TWI335735B - Groupwise successive interference cancellation for block transmission with reception diversity - Google Patents

Groupwise successive interference cancellation for block transmission with reception diversity Download PDF

Info

Publication number
TWI335735B
TWI335735B TW095126443A TW95126443A TWI335735B TW I335735 B TWI335735 B TW I335735B TW 095126443 A TW095126443 A TW 095126443A TW 95126443 A TW95126443 A TW 95126443A TW I335735 B TWI335735 B TW I335735B
Authority
TW
Taiwan
Prior art keywords
equation
group
transmitter
antenna
communication
Prior art date
Application number
TW095126443A
Other languages
Chinese (zh)
Other versions
TW200723737A (en
Inventor
Kwak Jaeyoung
Jung Lin Pan
Zeira Ariela
Original Assignee
Interdigital Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Interdigital Tech Corp filed Critical Interdigital Tech Corp
Publication of TW200723737A publication Critical patent/TW200723737A/en
Application granted granted Critical
Publication of TWI335735B publication Critical patent/TWI335735B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/7103Interference-related aspects the interference being multiple access interference
    • H04B1/7105Joint detection techniques, e.g. linear detectors
    • H04B1/71055Joint detection techniques, e.g. linear detectors using minimum mean squared error [MMSE] detector
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D1/00Demodulation of amplitude-modulated oscillations
    • H03D1/02Details
    • H03D1/04Modifications of demodulators to reduce interference by undesired signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/7103Interference-related aspects the interference being multiple access interference
    • H04B1/7107Subtractive interference cancellation
    • H04B1/71072Successive interference cancellation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0848Joint weighting
    • H04B7/0854Joint weighting using error minimizing algorithms, e.g. minimum mean squared error [MMSE], "cross-correlation" or matrix inversion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03178Arrangements involving sequence estimation techniques
    • H04L25/03305Joint sequence estimation and interference removal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03178Arrangements involving sequence estimation techniques
    • H04L25/03312Arrangements specific to the provision of output signals
    • H04L25/03318Provision of soft decisions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/709Correlator structure
    • H04B1/7093Matched filter type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0212Channel estimation of impulse response
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Noise Elimination (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Description

B35735 九、發明說明: 【發明所屬之技術領域】 本發明大體上係有關於無線通信系統。明確地,本發明 係有關於在一無線通信系統中之多重使用者信號聯合偵測。 【先前技術】 第一圖係一無線通信系統1 〇之圖式。通信系 統^0具有基地台12】至125,其可與無線發射/接 收單7〇(臀丁111;)141至143通信。每一基地台12] 至1L皆具有一相關之操作範圍,該基地台可在 其操作範圍内與WTRU14〗至143通信。 在譬如分碼多重存取(CDMA)及使用分碼多 f存取之分時雙工(TDD/CDMA)等某些通信系統 中,可在相同的頻譜上傳輸多重通信訊息。煎型 地^藉由複數個通信訊息之碼片碼(chip c〇d;、)序 =來區別該等通信訊息。為了更有效率地利用頻 =二TDD/CDMA通信系統係使用劃分成時間槽之 旻訊框(repeating frame)來通信。在這種系統中 之Γ通^訊息,將具有根據通信頻寬為基礎 为派/、的一個或多重相關之碼及時間槽。 v由於可在相同頻譜中且在同一時刻傳送多重 =在Ϊ種系統中之一接收器必須可 出夕重通#訊息。用於偵測這種信號之一方 =係$酉己過濾㈤价^^也…丨叫卜在匹配過遽 ,可偵測到以一單一碼傳送的一通彳古訊_。2 Ϊ Ϊ Ϊ Ϊ Ϊ則可視為干擾。為了俄;多U 自使用多個匹配過濾器。另一方法則 :擾消除(SIC)。在SIC中,可偵測到通訊 息,且可自業經接收到之信號中扣 5 IS35735 之貢獻部份,以用於偵測次一通信訊息。 在某些情況下’希望能夠同時偵測多重通信 訊息以改良效能。同時偵測多重通信訊息者係稱 作聯合偵測。某些聯合偵測器係使用喬列斯基分 解(Choiesky decomposition)來實施一最小均方誤 差(MMSE)偵測或迫零塊組等化器(zero_forcing block equalizer (ZF-BLE))。其他的聯合偵測接收 器係使用以傅利葉轉換(Fourier transform)為基礎 之實現方式’以更進一步降低複雜性。B35735 IX. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates generally to wireless communication systems. Specifically, the present invention relates to joint detection of multiple user signals in a wireless communication system. [Prior Art] The first figure is a diagram of a wireless communication system. The communication system has a base station 12] to 125 which is communicable with the wireless transmission/receiving unit 7 141 141 to 143. Each base station 12] to 1L has an associated operational range, and the base station can communicate with the WTRUs 14 through 143 within its operational range. In some communication systems, such as code division multiple access (CDMA) and time division duplex (TDD/CDMA) using code division multiple f access, multiple communication messages can be transmitted on the same frequency spectrum. The type of the communication message is distinguished by the chip code (chip c〇d;,) of a plurality of communication messages. In order to use the frequency=two TDD/CDMA communication system more efficiently, communication is performed using a repeating frame divided into time slots. In this system, the message will have one or more associated codes and time slots based on the communication bandwidth. v Since multiples can be transmitted in the same spectrum and at the same time = one of the receivers must be able to retransmit the # message. It is used to detect one of the signals = system 酉 过滤 过滤 (5) price ^ ^ also ... 丨 卜 在 在 匹配 在 在 在 在 在 在 在 在 在 在 在 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 2 Ϊ Ϊ Ϊ Ϊ 可视 can be considered as interference. For Russia; multiple Us use multiple matching filters. Another method is: Disturbance Elimination (SIC). In the SIC, the communication information can be detected, and the contribution of 5 IS35735 can be deducted from the received signal for detecting the next communication message. In some cases, it is desirable to be able to detect multiple communication messages simultaneously to improve performance. The simultaneous detection of multiple communication messages is referred to as joint detection. Some joint detectors use Choiesky decomposition to implement a minimum mean square error (MMSE) detection or zero_forcing block equalizer (ZF-BLE). Other joint detection receivers use a Fourier transform based implementation to further reduce complexity.

緣是’亟需以替代之方法來實施多重使用者 偵測。 【發明内容】 可在具有複數個天線元件之一天線陣列上接 收複數個資料信號。在一無線通信系統中,可於 一,享頻譜上傳輸該等資料信號。可在其中某二 ,等天巧元件上接收到具有其中某一該等資料信 ^的一信號。該複數個資料信號可分組成複數個 ϊ η ?等天線元件之接收信號匹配過濾成該 一第一群組’以產生匹配過濾結 雜以匹配過濾結果來聯合地偵測該第一 可禮点1播2用每一天、線元件之偵測資料,即 -:擾修正信號。可自每一天線元 除結果,以對每-天線元件產 除結果gp可連 1地η:天線元件之干擾消 【實施方式】'地制其餘群組之資料。 不限ϊ 土使;I=f備接收單:jwtru)包括但 定或行動用戶單元、3怨:動電話基地台、固 或%夠在一無線環境中操作 6 1335735 第2圖係顯示使用聯合偵測(jd)與群組式連 續干擾消除(GSIC)之一適應性組合 的一簡化發射器26及接收器28,其中已使用丄 ,多樣化。在一典型系統中,一發射器26係位於 母一 WTRU 14〗至lh中,且用於傳送多重通作 訊息之多重發射電路26係位於每一基地台12 ^The reason is that there is no need to implement multiple user detection in an alternative way. SUMMARY OF THE INVENTION A plurality of data signals can be received on an antenna array having a plurality of antenna elements. In a wireless communication system, the data signals can be transmitted on a spectrum. A signal having one of the data messages ^ can be received on one of the second and other components. The plurality of data signals can be grouped into a plurality of antenna elements such as a plurality of antenna elements to be matched and filtered into the first group ' to generate matching filter noises to match the filtering result to jointly detect the first courtesy point. 1 broadcast 2 with each day, line component detection data, namely -: disturbance correction signal. The result can be divided from each antenna element to produce a result for each antenna element. gp can be connected to η: interference of the antenna element. [Embodiment] The data of the remaining groups are made. Not limited to earth; I=f standby receipt: jwtru) includes but or mobile subscriber unit, 3 complaints: mobile base station, solid or % enough to operate in a wireless environment 6 1335735 Figure 2 shows the use of joint A simplified transmitter 26 and receiver 28 that combines (jd) and grouped continuous interference cancellation (GSIC), which have been used, are diversified. In a typical system, a transmitter 26 is located in the parent-WTRUs 141 through lh, and a multiple transmit circuit 26 for transmitting multiple communication messages is located at each base station 12^

中。一基地台12l典型地將需要至少一發^ 路26’以與WTRU 14】至I、有效地通信。gsic_jd 接收器28可設於基地台12〗、WTRU 14〗至143、 ,兩者處,但更普遍之實施係亦設於一基地3台 ί二气中多重元件之使用係更為普遍者。gsic-A 斋28可自多重發射器26或發射 到通信訊息。 牧叹in. A base station 12l will typically require at least one way 26' to communicate effectively with the WTRUs 14 through 1. The gsic_jd receiver 28 can be located at the base station 12, the WTRUs 14 to 143, and both, but the more common implementation is also based on the use of multiple components in a base 3 ί two gas. The gsic-A 28 can be transmitted from the multiple transmitter 26 or to the communication message. Shepherd

儘管已結合實施於譬如TDD/CDMA哎分e 同 f CDMA(TD-CDMA)等一有槽 CDMAAlthough it has been implemented in a slotted CDMA such as TDD/CDMA, e and f CDMA (TD-CDMA)

之任何其他型式裝置。當此後提及時,一基地台 包括但不限於一基地台、節點B、網站控制器、 存取點、或一無線環境中之其他介面裝置。°° =應用來說明GSKXTD,但亦可應用至譬; 刀〒又工(FDD)/CDMA及CDMA 2000等由多i 通信,息分享相同頻帶之任何無線系統中。‘ 上僂射f 2”在一無線之無線電頻道3 產攻次^ ;。發射态26中之一資料產生器32 4 ί 在一參考頻道上與一接收器28 ^ : 料係根據通信頻寬需求為基礎,而 广予一個或更多碼及/或時間槽。一調變及擴石 tetgim4係將該參考資料擴展,且使舍 系統中,與適當分派之時段 槽及碼中的一連串序列 7 1335735 (time-multiplexed)。在非有槽系統中,該夂 號可不作時間多工化’而譬如為一幾乎^二号^ 區導引碼(global pilot)。最終之序列係稱:二$ 爆發。該通信爆發係藉由一調變器36而調 線電頻率。一天線38係經由無線之無線電^ 30 ’而將無線電頻率(RF)信號輻射至接收哭 ^ 一天線陣列40。用於傳輸通信訊息之調變π ^ 為熟於此項技藝之人士已知的任何者馨又 移相鍵控(DPSK)、正交移相鍵控(qj>Sk)、 二 振幅調變(QAM)。 ^止父 在有槽系統中,一典型之通信爆發丨6具一 中間碼20、一防護週期(guard peH〇 8、^ 資料場22、24,如第3圖所示。中間碼 兩資料% 22、24分離,且防護週期18係將 個通信爆發分離,以容許自不同發射器傳輸 爆發的抵達時間具有差異。兩資料場22、24句人 有通信爆發之資料,且典型地具有相同之符! 度。中間碼20包含有一連串序列。 ^收器2 8之天線陣列可接收各種無線電頻 率信號。天線陣列40具有P個天線元件41]至 41P。可藉由解調變器42〗至42p來解調變該 收信號,以產生基頻信號。藉由一頻道估計器裝 置44及一J}SIC-JD裴置46而得在時間槽中處理 ,等基頻信』號,且使適當之碼分派予相對應發射 f 26之>通„信爆發。頻道估計器裝置44係使用該 等$頻信號中之連串序列成份,以提供譬如頻道 脈衝反應等頻道資訊。GSIC-JD裝置46將利用該 頻ί資訊來估計該等接收通信爆發之傳輸資料係 硬式或軟式符碼。 第4圖係一 GSIC-JD裝置46之簡化圖。以 下將以粗體來表示序列、向量、及矩陣,且(· 係指示複數共軛轉置(transp〇se)運算,而 指f實轉置。K個信號爆發係在寬度為B之同二 =中同時有效。該K個爆發係#其不同之碼而 二,二在一 UMTS TDD CDMA系統中,該等碼包 括胞元特定擾碼(scrambling code)、及單一或夕 ίΐ固:碼。長度為N之有限傳輸資料符碼ί 列係如第一方程式β n 4k)y,d^ev, 其中k=l,2,...,K,及 第一方程式 母一貧料符碼€皆具有一持續時間Γ 二_碼(皆取自一複數Μ元集合ν,二 Μ個可能值,如第二方程式。 、有 Λ- 第一方程式. 照第符碼序列❿皆由碼W擴展。W係依 丨⑹4*)…4), 其中灸=人2,_..,尤,及《=7,2, ,2 ^ 第三方程式 母一碼cW在持續時間L中包括2個cW,立 中每一爆發之每一資料場皆由長^為^ 二片填滿。㈣擴展因素。儘管以下 i 5寸^ ί對所有κ個爆發皆使用一均勻的擴展因 複數輕易地延伸成,以可變擴展因素用於 複數個爆發。當以其各別之碼來調變資料後,該 、發典型地將通過一發射器(τχ)過濾器來實施 氏波整型。該接收天線陣列具有ρ個天線元件。 Κ個信號爆發係通過ΚχΡ個線性獨立之無線 复,道―’且該等頻道具有時變複數脈衝反應⑽5, = 灸=7,2,·.·,欠’且PU,..·,/3。代表一發射 ^與一天線70件p之連接。κ個爆發之頻道輸 =序,係於,一天線元件處疊加成P個接收序 2、。每一該等疊加序列皆經由接收器(RX)過濾器 過濾,以達成頻帶限制及雜訊抑制,且以碼片 速率yA來取樣。可由依照第四方程式之一向量 f表示每一發射器及每一天線元件的離散頻道脈 衝反應h㈣。 1^) = (0·ρ) ;^,p)…砧,P))7·. 其中 k=J,2,..”K,Ρ = :ΐ,2}.··,ρ、反 w = 】,2 ,w 第四方程式 妒係脈衝反應之長度。可在碼片速率下 取得妒個取樣中之每一個矽^,其中妒>7>然e而, 可輕易地將這種方法擴充成多重碼片速率取樣。 由於妒可大於&,因此可能出現符碼間干擾 (ISI)。典型地’可使用譬如一中間碼序列等一參 考序列來估計頻道脈衝反應h(*,P)。每一爆發及每二 天線之符碼反應可由第五方程式表示。 b(〜=4f,p)硓,p)…e么)、h(^)®c(〇, 其中 k=l,2,‘:,K ’ ρ = ΐ,2,.·.,ρ、及 1 = 12, 第五方程式 符碼反應之長度為2+恥/個石馬片,且代 表該荨碼片尾部向左側移動一單元符石馬。 在處理每一資料場之前,可使用一 +間碼消 B35735 2算t來消除中間碼對資料場之影響。在每-兀件上,接^序列r⑻之長度為(#2+队;), (p)Jn(p) 二、^ f=7,2,·..,户。每—’〜係κ個爆發與第六方程 式所不之一雜m序列的有效和。 η 矣中产1,2,…,P、及 i = ,(Nq+w j) 第六方程式 第七方程式係零平均及共變異矩陣。 R(:Xp)=4(p)n(p)W],where/> = 1,2, ...,ΡAny other type of device. As mentioned hereinafter, a base station includes, but is not limited to, a base station, a Node B, a website controller, an access point, or other interface device in a wireless environment. ° ° = application to illustrate GSKXTD, but can also be applied to any wireless system that shares the same frequency band by multi-i communication, such as FDD/CDMA and CDMA2000. '上偻射f 2' in a wireless radio channel 3 production attack ^;. One of the emission states 26 data generator 32 4 ί on a reference channel with a receiver 28 ^ : material system according to communication bandwidth Based on the demand, one or more codes and/or time slots are widely distributed. A modulation and expansion tetgim4 is to extend the reference data, and to make a sequence of time slots and codes in the system and the appropriate allocation. 7 1335735 (time-multiplexed). In a non-grooved system, the nickname can be used for time multiplexing, such as a global pilot. The final sequence is called: $ Outbreak. The communication bursts the line frequency by a modulator 36. An antenna 38 radiates radio frequency (RF) signals to the receiving antenna array 40 via the wireless radio 30'. Modulation of transmission communication messages π ^ Any of the known phase shifting keying (DPSK), quadrature phase shift keying (qj > Sk), two amplitude modulation (QAM) known to those skilled in the art ^. In the slotted system, a typical communication burst 丨 6 with a middle code 20, Protection period (guard peH〇8, ^ data field 22, 24, as shown in Figure 3. The intermediate code two data% 22, 24 are separated, and the protection period 18 separates the communication bursts to allow transmission from different transmitters. The arrival time of the outbreak is different. The 22 and 24 sentences of the two data fields have the information of the communication outbreak, and typically have the same degree! The intermediate code 20 contains a series of sequences. The antenna array of the receiver 28 can receive various kinds of Radio frequency signal. Antenna array 40 has P antenna elements 41] to 41P. The received signal can be demodulated by demodulation transformers 42 through 42p to generate a baseband signal. A channel estimator device 44 is provided. And a J}SIC-JD device 46 is processed in the time slot, and the base frequency signal is assigned, and the appropriate code is assigned to the corresponding transmission f 26. The channel estimator device 44 The serial sequence components of the $frequency signals are used to provide channel information such as channel impulse response. The GSIC-JD device 46 will use the frequency information to estimate the transmission data of the received communication bursts as hard or soft. Figure 4. Figure 4 is a GSIC-J A simplified diagram of the D device 46. The sequence, vector, and matrix are shown in bold below, and (· indicates a complex conjugate transpose operation, and f is a transposed. K signal bursts It is valid at the same time in the same width = B. The K bursts are different codes and two, and in a UMTS TDD CDMA system, the codes include a cell-specific scrambling code and a single Or ΐ ΐ :: code. The finite transmission data code ί of length N is as in the first equation β n 4k) y, d^ev, where k = l, 2, ..., K, and the first equation The mother-poor code has a duration Γ two _ codes (all from a complex 集合 ν, two possible values, such as the second equation. , there is Λ - the first equation. According to the first code sequence ❿ are extended by the code W. W is based on (6) 4*)...4), where moxibustion = person 2, _.., especially, and "=7, 2, , 2 ^ third-party program mother code cW includes 2 cW in duration L, Each data field in each outbreak of Lizhong is filled with two pieces of ^^^. (4) Expansion factors. Although the following i 5 inch ^ ί uses a uniform spread for all κ bursts, it is easily extended by the complex number, with variable spreading factors for multiple bursts. When the data is modulated by its respective code, the radiance will typically be implemented by a transmitter (τχ) filter. The receiving antenna array has ρ antenna elements. One signal burst is through a linear independent wireless complex, and the channels have time-varying complex impulse responses (10)5, = moxibustion = 7, 2, ···, under 'and PU, ..·, / 3. Represents a transmission ^ connection with an antenna 70 pieces p. The channel output of κ bursts is based on the superposition of P receiving orders at an antenna element. Each of the superposed sequences is filtered by a receiver (RX) filter to achieve band limiting and noise suppression, and is sampled at a chip rate yA. The discrete channel pulse response h(d) for each transmitter and each antenna element can be represented by a vector f according to the fourth equation. 1^) = (0·ρ) ;^,p)...anvil, P))7·. where k=J,2,..”K,Ρ = :ΐ,2}.··,ρ,反w = 】, 2 , w The length of the fourth equation is the pulse response. Each of the samples can be obtained at the chip rate, where 妒 > 7 > ̄ e, and this method can be easily Expanded to multiple chip rate sampling. Since 妒 can be greater than &, inter-symbol interference (ISI) may occur. Typically, a reference sequence such as a midamble sequence can be used to estimate the channel impulse response h(*, P The burst response of each burst and every two antennas can be represented by the fifth equation. b(~=4f,p)硓,p)...e?),h(^)®c(〇, where k=l, 2, ':, K ' ρ = ΐ, 2, .., ρ, and 1 = 12, the length of the fifth equation symbolic response is 2+ shame / stone horse, and represents the tail of the weight Move one unit to the left side of the stone. Before processing each data field, use a +-code to eliminate B35735 2 to calculate the effect of the intermediate code on the data field. On each-piece, the length of the sequence r(8) For (#2+ team;), (p)Jn(p) II, ^ f=7 , 2,·.., household. Each—'~ is a valid sum of κ bursts and the sixth equation is not one of the m-sequences. η 矣中中1,2,...,P, and i = , (Nq+ Wj) The sixth equation of the sixth equation is the zero-mean and co-variation matrix. R(:Xp)=4(p)n(p)W],where/> = 1,2, ...,Ρ

···· …一 .· , 其中尸=人2,...,户 第七方程式 每一天線元件上所接收到之每一爆發的轉移 系統矩陣為A㈣,且其大小為W2+ 。轉移 系統矩陣係具有頻道反應之傳輸爆發的一 捲積(convolution)。該轉移系統矩陣之每一元素 皆依照第八方程式。 a(m) = (a(5,p)),···· ...一 .· , where corpse = person 2, ..., household seventh equation The transfer system matrix for each burst received on each antenna element is A (four) and its size is W2+. The transfer system matrix has a convolution of the transmission burst of the channel response. Each element of the transfer system matrix is in accordance with Equation 8. a(m) = (a(5,p)),

其中 k = I,2,…,κ、p叫,2,…,P、i = J,2,〜,1 及 卜1,2,…,J, bf'9'1 for k -Where k = I, 2, ..., κ, p, 2, ..., P, i = J, 2, ~, 1 and Bu 1, 2, ..., J, bf'9'1 for k -

p ~ jP where I = 1,2,...,<2+w_1 n = 〇 otherwise 第八方程式 天線p的(^/β+兄轉移系統矩陣八⑼係 1335735 依照第九方程式。p ~ jP where I = 1,2,...,<2+w_1 n = 〇 otherwise Equation 8 Antenna p (^/β+ brother transfer system matrix eight (9) system 1335735 according to the ninth equation.

A(p) = [A0..) a{2'p) ·· A(JC-p)JA(p) = [A0..) a{2'p) ·· A(JC-p)J

其中 k = l,2, ...,K、反 p =】,2, :.,P 第九方程式 爆發k的尸π"AV轉移系統矩陣AW係 依照第十方程式。Where k = l, 2, ..., K, inverse p =], 2, :., P ninth equation The corpus of the outbreak k is the AV transfer system matrix AW according to the tenth equation.

A(i) = 'A(t.i)T A(t,2)T ··· A(i<i,)T 其中 A:、及尸= /,2,...,75A(i) = 'A(t.i)T A(t,2)T ··· A(i<i,)T where A:, and corpse = /,2,...,75

第十方程式 天線p處之接收序列r(p)係依照第十一方程 式。 r⑷=(r丨㈤r2。)…也+w-i) -A^d + nip) = ^A{hp)d(i) + η(ρ) 第十一方程式The tenth equation The reception sequence r(p) at the antenna p is in accordance with the eleventh equation. r(4)=(r丨(5)r2.)...also +w-i) -A^d + nip) = ^A{hp)d(i) + η(ρ) The eleventh program

總資料符碼向量係依照第十二方程式。 d:W)T,··. #)Γ)Γ -[d, d2 ··· dKN) 第十二方程式 d之各組成分量係依照第十三方程式。 (k) ^Ν{κ -l) + n ~ ^The total data symbol vector is in accordance with the twelfth equation. d: W)T,··. #)Γ)Γ -[d, d2 ··· dKN) The constituent components of the twelfth equation d are in accordance with the thirteenth equation. (k) ^Ν{κ -l) + n ~ ^

其中 &=i,2,··.,尺、及 n = 7,2,...,iV 第十:方程气 P(NQ+W-l)xKN總轉移系統矩陣a係依照 十四方程式。 ’、义.…乐Where &=i,2,··., ruler, and n = 7,2,...,iV tenth: equation gas P(NQ+W-l)xKN total transfer system matrix a is in accordance with the fourteen equation. ‘, right....le

A=“«r a ⑴了…A(户 F)T 弟十四方程式 12 13-35735 總雜訊向量n係依照第十五方程式 n=4(l)r n(2,…#)7 第十五方程式 n之各組成分量係依照第十六方程式。 71 (WQ+1V-1 )(?-〇+/ = n\ 实令 Ρ = 1,2,.··,ρ、反 i = 】 2> ,(NQ+W 】) ώ 第十六方程式 ^雜訊向量η之共變異矩陣係依照第十七方 程式 - _ R„ = £'|inM}A=“«ra (1)...A(house F)T brother fourteenth equation 12 13-35735 total noise vector n is in accordance with the fifteenth equation n=4(l)rn(2,...#)7 fifteenth The constituent components of equation n are in accordance with the sixteenth equation. 71 (WQ+1V-1)(?-〇+/ = n\ Ρ Ρ = 1,2,.··, ρ, 反 i = 】 2> ,(NQ+W 】) ώ The covariation matrix of the sixteenth equation ^the noise vector η is in accordance with the seventeenth equation - _ R„ = £'|inM}

Rp) RdX2)…R(iXiT rJx〇 r(2X2) ... ♦ · · * » ♦ « * • · * ♦ rW) -^{pyj) ... 其中 RpdpV叫, 其中 P=U,...,P、及 j = 1,2,...,P 第十七方程式 第十八方程式係表示總接收序列。 .(0r Μτ VI Γ2 …ΓΡ("β +识-1) A d +ιι )r 第十八方程式 之各組成分量係依照第十九方程式。 r _〆 r(WQ+V/-l)(/>-l)+i - ri其中尸H.,p、 (尸) 反 i = 】,2,...,(NQ+W-l) 13 第十九方程式 方程式。 總接收序列r係依照第 r-h{k) +n ' t=«lRp) RdX2)...R(iXiT rJx〇r(2X2) ... ♦ · · * » ♦ « * • · * ♦ rW) -^{pyj) ... where RpdpV is called, where P=U,.. ., P, and j = 1, 2, ..., P The seventeenth equation The eighteenth equation represents the total received sequence. (0r Μτ VI Γ2 ...ΓΡ("β +识-1) A d +ιι )r The constituent components of the eighteenth equation are in accordance with the nineteenth equation. r _〆r(WQ+V/-l)(/>-l)+i - ri where corpse H.,p, (corpse) anti i = 】,2,...,(NQ+Wl) 13 The nineteenth equation. The total received sequence r is in accordance with the r-h{k) +n ' t=«l

第二十方程式 rw=A⑷係代表 系列中之貢獻。總接收之信號在該接收 組線性等化器之一 G =較佳地係由使用塊 (valued)估計ί,如第_ ,以決定連續定值 乐一十一方程式。 、(ι)τ ,… • L.,)T d: 第二十一方程式 兩種使用 GSIC*^·*•、土 ===化器,但亦可使用收J = Ϊ ί= 一迫零(ZF)準則,❿另-種則係利 用一最小均方誤差(MMSE)準則。 以下係假設,附加雜訊為具有立體空間性及 暫存f生的隨機白雜訊,而總雜訊向量之共變異矩 陣係R” 〇 I。(7係附加雜訊之變異數,且I係 大小為KNxKN的單位矩陣(identity matrix)。利 用接收多樣化,可藉由將二次代價函數(quadratic cost function)/(a获)最小化而推導出ZF_BLE,如第 二十二方程式。 D=(r_ ^ _ 第一十二方程式 I係d的連續定值估計,而「_丨」係指反矩 13-35735 陣。j(aZf)之最小值將導致連續的定值且無偏移 (unbiased)估計t,如第二十三方程式。 “+ ^ A)_Vn第二十三方程式 MMSE-BLE可將二次代價函數《/㈠腐最小 化,如第二十四方程式。 j(d MMSE , = £idThe twentieth equation rw=A(4) represents the contribution in the series. The total received signal is one of the linear equalizers of the receiving group G = preferably estimated by the use of a valued value, such as _, to determine the continuous value of the eleven equation. , (ι)τ ,... • L.,)T d: The twenty-first equation uses GSIC*^·*•, soil=== chemist, but can also use J = Ϊ ί = one forcing zero ( The ZF) criterion, and the other, uses a minimum mean square error (MMSE) criterion. The following hypothesis is that the additional noise is a random white noise with stereo space and temporary storage, and the common mutation matrix of the total noise vector is R" 〇I. (7 series of additional noise variations, and I The identity matrix of size KNxKN. With reception diversification, ZF_BLE can be derived by minimizing the quadratic cost function/(a), such as the twenty-second equation. =(r_ ^ _ The first-order equation I is a continuous fixed-valued estimate of d, and "_丨" means the inverse moment of 13-35735. The minimum value of j(aZf) will result in continuous fixed values and no offset. (unbiased) Estimate t, as in the twenty-third equation. "+ ^ A)_Vn The twenty-third equation MMSE-BLE can minimize the quadratic cost function "/(a) rot, such as the twenty-fourth equation. j(d MMSE , = £id

MMSE άϊMMSE άϊ

MMSE d 第二十四方程式 係a之連續定值估計。藉由資料符碼之共 變異矩陣Rd=五{ddH}=I及總背景雜訊向量之共變 異矩陣Rn= σ 2I,之最小值將導致連續^值 估計,如第二十五方程式。 ^£=(Α^Α+σ2ΐΓΑ«Γ 第一十五方程式 I係表示ΚΝχΚΝ的單位矩陣。由於αηα係 一帶狀塊組托普利茨矩陣(banded bl〇ck TQepmz matrix),因此用於解資料向量之一方法係利用一 近似喬列斯基公式。喬列斯基公式可較精確 低複雜度,且其在效能上之減損係可忽略。 較佳地’為了同時降低複雜度,且去 及多重存取干擾(MAI),可結合BLE Γ GSIC(GSIC-BLE)。在 GSIC-BLE 中,較佳地可 ^ 巧巧收功率,而將K個爆發劃分成較少群組❶^ 里^ ,具有約略相同接收功率之爆發將 ^ 峻功:約略相同之爆發係具有在p個:等ί 率天線7L件上接收到之一組合功率者。 π a Ϊ每一干擾消除階段中,GSIC-BLE係老# 僅具有Κ個爆發中之一子集合(群組)的 15 MAI ’且聯合地偵測該群組之資料符碼。可利用 僧測到之該群組符碼來產生MAI,而其為該群組 將在後續階段中傳至其他群組者。可使用干擾消 除來去除該MAI。倘若選擇該群組之大小為κ, 則GSIC-BLE將成為一單一使用者BLE。可在一 步驟中決定所有資料。 〜了果,分組之臨界點可使複雜度與效能之間 取得妥協。在極端情況下,可使κ個爆發中的每 一個,皆受分派得其本身之階段。這種方法可提 供最低的複雜度。相反地,可將所有κ個爆發皆 分派至一單二階段,而具有最高的複雜度。 第4圖係具接收多樣化之GSIC-BLE的流程 ,。在具接收多樣化之GSIC_BLE中,所有爆發 S 31係藉由其接收功率或振幅之強度來排序, 為;強者,如步驟5〇。這種排序可根 處之先前經驗、或藉由通常用於SIC或 ΐ可座接環白境之其他估計方案而達成,這種方 定爆發頻道估計。丄已 順序。 爪…罘一十五方転式來決定遞減 2 h(*,p)" 其中帛二十五方程式 而將呈‘,二'中,GSIC_BLE可藉由表列順序, 相同功率、即相互之間皆在竿-特 二個爆發劃分成G個群ί該ί 序可表示為?力率而以遞減順序排列。該順 /、為卜1...G。%.係第z•群組中之爆發數量, 譬如|>,=[。接收器包括 係由舞組户1開始。 G個階段。一聯合偵測 對於每一群組 矩陣係依照第二十六方程式 略MMSE d The twenty-fourth equation is a continuous fixed value estimate of a. The minimum value of the common variation matrix Rn = σ 2I by the common variation matrix of the data symbols Rd = five {ddH} = I and the total background noise vector will result in a continuous value estimation, such as the twenty-fifth equation. ^£=(Α^Α+σ2ΐΓΑ«Γ The fifteenth equation I represents the unit matrix of ΚΝχΚΝ. Since ααα is a banded bl〇ck TQepmz matrix, it is used for solution. One of the data vectors uses an approximate Cholesky formula. The Cholesky formula can be more precise and less complex, and its performance impairment is negligible. Preferably, 'to reduce complexity at the same time, and go And Multiple Access Interference (MAI), which can be combined with BLE GS GSIC (GSIC-BLE). In GSIC-BLE, it is better to collect power and divide K bursts into fewer groups. ^, with an explosion of approximately the same received power will be ^ Jun Gong: approximately the same burst has one of the combined powers received on p: equal 率 rate antenna 7L. π a Ϊ each interference cancellation stage, GSIC -BLE is old # only has 15 MAI 's of one sub-set (group) of one outbreak and jointly detects the data symbol of the group. The group code can be detected to generate MAI And it is the group that will be passed to other groups in the subsequent stages. Interference can be used In addition to removing the MAI, if the size of the group is selected to be κ, GSIC-BLE will become a single user BLE. All data can be determined in one step. ~ Fruit, the critical point of grouping can make the complexity Compromise between performances. In extreme cases, each of the κ bursts can be assigned to its own stage. This approach provides the lowest complexity. Conversely, all κ bursts can be Assigned to a single two-stage, with the highest complexity. Figure 4 is a process for receiving diverse GSIC-BLE. In GSIC_BLE with diversity of reception, all bursts S 31 are received by power or The intensity of the amplitude is sorted as; strong, as in step 5. This sorting can be achieved by previous experience at the root, or by other estimation schemes commonly used in SIC or ΐ 座 白 , , , , Channel estimation. 丄 has been ordered. Claws... 罘 十五 転 来 决定 决定 决定 决定 决定 决定 决定 决定 决定 决定 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 , the same power, that is, between each other The two explosions are divided into G groups. The order can be expressed as the force rate and in descending order. The cis/, is 1...G.%. The number of outbreaks, such as |>,=[. The receiver includes the start of the dance group 1. G stages. A joint detection for each group matrix is in accordance with the twenty-sixth equation

其中 / = 7,2, ...,G MMSE-BLE之第二群組式 第二十七方程式。 ’Where / = 7,2, ..., G MMSE-BLE second group formula twenty-seventh equation. ’

·)μλ«£ = (Α(, Α(?0 + σ21 w ) =W(i)M(i) + 1-1,2,...,0 f 二十七方程式 第1群組之溫納估計器(Wiener estimator) / = /乂…刀將依照第二十八方·)μλ«£ = (Α(, Α(?0 + σ21 w ) =W(i)M(i) + 1-1,2,...,0 f The temperature of the first group of the twenty-seventh equation The estimator (Wiener estimator) / = /乂...the knife will follow the twenty-eighth square

Wf=k + CT;^f A^T1 ) 第二十八方程式 b係大小為NxN之單位矩陣,其中N係每一 爆發之每一資料場中的符碼個數。Wf=k + CT;^f A^T1 ) The twenty-eighth equation b is a unit matrix of size NxN, where N is the number of symbols in each data field of each burst.

ZF-BLE之某一群組式BLE 第二十六方程式 BLE矩陣係依照 在第一階段中,可決定出第一群組之轉移系 統矩陣A(g”。A(g”係類似於總轉移系統矩陣a,除了 其僅包含有相對應於第一群組中之爆發的符碼反 應以外。在第一階段中,可由總接收序列來給定 群組1之輸入序列’如第二十九方程式。 x(^ = r ^ ,, 第·一十九方程式 為了去除第一群組中之ISI、MAI、及爆發之 遠近效應(near-far effect),可實施具有Α(;)之一多 重使用者BLE(ZF-BLE或MMSE-BLE)。在步驟 54中’可依照第三十方程式取得群組1之軟式決 17 ⑴ g,S〇ft 策符碼d Λ d ω gfSqft :M?)j 其中 JVi^),/= / 7 广 ++ ,”.,G,其可為 M£W或 ,rl). 第三十方程式 鲁 承裁的一連續定值估計器,其代表 群扭Φ 4馬之資訊序列,且該等符碼係由第一 祀掳^之力全部爆發所傳達者。在步驟56中,可 _為基礎來實施硬式決策, ;=//,硬式決策變數‘而依:第 耘式來估计第一群組之^;對r之貢獻。 p1)A group BLE of the ZF-BLE The twenty-sixth equation BLE matrix is determined according to the first stage, and the transfer system matrix A(g" of the first group can be determined. A(g" is similar to the total transfer System matrix a, except that it only contains symbolic responses corresponding to bursts in the first group. In the first phase, the input sequence of group 1 can be given by the total received sequence as in the twenty-ninth The equation x(^ = r ^ ,, the ninth equation can be implemented to remove the ISI, MAI, and the near-far effect in the first group. Heavy user BLE (ZF-BLE or MMSE-BLE). In step 54, 'can take the soft decision of group 1 according to the thirtieth equation 17 (1) g, S〇ft strategy code d Λ d ω gfSqft :M? )j where JVi^), /= / 7 广++, "., G, which can be M£W or, rl). A continuous constant value estimator of the thirty-th equation, which is representative of group twist Φ 4 horse information sequence, and the code is transmitted by the first force of the first 。 ^. In step 56, can be based on the implementation of hard decision, ; = / /, hard decision 'And by: a first estimate of Yun group of the formula ^; r contribution to the p1).

•(U)T r; {itPf UX>P) 第二十一方程★ ., p =人2,··.,Ρ,係第一群組對天線p處之1 收序列的貢獻。在第二階段中,可藉由接 序列消去該MAI,而獲致干擾修正之輪入=,收 如第三十二方程式。 序列, χ卜[[(2,1)Γ 1(2,2,…f f Ρ〇) ih - 第 十二方程式 ZF-BLE之係依照第三十三方程式。 Φ (0 (ΟΙαΟ'^ λ (0• (U)T r; {itPf UX>P) The twenty-first equation ★ ., p = person 2,··.,Ρ, is the contribution of the first group to the sequence of 1 at the antenna p. In the second phase, the MAI can be eliminated by the sequence, and the rounding of the interference correction is obtained, which is obtained as the thirty-second equation. Sequence, [卜[[(2,1)Γ 1(2,2,...f f Ρ〇) ih - The twelfth equation ZF-BLE is in accordance with the thirty-third equation. Φ (0 (ΟΙαΟ'^ λ (0

AA

(0H 第三十三 方程式 MMSE-BLE之φ〗Μ系依照第三十四方程弋 18 1335735(0H thirty-third equation MMSE-BLE φ〗 依照 according to the thirty-fourth equation 弋 18 1335735

• A第三十四方程式 h係大小為(NQ+JV-i)x(JVQ+W-J)的一單位矩 陣。r/W係用於天線夕,且自天線^第一階段輸入 序列(天線p處之接收序列)之干擾修正向量中 扣除匕⑽的—新干擾修正輸入序列。 S 在譬如一第η個階段等後續階鉛中,可藉由 自先前階段之干擾修正輸入序列f中扣除^前 群組之ΜΑΙ,而得決定出一新的干擾修正輸入序 列,如第三十五方程式。• A thirty-fourth equation h is a unit matrix of size (NQ+JV-i)x(JVQ+W-J). The r/W is used for the antenna eve, and the new interference correction input sequence of 匕(10) is subtracted from the interference correction vector of the antenna first stage input sequence (receive sequence at the antenna p). In the subsequent step lead such as the nth phase, the new interference correction input sequence, such as the third, may be determined by subtracting the 前 group from the interference correction input sequence f in the previous stage. Fifteen equations.

ΧΪ) = χΓ) - if 】) =Κ))χΓ) Π (1. - φ*'}) r "1 第三十五方程式 乘積矩陣係依照第三十六方程式。 搞若a S b 倘若a >b Πχ,ΧΪ) = χΓ) - if 】) = Κ)) χΓ) Π (1. - φ*'}) r "1 The thirty-fifth equation The product matrix is in accordance with the thirty-sixth equation. If a &b; 搞, if a &b;

第三十六方程式 相似於第一階段,包括乂㈣, 可實施單一使用者或多重使用者BLe j以’抨脫 6〇 φ 群,、且本身之退近問題。在步驟 碼。中’可*第三十七方程式來表示軟式決策符 乐二十七方程式 在步驟62中,可使用軟式決策符 : 2硬式決策來產生硬式決策符喝a(L : +日由^ 中,該等硬式符碼係用於產生r中第 獻^,如第三十八方程式。 群,>且的貝 19 丄335735 = A? C 笛〜 上, 弟二十八方程式 ㈣相似於第一階段包括對於每一天線之 * ,户=;乂…,户。再次一階段中,可兹i έ楚; =輸j列ί除該ΜΑΙ來獲致干擾修曰正輸入序 歹J ’如第三十九方程式及步驟66。 ί(0 程式 第三十九方程式 在最後一步驟中,輸入序列將成為第四十方 4C) = 4C-1) - rf 第四十方程式 =Π (Ir <) 藉由實施單一或多重使用者BLE,即 第四十一方程式而葙致敖式決策符碼。 a C^=Mf)xf) 第四 + 士 弟四十一方裎式 可使用硬式決策,而自該等軟式決策 致最終階段之硬式決策符碼。藉由將 段皆考慮為接收序列之一線性過濾,則每一 之線性過濾器吋,卜7 G,將可依照第四二 程式。 方 Μ ΠΚ) Μ 0)Λ 程式 第四十二方裎式 每一階段之軟式決策符碼將依照第四 • _ I »- 方 20 A(0The thirty-sixth equation is similar to the first stage, including 乂(4), and it is possible to implement a single user or multiple users BLe j to remove the 6 φ group, and the problem of its own closeness. In the step code. In the 'can' thirty-seventh equation to represent the soft decision symbol twenty-seven equation in step 62, you can use the soft decision character: 2 hard decision to generate a hard decision character to drink a (L: + day by ^, the The hard code is used to generate the first contribution in r, such as the thirty-eighth equation. Group, > and the shell 19 丄 335735 = A? C flute ~ upper, brother twenty-eight equation (four) is similar to the first stage Including for each antenna *, household =; 乂 ..., household. In the first stage, can be i έ ;; = lose j column ί in addition to the ΜΑΙ to get the interference repair is entering the input 歹 J ' as the thirtieth Nine equations and step 66. ί (0 program thirty-ninth equation in the last step, the input sequence will become the fortieth party 4C) = 4C-1) - rf fortieth equation = Π (Ir <) The implementation of a single or multiple user BLE, that is, the forty-first equation, leads to the decision code. a C^=Mf)xf) The fourth + singer's forty-one formula can use hard decision making, and the hard decision code from the soft decision to the final stage. By considering the segments as linear filtering of one of the received sequences, each linear filter 卜, 卜 7 G, will follow the fourth program. Μ ΠΚ ΠΚ) Μ 0) Λ Program Forty-second square The soft decision code for each stage will follow the fourth • _ I »- square 20 A (0

i/>A =diag(^tnH A )d + dSJ^(〇w a ]d ma 严 + 4,)n 第四十三方程式 的H(x)i代_!矩陣x中僅包含有對角元素 『對:矩陣。,(X)係代表僅包含有X中除了 以外之,、他兀素的一零對角元素矩陣。 ★且所三ί程式中,第一項係代表*,群 μ匕之符碼、第二項係代表第,群組之ISIJ =項、及最後-項係第z•階段輸出處之背景3 係3 ;2f 一向量’ *中第y個組成分量 ί ί二ί ΐ ΐ f資严符碼向量《。的第7.個組成分 輪資料篇踩a β二a第j個,、且成分量係在總傳 ΪΪΛ 中所有其他傳輸符碼的-加Ξ < 相關性係由其共變異矩^ 、',口疋,其中Rn係總接收序列中 ㈣共變異數冬階段輸出處= ^ ^唬對干擾與雜訊比(SIN R)係依照第四十四^ 其中 FWWA,j=n+N(k-l),i=l,2,...,G, H’2 μ,2,..,ν 第四十四方程4 刻筮i并认-*夏 LxJj,j係才曰不矩陣X中第· 列第J仃的7L素。;r =以以、係 7 在數佶捃&丄 x叩u <丹變異矩陣。 在數值杈擬中,全BLE_FBLE(僅具有一單一 21 1335735 階段之BLE)係表現出優於GSIC-BLE之效能。當 考慮1%至10%之未編碼位元錯誤率(BER)之編碼 增益時,GSIC-BLE之效能將與FBLE者接近。 GSIC-BLE亦適用於多重碼方案,其中某些 或全部的使用者係傳輸多重碼。來自同一使用者 之多重碼可共同歸為一組,且可在每一群組上實 施多重使用者BLE。該等群組之間的MAI將由 SIC消除。GSIC-BLE將在兩方面赢得優於習知 SIC者之效能。第一,不同於習知SIC,其可藉由 實施具有相似接收功率之爆發的多重使用者 BLE,而在缺少一遠近效應時,仍得保持其效能。 第二,不同於習知中以RAKE為基礎的SIC接收 器,其可經由每一群組之多重使用者BLE,而負 責完善地處理每一爆發之ISI。最佳化地減輕 ISI,將可有效率地消除複數個群組之間的MAI, 特別在具有大延遲傳播之頻道中尤然。 GISC-BLE典型地可達成隨著爆發數量K呈 線性變化的一複雜度,但其大體上低於FBLE者。 由於這種情況可負責處理每一爆發中之ISI,因此 可能達成優於以RAKE為基礎之SIC接收器者的 效能。這種效能優勢,在具有大延遲傳播之頻道 中、即當ISI嚴重時,將更為增強。即使對於傳 播延遲大之頻道,在複數個爆發之間的〇至2分 貝(dB)數量級遠近效應,仍顯現出足以達成媲美 FBLE者的效能。 第 5 圖係結合接收多樣化使用之一 GSIC-BLE簡化方塊圖。來自P個天線元件中的 接收向量?/叫至將輸入至GSIC-BLE中。一群組 1匹配過濾器70係對群組1之接收向量實施匹配 22 B35735 過濾«。匹配過濾之一結果 <係由一 BLE處 理,譬如藉由一 ZF時的(«广彳、或MMSE時 的(«付2/)-丨乂丨)。BLE 72之一結果⑽將藉由一由 軟至硬式決策裝置74而轉換成硬式符碼一 干擾,正裝置76係利用該等硬式符碼來生成 用於每一天線之一向量f至,其代表群組i對 該天線接收向量之貢獻。對於每一天線,一減法 器92】至92P將自接收向量^力至 扣除群組j之 貝獻量至/^>,以生成對於每一天線之一干擾消 除向量^ ’至f/""。 曰一群組2匹配過濾器78係對該等干擾消除向 量實施匹配過濾42)%?)。匹配過濾之一結果#係由 一 BLE 80處理,譬如藉由一 ZF時的(<)〜/)->)、 或 MMSE 時的(«+σ2/)^。BLE 之一?結▲ /2)將 藉由一由軟至硬式決策裝置82而轉換成硬^符 碼一干擾修正裝置84係利用該等硬式符 來生成用於每一天線之一向量^至Ρ η,其 表群組2對該天線接收向量之貢獻s。對^每二天 線,一減法器9^至94P將自接收向量广至广】 除群組2之貢獻量^至f,),以生成對‘每一 之一干擾消除向量Fg( , )至&明。 母天線 营力二If,其餘群‘、即群組3至群組W Ϊ 擾消除,直到最終群組G為 群組G匹配過濾、器8 6係對干 ,消除向量實施匹配過濾。匹配過濾之一紝 果系由一 BLE 88處理,嬖如蕻由一 ; m 、或 MMSE 時的。B]l= 一結果<2將藉由一由軟式至硬式 ^ 轉換成硬式符碼把〆 式决桌裝置90而 23 13.35735 【圖式簡單說明】 第1圖係一無線通信系統之簡化圖式。 第2圖係一發射器、及具有多重天線元件之一聯 合偵測群組連續干擾消除接收器的簡化方塊圖。 第3圖係一通信爆發(爆發)之圖式。 第4圖係用於具有多重天線元件之聯合偵測群組 連續干擾消除的流程圖。 第5圖係一聯合偵測群組連續干擾消除器之簡化 方塊圖。i/>A =diag(^tnH A )d + dSJ^(〇wa ]d ma 严+ 4,)n The H(x)i generation of the forty-third equation _! The matrix x contains only diagonals The element "pair: matrix. (X) represents a matrix of zero-diagonal elements containing only the elements other than X. ★ In the three programs, the first item represents *, the group μ匕 symbol, the second item represents the first group, the group ISIJ = item, and the last-item is the background of the z-stage output. Line 3; 2f a vector ' * the first y component ί ί ί ΐ ΐ f rigorous code vector. The seventh component of the sub-segment data is stepped on a β 2 a, the j-th, and the component quantity is in the total transmission. All the other transmission codes are - Ξ < correlation is the co-mutation moment ^, ', 口疋, where Rn is the total receiving sequence (4) the total number of variances in the winter stage output = ^ ^ 唬 interference and noise ratio (SIN R) according to the forty-fourth ^ where FWWA, j = n + N ( Kl),i=l,2,...,G, H'2 μ,2,..,ν Forty-fourth equation 4 engraving 并i and recognizing-*summer LxJj,j system is not matrix X Column 7 of the 7th prime. ;r = to , , 7 in the number amp & 丄 x叩u < Dan variation matrix. In the numerical simulation, full BLE_FBLE (with only a single 21 1335735 stage BLE) shows better performance than GSIC-BLE. When considering the encoding gain of 1% to 10% uncoded bit error rate (BER), the performance of GSIC-BLE will be close to that of FBLE. GSIC-BLE is also suitable for multiple code schemes where some or all of the users transmit multiple codes. Multiple codes from the same user can be grouped together and multiple user BLEs can be implemented on each group. The MAI between these groups will be eliminated by the SIC. GSIC-BLE will win the performance of better than the traditional SIC in two ways. First, unlike the conventional SIC, it can maintain its performance in the absence of a near-far effect by implementing a multi-user BLE with an explosion of similar received power. Second, unlike the RAKE-based SIC receivers in the prior art, it is possible to handle the ISI of each burst perfectly through the multi-user BLE of each group. Optimizing ISI mitigation will effectively eliminate MAI between multiple groups, especially in channels with large delay propagation. GISC-BLE typically achieves a complexity that varies linearly with the number of bursts K, but is generally lower than that of FBLE. Since this situation can handle the ISI in each burst, it is possible to achieve better performance than a RAKE-based SIC receiver. This performance advantage is even stronger in channels with large delay propagation, ie when the ISI is severe. Even for channels with large propagation delays, the near-intensity effect of the order of 2 decibels (dB) between multiple bursts still shows the effectiveness of those who are comparable to FBLE. Figure 5 is a simplified block diagram of GSIC-BLE combined with one of the diverse uses of reception. Receive vectors from P antenna elements? / Call to will be input to GSIC-BLE. A group 1 matching filter 70 performs matching on the reception vector of group 1 22 B35735 Filter «. One of the results of the matching filter is processed by a BLE, such as by a ZF (« 彳, or MMSE («付 2/)-丨乂丨). One result (10) of BLE 72 will be converted to a hard symbol-to-interference by a soft-to-hard decision-making device 74, which uses the hard-coded code to generate a vector f to one for each antenna, Represents the contribution of group i to the antenna receive vector. For each antenna, a subtractor 92] to 92P will derive the self-receiving vector to the deduction of the group j to /^> to generate an interference cancellation vector ^ ' to f/&quot for each antenna. ;". The Group 2 Matching Filter 78 performs matching filtering on the interference cancellation vectors 42)%?). One of the matching filters results # is processed by a BLE 80, such as (<)~/)->) when a ZF, or («+σ2/)^ when MMSE. One of the BLEs? ▲ /2) is converted into a hard code by a soft to hard decision device 82. The interference correction device 84 uses the hard symbols to generate a vector for each antenna. Ρ η, whose table group 2 contributes s to the antenna reception vector. For every two antennas, a subtractor 9^ to 94P will be wide from the receive vector to the wide] except for the contribution of group 2 to f,) to generate a pair of interference cancellation vectors Fg( , ) to & Ming. The parent antenna battalion two If, the remaining group ‘, ie, group 3 to group W Ϊ is eliminated until the final group G is the group G matching filter, the 8.6 pair is dry, and the elimination vector implements matching filtering. One of the matching filters is handled by a BLE 88, such as by one; m, or MMSE. B] l = a result < 2 will be converted from a soft to hard ^ into a hard code to the 决 table device 90 and 23 13.35735 [Simplified illustration] Figure 1 is a simplified diagram of a wireless communication system formula. Figure 2 is a simplified block diagram of a transmitter and a combined continuous interference cancellation receiver with multiple antenna elements. Figure 3 is a diagram of a communication outbreak (outbreak). Figure 4 is a flow chart for continuous interference cancellation for joint detection groups with multiple antenna elements. Figure 5 is a simplified block diagram of a joint detection group continuous interference canceller.

18防護週期 22資料場 26發射器 32資料產生器 36調變器 42,42p解調變器 44頻道估計器裝置 【主要元件符號說明】 16通信爆發 20 中間碼 24資料場 28接收器 34調變及擴展裝置 30無線之無線電頻道 46 GSIC聯合偵測裝置18 protection period 22 data field 26 transmitter 32 data generator 36 modulator 42, 42p demodulator 44 channel estimator device [main component symbol description] 16 communication burst 20 intermediate code 24 data field 28 receiver 34 modulation And expansion device 30 wireless radio channel 46 GSIC joint detection device

24twenty four

Claims (1)

1335735 ΛΤ y 十、申請專利範圍: L + I種接收器’用以在一分旱頻譜上接收複數無線電頻率(RJF) 貧料信號,該接收器包含: 天線陣列,其具有複數天線元件;複數解調.哭,jL =變在每-天線元件上所接收的複數資料信號,^二解調 =係對應於該複數天線元件之其中之―,其中各該解調變器 調變由所對應的該複數天線元件其中之—接收到的該 貝科k就’以產生基頻信號; 一頻道估計裝置,設置以提供頻道資訊; 、.—群組式連續干擾消除(GSIC)聯合偵測(JD)裝置,設置 以· 把該複數資料信號分成複數群組; 接收資心Ϊ喊Ϊ該複數群_ —第—群組巾天線元件的所 接收貝枓仏唬,以產生一匹配濾波結果; 資料·使用该匹配濾、波結果聯合偵測對應至該第-群組的 號; 制各天線元件的所侧資料建構-干擾修正信 ㈣u從各天線元件騎接收錢減去該元件之干擾修正 a 產生對應於各天線元件的一干擾消除結果;以及 、目丨次祖a ^用對應於各天線元件⑽干擾消除結果連續地偵 貝枓,作為该貨料信號是其餘群組的硬式或軟式符碼的評估。、 2.如申請專利範圍第】項之接收器,其令該 以基於基齡?巾的連串相成分提供親#訊。°…又 3· -種傳輸器’設置以在一分享頻 (RF)資料錢,轉輸器包含: 職诚無線電頻率 25 1335735 °d Λ η 化; 資料信號雜產生器’㈣產生將在—參考親上通信的參考 2變器,肋將該通信爆發調變為—無線電頻率(RF) 一天線,用以藉由一無線之無線電頻道將該处資料信號 輻射至一接收器。 ^如申請專利範圍第3項之傳輸器,其中該擴展與調變裝置更 設置以產生一通信爆發,該通信爆發為一幾乎連續之全區 ,碼。 5. 如申請專利範圍第3項之傳輸器,其中該調變器設置以使用 一差分移相鍵控(DPSK)。 6. 如申請專利範圍第3項之傳輸器,其中該調變器設置以使用 一正交移相鍵控(QPSK)。 7. 如申請專利範圍第3項之傳輸器,其中該調變器設置以使用 一正交振幅調變(QAM)。 8. 如申請專利範圍第3項之傳輸器,其中該擴展與調變裝置設置 以產生一通信爆發,該通信爆發包含 • 一中間碼,一防護週期,以及二資料場。 9. 、如申請專利範圍第8項之傳輪器,其中該擴展與調變裝置設 置以產生t間碼係介於該二資料場間的一通信爆發。 10. 、如申請專利範圍第8項之傳輸器,其中該擴展與調變裝置設 置以產生一通信爆發,其中該防護週期分離該通信爆發與下一 通信爆發。 11·、如申請專利範圍第8項之傳輸器,其中該擴展與調變裝置設 置以產生該二資料場具有相同長度的一通信爆發。 261335735 ΛΤ y X. Patent application scope: L + I receivers are used to receive a plurality of radio frequency (RJF) lean signals on a dry spectrum, the receiver comprising: an antenna array having a plurality of antenna elements; Demodulation. Cry, jL = change to the complex data signal received on each antenna element, ^2 demodulation = corresponds to the "multiple antenna elements", wherein each of the demodulation transformers is adapted The plurality of antenna elements of the plurality of antenna elements are received to generate a baseband signal; a channel estimation device configured to provide channel information; and - group continuous interference cancellation (GSIC) joint detection ( a JD) device configured to: divide the complex data signal into a plurality of groups; receive a credit to scream the received group of the plurality of groups _--the group towel antenna element to generate a matched filtering result; Data. Use the matching filter and the wave result to jointly detect the number corresponding to the first group; the data construction side of each antenna element-interference correction signal (4) u receive the money from each antenna element and subtract the interference of the component Positive a produces an interference cancellation result corresponding to each antenna element; and, the target ancestor a ^ is continuously detected by the interference cancellation result corresponding to each antenna element (10), as the material signal is the hard group of the remaining group Evaluation of soft codes. 2. The receiver of claim 1 of the patent application, which provides the parental information based on a series of phase components of the base age towel. °...again 3 - kind of transmitter 'set to money in a shared frequency (RF) data, the transcoder contains: job radio frequency 25 1335735 °d Λ η; data signal generator '(four) generated will be in - Referring to the reference 2 transformer of the peer communication, the rib transforms the communication burst into a radio frequency (RF) antenna for radiating the data signal to a receiver by a wireless radio channel. ^ The transmitter of claim 3, wherein the extension is arranged with the modulation device to generate a communication burst, the communication bursting into an almost continuous full area, code. 5. The transmitter of claim 3, wherein the modulator is configured to use a differential phase shift keying (DPSK). 6. The transmitter of claim 3, wherein the modulator is configured to use a quadrature phase shift keying (QPSK). 7. The transmitter of claim 3, wherein the modulator is configured to use a quadrature amplitude modulation (QAM). 8. The transmitter of claim 3, wherein the expansion and modulation device is configured to generate a communication burst comprising: a midamble, a guard period, and two data fields. 9. The device of claim 8, wherein the expansion and modulation device is arranged to generate a communication burst between the two fields. 10. The transmitter of claim 8 wherein the expansion and modulation means are arranged to generate a communication burst, wherein the guard period separates the communication burst from the next communication burst. 11. The transmitter of claim 8 wherein the expansion and modulation means are arranged to produce a communication burst of the same length of the two data fields. 26
TW095126443A 2002-07-19 2003-07-18 Groupwise successive interference cancellation for block transmission with reception diversity TWI335735B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US39736102P 2002-07-19 2002-07-19

Publications (2)

Publication Number Publication Date
TW200723737A TW200723737A (en) 2007-06-16
TWI335735B true TWI335735B (en) 2011-01-01

Family

ID=30771041

Family Applications (5)

Application Number Title Priority Date Filing Date
TW095126443A TWI335735B (en) 2002-07-19 2003-07-18 Groupwise successive interference cancellation for block transmission with reception diversity
TW093105767A TWI330952B (en) 2002-07-19 2003-07-18 Groupwise successive interference cancellation for block transmission with reception diversity
TW098132175A TWI433483B (en) 2002-07-19 2003-07-18 Groupwise successive interference cancellation for block transmission with reception diversity
TW092119759A TWI239723B (en) 2002-07-19 2003-07-18 Groupwise successive interference cancellation for block transmission with reception diversity
TW102113364A TWI501576B (en) 2002-07-19 2003-07-18 Groupwise successive interference cancellation for block transmission with reception diversity

Family Applications After (4)

Application Number Title Priority Date Filing Date
TW093105767A TWI330952B (en) 2002-07-19 2003-07-18 Groupwise successive interference cancellation for block transmission with reception diversity
TW098132175A TWI433483B (en) 2002-07-19 2003-07-18 Groupwise successive interference cancellation for block transmission with reception diversity
TW092119759A TWI239723B (en) 2002-07-19 2003-07-18 Groupwise successive interference cancellation for block transmission with reception diversity
TW102113364A TWI501576B (en) 2002-07-19 2003-07-18 Groupwise successive interference cancellation for block transmission with reception diversity

Country Status (11)

Country Link
US (4) US7266168B2 (en)
EP (1) EP1537650A4 (en)
JP (1) JP4316500B2 (en)
KR (2) KR100765873B1 (en)
CN (1) CN100559700C (en)
AU (1) AU2003261194A1 (en)
CA (1) CA2493195A1 (en)
MX (1) MXPA05000828A (en)
NO (1) NO20050800L (en)
TW (5) TWI335735B (en)
WO (1) WO2004010573A1 (en)

Families Citing this family (76)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7570576B2 (en) * 2001-06-08 2009-08-04 Broadcom Corporation Detection and mitigation of temporary (bursts) impairments in channels using SCDMA
TWI335735B (en) 2002-07-19 2011-01-01 Interdigital Tech Corp Groupwise successive interference cancellation for block transmission with reception diversity
US7639729B2 (en) * 2003-04-04 2009-12-29 Interdigital Technology Corporation Channel estimation method and apparatus using fast fourier transforms
US7839836B2 (en) * 2003-08-08 2010-11-23 Intel Corporation Arranging SDMA poll groups by response length
ATE487291T1 (en) 2003-08-27 2010-11-15 Wavion Ltd WIFI CAPACITY EXPANSION BY USING SDM
US8027417B2 (en) 2003-12-19 2011-09-27 Nortel Networks Limited Interference-weighted communication signal processing systems and methods
US7289481B2 (en) * 2004-03-24 2007-10-30 Wavion Ltd. WLAN capacity enhancement by contention resolution
GB2416465A (en) * 2004-05-12 2006-01-25 Toshiba Res Europ Ltd Transmitting a signal using Alamouti encoding and receiving the signal using ordered successive interference cancellation (OSIC)
US7599344B2 (en) 2004-06-08 2009-10-06 Interdigital Technology Corporation Method and apparatus for reducing multi-user processing in wireless communication systems
CN100401646C (en) 2004-09-24 2008-07-09 大唐移动通信设备有限公司 Multi region combined detection method of time gap code division multi address system
CN100375397C (en) * 2004-09-30 2008-03-12 株式会社Ntt都科摩 Signal detector
DE602005006696D1 (en) * 2004-09-30 2008-06-26 Ntt Docomo Inc Signal detector for wireless communication system
KR100992432B1 (en) * 2004-12-31 2010-11-08 지티이 코포레이션 A combination detection method for wireless communication system with antennea array
CN101147371B (en) * 2005-01-12 2012-11-28 Nxp股份有限公司 Channel estimating method and device
US7512199B2 (en) * 2005-03-01 2009-03-31 Broadcom Corporation Channel estimation method operable to cancel a dominant disturber signal from a received signal
US8130820B2 (en) * 2005-03-01 2012-03-06 Qualcomm Incorporated Method and apparatus for interference cancellation in a wireless communications system
US7844232B2 (en) * 2005-05-25 2010-11-30 Research In Motion Limited Joint space-time optimum filters (JSTOF) with at least one antenna, at least one channel, and joint filter weight and CIR estimation
US7733996B2 (en) * 2005-05-25 2010-06-08 Research In Motion Limited Joint space-time optimum filters (JSTOF) for interference cancellation
US7869417B2 (en) 2005-07-21 2011-01-11 Qualcomm Incorporated Multiplexing and feedback support for wireless communication systems
US20070076791A1 (en) * 2005-07-26 2007-04-05 Interdigital Technology Corporation Approximate cholesky decomposition-based block linear equalizer
US20070042741A1 (en) * 2005-08-15 2007-02-22 Research In Motion Limited Wireless Communications Device Including a Joint Space-Time Optimum Filters (JSTOF) Using QR and Eigenvalue Decompositions
US20070037540A1 (en) * 2005-08-15 2007-02-15 Research In Motion Limited Joint Space-Time Optimum Filters (JSTOF) Using Singular Value Decompositions (SVD)
US20070049233A1 (en) * 2005-08-15 2007-03-01 Research In Motion Limited Wireless Communications Device Including a Joint Space-Time Optimum Filters (JSTOF) Using Singular Value Decompositions (SVD)
US7623605B2 (en) * 2005-08-15 2009-11-24 Research In Motion Limited Interference canceling matched filter (ICMF) and related methods
US20070049232A1 (en) * 2005-08-15 2007-03-01 Research In Motion Limited Joint Space-Time Optimum Filter (JSTOF) Using QR and Eigenvalue Decompositions
US20070036122A1 (en) * 2005-08-15 2007-02-15 Research In Motion Limited Joint Space-Time Optimum Filters (JSTOF) for Interference Cancellation
US20070133814A1 (en) * 2005-08-15 2007-06-14 Research In Motion Limited Joint Space-Time Optimum Filter (JSTOF) Using Cholesky and Eigenvalue Decompositions
US20070036210A1 (en) * 2005-08-15 2007-02-15 Research In Motion Limited Joint Space-Time Optimum Filters (JSTOF) with at Least One Antenna, at Least One Channel, and Joint Filter Weight and CIR Estimation
US9071344B2 (en) 2005-08-22 2015-06-30 Qualcomm Incorporated Reverse link interference cancellation
US8611305B2 (en) 2005-08-22 2013-12-17 Qualcomm Incorporated Interference cancellation for wireless communications
US7639763B2 (en) * 2005-08-23 2009-12-29 Research In Motion Limited Wireless communications device including a joint demodulation filter for co-channel interference reduction and related methods
US7643590B2 (en) * 2005-08-23 2010-01-05 Research In Motion Limited Joint demodulation filter for co-channel interference reduction and related methods
US8855704B2 (en) 2005-08-26 2014-10-07 Qualcomm Incorporated Fast cell selection in TD-CDMA (UMTS TDD)
EP2194659A1 (en) * 2005-09-02 2010-06-09 Mitsubishi Electric R&D Centre Europe B.V. Method for controlling the transfer of signals from a first communication device to a second communication device through a wireless network
GB2430587B (en) * 2005-09-08 2008-02-13 Realtek Semiconductor Corp Low noise inter-symbol and inter-carrier interference cancellation for multi-carrier modulation receivers
US8068464B2 (en) 2005-10-27 2011-11-29 Qualcomm Incorporated Varying scrambling/OVSF codes within a TD-CDMA slot to overcome jamming effect by a dominant interferer
US8130727B2 (en) 2005-10-27 2012-03-06 Qualcomm Incorporated Quasi-orthogonal allocation of codes in TD-CDMA systems
US20070201569A1 (en) * 2006-02-08 2007-08-30 Nokia Corporation Apparatus, method and computer program product providing joint detection for increasing throughout with data in uplink that multiplexes users using codes and that multiplexes users using frequency multiplexing
KR101329389B1 (en) * 2006-02-24 2013-11-14 포항공과대학교 산학협력단 Intercarrier interference removing method in mimo-ofdm and receiving apparatus using the same
KR100866805B1 (en) * 2006-04-06 2008-11-04 삼성전자주식회사 Apparatus and method for generating llr in mimo communication system
US7684512B2 (en) * 2006-04-21 2010-03-23 Alcatel-Lucent Usa Inc. Method of scheduling mobile user transmissions and methods of decoding mobile user transmissions
US7489252B2 (en) * 2006-04-26 2009-02-10 Kimberly-Clark Worldwide, Inc. Wetness monitoring systems with status notification system
US7701999B1 (en) * 2006-05-02 2010-04-20 L3 Corrections Corporation Non-coherent multiuser receiver and method for aiding carrier acquisition in a spread spectrum system
US8023581B2 (en) * 2006-09-19 2011-09-20 Nec Laboratories America, Inc. Max-log receiver for multiple-input multiple-output (MIMO) systems
US7924933B2 (en) * 2006-09-19 2011-04-12 Nec Laboratories America, Inc. Enhanced successive interference cancellation (SIC) receiver for multiple-input multiple-output (MIMO) systems
US8781043B2 (en) 2006-11-15 2014-07-15 Qualcomm Incorporated Successive equalization and cancellation and successive mini multi-user detection for wireless communication
IL181398A0 (en) * 2007-02-18 2007-12-03 Runcom Technologies Ltd Mimo decoding system and method
CN101399803B (en) * 2007-09-27 2011-04-13 大唐移动通信设备有限公司 Multi-user detection method and device for OFDM signal
KR101384869B1 (en) * 2008-04-18 2014-04-15 서강대학교산학협력단 Receiver and method of restoring data using multiple antenna
KR101440623B1 (en) * 2008-04-18 2014-10-30 엘지전자 주식회사 Receiver and method of restoring data using multiple antenna
US20100046660A1 (en) 2008-05-13 2010-02-25 Qualcomm Incorporated Interference cancellation under non-stationary conditions
US8995417B2 (en) 2008-06-09 2015-03-31 Qualcomm Incorporated Increasing capacity in wireless communication
US20090323777A1 (en) * 2008-06-26 2009-12-31 Yi-Pin Eric Wang Methods and Apparatus for Sharing Signal Correlation Data in a Receiver
US9237515B2 (en) 2008-08-01 2016-01-12 Qualcomm Incorporated Successive detection and cancellation for cell pilot detection
US9277487B2 (en) 2008-08-01 2016-03-01 Qualcomm Incorporated Cell detection with interference cancellation
US8509293B2 (en) 2008-08-19 2013-08-13 Qualcomm Incorporated Semi-coherent timing propagation for GERAN multislot configurations
US8953563B2 (en) * 2009-04-24 2015-02-10 Samsung Electronics Co., Ltd. Method and system for multi-layer beamforming
US9160577B2 (en) 2009-04-30 2015-10-13 Qualcomm Incorporated Hybrid SAIC receiver
US8787509B2 (en) 2009-06-04 2014-07-22 Qualcomm Incorporated Iterative interference cancellation receiver
US8831149B2 (en) 2009-09-03 2014-09-09 Qualcomm Incorporated Symbol estimation methods and apparatuses
US8619928B2 (en) 2009-09-03 2013-12-31 Qualcomm Incorporated Multi-stage interference suppression
US8938268B2 (en) * 2009-11-24 2015-01-20 Qualcomm Incorporated Method and apparatus for facilitating a layered cell search for Long Term Evolution systems
CN102668611A (en) 2009-11-27 2012-09-12 高通股份有限公司 Interference cancellation for non-orthogonal channel sets
US9509452B2 (en) 2009-11-27 2016-11-29 Qualcomm Incorporated Increasing capacity in wireless communications
KR101363016B1 (en) 2009-11-27 2014-02-13 퀄컴 인코포레이티드 Increasing capacity in wireless communications
US8396440B2 (en) 2010-06-22 2013-03-12 Qualcomm Incorporated Signal reception method and apparatus for non-stationary channels
US8817924B2 (en) 2010-09-23 2014-08-26 Qualcomm Incorporated Iterative pilot tone cancellation for improved channel estimation and decoding
US8938038B2 (en) * 2012-02-02 2015-01-20 Telefonaktiebolaget L M Ericsson (Publ) Extending the set of addressable interferers for interference mitigation
US8897274B2 (en) 2012-08-08 2014-11-25 St-Ericsson Sa Successive interference cancellation stacked branch VAMOS receivers
WO2014169048A1 (en) * 2013-04-09 2014-10-16 Interdigital Patent Holdings, Inc. Joint precoding and multivariate backhaul compression for the downlink of cloud radio access networks
KR102114230B1 (en) * 2013-10-07 2020-05-25 에스케이하이닉스 주식회사 Memory system and operating method thereof
CN107431560B (en) 2015-03-27 2020-03-27 华为技术有限公司 Data processing method and device
DE102015122336A1 (en) * 2015-12-21 2017-06-22 Intel IP Corporation MOBILE DEVICE AND METHOD FOR PROCESSING SIGNALS
CN113273106B (en) * 2018-11-06 2024-01-12 诺基亚通信公司 Processing of uplink data streams
WO2021120183A1 (en) * 2019-12-20 2021-06-24 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for multi-antenna communication
EP4283935A1 (en) * 2022-05-27 2023-11-29 Nokia Solutions and Networks Oy Interference rejection combining with reduced complexity

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0449327B1 (en) * 1990-03-30 1998-07-15 Nec Corporation Noise-immune space diversity receiver
US5937015A (en) * 1994-01-11 1999-08-10 Dent; Paul W. Interference mitigation by joint decoding of overlapped signals
FI943196A (en) * 1994-07-04 1996-01-05 Nokia Telecommunications Oy Reception procedure and recipients
FI105515B (en) * 1995-05-24 2000-08-31 Nokia Networks Oy A method for accelerating handoff and a cellular radio system
DE19616828C2 (en) 1996-04-26 1999-02-25 Siemens Ag Method for separating a received signal mixture
DE19616829C1 (en) 1996-04-26 1997-04-24 Siemens Ag Radio transfer system for digital signals between several subscriber terminals and base station
US6161209A (en) * 1997-03-28 2000-12-12 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of Industry Through The Communications Research Centre Joint detector for multiple coded digital signals
DE19724027C2 (en) * 1997-06-06 1999-09-30 Siemens Ag Method and arrangement for receiving data
EP0939527B1 (en) 1998-02-18 2007-12-05 Sony Deutschland GmbH Mapping of multicarrier signals into GSM time slots
JP3109589B2 (en) 1998-03-18 2000-11-20 日本電気株式会社 Method and apparatus for adjusting transmission power of CDMA terminal
US6643275B1 (en) 1998-05-15 2003-11-04 Telefonaktiebolaget Lm Ericsson (Publ) Random access in a mobile telecommunications system
EP0964530A1 (en) * 1998-06-05 1999-12-15 Siemens Aktiengesellschaft Radio communications receiver and interference cancellation method
ES2233919T3 (en) * 1998-06-30 2005-06-16 Siemens Ag AIR INTERFACE FOR TELECOMMUNICATION SYSTEMS WITH WIRELESS TELECOMMUNICATION BETWEEN MOBILE AND / OR STATIONARY EMISSION / RECEPTION APPLIANCES.
JP2000059278A (en) * 1998-08-03 2000-02-25 Matsushita Electric Ind Co Ltd Radio communication equipment
CA2340716A1 (en) * 1998-08-18 2000-03-02 Beamreach Networks, Inc. Stacked-carrier discrete multiple tone communication technology
JP3678023B2 (en) * 1998-10-23 2005-08-03 株式会社日立製作所 Communication apparatus in code division multiple access mobile communication system
US6298050B1 (en) * 1998-11-25 2001-10-02 Nortel Networks Limited System and method for cancelling the extra interference created during position location in a CDMA cellular system
US6480558B1 (en) * 1999-03-17 2002-11-12 Ericsson Inc. Synchronization and cell search methods and apparatus for wireless communications
EP1047209A1 (en) * 1999-04-19 2000-10-25 Interuniversitair Micro-Elektronica Centrum Vzw A method and apparatus for multiuser transmission
US6898248B1 (en) * 1999-07-12 2005-05-24 Hughes Electronics Corporation System employing threaded space-time architecture for transporting symbols and receivers for multi-user detection and decoding of symbols
CN1118200C (en) * 1999-08-10 2003-08-13 信息产业部电信科学技术研究院 Baseband processing method based on intelligent antoma and interference cancel
CN1118201C (en) * 1999-08-11 2003-08-13 信息产业部电信科学技术研究院 Interference counteracting method based on intelligent antenna
DE1214796T1 (en) 1999-09-21 2002-11-28 Interdigital Tech Corp MULTI-USER DETECTOR FOR VARIABLE SPREADING FACTORS
KR100473215B1 (en) 1999-10-19 2005-03-10 인터디지탈 테크날러지 코포레이션 Receiver for multiuser detection of cdma signals
US6377636B1 (en) * 1999-11-02 2002-04-23 Iospan Wirless, Inc. Method and wireless communications system using coordinated transmission and training for interference mitigation
US6963546B2 (en) * 2000-03-15 2005-11-08 Interdigital Technology Corp. Multi-user detection using an adaptive combination of joint detection and successive interface cancellation
US6597723B1 (en) 2000-03-21 2003-07-22 Interdigital Technology Corporation Weighted open loop power control in a time division duplex communication system
US6834043B1 (en) * 2000-07-24 2004-12-21 Motorola, Inc. Method and device for exploiting transmit diversity in time varying wireless communication systems
KR100658526B1 (en) 2000-08-08 2006-12-15 엘지.필립스 엘시디 주식회사 Apparatus For Protecting Electrostatic Demage in Liquid Crystal Display
KR20020018454A (en) * 2000-09-01 2002-03-08 윤필규 Mini keyboard
US6947505B2 (en) 2000-09-20 2005-09-20 Bae Systems Information And Electronic Systems Integration Inc. System for parameter estimation and tracking of interfering digitally modulated signals
JP2002111537A (en) 2000-09-27 2002-04-12 Matsushita Electric Ind Co Ltd Demodulation method and communication apparatus
KR100438447B1 (en) * 2000-10-20 2004-07-03 삼성전자주식회사 Burst pilot transmit apparatus and method in mobile communication system
US6745050B1 (en) * 2000-10-23 2004-06-01 Massachusetts Institute Of Technology Multichannel multiuser detection
JP3795740B2 (en) 2000-10-25 2006-07-12 株式会社エヌ・ティ・ティ・ドコモ Communication method and communication apparatus
US6785341B2 (en) * 2001-05-11 2004-08-31 Qualcomm Incorporated Method and apparatus for processing data in a multiple-input multiple-output (MIMO) communication system utilizing channel state information
GB2377347B (en) * 2001-07-02 2004-06-30 Ipwireless Inc Chip rate invariant detector
KR100763378B1 (en) * 2001-07-27 2007-10-05 엘지전자 주식회사 Method for transmitting/receiving using plurality of antennas, system for the same
US6760388B2 (en) * 2001-12-07 2004-07-06 Qualcomm Incorporated Time-domain transmit and receive processing with channel eigen-mode decomposition for MIMO systems
US6801580B2 (en) * 2002-04-09 2004-10-05 Qualcomm, Incorporated Ordered successive interference cancellation receiver processing for multipath channels
TWI335735B (en) * 2002-07-19 2011-01-01 Interdigital Tech Corp Groupwise successive interference cancellation for block transmission with reception diversity
JP3898115B2 (en) * 2002-11-12 2007-03-28 株式会社エヌ・ティ・ティ・ドコモ Receiving device, demodulator and communication method
US7991360B2 (en) * 2004-03-05 2011-08-02 Ntt Docomo, Inc. Receiver apparatus, receiving method, and wireless communication system

Also Published As

Publication number Publication date
CA2493195A1 (en) 2004-01-29
TW201029358A (en) 2010-08-01
AU2003261194A1 (en) 2004-02-09
EP1537650A4 (en) 2010-06-09
TWI239723B (en) 2005-09-11
TW201404062A (en) 2014-01-16
US20040141565A1 (en) 2004-07-22
KR20050103315A (en) 2005-10-28
TW200501638A (en) 2005-01-01
JP4316500B2 (en) 2009-08-19
MXPA05000828A (en) 2005-04-19
TWI433483B (en) 2014-04-01
US7266168B2 (en) 2007-09-04
KR20050021511A (en) 2005-03-07
US20080019431A1 (en) 2008-01-24
CN100559700C (en) 2009-11-11
KR100765873B1 (en) 2007-10-11
TW200402949A (en) 2004-02-16
US20090080495A1 (en) 2009-03-26
TW200723737A (en) 2007-06-16
TWI330952B (en) 2010-09-21
JP2005534229A (en) 2005-11-10
US8553820B2 (en) 2013-10-08
TWI501576B (en) 2015-09-21
WO2004010573A1 (en) 2004-01-29
US7463694B2 (en) 2008-12-09
US8284854B2 (en) 2012-10-09
CN1669215A (en) 2005-09-14
EP1537650A1 (en) 2005-06-08
NO20050800L (en) 2005-02-15
US20120314740A1 (en) 2012-12-13

Similar Documents

Publication Publication Date Title
TWI335735B (en) Groupwise successive interference cancellation for block transmission with reception diversity
KR100947008B1 (en) Generalized two-stage data estimation
KR100759297B1 (en) Low complexity data detection using fast fourier transform of channel correlation matrix
EP1391048B1 (en) Fast joint detection
KR20020038962A (en) Receiver for multiuser detection of cdma signals
US20060153283A1 (en) Interference cancellation in adjoint operators for communication receivers
KR20060120277A (en) Chip-level or symbol-level equalizer structure for multiple transmit and receiver antenna configurations
Dang et al. A low-complexity blind multiuser receiver for long-code cdma
Kumaratharan et al. STSIC detection for multi-user MIMO MC-CDMA systems
Du et al. Performance of multiuser detection schemes for CDMA systems using antenna arrays
da Silva et al. Interference suppression consisting of pre-distortion filtering with transmit diversity
Suzuki et al. Fast convergence signaling for adaptive linear interference canceller in DS-CDMA mobile communications
Du et al. An Adaptive Space-Time Multiuser Detection Algorithm for CDMA Systems
Lundahl High Branch Transmit Diversity in WCDMA

Legal Events

Date Code Title Description
MK4A Expiration of patent term of an invention patent