TW466767B - Method for manufacturing ultra-shallow junction metal oxide semiconductor transistor - Google Patents

Method for manufacturing ultra-shallow junction metal oxide semiconductor transistor Download PDF

Info

Publication number
TW466767B
TW466767B TW89123893A TW89123893A TW466767B TW 466767 B TW466767 B TW 466767B TW 89123893 A TW89123893 A TW 89123893A TW 89123893 A TW89123893 A TW 89123893A TW 466767 B TW466767 B TW 466767B
Authority
TW
Taiwan
Prior art keywords
layer
gate
imp
source
drain region
Prior art date
Application number
TW89123893A
Other languages
Chinese (zh)
Inventor
Hung-Huei Tzeng
Original Assignee
Vanguard Int Semiconduct Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vanguard Int Semiconduct Corp filed Critical Vanguard Int Semiconduct Corp
Priority to TW89123893A priority Critical patent/TW466767B/en
Application granted granted Critical
Publication of TW466767B publication Critical patent/TW466767B/en

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

The present invention is related to a kind of method for forming ultra-shallow junction metal oxide semiconductor transistor and contains the following steps. At first, a semiconductor substrate on which the related positions of gate region and source/drain region have been defined is prepared. Then, an ion metal plasma (IMP) deposition method is used to deposit a silicon layer on the source/drain region and the upper surface of gate in a direction perpendicular to semiconductor substrate, in which the silicon layer is not deposited on the sidewall of gate region in this step. An LDD ion implantation is implanted inside the IMP silicon layer and is followed by performing a thermal oxidation process to partially oxidize the IMP silicon layer and the sidewall of gate so as to assure the separation between the gate and source/drain region, and to form the LDD region. After that, the spacer process is conducted. At the same time, the oxide layer on IMP silicon layer is also etched to expose the IMP silicon layer. Heavily doped ion implantation method is used to implant conductive impurities into semiconductor substrate. Self-aligned method is then used to form metal silicide layer on the source/drain region and the upper surface of gate.

Description

4 6 676 7 五、發明說明(1) 發明領域: 本發明係有關於半導體製程,特別是指一種極淺接面 金氧半電晶體之製造方法。 發明背景: 隨著積體電路技術的進步,晶片上具高密度元件已成 一種趨勢,也唯有如此才能具有十足的市場競爭力。不過 當元件尺寸由一微米向次微米或更小尺寸發展時,元件的 % 特性就得面臨更嚴苛的考驗,例如熱載子效應,透穿效應 等都是很典型的互補式金氧半電晶體(CMOS)在尺寸減少時 必須面對的挑戰,其次,寄生電阻和電容在小尺寸元件時 也必須設法減少。 其他,對小尺寸元件的限制因素是源/汲極區和複晶 矽的導電性。例如,擴散區的片電阻在1微米技術時是2 5 歐姆/ -,在0 . 5微米技術時是5 0歐姆/ -,為此,自對準金 屬矽化物形成於源/汲極區及閘極區常用以解決電阻值的 , 問題,不僅如此,它尚提供乾淨的矽化物對矽的界面,更 有勿需額外微影及蝕刻技術。因為它是自對準的。 不過形成金屬矽化物的過程,將消耗一部分基板的矽 層,而不利於極淺接面之元件的形成。因此一般都需要有4 6 676 7 V. Description of the invention (1) Field of the invention: The present invention relates to the manufacturing process of semiconductors, in particular to a method for manufacturing a super shallow junction metal-oxide semiconductor transistor. Background of the Invention: With the advancement of integrated circuit technology, it has become a trend to have high-density components on wafers, and only in this way can it have full market competitiveness. However, when the component size develops from one micron to sub-micron or smaller, the% characteristics of the component have to face more severe tests, such as the hot carrier effect and the penetrating effect. The challenges that transistors (CMOS) must face as they are reduced in size. Second, parasitic resistances and capacitances must also be reduced in small-sized components. In addition, the limiting factor for small size components is the conductivity of the source / drain region and polycrystalline silicon. For example, the sheet resistance of the diffusion region is 25 ohms /-in 1 micron technology and 50 ohms /-in 0.5 micron technology. To this end, self-aligned metal silicide is formed in the source / drain region and The gate region is often used to solve the problem of resistance value. Not only that, it also provides a clean silicide-to-silicon interface, without the need for additional lithography and etching techniques. Because it is self-aligned. However, the process of forming a metal silicide will consume a part of the silicon layer of the substrate, which is not conducive to the formation of extremely shallow junction components. So generally need to have

五、發明說明(2) --------- Ϊ 1 沉積於源/没極區上以提供金屬石夕化物層的反 常頗為複雜 氣相Ξ積:源極區和閘極的隔絕’傳統方法,乡藉助化學 & . *法儿積一氧化層於形成矽層之前,而這些程序通 驟 本發明之一目的,因此將提供—容易實施之製程步 發明目的及概述: 對於ϋ:t:m:::改善極淺接面金氧半電晶體 ’化物形成時所造成的問題。 本發種極淺接面金氧半電晶體的形成方法, =及極區相關位置已定義之半導體基板。接著一及 屬電忒阢積法以類似濺鍍的方式方,V. Description of the invention (2) --------- Ϊ 1 Anomalous gas phase deposits deposited on the source / inverted region to provide a metal lithosphere layer are quite complex vapor deposition: the source region and the gate The traditional method of isolation is to use chemical &. Method to deposit an oxide layer before forming a silicon layer, and these procedures are one of the objectives of the present invention, and therefore will provide—easy-to-implement process steps. Purpose and summary of the invention: ϋ: t: m ::: Improves the problems caused by the formation of metal oxides on ultra-shallow junctions. The method for forming an extremely shallow junction metal-oxide semiconductor transistor of the present invention is a semiconductor substrate having a defined position in a polar region. Next, it is a method similar to sputtering, which is a method of electrolytic deposition.

不會沉積於閑極區的側壁。一=子m步驟時並 矽層内。 LDD離子佈植接著佈植於IMP 之侧::確Π: ϊ氧化製程以部分氧化夕層和閘極 且Ξ【二思 極區的隔離。此外本步驟同時 ”有將IMP石夕層内的導電性雜質引入半導體基板内以構成Will not be deposited on the sidewalls of the idle region. One = sub-m step and not inside the silicon layer. The LDD ion implantation is then implanted on the side of the IMP :: :: ϊ: The oxidation process uses a part of the oxide layer and the gate, and the isolation of the second electrode area. In addition, in this step, "the conductive impurities in the IMP stone layer are introduced into the semiconductor substrate to constitute

4 6676 7 五、發明說明(3) 淺接面。之後’ -化學氣相沉積法沉積的氧化層則 ί::積:ΐ以—非等向性蝕刻方法在閘極的側壁上形成 尽’、同’ 1 ΜΡ石夕層上的氧化層也被蝕刻而曝露I ΜΡ石夕 再以重換雜的離子佈植方式將導電性雜質植入半 成=内。耐火金屬層接著沉積,再以第一次退火形 方 I化物層於源/汲極區及閘極區。接著再以蝕刻的 方;以二ί f ΐ的金屬I。最後再以另—次快速熱退火的 接面以Ϊ:ti:化物層’及活化導電性雜質以形成較深 疋成本务明之金氧半電晶體結構。 發明詳細說明: 首先ΐ ΐ二所示,一閘極氧化層u 0以高溫的熱氧化製程 首先形成50到3 0 0埃之間的厚度於一半導體基板1〇〇上。 併以间ί ί層材料’例如以低壓化學氣相沉積法(LPCVD) 層/ f的方式沉積於摻有導電性雜質的複晶石夕 至3〇〇〇埃。氧化層110上,導體層120典型厚度约為1〇〇〇 上,ί ΐ圖—’接著塗佈-光阻圖案於導體層12〇之 阻圖案ΐΐϊί閑極區122, 一姓刻步驟接著融刻未被光 後,i以、篇彳1分、’以閘極氧化層110為蝕刻終止層,隨 ’’、,刻潤濕的方法去除未被複晶矽層覆蓋之閘4 6676 7 V. Description of the invention (3) Shallow junction. After that, the oxide layer deposited by the chemical vapor deposition method is: 积: 积: ΐ-anisotropic etching method is used to form the oxide layer on the sidewall of the gate electrode, and the oxide layer on the same layer Etching and exposing I MP Shi Xi, and then implanting conductive impurities into the semi-conductor by ion replacement implantation method. The refractory metal layer is then deposited, and a first annealing layer is formed in the source / drain region and the gate region. Then use the etched side; the metal I with two f f ΐ. Finally, another rapid thermal annealing interface is used to form a ti: ti: metal compound layer and activate conductive impurities to form a deeper cost-effective gold-oxygen semi-electric crystal structure. Detailed description of the invention: First, as shown in (2), a gate oxide layer u 0 is firstly formed on a semiconductor substrate 100 with a thickness between 50 and 300 angstroms by a high-temperature thermal oxidation process. It is deposited on the interlayer material doped with conductive impurities, such as a low pressure chemical vapor deposition (LPCVD) layer / f, in an indirect layer material, for example, to 3,000 angstroms. On the oxide layer 110, the typical thickness of the conductor layer 120 is about 1,000. Figure ―'Next coating-photoresist pattern on the resist pattern of the conductor layer 120.> The free electrode region 122, a step of engraving and then melting After the photoresist is not etched, i takes 1 minute and 1 minute, and uses the gate oxide layer 110 as an etch stop layer, and then removes the gate that is not covered by the polycrystalline silicon layer with the method of etch and wetting.

第6頁 46 676 7 五、發明說明(4) 極_氧化層11·0以露出_半導體基板10 0上之源/;:及極區1 2 4。 之後’請參考圖二,一離子金屬電漿沉積法 (Ion-Metal-Process;簡稱IMP)接著用以以垂直半導體基 板方向的方式沉積IMP石夕層1 30於複晶閘極區1 22及源/沒極 區1 2 4上。離子金屬電漿沉積法類似一濺鍍過程,以離子 化矽材或一耐火金屬材料於半導體基板的上表面。在本步 驟中’將不會有矽沉積於複晶閘極區1 22的側壁上。丨Mp石夕 層係用以做為金屬矽化物接觸區。 1Page 6 46 676 7 V. Description of the invention (4) The electrode_oxide layer 11.0 is exposed to expose the source / on the semiconductor substrate 100; and the electrode region 1 2 4. Afterwards, please refer to FIG. 2, an ion metal plasma deposition method (Ion-Metal-Process; IMP for short) is then used to deposit the IMP stone layer 1 30 in the polycrystalline gate region 1 22 in a vertical semiconductor substrate direction and Source / impulse region 1 2 4 on. The ionic metal plasma deposition method is similar to a sputtering process, in which an ionized silicon material or a refractory metal material is used on the upper surface of a semiconductor substrate. In this step ', no silicon will be deposited on the sidewalls of the polycrystalline gate region 122.丨 The Mp Shixi layer is used as the metal silicide contact area. 1

I 緊接著,一 η型或P型導電性雜質以離子佈植如圖箭頭 所示方向植入於半導體基板100中以形成離子摻雜區14〇, 以一較佳的實施例而言,η型雜質可以是磷或砷離子,而ρ 型雜質則可以是B F 2 +或硼離子’導電性雜質的選擇係依據 元件疋η Μ 0 S電晶體或ρ Μ 0 S電晶體而定。離子佈植的能量和 劑量分別為1至30 keV和1Ε13至5Ε15 /cm2 請參考圖三,一約6 5 0至9 0 0°C的高溫的熱氧化製程接 著實施’氧化過程以用以形成複晶氧化層1 35形成於複晶 閘極122之側壁及形成IMP氧化層145於源/汲極區124及=( 晶閘極1 2 2的上表面上。氧化過程將消耗一部分之複晶石夕 層及I MP石夕層。因此,利用本步驟將可以確保複晶閘極1 2 2 和源/汲極區1 24的分離。此外,IMP石夕層僅部分氧化即 可,因為剩餘之IMP石夕層130係用來進行金屬矽化物層。此I Immediately, an n-type or p-type conductive impurity is implanted into the semiconductor substrate 100 in an ion implantation direction as shown by the arrow to form an ion-doped region 14. In a preferred embodiment, η The type impurities may be phosphorus or arsenic ions, and the ρ type impurities may be BF 2 + or boron ions. The choice of conductive impurities depends on the element ηη M 0 S transistor or ρ M 0 S transistor. The energy and dose of the ion implantation are 1 to 30 keV and 1E13 to 5E15 / cm2. Please refer to FIG. 3, a high temperature thermal oxidation process of about 650 to 900 ° C is followed by an 'oxidation process to form A multiple-crystal oxide layer 1 35 is formed on the side wall of the multiple-crystal gate 122 and an IMP oxide layer 145 is formed on the source / drain region 124 and the upper surface of the crystalline gate 1 2 2. The oxidation process will consume a part of the multiple crystal Shi Xi layer and IMP Shi Xi layer. Therefore, using this step will ensure the separation of the complex gate 12 and source / drain region 1 24. In addition, the IMP Shi Xi layer can only be partially oxidized because the remaining The IMP stone layer 130 is used for the metal silicide layer.

第7頁 466767___ 五、發明說明(5) 外本步驟的離子摻雜區1 4 0 ’ 一雜質擴散源,可以經由本 步驟擴散而進入半導體基板100而形成淺接面140人的LDD 區。一絕緣層1 50例如氧化層再以pecVD方式全面性沉積, 當然絕緣層1 5 0也可以是氮化矽層。 請轉至圖四,絕緣層1 5 0再以一非等向性蝕刻方法以 便在複晶閘極1 2 2的側壁上形成間隙壁1 5 〇,利用絕緣層和 IΜ P石夕層的姓刻選擇比钱刻停止於I μ p石夕層1 3 0上。典型而 言’閘極間隙壁1 5 0厚度約為1 〇 〇 〇至2 5 0 0埃。緊接著,再 施以高劑量之離子佈植,佈植之能量和劑量分別為2 〇至 6 0keV和—5Ε14 -1Ε16 /cm^穿過IMP石夕層至半導體基板 1 0 0内。 一金屬矽化物形成金屬’例如鎢、鈦或鎳接著以化學 氣相沉積法或濺鍍的方法沉積於IMP石夕層1 3 0上,在第一次 快速熱退火(簡稱RTP)後,耐火金屬和IMP石夕層反應而形成 金屬矽化物層1 60,接.著,一濕式蝕刻例如含ΝΗ40Η、H20、 Η 2〇接著蝕刻未反應的金屬層,例如在間隙壁1 5 〇上。再施 以第一階段的R Τ Ρ退火,以降低金屬梦化物之阻值,其中 這二階段的RTΡ退火溫度高於第一階段。本步驟並具有使 植入的離子活化之功能以形成較深的接面1 7 〇。 以上所述僅為本發明之較佳實施例而已,並非用以限 定本發明之申請專利範圍;凡其它未脫離本發明所揭示之Page 7 466767___ V. Description of the invention (5) Outside the ion-doped region 1400 in this step is an impurity diffusion source that can enter the semiconductor substrate 100 through the diffusion in this step to form an LDD region with a shallow junction of 140 people. An insulating layer 150, such as an oxide layer, is fully deposited in a pecVD manner. Of course, the insulating layer 150 may also be a silicon nitride layer. Please turn to Figure 4. The insulating layer 150 is then anisotropically etched so as to form a gap wall 150 on the side wall of the polycrystalline gate 1 2 2. The last names of the insulating layer and the I M P Shi Xi layer are used. The engraving selection stops on I μ p Shi Xi layer 1 3 0 than Qian engraving. Typically, the thickness of the gate barrier wall 150 is about 1000 to 2500 Angstroms. Immediately after that, a high dose of ion implantation was applied. The implantation energy and dose were 20 to 60 keV and -5E14 -1E16 / cm ^, which passed through the IMP stone layer to the semiconductor substrate 100. A metal silicide forms a metal, such as tungsten, titanium, or nickel, and is then deposited on the IMP stone layer 130 by chemical vapor deposition or sputtering. After the first rapid thermal annealing (RTP), it is refractory. The metal reacts with the IMP stone layer to form a metal silicide layer 160. Then, a wet etch such as NΗ40Η, H20, Η20 is performed, and then an unreacted metal layer is etched, for example, on the barrier wall 150. RTP annealing in the first stage is then applied to reduce the resistance value of the metal dream. The RTP annealing temperature in these two stages is higher than that in the first stage. This step also has the function of activating the implanted ions to form a deeper interface 170. The above descriptions are merely preferred embodiments of the present invention, and are not intended to limit the scope of patent application for the present invention; all others that do not depart from the disclosure of the present invention

4 6 676 7 五、發明說明(6) 精神下所完成之等效改變或修飾,均應包含在下述之申請 專利範圍内。 nil 4 6 676 7 圖式簡單說明 本發明的較佳實施例將於往後之說明文字中輔以下列 圖形做更詳細的闡述: 圖一顯示一閘極結構形成於半導體基板上的橫截面示 意圖。 圖二顯示依據本發明之方法以離子金屬電漿沉積法沉 積I Μ P石夕層於源/没極區及閘極極區並以離子佈植形成一換 雜區的橫截面不意圖。 圖三顯示依據本發明之方法施以高溫的熱氧化製程以 形成複晶氧化層及I ΜΡ氧化層以隔離閘極與及以離子金屬 電漿沉積法沉積I ΜΡ碎層於源/汲極區及閘極極區並以離子 佈植形成一摻雜區的橫截面示意圖。 圖四顯示依據本發明之方法施以一非等向性蝕刻方法 形成間隙壁及曝露殘餘之I Μ Ρ石夕層,然後再施以源/汲極區 的離子佈植的橫截面示意圖。 圖五顯示以本發明之方法施以自對準金屬矽化物程序 以形成金屬石夕化物層的橫截面示意圖。4 6 676 7 V. Description of the invention (6) Equivalent changes or modifications made under the spirit should all be included in the scope of the patent application described below. nil 4 6 676 7 Schematic illustration of the preferred embodiment of the present invention will be explained in more detail in the following explanatory text with the following figures: Figure 1 shows a schematic cross-sectional view of a gate structure formed on a semiconductor substrate . Fig. 2 shows the cross-section of the ion-plasma deposition method in accordance with the method of the present invention to deposit an MP layer on the source / inverter region and the gate region and implant the ion region to form a doped region. FIG. 3 shows that a high temperature thermal oxidation process is performed according to the method of the present invention to form a polycrystalline oxide layer and an MP oxide layer to isolate a gate electrode and to deposit an I MP fragment layer in a source / drain region by an ion metal plasma deposition method. A schematic cross-sectional view of a gate region and a doped region formed by ion implantation. FIG. 4 is a schematic cross-sectional view of applying a non-isotropic etching method according to the present invention to form a spacer and exposing the remaining I SiO 2 layer, and then applying ion implantation in the source / drain region. Fig. 5 is a schematic cross-sectional view of a self-aligned metal silicide process performed by the method of the present invention to form a metal oxide layer.

第10頁Page 10

Claims (1)

46676 7 六、申請專利範圍 1 · 一種製作極淺接面金氧半電晶體之方法,該方法至少 包含以下步驟: 提供一半導體基板,該半導體基板並已形成源/汲極 區及複晶閘極於其上; 以離子金屬電毁沉積法(I〇n_Metai_process;簡稱 IMP)沉積一 IMP石夕層於該源/汲極區及該複晶閘極的上表 面 ; 施以第一次離子佈植於所有區域. 施以熱氧化製程氧化該IM 、 該源/汲極區及該複晶矽閘極 ^ ,以形成1 ―氧化層於 複晶閘極之侧壁上,該熱氧化表面,及複晶氧化層於 及複晶閘極上的複晶矽層製^消耗一部分之IMP石夕層 形成一介電層於所有區域; 施以一非等向性蝕刻,用, ' 成間隙壁及去除IMP氧化層; 該複晶閘極的側壁上形 施以第二次離子佈植穿過該殘 極區中; IΜ P石夕層而植入該源/汲 形成一金屬層於所有區域; 施以第一次熱退火製程以 汲極區的上表面及該複晶閘極成金屬矽化物層於該源/ 除去未反應之金屬層。 &的上表面;及 .如申請專利範圍第1項之方 的溫度約為6 5.0至9 0 ot。 ’其中上述之熱氧化製程 466767_ 六、申請專利範圍 3. 如申請專利範圍第1項之方法,其中上述之介電層係選 自二氧化矽層或氮化矽層。 4. 如申請專利範圍第1項之方法,其中上述之第一次離子 佈植的能量和劑量分別為1至3 0 k e V和1 E 1 3至5E15 /cm2。 5. 如申請專利範圍第1項之方法,其中上述之第二次離子 佈植的能量和劑量分別為2 0至6 0 keV和5E 1 4至1 E1 6 / cm 2° 6. 如申請專利範圍第1項之方法,其中上述之金屬層係選 自由鶴、鈦、銘、及鎳其中之一。 7. 如申請專利範圍第1項之方法,更包含在除去金屬層的 步驟之後再一次施以RTP退火製程以穩定上述之金屬矽化 物層。46676 7 VI. Scope of patent application 1 · A method for making metal oxide semiconductors with extremely shallow junctions, the method includes at least the following steps: Provide a semiconductor substrate, the semiconductor substrate has formed a source / drain region and a complex thyristor On top of it; an IMP stone process (Ion_Metai_process; IMP for short) is used to deposit an IMP stone layer on the source / drain region and the upper surface of the complex gate; apply the first ion cloth Planted in all areas. The thermal oxidation process is used to oxidize the IM, the source / drain region, and the polycrystalline silicon gate ^ to form a 1-oxide layer on the side wall of the polycrystalline gate, the thermally oxidized surface, And the polycrystalline silicon layer on the polycrystalline gate and the polycrystalline silicon gate ^ consume a part of the IMP stone layer to form a dielectric layer in all areas; apply an anisotropic etching to Removing the IMP oxide layer; applying a second ion implantation through the remnant region on the sidewall of the complex gate; implanting the source / drain to form a metal layer in all regions; Apply the first thermal annealing process to the top surface of the drain region The polycrystalline gate into the metal silicide layer on the source / removal of the unreacted metal layer. & the upper surface; and, as described in the first patent application, the temperature is about 6 5.0 to 90 ot. ’Wherein the above-mentioned thermal oxidation process 466767_ VI. Application scope of patent 3. For the method of the first scope of patent application, wherein the above-mentioned dielectric layer is selected from a silicon dioxide layer or a silicon nitride layer. 4. The method according to item 1 of the patent application range, wherein the energy and dose of the first ion implantation described above are 1 to 30 k e V and 1 E 1 3 to 5E15 / cm2, respectively. 5. The method of item 1 in the scope of patent application, wherein the energy and dose of the second ion implantation mentioned above are 20 to 60 keV and 5E 1 4 to 1 E1 6 / cm 2 ° 6. If patent is applied The method of the first item, wherein the above-mentioned metal layer is selected from the group consisting of crane, titanium, Ming, and nickel. 7. The method according to item 1 of the scope of patent application, further comprising applying an RTP annealing process after the step of removing the metal layer to stabilize the above-mentioned metal silicide layer. 第12頁Page 12
TW89123893A 2000-11-10 2000-11-10 Method for manufacturing ultra-shallow junction metal oxide semiconductor transistor TW466767B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW89123893A TW466767B (en) 2000-11-10 2000-11-10 Method for manufacturing ultra-shallow junction metal oxide semiconductor transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW89123893A TW466767B (en) 2000-11-10 2000-11-10 Method for manufacturing ultra-shallow junction metal oxide semiconductor transistor

Publications (1)

Publication Number Publication Date
TW466767B true TW466767B (en) 2001-12-01

Family

ID=21661911

Family Applications (1)

Application Number Title Priority Date Filing Date
TW89123893A TW466767B (en) 2000-11-10 2000-11-10 Method for manufacturing ultra-shallow junction metal oxide semiconductor transistor

Country Status (1)

Country Link
TW (1) TW466767B (en)

Similar Documents

Publication Publication Date Title
US6777275B1 (en) Single anneal for dopant activation and silicide formation
JP3600476B2 (en) Method for manufacturing semiconductor device
TW445646B (en) Fabrication method of semiconductor device using selective epitaxial growth
JP2007251066A (en) Method of manufacturing semiconductor device
KR20040029119A (en) Improved high k-dielectrics using nickel silicide
JP2000216386A (en) Fabrication of semiconductor device having junction
JP4086099B2 (en) Method for forming semiconductor device
US6258682B1 (en) Method of making ultra shallow junction MOSFET
JPH0594968A (en) Semiconductor device and manufacture thereof
TWI262561B (en) Method of forming ultra-shallow junction devices and its application in a memory device
JPH0837296A (en) Manufacture of semiconductor device
TW411507B (en) Double sidewall raised silicided source/drain CMOS transistor
TW466767B (en) Method for manufacturing ultra-shallow junction metal oxide semiconductor transistor
TW200303587A (en) Method of forming different silicide portions on different silicon-containing regions in a semiconductor device
JPH1140679A (en) Semiconductor device and manufacture
TW200306649A (en) Method for manufacturing a semiconductor device having a layered gate electrode
JP2006352127A (en) Method of forming self-aligned silicide film by using multiple heat treatment processes
TW200524141A (en) Semiconductor device and manufacturing method thereof
US7211489B1 (en) Localized halo implant region formed using tilt pre-amorphization implant and laser thermal anneal
JP3061027B2 (en) Method for manufacturing semiconductor device
KR100806136B1 (en) Method for fabricating semiconductor device having meta-gate electrode
JPH02288341A (en) Mis-type semiconductor device
TW517290B (en) Damascene NiSi metal gate high-k transistor
KR100334866B1 (en) Transistor Formation Method of Semiconductor Device
JPH07249761A (en) Semiconductor device and its fabrication

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent
MK4A Expiration of patent term of an invention patent