beyond one of the lateral perimeters of the shallow trench isolation structure 226 but may be wider than the first through-wafer interconnect 216, as shown in FIG. . Second through wafer interconnect 222 can also have a smaller cross-sectional area than the first through-wafer interconnect 216, as shown in FIG.

本發明之某些實施例亦可具有形成於基板206中之至少一個熱管理結構234。圖28及圖29展示具有僅形成於基板206中之熱管理結構234之半導體結構2800及2900。可以類似於形成穿晶圓互連件之一方式形成該等熱管理結構,如本文中先前所論述。舉例而言,可將一經圖案化遮罩層(未展示)施加至基板206以保護不欲蝕刻之區。接著可使透過該經圖案化遮罩層曝露之結構經受一蝕刻劑。可用一材料填充所得洞以形成熱管理結構234。形成該熱管理結構之材料無需係導電的,但其可係導電的。可將該材料選擇為具有所期望熱傳送性質(例如,致使總半導體結構具有一所期望熱膨脹係數之性質)。Certain embodiments of the invention may also have at least one thermal management structure 234 formed in the substrate 206. 28 and 29 show semiconductor structures 2800 and 2900 having thermal management structures 234 formed only in substrate 206. The thermal management structures can be formed in a manner similar to forming one of the through-wafer interconnects, as previously discussed herein. For example, a patterned mask layer (not shown) can be applied to substrate 206 to protect areas that are not to be etched. The structure exposed through the patterned mask layer can then be subjected to an etchant. The resulting holes can be filled with a material to form the thermal management structure 234. The material from which the thermal management structure is formed need not be electrically conductive, but it may be electrically conductive. The material can be selected to have the desired heat transfer properties (e.g., properties that cause the overall semiconductor structure to have a desired coefficient of thermal expansion).

亦可跨越兩個或兩個以上層(諸如跨越基板206及絕緣體212)形成熱管理結構234,如圖30及圖31之半導體結構3000及3100中所示。無論放置如何,熱管理結構234可包括與裝置結構208電隔離之至少一個虛設金屬墊。電隔離可係由於熱管理結構234與裝置結構208之間的一實體障壁所致或可係熱管理結構234之材料之低導電性之一結果。Thermal management structures 234 may also be formed across two or more layers, such as across substrate 206 and insulator 212, as shown in semiconductor structures 3000 and 3100 of FIGS. 30 and 31. Regardless of placement, the thermal management structure 234 can include at least one dummy metal pad that is electrically isolated from the device structure 208. Electrical isolation may be a result of one of the physical barriers between the thermal management structure 234 and the device structure 208 or the low conductivity of the material of the thermal management structure 234.

熱管理結構234可藉由平衡垂直熱阻與橫向熱擴散而改良系統之熱管理。藉由改變熱管理結構234之大小、數目、組合物、放置、形狀或深度,可將熱膨脹係數修整為一所期望值。可選擇此所期望熱膨脹係數以匹配半導體結構2800、2900、3000及3100可稍後結合至的另一半導體結 構之熱膨脹係數。熱管理結構234可由一或多種金屬(諸如銅、鎢、鋁、錫、銀)或基於一或多種此等金屬之一合金或者比基板206相對更導熱之任何其他材料形成。可代替第一穿晶圓互連件216及第二穿晶圓互連件222之大小、數目、組合物、放置、形狀或深度之改變或結合該等改變使用熱管理結構234之改變以達成一所期望熱膨脹係數。Thermal management structure 234 can improve thermal management of the system by balancing vertical thermal resistance with lateral thermal diffusion. The thermal expansion coefficient can be tailored to a desired value by varying the size, number, composition, placement, shape or depth of the thermal management structure 234. The desired coefficient of thermal expansion can be selected to match another semiconductor junction to which the semiconductor structures 2800, 2900, 3000, and 3100 can be later bonded. The coefficient of thermal expansion of the structure. Thermal management structure 234 may be formed from one or more metals (such as copper, tungsten, aluminum, tin, silver) or based on one or more alloys of one or more of these metals or any other material that is relatively more thermally conductive than substrate 206. The change in size, number, composition, placement, shape, or depth of the first through-wafer interconnect 216 and the second through-wafer interconnect 222 may be used in conjunction with or in combination with the changes to the thermal management structure 234 to achieve A desired coefficient of thermal expansion.

在某些實施例中,可在基板206上方形成一或多個傳導互連件層236以改變電觸點之位置。舉例而言,在圖32及圖33中,半導體結構3200及3300各自具有分別在半導體結構1500及1400之基板206頂上之多個傳導互連件層236。一個傳導互連件層236可具有與第二穿晶圓互連件222接觸之傳導材料。每一傳導互連件層236可具有與另一傳導互連件層236接觸之傳導材料。傳導互連件層236可共同提供半導體結構200之表面上之各個點之間至裝置結構208之電連接。In some embodiments, one or more conductive interconnect layers 236 can be formed over the substrate 206 to change the position of the electrical contacts. For example, in FIGS. 32 and 33, semiconductor structures 3200 and 3300 each have a plurality of conductive interconnect layers 236 on top of substrate 206 of semiconductor structures 1500 and 1400, respectively. One conductive interconnect layer 236 can have a conductive material in contact with the second through wafer interconnect 222. Each of the conductive interconnect layers 236 can have a conductive material in contact with another conductive interconnect layer 236. Conductive interconnect layer 236 can collectively provide electrical connections between various points on the surface of semiconductor structure 200 to device structure 208.

可藉由此項技術中已知之任何方法形成傳導互連件層236。舉例而言,可在基板206上沈積一或多個額外電介質層。可將一經圖案化遮罩層施加至該等額外電介質層以保護不欲蝕刻之區。接著可使用一濕式化學蝕刻製程、一乾式反應性離子蝕刻製程或此項技術中已知之任何其他蝕刻製程穿過該經圖案化遮罩層來使該等額外電介質層經受一選擇性蝕刻劑。接著可用一或多種導電材料填充所形成之洞或空隙(通常稱為通孔)以形成傳導互連件層236。Conductive interconnect layer 236 can be formed by any method known in the art. For example, one or more additional dielectric layers can be deposited on substrate 206. A patterned mask layer can be applied to the additional dielectric layers to protect areas that are not to be etched. The additional dielectric layer can then be subjected to a selective etchant by using a wet chemical etch process, a dry reactive ion etch process, or any other etch process known in the art through the patterned mask layer. . The formed holes or voids (generally referred to as vias) may then be filled with one or more electrically conductive materials to form a conductive interconnect layer 236.

可使用傳導金屬互連件層236來使電觸點重新路由以匹 配其他半導體結構上之觸點。使用傳導互連件層可避免對使用一分離插入件之需要。避免使用一分離插入件可藉由限制所需要之不同部件之數目及藉由限制熱不匹配問題而減小生產及維修成本。傳導互連件層236可具有經修整以匹配半導體結構1500及1400或半導體結構3200及3300可附接至的其他半導體結構之熱膨脹係數之熱膨脹係數。Conductive metal interconnect layer 236 can be used to reroute electrical contacts to With other semiconductor structure contacts. The use of a conductive interconnect layer avoids the need to use a separate insert. Avoiding the use of a separate insert can reduce production and maintenance costs by limiting the number of different components required and by limiting thermal mismatch issues. The conductive interconnect layer 236 can have a coefficient of thermal expansion that is tailored to match the thermal expansion coefficients of the semiconductor structures 1500 and 1400 or other semiconductor structures to which the semiconductor structures 3200 and 3300 can be attached.

可將上文所闡述之多種方法組合於一單個半導體結構中。舉例而言,圖34展示具有穿過作用表面形成之穿晶圓互連件316(如圖8中所示)與穿過作用表面及背表面兩者分級地形成之穿晶圓互連件316'(如圖32中所示)組合之一半導體結構3400。穿晶圓互連件316中之任一者可連接至裝置結構308,可代替分離插入件且可貢獻於半導體結構3400之一所期望熱膨脹係數。The various methods set forth above can be combined in a single semiconductor structure. For example, FIG. 34 shows a through wafer interconnect 316 having a through wafer interconnect 316 formed through an active surface (as shown in FIG. 8) and being formed hierarchically across both the active and back surfaces. One of the semiconductor structures 3400 is combined (as shown in FIG. 32). Any of the through wafer interconnects 316 can be coupled to the device structure 308 in place of the separate interposer and can contribute to the desired coefficient of thermal expansion of one of the semiconductor structures 3400.

如參考先前實施例所闡述,半導體結構3400可具有一背表面304且可包含形成於一基板306中及/或其上方之至少一個裝置結構308。可穿過背表面304與裝置結構308連接地形成至少一個穿晶圓互連件316。半導體結構3400可包括一半導體310及一絕緣體312。此外,可穿過半導體310及絕緣體312形成穿晶圓互連件316。一或多個傳導互連件層336可形成於基板306上且可連接至穿晶圓互連件316。可存在形成於半導體結構3400內之至少一個熱管理結構324以幫助達成一所期望熱膨脹係數。As explained with reference to previous embodiments, semiconductor structure 3400 can have a back surface 304 and can include at least one device structure 308 formed in and/or over a substrate 306. At least one through wafer interconnect 316 can be formed through the back surface 304 in connection with the device structure 308. The semiconductor structure 3400 can include a semiconductor 310 and an insulator 312. In addition, through-wafer interconnects 316 can be formed through semiconductor 310 and insulator 312. One or more conductive interconnect layers 336 can be formed on substrate 306 and can be connected to through-wafer interconnect 316. There may be at least one thermal management structure 324 formed within the semiconductor structure 3400 to help achieve a desired coefficient of thermal expansion.

在圖35中所示之再一實施例中,可與另一基板320(諸如一電路板)電接觸地放置半導體結構3400。半導體結構 3400可具有將半導體結構3400連接至基板320之傳導凸塊344。可藉由此項技術中已知之任何方法(諸如藉由沈積一或多種金屬)形成傳導凸塊344。可與半導體結構3400電接觸地將一額外半導體結構346放置於與基板320相對之一側上。可存在將半導體結構300連接至額外半導體結構346之金屬結合點348。可藉由沈積傳導凸塊或球並使其回流而形成此等金屬結合點348,如本文中先前所闡述。以此等方法,可在約400℃或小於400℃或者甚至約350℃或小於350℃之一溫度或若干溫度下實施結合製程以避免致使對裝置結構之熱損壞。在額外實施例中,可使用一直接金屬至金屬結合製程而無需使用任何中間黏合劑或其他結合材料來形成該等金屬結合點。舉例而言,此一直接結合製程可包括一熱壓縮直接結合製程、一超低溫直接結合製程及一表面輔助直接結合製程中之任一者,如本文中先前已定義此等製程。In still another embodiment shown in FIG. 35, semiconductor structure 3400 can be placed in electrical contact with another substrate 320, such as a circuit board. Semiconductor structure The 3400 can have conductive bumps 344 that connect the semiconductor structure 3400 to the substrate 320. Conductive bumps 344 can be formed by any method known in the art, such as by depositing one or more metals. An additional semiconductor structure 346 can be placed on one side opposite the substrate 320 in electrical contact with the semiconductor structure 3400. There may be metal bond points 348 that connect the semiconductor structure 300 to the additional semiconductor structure 346. These metal bond points 348 can be formed by depositing conductive bumps or balls and reflowing them, as previously described herein. In such a manner, the bonding process can be carried out at a temperature of about 400 ° C or less or even about 350 ° C or less than 350 ° C or a number of temperatures to avoid thermal damage to the device structure. In additional embodiments, a direct metal to metal bonding process can be used without the use of any intermediate binders or other bonding materials to form the metal bond points. For example, the direct bonding process can include any of a thermal compression direct bonding process, an ultra-low temperature direct bonding process, and a surface assisted direct bonding process, as previously defined herein.

在某些實施例中,半導體結構可經形成而具有比最終產品中所需要厚的層。可進行此以避免與處置極薄晶圓相關聯之問題。稍後,在形成穿晶圓互連件及其他特徵之後可將該等半導體結構薄化。舉例而言,本發明之實施例可利用半導體結構1100(圖11)。半導體結構1100且特定而言係基板206之厚度可經形成而具有比最終產品中所需要厚的層。舉例而言,絕緣體層212可具有至少大約100 μm、至少大約300 μm或甚至至少大約500 μm之一厚度。藉由增加絕緣體212之層厚度,可避免處置極薄半導體結構之問題 且對縱橫比蝕刻之較佳控制可係可能的。In some embodiments, the semiconductor structure can be formed to have a thicker layer than desired in the final product. This can be done to avoid problems associated with handling very thin wafers. Later, the semiconductor structures can be thinned after forming through-wafer interconnects and other features. For example, embodiments of the present invention may utilize semiconductor structure 1100 (FIG. 11). The thickness of the semiconductor structure 1100, and in particular the substrate 206, can be formed to have a thicker layer than is desired in the final product. For example, the insulator layer 212 can have a thickness of at least about 100 μm, at least about 300 μm, or even at least about 500 μm. By increasing the layer thickness of the insulator 212, the problem of handling very thin semiconductor structures can be avoided And better control of aspect ratio etching may be possible.

本發明亦包含形成具有在半導體結構3600之一第一側上之作用表面402及在半導體結構3600之一第二相對側上之一背表面404且包括在一基板406上及/或其上方之至少一個裝置結構408之一半導體結構3600(如圖36中所示)。基板406可包括類似於基板206(圖11)之彼結構之一結構,亦即包括半導體410、一絕緣體412及一或多個額外層414(諸如一額外半導體材料層)。在某些實施例中,基板406亦可包括一或多個額外絕緣體層415及一或多個額外半導體層416。層410、414及416可包括一或多種半導體材料,諸如矽(Si)、鍺(Ge)、一III-V半導體材料等。此外,基板406可包括一半導體材料單晶或一半導體材料磊晶層。絕緣體層412及415可包括一或多個電介質材料層,諸如氧化物(舉例而言,二氧化矽(SiO2 )或氧化鋁(Al2 O3 ))、一種氮化物(舉例而言,氮化矽(Si3 N4 )或氮化硼(BN))等。The invention also includes forming an active surface 402 on a first side of the semiconductor structure 3600 and a back surface 404 on a second opposite side of the semiconductor structure 3600 and including on and/or over a substrate 406 One of the at least one device structure 408 is a semiconductor structure 3600 (as shown in FIG. 36). Substrate 406 can include a structure similar to that of substrate 206 (FIG. 11), that is, including semiconductor 410, an insulator 412, and one or more additional layers 414 (such as an additional layer of semiconductor material). In some embodiments, substrate 406 can also include one or more additional insulator layers 415 and one or more additional semiconductor layers 416. Layers 410, 414, and 416 can include one or more semiconductor materials such as germanium (Si), germanium (Ge), a III-V semiconductor material, and the like. Additionally, substrate 406 can comprise a semiconductor material single crystal or a semiconductor material epitaxial layer. Insulator layers 412 and 415 may include one or more layers of dielectric material such as an oxide (for example, cerium oxide (SiO 2 ) or aluminum oxide (Al 2 O 3 )), a nitride (for example, nitrogen) Plutonium (Si 3 N 4 ) or boron nitride (BN)).

如先前參考圖5所闡述,可藉由如上文所闡述之蝕刻或藉由此項技術中已知之任何其他方法穿過半導體結構3600(自作用表面402穿過基板406之半導體層410、絕緣層412及一或多個額外層414)形成至少一個穿晶圓互連件416。穿晶圓互連件416可連接至裝置結構408。藉由添加半導體及絕緣體層,可避免處置極薄半導體結構之問題且對縱橫比蝕刻之較佳控制可係可能的。舉例而言,可較佳地藉由選擇蝕刻製程及化學製程在一或多個絕緣體層上方蝕刻該一或多個半導體層。換言之,可利用一或多個絕緣 體層作為蝕刻停止件以幫助形成穿晶圓互連件416。As previously explained with reference to FIG. 5, the semiconductor structure 3600 (the semiconductor layer 410, the insulating layer that passes through the substrate 406 from the active surface 402) may be passed through the semiconductor structure 3600 by etching as described above or by any other method known in the art. 412 and one or more additional layers 414) form at least one through wafer interconnect 416. The through wafer interconnect 416 can be coupled to the device structure 408. By adding a semiconductor and insulator layer, the problem of handling very thin semiconductor structures can be avoided and better control of aspect ratio etching can be possible. For example, the one or more semiconductor layers may preferably be etched over one or more of the insulator layers by a selective etching process and a chemical process. In other words, one or more insulations can be utilized The bulk layer acts as an etch stop to help form the through wafer interconnect 416.

可穿過多個半導體層410及414且穿過絕緣體層412形成穿晶圓互連件416,如圖36中所示。在另一實施例中,可穿過一單個半導體層410形成穿晶圓互連件416,從而在一絕緣體412處停止,如圖37中之半導體結構3700中所示。可將半導體結構3700之作用表面402結合至一載體基板422,如圖38中所圖解說明。可使用一化學機械拋光製程或此項技術中已知之任何其他方法自半導體結構3700移除材料而將其薄化。在某些實施例中,可移除一完整半導體層416及一完整絕緣體415,如圖38中之半導體結構3800所示。將半導體結構400薄化可使穿晶圓互連件416保持曝露,如圖39中之半導體結構3900所示。在此等實施例中,其他半導體結構(未展示)可電連接至經曝露穿晶圓互連件420。The through wafer interconnect 416 can be formed through the plurality of semiconductor layers 410 and 414 and through the insulator layer 412, as shown in FIG. In another embodiment, the through wafer interconnect 416 can be formed through a single semiconductor layer 410 to stop at an insulator 412, as shown in the semiconductor structure 3700 of FIG. The active surface 402 of the semiconductor structure 3700 can be bonded to a carrier substrate 422, as illustrated in FIG. The material can be thinned from the semiconductor structure 3700 using a chemical mechanical polishing process or any other method known in the art. In some embodiments, a complete semiconductor layer 416 and a complete insulator 415 can be removed, as shown in semiconductor structure 3800 in FIG. Thinning the semiconductor structure 400 maintains the through-wafer interconnect 416 exposed, as shown by the semiconductor structure 3900 in FIG. In such embodiments, other semiconductor structures (not shown) may be electrically connected to the exposed through wafer interconnect 420.

在本文中上文所闡述之方法中,可在約400℃或小於400℃或者甚至約350℃或小於350℃之一溫度或若干溫度下實施作為各種製造製程之部分執行之其中之每一者以避免致使對正處理之半導體結構中之先前製作之裝置結構之熱損壞。換言之,在本文中上文所闡述之方法中,可在不使半導體結構曝露至高於約400℃之溫度或甚至高於約350℃之溫度之情況下實施作為各種製造製程之部分執行之其中之每一者以避免致使對正處理之半導體結構中之先前製作之裝置結構之熱損壞。In the methods set forth herein above, each of the various manufacturing processes may be performed at a temperature of about 400 ° C or less, or even about 350 ° C or less than 350 ° C or at several temperatures. To avoid thermal damage to previously fabricated device structures in the semiconductor structure being processed. In other words, in the methods set forth herein above, it may be carried out as part of various manufacturing processes without exposing the semiconductor structure to temperatures above about 400 ° C or even above about 350 ° C. Each avoids causing thermal damage to previously fabricated device structures in the semiconductor structure being processed.

100‧‧‧第一半導體結構100‧‧‧First semiconductor structure

102‧‧‧作用表面102‧‧‧Action surface

102'‧‧‧作用表面102'‧‧‧ action surface

104‧‧‧背表面104‧‧‧Back surface

105‧‧‧表面105‧‧‧ Surface

106‧‧‧基板106‧‧‧Substrate

106'‧‧‧基板106'‧‧‧Substrate

108‧‧‧裝置結構108‧‧‧Device structure

108'‧‧‧裝置結構108'‧‧‧ device structure

110‧‧‧結合層110‧‧‧ bonding layer

111‧‧‧半導體材料層111‧‧‧Semiconductor material layer

112‧‧‧第二半導體結構/半導體結構/第二半導體112‧‧‧Second semiconductor structure/semiconductor structure/second semiconductor

112'‧‧‧第二半導體結構/第四半導體結構112'‧‧‧Second semiconductor structure/fourth semiconductor structure

113‧‧‧部分113‧‧‧ Section

114‧‧‧結合表面114‧‧‧Bound surface

115‧‧‧選用犧牲基板/犧牲基板115‧‧‧Selected sacrificial substrate/sacrificial substrate

116‧‧‧穿晶圓互連件116‧‧‧through wafer interconnects

116'‧‧‧穿晶圓互連件116'‧‧‧through wafer interconnects

117‧‧‧離子植入平面117‧‧‧Ion implantation plane

118‧‧‧結合層118‧‧‧bonding layer

119‧‧‧結合界面119‧‧‧ combination interface

120‧‧‧第三半導體結構/第三半導體120‧‧‧ Third semiconductor structure / third semiconductor

122‧‧‧基板122‧‧‧Substrate

123‧‧‧傳導凸塊123‧‧‧ Conductive bumps

124‧‧‧熱管理結構124‧‧‧ Thermal management structure

200‧‧‧半導體結構200‧‧‧Semiconductor structure

202‧‧‧作用表面202‧‧‧Action surface

204‧‧‧背表面204‧‧‧Back surface

206‧‧‧基板206‧‧‧Substrate

208‧‧‧裝置結構208‧‧‧ device structure

208'‧‧‧電晶體/裝置結構208'‧‧‧Optoelectronic / device structure

210‧‧‧半導體210‧‧‧Semiconductor

212‧‧‧絕緣體/絕緣體層212‧‧‧Insulator/Insulator Layer

214‧‧‧額外層214‧‧‧Additional layer

216‧‧‧第一穿晶圓互連件/穿晶圓互連件216‧‧‧First through wafer interconnect/through wafer interconnect

217‧‧‧額外層217‧‧‧ additional layers

218‧‧‧結合表面218‧‧‧ bonding surface

220‧‧‧載體基板220‧‧‧ Carrier substrate

222‧‧‧第二穿晶圓互連件/穿晶圓互連件222‧‧‧Second-through wafer interconnect/through-wafer interconnects

224‧‧‧蝕刻停止件224‧‧‧ etching stop

226‧‧‧淺溝槽隔離結構226‧‧‧Shallow trench isolation structure

230‧‧‧源極區域230‧‧‧ source area

231‧‧‧閘極電極231‧‧‧ gate electrode

232‧‧‧汲極區域232‧‧‧Bungee area

234‧‧‧熱管理結構234‧‧‧ Thermal management structure

236‧‧‧傳導互連件層/傳導金屬互連件層236‧‧‧Transitive interconnect layer/conductive metal interconnect layer

300‧‧‧半導體結構300‧‧‧Semiconductor structure

304‧‧‧背表面304‧‧‧Back surface

306‧‧‧基板306‧‧‧Substrate

308‧‧‧裝置結構308‧‧‧Device structure

310‧‧‧半導體310‧‧‧Semiconductor

312‧‧‧絕緣體312‧‧‧Insulator

316'‧‧‧穿晶圓互連件316'‧‧‧through wafer interconnects

316‧‧‧穿晶圓互連件316‧‧‧through wafer interconnects

320‧‧‧基板/電路板320‧‧‧Substrate/Board

324‧‧‧熱管理結構324‧‧‧ Thermal management structure

336‧‧‧傳導互連件層336‧‧‧Transitive interconnect layer

344‧‧‧傳導凸塊344‧‧‧ Conductive bumps

346‧‧‧額外半導體結構346‧‧‧Additional semiconductor structure

348‧‧‧金屬結合點348‧‧‧Metal joints

400‧‧‧中間結構;半導體結構400‧‧‧Intermediate structure; semiconductor structure

402‧‧‧作用表面402‧‧‧Action surface

404‧‧‧背表面404‧‧‧Back surface

406‧‧‧基板406‧‧‧Substrate

408‧‧‧裝置結構408‧‧‧ device structure

410‧‧‧半導體層/半導體/層410‧‧‧Semiconductor layer/semiconductor/layer

412‧‧‧絕緣體層/絕緣體/絕緣層412‧‧‧Insulator/Insulator/Insulation

414‧‧‧額外層/額外半導體材料層/層/半導體層414‧‧‧Additional layer/extra semiconductor material layer/layer/semiconductor layer

415‧‧‧額外絕緣體層/絕緣體層/絕緣體415‧‧‧Additional insulator/insulator/insulator

416‧‧‧額外半導體層/穿晶圓互連件/半導體層/層416‧‧‧Additional semiconductor layer/through wafer interconnect/semiconductor layer/layer

422‧‧‧載體基板422‧‧‧ Carrier substrate

500‧‧‧半導體結構500‧‧‧Semiconductor structure

600‧‧‧半導體結構600‧‧‧Semiconductor structure

800‧‧‧半導體結構800‧‧‧Semiconductor structure

900‧‧‧半導體結構900‧‧‧Semiconductor structure

1000‧‧‧半導體結構1000‧‧‧Semiconductor structure

1100‧‧‧半導體結構1100‧‧‧Semiconductor structure

1200‧‧‧半導體結構1200‧‧‧ semiconductor structure

1300‧‧‧半導體結構1300‧‧‧Semiconductor structure

1400‧‧‧半導體結構1400‧‧‧Semiconductor structure

1500‧‧‧半導體結構1500‧‧‧Semiconductor structure

1600‧‧‧半導體結構1600‧‧‧Semiconductor structure

1700‧‧‧半導體結構1700‧‧‧Semiconductor structure

1800‧‧‧半導體結構1800‧‧‧Semiconductor structure

1900‧‧‧半導體結構1900‧‧‧ semiconductor structure

2400‧‧‧半導體結構2400‧‧‧Semiconductor structure

2800‧‧‧半導體結構2800‧‧‧Semiconductor structure

2900‧‧‧半導體結構2900‧‧‧Semiconductor structure

3000‧‧‧半導體結構3000‧‧‧Semiconductor structure

3100‧‧‧半導體結構3100‧‧‧Semiconductor structure

3200‧‧‧半導體結構3200‧‧‧Semiconductor structure

3300‧‧‧半導體結構3300‧‧‧Semiconductor structure

3400‧‧‧半導體結構3400‧‧‧Semiconductor structure

3600‧‧‧半導體結構3600‧‧‧Semiconductor structure

3700‧‧‧半導體結構3700‧‧‧Semiconductor structure

3800‧‧‧半導體結構3800‧‧‧Semiconductor structure

3900‧‧‧半導體結構3900‧‧‧Semiconductor structure

圖1至圖10係半導體結構之簡化示意性剖視圖且圖解說明用於形成結合的半導體結構之本發明之實例性實施例及結合的半導體結構之本發明之實例性實施例;圖11至圖33係半導體結構之簡化示意性剖視圖且圖解說明用於形成包含有一載體基板之結合的半導體結構之本發明之額外實例性實施例及結合的半導體結構之本發明之額外實例性實施例;圖34及圖35係半導體結構之簡化示意性剖視圖且圖解說明用於組合先前各圖之方法形成結合的半導體結構之本發明之實例性實施例;及圖36至圖39係半導體結構之簡化示意性剖視圖且圖解說明用於形成結合的半導體結構之本發明之其他實例性實施例。1 through 10 are simplified schematic cross-sectional views of a semiconductor structure and illustrate an exemplary embodiment of the present invention and a combined semiconductor structure for forming a bonded semiconductor structure; FIGS. 11 through 33 A simplified schematic cross-sectional view of a semiconductor structure and illustrating additional exemplary embodiments of the present invention for forming additional exemplary embodiments of the present invention and a bonded semiconductor structure including a bonded semiconductor substrate; FIG. 34 and 35 is a simplified schematic cross-sectional view of a semiconductor structure and illustrates an exemplary embodiment of the present invention for combining the methods of the previous figures to form a bonded semiconductor structure; and FIGS. 36-39 are simplified schematic cross-sectional views of the semiconductor structure and Other example embodiments of the invention for forming a bonded semiconductor structure are illustrated.

104‧‧‧背表面104‧‧‧Back surface

106‧‧‧基板106‧‧‧Substrate

108‧‧‧裝置結構108‧‧‧Device structure

110‧‧‧結合層110‧‧‧ bonding layer

112‧‧‧第二半導體結構/第二半導體/半導體結構112‧‧‧Second semiconductor structure/second semiconductor/semiconductor structure

112'‧‧‧第二半導體結構/第四半導體結構112'‧‧‧Second semiconductor structure/fourth semiconductor structure

114‧‧‧結合表面114‧‧‧Bound surface

116‧‧‧穿晶圓互連件116‧‧‧through wafer interconnects

119‧‧‧結合界面119‧‧‧ combination interface

120‧‧‧第三半導體結構/第三半導體120‧‧‧ Third semiconductor structure / third semiconductor

124‧‧‧熱管理結構124‧‧‧ Thermal management structure

400‧‧‧中間結構/半導體結構400‧‧‧Intermediate structure/semiconductor structure

500‧‧‧半導體結構500‧‧‧Semiconductor structure

1000‧‧‧半導體結構1000‧‧‧Semiconductor structure

Claims (17)

一種形成一結合的半導體結構之方法,其包括:提供一第一結合的半導體結構,其包含:提供包括至少一個裝置結構之一第一經處理半導體結構;使用一直接結合製程在低於400℃之一溫度或若干溫度下,於該第一經處理半導體結構之一作用表面上方結合一第一薄材料層,該第一薄材料層具有1微米或小於1微米之一平均厚度;及穿過該第一薄材料層且進入至該第一經處理半導體結構中至該至少一個裝置結構形成至少一第一穿晶圓互連件;提供一第二結合的半導體結構,其包含:提供包括至少一個裝置結構之一第二經處理半導體結構;使用一直接結合製程在低於400℃之一溫度或若干溫度下,於該第二經處理半導體結構之一作用表面上方結合一第二薄材料層,該第二薄材料層具有1微米或小於1微米之一平均厚度;及穿過該第二薄材料層且進入至該第二經處理半導體結構中形成至少一第二穿晶圓互連件;在提供該第一結合的半導體結構及該第二結合的半導體結構之後,使用一直接金屬至金屬結合製程以將該至少一第二穿晶圓互連件結合至該至少一第一穿晶圓互連 件,且將該第一結合的半導體結構附接至該第二結合的半導體結構;其中該第一薄材料層及該第二薄材料層定義介於該第一結合的半導體結構與該第二結合的半導體結構之間的一插入件。 A method of forming a bonded semiconductor structure, comprising: providing a first bonded semiconductor structure comprising: providing a first processed semiconductor structure comprising at least one device structure; using a direct bonding process at less than 400 ° C a first thin material layer having an average thickness of one micron or less than one micron; and passing through a surface of one of the first processed semiconductor structures at a temperature or a plurality of temperatures; Forming the first thin material layer into the first processed semiconductor structure to the at least one device structure to form at least one first through-wafer interconnect; providing a second bonded semiconductor structure comprising: providing at least a second processed semiconductor structure of a device structure; bonding a second thin material layer over one of the active surfaces of the second processed semiconductor structure using a direct bonding process at a temperature of less than 400 ° C or a plurality of temperatures The second thin material layer has an average thickness of 1 micron or less; and passes through the second thin material layer and enters the second meridian Forming at least one second through-wafer interconnect in the semiconductor structure; after providing the first bonded semiconductor structure and the second bonded semiconductor structure, using a direct metal-to-metal bonding process to the at least one second a through-wafer interconnect bonded to the at least one first through-wafer interconnect Attaching the first bonded semiconductor structure to the second bonded semiconductor structure; wherein the first thin material layer and the second thin material layer define the first bonded semiconductor structure and the second An insert between the bonded semiconductor structures. 如請求項1之方法,其中於該第一經處理半導體結構之該作用表面上方結合該第一薄材料層包括:將一相對較厚半導體結構結合至該第一經處理半導體結構;及將該相對較厚半導體結構薄化以形成該第一薄材料層,該第一薄材料層包括保持結合至該第一經處理半導體結構的該相對較厚半導體結構之一相對較薄部分。 The method of claim 1, wherein bonding the first thin material layer over the active surface of the first processed semiconductor structure comprises: bonding a relatively thick semiconductor structure to the first processed semiconductor structure; A relatively thick semiconductor structure is thinned to form the first thin material layer, the first thin material layer including a relatively thin portion of the relatively thick semiconductor structure that remains bonded to the first processed semiconductor structure. 如請求項2之方法,其中將該相對較厚半導體結構薄化以形成該第一薄材料層包括:沿一離子植入平面將離子植入至該相對較厚半導體結構中;及使該相對較厚半導體結構沿該離子植入平面斷裂。 The method of claim 2, wherein thinning the relatively thick semiconductor structure to form the first thin material layer comprises: implanting ions into the relatively thick semiconductor structure along an ion implantation plane; and causing the relative The thicker semiconductor structure breaks along the ion implantation plane. 如請求項3之方法,其中將離子植入至該相對較厚半導體結構包括在將該相對較厚半導體結構結合至該第一經處理半導體結構之前,將離子植入至該相對較厚半導體結構中。 The method of claim 3, wherein implanting ions into the relatively thick semiconductor structure comprises implanting ions into the relatively thick semiconductor structure prior to bonding the relatively thick semiconductor structure to the first processed semiconductor structure in. 如請求項3之方法,其中使該相對較厚半導體結構沿該離子植入平面斷裂包括在將該相對較厚半導體結構結合至該第一經處理半導體結構之後,使該相對較厚半導 體結構沿該離子植入平面斷裂。 The method of claim 3, wherein the breaking the relatively thick semiconductor structure along the ion implantation plane comprises after the relatively thick semiconductor structure is bonded to the first processed semiconductor structure, the relatively thicker semiconducting The bulk structure breaks along the ion implantation plane. 如請求項5之方法,其中使該相對較厚半導體結構沿該離子植入平面斷裂包括將該相對較厚半導體結構加熱至低於400℃之一溫度或若干溫度下,以致使該相對較厚半導體結構沿該離子植入平面斷裂。 The method of claim 5, wherein the breaking the relatively thick semiconductor structure along the ion implantation plane comprises heating the relatively thick semiconductor structure to a temperature of less than 400 ° C or a plurality of temperatures to cause the relatively thicker The semiconductor structure breaks along the ion implantation plane. 如請求項1之方法,其進一步包括將該第一薄材料層選擇為至少實質上由矽構成。 The method of claim 1, further comprising selecting the first thin material layer to be at least substantially comprised of tantalum. 如請求項7之方法,其進一步包括將該第一薄材料層選擇為由單晶矽組成。 The method of claim 7, further comprising selecting the first thin material layer to consist of a single crystal germanium. 如請求項1之方法,其進一步包括在低於400℃之一溫度或若干溫度下穿過該第一薄材料層且進入至該第一經處理半導體結構中至該至少一個裝置結構形成該至少一個穿晶圓互連件。 The method of claim 1, further comprising passing the first thin material layer and entering the first processed semiconductor structure into the first processed semiconductor structure at a temperature below 1000 ° C or at a temperature to form the at least one device structure A through-wafer interconnect. 如請求項1之方法,其進一步包括在該第一薄材料層中形成至少一個熱管理結構。 The method of claim 1, further comprising forming at least one thermal management structure in the first thin material layer. 如請求項10之方法,其中形成至少一個熱管理結構包括與該第一經處理半導體結構中之該至少一個裝置結構電隔離地形成至少一個虛設金屬墊。 The method of claim 10, wherein forming the at least one thermal management structure comprises forming at least one dummy metal pad electrically isolated from the at least one of the first processed semiconductor structures. 如請求項10之方法,其進一步包括藉由改變該至少一個熱管理結構之一大小、一數目、一組合物、一位置及一形狀中之至少一者而修整該插入件之一熱膨脹係數。 The method of claim 10, further comprising trimming a coefficient of thermal expansion of the one of the inserts by changing at least one of a size, a number, a composition, a position, and a shape of the at least one thermal management structure. 如請求項12之方法,其進一步包括修整該插入件之該熱膨脹係數使得該插入件之該熱膨脹係數與該第一經處理半導體結構之一熱膨脹係數之一比率係介於0.67與1.5之 間。 The method of claim 12, further comprising trimming the coefficient of thermal expansion of the insert such that a ratio of the coefficient of thermal expansion of the insert to one of the coefficients of thermal expansion of the first processed semiconductor structure is between 0.67 and 1.5 between. 如請求項13之方法,其進一步包括修整該插入件之該熱膨脹係數使得該比率係介於0.9與1.1之間。 The method of claim 13, further comprising trimming the coefficient of thermal expansion of the insert such that the ratio is between 0.9 and 1.1. 如請求項14之方法,其進一步包括修整該插入件之該熱膨脹係數使其至少實質上等於該第一經處理半導體結構之一熱膨脹係數。 The method of claim 14, further comprising trimming the thermal expansion coefficient of the insert to at least substantially equal to a coefficient of thermal expansion of the first processed semiconductor structure. 如請求項1之方法,其進一步包括在低於400℃之一溫度或若干溫度下將該第一結合的半導體結構結合至該第二結合的半導體結構。 The method of claim 1, further comprising bonding the first bonded semiconductor structure to the second bonded semiconductor structure at a temperature of less than 400 ° C or a plurality of temperatures. 如請求項1之方法,其進一步包括:在該第一經處理半導體結構中形成至少一第三穿晶圓互連件,該至少一第三穿晶圓互連件連接至該第一經處理半導體結構之該至少一個裝置結構;形成在相對於該第二經處理半導體結構之一側上之一傳導互連件結構,該傳導互連件結構包括在該第一經處理半導體結構上之至少一傳導材料,使得該傳導互連件結構之該至少一傳導材料係與該第一經處理半導體結構之該至少一第三穿晶圓互連件接觸。 The method of claim 1, further comprising: forming at least one third through-wafer interconnect in the first processed semiconductor structure, the at least one third through-wafer interconnect being connected to the first processed The at least one device structure of the semiconductor structure; the conductive interconnect structure formed on one side of the second processed semiconductor structure, the conductive interconnect structure including at least the first processed semiconductor structure A conductive material such that the at least one conductive material of the conductive interconnect structure is in contact with the at least one third through-wafer interconnect of the first processed semiconductor structure.
TW101107761A 2011-03-31 2012-03-07 Methods of forming bonded semiconductor structures, and semiconductor structures formed by such methods TWI509713B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/077,292 US20120248621A1 (en) 2011-03-31 2011-03-31 Methods of forming bonded semiconductor structures, and semiconductor structures formed by such methods
FR1153083A FR2973938A1 (en) 2011-04-08 2011-04-08 Forming bonded semiconductor structure e.g. chips, comprises bonding second semiconductor structure to first semiconductor structure, and forming through-interconnect through second structure and into first structure to device structure

Publications (2)

Publication Number Publication Date
TW201243965A TW201243965A (en) 2012-11-01
TWI509713B true TWI509713B (en) 2015-11-21

Family

ID=46993281

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101107761A TWI509713B (en) 2011-03-31 2012-03-07 Methods of forming bonded semiconductor structures, and semiconductor structures formed by such methods

Country Status (3)

Country Link
KR (1) KR101426362B1 (en)
CN (1) CN102738025B (en)
TW (1) TWI509713B (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103066016A (en) * 2013-01-14 2013-04-24 陆伟 Wafer autocollimation silicon through hole connecting method
US9490201B2 (en) * 2013-03-13 2016-11-08 Intel Corporation Methods of forming under device interconnect structures
WO2016007088A1 (en) * 2014-07-08 2016-01-14 Massachusetts Institute Of Technology Method of manufacturing a substrate
CN104347364A (en) * 2014-09-23 2015-02-11 武汉新芯集成电路制造有限公司 Preparation method of three-dimensional stacked device
US10468381B2 (en) * 2014-09-29 2019-11-05 Apple Inc. Wafer level integration of passive devices
US9799625B2 (en) 2015-06-12 2017-10-24 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor structure and manufacturing method thereof
TWI752187B (en) * 2017-03-14 2022-01-11 美商庫利克和索夫工業公司 Systems and methods for bonding semiconductor elements
CN109285825B (en) * 2017-07-21 2021-02-05 联华电子股份有限公司 Chip stacking structure and manufacturing method of tube core stacking structure
CN109449137A (en) * 2018-11-15 2019-03-08 德淮半导体有限公司 Semiconductor device and its manufacturing method
CN111128695A (en) * 2019-12-13 2020-05-08 中国科学院微电子研究所 Preparation method of on-chip single crystal semiconductor material
CN111564368A (en) * 2020-05-20 2020-08-21 长江存储科技有限责任公司 Semiconductor device and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030157748A1 (en) * 2002-02-20 2003-08-21 Kim Sarah E. Process of vertically stacking multiple wafers supporting different active integrated circuit (IC) devices
US6809044B1 (en) * 1999-06-30 2004-10-26 Commissariat A L'energie Atomique Method for making a thin film using pressurization
US20050110159A1 (en) * 2003-11-21 2005-05-26 Chang-Woo Oh Stacked integrated circuit device including multiple substrates and method of manufacturing the same
TW201041092A (en) * 2009-02-25 2010-11-16 Micron Technology Inc Methods of forming integrated circuits and resulting structures

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4137328B2 (en) * 1999-12-28 2008-08-20 光正 小柳 Manufacturing method of three-dimensional semiconductor integrated circuit device
KR100537552B1 (en) * 2000-07-31 2005-12-16 매그나칩 반도체 유한회사 Semiconductor device and method of manufacturing the same
US6642081B1 (en) * 2002-04-11 2003-11-04 Robert Patti Interlocking conductor method for bonding wafers to produce stacked integrated circuits
US7820483B2 (en) * 2007-02-02 2010-10-26 International Business Machines Corporation Injection molded soldering process and arrangement for three-dimensional structures
KR101361828B1 (en) * 2007-09-03 2014-02-12 삼성전자주식회사 Semiconductor device, Semiconductor package, stacked module, card, system and method of the semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6809044B1 (en) * 1999-06-30 2004-10-26 Commissariat A L'energie Atomique Method for making a thin film using pressurization
US20030157748A1 (en) * 2002-02-20 2003-08-21 Kim Sarah E. Process of vertically stacking multiple wafers supporting different active integrated circuit (IC) devices
US20050110159A1 (en) * 2003-11-21 2005-05-26 Chang-Woo Oh Stacked integrated circuit device including multiple substrates and method of manufacturing the same
TW201041092A (en) * 2009-02-25 2010-11-16 Micron Technology Inc Methods of forming integrated circuits and resulting structures

Also Published As

Publication number Publication date
KR20120112091A (en) 2012-10-11
KR101426362B1 (en) 2014-08-05
CN102738025A (en) 2012-10-17
CN102738025B (en) 2016-09-14
TW201243965A (en) 2012-11-01

Similar Documents

Publication Publication Date Title
US20200168584A1 (en) Methods of forming bonded semiconductor structures, and semiconductor structures formed by such methods
TWI509713B (en) Methods of forming bonded semiconductor structures, and semiconductor structures formed by such methods
US10607937B2 (en) Increased contact alignment tolerance for direct bonding
US11217478B2 (en) Integrated circuit (IC) structure for high performance and functional density
US9553014B2 (en) Bonded processed semiconductor structures and carriers
US9391011B2 (en) Semiconductor structures including fluidic microchannels for cooling and related methods
US9922956B2 (en) Microelectromechanical system (MEMS) bond release structure and method of wafer transfer for three-dimensional integrated circuit (3D IC) integration
TWI524492B (en) 3-d integration using multi stage vias
JP5505918B2 (en) Method for forming a multi-chip assembly of semiconductor chips
CN105489512B (en) Interim semiconductor structure bonding method and related bonding semiconductor structure
TW201023331A (en) Semiconductor device and method for forming the same
US20120061794A1 (en) Methods of forming through wafer interconnects in semiconductor structures using sacrificial material, and semiconductor structures formed by such methods
FR2973938A1 (en) Forming bonded semiconductor structure e.g. chips, comprises bonding second semiconductor structure to first semiconductor structure, and forming through-interconnect through second structure and into first structure to device structure
JP2013537363A (en) Method for forming a through-wafer interconnect in a semiconductor structure using a sacrificial material, and a semiconductor structure formed by such a method
KR101401584B1 (en) Improved bonding surfaces for direct bonding of semiconductor structures
TWI832663B (en) Semiconductor packages and methods of forming the same
TW202410298A (en) Through-substrate vias with metal plane layers and methods of manufacturing the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees