TWI258000B - Portable optical 3-D surface profilometer and method for same - Google Patents

Portable optical 3-D surface profilometer and method for same Download PDF

Info

Publication number
TWI258000B
TWI258000B TW93123484A TW93123484A TWI258000B TW I258000 B TWI258000 B TW I258000B TW 93123484 A TW93123484 A TW 93123484A TW 93123484 A TW93123484 A TW 93123484A TW I258000 B TWI258000 B TW I258000B
Authority
TW
Taiwan
Prior art keywords
optical
image
portable
light
dimensional
Prior art date
Application number
TW93123484A
Other languages
Chinese (zh)
Other versions
TW200606396A (en
Inventor
Liang-Chia Chen
Chung-Chih Huang
Original Assignee
Univ Nat Taipei Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ Nat Taipei Technology filed Critical Univ Nat Taipei Technology
Priority to TW93123484A priority Critical patent/TWI258000B/en
Publication of TW200606396A publication Critical patent/TW200606396A/en
Application granted granted Critical
Publication of TWI258000B publication Critical patent/TWI258000B/en

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Microscoopes, Condenser (AREA)

Abstract

This invention relates to a portable optical 3-D surface profilometer and method for the same, to be implemented in a variety of fields, such as the general manufacturing process, quality control and inspection of precision components or devices in an on-line process or a compact area, or biomedical examination, for performing non-contact measurement of a surface profile of a 3-D object and outputting the 2-D image and 3-D profile dimensions of the object to be measured, including: an optical projection unit, for generating a structured light pattern; a portable miniaturized measurement probe unit, for receiving the structured light pattern transmitted by an image fiber, enlarging the structured light pattern to be projected onto a surface of an object for profile measurement, and capturing a deformed structured fringe image from the object; and a main control unit, connected to the optical projection unit and the portable miniaturized measurement probe unit, for modulating and outputting the structured light pattern and capturing and analyzing the deformed structured fringe image.

Description

.1258000 九、發明說明: 【發明所屬之技術領域】 本發明係一種可攜式數位光學三維輪廓量測系統與 方法,尤指一種利用微型光學投射元件及面結構光量測技 術,設計成一種可攜式數位光學三維輪廓量測系統與方 法。本發明之量測系統可應用於一般生產製程、線上或狹 窄空間内精密元件或精密裝置的品管與檢驗,或其它像生 醫檢驗等廣泛用途,以進行三維物體之非接觸式量測,可 輸出被測物體之單色或彩色二維影像及三維輪廓尺寸,為 一個整合二維與三維量測為一體之泛用型工具。 【先前技術】 對於物件外形輪廓的尺寸測量方法,一般分為接觸式 與非接觸式兩種方式。其中接觸式量測方法多利用探針、 感應器及驅動裝置並且配合控制軟體,以逐點或掃描方式 直接接觸物體表面,以得到第三轴的高度變化資料;非接 觸式的方式有許多種不同的量測技術,其中使用雷射條紋 法是一種快速的量測方法,其内容係對物體輪廓進行全域 性量測,其主要分析技術可分為條紋中心分析法與相位移 干涉術兩種方法。然而,條紋中心分析方法的取樣資料點 僅在條紋中心位置,故其解析度受限於光柵條紋密度,而 相位移干涉術則是對C C D相機上的每一像素均可進行 相位分析而得到高度值,故空間解析度較高且量測速度較 .1258000 快0 傳統之面結構光量測乃將一組正弦強度分佈的光栅 條紋,利用光機系統投射於待測物體表面上,並且利用程 式模組控制移動並引入相位調變,使用光柵條紋飄移,則 干涉圖的條紋因之產生動態變化,而後利用相位移運算原 理進行相位分析與重建,最後由相位與物體空間座標之轉 換關係計算出物體表面輪廓上各點的高度值,再配合取像 平面與真實平面的映對關係,如此即可重建物體三維幾何 形狀。 另外,其它量測系統以電腦液晶(Liquid Crystal Display, LCD)顯示投影方式產生光柵條紋,可同時產生 多組不同顏色之任意光柵條紋圖譜,優於一般固定之投影 光栅條紋,具有較佳的精密結構光條紋及均勻投影的效 果。但液晶顯示投影方式之投影光柵條紋精度品質並非最 佳,而且尺寸過大並不易整合成微型三維探頭。因此,現 存之量測系統,難以應用於一般生產製程、線上或狹窄空 間内精密元件或精密裝置的品管與檢驗,因而無法進行三 維輪廓之精密量測。有鑑於此,本發明人遂竭其心智,憑 其從事相關研究多年經驗,終有本發明之產生。 【發明内容】 本發明之主要目的在於提供一種可攜式數位光學三維輪 廓量測系統,俾可應用於一般生產製程、線上或狹窄空間 内精密元件或精密裝置的品管與檢驗之精密三維輪廓資 ,1258000 訊,或其它像生醫檢驗等廣泛用途,以進行三維物體之非 接觸式量測,可輸出被測物體之二維影像及三維輪廓尺 寸。為了能滿足線上量測之嚴苛環境要求及無須使用昂貴 雷射光源裝置,本發明利用光學數位投影裝置(白光光源 裝置)代替雷射光源之量測的方式,進行於狹小空間内精 密元件的三維輪廓量測,其原理係運用白光光源裝置多波 長的特性(分佈範圍約為400nm〜750nm),可克服雷射光 源裝置單一波長在量測上受不規則幾何形狀之散射等問 題。 本發明之另一目的在於提供一種可攜式數位光學三 維輪廓量測方法,即在於所提供的光學投影單元藉由數位 微鏡投影晶片(Digital Micro-mirror Device chip,DMD chip)產生結構光圖譜,經縮影鏡組將圖譜耦合至光纖 中,利用影像光纖導入一可攜式微型量測探頭單元,該量 測探頭單元具有可投射結構光與擷取影像之光學元件和 透鏡組,並且可以將結構光圖譜投射於待測物表面,再以 影像感測元件擷取變形之結構光條紋影像,利用此資訊可 得到物體之彩色二維影像及三維輪廓尺寸。 本發明之一種可攜式數位光學三維輪廓量測系統包 含下列構件: 一光學投影單元,主要由光學透鏡組、縮影物鏡與數位微 鏡投影晶片所組成,數位微鏡投影晶片可產生結構光 圖譜,而結構光圖譜再經光學透鏡組及縮影物鏡,將 圖譜耦合至影像光纖中,經由影像光纖將圖譜資訊傳 ’1258000 遞至可攜式微型量測探頭單元; 一可攜式微型量測探頭單元,主要由光學透鏡組、放大物 鏡與影像感測元件所組成,藉由第一組光學透鏡組及 放大物鏡將圖譜從影像光纖中導出,放大並投射在待 測物表面,再經由第二組光學透鏡組及影像感測元 件,從待測物上擷取變形結構光條紋影像與待測物之 二維影像至一影像感測元件,該影像感測元件可將影 像資訊輸出至主控制單元;與 一主控制單元,連接於光學投影單元與可攜式微型量測探 頭單元,用以調控與輸出結構光圖譜和擷取與分析該 變形結構光條紋影像。 本發明之一種可攜式數位光學三維輪廓量測方法包 含下列步驟: 步驟si :待測物表面特性分析與處理; 步驟S2 :數位結構光之設計; 步驟S3 :數位結構光投影與影像擷取; 步驟S4 :影像處理與三維輪廓之計算; 步驟S5 :三維量測結果之顯示與儲存。 【實施方式】 請參考第一圖與第二圖所示,分別為本發明之實施例 裝置圖與可攜式微型量測探頭的俯視圖與侧視圖,因此, .1258000 本發明之-射攜絲絲學三維輪#量_統包含下 列構件· -光學投料元2,該光學投f彡單元2包括 哭 1〇、-光源裝置8、—光學準直鏡18…數位微^ 影晶片6、-結構光圖譜調變單元3(包括—光學準 1 1、一光學聚焦透鏡1 2、-光攔孔徑! 3、—光學聚 焦透鏡1 4與-光學聚焦透鏡i 5)以及—光纖柄合物鏡 7 ;該光源裝置8提供-投射光源,本實施例為—齒素光 源(illuminator),該投射光源射出之光經過光學準直铲 1 8投射至數位微鏡投影晶片6,而數位微鏡投影晶片j 可經由主控制單元1之數位微鏡控制單元3 2調制,產生 量測所需之數位面結構光圖譜(亦可為任意形狀之圖 譜),將編碼圖譜投射至結構光圖譜調變單元3,投射 源首先由光學準直鏡! i料準直,經由光學聚焦^鏡工 ^光欄孔控1 3及光學聚焦透鏡1 4所組成的空間濾波 機制,/慮除景> 像雜乱,再經由光學聚焦透鏡1 $,將纟士構 光傳送至光纖耦合物鏡7,經光纖耦合物鏡7把圖譜耦人 入影像光纖5,並傳輸至可攜式微型量測探頭單元4 ;^ 中,該結構光圖譜之屬性係可為光點陣列、正弦週期波、 光束或同心圓等,其具有多種變化態樣,以適用於多樣 的範圍。 一 一可攜式微型量測探頭單元4,該可攜式微型量測探 碩單元4包括一個放大物鏡2 〇、一光學聚焦透鏡2 一光攔孔徑22、一光學準直鏡23、一第一直角稜鏡 1258000 4 準直鏡25、1學聚焦透鏡 經由—7與—影像感測元件2 8所組成 及-光學 =放大讀光纖5所導引,再由放大物鏡^結構光圖譜 ^ ^由光學聚焦透鏡2 i、光攔孔^結構光圖 二所組成的空間濾波機制,遽除影2 2、光學準 輪廊2角:鏡:4 ,將圖譜投射於待測物 R、 上,再者,取像光路元件包含第〜二維物體 測:杜學聚焦透鏡2 6及光學準直鏡2 7 ’:直角棱鏡2 線T 28(可為單色或彩色咖)上,最後:於影像感 理ώ影像資訊傳送至主控制單元1。ί』影像傳輪 由主控制單元i之影像處理單元 ^取與處 過主控制單元1輸出(例如輸出於以體影像 像頒不器);該主控制單 色或單色影 ^輪綠i 7,連接於該光學投影線9與影 置測探頭單^ 4 ’用以調控與輪 ^ 4可攜式微型 析該變形結構光條紋影像 '、°^和梅取與分 像處理單元31,用以影像操取^早;^5包含:—影 廊5十异之操作;—數位微鏡控制單元3 2 U與二,輪 對數位微鏡投f彡晶片騎输, 構光過運算器 包含-顯示裝置3〇,係用以輪出主控二圖:::更 理結果;其中,影像感測元件 早1之衫像處 件,該可攜式微型量测探頭單元可為CCD影像感測元 二敎…靜二 4更設置二散熱元件,即 —;、、g 19,位於可心式微型量«頭單元4< 二側,以進行散熱冷卻光源所產生之熱量。再者 12 .1258000 之散熱設計理想與否,將直接影響光學系統之性能及可靠 度,散熱之設計極為重要,在本發明裝置上,影像光纖出 . 口為探頭内主要需要散熱的重點區域,一般投影器採取風 · 扇來冷卻,但本發明所設計掃描器因體積小及空間限制 大,風扇並不適合,故採用熱管i 9設計,藉由其氣化 _ * (Vaporization)、隔熱(Adiabatic)及擬結(Condensation). . 三步驟來達成在狹小空間内之散熱目的。 請參考第三圖所示’其為本發明之可攜式數位光學三 維輪廊夏測方法流程圖,包含下列步驟·· 步驟S 1 :待測物表面特性分析與處理; 步驟S 2 ·數位結構光之設計,即決定投射結構光圖 譜之週期與適當的投光強度; 步驟S 3 :數位結構光投影與影像擷取,即利用一光 學投影單元之數位微鏡投影晶片產生結構 光圖瑨’而結構光圖譜再經光學透鏡組及 縮影物鏡,將圖譜耦合至影像光纖中,經 · 由影像光纖將圖譜資訊傳遞至一可攜式微 型夏測探頭單元,再者,藉由該可攜式微 - 型量測探頭單元之第一組光學透鏡組及放 ‘ 大物鏡將圖譜從影像光纖中導出,放大並 投射在待測物表面,再經由第二組光學透 鏡組及影像感測元件,從待測物上擷取變 形結構光條紋影像與待測物之二維影像至 一影像感測元件,該影像感測元件可將變 1258000 形結構光條紋影像與二維影像經過一影像 傳輸線輸出至一主控制單元; 步驟S 4 :影像處理與三維輪廓之計算,係利用一主 控制單元之一影像處理單元進行影像處理 與三維輪廓計算之操作; 步驟S 5 :三維量測結果之顯示與儲存,係經由一顯 示裝置顯示三維輪廓量測結果,並將之儲 存。 在本發明之實施例中,光學投射元件係採用數位微鏡 投影晶片(Digital Micro-mirror Device chip,DMD chip)為結構光條紋投射器,運用DMD之四項特性如下: (1)方形薄型數位微鏡投影晶片(對角線長度為13.97 mm)易整合於微型之掃描器中;(2 )光紋投影精度(線條 解析、直線度)優於液晶顯示器,可有效提升掃描器之量 測精度;(3 )投影圖形、灰度與色澤可由程式任意選定, 意即可自由投射任意結構光圖譜,因此可增加三維輪廓量 測計算方式之彈性;(4 )DMD可於3. 33x10-3秒完成單個 投射灰階結構光圖譜,三維輪廓量測速度理論上可達 300Hz,可進行半動態(Quasi-dynamic)物體之三維輪摩量 測。另且,DMD相較於液晶顯示器(Liquid Crystal Display,LCD)可投射更精確結構光條紋。 綜合上述,本發明使用結構光(一個i素光源經由數 位微鏡投影晶片投射量測用之結構光圖譜,諸如各式之正 弦週期、同心圓或點陣列式圖譜等),以一合適角度投射 1258000 到待測物體上,可運用DMD在 精密之投影特性,並可利用光方^速以 ^ _ 乂相位移(Phase shif ting, 需三張結構光圖譜)或三角量 -„ ., . , X 里⑻法(Triangulation,只需 二算被測物之三維輪廓尺寸,成為-體 二::微型三維輪廓探頭及量測系統;另, %明精由可“式微型量測探頭單元達到可以在狹窄空 間内部進行物體之三維輪廓、、|曰 ^ 測夏,故,本發明堪稱具創作 性與進步性,符合發明專利 ^ u丄义 之去疋要件,麦依法提出發明 專利申印。雖本發明以-較佳實施例揭露如上,但並非用 =限定本發明實施之範圍。任何熟習此項技藝者,在不脫 離本發明之精神和範圍内,當可作些許之更動與潤飾,即 凡依本發明所做的均㈣化與_,應為本發明專利範圍 所涵蓋,其界定應以申請專利範圍為準。 【圖式簡單說明】 第一圖係為本發明之實施例裝置圖; 第二圖係為本發明之可攜式微型量測探頭的俯視圖與側視 圖; 第三圖係為本發明之可攜式數位光學三維輪靡量測方法流 程圖。 【主要元件符號說明】 主控制單元 15 .1258000 2數位光學投影單元 3結構光圖譜調變單元 4可攜式微型量測探頭單元 5影像光纖 6數位微鏡投影晶片 7光纖輕合物鏡 * 8 光源裝置 9信號傳輸線 I 0散熱器 II 光學聚焦透鏡 1 2光學聚焦透鏡 1 3光欄孔徑 1 4光學聚焦透鏡 1 5光學聚焦透鏡 1 6待測物 1 7影像傳輸線 1 8光學準直鏡 ' 1 9熱管 * 2 0放大物鏡 2 1光學聚焦透鏡 2 2光攔孔徑 2 3光學準直鏡 1258000 2 4第一直角稜鏡 2 5弟二直角棱鏡 2 6光學聚焦透鏡 2 7光學準直鏡 28影像感測元件 2 9三維物體輪廓 3 0顯示裝置 31 影像處理單元 32 數位微鏡控制單元.1258000 IX. Description of the Invention: [Technical Field] The present invention relates to a portable digital optical three-dimensional contour measuring system and method, and more particularly to a design using a micro optical projection component and a surface structured light measurement technique. Portable digital optical three-dimensional contour measurement system and method. The measuring system of the invention can be applied to the quality control and inspection of precision components or precision devices in general production processes, on-line or narrow spaces, or other widely used applications such as biomedical inspection to perform non-contact measurement of three-dimensional objects. It can output monochrome or color 2D images and 3D contour dimensions of the measured object, and is a general-purpose tool that integrates 2D and 3D measurement. [Prior Art] The method of measuring the size of an object's outline is generally divided into two types: contact type and non-contact type. The contact measurement method mostly uses the probe, the sensor and the driving device and cooperates with the control software to directly contact the surface of the object point by point or scanning to obtain the height change data of the third axis; there are many kinds of non-contact methods. Different measurement techniques, in which the laser stripe method is used, is a rapid measurement method, and its content is a global measurement of the contour of the object. The main analysis techniques can be divided into strip center analysis method and phase displacement interferometry. method. However, the sampling data point of the stripe center analysis method is only at the center of the stripe, so its resolution is limited by the grating stripe density, while the phase shift interferometry is for the phase analysis of each pixel on the CCD camera. Value, so the spatial resolution is higher and the measurement speed is faster than .1258000. 0 The traditional surface structure light measurement is to apply a set of sinusoidal intensity distribution grating stripes to the surface of the object to be tested by the optomechanical system, and use the program. The module controls the movement and introduces the phase modulation. When the grating stripe drifts, the fringe of the interferogram changes dynamically, and then the phase analysis and reconstruction are performed by the phase shift operation principle. Finally, the conversion relationship between the phase and the object space coordinates is calculated. The height value of each point on the surface contour of the object is matched with the mapping relationship between the image plane and the real plane, so that the three-dimensional geometry of the object can be reconstructed. In addition, other measurement systems use a liquid crystal display (LCD) display projection method to generate grating stripe, which can simultaneously generate multiple sets of grating grating patterns of different colors, which is superior to the generally fixed projection grating stripe, and has better precision. Structured light streaks and uniform projection effects. However, the precision of the projection grating stripe of the liquid crystal display projection method is not optimal, and the size is too large and it is not easy to integrate into a miniature three-dimensional probe. Therefore, the existing measurement system is difficult to apply to quality control and inspection of precision components or precision devices in general production processes, on-line or in narrow spaces, and thus it is impossible to perform precise measurement of three-dimensional contours. In view of this, the present inventors exhausted their minds and, based on their years of experience in related research, have finally produced the present invention. SUMMARY OF THE INVENTION The main object of the present invention is to provide a portable digital optical three-dimensional contour measuring system, which can be applied to precision three-dimensional contours of quality control and inspection of precision components or precision devices in general production processes, on-line or in narrow spaces. Capital, 1258000, or other widely used applications such as biomedical tests to perform non-contact measurement of three-dimensional objects, which can output 2D images and 3D contour dimensions of the measured object. In order to meet the stringent environmental requirements of online measurement and eliminate the need to use expensive laser light source devices, the present invention utilizes an optical digital projection device (white light source device) instead of a laser light source to perform precision components in a narrow space. The principle of three-dimensional contour measurement is based on the multi-wavelength characteristics of the white light source device (distribution range is about 400 nm to 750 nm), which can overcome the problem that the single wavelength of the laser light source device is scattered by the irregular geometry in the measurement. Another object of the present invention is to provide a portable digital optical three-dimensional contour measurement method, that is, the optical projection unit provided generates a structured light spectrum by a digital micro-mirror device chip (DMD chip). The microscopy lens couples the map into the optical fiber, and uses the image fiber to introduce a portable micro-measurement probe unit, which has an optical component and a lens group that can project the structured light and capture the image, and can The structured light spectrum is projected on the surface of the object to be tested, and the imaged sensing element is used to capture the deformed structured light stripe image. The information can be used to obtain the color 2D image and the 3D contour size of the object. A portable digital optical three-dimensional contour measuring system of the present invention comprises the following components: an optical projection unit, which is mainly composed of an optical lens group, a microscopic objective lens and a digital micromirror projection wafer, and the digital micromirror projection wafer can generate a structured light spectrum. The structured light spectrum is coupled to the image fiber through the optical lens group and the microscopic objective lens, and the map information is transmitted to the portable micro-measurement probe unit via the image fiber; a portable micro-measurement probe The unit is mainly composed of an optical lens group, an amplifying objective lens and an image sensing component, and the first group of optical lens groups and the magnifying objective lens are used to derive the spectrum from the image fiber, enlarge and project on the surface of the object to be tested, and then pass through the second The optical lens group and the image sensing component are configured to extract the deformed structured light stripe image and the two-dimensional image of the object to be tested from the object to be tested to an image sensing component, and the image sensing component can output the image information to the main control Unit; and a main control unit connected to the optical projection unit and the portable miniature measuring probe unit for regulating and outputting And retrieve configuration and analysis of the optical spectrum of the light pattern image modification. A portable digital optical three-dimensional contour measuring method of the present invention comprises the following steps: Step si: analysis and processing of surface characteristics of the object to be tested; Step S2: design of digital structure light; Step S3: digital structure light projection and image capturing Step S4: image processing and calculation of the three-dimensional contour; step S5: display and storage of the three-dimensional measurement result. [Embodiment] Please refer to the first figure and the second figure, which are respectively a top view and a side view of a device diagram and a portable miniature measuring probe according to an embodiment of the present invention. Therefore, .1258000 The wire-like three-dimensional wheel includes the following components: an optical feeding unit 2, which includes a crying device, a light source device 8, an optical collimator lens 18, a digital micro-film 6, and a Structured light pattern modulation unit 3 (including - optical alignment 1, an optical focusing lens 12, - optical aperture aperture! 3, - optical focusing lens 14 and - optical focusing lens i 5) and - fiber optic handle mirror 7 The light source device 8 provides a projection light source, which is an illuminator, and the light emitted by the projection light source is projected by the optical collimator 12 to the digital micromirror projection wafer 6, and the digital micromirror projection wafer j can be modulated by the digital micromirror control unit 32 of the main control unit 1, generating a digital surface structure light spectrum (which can also be a map of any shape) required for measurement, and projecting the coded map to the structural light spectrum modulation unit 3 The projection source is first made up of an optical collimator! The material is collimated, and the spatial filtering mechanism consisting of optical focusing, mirroring, and optical focusing lens 14 is used to make a spatial filtering mechanism, which is like chaos, and then via optical focusing lens 1 $ The light structure of the gentleman is transmitted to the fiber-coupled objective lens 7, and the map is coupled into the image fiber 5 via the fiber-coupled objective lens 7 and transmitted to the portable micro-measurement probe unit 4, where the property of the structure light spectrum can be Spot arrays, sinusoidal periodic waves, beams or concentric circles, etc., have a variety of variations to suit a wide range of applications. A portable micro-measuring probe unit 4, the portable micro-measurement detecting unit 4 includes an amplifying objective lens 2, an optical focusing lens 2, a light intercepting aperture 22, an optical collimating mirror 23, and a first Always corner 稜鏡 1258000 4 collimating mirror 25, 1 learning focusing lens composed of -7 and - image sensing element 28 and - optical = amplified reading fiber 5, and then by magnifying objective ^ structure light map ^ ^ The spatial filtering mechanism consisting of the optical focusing lens 2 i and the light blocking hole structure light pattern 2, the shadow 2 2, the optical quasi-roof 2 angle: mirror: 4, the map is projected on the object R, Furthermore, the image-receiving optical path component comprises a first-to-two-dimensional object measurement: a Du Xue focusing lens 26 and an optical collimating lens 2 7 ': a right-angle prism 2 line T 28 (which may be a monochrome or a color coffee), and finally: The image sensory image information is transmitted to the main control unit 1. ί』The image transmission wheel is taken by the image processing unit of the main control unit i and outputted by the main control unit 1 (for example, outputted to the body image image instructor); the main control monochrome or monochrome shadow ^ wheel green i 7, connected to the optical projection line 9 and the shadow test probe unit 4 4 for regulating and the wheel 4 portable micro-analysis of the deformed structure light stripe image ', ° ^ and the take and image processing unit 31, Used for image manipulation ^ early; ^5 contains: - the operation of the gallery 5 different; - digital micro-mirror control unit 3 2 U and two, wheel-pair digital micro-mirror cast f彡 wafer ride, structure light over-operator The inclusion-display device 3〇 is used to rotate the main control 2::: more reasonable results; wherein, the image sensing component is 1 early, the portable micro-measurement probe unit can be a CCD image Sensing element 敎 敎 静 静 静 静 静 静 静 静 静 静 静 静 静 静 静 静 静 静 静 静 静 静 静 静 静 静 静 静 静 静 静 静 静 静 静 静 静 静 静 静 静 静 静 静 静 静Furthermore, the ideal thermal design of 12.1258000 will directly affect the performance and reliability of the optical system. The design of the heat dissipation is extremely important. In the device of the present invention, the image fiber outlet is a key area in the probe that requires heat dissipation. Generally, the projector adopts a wind fan to cool, but the scanner designed by the invention has a small size and a large space limitation, and the fan is not suitable, so the heat pipe i 9 is designed, by which gasification _ * (Vaporization), heat insulation ( Adiabatic) and Condensation. Three steps to achieve heat dissipation in a small space. Please refer to the third figure, which is a flowchart of the summer digital measuring method of the portable digital optical three-dimensional corridor of the present invention, which includes the following steps: Step S1: analysis and processing of surface characteristics of the object to be tested; Step S 2 · Digital The design of the structured light determines the period of the projected structure light spectrum and the appropriate projection intensity; Step S3: digital structure light projection and image capture, that is, using a digital projection mirror of the digital projection unit to generate a structural light pattern. And the structured light spectrum is coupled to the image fiber by the optical lens group and the microscopic objective lens, and the image information is transmitted by the image fiber to a portable miniature summer probe unit, and by the portable The first group of optical lens groups of the micro-type measuring probe unit and the large objective lens are used to derive the spectrum from the image fiber, enlarge and project on the surface of the object to be tested, and then pass through the second group of optical lens groups and image sensing elements. Extracting the deformed structured light stripe image and the two-dimensional image of the object to be tested from the object to be tested to an image sensing component, the image sensing component can change the image of the 1258000-shaped structured light stripe The image is output to a main control unit through an image transmission line; Step S4: image processing and calculation of the three-dimensional contour are performed by an image processing unit of one main control unit for image processing and three-dimensional contour calculation; Step S5: The display and storage of the three-dimensional measurement result is displayed by a display device and stored in a three-dimensional contour measurement result. In the embodiment of the present invention, the optical projection element uses a digital micro-mirror device chip (DMD chip) as a structured light stripe projector, and the four characteristics of the DMD are as follows: (1) Square thin digital position Micromirror projection wafer (diagonal length of 13.97 mm) is easy to integrate into the micro scanner; (2) light grain projection accuracy (line analysis, straightness) is better than liquid crystal display, which can effectively improve the measurement accuracy of the scanner (3) Projection graphics, grayscale and color can be arbitrarily selected by the program, meaning that any structure light spectrum can be freely projected, so that the flexibility of the three-dimensional contour measurement calculation method can be increased; (4) DMD can be 3. 33x10-3 seconds The single projected gray-scale structure light spectrum is completed, and the three-dimensional contour measurement speed can theoretically reach 300 Hz, and the three-dimensional wheel friction measurement of the semi-dynamic (Quasi-dynamic) object can be performed. In addition, DMD can project more precise structural light stripes than liquid crystal displays (LCDs). In summary, the present invention uses structured light (a structured light spectrum for projection measurement of a wafer via a digital micromirror, such as various sinusoidal periods, concentric circles or dot array patterns, etc.) to project at a suitable angle. 1258000 to the object to be tested, can use the DMD in the precise projection characteristics, and can use the light square speed to ^ _ phase shift (Phase shif ting, need three structural light map) or triangular amount - „., . X (8) method (Triangulation, only need to calculate the three-dimensional contour size of the measured object, become the body 2:: miniature three-dimensional contour probe and measurement system; in addition, the % Mingjing can be achieved by the "micro-measurement probe unit" The three-dimensional contour of the object in the narrow space, | 曰 ^ summer, so the invention can be said to be creative and progressive, in line with the invention patent ^ u 丄 之 之 , , , , 麦 麦 麦 麦 麦 麦 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 The present invention has been described above with reference to the preferred embodiments thereof, and is not intended to limit the scope of the embodiments of the present invention, and may be modified by those skilled in the art without departing from the spirit and scope of the invention. And the retouching, that is, all the (four) and _, according to the invention, shall be covered by the scope of the invention, and the definition shall be based on the scope of the patent application. [The following is a brief description] The second embodiment is a top view and a side view of the portable micro-measurement probe of the present invention; the third figure is a flow chart of the portable digital optical three-dimensional rim measurement method of the present invention. Component symbol description] Main control unit 15.1258000 2 digital optical projection unit 3 structure light spectrum modulation unit 4 portable micro-measurement probe unit 5 image fiber 6 digital micro-mirror projection wafer 7 fiber light fused mirror * 8 light source device 9 Signal transmission line I 0 heat sink II optical focusing lens 1 2 optical focusing lens 1 3 diaphragm aperture 1 4 optical focusing lens 1 5 optical focusing lens 1 6 object to be tested 1 7 image transmission line 1 8 optical collimating lens '1 9 heat pipe* 2 0 magnification objective lens 2 1 optical focusing lens 2 2 light intercepting aperture 2 3 optical collimating mirror 1258000 2 4 first right angle 稜鏡 2 5 brother two right angle prism 2 6 optical focusing lens 2 7 optical collimating mirror 28 image sensing element 2 9 three Dimensional object contour 3 0 display device 31 image processing unit 32 digital micro mirror control unit

Claims (1)

1258000 申請專利範圍 種 件 可攜式數位光學三維輪廓量測系 統,係包含下列構 —光學投影單元,其可產线構光圖譜; —可攜式微型量測探頭單元,#叙曰/ ^結構光譜圖至該可攜式微型量測;頭; 喊大並投射於—待測物表面,然後從㈣4 ―又形之結構光條紋影像與待測物之二維影像,以 =控制單元’係連接於該光學投影單元與該可攜式微 里測捸碩單元,用以調控與輸出結構光圖譜和操取盘 刀析该變形結構光條紋影像;其中,該光學投影單元更 包括一光源裝置、-光學準直鏡、—數位微鏡投影晶 片、一結構光圖譜調變單元、一光學聚焦透鏡以及—光 纖耦合物鏡,且該可攜式微型量測探頭單元至少包括一 放大物鏡、二光學聚焦透鏡、一光欄孔鏡、二光學準直 鏡、一個棱鏡、與一影像感測元件。 2 ·如申請專利範圍第1項所述之一種可攜式數位光學三 維輪廓里測糸統,其中,該結構光圖譜調變單元包括一 光學準直鏡、一光學聚焦透鏡、一光攔孔鏡與二光學聚 焦透鏡。 3 ·如申請專利範圍第1項所述之一種可攜式數位光學三 維輪廓量測系統,其中,藉由該數位微鏡投影晶片產生 結構光圖譜。 4 ·如申請專利範圍第1項所述之一種可攜式數位光學三 18 1258000 維輪靡量測系餘,甘& ,, ^ 、, 與光纖耦合物鏡字;二圖:错由光學聚焦透鐘 探頭單元中。圖_合至可攜式微型量測 5 .如申請專利範圍第i項所述之 維輪廓量㈣統,其中,經數位光學三 光纖所導弓I之結構光圖譜。擷取影像 6·如申請專利_第i項所叙 :輪軸系統,其中,藉由該二光光學三1258000 Patented range of portable digital optical three-dimensional contour measurement system, including the following structure - optical projection unit, which can produce line astigmatism map; - portable micro-measurement probe unit, #叙曰 / ^structure Spectral map to the portable micro-measurement; head; shouting and projecting on the surface of the object to be tested, and then from the (4) 4-shaped structure of the light stripe image and the two-dimensional image of the object to be tested, to = control unit ' Connecting to the optical projection unit and the portable micro-measurement unit for adjusting and outputting the structure light spectrum and operating the disc to analyze the deformed structure light stripe image; wherein the optical projection unit further comprises a light source device, An optical collimating mirror, a digital micromirror projection wafer, a structured light pattern modulation unit, an optical focusing lens, and a fiber coupled objective lens, and the portable miniature measuring probe unit comprises at least one magnifying objective lens and two optical focusing A lens, a light aperture mirror, a two optical collimating mirror, a prism, and an image sensing element. 2. The portable digital optical three-dimensional contour measuring system according to claim 1, wherein the structured light spectrum modulation unit comprises an optical collimating mirror, an optical focusing lens, and a light blocking aperture. Mirror with two optical focusing lenses. 3. A portable digital optical three-dimensional contour measuring system according to claim 1, wherein the structured light pattern is generated by projecting the wafer by the digital micromirror. 4 · As described in claim 1, the portable digital optical three 18 1258000-dimensional rim measurement system, Gan & , , ^ , , and fiber-coupled objective words; Through the clock probe unit. Figure _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ Capture image 6 · As claimed in the patent _ item i: the axle system, wherein, by the two optical optical three I:測物上梅取變形結構光條紋影像二, 維輪W數位光學」 8如讀輸出至該主控制單元。I: On the measuring object, the deformed structure light stripe image 2, the dimension wheel W digital optical" 8 is read and output to the main control unit. 維輪靡量测系統,其中,更包學三 9如„控制單元之影像處理結i,、不裝置’係❹ 維輪廊量測=彳_位光學三 係為-由素光源。4予技衫早元之光源裝置 L 〇·如申請專利範圍第 三維輪廓量测所t之一種1攜式數位光學 影像處理單元,用以::主控制單元係包含:一 輪廓計算之摔作.: 制、影像處理與三維 器對數位微=:;曰;^鏡控制單元,係透過運算 又如日日片進仃调控,以產生結構光圖 19 1258000 譜。 1 1 .如申請專利範圍第1項所述之一種可攜式數位光學 三維輪廓量測系統,其中,該可攜式微型量測探頭單 元之影像感測元件係為CCD影像感測元件。 1 2 .如申請專利範圍第1項所述之一種可攜式數位光學 三維輪廓量測系統,其中,該光源裝置射出之光依序 經過光學準直鏡、數位微鏡投影晶片、結構光圖譜調 變單元、光學聚焦透鏡、以及光纖耦合物鏡。 1 3.如申請專利範圍第1項所述之一種可攜式數位光學 三維輪摩量測系統,其中,該可攜式微型量測探頭 單元之影像資訊係依序通過放大物鏡、光學聚焦透 鏡、光欄孔鏡、光學聚焦透鏡、稜鏡、待測物表面、 稜鏡、二光學聚焦透鏡,成像於影像感測元件上。 1 4.如申請專利範圍第1項所述之一種可攜式數位光學 三維輪廓量測系統,其中,該可攜式微型量測探頭單 元更包含至少一散熱元件,用以冷卻一光源裝置所產 生之熱量。 1 5 .如申請專利範圍第1 4項所述之一種可攜式數位光 學三維輪靡量測系統,其中,該散熱元件係為一熱管 〇 1 6 .如申請專利範圍第1項所述之一種可攜式數位光學 三維輪廓量測系統,其中,該結構光圖譜係為光點陣 列、正弦週期波、光束和同心圓之任一種。 1 7 . —種可攜式數位光學三維輪廓量測方法,係包含下列 20 T258000 步驟: (A) 前置作業,更含待測物表面特性分析與處 理,以及數位結構光之設計以決定投射結構光 圖譜之週期與適當的投光強度; (B) 數位結構光投影與影像擷取,影像擷取即利 用一光學投影單元之數位微鏡投影晶片產生結 構光圖譜,而結構光圖譜再經光學透鏡組及縮 影物鏡,將圖譜耦合至影像光纖中,經由影像 光纖將圖譜資訊傳遞至一可攜式微型量測探頭 單元,再者,藉由該可攜式微型量測探頭單元 之第一組光學透鏡組及放大物鏡將圖譜從影像 光纖中導出,放大並投射在待測物表面,再經 由第二組光學透鏡組及影像感測元件,從待測 物上擷取變形結構光條紋影像與待測物之二維 影像至一影像感測元件,該影像感測元件可將 變形結構光條紋影像與二維影像經過一影像傳 輸線輸出至一主控制單元; (C) 影像處理與三維輪廓之計算; (D) 三維量測結果之顯示與儲存。 1 8 .如申請專利範圍第1 7項所述之一種可攜式數位光 學三維輪廓量測方法,其中,步驟(C)之影像處理與 三維輪廓之計算,係利用一主控制單元之一影像處理 單元進行影像處理與三維輪廓計算之操作。 1 9.如申請專利範圍第1 7項所述之一種可攜式數位光 1258000 學三維輪廓量測方法,其中,步驟(D)之三維量測結 果之顯示與儲存,係經由一顯示裝置顯示三維輪廓量 測結果,並將之儲存。维 靡 靡 靡 , , , , , , 9 9 9 9 9 9 9 9 9 如 如 如 如 如 控制 控制 控制 控制 控制 控制 控制 控制 控制 控制 控制 控制 控制 控制 控制 控制 控制 控制 控制 控制 控制 控制 控制 控制 控制 控制A light source device of the technology of the early morning L 〇 · A patented range of three-dimensional contour measurement t-type portable digital image processing unit for:: The main control unit system includes: a contour calculation of the fall.: System, image processing and 3D logarithmic micro ==;; 曰; ^ Mirror control unit, through the operation and control, such as the daily film, to generate a structural light map 19 1258000 spectrum. 1 1 . The portable digital optical three-dimensional contour measuring system of the portable digital measuring probe unit is a CCD image sensing component. 1 2 . The portable digital optical three-dimensional contour measuring system, wherein the light emitted by the light source device sequentially passes through an optical collimating mirror, a digital micromirror projection wafer, a structural light spectrum modulation unit, an optical focusing lens, and an optical fiber. Couple the objective lens. 1 . The portable digital optical three-dimensional wheel measuring system according to claim 1, wherein the image information of the portable micro measuring probe unit is sequentially passed through the magnifying objective lens and the optical focusing lens. , optical aperture mirror, optical focusing lens, cymbal, surface of the object to be tested, 稜鏡, two optical focusing lens, imaged on the image sensing element. 1 4. A portable type as described in claim 1 The digital optical three-dimensional contour measuring system further comprises at least one heat dissipating component for cooling the heat generated by a light source device. 1 5 as claimed in claim 14 The invention relates to a portable digital optical three-dimensional rim measuring system, wherein the heat dissipating component is a heat pipe 〇16. A portable digital optical three-dimensional contour measuring system according to claim 1, Wherein, the structured light spectrum is any one of a light spot array, a sinusoidal periodic wave, a light beam and a concentric circle. 1 7 . A portable digital optical three-dimensional contour measuring method, comprising the following 20 T25800 0 Step: (A) Pre-operation, including analysis and processing of surface characteristics of the object to be tested, and design of digital structure light to determine the period of the projected structure light spectrum and appropriate projection intensity; (B) Digital structure light projection and Image capture, image capture is performed by using a digital micro-mirror projection wafer of an optical projection unit to generate a structured light spectrum, and the structured light spectrum is coupled to the image fiber through an optical lens group and a microscopic objective lens, and the image is mapped via the image fiber. The information is transmitted to a portable micro-measurement probe unit. Further, the first set of optical lens groups and the magnifying objective lens of the portable micro-measurement probe unit are used to derive the spectrum from the image fiber, and are enlarged and projected. Measuring the surface of the object, and then extracting the deformed structured light stripe image and the two-dimensional image of the object to be tested from the object to be tested to the image sensing component through the second group of optical lens groups and the image sensing component, the image sensing component The deformed structured light stripe image and the 2D image can be output to a main control unit through an image transmission line; (C) image processing and 3D contour calculation; (D) Dimensional display of the measurement result and stored. 1 8 . The portable digital optical three-dimensional contour measuring method according to claim 17 , wherein the image processing and the three-dimensional contour calculation in step (C) utilize one image of a main control unit. The processing unit performs image processing and three-dimensional contour calculation operations. 1 . The portable digital light 1258000 three-dimensional contour measuring method according to claim 17, wherein the displaying and storing of the three-dimensional measurement result of step (D) is displayed by a display device. The 3D contour is measured and stored. 22twenty two
TW93123484A 2004-08-05 2004-08-05 Portable optical 3-D surface profilometer and method for same TWI258000B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW93123484A TWI258000B (en) 2004-08-05 2004-08-05 Portable optical 3-D surface profilometer and method for same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW93123484A TWI258000B (en) 2004-08-05 2004-08-05 Portable optical 3-D surface profilometer and method for same

Publications (2)

Publication Number Publication Date
TW200606396A TW200606396A (en) 2006-02-16
TWI258000B true TWI258000B (en) 2006-07-11

Family

ID=37765130

Family Applications (1)

Application Number Title Priority Date Filing Date
TW93123484A TWI258000B (en) 2004-08-05 2004-08-05 Portable optical 3-D surface profilometer and method for same

Country Status (1)

Country Link
TW (1) TWI258000B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI480511B (en) * 2012-01-27 2015-04-11 Nippon Steel & Sumitomo Metal Corp A bending measurement measuring device for a brake disc in a railway wheel with a brake disc

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI490444B (en) * 2009-01-23 2015-07-01 Univ Nat Taipei Technology Slit-scan microscopic system and method using the same
JP5870576B2 (en) * 2011-09-22 2016-03-01 オムロン株式会社 Optical measuring device
TWI806294B (en) 2021-12-17 2023-06-21 財團法人工業技術研究院 3d measuring equipment and 3d measuring method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI480511B (en) * 2012-01-27 2015-04-11 Nippon Steel & Sumitomo Metal Corp A bending measurement measuring device for a brake disc in a railway wheel with a brake disc

Also Published As

Publication number Publication date
TW200606396A (en) 2006-02-16

Similar Documents

Publication Publication Date Title
US11680790B2 (en) Multiple channel locating
US20040125381A1 (en) Miniature three-dimensional contour scanner
US6885460B2 (en) Apparatus for and method of measuring surface shape of an object
TWI291013B (en) Digital-structured micro-optic three-dimensional confocal surface profile measuring system and technique
JP5632650B2 (en) Inspection system and method using multi-image phase shift analysis
US10463243B2 (en) Structured light generation for intraoral 3D camera using 1D MEMS scanning
JP7386185B2 (en) Apparatus, method, and system for generating dynamic projection patterns in a confocal camera
WO2018103695A1 (en) Generation method for programmable analog grating with extended depth of field
US6226092B1 (en) Full-field geometrically desensitized interferometer using refractive optics
TWI436029B (en) Three dimensional surface profilometer and microscopy, and the method using the same
TW202020400A (en) Surface shape measurement device and surface shape measurement method
CN108895986A (en) Microscopic three-dimensional topography measurement device based on striped projection
Burke et al. Deflectometry for specular surfaces: an overview
US6791696B1 (en) Automated optical measurement apparatus and method
JP3435019B2 (en) Lens characteristic measuring device and lens characteristic measuring method
JPH07508345A (en) Method and apparatus for inspecting the surface of an object by interferometer
Engel 3D optical measurement techniques
TWI258000B (en) Portable optical 3-D surface profilometer and method for same
JP3217243U (en) Non-contact surface contour scanning device
CN114111626B (en) Light field camera three-dimensional measurement device and system based on coaxial projection
JP2008046110A (en) Method and apparatus for measuring shape of droplet
JP2001235317A (en) Apparatus for measuring radius of curvature of optical spherical surface
TW583872B (en) Micro 3D contour scanner
CN112504164A (en) Measuring device and method capable of dynamically measuring surface shape of planar optical element
KR100943407B1 (en) 3D Shape Measuring System using Projection

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees