TWI463677B - Integrated electrochemical and solar cell - Google Patents

Integrated electrochemical and solar cell Download PDF

Info

Publication number
TWI463677B
TWI463677B TW097134037A TW97134037A TWI463677B TW I463677 B TWI463677 B TW I463677B TW 097134037 A TW097134037 A TW 097134037A TW 97134037 A TW97134037 A TW 97134037A TW I463677 B TWI463677 B TW I463677B
Authority
TW
Taiwan
Prior art keywords
layer
self
supporting
cathode
ceramic
Prior art date
Application number
TW097134037A
Other languages
Chinese (zh)
Other versions
TW200913293A (en
Inventor
Glyn J Reynolds
Original Assignee
Oerlikon Advanced Technologies Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oerlikon Advanced Technologies Ag filed Critical Oerlikon Advanced Technologies Ag
Publication of TW200913293A publication Critical patent/TW200913293A/en
Application granted granted Critical
Publication of TWI463677B publication Critical patent/TWI463677B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Secondary Cells (AREA)
  • Photovoltaic Devices (AREA)

Description

整合式電化學太陽能電池Integrated electrochemical solar cell

本發明通例有關於太陽能電池與薄膜電池,而特別有關於整合式電化學太陽能電池之改良設計以及產生該電池之方法。The present invention relates generally to solar cells and thin film batteries, and more particularly to improved designs of integrated electrochemical solar cells and methods of producing the same.

在過去數十年,薄膜電池領域,特別是使用鋰之電池,其具有顯見的極大發展。此外,傳統能源產品價格近來的增加已經將焦點擺在可替代能源上。特別的是,已經明顯地改善了光伏特太陽能電池,並且已降低了其成本。同時,石化燃料之價格已經提升至反映2010年太陽能電力在成本上將媲美網路電力之點。今日基於沈積(在其他文獻中或稱電鍍)在大塊玻璃基座上的非晶與微晶矽薄膜之第二代太陽能電池在近幾年內最有希望提供實現成本平價於網路電力之電力。In the past few decades, the field of thin film batteries, especially lithium batteries, has seen significant development. In addition, the recent increase in the price of traditional energy products has focused on alternative energy sources. In particular, photovoltaic solar cells have been significantly improved and their cost has been reduced. At the same time, the price of petrochemical fuel has risen to reflect the point that solar power will be comparable to network power in 2010. Today's second-generation solar cells based on deposition (in other literature or electroplating) on amorphous and microcrystalline thin films on bulk glass pedestals are the most promising in recent years to provide cost savings at network power. electric power.

光伏特電池裝置之限制為其僅能夠在受到照明時提供電力。此需要必須操作在其他時刻以便具有可替代電源之裝置。在攜行式電子裝置、汽車等等狀況下,並不能方便地接通主電源插座,備用電力最簡單的型式為電化學電池或者電池。電化學電池提供能量容量、電力密度與節能之極佳組合。某些電池的設計能夠重複充電數次-所謂的二次電池。目前就能量密度、電力密度以及循環週期壽命而言,薄膜鋰電池提供最佳的效能。與第二代太陽能電池相似的 是,其同樣也是使用薄膜沈積技術來製作之。Photovoltaic cell devices are limited in that they are only capable of providing electrical power when illuminated. This requires a device that must be operated at other times in order to have an alternative power source. In the case of portable electronic devices, automobiles, etc., it is not convenient to turn on the main power outlet. The simplest type of standby power is an electrochemical battery or a battery. Electrochemical cells offer an excellent combination of energy capacity, power density and energy savings. Some batteries are designed to be recharged several times - the so-called secondary battery. Thin film lithium batteries currently provide optimum performance in terms of energy density, power density, and cycle life. Similar to second generation solar cells Yes, it is also made using thin film deposition techniques.

諸多個體已經從事習知技術之嘗試,以提供光伏特電池/薄膜電池組合的設計與生產爭議之解決方案以及改善。例如,在1984年,美國專利第4,481,265號說明一種了”光伏特儲存電池裝置”,此專利核發給Ezawa等人,。此一專利揭露一種在某一側具有光伏特電池而在另一側則具有電池之絕緣基座,但發明人同樣也說明如何能夠將兩裝置合併於相同的表面之上。裝置的說明書說明一種使用液態電解質之電池,然其申請專利範圍包含一種含有無機薄膜電解質之電池。在1984年,最先進的固態電池提供液態電解質電池極低的效能。其留給讀者判斷如何製作所有的固態裝置以及使用何種材質。所說明的整個製造方法為複雜且粗糙的。Many individuals have been experimenting with conventional techniques to provide solutions and improvements in the design and production of photovoltaic cell/thin cell combinations. For example, U.S. Patent No. 4,481,265, the entire disclosure of which is incorporated herein by reference. This patent discloses an insulating base having a photovoltaic cell on one side and a battery on the other side, but the inventors have also illustrated how the two devices can be combined on the same surface. The specification of the device describes a battery using a liquid electrolyte, but the patent application scope includes a battery containing an inorganic thin film electrolyte. In 1984, state-of-the-art solid-state batteries provided extremely low performance in liquid electrolyte batteries. It leaves the reader with a judgment on how to make all the solid state devices and what materials to use. The entire manufacturing process described is complex and rough.

在1988年,授予Little的美國專利第4,740,431號說明一種製作整合式太陽能電池與電池更為確切與實際的方法。此發明人揭露一種處理程序,藉此使用半導體工業所開發之技術,以沈積與圖案化薄膜而將太陽能電池與電池全然沈積於基座之上。同時,以硫化鋰為基底之玻璃似乎是用於所有固態電池最有前瞻性的固態電解質。U.S. Patent No. 4,740,431 to Little, which is incorporated herein by reference, discloses a more specific and practical method for making integrated solar cells and batteries. The inventors disclose a process whereby a technique developed by the semiconductor industry is used to deposit and pattern a film to deposit solar cells and cells entirely on a susceptor. At the same time, lithium sulfide-based glass appears to be the most forward-looking solid electrolyte for all solid-state batteries.

然而,在1994年,Bates等人說明一種較好的固態電解質,以鋰磷氧氮(LiPON)為基底,並且獲准美國專利第5,338,625號。除了揭露新式薄膜固態電解質材質之外,作者尚宣告一種薄膜電池,其他們稱其為一種薄膜微電池,而且使用薄膜沈積方法將之沈積。在此一重要發現之後, 諸多發明人獲准尋求從各個方面來改善薄膜微電池之專利。However, in 1994, Bates et al. described a preferred solid electrolyte based on lithium phosphine oxide (LiPON) and approved in U.S. Patent No. 5,338,625. In addition to exposing the new thin-film solid electrolyte materials, the authors have announced a thin-film battery, which they call a thin-film microbattery, and deposit it using a thin film deposition method. After this important discovery, Many inventors have been allowed to seek patents to improve thin film microbatteries from all aspects.

Bates等人所揭露的薄膜微電池至少有兩個主要的缺點(並且與Little所說明的電池同樣),此源自電池全部皆從沈積於非電化學活性的基座上之薄膜所製作之事實。首先,由於電極非常薄,因此所揭露的薄膜電池每單位面積之容量非常低。再者,由於需要昂貴的真空沈積設備,因此相較於從大塊材質所製作的電池,製作成本非常高。The thin film microbatteries disclosed by Bates et al. have at least two major drawbacks (and the same as those described by Little), which stems from the fact that all of the cells are made from a film deposited on a non-electrochemically active susceptor. . First, since the electrode is very thin, the disclosed thin film battery has a very low capacity per unit area. Furthermore, since expensive vacuum deposition equipment is required, the manufacturing cost is very high compared to a battery fabricated from a bulk material.

在美國專利5,445,906號(1995年核發)中Hobson與Snyder提出一種解決貧乏容量問題之創新方式,藉此以捲揚式濺鍍設備將薄膜沈積於大面積有彈性的基座之上。之後將基座纏繞成為一牢固的螺線,藉此實現每單位體積之大容量。然而,捲揚式濺鍍設備的使用會進一步增加製造成本,而且牢固纏繞的螺線電池不容易與大平面的薄膜太陽能電池整合。In U.S. Patent No. 5,445,906 (issued 1995), Hobson and Snyder propose an innovative approach to solving the problem of poor capacity, whereby a film is deposited on a large area of resilient susceptor by a hoisting sputtering apparatus. The susceptor is then wound into a solid spiral, thereby achieving a large capacity per unit volume. However, the use of a winch sputtering apparatus further increases the manufacturing cost, and a firmly wound spiral battery is not easily integrated with a large-plane thin film solar cell.

最近Jenson在美國專利第US2004/0185310號中已經揭露了一種”整合式電池-電容器裝置之方法與設備”,其嘗試提供一種整合式電池裝置的解決方案。Jenson的參考文獻講述將電池沈積於導電基座層之上,此基座層為分離於電池的個別架構構件。儘管所講述的全部排列包含使用分離且不同於電池的架構構件之基座,然Jenson同樣也揭露整合所提出的電池與光伏特電池。A "method and apparatus for an integrated battery-capacitor device" has been disclosed by Jenson in the United States Patent No. US 2004/0185310, which attempts to provide a solution for an integrated battery device. Jenson's reference teaches depositing a cell over a conductive pedestal layer that is an individual structural component that is separate from the cell. Although all of the arrangements described involve the use of pedestals that are separate and different from the structural components of the battery, Jenson also discloses the integration of the proposed battery and photovoltaic cells.

因此,儘管Jenson的參考文獻涉及薄膜電池與光伏特電池兩者,但是並不包括這裡包含的發明:一具有自支撐 陰極或陽極層之薄膜電池,相較於習知技術所呈現之電池,能夠更為簡易且更節省地製造。在本發明之一實施例中,由於相較於傳統薄膜電池,電池每單位面積顯著的容量增加量,因此相較於之前所講述的結果,自支撐層明顯較厚(於50倍的層級)。此外,本發明的整合式太陽能電池之附加部分提供確切的解決方案,薄膜電池發展所浮現的設計議題,同時提供節省的空間、重量、乃至速度的提升和簡易的製造。Therefore, although Jenson's reference relates to both thin film and photovoltaic cells, it does not include the invention contained here: a self-supporting The thin film battery of the cathode or anode layer can be manufactured more easily and more economically than the battery presented by the prior art. In one embodiment of the present invention, since the battery has a significant capacity increase per unit area compared to the conventional thin film battery, the self-supporting layer is significantly thicker (at 50 times the level) than the previously described results. . In addition, the additional portion of the integrated solar cell of the present invention provides an exact solution to the emerging design issues of thin film batteries while providing space, weight, and even speed improvements and ease of manufacture.

本發明揭露一種整合式電化學太陽能電池。整合式電池含有一電化學電池以及一太陽能電池。電化學電池包含一陰極集流、一自支撐陶瓷陰極層、一陽極層、一陽極集流體、以及一具有置於於陰極層與陽極層之間的固態電解質層之固態電解質層。太陽能電池為一種習知技術之已知類型,且電連接至本發明的自支撐電化學電池。The invention discloses an integrated electrochemical solar cell. The integrated battery contains an electrochemical cell and a solar cell. The electrochemical cell comprises a cathode current collector, a self supporting ceramic cathode layer, an anode layer, an anode current collector, and a solid electrolyte layer having a solid electrolyte layer disposed between the cathode layer and the anode layer. Solar cells are a known type of conventional technology and are electrically connected to the self-supporting electrochemical cells of the present invention.

本發明同樣也揭露一種製造整合式電化學太陽能電池之方法。所揭露的方法之較佳實施例提供一種電化學電池形成之處理,其所包含的步驟為在陶瓷自支撐陰極層上製作一種非支撐陰極集流體層、在陶瓷自支撐陰極層上形成一固態電解質層、在電解質層上形成一陽極層、在陽極層上製作一陽極集流體層、以及在陽極集流體層上沈積一封裝層。本發明的實施例進一步包含一種太陽能電池之形成處理,所包含的步驟為在支撐玻璃層上沈積光伏特材質、 以及包含將該光伏特材質連接至該非支撐陰極集流體層之整合步驟。The invention also discloses a method of making an integrated electrochemical solar cell. A preferred embodiment of the disclosed method provides an electrochemical cell formation process comprising the steps of forming an unsupported cathode current collector layer on a ceramic self-supporting cathode layer and forming a solid state on a ceramic self-supporting cathode layer An electrolyte layer, an anode layer formed on the electrolyte layer, an anode current collector layer on the anode layer, and an encapsulation layer deposited on the anode current collector layer. Embodiments of the present invention further include a solar cell forming process comprising the steps of depositing a photovoltaic material on a supporting glass layer, And an integrating step comprising connecting the photovoltaic material to the unsupported cathode current collector layer.

之前已經相當廣泛地概述了本發明更合適與重要的特徵,以便能更了解以下的本發明之詳細說明,因此能夠更完全地察知本發明對技術的貢獻。此後將說明形成本發明申請專利範圍主題的本發明之其他特徵。熟知該項技術者應該察知的是,可以輕易地利用所揭露的構想與特定之實施例以作為修改或者設計實現與本發明目的相同之其他架構的基礎。熟知該項技術者同樣也應了解到如此等效建構物之意義並不違反所附申請專利範圍所提的本發明之精神與範疇。The more specific and important features of the present invention are set forth in the <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; Further features of the invention that form the subject matter of the claims of the invention will be described hereinafter. It will be appreciated by those skilled in the art that the disclosed concept and specific embodiments can be readily utilized as a basis for modification or design of other architectures that achieve the same objectives as the present invention. Those skilled in the art should also understand that the meaning of such equivalent constructions does not violate the spirit and scope of the invention as set forth in the appended claims.

典型地來說,藉由將各種材質層沈積於一基礎層或者基座之上來製造薄膜電化學電池(諸如薄膜鋰電池)。圖1闡述習知技術類型的薄膜電池1之典型設計。在習知技術中,能夠從諸如金屬薄片、玻璃或薄塑膠膜之各種不同材質來製作基座2。之後典型地將基座2置於諸如物理氣相沈積(PVD)、電漿輔助化學氣相沈積(PECVD)、或者化學氣相沈積(CVD)設備或相似沈積設備之中。首先將陰極集流體3沈積於基座2之上。此外,製作一陰極電路連接體4。在陰極集流體3沈積之後,將陰極層5沈積。就鋰薄膜電池而言,儘管能夠利用諸如LiMn2 O4 、LiFePO4 、或其他熟知該項技術者所已知之其他材質,但鈷酸鋰(LiCoO2 ) 仍為一種較佳的陰極材質。一般使用諸如濺鍍技術將陰極材質沈積於陰極集流體3之上。儘管有效,但對所能夠沈積之層最大厚度而言,濺鍍技術具有物理限制。典型的是,所濺鍍的層不超過10微米(10μm)厚。Typically, thin film electrochemical cells (such as thin film lithium cells) are fabricated by depositing layers of various materials onto a base layer or susceptor. Figure 1 illustrates a typical design of a thin film battery 1 of the prior art type. In the prior art, the susceptor 2 can be fabricated from various materials such as metal foil, glass or thin plastic film. The susceptor 2 is then typically placed in a device such as physical vapor deposition (PVD), plasma assisted chemical vapor deposition (PECVD), or chemical vapor deposition (CVD) equipment or similar deposition equipment. The cathode current collector 3 is first deposited on the susceptor 2. Further, a cathode circuit connecting body 4 is fabricated. After the cathode current collector 3 is deposited, the cathode layer 5 is deposited. In the case of lithium thin film batteries, lithium cobaltate (LiCoO 2 ) is still a preferred cathode material, although it is possible to utilize other materials such as LiMn 2 O 4 , LiFePO 4 , or other materials known to those skilled in the art. The cathode material is typically deposited on the cathode current collector 3 using, for example, sputtering techniques. Although effective, the sputtering technique has physical limitations on the maximum thickness of the layer that can be deposited. Typically, the sputtered layer does not exceed 10 microns (10 μm) thick.

一旦陰極層5沈積於基座2上,一電解質層6就會沈積於陰極層5之上。在圖1所示的習知技術中,就鋰薄膜電池而言,電解質的材質為鋰磷氧氮(LiPON)。典型的是,在鋰薄膜電池中,電解質層將位於一微米(1μm)厚之層級。接著,將陽極層7沈積於電解質層6之頂部,之後製作陽極集流體8,再製作陽極電路連接體9。為了完成習知技術的鋰薄膜電池之生產,將一封裝層10施加於電池1之上,藉以避免濕氣的引進。在圖1所示的範例中,陽極層7可以是鋰金屬或鋰合金。如圖1所示,習知技術的電化學電池之設計與製造處理程序乃是複雜的,並且涵蓋一種架構的構件以及多數之沈積步驟。因此,對於製造電化學電池之簡化設計與方法的需求是存在的。進一步還有製造整合式電化學太陽能電池的簡化設計與方法之需求存在,以便增加電化學電池每單位成本儲存容量並且平衡電化學電池目前儲存潛能與太陽能電池技術進展。Once the cathode layer 5 is deposited on the susceptor 2, an electrolyte layer 6 is deposited on the cathode layer 5. In the conventional technique shown in FIG. 1, in the case of a lithium thin film battery, the material of the electrolyte is lithium phosphorus oxynitride (LiPON). Typically, in a lithium thin film battery, the electrolyte layer will be on a one micron (1 μm) thick level. Next, the anode layer 7 is deposited on top of the electrolyte layer 6, and then the anode current collector 8 is formed, and the anode circuit connecting body 9 is fabricated. In order to complete the production of a conventional lithium thin film battery, an encapsulation layer 10 is applied over the battery 1 to avoid the introduction of moisture. In the example shown in FIG. 1, the anode layer 7 may be lithium metal or a lithium alloy. As shown in Figure 1, the design and fabrication process of an electrochemical cell of the prior art is complex and encompasses a structural component and a plurality of deposition steps. Therefore, a need exists for a simplified design and method of fabricating an electrochemical cell. Further, there is a need for a simplified design and method for manufacturing an integrated electrochemical solar cell in order to increase the storage capacity per unit cost of the electrochemical cell and to balance the current storage potential of the electrochemical cell with the advancement of solar cell technology.

圖2顯示本發明所預期的類型之自支撐電化學電池20之實施例。儘管這裡的說明參照鋰電池,然而本發明預期使用不同於鋰與鋰相關電化學電池之各種材質。相對於習知技術的電化學電池,本發明提供一種自支撐陰極層,之後則將剩餘的電化學電池架構製作於其上。因此,本發明 消弭個別基座層之需求,藉此節省空間與製造成本。2 shows an embodiment of a self-supporting electrochemical cell 20 of the type contemplated by the present invention. Although the description herein refers to a lithium battery, the present invention contemplates the use of various materials other than lithium and lithium related electrochemical cells. In contrast to prior art electrochemical cells, the present invention provides a self-supporting cathode layer upon which the remaining electrochemical cell architecture is fabricated. Therefore, the present invention Eliminate the need for individual pedestal layers, thereby saving space and manufacturing costs.

在本發明的實施例中,先以適合的陶瓷陰極材質來形成一自支撐陰極層23,並且視所需電性來選擇其添加物。在本發明的實施例中,儘管如熟知該項技術者所了解,能夠利用任何一種適合的陰極材質,而不偏離本發明之精神與目的,然仍使用LiCoO2 來充當陰極材質。適合的陰極材質之範例包含金屬氧化物、含有鋰之金屬氧化物、金屬磷酸鹽、含有鋰之金屬磷酸鹽、金屬硫化物、含有鋰之金屬硫化物、金屬硫氧化物、含有鋰之金屬硫氧化物、硒化物、金屬氧化物之混合物(例如,V2 O5 -TeO2 )等等。In an embodiment of the invention, a self-supporting cathode layer 23 is first formed from a suitable ceramic cathode material and its additive is selected depending on the desired electrical properties. In embodiments of the present invention, LiCoO 2 is used as the cathode material, although it is understood by those skilled in the art that any suitable cathode material can be utilized without departing from the spirit and purpose of the present invention. Examples of suitable cathode materials include metal oxides, metal oxides containing lithium, metal phosphates, metal phosphates containing lithium, metal sulfides, metal sulfides containing lithium, metal sulfur oxides, metal sulfur containing lithium An oxide, a selenide, a mixture of metal oxides (for example, V 2 O 5 -TeO 2 ), and the like.

在本發明之另一實施例中,諸如鋰矽酸鹽(從Li2 O-SiO2 擬元成分所汲取的)、鋰磷酸鹽(從Li2 O-P2 O5 擬二元成分所汲取的)、鋰鋯酸鹽(從Li2 O-ZrO2 擬二元成分所汲取的)與離子型導電性玻璃、乃至諸如石墨的電傳導材質之額外電解質材質能夠在處理期間中附加至陰極材質,藉以增強離子與電子導電特性以及自支撐陶瓷陰極層23整體效能。這些添加物具有允許自支撐電化學電池20更完全地利用陰極材質全部厚度以利充電-放電循環週期之效益。In another embodiment of the invention, such as lithium niobate (taken from the Li 2 O-SiO 2 pseudo-component), lithium phosphate (taken from the Li 2 O-P 2 O 5 pseudo-binary composition) Lithium zirconate (taken from the binary component of Li 2 O-ZrO 2 ) and an ionic conductive glass, or an additional electrolyte material of an electrically conductive material such as graphite, can be attached to the cathode material during processing In order to enhance the ion and electronic conductive properties and the overall performance of the self-supporting ceramic cathode layer 23. These additives have the benefit of allowing the self-supporting electrochemical cell 20 to more fully utilize the full thickness of the cathode material to facilitate the charge-discharge cycle.

在本發明之較佳實施例中,以大約0.5-1.0毫米之厚度來形成自支撐陶瓷陰極層23。在本發明的領域之內,同樣也能夠使用小於0.5毫米或者大於1.0毫米之陶瓷陰極層23厚度,而不偏離本發明之精神或者目的。In a preferred embodiment of the invention, the self supporting ceramic cathode layer 23 is formed to a thickness of between about 0.5 and 1.0 mm. Within the field of the invention, the thickness of the ceramic cathode layer 23 of less than 0.5 mm or greater than 1.0 mm can likewise be used without departing from the spirit or purpose of the invention.

在自支撐陰極層23製作之後,能夠將陰極集流體21施加於其中一個自支撐陰極層23之主表面。典型地透過 濺鍍技術來實現陰極集流體21,然而習知技術中所週知的其他沈積技術亦是適合的。製作陰極集流體21可從鎳或任何其他適合將來自電池陰極的電流轉移至外部電路之材質,諸如金、鋁等等。After the self-supporting cathode layer 23 is fabricated, the cathode current collector 21 can be applied to the main surface of one of the self-supporting cathode layers 23. Typically through Sputtering techniques are used to implement the cathode current collector 21, although other deposition techniques well known in the art are also suitable. The cathode current collector 21 can be fabricated from nickel or any other material suitable for transferring current from the battery cathode to an external circuit, such as gold, aluminum, and the like.

在陰極集流體21沈積之後,便能夠製作陰極電流連接體22。陰極電流連接體22可以是接線、電路、或者其他用來將陰極集流體21連接至外部電路之連接裝置。在自支撐陰極層23的反主表面上,沈積一電解質層24。After the deposition of the cathode current collector 21, the cathode current connection body 22 can be fabricated. The cathode current connector 22 can be a wiring, circuit, or other connection means for connecting the cathode current collector 21 to an external circuit. On the opposite major surface of the self-supporting cathode layer 23, an electrolyte layer 24 is deposited.

在較佳實施例中,能夠透過噴濺技術來沈積電解質層24;然而同樣也預期能夠使用諸如化學氣相沈積(CVD)、電漿輔助化學氣相沈積(PECVD)、原子層沈積(ALD)、脈衝雷射沈積(PLD)、電漿噴塗等等之其他沈積技術。在較佳實施例中,使用LiPON來充當電解質之材質,但熟知該項技術者所熟知的其他適合之電解質材質同樣也能夠使用,諸如LiPONB、Li3.6 Si0.6 P0.4 O4 、Li6.1 V0.61 Si0.39 O5.36 、LiBO2 、LiBP、Li2 SO4 -LiO-B2 O3 、Li2 S-SiS2 -P2 S5 、或者LiI-Li2 S-P2 S5 -P2 O5 等等。電解質層24用途在於當陰極層23與陽極層25透過外部電路連接時,允許自支撐陶瓷陰極層23及陽極層25之間的離子自由通過。In a preferred embodiment, the electrolyte layer 24 can be deposited by sputtering techniques; however, it is also contemplated to be able to use, for example, chemical vapor deposition (CVD), plasma assisted chemical vapor deposition (PECVD), atomic layer deposition (ALD). Other deposition techniques such as pulsed laser deposition (PLD), plasma spray, and the like. In a preferred embodiment, LiPON is used as the material for the electrolyte, but other suitable electrolyte materials well known to those skilled in the art can also be used, such as LiPONB, Li 3.6 Si 0.6 P 0.4 O 4 , Li 6.1 V 0.61. Si 0.39 O 5.36 , LiBO 2 , LiBP, Li 2 SO 4 -LiO-B 2 O 3 , Li 2 S-SiS 2 -P 2 S 5 , or LiI-Li 2 S-P 2 S 5 -P 2 O 5 and many more. The electrolyte layer 24 is used to allow ions between the self-supporting ceramic cathode layer 23 and the anode layer 25 to pass freely when the cathode layer 23 and the anode layer 25 are connected through an external circuit.

在電解質層24形成之後,便將陽極層25沈積於電解質層24之上。在本發明的較佳實施例中,陽極層25由鋰金屬所形成。或者,諸如鋰碳合金、鋰錫合金、鋰矽合金、鋰鍺合金、鋰鎂合金、鋰銦合金、鋰鎵合金、Lix V2 O5 、V2 O5 、Cu、SiSn0.87 O1.20 N1.72 以及SnO之其他適合材質能夠用於 陽極之建構。陽極集流體26形成於陽極層25之上,藉以透過陽極電路連接體27將陽極層25連接至外部電路。最後,在本發明的某些實施例中,將一封裝層28沈積於電化學電池20之上,藉以嚴密地密封電化學電池20,以免濕氣侵入。因此建構本發明之自支撐電化學電池20,不使用習知技術所講述的個別、支撐之基座材質。After the electrolyte layer 24 is formed, the anode layer 25 is deposited on the electrolyte layer 24. In a preferred embodiment of the invention, the anode layer 25 is formed of lithium metal. Alternatively, such as lithium carbon alloy, lithium tin alloy, lithium niobium alloy, lithium niobium alloy, lithium magnesium alloy, lithium indium alloy, lithium gallium alloy, Li x V 2 O 5 , V 2 O 5 , Cu, SiSn 0.87 O 1.20 N 1.72 and other suitable materials for SnO can be used for the construction of the anode. An anode current collector 26 is formed over the anode layer 25 to connect the anode layer 25 to an external circuit through the anode circuit connector 27. Finally, in some embodiments of the invention, an encapsulation layer 28 is deposited over the electrochemical cell 20 to tightly seal the electrochemical cell 20 from moisture ingress. Thus, the self-supporting electrochemical cell 20 of the present invention is constructed without the use of individual, supported pedestal materials as taught by the prior art.

在本發明的另一實施例中,使用一自支撐陽極來形成電化學電池,同樣不理會習知技術所講述的支撐基座之需求。圖3闡述一種電化學電池30,其使用一種自支撐陽極層33。在利用自支撐陽極層33之實施例中,較佳地由諸如鋰、鈉、銅、銀或其與其他金屬的合金之金屬來製作陽極材質。陽極集流體31以及陽極電路連接體32形成於自支撐陽極層33之一主要表面之上。在反主要表面上,製作一固態電解質層34。固態電解質層34所選擇的材質將視自支撐陽極層33所利用的材質而定;然而應該選擇如此的電解質材質,藉以確保在陽極層33與陰極層35透過外部電路連接之時離子從自支撐陽極層33至陰極層35之流動。陰極層35形成於固態電解質層34之上,並且應該由將會實現電池活性離子(亦即,分別為鋰、鈉、銅或銀離子)的嵌入反應之材質所組成。接著在陰極電路連接之前,將陰極集流體36形成於陰極層35之上,以連接陰極集流器至一外部電路。最後,在本發明某些實施例中,使用一封裝層38,藉以避免濕氣引進電化學電池30之中。封裝層38能夠由各種不同封裝材質之一次或者多次施加所組 成。例如,在較佳實施例中,能夠使用氮化矽來充當封裝材質。假設氮化矽固有特性如熟知該項技術者所易見的,則常將諸如氧化矽的第二材質施加於氮化矽之上,藉以確保封裝層38緊密地密封電池30。能夠用來充當封裝層38部分的材質之其他範例包含氧氮化矽、聚對二甲苯、聚合物或金屬。In another embodiment of the invention, a self-supporting anode is used to form the electrochemical cell, again ignoring the need for a support pedestal as taught by the prior art. FIG. 3 illustrates an electrochemical cell 30 that uses a self supporting anode layer 33. In the embodiment utilizing the self-supporting anode layer 33, the anode material is preferably made of a metal such as lithium, sodium, copper, silver or an alloy thereof with other metals. The anode current collector 31 and the anode circuit connector 32 are formed over one of the main surfaces of the self-supporting anode layer 33. On the opposite major surface, a solid electrolyte layer 34 is formed. The material selected for the solid electrolyte layer 34 will depend on the material used for the self-supporting anode layer 33; however, such an electrolyte material should be selected to ensure that the ions are self-supporting when the anode layer 33 and the cathode layer 35 are connected through an external circuit. The flow of the anode layer 33 to the cathode layer 35. The cathode layer 35 is formed on the solid electrolyte layer 34 and should be composed of a material that will effect an embedding reaction of the battery active ions (i.e., lithium, sodium, copper or silver ions, respectively). A cathode current collector 36 is then formed over the cathode layer 35 prior to the cathode circuit connection to connect the cathode current collector to an external circuit. Finally, in some embodiments of the invention, an encapsulation layer 38 is used to prevent moisture from being introduced into the electrochemical cell 30. The encapsulation layer 38 can be applied by one or more of a variety of different packaging materials to make. For example, in the preferred embodiment, tantalum nitride can be used as the package material. Assuming that the inherent characteristics of tantalum nitride are readily visible to those skilled in the art, a second material, such as tantalum oxide, is often applied over the tantalum nitride to ensure that the encapsulation layer 38 tightly seals the cell 30. Other examples of materials that can be used as part of the encapsulation layer 38 include yttrium oxynitride, parylene, polymer or metal.

本發明之另一實施例預期整合所講述的自支撐電化學電池以及太陽能電池,藉以提供一種整合式的電化學太陽能電池。Another embodiment of the present invention contemplates integrating the self-supporting electrochemical cells and solar cells described to provide an integrated electrochemical solar cell.

圖4闡述本發明所預期的一種整合式電化學太陽能電池40。如在此所使用的專有名詞”太陽能電池”包括任何一種針對將太陽能輻射轉換成為電力之目的所使用之已知裝置。例如在美國專利第6,309,906以及4,740,431中能夠發現本發明較佳實施例所能夠使用的太陽能電池之說明。在較佳實施例的應用中,如習知技術所週知的,首先將太陽能電池42形成於一玻璃基座41之上。玻璃基座41用來保護太陽能電池42免於損壞,乃至增加易碎的太陽能電池42之支撐強度。之後則能夠將一絕緣層43製作於太陽能電池42之上,藉以將太陽能電池42隔離於集流體21。絕緣層材質的某些範例為氮化矽、氧氮化矽、氧化鋁、以及二氧化矽。此外,能夠提供陰極電路連接體22,藉以將陰極集流體21連接至外部電路。典型的是,該絕緣層43相對較薄,而且為非支撐的。在較佳實施例中,透過接合44之施加,將絕緣層43連結至陰極集流體21。接合44 採取諸如半導體接合技術、銅擴散接合、銅-錫-銅擴散接合或其相似者的黏著技術之方式,並且能夠以一層或多層、或者施加步驟來實現之,藉以實現所預期之將絕緣層43連結至陰極集流體21之連結。例如,在某一實施例中,接合44能夠包含在錫薄層之前薄銅層於絕緣層43上之沈積。之後則可以使用銅來充當陰極集流體21。當銅陰極集流體21沈積而與接合44的錫層緊密接觸並且加熱時,銅-錫-銅擴散接合處理程序便會發生,透過接合44而導致絕緣層43與陰極集流體21之間的固態接合。在某一實施例中,在陰極集流體21以及陰極電路連接體22製作之後,便能夠使用諸如適用於所選擇的材質之製作技術,將圖2所概述的自支撐電化學電池製作於太陽能電池之上。在其他的實施例中,各別於太陽能電池42與玻璃41組合,製作圖2所示的自支撐電化學電池。之後則將已完成的自支撐電化學電池20之陰極集流體21透過如之前所概述的接合44連結至絕緣層43。在另一實施例中,以充當絕緣層43以及接合44之黏著劑,將太陽能電池42連結至陰極集流體21。Figure 4 illustrates an integrated electrochemical solar cell 40 contemplated by the present invention. The term "solar cell" as used herein includes any of the known devices used for the purpose of converting solar radiation into electricity. An illustration of a solar cell that can be used in accordance with a preferred embodiment of the present invention can be found in U.S. Patent Nos. 6,309,906 and 4,740,431. In the application of the preferred embodiment, solar cell 42 is first formed over a glass substrate 41 as is well known in the art. The glass base 41 serves to protect the solar cell 42 from damage and even increase the support strength of the fragile solar cell 42. Thereafter, an insulating layer 43 can be formed over the solar cell 42 to isolate the solar cell 42 from the current collector 21. Some examples of insulating layer materials are tantalum nitride, hafnium oxynitride, aluminum oxide, and hafnium oxide. Further, a cathode circuit connector 22 can be provided to connect the cathode current collector 21 to an external circuit. Typically, the insulating layer 43 is relatively thin and unsupported. In the preferred embodiment, the insulating layer 43 is bonded to the cathode current collector 21 by the application of the joint 44. Joint 44 The bonding technique such as semiconductor bonding technique, copper diffusion bonding, copper-tin-copper diffusion bonding or the like is employed, and can be implemented in one or more layers, or an application step, thereby achieving the desired insulating layer 43. Linked to the junction of the cathode current collector 21. For example, in one embodiment, the bond 44 can comprise a deposition of a thin copper layer on the insulating layer 43 prior to the thin layer of tin. Copper can then be used to serve as the cathode current collector 21. When the copper cathode current collector 21 is deposited in close contact with the tin layer of the joint 44 and heated, a copper-tin-copper diffusion bonding process occurs, which results in a solid state between the insulating layer 43 and the cathode current collector 21 through the bonding 44. Engage. In one embodiment, after the cathode current collector 21 and the cathode circuit connector 22 are fabricated, the self-supporting electrochemical cell as outlined in FIG. 2 can be fabricated into a solar cell using fabrication techniques such as those suitable for the selected material. Above. In other embodiments, the solar cell 42 is combined with the glass 41 to produce the self-supporting electrochemical cell shown in FIG. The cathode current collector 21 of the completed self-supporting electrochemical cell 20 is then joined to the insulating layer 43 through a bond 44 as previously outlined. In another embodiment, the solar cell 42 is bonded to the cathode current collector 21 with an adhesive that acts as the insulating layer 43 and the bond 44.

由於陶瓷陰極層23之自支撐本質,經由不同時間與位置所製造的構件之連結,便能夠有效地將本發明的整合式電化學太陽能電池40製作為完整的封裝。Due to the self-supporting nature of the ceramic cathode layer 23, the integrated electrochemical solar cell 40 of the present invention can be effectively fabricated into a complete package by joining the components fabricated at different times and locations.

此時將參照圖5至9來說明製作整合式電化學太陽能電池40之方法。圖5所說明的方法指向在此所說明的自支撐電化學電池之形成,並且包含開始準備與製作一自支 撐陶瓷陰極(步驟101)。在某些實施例中,步驟101包含在準備期間中將電解質及/或導電材質附加至陰極材質。在其他實施例中,將陰極材質與所選擇的電解質及/或導電材質混合,並且之後使之接受諸如熱均壓成形之各種處置,藉以確保一種密集的陰極架構。將一非支撐陰極集流體施加至自支撐陶瓷陰極材質之某一主要表面,並且準備陰極電路連接體(步驟103)。A method of fabricating the integrated electrochemical solar cell 40 will now be described with reference to Figs. The method illustrated in Figure 5 points to the formation of the self-supporting electrochemical cell described herein and includes the preparation and fabrication of a self-supporting A ceramic cathode is supported (step 101). In certain embodiments, step 101 includes attaching an electrolyte and/or a conductive material to the cathode material during the preparation period. In other embodiments, the cathode material is mixed with the selected electrolyte and/or conductive material and then subjected to various treatments such as thermal pressure forming to ensure a dense cathode structure. An unsupported cathode current collector is applied to a major surface of the self-supporting ceramic cathode material and a cathode circuit connector is prepared (step 103).

在較佳實施例中,在陰極集流體以及陰極電路連接體準備與製作之後,在步驟105期間中,將電解質層沈積於自支撐陰極反主表面之上。在較佳實施例中,儘管能夠利用諸如射頻濺鍍、分子束沈積、原子層沈積、脈衝雷射沈積、化學氣相沈積、電漿輔助化學氣相沈積、或者離子束輔助沈積之其他沈積技術,然仍透過濺鍍技術來沈積步驟105的電解質層。在選擇含鋰的陰極材質之狀況下,其方法進一步包括透過步驟107濺鍍技術之鋰保護層沈積,藉以保護電解質-鋰之介面。如果有所需求及/或需要,在步驟109附加額外的陽極材質,例如能夠將乾淨的鋰金屬薄片壓製成緊密接觸於步驟107所沈積的保護鋰層。陽極集流體以及陽極連接體之製作發生於步驟111。最後,為了保護電化學電池,在步驟113能夠將一封裝層沈積於電池之上。In a preferred embodiment, after the cathode current collector and the cathode circuit connector are prepared and fabricated, during step 105, an electrolyte layer is deposited over the self-supporting cathode anti-main surface. In a preferred embodiment, other deposition techniques such as radio frequency sputtering, molecular beam deposition, atomic layer deposition, pulsed laser deposition, chemical vapor deposition, plasma assisted chemical vapor deposition, or ion beam assisted deposition can be utilized. The electrolyte layer of step 105 is still deposited by sputtering techniques. In the case of selecting a lithium-containing cathode material, the method further includes depositing a lithium protective layer through the sputtering technique of step 107, thereby protecting the electrolyte-lithium interface. Additional anode material is added at step 109 if needed and/or desired, for example, a clean lithium metal foil can be pressed into contact with the protective lithium layer deposited in step 107. The fabrication of the anode current collector and the anode connector occurs in step 111. Finally, to protect the electrochemical cell, an encapsulation layer can be deposited over the cell at step 113.

此時轉至圖6,說明一種形成本發明的整合式電化學太陽能電池之方法,使用銅-錫-銅擴散接合,藉以連結太陽能電池與電化學電池。在步驟201,提供一種太陽能電 池單元。太陽能電池單元為一種習知技術所已知的玻璃基座與太陽能電池之組合。在步驟203,將一絕緣層沈積於太陽能電池材質之上,藉以將太陽能電池材質絕緣於陰極集流體。在步驟205,將一銅層沈積於此絕緣層之上。接著,在步驟207,將一錫層沈積於該銅層之上。如美國專利第4,740,431號中Little所講述,能夠使用額外的步驟(並無顯示)來繪製絕緣、銅、錫層之圖案,以此種方式來串聯或並聯連結多數太陽能電池藉以改變對電化學電池充電的電壓之方式,。在步驟209,準備陶瓷自支撐陰極層。在某些實施例中,步驟209包括在準備期間中將電解質及/或導電材質附加至陰極材質。在其他的實施例中,將陰極材質與所選擇的電解質及/或導電材質混合,並且之後使之接受諸如熱均壓成形之各種處置,藉以確保一種密集的陰極架構。將一非支撐陰極集流體施加至自支撐陶瓷陰極材質之某一主要表面,並且在步驟211準備陰極電路連接體。在步驟213,將一銅層沈積於陰極集流體之上。在步驟215,透過習知技術所知悉的銅-錫-銅擴散技術,將陰極集流體上所沈積的銅層接合至步驟207所沈積的錫層。在步驟215之後,建立如之前以圖5步驟105開始所指示的電化學電池。Turning now to Figure 6, a method of forming an integrated electrochemical solar cell of the present invention is illustrated using copper-tin-copper diffusion bonding to bond solar cells to electrochemical cells. In step 201, providing a solar power Pool unit. The solar cell unit is a combination of a glass susceptor and a solar cell known in the art. In step 203, an insulating layer is deposited over the solar cell material to insulate the solar cell material from the cathode current collector. At step 205, a layer of copper is deposited over the insulating layer. Next, in step 207, a layer of tin is deposited over the copper layer. As described in Little, U.S. Patent No. 4,740,431, an additional step (not shown) can be used to pattern the insulating, copper, and tin layers in such a manner that a plurality of solar cells are connected in series or in parallel to change the electrochemical cell. The way of charging the voltage. At step 209, a ceramic self supporting cathode layer is prepared. In certain embodiments, step 209 includes attaching an electrolyte and/or a conductive material to the cathode material during the preparation period. In other embodiments, the cathode material is mixed with the selected electrolyte and/or conductive material and then subjected to various treatments such as thermal pressure forming to ensure a dense cathode structure. An unsupported cathode current collector is applied to a major surface of the self-supporting ceramic cathode material, and a cathode circuit connector is prepared in step 211. At step 213, a layer of copper is deposited over the cathode current collector. At step 215, the copper layer deposited on the cathode current collector is bonded to the tin layer deposited in step 207 by a copper-tin-copper diffusion technique known in the art. After step 215, an electrochemical cell as indicated previously beginning with step 105 of FIG. 5 is established.

一種利用一自支撐陽極製作整合式太陽能與電化學電池之方法說明於圖7。在步驟301,提供一種習知技術所已知的太陽能電池。此太陽能電池典型地包含一種玻璃基座以及光伏特材質層。在步驟303,將一絕緣層沈積於太 陽能電池的光伏特材質側之上。在步驟307的錫層沈積之前的步驟305,將一銅層沈積於絕緣層之上。如美國專利第4,740,431中Little所講述的,在隨選的步驟308,能夠使用某些技術來繪製絕緣、銅、錫層之圖案,以此種方式來串聯或並聯連結多數太陽能電池藉以改變對電化學電池充電的電壓之方式,。在步驟309,提供一自支撐陽極層。在較佳實施例中,從鋰、鈉、銅、銀、或其與其他材質之合金來選擇本發明的自支撐陽極。在步驟311,將陽極集流體與陽極電路連接體製作於自支撐陽極的兩主表面其中一者之上。在步驟313,將一銅層沈積於陽極集流體之上。在步驟315,使用銅-錫-銅擴散接合技術,接合步驟307所沈積的錫層以及步驟313所沈積的銅層。在選擇銅來充當陽極集流體材質之狀況下,可以省略步驟313。接著,在步驟318,將電解質層沈積於陽極層的主表面之上,此表面則是相反於陽極集流體。在步驟319,準備陰極材質,並且將之連結於電解質層之上。在某些實施例中,步驟319包括在準備期間中將電解質及/或導電材質附加至陰極材質。在其他實施例中,將陰極材質與所選擇的電解質及/或導電材質混合,並且之後使之接受諸如熱均壓成形之各種處置,藉以確保一種密集的陰極架構。接著,在步驟321,準備與製作陰極集流體以及陰極電路連接體。最後,在步驟323,至少將裝置的電化學電池部分密封,藉以避免濕氣進入該單元之中。A method of making an integrated solar and electrochemical cell using a self-supporting anode is illustrated in FIG. At step 301, a solar cell known in the art is provided. This solar cell typically comprises a glass base and a layer of photovoltaic material. At step 303, an insulating layer is deposited on the The photovoltaic material on the side of the solar cell. At step 305 prior to the deposition of the tin layer in step 307, a layer of copper is deposited over the insulating layer. As described by Little in U.S. Patent No. 4,740,431, in an optional step 308, certain techniques can be used to draw patterns of insulating, copper, and tin layers in such a manner that a plurality of solar cells are connected in series or in parallel to change the electrification. Learn the way the battery is charged. At step 309, a self supporting anode layer is provided. In a preferred embodiment, the self-supporting anode of the present invention is selected from lithium, sodium, copper, silver, or alloys thereof with other materials. At step 311, an anode current collector and an anode circuit connector are fabricated over one of the two major surfaces of the self-supporting anode. At step 313, a layer of copper is deposited over the anode current collector. At step 315, the tin layer deposited in step 307 and the copper layer deposited in step 313 are bonded using a copper-tin-copper diffusion bonding technique. In the case where copper is selected to serve as the anode current collector material, step 313 may be omitted. Next, at step 318, an electrolyte layer is deposited over the major surface of the anode layer, which surface is opposite the anode current collector. At step 319, the cathode material is prepared and attached to the electrolyte layer. In certain embodiments, step 319 includes attaching an electrolyte and/or a conductive material to the cathode material during the preparation period. In other embodiments, the cathode material is mixed with the selected electrolyte and/or conductive material and then subjected to various treatments such as thermal pressure forming to ensure a dense cathode structure. Next, in step 321, a cathode current collector and a cathode circuit connector are prepared and fabricated. Finally, at step 323, at least the electrochemical cell portion of the device is sealed to prevent moisture from entering the unit.

圖8說明本發明之另一實施例。在步驟401,製作一 自支撐陰極層。在某些實施例中,此包括在準備期間中將電解質及/或導電材質附加至陰極材質。在其他實施例中,將陰極材質與所選擇的電解質及/或導電材質混合,並且之後使之接受諸如熱均壓成形之各種處置,藉以確保一種密集的陰極架構。接著,在步驟403,於陰極層的某一主表面之上,準備與製作陰極集流體以及陰極電路連接體。在自支撐陰極層之相反表面上,則在步驟405沈積一種固態電解質層。接著,在步驟407,將電池的電化學活性金屬之錫層沈積於電解質層之上。在其他實施例中,可允許沈積電池的電化學活性金屬與其他金屬之合金。接著,在步驟409,根據步驟301-315,製作一種太陽能電池/自支撐陽極層。之後則將步驟407沈積於自支撐陰極-電解質層之上的金屬錫層放置而緊密接觸著自支撐陽極之暴露表面,並且在步驟411施加熱與壓力,藉以將陰極-電解質層以及太陽能電池/陽極層熔合在一起。如果兩相配表面為潔淨且平滑的,則此種處理極有幫助。最後,在步驟413,至少將裝置的電化學電池部分密封,藉以避免濕氣進入該單元之中。Figure 8 illustrates another embodiment of the present invention. In step 401, a Self-supporting cathode layer. In certain embodiments, this includes attaching an electrolyte and/or a conductive material to the cathode material during the preparation period. In other embodiments, the cathode material is mixed with the selected electrolyte and/or conductive material and then subjected to various treatments such as thermal pressure forming to ensure a dense cathode structure. Next, in step 403, a cathode current collector and a cathode circuit connector are prepared and fabricated over a major surface of the cathode layer. On the opposite surface of the self-supporting cathode layer, a solid electrolyte layer is deposited at step 405. Next, in step 407, a tin layer of an electrochemically active metal of the battery is deposited over the electrolyte layer. In other embodiments, an alloy of electrochemically active metals of other materials may be allowed to be deposited. Next, in step 409, according to steps 301-315, a solar cell/self-supporting anode layer is fabricated. Thereafter, step 407 is placed on the metal tin layer deposited on the self-supporting cathode-electrolyte layer to closely contact the exposed surface of the self-supporting anode, and heat and pressure are applied in step 411, thereby the cathode-electrolyte layer and the solar cell/ The anode layers are fused together. This treatment is extremely helpful if the two mating surfaces are clean and smooth. Finally, at step 413, at least the electrochemical cell portion of the device is sealed to prevent moisture from entering the unit.

圖9闡述製造本發明的整合式太陽能與電化學電池之另一種方法。在此一實施例中,假設生產太陽能電池所含的熱會致使電化學電池之製造困難,此製造步驟的實行是有效益的,特別是當低熔點材質如鋰或鈉被用來充當陽極時。此一實施例具有允許薄膜太陽能電池直接製作於自支撐陶瓷陰極上、省掉將薄膜太陽能電池沈積於其上的玻璃 基座之需求、並且藉此節省成本與重量之額外優點。在步驟501,準備一自支撐陶瓷陰極。在某些實施例中,步驟501包括在準備期間中將電解質及/或導電材質附加至陰極材質。在其他實施例中,將陰極材質與所選擇的電解質及/或導電材質混合,並且之後使之接受諸如熱均壓成形之各種處置,藉以確保一種密集的陰極架構。在步驟503,將陰極集流體與陰極電路連接體沈積並且製作於自支撐陶瓷陰極的兩主表面其中一者之上。在步驟505,將一絕緣體沈積於陰極集流體層之上。如有需要,在步驟506,如美國專利第4,740,431號中Little所講述能夠使用蝕刻或者金屬掀離(lift-off)技術來繪製絕緣與金屬層之圖案,以此種方式來串聯或並聯連結多數太陽能電池藉以改變對電化學電池充電的電壓之方式。在步驟507,透過美國專利第6,309,906號所揭露的技術,將光伏特電池產生於絕緣體層上。在步驟509,將電解質層沈積於自支撐陶瓷陰極的第二主表面上。在步驟510,能夠沈積一金屬保護層,藉以保護電解質所暴露的表面,並且確保電解質與陽極之間良好的面際接觸。步驟510所選擇的金屬保護層可以是電化學活性金屬(例如,鋰、鈉、銅或銀)、電化學活性金屬與其他金屬之合金、或者已知用以形成具有電池電化學活性金屬的合金之金屬。在步驟511中,例如藉由將陽極熔合至步驟510沈積於電解質上的保護金屬層來製作陽極層並且將之附加至電池。在步驟513,將陽極集流體以及陽極電路連接體製作並且沈積於陽極層之上。最後,在步驟515 沈積一封裝層。Figure 9 illustrates another method of making an integrated solar and electrochemical cell of the present invention. In this embodiment, it is assumed that the production of the solar cell is difficult to manufacture, and the manufacturing step is effective, especially when a low melting point material such as lithium or sodium is used as the anode. . This embodiment has a thin film solar cell that is directly fabricated on a self-supporting ceramic cathode, eliminating the glass on which the thin film solar cell is deposited. The need for a pedestal, and thereby saving the additional advantage of cost and weight. At step 501, a self supporting ceramic cathode is prepared. In certain embodiments, step 501 includes attaching an electrolyte and/or a conductive material to the cathode material during the preparation period. In other embodiments, the cathode material is mixed with the selected electrolyte and/or conductive material and then subjected to various treatments such as thermal pressure forming to ensure a dense cathode structure. At step 503, a cathode current collector is deposited with the cathode circuit connector and fabricated over one of the two major surfaces of the self supporting ceramic cathode. At step 505, an insulator is deposited over the cathode current collector layer. If necessary, in step 506, as described in Little, U.S. Patent No. 4,740,431, the use of etching or metal lift-off techniques to pattern the insulating and metal layers can be used to connect the majority in series or in parallel. The way a solar cell changes the voltage that charges an electrochemical cell. In step 507, a photovoltaic cell is produced on the insulator layer by the technique disclosed in U.S. Patent No. 6,309,906. At step 509, an electrolyte layer is deposited on the second major surface of the self supporting ceramic cathode. At step 510, a metal protective layer can be deposited to protect the exposed surface of the electrolyte and to ensure good interfacial contact between the electrolyte and the anode. The metal protective layer selected in step 510 may be an electrochemically active metal (eg, lithium, sodium, copper or silver), an alloy of an electrochemically active metal with other metals, or an alloy known to form an electrochemically active metal having a battery. Metal. In step 511, the anode layer is fabricated and attached to the cell, for example by fusing the anode to the protective metal layer deposited on the electrolyte in step 510. At step 513, an anode current collector and an anode circuit connector are fabricated and deposited over the anode layer. Finally, at step 515 An encapsulation layer is deposited.

所要了解的是,以上的說明意圖為闡述而非限制。儘管已經在此強調了本發明某實施例的各種不同特性與優點,然而對熟知該項技術者而言,諸多其他實施例乃是顯而易見的,而不違反所揭露的本發明之範疇與精神。本發明之範疇因而應該參照據此所包含的申請專利範圍、乃至該申請專利範圍所賦予權力的等效物之全部範疇來決定之。以上已經描述完本發明。It is to be understood that the above description is intended to be illustrative rather than limiting. Although various features and advantages of the embodiments of the invention are disclosed herein, it will be apparent to those skilled in the <RTIgt; The scope of the present invention should be determined by reference to the scope of the claims and the scope of the equivalents of the claims. The invention has been described above.

1‧‧‧習知技術型態之薄膜電池1‧‧‧Study technology type thin film battery

2‧‧‧基座2‧‧‧Base

3‧‧‧陰極集流體3‧‧‧Cathodic current collector

4‧‧‧陰極電路連接體4‧‧‧Cathode circuit connector

5‧‧‧陰極層5‧‧‧ cathode layer

6‧‧‧電解質層6‧‧‧ electrolyte layer

7‧‧‧陽極層7‧‧‧anode layer

8‧‧‧陽極集流體8‧‧‧Anode current collector

9‧‧‧陽極電路連接體9‧‧‧Anode circuit connector

10‧‧‧封裝層10‧‧‧Encapsulation layer

20‧‧‧本發明之自支撐電化學電池20‧‧‧ Self-supporting electrochemical cell of the invention

21‧‧‧陰極集流體21‧‧‧ Cathode Current Collector

22‧‧‧陰極電路連接體22‧‧‧Cathode circuit connector

23‧‧‧自支撐陰極層23‧‧‧ Self-supporting cathode layer

24‧‧‧電解質層24‧‧‧ electrolyte layer

25‧‧‧陽極層25‧‧‧ anode layer

26‧‧‧陽極集流體26‧‧‧Anode current collector

27‧‧‧陽極電流連接體27‧‧‧Anode current connector

28‧‧‧封裝層28‧‧‧Encapsulation layer

30‧‧‧電化學電池30‧‧‧Electrochemical battery

31‧‧‧陽極集流體31‧‧‧Anode current collector

32‧‧‧陽極電路連接體32‧‧‧Anode circuit connector

33‧‧‧自支撐陽極層33‧‧‧ Self-supporting anode layer

34‧‧‧固態電解質層34‧‧‧Solid electrolyte layer

35‧‧‧陰極層35‧‧‧ cathode layer

36‧‧‧陰極集流體36‧‧‧Cathodic current collector

37‧‧‧陰極電路連接體37‧‧‧ Cathode circuit connector

38‧‧‧封裝層38‧‧‧Encapsulation layer

40‧‧‧整合式電化學太陽能電池40‧‧‧Integrated electrochemical solar cells

41‧‧‧玻璃基座41‧‧‧ glass base

42‧‧‧太陽能電池42‧‧‧ solar cells

43‧‧‧絕緣層43‧‧‧Insulation

44‧‧‧接合44‧‧‧Join

圖1為習知技術已知的典型薄膜電化學電池之剖視圖;圖2為本發明所講述的自支撐電化學電池之剖視圖;圖3為使用本發明所講述的自支撐陽極之電化學電池之剖視圖;圖4為本發明的整合式電化學太陽能電池之剖視圖;圖5為根據本發明講述的製作處理程序之一實施例流程圖;圖6為根據本發明講述的製作處理程序之一實施例流程圖;圖7為根據本發明講述的製作處理程序之一實施例流程圖;圖8為根據本發明講述的製作處理程序之一實施例流程圖;以及 圖9為根據本發明講述的製作處理程序之一實施例流程圖。1 is a cross-sectional view of a typical thin film electrochemical cell known from the prior art; FIG. 2 is a cross-sectional view of the self-supporting electrochemical cell of the present invention; and FIG. 3 is an electrochemical cell using the self-supporting anode of the present invention. Figure 4 is a cross-sectional view of an integrated electrochemical solar cell of the present invention; Figure 5 is a flow chart showing one embodiment of a fabrication process in accordance with the present invention; and Figure 6 is an embodiment of a fabrication process in accordance with the present invention. 7 is a flow chart of one embodiment of a production processing program according to the present invention; and FIG. 8 is a flow chart of an embodiment of a production processing program according to the present invention; 9 is a flow chart of one embodiment of a production process described in accordance with the present invention.

整個附圖數個圖示中,相似的參考字元指稱相似的元件。Throughout the drawings, like reference characters refer to like elements.

21‧‧‧陰極集流體21‧‧‧ Cathode Current Collector

23‧‧‧陰極23‧‧‧ cathode

24‧‧‧電解質24‧‧‧ Electrolytes

25‧‧‧陽極25‧‧‧Anode

26‧‧‧陽極集流體26‧‧‧Anode current collector

27‧‧‧陰極電路連接體27‧‧‧Cathode circuit connector

28‧‧‧封裝28‧‧‧Package

40‧‧‧整合式電化學太陽能電池40‧‧‧Integrated electrochemical solar cells

41‧‧‧玻璃基座41‧‧‧ glass base

42‧‧‧太陽能電池42‧‧‧ solar cells

43‧‧‧絕緣層43‧‧‧Insulation

44‧‧‧接合44‧‧‧Join

Claims (50)

一種整合式電化學太陽能電池,包含:一電化學電池,包含:一自支撐陶瓷陰極層,其具有一底層表面和一上層表面,該自支撐陶瓷陰極層具有0.5至1.0mm的厚度,該自支撐陶瓷陰極層沒有基座層;一非支撐陰極集流體,其配置在該自支撐陶瓷陰極層的該底層表面上;一絕緣體,其配置在該非支撐陰極集流體;一固態電解質層,其配置於該自支撐陶瓷陰極層的該上層表面之上;一陽極層,其配置在該電解質層之上;以及一陽極集流體,其配置在該陽極層之上;一太陽能電池,其電連接至產生在該絕緣層上的該電化學電池;以及一封裝層,其配置在該整合式電化學太陽能電池之上。 An integrated electrochemical solar cell comprising: an electrochemical cell comprising: a self-supporting ceramic cathode layer having a bottom surface and an upper surface, the self-supporting ceramic cathode layer having a thickness of 0.5 to 1.0 mm The supporting ceramic cathode layer has no pedestal layer; an unsupported cathode current collector disposed on the bottom surface of the self-supporting ceramic cathode layer; an insulator disposed on the unsupported cathode current collector; and a solid electrolyte layer configured Above the upper surface of the self-supporting ceramic cathode layer; an anode layer disposed on the electrolyte layer; and an anode current collector disposed on the anode layer; a solar cell electrically connected to An electrochemical cell produced on the insulating layer; and an encapsulation layer disposed over the integrated electrochemical solar cell. 如申請專利範圍第1項之整合式電化學太陽能電池,其中該陽極層進一步包含一種鋰合金。 The integrated electrochemical solar cell of claim 1, wherein the anode layer further comprises a lithium alloy. 如申請專利範圍第2項之整合式電化學太陽能電池,其中該鋰合金為一種與從C、Sn、Si、Ge、Al、Mg、In與Ga所構成的群組之材質合金的鋰。 The integrated electrochemical solar cell of claim 2, wherein the lithium alloy is lithium alloyed with a material of a group consisting of C, Sn, Si, Ge, Al, Mg, In, and Ga. 如申請專利範圍第1項之整合式電化學太陽能電池,其中該陽極層包含鋰金屬。 The integrated electrochemical solar cell of claim 1, wherein the anode layer comprises lithium metal. 如申請專利範圍第1項之整合式電化學太陽能電池,其中該自支撐陶瓷陰極層由含鋰的金屬氧化物所製。 An integrated electrochemical solar cell according to claim 1, wherein the self-supporting ceramic cathode layer is made of a lithium-containing metal oxide. 如申請專利範圍第1項之整合式電化學太陽能電池,其中該自支撐陶瓷陰極層由金屬氧化物所製。 The integrated electrochemical solar cell of claim 1, wherein the self-supporting ceramic cathode layer is made of a metal oxide. 如申請專利範圍第1項之整合式電化學太陽能電池,其中該自支撐陶瓷陰極層由金屬硫化物所製。 An integrated electrochemical solar cell according to claim 1, wherein the self-supporting ceramic cathode layer is made of a metal sulfide. 如申請專利範圍第1項之整合式電化學太陽能電池,其中該自支撐陶瓷陰極層由含有金屬硫化物的鋰所製。 The integrated electrochemical solar cell of claim 1, wherein the self-supporting ceramic cathode layer is made of lithium containing a metal sulfide. 如申請專利範圍第1項之整合式電化學太陽能電池,其中該自支撐陶瓷陰極層由金屬氧硫化物所製。 The integrated electrochemical solar cell of claim 1, wherein the self-supporting ceramic cathode layer is made of metal oxysulfide. 如申請專利範圍第1項之整合式電化學太陽能電池,其中該自支撐陶瓷陰極層由含有金屬氧硫化物的鋰所製。 The integrated electrochemical solar cell of claim 1, wherein the self-supporting ceramic cathode layer is made of lithium containing metal oxysulfide. 如申請專利範圍第1項之整合式電化學太陽能電池,其中該自支撐陶瓷陰極層由硒化物所製。 The integrated electrochemical solar cell of claim 1, wherein the self-supporting ceramic cathode layer is made of selenide. 如申請專利範圍第1項之整合式電化學太陽能電池,其中該自支撐陶瓷陰極層由金屬磷酸鹽所製。 An integrated electrochemical solar cell according to claim 1, wherein the self-supporting ceramic cathode layer is made of a metal phosphate. 如申請專利範圍第1項之整合式電化學太陽能電池,其中該自支撐陶瓷陰極層由含有金屬磷酸鹽的鋰所製。 An integrated electrochemical solar cell according to claim 1, wherein the self-supporting ceramic cathode layer is made of lithium containing a metal phosphate. 如申請專利範圍第1項之整合式電化學太陽能電池,其中該自支撐陶瓷陰極層由金屬氧化物、磷酸鹽或硫化物其中一者或者多者之混合物所製。 The integrated electrochemical solar cell of claim 1, wherein the self-supporting ceramic cathode layer is made of a mixture of one or more of a metal oxide, a phosphate or a sulfide. 如申請專利範圍第1項之整合式電化學太陽能電池,其中該自支撐陶瓷陰極層包含陰極材質與電解質之混合物。 The integrated electrochemical solar cell of claim 1, wherein the self-supporting ceramic cathode layer comprises a mixture of a cathode material and an electrolyte. 如申請專利範圍第1項之整合式電化學太陽能電池,其中該自支撐陶瓷陰極層進一步含有一種導電性材質。 The integrated electrochemical solar cell of claim 1, wherein the self-supporting ceramic cathode layer further comprises a conductive material. 如申請專利範圍第1項之整合式電化學太陽能電 m,其中該電解質層為鋰磷氮氧化物。 Such as the integrated electrochemical solar power of claim 1 m, wherein the electrolyte layer is lithium phosphorus oxynitride. 如申請專利範圍第1項之整合式電化學太陽能電池,其中該電解質層乃是從Li3.4 V0.6 Si0.4 O4 以及Li6.1 V0.61 Si0.39 O5.36 所構成之群組選出。An integrated electrochemical solar cell according to claim 1, wherein the electrolyte layer is selected from the group consisting of Li 3.4 V 0.6 Si 0.4 O 4 and Li 6.1 V 0.61 Si 0.39 O 5.36 . 如申請專利範圍第1項之整合式電化學太陽能電池,其中該電解質層乃是從LiBO2 、LiBP以及Li2 SO4 -Li2 O-B2 O3 所構成之群組選出。The integrated electrochemical solar cell of claim 1, wherein the electrolyte layer is selected from the group consisting of LiBO 2 , LiBP, and Li 2 SO 4 -Li 2 OB 2 O 3 . 如申請專利範圍第1項之整合式電化學太陽能電池,其中該電解質層乃是從Li2 S-SiS2 -P2 S5 以及LiI-Li2 S-P2 S5 -P2 O5 所構成之群組選出。The integrated electrochemical solar cell of claim 1, wherein the electrolyte layer is composed of Li 2 S-SiS 2 -P 2 S 5 and LiI-Li 2 SP 2 S 5 -P 2 O 5 Group selected. 如申請專利範圍第10項之整合式電化學太陽能電池,其中該陽極層包含鋰金屬。 An integrated electrochemical solar cell according to claim 10, wherein the anode layer comprises lithium metal. 如申請專利範圍第15項之整合式電化學太陽能電池,其中該陽極層包含鋰合金。 An integrated electrochemical solar cell according to claim 15 wherein the anode layer comprises a lithium alloy. 如申請專利範圍第15項之整合式電化學太陽能電池,其中該陽極層包含從Lix V2 O5 、V2 O5 、Cu、SiSn0.87 O1.20 N1.72 以及SnO所構成之群組所選出的材質。The integrated electrochemical solar cell of claim 15, wherein the anode layer comprises a group selected from the group consisting of Li x V 2 O 5 , V 2 O 5 , Cu, SiSn 0.87 O 1.20 N 1.72, and SnO. Material. 一種製作整合式電化學太陽能電池之方法,該方法包含:一電化學電池形成處理,所包含的步驟為:在陶瓷自支撐陰極層上製作一非支撐陰極集流體,該陶瓷自支撐陰極沒有基座層;在該陶瓷自支撐陰極層上形成一絕緣層;在該陶瓷自支撐陰極層上形成一固態電解質層;在該電解質層之上形成一陽極層;在該陽極層之上製作一陽極集流 體層;一太陽能電池形成處理,所包含的步驟為:在形成該絕緣層的步驟之後以及在形成該固態電解質層的步驟之前,在該絕緣層之上沈積光伏特材質;一電連接步驟為:在該陽極層之上製造一陽極集流體層的步驟之後,將該太陽能電池電連接至該電化學電池;以及一封裝形成處理,所包含的步驟為:施加至少一封裝材料至該整合式電化學太陽能電池。 A method of fabricating an integrated electrochemical solar cell, the method comprising: an electrochemical cell formation process comprising: fabricating an unsupported cathode current collector on a ceramic self-supporting cathode layer, the ceramic self-supporting cathode having no basis a seat layer; forming an insulating layer on the ceramic self-supporting cathode layer; forming a solid electrolyte layer on the ceramic self-supporting cathode layer; forming an anode layer on the electrolyte layer; and forming an anode on the anode layer Current collection a solar cell forming process comprising the steps of: depositing a photovoltaic material on the insulating layer after the step of forming the insulating layer and before the step of forming the solid electrolyte layer; an electrical connection step is: After the step of fabricating an anode current collector layer on the anode layer, electrically connecting the solar cell to the electrochemical cell; and a package forming process, comprising the steps of: applying at least one encapsulating material to the integrated electrification Learn solar cells. 如申請專利範圍第24項之方法,其中該電化學電池形成處理進一步包含一密化步驟,該密化步驟包含使用至少一高溫準備技術,藉以形成該陰極層。 The method of claim 24, wherein the electrochemical cell formation process further comprises a densification step comprising forming the cathode layer using at least one high temperature preparation technique. 如申請專利範圍第25項之方法,其中該密化步驟包含熱均壓成形。 The method of claim 25, wherein the densifying step comprises hot press forming. 如申請專利範圍第25項之方法,其中該電化學電池形成處理進一步包含在該密化步驟之前將電解質材質與用來形成該陶瓷自支撐陰極層的該材質混合之步驟。 The method of claim 25, wherein the electrochemical cell forming process further comprises the step of mixing the electrolyte material with the material used to form the ceramic self-supporting cathode layer prior to the densifying step. 如申請專利範圍第27項之方法,其中該電化學電池形成處理進一步包含在該密化步驟之前將導電材質與用來形成該陶瓷自支撐陰極層與該電解質材質的該材質混合之步驟。 The method of claim 27, wherein the electrochemical cell forming process further comprises the step of mixing a conductive material with the material used to form the ceramic self-supporting cathode layer and the electrolyte material prior to the densifying step. 如申請專利範圍第28項之方法,其中該電化學電池形成處理進一步包含將金屬層沈積於該固態電解質層之上的步驟。 The method of claim 28, wherein the electrochemical cell formation process further comprises the step of depositing a metal layer over the solid electrolyte layer. 如申請專利範圍第24項之方法,其中在該陶瓷自支撐陰極層上該形成固態電解質層之該步驟進一步包含藉由濺鍍技術將固態電解質材質沈積於該陶瓷自支撐陰極層上。 The method of claim 24, wherein the step of forming the solid electrolyte layer on the ceramic self-supporting cathode layer further comprises depositing a solid electrolyte material on the ceramic self-supporting cathode layer by a sputtering technique. 如申請專利範圍第24項之方法,其中在該陶瓷自支撐陰極層上該形成固態電解質層之該步驟進一步包含藉由射頻濺鍍將固態電解質材質沈積於該陶瓷自支撐陰極層上。 The method of claim 24, wherein the step of forming the solid electrolyte layer on the ceramic self-supporting cathode layer further comprises depositing a solid electrolyte material on the ceramic self-supporting cathode layer by radio frequency sputtering. 如申請專利範圍第24項之方法,其中在該陶瓷自支撐陰極層上該形成固態電解質層之該步驟進一步包含藉由分子束沈積將固態電解質材質沈積於該陶瓷自支撐陰極層上。 The method of claim 24, wherein the step of forming the solid electrolyte layer on the ceramic self-supporting cathode layer further comprises depositing a solid electrolyte material on the ceramic self-supporting cathode layer by molecular beam deposition. 如申請專利範圍第24項之方法,其中在該陶瓷自支撐陰極層上該形成固態電解質層之該步驟進一步包含藉由原子層沈積將固態電解質材質沈積於該陶瓷自支撐陰極層上。 The method of claim 24, wherein the step of forming the solid electrolyte layer on the ceramic self-supporting cathode layer further comprises depositing a solid electrolyte material on the ceramic self-supporting cathode layer by atomic layer deposition. 如申請專利範圍第24項之方法,其中在該陶瓷自支撐陰極層上該形成固態電解質層之該步驟進一步包含藉由脈衝雷射沈積將固態電解質材質沈積於該陶瓷自支撐陰極層上。 The method of claim 24, wherein the step of forming the solid electrolyte layer on the ceramic self-supporting cathode layer further comprises depositing a solid electrolyte material on the ceramic self-supporting cathode layer by pulsed laser deposition. 如申請專利範圍第24項之方法,其中在該陶瓷自支撐陰極層上該形成固態電解質層之該步驟進一步包含藉由化學氣相沈積將固態電解質材質沈積於該陶瓷自支撐陰極層上。 The method of claim 24, wherein the step of forming the solid electrolyte layer on the ceramic self-supporting cathode layer further comprises depositing a solid electrolyte material on the ceramic self-supporting cathode layer by chemical vapor deposition. 如申請專利範圍第24項之方法,其中在該陶瓷自支撐陰極層上該形成固態電解質層之該步驟進一步包含藉由電漿輔助化學氣相沈積將固態電解質材質沈積於該陶瓷自支撐陰極層上。 The method of claim 24, wherein the step of forming the solid electrolyte layer on the ceramic self-supporting cathode layer further comprises depositing a solid electrolyte material on the ceramic self-supporting cathode layer by plasma assisted chemical vapor deposition. on. 如申請專利範圍第24項之方法,其中在該陶瓷自支撐陰極層上該形成固態電解質層之該步驟進一步包含藉由離子束輔助沈積將固態電解質材質沈積於該陶瓷自支撐陰極層上。 The method of claim 24, wherein the step of forming the solid electrolyte layer on the ceramic self-supporting cathode layer further comprises depositing a solid electrolyte material on the ceramic self-supporting cathode layer by ion beam assisted deposition. 如申請專利範圍第25項之方法,其中該電化學電池形成處理進一步包含將一第一密封層沈積於該電化學電池之上的步驟。 The method of claim 25, wherein the electrochemical cell forming process further comprises the step of depositing a first sealing layer over the electrochemical cell. 如申請專利範圍第38項之方法,其中用於該第一密封層之材質為氮化矽。 The method of claim 38, wherein the material for the first sealing layer is tantalum nitride. 如申請專利範圍第38項之方法,其中用於該第一密封層之材質為氧氮化矽。 The method of claim 38, wherein the material for the first sealing layer is yttrium oxynitride. 如申請專利範圍第38項之方法,其中用於該第一密封層之材質為聚對二甲苯。 The method of claim 38, wherein the material for the first sealing layer is parylene. 如申請專利範圍第38項之方法,其中用於該第一密封層之材質為一聚合物。 The method of claim 38, wherein the material for the first sealing layer is a polymer. 如申請專利範圍第38項之方法,其中該電化學電池形成處理進一步包含將一第二密封層沈積於該電化學電池上的步驟。 The method of claim 38, wherein the electrochemical cell forming process further comprises the step of depositing a second sealing layer on the electrochemical cell. 如申請專利範圍第43項之方法,其中用於該第一密封層之材質為氮化矽,而用於該第二密封層之材質則為氧 化矽。 The method of claim 43, wherein the material used for the first sealing layer is tantalum nitride, and the material used for the second sealing layer is oxygen. Phlegm. 如申請專利範圍第43項之方法,其中用於該第一密封層之材質為氧氮化矽,而用於該第二密封層之材質則為金屬。 The method of claim 43, wherein the material used for the first sealing layer is yttrium oxynitride, and the material used for the second sealing layer is metal. 如申請專利範圍第43項之方法,其中用於該第一密封層之材質為氮化矽,而用於該第二密封層之材質則為金屬。 The method of claim 43, wherein the material used for the first sealing layer is tantalum nitride, and the material used for the second sealing layer is metal. 如申請專利範圍第43項之方法,其中用於該第一密封層之材質為氮化矽,而用於該第二密封層之材質則為一聚合物。 The method of claim 43, wherein the material used for the first sealing layer is tantalum nitride, and the material used for the second sealing layer is a polymer. 如申請專利範圍第43項之方法,其中用於該第一密封層之材質為氧氮化矽,而用於該第二密封層之材質則為一聚合物。 The method of claim 43, wherein the material used for the first sealing layer is yttrium oxynitride, and the material used for the second sealing layer is a polymer. 一種整合式電化學太陽能電池,包含:一電化學電池,該電化學電池包含:一自支撐陶瓷陰極層,其具有一底層表面和一上層表面,該自支撐陶瓷陰極層具有0.5至1.0mm的厚度,該自支撐陶瓷陰極層沒有基座層,該自支撐陶瓷陰極層包含LiCoO2 、電解質材質與導電材質之混合物;一非支撐陰極集流體,其配置在該自支撐陶瓷陰極層的該底層表面之上;一絕緣體,其配置在該非支撐陰極集流體之上;一電解質層,其配置在該自支撐陶瓷陰極層的該上層表面之上,該電解質層包括鋰磷氮氧化物;一陽極層,其配置在該電解質層之上,該陽極層包含鋰合金;以及一陽極集流體,其配置在該陽極層之上; 以及一太陽能電池,其電連接至產生在該絕緣體上的該電化學電池;以及一封裝層,其配置在該整合式電化學太陽能電池之上。An integrated electrochemical solar cell comprising: an electrochemical cell comprising: a self-supporting ceramic cathode layer having a bottom surface and an upper surface, the self-supporting ceramic cathode layer having a thickness of 0.5 to 1.0 mm Thickness, the self-supporting ceramic cathode layer has no pedestal layer, the self-supporting ceramic cathode layer comprises LiCoO 2 , a mixture of an electrolyte material and a conductive material; and an unsupported cathode current collector disposed at the bottom layer of the self-supporting ceramic cathode layer Above the surface; an insulator disposed on the unsupported cathode current collector; an electrolyte layer disposed on the upper surface of the self-supporting ceramic cathode layer, the electrolyte layer comprising lithium phosphorus oxynitride; an anode a layer disposed on the electrolyte layer, the anode layer comprising a lithium alloy; and an anode current collector disposed on the anode layer; and a solar cell electrically connected to the electrification generated on the insulator Learning a battery; and an encapsulation layer disposed on the integrated electrochemical solar cell. 一種整合式電化學太陽能電池,包含:一電化學電池,該電化學電池包含:一自支撐陶瓷陰極層,其具有一底層表面和一上層表面,該自支撐陶瓷陰極層具有0.5至1.0mm的厚度,該自支撐陶瓷陰極層沒有基座層,該自支撐陶瓷陰極層包含LiCoO2 、電解質材質與導電材質之混合物;一非支撐陰極集流體,其配置在該自支撐陶瓷陰極層的該底層表面之上;一絕緣體,其配置在該非支撐陰極集流體之上;一電解質層,其配置在該自支撐陶瓷陰極層的該上層表面之上,該電解質層包括鋰磷氮氧化物;一陽極層,其配置在該電解質層之上,該陽極層包含鋰金屬;以及一陽極集流體,其配置在該陽極層之上;以及一太陽能電池,其電連接至產生在該絕緣體上的該電化學電池;以及一封裝層,其配置在該整合式電化學太陽能電池之上。An integrated electrochemical solar cell comprising: an electrochemical cell comprising: a self-supporting ceramic cathode layer having a bottom surface and an upper surface, the self-supporting ceramic cathode layer having a thickness of 0.5 to 1.0 mm Thickness, the self-supporting ceramic cathode layer has no pedestal layer, the self-supporting ceramic cathode layer comprises LiCoO 2 , a mixture of an electrolyte material and a conductive material; and an unsupported cathode current collector disposed at the bottom layer of the self-supporting ceramic cathode layer Above the surface; an insulator disposed on the unsupported cathode current collector; an electrolyte layer disposed on the upper surface of the self-supporting ceramic cathode layer, the electrolyte layer comprising lithium phosphorus oxynitride; an anode a layer disposed over the electrolyte layer, the anode layer comprising lithium metal; and an anode current collector disposed over the anode layer; and a solar cell electrically coupled to the electrification generated on the insulator Learning a battery; and an encapsulation layer disposed on the integrated electrochemical solar cell.
TW097134037A 2007-09-07 2008-09-05 Integrated electrochemical and solar cell TWI463677B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US97064507P 2007-09-07 2007-09-07

Publications (2)

Publication Number Publication Date
TW200913293A TW200913293A (en) 2009-03-16
TWI463677B true TWI463677B (en) 2014-12-01

Family

ID=44725119

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097134037A TWI463677B (en) 2007-09-07 2008-09-05 Integrated electrochemical and solar cell

Country Status (1)

Country Link
TW (1) TWI463677B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4352768A (en) * 1978-09-05 1982-10-05 Gte Laboratories Incorporated Fiber reinforced cathode for electrochemical cell
US4740431A (en) * 1986-12-22 1988-04-26 Spice Corporation Integrated solar cell and battery
US5569520A (en) * 1994-01-12 1996-10-29 Martin Marietta Energy Systems, Inc. Rechargeable lithium battery for use in applications requiring a low to high power output
US5866275A (en) * 1996-01-18 1999-02-02 Ngk Insulators, Ltd. Layered sintered body for electrochemical cells
US20030127126A1 (en) * 2002-01-09 2003-07-10 Tzung-Cheng Yang Rechargeable solar battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4352768A (en) * 1978-09-05 1982-10-05 Gte Laboratories Incorporated Fiber reinforced cathode for electrochemical cell
US4740431A (en) * 1986-12-22 1988-04-26 Spice Corporation Integrated solar cell and battery
US5569520A (en) * 1994-01-12 1996-10-29 Martin Marietta Energy Systems, Inc. Rechargeable lithium battery for use in applications requiring a low to high power output
US5866275A (en) * 1996-01-18 1999-02-02 Ngk Insulators, Ltd. Layered sintered body for electrochemical cells
US20030127126A1 (en) * 2002-01-09 2003-07-10 Tzung-Cheng Yang Rechargeable solar battery

Also Published As

Publication number Publication date
TW200913293A (en) 2009-03-16

Similar Documents

Publication Publication Date Title
US8790801B2 (en) Integrated electrochemical and solar cell
TWI796295B (en) Energy storage device having an interlayer between electrode and electrolyte layer
US20200335756A1 (en) Solid-state battery separators and methods of fabrication
JP6158869B2 (en) Power storage device
US6805999B2 (en) Buried anode lithium thin film battery and process for forming the same
US9093707B2 (en) MultiLayer solid electrolyte for lithium thin film batteries
US7846579B2 (en) Thin film battery with protective packaging
US7235112B2 (en) Micro-battery fabrication process including formation of an electrode on a metal strip, cold compression and removal of the metal strip
US20090136839A1 (en) Thin film battery comprising stacked battery cells and method
KR20160002988A (en) Electrochemical cell with solid and liquid electrolytes
CN104321914A (en) High capacity solid state composite cathode, solid state composite separator, solid-state rechargeable lithium battery and methods of making same
US20140234725A1 (en) Method for producing nonaqueous-electrolyte battery and nonaqueous-electrolyte battery
US20160293905A1 (en) Electrochemical device, such as a microbattery or an electrochromic system, covered by an encapsulation layer comprising a barrier film and an adhesive film, and method for fabricating one such device
JP2008112635A (en) All solid lithium ion battery and its manufacturing method
JP3730164B2 (en) All-solid-state battery and manufacturing method thereof
US20140325832A1 (en) Method for the production of an all-solid battery
JPS58126679A (en) Formation of electrode for thin-film lithium battery
TWI463677B (en) Integrated electrochemical and solar cell
US11302967B2 (en) Low-voltage microbattery
JP2010080210A (en) Battery and method for manufacturing the same
WO2003043108A1 (en) Buried anode lithium thin film battery and process for forming the same
US20220376225A1 (en) Bonding Of Current Collector To Lithium Anode Of Solid-State Battery Using Metal Alloying
CN109935902B (en) Solid electrolyte, lithium battery cell and lithium battery
Lee et al. MultiLayer solid electrolyte for lithium thin film batteries
KR101383448B1 (en) Multi-layered battery as power source for user terminal and manufacturing method for the same

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees