JP3730164B2 - All-solid-state battery and manufacturing method thereof - Google Patents

All-solid-state battery and manufacturing method thereof Download PDF

Info

Publication number
JP3730164B2
JP3730164B2 JP2001369653A JP2001369653A JP3730164B2 JP 3730164 B2 JP3730164 B2 JP 3730164B2 JP 2001369653 A JP2001369653 A JP 2001369653A JP 2001369653 A JP2001369653 A JP 2001369653A JP 3730164 B2 JP3730164 B2 JP 3730164B2
Authority
JP
Japan
Prior art keywords
solid
state battery
electrode
insulating substrate
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001369653A
Other languages
Japanese (ja)
Other versions
JP2003168416A (en
Inventor
辰治 美濃
宏夢 松田
修二 伊藤
和也 岩本
洋 樋口
正弥 宇賀治
靖幸 柴野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2001369653A priority Critical patent/JP3730164B2/en
Publication of JP2003168416A publication Critical patent/JP2003168416A/en
Application granted granted Critical
Publication of JP3730164B2 publication Critical patent/JP3730164B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、1次電池または2次電池からなる全固体型電池およびその製造方法に関するものである。
【0002】
【従来の技術】
電子機器の小型化、軽量化に伴い、電池についても小型化、軽量化の傾向が強くなっている。これまでのような液状の電解質を用いた二次電池では遅々として縮小化が進んでいないのが現状である。これらに代って、従来から固体電解質を用いた電池が注目されており、固体であるがゆえにスパッタリング法、蒸着法、CVD法等による薄膜形成が可能となり、電池の薄型化が図られている(例えば特開平10−284130、特開昭59−60866)。しかし、これら全固体型電池の正負電極からの取出し端子については、単セルの場合が殆どで、従来の電池と同様にケースを正極あるいは負極に、キャップをその対極にする場合や、集電体とケースを兼ねる場合や(特開平3−80964、特開平4−112460、特開平11−102675等)、帯状のリード端子で取出す場合(特開平6−203826、特開平7−220754、特開平8−162151)があり、複数セルの場合での端子の取出し方法が不充分である。
【0003】
【発明が解決しようとする課題】
前述の全固体型電池の積層による並列接続の複数セル化を実現しようとすると、パターニングが必要となり、大型電池ならば正極、固体電解質、負極の膜形成時に金属マスクでの対応が考えられ、小型電池であればフォトリソグラフィ技術を使ってのマスク対応となる。また、積層セル数が多くなればなるほど、電極端子の取出しが複雑化され、パターニング技術も高度になり、コストアップは避けられない。他に、全固体型電池の単セルを個々に接続して複数セル化を実現しようとすると、個々の単セルにつながる金属リードの接続により並列、直列の接続が可能になるが、発電要素以外のリードの占める割合が大きくなり、電池を搭載する機器の小型化の妨げとなる。さらに、リード端子のない場合としてケースとキャップをそれぞれ電極端子とするコイン型の場合は、積み上げることで直列接続は可能だが、並列接続は不可能である。以上のように、全固体型電池は小型化や薄型化が可能であるにもかかわらず、単セルの並列接続による複数セル化の場合には大型化してしまい、機器の縮小化の妨げとなる。
【0004】
本発明は、このような課題を払拭することができ、単セルを積層するだけで複数セルの並列接続および直列接続を容易に実現することができる全固体型電池およびその製造方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明の全固体型電池は、正極、固体電解質および負極を積層した発電要素を絶縁基板で挟持し、絶縁基板の両外面に正極および負極の各々の取り出し電極を設け、発電要素の正極および負極の集電体と取り出し電極を接続するコンタクトホールおよび取り出し電極の同極同士を接続するスルーホールを絶縁基板に設けた全固体型電池であって、
全固体型電池の側面の一部を導電性ペーストで固定一体化して、側面より電極端子の取出しを可能にしたことを特徴とする。
【0006】
【発明の実施の形態】
以下、本発明を添付図面に基づいて説明する。図1に本発明の参考例の全固体型電池の構成断面図を示し、それらを複数積み重ね構成断面図を図2に示した。図3は請求項に係る発明の全固体型電池の構成を示す断面図であり、図4は請求項に係る発明の全固体型電池の構成を示す断面図である。また、図5は請求項に係る発明の全固体型電池の構成を示す断面図である。
【0007】
発明の参考例は、図1に示すように、金属パターンb(取出し電極)とコンタクトホールnを有する絶縁基板cを上下に配置し、その間に正極集電体h、正極d、固体電解質e、負極f、負極集電体iを積層した発電要素gを挟んで配置し、この発電要素gの正負極いずれか一方の例えば集電体iは、図1のようにそれを覆う絶縁基板cのいずれかの金属パターンbとコンタクトホールnを介して電気的に接続し、他方の集電体hはそれを覆う絶縁基板cのいずれかの金属パターンbとコンタクトホールnを介して電気的に接続しており、上下の絶縁基板cを接着することにより発電要素を封止して、この封止体の表面のコンタクトホールnで接続された金属パターンbから裏面のコンタクトホールnで接続されていない金属パターンbまで、発電要素gを挟む絶縁基板cを貫通するスルーホールaを介して金属パターンbにより導電している構造とする全固体型電池である。
【0008】
この全固体型電池によれば、単セルの上面に取り出し電極による正極端子と負極端子が存在し、下面にも同様に正極端子と負極端子が存在することになるため、単セルを積み上げるだけで容易に並列接続が可能となり、発電要素以外のリードの占める割合が小さくなるため、電池を搭載する機器の縮小化の妨げとならない。また、封止とリード取りつけが同時にできるため、組み立てプロセス工数を削減できる。
【0009】
また、本発明の参考例は、上述の単セルを積み上げて一体化することを特徴とする全固体型電池である。図2(a)は単セルの複数を積み上げて並列接続し、その複数セルを接着剤kにより一体化した場合である。この場合でも、その上面および下面のそれぞれの同一面内に正極端子と負極端子の両方が存在する構造になり、上下面いずれからでも容易に端子の取出しが可能になる。
【0010】
また図2(b)は前述の単セルを左右入れ替えた状態で積み上げて直列接続したものである。この場合、単セルの複数を積層しただけで直列接続が可能であり、その一体化セルの上面と下面のいずれか一方が正負極取出し端子のいずれか一方に、他方の面がいずれか一方の電極取出し端子になり、上下面のいずれを正極端子とするか負極端子にするかを自由に選択することが可能になる。
【0011】
請求項に記載の発明は、図3に示すように、上述の並列接続による複数セル化した全固体型電池の側面の一部を導電性ペーストmで固定一体化して、側面より電極端子の取出しを可能にしたことを特徴とする全固体型電池である。この全固体型電池によれば、単セルを複数積み重ねて一体化した全固体型電池の上下面以外に、側面からでも容易に端子の取出しが可能となる。
【0012】
請求項に記載の発明は、図4に示すように、上述の絶縁基板cの内部に発電要素gが複数配置され、個々の発電要素gが基板内部の金属配線により並列接続(図示)または直列接続されていることを特徴とする全固体型電池である。この全固体型電池によれば、上述のように単セルを2枚の絶縁基板で挟むのではなく、複数のセルを2枚の絶縁基板で挟み込むため、薄型化した高容量、高電圧の全固体型電池を提供できる。
【0013】
請求項に記載の発明は、上述の単セルを並列接続または直列接続して複数積層する際に、それぞれの単セルの電気的導通をとる配線部が噛み合う形状になっていることを特徴とする全固体型電池である(図5)。相接触する配線部は取り出し電極の金属パターンbを兼ねており、接触する配線部の対向面にそれぞれ反対向きの段部を形成して互いに噛み合うようにしている。この全固体型電池によれば、単セルを複数積み重ねて一体化する際に、合わせずれが生じることなく積み重ねることができる。
【0014】
請求項に記載の発明は、上述の絶縁基板が樹脂基板、セラミック基板またはガラス基板であることを特徴とする全固体型電池である。これらの絶縁基板を用いて、請求項1〜請求項の全固体型電池が提供できる。
【0015】
請求項に記載の発明は全固体型電池の製造方法であり、発電要素gを絶縁基板cで挟持した後で、小径のドリルにより穴を空け、導電性ペーストで埋めてスルーホールaを形成することを特徴とする。スルーホールaは発電要素gを挟持後に形成することで、挟む上下の絶縁基板cの表裏面にある電極取出し端子が表裏で確実に電気的導通を取れることになる。スルーホールaの形成は、レーザー等の他の方法でも可能である。
【0016】
ここで用いる固体電解質薄膜材料としては,銀イオン導電性固体電解質,銅イオン導電性固体電解質,リチウムイオン導電性固体電解質,プロトン導電性固体電解質を用いることができる。リチウムイオン導電性固体電解質薄膜を用いた場合には,電極材料薄膜としては,LixCoO2,LixNiO2,LixMn24,LixTiS2,LixMoS2,LixMoO2,Lix25,Lix613,金属リチウム,Li3/4Ti5/34等通常リチウム電池に用いられる化合物を所望する電池電圧により組み合わせて用いることができる。リチウムイオン導電性固体電解質としては,Li2S−SiS2,Li3PO4−Li2S−SiS2,LiI−Li2S−SiS2,LiI,LiI−Al23,Li3N,Li3N−LiI−LiOH,Li2O−SiO2,Li2O−B23,LiI−Li2S−P25,LiI−Li2S−B23,Li3.6Si0.60.44,LiI−Li3PO4−P25等が用いることができる。また,固体電解質薄膜に銅イオン導電体を用いた場合には,金属Cu,Cu2S,CuxTiS2,Cu2Mo67.8等を用いることができる。銅イオン導電性固体電解質としては,RbCu41.5Cl3.5,CuI−Cu2O−MoO3,Rb4Cu167Cl13等を用いることができる。また,固体電解質薄膜に銀イオン導電体を用いた場合には,金属Ag,Ag0.725,AgxTiS2等を用いることができる。銀イオン導電体としてはα―AgI,Ag64WO4,C65NHAg56,AgI−Ag2O−MoO3,AgI−Ag2O−B23,AgI−Ag2O−V25等を用いることができる。さらにプロトン導電性固体電解質を用いた場合には形成する電池がニッケル水素電池の場合には,負極にTiFe,ZnMn2,ZrV2,ZrNi2,CaNi5,LaNi5,MmNi5,Mg2Ni,Mg2Cu,正極にはNi(OH)2を用いることができる。プロトン導電体としてはLaMg0.5Ce0.53,La2Zr27,α―Al23等を用いることができる。
【0017】
【実施例】
以下、本発明の実施例について図面を参照して説明する。
【0018】
(実施例1)
図6から図8は本発明にかかる形成方法の工程順断面図を示している。まず図6(1)に示すように15mm×15mm厚さ300μmの金属アルミ板1の上にSUS304製の金属マスク2を被せる。金属マスク2は8mm×5mmのサイズでパターニングされている。その後、図6(2)に示すようにLiCoO2の正極活物質3をスパッタする。スパッタ条件は200Wパワー、Ar/O2=3/1を20SCCM、20mTorrで、厚さ5μmに成膜した後、400℃2時間アニ−ルを行い、その上にLi2S−SiS2−Li3PO4の固体電解質膜4を厚み2μmで形成し、更にその上に、グラファイトの負極活物質膜5を厚み5μmで形成し、順にレーザーアブレーション法により積層する。レーザーアブレーションの条件は、レーザー:YAGレーザー266nm、エネルギー密度:2025mJ/cm2、繰り返し周波数10Hz、ショット数:36000、基板温度:800℃、10-2Torrで行う。その際、パターニングは正極活物質膜の形成と同様に金属マスクで行う(図6(3))。コバルト酸リチウム膜を形成した後、比較的高温で加熱する目的は、その膜を結晶化させることによってイオン伝導度を向上させ電池特性を向上させるためである。
【0019】
更にその上に負極の集電体の金属銅膜6を真空蒸着法で1μm形成し発電要素が完成する(図6(4))。次に図6(5)のように金属マスク2を取り外し積層体ができあがる。続いて、図7(1)に示すようにパターニングされた銅薄膜8を有する絶縁基板7に1mm径のドリルで開口し(図7(2))、Agペーストで埋めることでコンタクトホール9を形成し(図7(3))、その上に前述の発電要素(1、3〜6)をAgペーストで貼り付ける(図7(4))。この時、発電要素の集電体である金属アルミ板1はコンタクトホール9を介して取り出し電極である銅薄膜(電極取出し端子)8と電気的に接続させる。次に図8(1)に示すように発電要素の周縁部をエポキシ樹脂10(日東電工製:LSS520)で塗布し、その上から前述同様に作製した銅薄膜8とコンタクトホール9を有する絶縁基板7をかぶせ、100℃、10分、1kgf/cm2の条件で加熱圧着し、エポキシ樹脂10を硬化させて封止し、単電池とした。続いて図8(2)に示すように前述の単電池の表裏を貫通する穴をドリルで開口し、図8(3)のようにAgペーストで開口部を埋め、スルーホール11を形成した。この時、単電池の表面の銅薄膜と裏面の銅薄膜が電気的に導通した状態となる。これを4層に積み上げ、周囲をエポキシ系接着剤12(バンティコ(株)製:アラルダイト)で固めることで全固体型電池を得た(図9)。
【0020】
この様にして作成した電池は、正常に充放電が行えて800μAhの容量が得られた。
【0021】
(実施例2)
実施例1と製造方法は同じにして、絶縁基板にニッケル膜が付き、複数の貫通孔を有するセラミック基板を用いて固体電解質電池を作製した。基板は京セラ製で、作製を依頼し入手した。サイズは15mm×15mm厚さ300μmのアルミナ基板で電池の形成領域に10μmの貫通孔を10個空け、はんだで埋めたものである。図8(3)における基板7がアルミナ製セラミック基板である。
【0022】
この様にして作成した電池は、実施例1と同様に正常に充放電が行えて800μAhの容量が得られた。
【0023】
(実施例3)
実施例1と製造方法は同じにして完成した単電池を(図8(3)に相当)、4層に積み上げ、周囲の2箇所を銀ペーストで、その他の部分をエポキシ系樹脂(米国製バリアン社製:トールシール)で固めることで全固体型電池を得た。これにより、側面から電極端子の取出しを可能な全固体二次電池を得た(図3)。
【0024】
この様にして作成した電池は、正常に充放電が行えて800μAhの容量が得られた。
【0025】
(実施例4)
実施例1と製造方法は同じにして絶縁基板である絶縁配線基板上に発電要素を2個配置し、その上から絶縁配線基板を被せる。この時、上下のパターニングされた銅薄膜により2個の発電要素が並列につながるように配置する。これらを4層に積み上げ、その周囲エポキシ系樹脂(米国製バリアン社製:トールシール)で固めることで全固体型電池を得た。これにより、表裏面から電極端子の取出しが可能な全固体型電池を得た(図4)。
【0026】
この様にして作成した電池は、正常に充放電が行えて1600μAhの容量が得られた。
【0027】
(実施例5)
実施例1と製造方法は同じにして完成した単電池を(図8(3)に相当)、断面から見て、個々の電池が左右逆向きになるように4層に積み上げ、その周囲をエポキシ系樹脂(米国製バリアン社製:トールシール)で固めることで全固体型電池を得た。これにより、単電池の直列接続を実現し、16Vの電圧が得られた(図10)。
【0028】
(実施例6)
実施例1と製造方法は同じにして、使用する銅張り絶縁基板のパターニングされた厚さ50μmの銅薄膜(電極取出し端子)の一部がエッチングされて10μmとしている。銅薄膜(電極取出し端子)の他の部位は50μmであるので、銅薄膜(電極取出し端子)上に40μmの段差が設けられた銅張り絶縁基板である。この段差を噛み合うように4層に積み上げ、その周囲をエポキシ系樹脂(米国製バリアン社製:トールシール)で固めることで全固体型電池を得た。これにより、積層ずれが生じることなく表裏面から電極端子の取出しが可能な全固体型電池を得た(図5)。尚、銅薄膜のエッチングは、ポリイミドテープ(カプトンテープ)を使ってエッチング不要個所をカバーし、硝酸水溶液(1:1=H2O:HNO3)に浸し、テープを剥がした。
【0029】
この様にして作成した電池は、正常に充放電が行えて800μAhの容量が得られた。
【0030】
(実施例7)
実施例1と製造方法は同じにして、正極活物質がマンガン酸リチウム、固体電解質がLi2S−SiS2−Li3PO4、負極活物質がグラファイトの全固体二次電池を得た。Liイオンの固体電解質としてはLi2O−SiO2、Li2O―B23、Li−Li2S―P35、LiI−Li2S−B23、Li3.6Si0.60.44、LiI−Li3PO4−P25なども有効であった。
【0031】
【発明の効果】
請求項1記載の全固体型電池によれば、単セルの上面に取り出し電極による正極端子と負極端子が存在し、下面にも同様に正極端子と負極端子が存在することになるため、単セルを積み上げるだけで容易に並列接続が可能となる。また、封止とリード取りつけが同時にできるため、組み立てプロセス工数を削減できる。さらに、導電性ペーストにより全固定型電池の側面より電極端子の取り出しが可能となる。
【0032】
請求項2記載の全固体型電池によれば、請求項1と同様な効果がある。
【0033】
請求項記載の全固体型電池によれば、請求項1と同様な効果のほか、複数のセルを絶縁基板で挟み込むため、薄型化した高容量、高電圧の全固体型電池を提供できる。
【0034】
請求項記載の全固体型電池によれば、単セルを複数積み重ねて一体化する際に、合わせずれが生じることなく積み重ねることができる。
【0035】
請求項記載の全固体型電池によれば、請求項1と同様な効果がある。
【0036】
請求項記載の全固体型電池の製造方法によれば、スルーホールを発電要素を絶縁基板で挟持後に形成することで、挟む上下の絶縁基板の表裏面にある電極取出し端子が表裏で確実に電気的導通を取れることになる。
【図面の簡単な説明】
【図1】 本発明の参考例における電池の断面図である。
【図2】 (a)は複数の電池を積み重ね並列接続した状態の断面図、(b)は複数の電池を積み重ね直列接続した状態の断面図である。
【図3】 本発明の実施の形態の複数の電池を積み重ねて側面の一部を導電ペーストで固定した状態の断面図である。
【図4】 複数の電池を絶縁基板に挟持した状態の断面図である。
【図5】 電極取り出し端子を噛み合わせ可能な形状にして複数の電池を積み重ねた状態の断面図である。
【図6】 本発明の一実施形態における電池の発電要素の製造工程を示す断面図である。
【図7】 本発明の一実施形態における電池の絶縁基板の製造工程を示す断面図である。
【図8】 電池の製造工程の配線工程の断面図である。
【図9】 複数の単電池を積み重ねて並列接続した状態の断面図である。
【図10】 複数の単電池を積み重ねて直列接続した状態の断面図である。
【符号の説明】
a スルーホール
b 金属パターン(電極取出し端子)
c 絶縁基板
d 正極
e 固体電解質
f 負極
g 発電要素
h 正極集電体
i 負極集電体
k 接着剤
m 導電ペースト
n コンタクトホール
1 金属アルミ板(正極集電体)
2 金属マスク
3 正極活物質
4 固体電解質
5 負極活物質
6 金属銅膜(負極集電体)
7 絶縁基板
8 銅薄膜(電極取出し端子)
9 コンタクトホール
10 樹脂
11 スルーホール
12 樹脂
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an all solid state battery comprising a primary battery or a secondary battery and a method for producing the same.
[0002]
[Prior art]
As electronic devices become smaller and lighter, batteries tend to be smaller and lighter. At present, secondary batteries using a liquid electrolyte as in the past have not been reduced gradually. Instead of these, batteries using solid electrolytes have been attracting attention, and since they are solid, thin films can be formed by sputtering, vapor deposition, CVD, etc., and thinning of batteries has been achieved. (For example, JP-A-10-284130 and JP-A-59-60866). However, the terminals for taking out from the positive and negative electrodes of these all solid-state batteries are mostly single cells, as in the case of conventional batteries, when the case is the positive electrode or the negative electrode, and the cap is the counter electrode, And a case (JP-A-3-80964, JP-A-4-112460, JP-A-11-102675, etc.), and taking out with a belt-like lead terminal (JP-A-6-203826, JP-A-7-220754, JP-A-8 -162151), and the method of taking out terminals in the case of a plurality of cells is insufficient.
[0003]
[Problems to be solved by the invention]
Patterning is necessary to achieve parallel connection by stacking all-solid-state batteries as described above, and patterning is required for large batteries, and metal masks can be used when forming positive electrode, solid electrolyte, and negative electrode films. If it is a battery, it will be compatible with a mask using photolithography technology. Further, as the number of stacked cells increases, the extraction of electrode terminals becomes more complicated, the patterning technology becomes more advanced, and the cost increase is inevitable. In addition, when trying to realize multiple cells by individually connecting single cells of all solid state batteries, parallel and series connection is possible by connecting metal leads connected to each single cell, but other than power generation elements This leads to an increase in the proportion of leads, which hinders the downsizing of devices equipped with batteries. Further, in the case of a coin type having a case and a cap as electrode terminals without a lead terminal, series connection is possible by stacking, but parallel connection is impossible. As described above, all-solid-state batteries can be reduced in size and thickness, but in the case of a plurality of cells by parallel connection of single cells, the size is increased, which hinders the reduction of the size of the device. .
[0004]
The present invention provides an all-solid-state battery that can eliminate such problems and can easily realize parallel connection and series connection of a plurality of cells by simply stacking single cells, and a method for manufacturing the same. With the goal.
[0005]
[Means for Solving the Problems]
The all-solid-state battery of the present invention includes a power generation element in which a positive electrode, a solid electrolyte, and a negative electrode are stacked, sandwiched between insulating substrates, and each of the positive electrode and the negative electrode is provided on both outer surfaces of the insulating substrate. An all-solid-state battery in which an insulating substrate is provided with a contact hole connecting the current collector and the extraction electrode and a through hole connecting the same polarity of the extraction electrodes,
A part of the side surface of the all-solid-state battery is fixed and integrated with a conductive paste, and the electrode terminal can be taken out from the side surface.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described with reference to the accompanying drawings. FIG. 1 shows a structural cross-sectional view of an all solid state battery of a reference example of the present invention, and FIG. 2 shows a structural cross-sectional view in which a plurality of them are stacked. Figure 3 is a sectional view showing a structure of an all-solid-state battery of the invention according to claim 1, FIG. 4 is a sectional view showing a structure of an all-solid-state battery of the invention according to claim 3. FIG. 5 is a cross-sectional view showing the configuration of the all solid state battery of the invention according to claim 4 .
[0007]
In the reference example of the present invention, as shown in FIG. 1, an insulating substrate c having a metal pattern b (extraction electrode) and a contact hole n is arranged vertically, and a positive electrode current collector h, a positive electrode d, and a solid electrolyte e are interposed therebetween. , A negative electrode f, and a negative electrode current collector i are disposed to sandwich the power generation element g, and either the positive or negative electrode of the power generation element g, for example, the current collector i is covered with an insulating substrate c as shown in FIG. And the other current collector h is electrically connected to one of the metal patterns b on the insulating substrate c covering the metal pattern b and the contact hole n. The power generation element is sealed by bonding the upper and lower insulating substrates c, and the metal pattern b connected by the contact hole n on the front surface of the sealing body is connected by the contact hole n on the back surface. No metal pattern b A all solid state battery of a structure that is conductive with a metal pattern b via the through hole a penetrating an insulating substrate c sandwiching the power generating element g.
[0008]
According to this all-solid-state battery, there are a positive electrode terminal and a negative electrode terminal by an extraction electrode on the upper surface of the single cell, and a positive electrode terminal and a negative electrode terminal are also present on the lower surface. Parallel connection is easily possible, and the proportion of leads other than the power generation element is small, so that it does not hinder the reduction in the size of devices equipped with batteries. In addition, since the sealing and lead attachment can be performed at the same time, the number of assembly process steps can be reduced.
[0009]
In addition, a reference example of the present invention is an all solid state battery in which the above-described single cells are stacked and integrated. FIG. 2A shows a case where a plurality of single cells are stacked and connected in parallel, and the plurality of cells are integrated by an adhesive k. Even in this case, both the positive electrode terminal and the negative electrode terminal exist in the same surface of the upper surface and the lower surface, and the terminal can be easily taken out from either the upper or lower surface.
[0010]
FIG. 2 (b) shows the above-described single cells stacked and connected in series with the left and right being switched. In this case, it is possible to connect in series only by stacking a plurality of single cells, and either one of the upper surface and the lower surface of the integrated cell is one of the positive and negative electrode take-out terminals, and the other surface is either one. It becomes an electrode lead-out terminal, and it is possible to freely select which of the upper and lower surfaces is a positive terminal or a negative terminal.
[0011]
In the first aspect of the invention, as shown in FIG. 3, a part of the side surface of the all-solid-state battery formed into a plurality of cells by the parallel connection is fixed and integrated with the conductive paste m, and the electrode terminal is formed from the side surface. This is an all-solid-state battery characterized in that it can be taken out. According to this all solid-state battery, it is possible to easily take out the terminal from the side surface in addition to the top and bottom surfaces of the all solid state battery in which a plurality of single cells are stacked and integrated.
[0012]
In the invention according to claim 3 , as shown in FIG. 4, a plurality of power generation elements g are arranged inside the above-described insulating substrate c, and each power generation element g is connected in parallel by metal wiring inside the substrate (shown) or It is an all solid state battery characterized by being connected in series. According to this all-solid-state battery, a single cell is not sandwiched between two insulating substrates as described above, but a plurality of cells are sandwiched between two insulating substrates. A solid battery can be provided.
[0013]
The invention according to claim 4 is characterized in that when a plurality of the above-mentioned single cells are connected in parallel or in series, a wiring portion for electrically connecting each single cell is engaged. (FIG. 5). The wiring portions that are in phase contact also serve as the metal pattern b of the lead-out electrode, and stepped portions in opposite directions are formed on the opposing surfaces of the contacting wiring portions so as to mesh with each other. According to the all solid state battery, when a plurality of single cells are stacked and integrated, they can be stacked without causing misalignment.
[0014]
The invention according to claim 5 is an all solid state battery characterized in that the insulating substrate is a resin substrate, a ceramic substrate or a glass substrate. By using these insulating substrates, the all solid state battery according to claims 1 to 4 can be provided.
[0015]
The invention according to claim 6 is a method for manufacturing an all-solid-state battery. After the power generation element g is sandwiched between the insulating substrates c, a hole is formed by a small-diameter drill and filled with a conductive paste to form a through hole a. It is characterized by doing. By forming the through hole a after sandwiching the power generation element g, the electrode extraction terminals on the front and back surfaces of the sandwiched upper and lower insulating substrates c can be surely electrically connected to each other. The through hole a can be formed by other methods such as laser.
[0016]
As the solid electrolyte thin film material used here, a silver ion conductive solid electrolyte, a copper ion conductive solid electrolyte, a lithium ion conductive solid electrolyte, or a proton conductive solid electrolyte can be used. When a lithium ion conductive solid electrolyte thin film is used, the electrode material thin film includes Li x CoO 2 , Li x NiO 2 , Li x Mn 2 O 4 , Li x TiS 2 , Li x MoS 2 , and Li x MoO. 2 , Li x V 2 O 5 , Li x V 6 O 13 , metallic lithium, Li 3/4 Ti 5/3 O 4 and other compounds that are usually used in lithium batteries can be used in combination depending on the desired battery voltage. Examples of the lithium ion conductive solid electrolyte include Li 2 S—SiS 2 , Li 3 PO 4 —Li 2 S—SiS 2 , LiI—Li 2 S—SiS 2 , LiI, LiI—Al 2 O 3 , Li 3 N, Li 3 N-LiI-LiOH, Li 2 O-SiO 2, Li 2 O-B 2 O 3, LiI-Li 2 S-P 2 O 5, LiI-Li 2 S-B 2 S 3, Li 3.6 Si 0.6 P 0.4 O 4, LiI-Li 3 PO 4 can -P 2 S 5 or the like is used. In the case of using the copper ion conductor is a solid electrolyte thin film, it is possible to use metal Cu, Cu 2 S, Cu x TiS 2, Cu 2 Mo 6 S 7.8 or the like. As the copper ion conductive solid electrolyte, RbCu 4 I 1.5 Cl 3.5 , CuI—Cu 2 O—MoO 3 , Rb 4 Cu 16 I 7 Cl 13 or the like can be used. When a silver ion conductor is used for the solid electrolyte thin film, metal Ag, Ag 0.7 V 2 O 5 , Ag x TiS 2 or the like can be used. The silver ion conductor α-AgI, Ag 6 I 4 WO 4, C 6 H 5 NHAg 5 I 6, AgI-Ag 2 O-MoO 3, AgI-Ag 2 O-B 2 O 3, AgI-Ag 2 O-V 2 O 5 or the like can be used. If the battery to be formed when further using the proton conductive solid electrolyte of the nickel hydrogen battery is, TiFe the negative electrode, ZnMn 2, ZrV 2, ZrNi 2, CaNi 5, LaNi 5, MmNi 5, Mg 2 Ni, mg 2 Cu, the positive electrode may be used Ni (OH) 2. As the proton conductor, LaMg 0.5 Ce 0.5 O 3 , La 2 Zr 2 O 7 , α-Al 2 O 3 or the like can be used.
[0017]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
[0018]
(Example 1)
6 to 8 are sectional views in order of steps of the forming method according to the present invention. First, as shown in FIG. 6A, a metal mask 2 made of SUS304 is placed on a metal aluminum plate 1 having a size of 15 mm × 15 mm and a thickness of 300 μm. The metal mask 2 is patterned with a size of 8 mm × 5 mm. Thereafter, as shown in FIG. 6B, a LiCoO 2 positive electrode active material 3 is sputtered. The sputtering conditions were 200 W power, Ar / O 2 = 3/1 with 20 SCCM, 20 mTorr, and a film thickness of 5 μm, followed by annealing at 400 ° C. for 2 hours, and then Li 2 S—SiS 2 —Li. 3 A PO 4 solid electrolyte film 4 is formed with a thickness of 2 μm, and a graphite negative electrode active material film 5 is formed thereon with a thickness of 5 μm, and sequentially laminated by a laser ablation method. The conditions of laser ablation are laser: YAG laser 266 nm, energy density: 2025 mJ / cm 2 , repetition frequency 10 Hz, shot number: 36000, substrate temperature: 800 ° C., 10 −2 Torr. At that time, patterning is performed with a metal mask in the same manner as the formation of the positive electrode active material film (FIG. 6C). The purpose of heating the lithium cobalt oxide film at a relatively high temperature is to improve the battery characteristics by improving the ionic conductivity by crystallizing the film.
[0019]
Further, a metal copper film 6 as a negative electrode current collector is formed thereon with a thickness of 1 μm by a vacuum vapor deposition method to complete a power generation element (FIG. 6 (4)). Next, the metal mask 2 is removed as shown in FIG. Subsequently, as shown in FIG. 7 (1), the insulating substrate 7 having the patterned copper thin film 8 is opened with a 1 mm diameter drill (FIG. 7 (2)), and contact holes 9 are formed by filling with Ag paste. (FIG. 7 (3)), and the power generation element (1, 3-6) is pasted thereon with an Ag paste (FIG. 7 (4)). At this time, the metal aluminum plate 1 that is the current collector of the power generation element is electrically connected to the copper thin film (electrode extraction terminal) 8 that is the extraction electrode through the contact hole 9. Next, as shown in FIG. 8 (1), the peripheral portion of the power generation element is coated with an epoxy resin 10 (manufactured by Nitto Denko: LSS520), and an insulating substrate having a copper thin film 8 and a contact hole 9 produced in the same manner as described above. 7 was applied, and thermocompression bonded under conditions of 100 ° C., 10 minutes, 1 kgf / cm 2 , the epoxy resin 10 was cured and sealed, and a unit cell was obtained. Subsequently, as shown in FIG. 8 (2), a hole penetrating the front and back of the unit cell was opened with a drill, and the opening was filled with Ag paste as shown in FIG. At this time, the copper thin film on the surface of the unit cell and the copper thin film on the back surface are electrically connected. This was stacked in four layers, and the periphery was hardened with an epoxy adhesive 12 (manufactured by Bantico Co., Ltd .: Araldite) to obtain an all-solid-state battery (FIG. 9).
[0020]
The battery thus produced was able to charge and discharge normally and a capacity of 800 μAh was obtained.
[0021]
(Example 2)
The manufacturing method was the same as in Example 1, and a solid electrolyte battery was fabricated using a ceramic substrate having a nickel film on an insulating substrate and having a plurality of through holes. The substrate was manufactured by Kyocera, and was obtained upon request. The size is a 15 mm × 15 mm 300 μm thick alumina substrate with 10 through holes of 10 μm formed in the battery formation region and filled with solder. The substrate 7 in FIG. 8 (3) is an alumina ceramic substrate.
[0022]
The battery produced in this manner was normally charged and discharged in the same manner as in Example 1, and a capacity of 800 μAh was obtained.
[0023]
(Example 3)
A cell completed in the same manufacturing method as in Example 1 (corresponding to FIG. 8 (3)) is stacked in four layers, two places around it are silver paste, and the other part is an epoxy resin (Varian made in USA) An all-solid battery was obtained by hardening with Toll Seal). Thereby, an all-solid-state secondary battery capable of taking out electrode terminals from the side surface was obtained (FIG. 3).
[0024]
The battery thus produced was able to charge and discharge normally and a capacity of 800 μAh was obtained.
[0025]
(Example 4)
The manufacturing method is the same as that of the first embodiment, and two power generation elements are arranged on an insulating wiring substrate which is an insulating substrate, and the insulating wiring substrate is placed thereon. At this time, the two power generating elements are arranged in parallel by the upper and lower patterned copper thin films. These were stacked in four layers and solidified with a surrounding epoxy resin (manufactured by Varian, USA: Toll Seal) to obtain an all-solid-state battery. As a result, an all solid state battery in which the electrode terminals can be taken out from the front and back surfaces was obtained (FIG. 4).
[0026]
The battery produced in this way was able to charge and discharge normally and a capacity of 1600 μAh was obtained.
[0027]
(Example 5)
Unit cells completed in the same manner as in Example 1 (corresponding to FIG. 8 (3)) are stacked in four layers so that the individual cells are opposite to each other when viewed from the cross section. An all-solid-state battery was obtained by solidifying with a system resin (manufactured by Varian, USA: Toll Seal). Thereby, the series connection of the cells was realized, and a voltage of 16 V was obtained (FIG. 10).
[0028]
(Example 6)
The manufacturing method is the same as in Example 1, and a part of the patterned copper thin film (electrode extraction terminal) having a thickness of 50 μm is etched to 10 μm. Since the other part of the copper thin film (electrode extraction terminal) is 50 μm, it is a copper-clad insulating substrate provided with a step of 40 μm on the copper thin film (electrode extraction terminal). The steps were stacked in four layers so as to engage with each other, and the periphery thereof was solidified with an epoxy resin (manufactured by Varian, USA: Toll Seal) to obtain an all-solid-state battery. As a result, an all-solid-state battery in which electrode terminals can be taken out from the front and back surfaces without causing a stacking deviation was obtained (FIG. 5). The copper thin film was etched by using polyimide tape (Kapton tape) to cover the portions that do not require etching, dipping in a nitric acid aqueous solution (1: 1 = H 2 O: HNO 3 ), and peeling off the tape.
[0029]
The battery thus produced was able to charge and discharge normally and a capacity of 800 μAh was obtained.
[0030]
(Example 7)
The manufacturing method was the same as in Example 1, and an all solid secondary battery in which the positive electrode active material was lithium manganate, the solid electrolyte was Li 2 S—SiS 2 —Li 3 PO 4 , and the negative electrode active material was graphite was obtained. As Li ion solid electrolyte, Li 2 O—SiO 2 , Li 2 O—B 2 O 3 , Li—Li 2 S—P 3 O 5 , LiI—Li 2 S—B 2 S 3 , Li 3.6 Si 0.6 P 0.4 O 4, etc. LiI-Li 3 PO 4 -P 2 S 5 were also effective.
[0031]
【The invention's effect】
According to the all-solid-state battery of claim 1, since the positive electrode terminal and the negative electrode terminal by the extraction electrode are present on the upper surface of the single cell, and the positive electrode terminal and the negative electrode terminal are similarly present on the lower surface, the single cell Parallel connection can be easily achieved simply by stacking. In addition, since the sealing and lead attachment can be performed at the same time, the number of assembly process steps can be reduced. Further, the electrode terminal can be taken out from the side surface of the all fixed battery by the conductive paste.
[0032]
According to the all-solid-state battery of Claim 2, there exists an effect similar to Claim 1.
[0033]
According to the all solid state battery of the third aspect , in addition to the same effect as that of the first aspect, since the plurality of cells are sandwiched between the insulating substrates, a thinned, high capacity, high voltage all solid state battery can be provided.
[0034]
According to the all solid state battery of the fourth aspect, when a plurality of single cells are stacked and integrated, they can be stacked without causing misalignment.
[0035]
According to the all-solid-state battery of Claim 5, there exists an effect similar to Claim 1.
[0036]
According to the method for manufacturing an all-solid-state battery according to claim 6 , by forming the through hole after the power generation element is sandwiched between the insulating substrates, the electrode extraction terminals on the front and back surfaces of the sandwiched upper and lower insulating substrates can be reliably Electrical continuity can be obtained.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a battery in a reference example of the present invention.
2A is a cross-sectional view of a state in which a plurality of batteries are stacked and connected in parallel, and FIG. 2B is a cross-sectional view of a state in which a plurality of batteries are stacked and connected in series.
FIG. 3 is a cross-sectional view of a state in which a plurality of batteries according to an embodiment of the present invention are stacked and a part of a side surface is fixed with a conductive paste.
FIG. 4 is a cross-sectional view of a state in which a plurality of batteries are sandwiched between insulating substrates.
FIG. 5 is a cross-sectional view of a state in which a plurality of batteries are stacked in a shape in which electrode take-out terminals can be engaged with each other.
FIG. 6 is a cross-sectional view showing a manufacturing process of the power generating element of the battery in one embodiment of the present invention.
FIG. 7 is a cross-sectional view showing a process for manufacturing an insulating substrate of a battery in one embodiment of the present invention.
FIG. 8 is a cross-sectional view of a wiring process in a battery manufacturing process.
FIG. 9 is a cross-sectional view of a state in which a plurality of unit cells are stacked and connected in parallel.
FIG. 10 is a cross-sectional view of a state in which a plurality of unit cells are stacked and connected in series.
[Explanation of symbols]
a Through hole b Metal pattern (electrode extraction terminal)
c Insulating substrate d Positive electrode e Solid electrolyte f Negative electrode g Power generation element h Positive electrode current collector i Negative electrode current collector k Adhesive m Conductive paste n Contact hole 1 Metal aluminum plate (positive electrode current collector)
2 Metal Mask 3 Positive Electrode Active Material 4 Solid Electrolyte 5 Negative Electrode Active Material 6 Metal Copper Film (Negative Electrode Current Collector)
7 Insulating substrate 8 Copper thin film (electrode extraction terminal)
9 Contact hole 10 Resin 11 Through hole 12 Resin

Claims (6)

正極、固体電解質および負極を積層した発電要素を絶縁基板で挟持し、前記絶縁基板の両外面に前記正極および前記負極の各々の取り出し電極を設け、前記発電要素の前記正極および前記負極の集電体と前記取り出し電極を接続するコンタクトホールおよび前記取り出し電極の同極同士を接続するスルーホールを前記絶縁基板に設けた全固体型電池であって、
前記全固体型電池の側面の一部を導電性ペーストで固定一体化して、側面より電極端子の取出しを可能にしたことを特徴とする全固体型電池。
A power generation element in which a positive electrode, a solid electrolyte, and a negative electrode are laminated is sandwiched between insulating substrates, and each of the positive electrode and the negative electrode is provided on both outer surfaces of the insulating substrate, and current collection of the positive electrode and the negative electrode of the power generation element a all-solid-state battery in which a through-hole in the insulating substrate for connecting the same poles of the contact hole and the take-out electrode connected body and the take-out electrode,
An all solid state battery, wherein a part of a side surface of the all solid state battery is fixed and integrated with a conductive paste, and an electrode terminal can be taken out from the side surface.
請求項1記載の全固体電池を単セルとし、その複数を積み重ねて一体化したことを特徴とする全固体型電池。  2. An all solid state battery characterized in that the all solid state battery according to claim 1 is a single cell, and a plurality of them are stacked and integrated. 前記絶縁基板内部に発電要素が複数並置され、個々の発電要素が前記絶縁基板内部の金属配線により並列接続または直列接続されている請求項1記載の全固体型電池。 It said insulating substrate inside the power generating element is more juxtaposed, all solid state battery connected in parallel or in series the connected claim 1, wherein each of the power generating element is a metal wire inside the insulating substrate. 前記単セルの表面に設けた前記単セル間の電気的導通をとる接触配線部が噛み合う形状になっている請求項2記載の全固体型電池。 The all solid state battery of claim 2, wherein the contact wiring portion is shaped to mate to provide electrical continuity between the unit cells provided on the surface of the single cell. 前記絶縁基板が樹脂基板、セラミック基板またはガラス基板である請求項1記載の全固体型電池。 2. The all solid state battery according to claim 1, wherein the insulating substrate is a resin substrate, a ceramic substrate, or a glass substrate. 正極、固体電解質および負極を積層した発電要素を絶縁基板で挟持し、前記絶縁基板の両外面に前記正極および前記負極の各々の取り出し電極を設け、前記発電要素の前記正極および前記負極の集電体と前記取り出し電極を接続するコンタクトホールおよび前記取り出し電極の同極同士を接続するスルーホールを前記絶縁基板に設けた全固体型電池の製造方法であって、前記スルーホールは前記発電要素を前記絶縁基板で挟んだ後に、前記絶縁基板に穴を空け、導電性ペーストで埋めて形成したことを特徴とする全固体型電池の製造方法。 A power generation element in which a positive electrode, a solid electrolyte, and a negative electrode are laminated is sandwiched between insulating substrates, and each of the positive electrode and the negative electrode is provided on both outer surfaces of the insulating substrate, and current collection of the positive electrode and the negative electrode of the power generation element a all-solid-state cell production method of having a through-hole in the insulating substrate for connecting the same poles of the contact hole and the take-out electrode connected body and the take-out electrode, the through hole is the said power generating element A method for producing an all-solid-state battery, comprising: forming a hole in the insulating substrate after filling the substrate with an insulating substrate, and filling the conductive substrate with a conductive paste.
JP2001369653A 2001-12-04 2001-12-04 All-solid-state battery and manufacturing method thereof Expired - Lifetime JP3730164B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001369653A JP3730164B2 (en) 2001-12-04 2001-12-04 All-solid-state battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001369653A JP3730164B2 (en) 2001-12-04 2001-12-04 All-solid-state battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2003168416A JP2003168416A (en) 2003-06-13
JP3730164B2 true JP3730164B2 (en) 2005-12-21

Family

ID=19179011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001369653A Expired - Lifetime JP3730164B2 (en) 2001-12-04 2001-12-04 All-solid-state battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3730164B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4713141B2 (en) * 2004-01-19 2011-06-29 パナソニック株式会社 Energy device and electronic device using the same
US7579109B2 (en) * 2004-01-19 2009-08-25 Panasonic Corporation Energy device and electronic equipment using the same, and method for producing energy device
JP4274014B2 (en) * 2004-03-18 2009-06-03 日産自動車株式会社 Conductive member and battery pack
JP4940718B2 (en) * 2005-07-04 2012-05-30 日産自動車株式会社 Battery module and battery module assembly method
JP5050858B2 (en) 2006-01-24 2012-10-17 株式会社村田製作所 Chip battery
KR100782162B1 (en) 2006-06-13 2007-12-06 (주)누리셀 Reserve battery having all solid state thin film battery
JP2008243761A (en) * 2007-03-29 2008-10-09 Sumitomo Electric Ind Ltd Solid thin-film battery
JP2009037965A (en) * 2007-08-03 2009-02-19 Hitachi Vehicle Energy Ltd Electrode sheet, group of electrodes, and lithium-ion battery
JP5251155B2 (en) * 2008-02-08 2013-07-31 住友電気工業株式会社 Power storage device
JP2009266589A (en) 2008-04-24 2009-11-12 Toyota Motor Corp Solid lithium secondary battery and method of manufacturing the same
CN102549808B (en) 2009-09-17 2015-05-20 株式会社村田制作所 Intercellular separation structure and stacked solid secondary battery comprising same
JP6277034B2 (en) 2014-03-26 2018-02-07 株式会社日本マイクロニクス Multilayer secondary battery
JP6688631B2 (en) * 2016-02-25 2020-04-28 セイコーインスツル株式会社 All-solid-state electrode body and electrochemical cell
CN107305939B (en) * 2016-04-25 2021-12-03 松下知识产权经营株式会社 Battery with a battery cell
WO2020045226A1 (en) * 2018-08-31 2020-03-05 日本ゼオン株式会社 Binder composition for all-solid-state secondary battery, slurry composition for all-solid-state secondary battery electrode mixture layer, slurry composition for all-solid-state secondary battery solid electrolyte layer, and all-solid-state secondary battery
JPWO2020230366A1 (en) * 2019-05-13 2020-11-19

Also Published As

Publication number Publication date
JP2003168416A (en) 2003-06-13

Similar Documents

Publication Publication Date Title
JP3730164B2 (en) All-solid-state battery and manufacturing method thereof
US8790801B2 (en) Integrated electrochemical and solar cell
CN101542790B (en) Battery
US7288340B2 (en) Integrated battery
EP1928051B1 (en) Thin film lithium battery
US20030118897A1 (en) Solid electrolyte cell and production method thereof
US7235112B2 (en) Micro-battery fabrication process including formation of an electrode on a metal strip, cold compression and removal of the metal strip
JP2016035921A (en) Power storage device
JP2007103129A (en) Thin film solid secondary battery and method of manufacturing thin film solid secondary battery
US20120321938A1 (en) Microbattery and method for manufacturing same
JP2004158222A (en) Multilayer layer built battery
US20190165342A1 (en) Thin-film battery with adhesive layer
JP2002352850A (en) Chip cell and its manufacturing method
JP3708474B2 (en) Semiconductor device
JP7474977B2 (en) battery
JP2020529712A (en) Laminated Battery Structures and Methods for Manufacturing Laminated Battery Structures
JP2004127743A (en) Thin film battery
KR100673616B1 (en) Silicon wafer for semiconductor with powersupply system on the backside of wafer
KR20170124302A (en) Flexible rechargeable battery
JP5008960B2 (en) All-solid-state lithium secondary battery manufacturing method and all-solid-state lithium secondary battery
JP2004303715A (en) Battery
JP3960033B2 (en) Stacked electrochemical device
JP2010080210A (en) Battery and method for manufacturing the same
KR20030023820A (en) Rechargeable Lithium Polymer Battery and Method for Making the Same
JP2003197164A (en) All solid battery built-in semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051005

R151 Written notification of patent or utility model registration

Ref document number: 3730164

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091014

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091014

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101014

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111014

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121014

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131014

Year of fee payment: 8

EXPY Cancellation because of completion of term