TW201725746A - Tandem solar cell and method for manufacturing thereof, and solar panel - Google Patents

Tandem solar cell and method for manufacturing thereof, and solar panel Download PDF

Info

Publication number
TW201725746A
TW201725746A TW105142003A TW105142003A TW201725746A TW 201725746 A TW201725746 A TW 201725746A TW 105142003 A TW105142003 A TW 105142003A TW 105142003 A TW105142003 A TW 105142003A TW 201725746 A TW201725746 A TW 201725746A
Authority
TW
Taiwan
Prior art keywords
solar cell
layer
contact
tandem
polarity
Prior art date
Application number
TW105142003A
Other languages
Chinese (zh)
Inventor
嵐柏特 喬漢 吉爾梨格斯
吳愉
張棟
羅斯曼倫 約翰尼斯 安東尼斯 瑪莉亞 凡
史特凡 利波特斯 盧森堡
斯可福瑞德 克利斯提安 凡斯瑞
Original Assignee
荷蘭史迪克汀艾能吉翁德卓克中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from NL2015987A external-priority patent/NL2015987B1/en
Application filed by 荷蘭史迪克汀艾能吉翁德卓克中心 filed Critical 荷蘭史迪克汀艾能吉翁德卓克中心
Publication of TW201725746A publication Critical patent/TW201725746A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/078Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers including different types of potential barriers provided for in two or more of groups H01L31/062 - H01L31/075
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/043Mechanically stacked PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • H10K30/83Transparent electrodes, e.g. indium tin oxide [ITO] electrodes comprising arrangements for extracting the current from the cell, e.g. metal finger grid systems to reduce the serial resistance of transparent electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • H10K30/57Photovoltaic [PV] devices comprising multiple junctions, e.g. tandem PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A tandem solar cell, a method for manufacturing thereof, and a solar panel are provided. The tandem solar cell includes a top solar cell and a bottom solar cell. The top solar cell and the bottom solar cell each have a respective front surface and a rear surface, with the respective front surfaces being adapted for facing a radiation source during use. The top solar cell is arranged with its rear surface overlying the front surface of the bottom solar cell. The top solar cell includes a photovoltaic absorber layer with a bandgap greater than that of crystalline silicon. The bottom solar cell includes a crystalline silicon substrate. On at least a portion of the front surface of the bottom solar cell a passivating layer stack is disposed which includes a thin dielectric film and a secondary layer of either selective carrier extracting material or polysilicon. The thin dielectric film is arranged between the silicon substrate and the secondary layer.

Description

混合串接式太陽電池Hybrid tandem solar cell

本發明是有關於一種串接式太陽電池。再者,本發明是有關於一種製造此種串接式太陽電池的方法。此外,本發明是有關於一種包括至少一個此種串接式太陽電池的太陽面板。This invention relates to a tandem solar cell. Furthermore, the present invention relates to a method of fabricating such a tandem solar cell. Furthermore, the invention relates to a solar panel comprising at least one such tandem solar cell.

已知串接式太陽電池是由具有非晶矽(amorphous silicon,a-Si)異質接面的結晶矽底部電池及較高帶隙頂部太陽電池組成。儘管底部太陽電池因非晶矽異質接面而能提供有益於串接效能的高的Voc ,然而此種底部太陽電池設計具有若干缺點。該些缺點為例如:i)非晶矽異質接面的橫向電導低,橫向電導低致使必然使用透明導電氧化物(transparent conductive oxide,TCO)電極,(除非使用例如經氫或鎢摻雜的InOx 、銦氧化物等昂貴材料)所述透明導電氧化物電極具有大的紅外輻射(Infrared Radiation,IR)吸收率;ii)非晶矽鈍化的熱穩定性(thermal robustness)低且在2端串接式(2-terminal tandem)結構的情形中對頂部電池的加工亦在熱方面受限,熱穩定性低意指所得電池無法被規律地焊接而用於互連;iii)形成具有非晶矽異質接面的電池的交叉背面接觸版本(interdigitated back contact version)必然帶來複雜製程及高成本。It is known that a tandem solar cell is composed of a crystalline germanium bottom cell having an amorphous silicon (a-Si) heterojunction and a higher band gap top solar cell. Although the bottom solar cell provides a high Voc that is beneficial for tandem performance due to the amorphous germanium heterojunction, such a bottom solar cell design has several disadvantages. These disadvantages are, for example, i) the low lateral conductivity of the amorphous germanium heterojunction and the low lateral conductance necessitating the use of transparent conductive oxide (TCO) electrodes (unless using InO, for example doped with hydrogen or tungsten) An expensive material such as x , indium oxide or the like) the transparent conductive oxide electrode has a large infrared radiation (IR) absorption rate; ii) the amorphous thermal passivation has low thermal robustness and is at the 2-end string The processing of the top cell in the case of a 2-terminal tandem structure is also thermally limited, the low thermal stability means that the resulting battery cannot be soldered regularly for interconnection; iii) formed with amorphous germanium The interdigitated back contact version of a heterojunction battery inevitably introduces complicated processes and high costs.

本發明的目標是克服或減弱先前技術的各所述缺點。It is an object of the present invention to overcome or attenuate the various disadvantages of the prior art.

藉由一種串接式太陽電池來達成所述目標,所述串接式太陽電池包括:頂部太陽電池及底部太陽電池;頂部太陽電池及底部太陽電池分別具有各自的前表面及後表面;各自的前表面適以在使用期間面對輻射源;頂部太陽電池被配置成使其後表面鄰近底部太陽電池的前表面(即,堆疊於底部太陽電池的前表面上或覆蓋底部太陽電池的前表面);頂部太陽電池包括光伏吸收層,光伏吸收層具有較結晶矽的帶隙大的帶隙; 所述底部太陽電池包括結晶矽基板; 其中在所述結晶矽基板的前表面的區域的至少一部分上安置有鈍化層堆疊,鈍化層堆疊包括例如薄的氧化物(「穿隧氧化物(tunnel oxide)」)膜等薄的介電質及由選擇性載子提取材料或多晶矽形成的輔助層,薄的介電質膜配置於矽基板與輔助層之間。The object is achieved by a tandem solar cell comprising: a top solar cell and a bottom solar cell; the top solar cell and the bottom solar cell respectively have respective front and back surfaces; respective The front surface is adapted to face the radiation source during use; the top solar cell is configured such that its rear surface is adjacent to the front surface of the bottom solar cell (ie, stacked on the front surface of the bottom solar cell or covering the front surface of the bottom solar cell) The top solar cell includes a photovoltaic absorber layer having a band gap larger than that of the crystalline germanium; the bottom solar cell includes a crystalline germanium substrate; wherein at least a portion of a region of the front surface of the crystalline germanium substrate A passivation layer stack is disposed, and the passivation layer stack includes a thin dielectric such as a thin oxide ("tunnel oxide") film and an auxiliary layer formed of a selective carrier extraction material or polysilicon, thin The dielectric film is disposed between the germanium substrate and the auxiliary layer.

有利地,由於鈍化層堆疊中的材料可被選擇成相較於先前技術的非晶異質接面層而言熱穩定的結構,因此本發明提供底部太陽電池的提高的熱穩定性及較在串接式太陽電池中作為底部太陽電池的非晶矽異質接面電池的生產成本相對低的生產成本。此種高的熱穩定性可使得能夠使用例如標準燒穿金屬化(standard fire-through metallization)等使用相對高的溫度的製造製程。Advantageously, since the material in the passivation layer stack can be selected to be thermally stable compared to prior art amorphous heterojunction layers, the present invention provides improved thermal stability of the bottom solar cell and more string The production cost of the amorphous germanium heterojunction battery as the bottom solar cell in the tandem solar cell is relatively low in production cost. Such high thermal stability can enable the use of relatively high temperature manufacturing processes such as standard fire-through metallization.

此外,使用具有薄的鈍化介電質(例如穿隧氧化物)與輔助層的組合的鈍化層堆疊可提供相當低的電荷載子複合速率,此使得達成較高的Voc 及FF值以及串接式太陽電池的較高的效能。此尤其見於輔助層自矽基板提供選擇性載子提取(亦闡述為選擇性載子收集)時,在此種情形中所述鈍化層堆疊被公知為被鈍化觸點(passivated contact)或鈍化觸點(passivating contact)。串接式太陽電池的增強亦尤其見於輔助層為本征的(經無意摻雜的、經最輕摻雜的)多晶矽層時,此不會達成鈍化觸點但會提供極佳的鈍化。In addition, a passivation dielectric having a thin (e.g., tunnel oxide) in combination with the auxiliary passivation layer stack of layers may provide a relatively low charge carrier recombination rate, so that to achieve this higher V oc and FF values and string The higher performance of the connected solar cell. This is especially true when the auxiliary layer provides selective carrier extraction (also described as selective carrier collection) from the substrate, in which case the passivation layer stack is known as a passivated contact or passivation contact. Passivating contact. The enhancement of tandem solar cells is also particularly seen when the auxiliary layer is intrinsic (unintentionally doped, lightly doped) polycrystalline germanium layer, which does not achieve passivated contacts but provides excellent passivation.

再者,可省略先前技術的對用於補償非晶異質接面中的低橫向電導的透明導電氧化物電極的應用,乃因輔助層的選擇性載子提取材料(例如厚度為至少幾十奈米的經高度摻雜的多晶矽)可提供橫向電導。Furthermore, the prior art application of a transparent conductive oxide electrode for compensating for low lateral conductance in an amorphous heterojunction may be omitted, due to the selective carrier extraction material of the auxiliary layer (eg, a thickness of at least The highly doped polysilicon of rice provides lateral conductance.

在現有科學理解中,認為良好的載子選擇性需要例如藉由薄的氧化矽達成良好的介面鈍化(基板與載子收集層堆疊之間的介面)。在此種意義上,所述薄的介電質可被視作選擇性載子收集結構的部分,且在不使用薄的介電質的條件下輔助層自身未必具有非常強的載子選擇性。然而,薄的氧化矽自身並不對於電子或電洞產生選擇性。此種選擇性必須藉由安置於薄的氧化矽上的材料來產生。因此在本文中當提及選擇性載子提取或收集材料時,是意指安置於薄的氧化矽或薄的介電質膜上以引發選擇性載子收集性質的材料或層。此外在現有科學理解中,薄的介電質執行至少三個功能:i)鈍化與矽基板的介面以減少載子複合,ii)減少少數電荷載子自矽基板至選擇性載子提取材料的傳輸(其中「少數」定義為與選擇性載子提取材料的極性或類型相反的極性或類型),及iii)傳輸對於不超過底部太陽電池的小的電阻性損失而言足夠的多數電荷載子。In the current scientific understanding, it is believed that good carrier selectivity requires good interface passivation (interfacing between the substrate and the carrier collection layer stack), for example by thin yttrium oxide. In this sense, the thin dielectric can be considered as part of the selective carrier collection structure, and the auxiliary layer itself does not necessarily have very strong carrier selectivity without using a thin dielectric. . However, thin yttrium oxide itself does not produce selectivity for electrons or holes. This selectivity must be produced by a material placed on a thin yttria. Thus, when referring to a selective carrier extraction or collection material herein is meant a material or layer that is disposed on a thin yttria or thin dielectric film to initiate selective carrier collection properties. In addition, in the current scientific understanding, a thin dielectric performs at least three functions: i) passivating the interface with the germanium substrate to reduce carrier recombination, and ii) reducing a small number of charge carriers from the germanium substrate to the selective carrier extracting material. Transmission (where "minority" is defined as the polarity or type opposite to the polarity or type of selective carrier extraction material), and iii) transmission of most charge carriers sufficient to not exceed the small resistive loss of the bottom solar cell .

產生良好效能的薄的介電質為例如氧化矽(例如,二氧化矽)及氮氧化矽。其他可能的薄的介電質為例如氧化鋁或氧化鉿。典型的氧化矽或氮氧化矽厚度介於~0.5奈米與~5奈米之間、較佳地為~1奈米至~2奈米。視例如在薄的氧化物膜中產生例如銷孔(pinhole)的熱退火製程等製程條件而定,厚於約1.5奈米的薄的氧化物可達成對多數電荷載子進行良好鈍化及充足傳輸以及對少數電荷載子進行足夠低的傳輸的所需功能。Thin dielectrics that produce good performance are, for example, cerium oxide (e.g., cerium oxide) and cerium oxynitride. Other possible thin dielectrics are, for example, aluminum oxide or cerium oxide. Typical cerium oxide or cerium oxynitride has a thickness of between -0.5 nm and ~5 nm, preferably ~1 nm to ~2 nm. Depending on process conditions such as thermal annealing processes that produce pinholes in thin oxide films, thin oxides thicker than about 1.5 nm can achieve good passivation and sufficient transport for most charge carriers. And the required functions for a sufficiently low transmission of a small number of charge carriers.

寬的帶隙頂部電池通常由以下組成:吸收層(例如:金屬有機鹵化物鈣鈦礦、例如硫化銅鋅錫等硫銅錫鋅礦、例如硒化銅銦鎵等硫屬化物、薄膜矽、有機吸收層(有機光伏(Organic Photo Voltaic,OPV)、染料敏化太陽電池(Dye Sensitized Solar Cell,DSSC))、III-V族化合物半導體、CdTe、包含量子點的層等)、在例如硫屬化物接面或CdS/CdTe接面的情形中用於形成p-n異質接面的適合的半透明電極及類似視窗層(window layer)的可能為輔助性的層及/或經常應用於有機光伏太陽電池及金屬有機鹵化物鈣鈦礦太陽電池中的電荷選擇性層。A wide bandgap top cell typically consists of an absorbing layer (eg, a metal organic halide perovskite, a sulphur copper tin zinc ore such as copper sulphide sulphide, a chalcogenide such as copper indium gallium selenide, a film ruthenium, Organic absorbing layer (Organic Photo Voltaic (OPV), Dye Sensitized Solar Cell (DSSC)), Group III-V compound semiconductor, CdTe, layer containing quantum dots, etc.), for example, Chalcogen Suitable translucent electrodes for forming pn heterojunctions and possibly auxiliary layers of the window layer in the case of a junction or CdS/CdTe junction and/or frequently used in organic photovoltaic solar cells And a charge selective layer in a metal organic halide perovskite solar cell.

選擇性電荷輸送層可由具有例如不同摻雜水準或在化學方面不同的化合物的不同材料的堆疊組成。理想上,該些輔助性的層視需要為高度透明的且具有對於電荷注入及電荷輸送而言適合的電子性質。電極及電荷輸送層通常位於吸收層的任一側上,然而在背面接觸式電池(back contacted cell)(實例參見U. Bach 2016)的情形中所述電極及電荷輸送層可位於所述吸收層的一側上。已知其中單一電荷選擇性層足以達成良好的工作裝置的例子(格雷切爾科學(Graetzel Science)(2014年4月))。The selective charge transport layer can be composed of a stack of different materials having, for example, different doping levels or chemically different compounds. Ideally, the ancillary layers are highly transparent as needed and have suitable electronic properties for charge injection and charge transport. The electrode and charge transport layer are typically located on either side of the absorber layer, however in the case of a back contacted cell (see U. Bach 2016 for an example) the electrode and charge transport layer may be located in the absorber layer On one side. An example is known in which a single charge selective layer is sufficient to achieve a good working device (Graetzel Science (April 2014)).

根據一個態樣,本發明提供如上所述的串接式太陽電池,其中薄的介電質層與輔助層的堆疊一起向底部電池形成選擇性載子收集觸點。According to one aspect, the present invention provides a tandem solar cell as described above, wherein a thin dielectric layer, together with a stack of auxiliary layers, forms a selective carrier collection contact to the bottom cell.

根據一個態樣,本發明提供如上所述的串接式太陽電池,其中輔助層包含多晶矽。通常,厚度介於~5奈米至~500奈米範圍中的多晶矽的膜在光譜的可見範圍中具有相對高的吸收率,但在紅外輻射範圍中為透明的,此使得能夠使用多晶矽作為串接式太陽電池的底部太陽電池的前層。因此,以串接式太陽電池結構進行積體是自原本(即,作為獨立的單一接面而使用)將會具有非常差的效能的具有多晶矽鈍化前觸點或多晶矽鈍化前層堆疊的矽太陽電池獲得最高效能的解決方案。此外,在獨立使用具有多晶矽鈍化觸點的結晶矽電池時,多晶矽鈍化觸點僅施加至背側,且需要附加的製程步驟以在前側上提供例如經高品質擴散的接面且需要光刻以在前側上提供接觸面積非常小的觸點,以獲得高效能。根據本發明的態樣,從優地,可向矽晶圓的前側及後側二者施加多晶矽,且舉例而言,藉由例如在一側上印刷硼摻雜劑源及在另一側上植入磷摻雜劑、隨後進行熱退火,前側多晶矽與後側多晶矽可被摻雜成具有相反的極性,進而使底部電池的電池製程順序簡單且成本低並且仍能使串接式電池及模組達成高效能。According to one aspect, the present invention provides a tandem solar cell as described above, wherein the auxiliary layer comprises polycrystalline germanium. In general, films of polycrystalline germanium having a thickness ranging from ~5 nm to ~500 nm have a relatively high absorptivity in the visible range of the spectrum, but are transparent in the infrared radiation range, which enables the use of polycrystalline germanium as a string. The front layer of the solar cell at the bottom of the solar cell. Therefore, the integrated body in a tandem solar cell structure is a polycrystalline tantalum passivated front contact or a polycrystalline tantalum passivated front layer stacked solar cell that would have very poor performance from the original (ie, used as a separate single junction). Get the most efficient solution for your battery. Furthermore, when a crystalline germanium cell with a polysilicon passivated contact is used independently, the polysilicon passivated contact is applied only to the back side, and an additional processing step is required to provide, for example, a high quality diffused junction on the front side and requires photolithography Contacts with very small contact areas are provided on the front side for high performance. According to an aspect of the invention, polycrystalline germanium can be applied to both the front side and the back side of the germanium wafer, and for example by, for example, printing a boron dopant source on one side and implanting on the other side Phosphorus dopant is implanted, followed by thermal annealing, and the front side polysilicon and the back side polysilicon can be doped to have opposite polarities, thereby making the bottom cell battery processing sequence simple and low cost and still enabling the tandem battery and module Achieve high performance.

多晶矽是本征多晶矽(意指經低摻雜的或經無意摻雜的,例如摻雜劑濃度<1018 cm-3 )或摻雜有第一導電類型或第二導電類型的雜質的多晶矽,第二導電類型與第一導電類型相反。在被摻雜至足夠高的水準(通常為1019 cm-3 或1019 cm-3 以上)的多晶矽的情形中,鈍化層堆疊亦向底部電池形成選擇性載子收集觸點(鈍化觸點)。Polycrystalline germanium is an intrinsic polycrystalline germanium (meaning a polycrystalline germanium that is lowly doped or unintentionally doped, such as a dopant concentration <10 18 cm -3 ) or doped with impurities of a first conductivity type or a second conductivity type, The second conductivity type is opposite to the first conductivity type. Being doped to a sufficiently high level (typically less than 10 19 cm -3 or 10 19 cm -3) in the case of polysilicon, forming a passivation layer stack is also selectively collected contact carrier (the bottom cell contact passivated ).

多晶矽厚度可介於~5奈米至~500奈米範圍中,其中~10奈米至~200奈米是更佳的。對於所謂的燒穿接觸而言,為避免因接觸金屬穿透多晶矽層而對薄的介電質造成損壞,~100奈米或更厚是較佳的。The thickness of the polycrystalline germanium may range from ~5 nm to ~500 nm, with ~10 nm to ~200 nm being more preferred. For so-called burn-through contacts, to avoid damage to the thin dielectric due to contact metal penetration through the polysilicon layer, ~100 nm or more is preferred.

作為另一選擇,所述輔助層包含能達成選擇性載子收集性質的金屬氧化物。此種金屬氧化物對於電洞觸點而言選自包含氧化鉬、氧化鎳、氧化鎢、氧化釩、經鋁摻雜的氧化鋅的群組;或者對於電子觸點而言選自包含氧化鈦、氧化鉭、氧化銦錫的群組。在此種情形中,鈍化層堆疊亦向底部電池形成選擇性載子收集觸點。作為另一選擇,所述輔助層可包含能達成選擇性載子收集性質的例如聚乙烯二氧噻吩:聚苯乙烯磺酸(PEDOT:PSS)、[6,6]-苯基-C61-丁酸甲酯(PCBM)、2,2',7,7'-四(N,N-二-p-甲氧基苯基-胺基)9,9'-螺環二芴(Spiro-OMeTAD)等n型或p型有機半導體材料。Alternatively, the auxiliary layer comprises a metal oxide that achieves selective carrier collection properties. Such a metal oxide is selected from the group consisting of molybdenum oxide, nickel oxide, tungsten oxide, vanadium oxide, aluminum-doped zinc oxide for the hole contact, or titanium oxide containing for the electrical contact. , a group of cerium oxide, indium tin oxide. In this case, the passivation layer stack also forms a selective carrier collection contact to the bottom cell. Alternatively, the auxiliary layer may comprise, for example, polyethylene dioxythiophene: polystyrenesulfonic acid (PEDOT:PSS), [6,6]-phenyl-C61-butyl, which achieves selective carrier collection properties. Methyl ester (PCBM), 2,2',7,7'-tetrakis (N,N-di-p-methoxyphenyl-amino) 9,9'-spirodioxime (Spiro-OMeTAD) An n-type or p-type organic semiconductor material.

根據一個態樣,本發明提供如上所述的串接式太陽電池,其中所述底部太陽電池的所述前表面是紋理化的,且紋理的尖銳特徵中的至少某些以大於約25奈米直至約1000奈米的增大的曲率半徑被修圓或平滑化。According to one aspect, the present invention provides a tandem solar cell as described above, wherein said front surface of said bottom solar cell is textured, and at least some of said sharp features of texture are greater than about 25 nm The increased radius of curvature up to about 1000 nm is rounded or smoothed.

根據一個態樣,本發明提供如上所述的串接式太陽電池,其中所述紋理化的前表面包括中間具有谷的棱錐體形狀,所述谷以具有選自~25奈米至~1000奈米範圍的半徑的曲率被修圓。According to one aspect, the present invention provides a tandem solar cell as described above, wherein the textured front surface comprises a pyramidal shape having a valley in between, the valley having a thickness selected from ~25 nm to ~1000 奈The curvature of the radius of the meter range is rounded.

根據一個態樣,本發明提供如上所述的串接式太陽電池,其中所述頂部太陽電池包括薄膜光伏層結構,所述薄膜光伏層結構包括上部載子提取層、下部載子提取層、及配置於所述上部載子提取層與所述下部載子提取層之間的所述光伏吸收層,且所述頂部太陽電池包括被配置成與所述上部提取層接觸的至少第一接觸層;所述底部太陽電池包括為基本導電類型的矽基板,在其後表面處具有至少第一接觸端子。According to one aspect, the present invention provides a tandem solar cell as described above, wherein the top solar cell comprises a thin film photovoltaic layer structure, the thin film photovoltaic layer structure comprising an upper carrier extraction layer, a lower carrier extraction layer, and a photovoltaic absorber layer disposed between the upper carrier extraction layer and the lower carrier extraction layer, and the top solar cell includes at least a first contact layer configured to be in contact with the upper extraction layer; The bottom solar cell includes a germanium substrate of a substantially conductive type having at least a first contact terminal at a rear surface thereof.

根據一個態樣,本發明提供如上所述的串接式太陽電池,其中所述頂部太陽電池包括位於所述光伏層結構下方的與所述下部載子提取層接觸的第二接觸層;所述第一接觸層具有第一極性且所述第二接觸層具有與所述第一極性相反的第二極性;所述底部太陽電池包括第二接觸端子,所述第二接觸端子的極性與所述第一接觸端子的極性相反,且所述第二接觸端子接觸所述輔助層,且所述第二接觸層電性連接所述第二接觸端子。According to one aspect, the present invention provides a tandem solar cell as described above, wherein the top solar cell comprises a second contact layer underlying the photovoltaic layer structure in contact with the lower carrier extraction layer; The first contact layer has a first polarity and the second contact layer has a second polarity opposite the first polarity; the bottom solar cell includes a second contact terminal, the polarity of the second contact terminal is The first contact terminals have opposite polarities, and the second contact terminals contact the auxiliary layer, and the second contact layer is electrically connected to the second contact terminals.

視第二接觸端子及輔助層各自的極性而定,可構造二端子(two terminal,2T)串接式太陽電池或三端子(three terminal,3T)串接式太陽電池。Depending on the polarity of the second contact terminal and the auxiliary layer, a two terminal (2T) tandem solar cell or a three terminal (3T) tandem solar cell can be constructed.

若絕緣層或大體而言絕緣空間配置於底部太陽電池的鈍化層堆疊及第二接觸端子與頂部太陽電池的後表面之間,則可構造四端子(four terminal,4T)串接式太陽電池。If the insulating layer or substantially the insulating space is disposed between the passivation layer stack of the bottom solar cell and the second contact terminal and the rear surface of the top solar cell, a four terminal (4T) tandem solar cell can be constructed.

根據一個態樣,本發明提供如上所述的串接式太陽電池,其中所述下部載子提取層或所述第二接觸層中的一者與所述輔助層或所述第二接觸端子中的一者重合。According to one aspect, the present invention provides a tandem solar cell as described above, wherein one of the lower carrier extraction layer or the second contact layer is in the auxiliary layer or the second contact terminal One of them coincides.

視需要,若重合的所述層亦可自另一電池的光伏層提取載子,則所述頂部太陽電池中的下部提取層與所述底部太陽電池中的所述輔助層可重合。If desired, if the coincident layers are also capable of extracting carriers from the photovoltaic layer of another battery, the lower extraction layer in the top solar cell may coincide with the auxiliary layer in the bottom solar cell.

根據一個態樣,本發明提供如上所述的串接式太陽電池,其中所述串接式太陽電池包括位於所述底部太陽電池與所述頂部太陽電池之間的第三接觸層,所述第三接觸層接觸所述下部載子提取層並接觸所述結晶矽電池上的所述輔助層,其中所述下部載子提取層的極性與所述輔助層的極性相反。According to one aspect, the present invention provides a tandem solar cell as described above, wherein the tandem solar cell includes a third contact layer between the bottom solar cell and the top solar cell, A third contact layer contacts the lower carrier extraction layer and contacts the auxiliary layer on the crystalline germanium cell, wherein the lower carrier extraction layer has a polarity opposite to that of the auxiliary layer.

根據一個態樣,本發明提供如上所述的串接式太陽電池,其中所述下部載子提取層或所述下部接觸層中的一者直接接觸所述輔助層或所述第二接觸端子中的一者。According to one aspect, the present invention provides a tandem solar cell as described above, wherein one of the lower carrier extraction layer or the lower contact layer directly contacts the auxiliary layer or the second contact terminal One of them.

根據一個態樣,本發明提供如上所述的串接式太陽電池,其中在作為選擇性載子提取層的所述輔助層與位於頂部太陽電池的所述後表面處的所述下部載子提取層之間配置有複合層,所述複合層電性接觸所述輔助層及所述下部載子提取層,且所述頂部太陽電池的所述第一接觸層具有第一極性,且所述第一接觸端子具有與所述第一極性相反的第二極性。According to one aspect, the present invention provides a tandem solar cell as described above, wherein said lower carrier is extracted at said auxiliary layer as a selective carrier extraction layer and said rear surface at a top solar cell a composite layer disposed between the layers, the composite layer electrically contacting the auxiliary layer and the lower carrier extraction layer, and the first contact layer of the top solar cell has a first polarity, and the A contact terminal has a second polarity opposite the first polarity.

如此一來,可使用用於對來自下部提取層的電荷載子與來自輔助層的電荷載子提供高效複合的複合層來構造二端子(2T)串接式太陽電池。若位於所述下部提取層與所述輔助層之間的介面能提供高效複合,則所述複合層是可選的。As such, a two-terminal (2T) tandem solar cell can be constructed using a composite layer for providing efficient recombination of charge carriers from the lower extraction layer and charge carriers from the auxiliary layer. The composite layer is optional if the interface between the lower extraction layer and the auxiliary layer provides efficient compounding.

根據一個態樣,本發明提供如上所述的串接式太陽電池,其中作為選擇性載子提取層的所述輔助層電性接觸位於頂部太陽電池的所述後表面處的所述下部提取層,且所述頂部太陽電池的所述第一接觸層具有第一極性且所述第一接觸端子具有與所述第一極性相反的第二極性。According to one aspect, the present invention provides a tandem solar cell as described above, wherein the auxiliary layer as a selective carrier extraction layer electrically contacts the lower extraction layer at the rear surface of the top solar cell And the first contact layer of the top solar cell has a first polarity and the first contact terminal has a second polarity opposite the first polarity.

根據一個態樣,本發明提供一種製造串接式太陽電池的方法,所述方法包括: 提供具有前表面及後表面的底部太陽電池; 提供具有前表面及後表面的頂部太陽電池; 將所述頂部太陽電池配置成使其所述後表面位於所述底部太陽電池的所述前表面上,以使得所述頂部太陽電池的所述前表面與所述底部太陽電池的所述前表面在使用期間面對輻射源; 其中所述頂部太陽電池包括光伏吸收層,所述光伏吸收層具有較結晶矽的帶隙大的帶隙; 所述底部太陽電池包括結晶矽基板; 在所述底部太陽電池的所述前表面上,所述結晶矽基板包括鈍化層堆疊,所述鈍化層堆疊包括薄的介電質膜及輔助層,所述薄的介電質膜配置於所述矽基板與所述輔助層之間;所述輔助層由選擇性載子提取材料或多晶矽製成。According to one aspect, the present invention provides a method of fabricating a tandem solar cell, the method comprising: providing a bottom solar cell having a front surface and a back surface; providing a top solar cell having a front surface and a back surface; The top solar cell is configured such that the rear surface is on the front surface of the bottom solar cell such that the front surface of the top solar cell and the front surface of the bottom solar cell are in use Facing the radiation source; wherein the top solar cell comprises a photovoltaic absorber layer, the photovoltaic absorber layer has a band gap larger than that of the crystalline germanium; the bottom solar cell comprises a crystalline germanium substrate; On the front surface, the crystalline germanium substrate comprises a passivation layer stack, the passivation layer stack comprises a thin dielectric film and an auxiliary layer, and the thin dielectric film is disposed on the germanium substrate and the auxiliary Between the layers; the auxiliary layer is made of a selective carrier extraction material or polycrystalline germanium.

由獨立申請專利範圍進一步定義各有利實施例。Advantageous embodiments are further defined by the scope of the independent patent application.

根據本發明,所述串接式太陽電池包括頂部太陽電池(或頂部光伏裝置)與底部太陽電池(或底部光伏裝置)的堆疊,其中頂部太陽電池配置於底部太陽電池頂上。頂部太陽電池與底部太陽電池以頂部太陽電池的後表面堆疊於底部太陽電池的前表面上的方式進行堆疊。In accordance with the present invention, the tandem solar cell includes a stack of top solar cells (or top photovoltaic devices) and bottom solar cells (or bottom photovoltaic devices), with the top solar cells being disposed atop the bottom solar cells. The top solar cell and the bottom solar cell are stacked in such a manner that the rear surface of the top solar cell is stacked on the front surface of the bottom solar cell.

前表面指代相應太陽電池的在使用期間實質上面對輻射源(太陽)的表面。後表面指代相應太陽電池的在太陽電池的使用期間背離輻射源的表面。The front surface refers to the surface of the corresponding solar cell that substantially faces the radiation source (the sun) during use. The back surface refers to the surface of the respective solar cell that faces away from the source of radiation during use of the solar cell.

頂部太陽電池光伏材料的帶隙及底部太陽電池光伏材料的帶隙被配置成使得頂部太陽電池對於波長欲被底部太陽電池吸收的輻射而言實質上透明。頂部太陽電池可例如基於吸收處於光譜的可見範圍(波長:~400奈米至~700奈米)中的輻射且對於紅外輻射而言相對透明的金屬有機鹵化物鈣鈦礦光伏材料吸收層、Cd-Te光伏材料吸收層或硫化銅鋅錫(Copper Zinc Tin Sulfide,CZTS)光伏材料吸收層,且底部太陽電池可為結晶矽系太陽電池,結晶矽系太陽電池在此構型中使用主要處於光譜的紅外光部分(波長:~700奈米至~1100奈米)中的輻射。The bandgap of the top solar cell photovoltaic material and the bandgap of the bottom solar cell photovoltaic material are configured such that the top solar cell is substantially transparent to the radiation whose wavelength is to be absorbed by the bottom solar cell. The top solar cell can be based, for example, on a metal organic halide perovskite photovoltaic material absorber layer that absorbs radiation in the visible range of the spectrum (wavelength: ~400 nm to ~700 nm) and is relatively transparent to infrared radiation, Cd -Te photovoltaic material absorption layer or copper sulfide tin sulfide (CZTS) photovoltaic material absorption layer, and the bottom solar cell can be a crystalline germanium solar cell, the crystalline germanium solar cell is mainly used in this configuration in the spectrum Radiation in the infrared portion (wavelength: ~700 nm to ~1100 nm).

在此配置頂上可包括有具有甚至更寬的帶隙的附加太陽電池,或者在此配置下方可包括有具有甚至更小的帶隙的附加太陽電池,以產生如此項技術中所知的具有多於2個吸收層或接面的串接式電池。An additional solar cell with even a wider bandgap may be included on top of this configuration, or an additional solar cell with even smaller bandgap may be included under this configuration to produce as much as is known in the art. A tandem cell with 2 absorber layers or junctions.

圖1示出根據本發明的實施例的串接式太陽電池的剖視圖。1 shows a cross-sectional view of a tandem solar cell in accordance with an embodiment of the present invention.

串接式太陽電池1包括頂部太陽電池10及底部太陽電池30。The tandem solar cell 1 includes a top solar cell 10 and a bottom solar cell 30.

頂部太陽電池10堆疊於底部太陽電池頂上,頂部太陽電池的後表面RT面朝底部太陽電池的前表面FB。The top solar cell 10 is stacked on top of the bottom solar cell, and the rear surface RT of the top solar cell faces the front surface FB of the bottom solar cell.

頂部太陽電池10是對於紅外區(infrared)中的光而言實質上透明的寬帶隙太陽電池。頂部太陽電池的帶隙需要寬於結晶矽的帶隙。對於4端子構型而言能夠容許約1.35電子伏特(eV)至2.9電子伏特,且對於2端子構型而言能夠容許約1.35電子伏特至1.9電子伏特,以使得理論上能夠使用結晶矽底部電池達到35%的效能。The top solar cell 10 is a wide bandgap solar cell that is substantially transparent to light in the infrared region. The band gap of the top solar cell needs to be wider than the band gap of the crystalline germanium. It is capable of allowing about 1.35 electron volts (eV) to 2.9 eV for a 4-terminal configuration and about 1.35 eV to 1.9 eV for a 2-terminal configuration, so that a crystalline 矽 bottom cell can theoretically be used. Achieve 35% performance.

在頂部太陽電池10頂上(即,在頂部太陽電池的前表面FT的一側上)配置有第一接觸層18。在頂部太陽電池上(例如,在頂部太陽電池10的後表面RT的一側上)更配置有第二接觸層20。第一接觸層18與第二接觸層20具有不同的極性且形成串接式太陽電池的第一端子及第二端子。A first contact layer 18 is disposed on top of the top solar cell 10 (ie, on one side of the front surface FT of the top solar cell). A second contact layer 20 is further disposed on the top solar cell (eg, on one side of the rear surface RT of the top solar cell 10). The first contact layer 18 and the second contact layer 20 have different polarities and form a first terminal and a second terminal of the tandem solar cell.

在頂部太陽電池10的前表面FT上配置有覆板(superstrate)22。此種覆板可為設置有紋理化的表面及/或抗反射(antireflection,ARC)塗層(圖中未示出)的玻璃層。A superstrate 22 is disposed on the front surface FT of the top solar cell 10. Such a panel may be a layer of glass provided with a textured surface and/or an antireflection (ARC) coating (not shown).

底部太陽電池30基於為基本導電類型的結晶矽基板32,在底部太陽電池30的後表面RB處具有至少下部接觸端子34。在下部接觸端子與基板之間可存在如此項技術中所知的用於產生矽太陽電池的特徵,所述特徵例如為例如藉由擴散或沈積而產生的位於基板的後表面處的經摻雜層、抗反射塗層等。The bottom solar cell 30 is based on a crystalline germanium substrate 32 of a substantially conductive type having at least a lower contact terminal 34 at the rear surface RB of the bottom solar cell 30. There may be features between the lower contact terminals and the substrate for producing a germanium solar cell, such as doped at the back surface of the substrate, such as by diffusion or deposition. Layer, anti-reflective coating, etc.

在底部太陽電池30的前表面FB上設置有具有鈍化層堆疊36的結晶矽基板32。此鈍化層堆疊包括薄的介電質膜38(例如,穿隧氧化物膜)及輔助層40。薄的介電質膜38配置於結晶矽基板32與輔助層40之間。A crystalline germanium substrate 32 having a passivation layer stack 36 is disposed on the front surface FB of the bottom solar cell 30. This passivation layer stack includes a thin dielectric film 38 (eg, a tunnel oxide film) and an auxiliary layer 40. The thin dielectric film 38 is disposed between the crystalline germanium substrate 32 and the auxiliary layer 40.

底部太陽電池30可為前面與背面接觸式太陽電池(front-and-back contacted solar cell),所述前面與背面接觸式太陽電池設置有位於底部太陽電池的前表面FB上的為一個極性的上部接觸端子(如由虛線外廓42示意性地指示)及位於後表面RB上的為相反的極性的下部接觸端子。在此種情形中,鈍化層堆疊為鈍化觸點,進而能自基板選擇性提取一種載子。層40可例如為經摻雜多晶矽層。作為另一選擇,底部太陽電池30可為配置於底部太陽電池的後表面RB上的具有為不同極性的接觸端子的背面接觸型太陽電池。此種背面接觸式太陽電池可為金屬包裹貫穿(metal-wrap-through,MWT)式太陽電池或交叉背面接觸(interdigitated back-contact,IBC)式太陽電池。若其為交叉背面接觸式電池,則輔助層40可為本征多晶矽層或近乎本征的(經無意摻雜的)多晶矽層,藉此鈍化層堆疊提供極佳的鈍化,但不會自基板提取載子。The bottom solar cell 30 may be a front-and-back contacted solar cell, and the front and back contact solar cells are provided with a polar upper portion on the front surface FB of the bottom solar cell. The contact terminals (as schematically indicated by the dashed outline 42) and the lower contact terminals on the rear surface RB are of opposite polarity. In this case, the passivation layer stack is a passivated contact, which in turn enables selective extraction of a carrier from the substrate. Layer 40 can be, for example, a doped polysilicon layer. Alternatively, the bottom solar cell 30 may be a back contact type solar cell having contact terminals of different polarities disposed on the rear surface RB of the bottom solar cell. The back contact solar cell can be a metal-wrap-through (MWT) solar cell or an interdigitated back-contact (IBC) solar cell. If it is a crossed back contact cell, the auxiliary layer 40 may be an intrinsic polysilicon layer or a near intrinsic (unintentionally doped) polysilicon layer, whereby the passivation layer stack provides excellent passivation, but not from the substrate Extract the carrier.

底部太陽電池的接觸端子34、42形成串接式太陽電池1的第三端子及第四端子。The contact terminals 34, 42 of the bottom solar cell form a third terminal and a fourth terminal of the tandem solar cell 1.

在頂部太陽電池10的後表面RT上可設置有間隔壁層或層堆疊24。間隔壁層24在頂部太陽電池10的後表面RT與底部太陽電池30的前表面FB之間形成中間層。A spacer layer or layer stack 24 may be disposed on the rear surface RT of the top solar cell 10. The barrier layer 24 forms an intermediate layer between the rear surface RT of the top solar cell 10 and the front surface FB of the bottom solar cell 30.

間隔壁層24將頂部太陽電池10耦合至底部太陽電池30。間隔壁層24可基於囊封材料。間隔壁層24(囊封材料)機械地且視需要對頂部太陽電池10與底部太陽電池30進行連接。The barrier layer 24 couples the top solar cell 10 to the bottom solar cell 30. The barrier layer 24 can be based on an encapsulating material. The barrier layer 24 (encapsulation material) mechanically and optionally connects the top solar cell 10 to the bottom solar cell 30.

輔助層40可例如為本征的或經摻雜的多晶矽層以產生鈍化觸點,或者可為透明導電金屬氧化物以產生如以上所闡釋的鈍化觸點。The auxiliary layer 40 can be, for example, an intrinsic or doped polysilicon layer to create a passivated contact, or can be a transparent conductive metal oxide to produce a passivated contact as explained above.

根據本發明,輔助層40使得未被頂部太陽電池10吸收的紅外輻射(或任何輻射)傳輸至底部太陽電池30,即對於處於紅外光範圍內的輻射而言是透明的。如以上所闡釋,例如穿隧氧化物等薄的介電質38與選擇性載子提取材料的輔助層40的組合提供相當低的電荷載子複合速率,進而使底部太陽電池具有較高的Voc 值及FF值。再者,光譜的紅外光範圍中的透明度使得能夠吸收結晶矽底部太陽電池中的紅外輻射。In accordance with the present invention, the auxiliary layer 40 causes infrared radiation (or any radiation) that is not absorbed by the top solar cell 10 to be transmitted to the bottom solar cell 30, i.e., transparent to radiation in the infrared range. As explained above, the combination of a thin dielectric 38 such as tunneling oxide and the auxiliary layer 40 of the selective carrier extraction material provides a relatively low charge carrier recombination rate, thereby providing a higher V for the bottom solar cell. Oc value and FF value. Furthermore, the transparency in the infrared range of the spectrum enables absorption of infrared radiation in the solar cells at the bottom of the crystalline crucible.

在實施例中,結晶矽基板32是n型的,輔助層40是經p型摻雜的多晶矽。In an embodiment, the crystalline germanium substrate 32 is n-type and the auxiliary layer 40 is a p-type doped polysilicon.

圖2示出根據本發明又一實施例的四端子串接式太陽電池的示意性剖視圖。2 shows a schematic cross-sectional view of a four terminal tandem solar cell in accordance with yet another embodiment of the present invention.

在圖2中,參考編號與圖1中所示者相同的實體指代對應的或相似的實體。In FIG. 2, entities having the same reference numerals as those shown in FIG. 1 refer to corresponding or similar entities.

圖2所示實施例示出串接式太陽電池2,串接式太陽電池2包括如上所述的頂部太陽電池10以及底部太陽電池130。The embodiment shown in Fig. 2 shows a tandem solar cell 2 comprising a top solar cell 10 and a bottom solar cell 130 as described above.

頂部太陽電池10是寬帶隙太陽電池,舉例而言,頂部太陽電池包括光伏吸收層12,光伏吸收層12夾置於用於為第一極性的載子(例如,電子)的上部載子提取層14與用於為和第一極性相反的第二極性的載子(例如,電洞)的下部載子提取層16之間。The top solar cell 10 is a wide bandgap solar cell, for example, the top solar cell includes a photovoltaic absorber layer 12, and the photovoltaic absorber layer 12 is sandwiched between upper carrier extraction layers for carriers of the first polarity (eg, electrons) 14 is between the lower carrier extraction layer 16 for a carrier (e.g., a hole) for a second polarity opposite to the first polarity.

在實施例中,光伏吸收層12是甲基銨-鉛-三碘化物鈣鈦礦的層,上部載子提取層14是用於提取電子(包括TiO2 )的層,且用於提取電洞的下部載子提取層16是螺環-OMeTAD([2,2',7,7'-四(N,N-二-p-甲氧基苯基-胺基)9,9'-螺環二芴])的層。In an embodiment, the photovoltaic absorber layer 12 is a layer of methylammonium-lead-triiodide perovskite, and the upper carrier extraction layer 14 is a layer for extracting electrons (including TiO 2 ) and is used to extract holes The lower carrier extraction layer 16 is a spiro-OMeTAD ([2,2',7,7'-tetra(N,N-di-p-methoxyphenyl-amino) 9,9'-spirocyclic ring The second layer]).

此項技術中已知其他電子及電洞提取層作為鈣鈦礦組成物的變型(例如,以溴取代碘中的某些)以改變帶隙或其他性質。頂部接觸層為透明導電氧化物層(例如氧化銦錫)。相似地,下部接觸層為透明導電氧化物層(例如氧化銦錫)。使得能夠進行更高的傳輸的氧化銦錫的替代接觸層(例如氫化氧化銦)是此項技術中所知的。Other electron and hole extraction layers are known in the art as variations of the perovskite composition (e.g., replacing some of the iodine with bromine) to alter the band gap or other properties. The top contact layer is a transparent conductive oxide layer (eg, indium tin oxide). Similarly, the lower contact layer is a transparent conductive oxide layer (eg, indium tin oxide). Alternative contact layers of indium tin oxide (e.g., hydrogenated indium oxide) that enable higher transmission are known in the art.

可存在其他薄膜太陽電池,例如此項技術中所知的例如半透明CdTe太陽電池,其中頂部接觸層為CTO/ZTO;以CdS視窗層取代頂部載子提取層,CdS視窗層與CdTe一起形成pn接面;可省略底部載子提取層,且底部接觸層為例如ZnTe:Cu或對於CdTe而言選自其他適合的半透明背面接觸層。如此項技術中所知,頂部太陽電池的結構可被局部地修改以完成單片互連(monolithic interconnection)(即,太陽電池的條帶的串聯電路)以增大輸出電壓且減小電阻損失。Other thin film solar cells may be present, such as, for example, translucent CdTe solar cells known in the art wherein the top contact layer is CTO/ZTO; the top carrier extraction layer is replaced by a CdS window layer, and the CdS window layer forms a pn with CdTe. The junction; the bottom carrier extraction layer may be omitted and the bottom contact layer is, for example, ZnTe:Cu or selected from other suitable translucent back contact layers for CdTe. As is known in the art, the structure of the top solar cell can be modified locally to complete a monolithic interconnection (ie, a series circuit of strips of solar cells) to increase the output voltage and reduce resistive losses.

底部太陽電池130相似於圖1所示的矽系底部太陽電池30且包括前表面FB上的上部接觸端子42與後表面RB上的下部接觸端子34二者。The bottom solar cell 130 is similar to the tethered bottom solar cell 30 shown in FIG. 1 and includes both the upper contact terminal 42 on the front surface FB and the lower contact terminal 34 on the rear surface RB.

此外,結晶矽基板32的前表面FB及後表面RB被設置成具有紋理T1、T2。Further, the front surface FB and the rear surface RB of the crystalline germanium substrate 32 are provided to have textures T1, T2.

在此實施例中,紋理化的前表面FB包括作為選擇性載子收集層堆疊(鈍化觸點)的鈍化層堆疊36,鈍化層堆疊36由薄的介電質38(例如穿隧氧化物膜)及輔助層40組成。輔助層40被抗反射(ARC)塗層遮蓋,抗反射(ARC)塗層亦向藉由電漿增強型化學氣相沈積(plasma enhanced chemical vapor deposition,PECVD)而沈積的穿隧氧化物/矽介面(例如富氫氮化矽(SiNx :H))提供氫。上部接觸端子42藉由抗反射塗層而連接至輔助層40。上部接觸端子42與輔助層40的此種連接可為如此項技術中所知的所謂的厚膜金屬膏燒穿連接。In this embodiment, the textured front surface FB includes a passivation layer stack 36 as a selective carrier collection layer stack (passivated contacts), the passivation layer stack 36 being made of a thin dielectric 38 (eg, a tunnel oxide film) And the auxiliary layer 40 is composed. The auxiliary layer 40 is covered by an anti-reflective (ARC) coating, and the anti-reflective (ARC) coating is also applied to a tunneling oxide/germanium deposited by plasma enhanced chemical vapor deposition (PECVD). The interface (eg, ytterbium-rich hydrogen hydride (SiN x :H)) provides hydrogen. The upper contact terminal 42 is connected to the auxiliary layer 40 by an anti-reflection coating. Such a connection of the upper contact terminal 42 to the auxiliary layer 40 can be a so-called thick film metal paste burn-through connection as is known in the art.

底部太陽電池130的紋理化的後表面RB包括由第二薄穿隧氧化物膜138及後表面輔助層140組成的第二鈍化層堆疊136。後表面輔助層140被由功能與前側抗反射塗層相似的SiNx :H形成的第二抗反射塗層遮蓋。下部接觸端子34藉由第二抗反射塗層而連接至後表面輔助層140。The textured back surface RB of the bottom solar cell 130 includes a second passivation layer stack 136 comprised of a second thin tunnel oxide film 138 and a back surface auxiliary layer 140. The back surface auxiliary layer 140 is covered by a second anti-reflective coating formed of SiN x :H functionally similar to the front side anti-reflective coating. The lower contact terminal 34 is connected to the rear surface auxiliary layer 140 by a second anti-reflective coating.

前表面FB上的輔助層40可為第一導電類型(例如n型)的經摻雜多晶矽層。後表面RB上的輔助層140具有與第一導電類型相反的第二導電類型,例如為經p型摻雜的多晶矽層。摻雜水準為至少1´1019 cm-3 ,或較佳地為更高(例如在1´1020 cm-3 至3´1020 cm-3 左右)。多晶矽的厚度較佳地介於~10奈米至~300奈米之間。若使用燒穿觸點,則所述厚度較佳地為至少~100奈米以避免自金屬燒穿觸點對鈍化薄氧化物造成損壞。將p型多晶矽層定位於後側處及將n型多晶矽層定位於前側處是有利的,乃因n型多晶矽更易於被摻雜至高濃度且具有較高的載子遷移率(carrier mobility)。由於意外發現對於給定的多晶矽層而言,被放置於矽太陽電池後面時的可選自由載子吸收率(free carrier absorption,FCA)較被放置於矽太陽電池前面時的可選自由載子吸收率大,因此將經較高摻雜的n型多晶矽放置在前面會降低自由載子吸收率。亦是出於較低的載子遷移率的原因,將p型多晶矽定位於後面是有利的,其中在不存在遮光損失(shading loss)的條件下可存在更緊密的金屬化格柵。The auxiliary layer 40 on the front surface FB may be a doped polysilicon layer of a first conductivity type (eg, n-type). The auxiliary layer 140 on the back surface RB has a second conductivity type opposite to the first conductivity type, such as a p-type doped polysilicon layer. Doping level of at least 1'10 19 cm -3, or preferably a higher (e.g. about 1'10 20 cm -3 to 3'10 20 cm -3). The thickness of the polycrystalline germanium is preferably between ~10 nm and ~300 nm. If burn through contacts are used, the thickness is preferably at least ~100 nm to avoid damage to the passivated thin oxide from the metal burn-through contacts. Positioning the p-type polysilicon layer at the back side and positioning the n-type polysilicon layer at the front side is advantageous because the n-type polysilicon is more easily doped to a higher concentration and has a higher carrier mobility. Unexpectedly found that for a given polysilicon layer, the optional free carrier absorption (FCA) placed behind the tantalum solar cell is more optional than the free carrier placed in front of the solar cell. The absorption rate is large, so placing the higher doped n-type polysilicon in front reduces the free carrier absorption rate. Also for reasons of lower carrier mobility, it is advantageous to position the p-type polysilicon later, where a tighter metallization grid may be present in the absence of shading loss.

前面與背面(若在背面上使用多晶矽)上的多晶矽的厚度未必相同,但若多晶矽例如藉由低壓化學氣相沈積(low pressure chemical vapor deposition,LPCVD)而均勻地沈積於兩側上,則所述厚度可為實質上相同的,此能降低製程複雜度。舉例而言,前側多晶矽及後側多晶矽可藉由例如在一側上印刷硼摻雜劑源且在另一側上植入磷摻雜劑、隨後進行熱退火而進行摻雜,進而使得能夠達成底部電池的簡單且成本低的電池製程順序以及串接式電池及模組的高效能。The thickness of the polycrystalline silicon on the front and back sides (if polycrystalline germanium is used on the back side) is not necessarily the same, but if the polycrystalline germanium is uniformly deposited on both sides by, for example, low pressure chemical vapor deposition (LPCVD), The thicknesses can be substantially the same, which can reduce process complexity. For example, the front side polysilicon and the back side polysilicon can be doped by, for example, printing a boron dopant source on one side and implanting a phosphorous dopant on the other side, followed by thermal annealing. The simple and low-cost battery processing sequence of the bottom battery and the high performance of the series-connected batteries and modules.

根據實施例,在紋理化之後,前表面FB及/或後表面RB上的紋理可已被修圓。此種修圓或平滑化意指紋理的至少某些尖銳特徵(尤其是在棱錐體紋理的情形中位於紋理棱錐體之間的谷(valley))的曲率半徑增大,例如自僅幾奈米(約25奈米)增大至約100奈米至約200奈米,或甚至更大(例如增大直至1000奈米)。According to an embodiment, the texture on the front surface FB and/or the back surface RB may have been rounded after texturing. Such rounding or smoothing means that the radius of curvature of at least some of the sharp features of the texture (especially the valley between the textured pyramids in the case of the pyramidal texture) is increased, for example, only a few nanometers. (about 25 nm) increases to about 100 nm to about 200 nm, or even larger (eg, up to 1000 nm).

所述修圓可藉由如此項技術中所知的蝕刻方法來完成。The rounding can be accomplished by etching methods known in the art.

圖3示出根據本發明實施例的四端子串接式太陽電池的示意性剖視圖。3 shows a schematic cross-sectional view of a four terminal tandem solar cell in accordance with an embodiment of the present invention.

在此實施例的四端子串接式太陽電池2a中,底部太陽電池132的前面相似於圖2所示的矽系底部太陽電池130的前面且包括前表面FB上的上部接觸端子42。In the four-terminal tandem solar cell 2a of this embodiment, the front surface of the bottom solar cell 132 is similar to the front surface of the tethered bottom solar cell 130 shown in FIG. 2 and includes the upper contact terminal 42 on the front surface FB.

此外,結晶矽基板132的前表面FB設置有紋理T1。Further, the front surface FB of the crystalline germanium substrate 132 is provided with a texture T1.

在此實施例中,紋理化的前表面FB包括作為選擇性載子收集層堆疊(鈍化觸點)12的鈍化層堆疊36,鈍化層堆疊36由薄的介電質38(例如穿隧氧化物膜)及輔助層40組成。In this embodiment, the textured front surface FB includes a passivation layer stack 36 as a selective carrier collection layer stack (passivated contact) 12, the passivation layer stack 36 being composed of a thin dielectric 38 (eg, tunneling oxide) The film) and the auxiliary layer 40 are composed.

輔助層40被抗反射(ARC)塗層遮蓋,抗反射(ARC)塗層亦向藉由電漿增強型化學氣相沈積(PECVD)而沈積的穿隧氧化物區(例如富氫氮化矽(SiNx :H))提供氫。上部接觸端子42藉由抗反射塗層而連接至輔助層40。The auxiliary layer 40 is covered by an anti-reflective (ARC) coating, and the anti-reflective (ARC) coating is also applied to a tunneling oxide region (eg, yttrium-rich yttrium nitride) deposited by plasma enhanced chemical vapor deposition (PECVD). (SiN x :H)) provides hydrogen. The upper contact terminal 42 is connected to the auxiliary layer 40 by an anti-reflection coating.

上部接觸端子42與輔助層40的此種連接可為如此項技術中所知的所謂的厚膜金屬膏燒穿連接。Such a connection of the upper contact terminal 42 to the auxiliary layer 40 can be a so-called thick film metal paste burn-through connection as is known in the art.

底部太陽電池的後表面RB被設置成所謂的被鈍化發射極及後電池(passivated emitter and rear cell,PERC)的後表面或雙面被鈍化發射極及後電池的後表面。此意指,所述後表面以如下方式設置:後表面被平滑化或研磨至某一程度且包括由在PERC太陽電池中使用的介電質層或介電質層堆疊134組成的第二鈍化層堆疊,例如氧化鋁與氮化矽的堆疊(氧化鋁位於基板與氮化矽之間),或者氧化矽與氮化矽的堆疊(氧化矽位於基板與氮化矽之間)。金屬層138或層堆疊施加於介電質堆疊134頂上(介電質堆疊位於金屬層與基板之間),局部地穿透介電質層堆疊,並在金屬層138或層堆疊穿透介電質層堆疊處形成經鋁摻雜的矽136的局部背表面場(local back surface field)。所述金屬層可設置於實質上全部後表面之上或局部地設置於所述後表面之上以達成雙面底部電池。在圖3中,其被示為局部地設置。The rear surface RB of the bottom solar cell is disposed as a so-called back surface of the passivated emitter and rear cell (PERC) or a double-sided passivated emitter and a rear surface of the rear cell. This means that the back surface is arranged in such a way that the back surface is smoothed or ground to some extent and comprises a second passivation consisting of a dielectric layer or dielectric layer stack 134 used in a PERC solar cell. A layer stack, such as a stack of aluminum oxide and tantalum nitride (aluminum is located between the substrate and tantalum nitride), or a stack of tantalum oxide and tantalum nitride (the tantalum oxide is between the substrate and tantalum nitride). A metal layer 138 or layer stack is applied over the dielectric stack 134 (the dielectric stack is between the metal layer and the substrate), partially penetrates the dielectric layer stack, and penetrates the dielectric layer in the metal layer 138 or layer stack A local back surface field of the aluminum doped crucible 136 is formed at the layer stack. The metal layer may be disposed over substantially all of the back surface or partially over the back surface to achieve a double-sided bottom cell. In Figure 3, it is shown as being set locally.

舉例而言,此實施例可以如下方式形成。在紋理化之後,可向至少前側施加薄氧化物及多晶矽膜。若需要,則可接著例如藉由在高溫下在氣態POCl3 氣氛中進行擴散而在至少前側上摻雜多晶矽。亦可例如藉由植入及退火來進行摻雜。若在後面上沈積有任何多晶矽,則可接著自後面移除所述多晶矽且可藉由單側蝕刻(single side etch)而對後面進行平滑化或研磨。在進一步的加工中,如在針對PERC太陽電池加工的技術的陳述中已知,設置塗層及金屬化層。For example, this embodiment can be formed in the following manner. After texturing, a thin oxide and polysilicon film can be applied to at least the front side. If desired, polycrystalline germanium can then be doped on at least the front side, for example by diffusion in a gaseous POCl 3 atmosphere at elevated temperatures. Doping can also be carried out, for example, by implantation and annealing. If any polysilicon is deposited on the back, the polysilicon can then be removed from the back and the back can be smoothed or ground by a single side etch. In further processing, as is known in the description of techniques for PERC solar cell processing, a coating and a metallization layer are provided.

作為另一選擇,在替代實施例中,底部太陽電池132的後表面RB設置有紋理、或被研磨或呈介於其間的一種程度。後表面包括由薄介電質層及多晶矽層組成的第二鈍化層堆疊,所述第二鈍化層堆疊可相似於前側(例如,在相似的厚度或相似的組成物意義上相似),但實質上未經摻雜。金屬層或層堆疊施加於後層堆疊(後層堆疊位於金屬層與基板之間)頂上,局部地穿透後層堆疊,並在金屬層或層堆疊穿透後層堆疊處形成經鋁摻雜的矽的局部背表面場。所述金屬層可設置於實質上全部後表面之上或局部地設置於所述後表面之上以達成雙面底部電池。Alternatively, in an alternate embodiment, the rear surface RB of the bottom solar cell 132 is textured, or ground or at a level interposed therebetween. The back surface includes a second passivation layer stack consisting of a thin dielectric layer and a polysilicon layer, which may be similar to the front side (eg, similar in similar thickness or similar composition), but substantially Undoped on top. A metal layer or layer stack is applied on top of the back layer stack (the back layer stack is located between the metal layer and the substrate), partially penetrates the back layer stack, and forms an aluminum doped layer after the metal layer or layer stack penetrates the layer stack. The partial back surface field of the cockroach. The metal layer may be disposed over substantially all of the back surface or partially over the back surface to achieve a double-sided bottom cell.

舉例而言,此實施例可以如下方式形成。在進行紋理化及視需要進行後研磨(rear polishing)之後,將氧化物及實質上本征的多晶矽施加至前表面及後表面。接著例如藉由植入及退火或藉由在前面上印刷摻雜劑膏及退火或者藉由如此項技術中所知的用於局部摻雜的其他方法而將多晶矽僅摻雜於前側上。若需要,則後面可設置有阻擋前側摻雜劑的擴散障壁。在進一步的加工中,設置塗層及金屬化層。在後多晶矽上施加富氫氮化矽或其他富氫塗佈層有益於增強後多晶矽的表面鈍化。可以例如以下等已知用於PERC電池或雙面PERC電池的步驟來設置後面上的金屬化層:首先在後面上的層堆疊中設置孔,隨後設置金屬層,且隨後例如在所謂的燒製(firing)中提供高溫。For example, this embodiment can be formed in the following manner. After texturing and, if necessary, post-grinding, oxides and substantially intrinsic polycrystalline germanes are applied to the front and back surfaces. The polysilicon is then doped only on the front side, for example by implantation and annealing or by printing a dopant paste and annealing on the front side or by other methods known in the art for local doping. If necessary, a diffusion barrier that blocks the front side dopant may be provided later. In further processing, a coating and a metallization layer are provided. Applying a hydrogen-rich cerium nitride or other hydrogen-rich coating layer on the post-polysilicon is beneficial for enhancing the surface passivation of the post-polysilicon. The metallization layer on the rear can be provided, for example, by the following steps for a PERC battery or a double-sided PERC battery: first a hole is provided in the layer stack on the rear, followed by a metal layer, and then, for example, in a so-called firing High temperatures are provided in (firing).

根據實施例,在紋理化之後,前表面FB上的紋理可已被修圓。此種修圓或平滑化意指紋理的至少某些尖銳特徵(尤其是在棱錐體紋理的情形中位於紋理棱錐體之間的谷)的曲率半徑增大,例如自僅幾奈米(約25奈米)增大至約100奈米至約200奈米,或甚至更大(例如增大直至1000奈米)。According to an embodiment, the texture on the front surface FB may have been rounded after texturing. Such rounding or smoothing means that the radius of curvature of at least some of the sharp features of the texture (especially the valley between the textured pyramids in the case of pyramidal textures) increases, for example from only a few nanometers (about 25 Nano) increases to about 100 nm to about 200 nm, or even larger (eg, up to 1000 nm).

所述修圓可藉由如此項技術中所知的蝕刻方法來完成。The rounding can be accomplished by etching methods known in the art.

圖4示出根據本發明實施例的二端子串接式太陽電池的示意性剖視圖。4 shows a schematic cross-sectional view of a two terminal tandem solar cell in accordance with an embodiment of the present invention.

在圖4中,參考編號與圖1或圖2或圖3中所示者相同的實體指代對應的或相似的實體。In FIG. 4, entities having the same reference numerals as those shown in FIG. 1 or FIG. 2 or FIG. 3 refer to corresponding or similar entities.

圖4所示實施例示出串接式太陽電池3,串接式太陽電池3包括堆疊於底部太陽電池230上的頂部太陽電池210。The embodiment shown in FIG. 4 shows a tandem solar cell 3 that includes a top solar cell 210 stacked on a bottom solar cell 230.

底部太陽電池230基於為基本導電類型的結晶矽基板232,在底部太陽電池230的後表面RB處具有下部接觸端子234。The bottom solar cell 230 is based on a crystalline germanium substrate 232 of a substantially conductive type with a lower contact terminal 234 at the rear surface RB of the bottom solar cell 230.

在底部太陽電池230的前表面FB上設置有具有鈍化層堆疊236的矽基板232。此鈍化層堆疊包括薄的介電質(例如,穿隧氧化物)膜238及輔助層240。薄的介電質膜238配置於矽基板232與輔助層240之間。A germanium substrate 232 having a passivation layer stack 236 is disposed on the front surface FB of the bottom solar cell 230. This passivation layer stack includes a thin dielectric (eg, tunnel oxide) film 238 and an auxiliary layer 240. The thin dielectric film 238 is disposed between the germanium substrate 232 and the auxiliary layer 240.

頂部太陽電池210是實質上傳輸紅外區中的光的寬帶隙太陽電池。在太陽電池210的頂上(即,在頂部太陽電池的前表面FT的一側上)配置有頂部接觸層218。在頂部太陽電池210的後表面RT上,在頂部太陽電池的後表面層與底部太陽電池230的輔助層240之間配置有分隔層250。The top solar cell 210 is a wide bandgap solar cell that substantially transmits light in the infrared region. A top contact layer 218 is disposed on top of the solar cell 210 (ie, on one side of the front surface FT of the top solar cell). On the rear surface RT of the top solar cell 210, a spacer layer 250 is disposed between the rear surface layer of the top solar cell and the auxiliary layer 240 of the bottom solar cell 230.

分隔層250包括至少一複合層252,複合層252用於將頂部太陽電池210的一個極性與底部太陽電池(為相反的極性)的輔助層240進行連接。The spacer layer 250 includes at least one composite layer 252 for connecting one polarity of the top solar cell 210 to the auxiliary layer 240 of the bottom solar cell (which is of opposite polarity).

頂部太陽電池210的頂部接觸層218與底部太陽電池的下部接觸端子234分別形成串接式太陽電池3的第一端子及第二端子。The top contact layer 218 of the top solar cell 210 and the lower contact terminal 234 of the bottom solar cell form a first terminal and a second terminal of the tandem solar cell 3, respectively.

在實施例中,頂部太陽電池210包括光伏吸收層212,光伏吸收層212夾置於用於為第一極性的載子(例如,電子)且作為後表面層的上部載子提取層214與用於為和第一極性相反的第二極性的載子(例如,電洞)的下部載子提取層216之間。舉例而言,光伏吸收層212是例如甲基銨-鉛-三碘化物鈣鈦礦等金屬有機鹵化物鈣鈦礦的層,上部載子提取層214是用於提取電子(包括TiO2 )的層,且用於提取電洞的下部載子提取層216是2,2',7,7'-四(N,N-二-p-甲氧基苯基-胺基)9,9'-螺環二芴的層。頂部接觸層218為與金屬格柵進行組合的透明導電氧化物層(例如氧化銦錫)。In an embodiment, the top solar cell 210 includes a photovoltaic absorber layer 212 that is sandwiched between an upper carrier extraction layer 214 for a carrier of a first polarity (eg, electrons) and as a back surface layer. Between the lower carrier extraction layer 216 of a carrier of a second polarity (eg, a hole) opposite the first polarity. For example, the photovoltaic absorber layer 212 is a layer of a metal organic halide perovskite such as methylammonium-lead-triiodide perovskite, and the upper carrier extraction layer 214 is used for extracting electrons (including TiO 2 ). The lower carrier extraction layer 216 for layer extraction and extraction is 2,2',7,7'-tetra(N,N-di-p-methoxyphenyl-amine) 9,9'- The layer of the spiral ring. The top contact layer 218 is a transparent conductive oxide layer (eg, indium tin oxide) combined with a metal grid.

矽基板232可為n型的,位於與頂部太陽電池的介面處的輔助層240可為經n型摻雜的多晶矽以匹配頂部太陽電池的下部載子提取層的相反的極性,且頂部太陽電池的後表面輔助層在此種情形中為經p型摻雜的多晶矽(與前表面的極性相反)。The germanium substrate 232 can be n-type, and the auxiliary layer 240 at the interface with the top solar cell can be an n-type doped polysilicon to match the opposite polarity of the lower carrier extraction layer of the top solar cell, and the top solar cell The back surface auxiliary layer is in this case a p-type doped polysilicon (opposite to the polarity of the front surface).

圖5示出根據本發明實施例的二端子串接式太陽電池的示意性剖視圖。Figure 5 shows a schematic cross-sectional view of a two terminal tandem solar cell in accordance with an embodiment of the present invention.

在圖5中,參考編號與前述圖1至圖4中所示者相同的實體指代對應的或相似的實體。In FIG. 5, entities having the same reference numerals as those shown in the foregoing FIGS. 1 to 4 refer to corresponding or similar entities.

圖5所示實施例示出串接式太陽電池4,串接式太陽電池4包括以上參照圖3所述的頂部太陽電池210以及底部太陽電池330。The embodiment shown in FIG. 5 shows a tandem solar cell 4 comprising a top solar cell 210 and a bottom solar cell 330 as described above with reference to FIG.

底部太陽電池330相似於圖4所示的矽系底部太陽電池230,其中不同之處在於矽基板32的前表面FB及後表面RB設置有紋理T1、T2。The bottom solar cell 330 is similar to the tethered bottom solar cell 230 shown in FIG. 4, except that the front surface FB and the rear surface RB of the ruthenium substrate 32 are provided with textures T1, T2.

在此實施例中,如以上參照圖1至圖4所述,紋理化的前表面FB包括由薄的介電質膜338及輔助層340組成的鈍化層堆疊336。輔助層340被抗反射塗層遮蓋。如先前針對圖2所述,底部電池可在前側及後側上包括多晶矽鈍化觸點。In this embodiment, as described above with reference to Figures 1-4, the textured front surface FB includes a passivation layer stack 336 comprised of a thin dielectric film 338 and an auxiliary layer 340. The auxiliary layer 340 is covered by an anti-reflective coating. As previously described with respect to Figure 2, the bottom cell can include polysilicon passivated contacts on the front and back sides.

另外,所述串接式太陽電池包括用於提供電性連接的配置於頂部太陽電池的後表面層(在實施例中:下部載子提取層216)與底部太陽電池330的鈍化層堆疊的輔助層340之間的分隔層350。分隔層350包括複合層,所述複合層提供由輔助層340提取的載子與在頂部太陽電池的後表面處(在實施例中:由載子提取層216)提取的為相反的極性的載子的高效複合。In addition, the tandem solar cell includes an auxiliary layer disposed on the back surface layer of the top solar cell (in the embodiment: the lower carrier extraction layer 216) and the passivation layer stack of the bottom solar cell 330 for providing electrical connection. A spacer layer 350 between the layers 340. The spacer layer 350 includes a composite layer that provides carriers that are extracted by the auxiliary layer 340 and those that are opposite in polarity extracted at the rear surface of the top solar cell (in the embodiment: by the carrier extraction layer 216) The efficient compounding of the child.

分隔層350或下部載子提取層216可適以作為平滑的層以形成上面配置有頂部太陽電池的下部接觸層的實質上扁平化的表面。此可例如藉由對該些較佳地填充各紋理特徵(例如棱錐體)之間的谷的層的材料進行液體沈積(印刷、噴鍍(spraying)、狹槽模具塗佈(slot die coating)等)、及/或在沈積該些材料之後進行回蝕製程(例如,電漿蝕刻、機械蝕刻)以將該些材料扁平化來達成。藉由提供扁平化的表面,包括薄膜層堆疊的薄膜太陽電池的產生得到簡化。當底部太陽電池的前側應較佳地被紋理化時,且當頂部太陽電池製程無法在不使頂部電池的效能劣化的條件下十分好地共形地顧及該些底部電池的紋理特徵時,此扁平化製程不僅對根據本發明的串接式太陽電池而且對一般意義上的串接式太陽電池有益。The spacer layer 350 or the lower carrier extraction layer 216 may be adapted to form a smooth layer to form a substantially flattened surface of the lower contact layer on which the top solar cell is disposed. This can be done, for example, by liquid deposition (printing, spraying, slot die coating) of materials that preferably fill the layers of valleys between texture features (eg, pyramids). Etc., and/or after the deposition of the materials, an etch back process (eg, plasma etching, mechanical etching) is performed to flatten the materials. The production of a thin film solar cell including a thin film layer stack is simplified by providing a flattened surface. When the front side of the bottom solar cell should preferably be textured, and when the top solar cell process is not able to conformally conform to the texture features of the bottom cell without degrading the performance of the top cell, The flattening process is beneficial not only for tandem solar cells according to the present invention but also for tandem solar cells in the general sense.

應注意,作為另一選擇或另外,頂部太陽電池的下部接觸層216可適以作為平滑的層。It should be noted that as an alternative or in addition, the lower contact layer 216 of the top solar cell may be suitable as a smooth layer.

亦應注意,作為另一選擇,若在層340與層216之間的介面處發生充足的複合,則可省略分隔層350。It should also be noted that as an alternative, the separation layer 350 may be omitted if sufficient recombination occurs at the interface between layer 340 and layer 216.

如針對圖2所述,前面及/或背面上的紋理特徵可在安置鈍化層堆疊之前被修圓。As described with respect to Figure 2, the texture features on the front and/or back side may be rounded prior to placement of the passivation layer stack.

圖6示出根據本發明實施例的二端子串接式太陽電池4a的示意性剖視圖。FIG. 6 shows a schematic cross-sectional view of a two-terminal tandem solar cell 4a according to an embodiment of the present invention.

在圖6中,參考編號與前述圖1至圖5中所示者相同的實體指代對應的或相似的實體。In FIG. 6, the entities whose reference numerals are the same as those shown in the foregoing FIGS. 1 to 5 refer to corresponding or similar entities.

在圖6中所示實施例中,底部太陽電池132相當於參照圖3示出及闡述的太陽電池132。底部太陽電池的後表面RB被設置為PERC電池或雙面PERC電池的後表面。所述後表面被平滑化或研磨至某一程度且包括由在所謂的PERC太陽電池中使用的介電質層或介電質層堆疊134組成的第二鈍化層堆疊,例如氧化鋁與氮化矽的堆疊(氧化鋁位於基板與氮化矽之間),或者氧化矽與氮化矽的堆疊(氧化矽位於基板與氮化矽之間)。金屬層138或層堆疊施加於介電質堆疊134頂上(介電質堆疊位於金屬層與基板之間)、局部地穿透介電質層堆疊、並在金屬層138或層堆疊穿透介電質層堆疊處形成經鋁摻雜的矽136的局部背表面場。所述金屬層可設置於實質上全部後表面之上或局部地設置於所述後表面之上以達成雙面底部電池。In the embodiment shown in FIG. 6, bottom solar cell 132 corresponds to solar cell 132 shown and described with respect to FIG. The rear surface RB of the bottom solar cell is set to the rear surface of the PERC battery or the double-sided PERC battery. The back surface is smoothed or ground to some extent and includes a second passivation layer stack consisting of a dielectric layer or dielectric layer stack 134 used in so-called PERC solar cells, such as alumina and nitridation A stack of germanium (aluminum is located between the substrate and tantalum nitride), or a stack of tantalum oxide and tantalum nitride (the tantalum oxide is between the substrate and tantalum nitride). A metal layer 138 or layer stack is applied over the dielectric stack 134 (the dielectric stack is between the metal layer and the substrate), partially penetrates the dielectric layer stack, and penetrates the dielectric layer in the metal layer 138 or layer stack A partial back surface field of the aluminum doped crucible 136 is formed at the stack of layers. The metal layer may be disposed over substantially all of the back surface or partially over the back surface to achieve a double-sided bottom cell.

應注意,可對如圖4中所示的底部太陽電池230的後表面RB作出如圖6中所示的相似潤飾。It should be noted that a similar finish as shown in FIG. 6 can be made to the rear surface RB of the bottom solar cell 230 as shown in FIG.

更應注意,本發明包括其中在底部太陽電池的前表面上安置鈍化層堆疊的實施例,所述鈍化層堆疊包括薄的介電質膜以及由選擇性載子提取材料或多晶矽形成的輔助層,所述薄的介電質膜配置於矽基板與輔助層之間,其中鈍化層堆疊被安置成特定局部圖案、或被圖案化成特定局部圖案,其中各圖案具有變化的厚度或摻雜水準或者選擇性載子提取材料的組成物。It should be further noted that the present invention includes embodiments in which a passivation layer stack is disposed on a front surface of a bottom solar cell, the passivation layer stack including a thin dielectric film and an auxiliary layer formed of a selective carrier extraction material or polysilicon. The thin dielectric film is disposed between the germanium substrate and the auxiliary layer, wherein the passivation layer stack is disposed in a specific partial pattern, or is patterned into a specific partial pattern, wherein each pattern has a varying thickness or doping level or A selective carrier extracts the composition of the material.

此種局部圖案可為與例如接觸金屬化格柵(例如,由圖2及圖3中的手指部42代表的金屬化格柵)對準的格柵圖案。舉例而言,若鈍化層堆疊包含薄的氧化物及由經摻雜多晶矽形成的膜,則在格柵的各手指部之間在前表面FB的區域中多晶矽可被薄化或完全移除。有利地,本發明的此類實施例可用於提供位於金屬格柵手指部與晶圓基板之間的選擇性載子提取材料(例如,厚度為100奈米或大於100奈米的經摻雜多晶矽)的更大的厚度進而可使得由金屬格柵手指部引發的複合減少,並且用於在各格柵手指部之間的FB上的晶圓表面區域上提供較小的厚度進而可使得紅外波長光子的所謂的自由載子吸收率降低。因此底部太陽電池的效能可得到提高。厚度的此種變型可例如藉由如此項技術中所知的用於多晶矽的局部化學回蝕製程來完成。有利地,在金屬格柵手指部與晶圓基板之間使用的選擇性載子提取材料自金屬格柵手指部橫向地延伸某一長度,以在施加金屬格柵手指部的製程中提供對準容差(alignment tolerance)。舉例而言,位於金屬格柵手指部下方的選擇性載子提取材料的手指部可較金屬格柵手指部寬100微米至500微米。亦有利地,在底部電池的晶圓基板的前表面中(例如在位於各格柵手指部之間及下方的表面中)可設置有針對與選擇性載子提取材料相同的載子類型的摻雜層,此可減小底部電池的串聯電阻。Such a partial pattern may be a grid pattern that is aligned with, for example, a contact metallization grid (eg, a metallized grid represented by finger portion 42 in Figures 2 and 3). For example, if the passivation layer stack comprises a thin oxide and a film formed of doped polysilicon, the polysilicon can be thinned or completely removed in the region of the front surface FB between the fingers of the grid. Advantageously, such embodiments of the present invention can be used to provide a selective carrier extraction material between a metal grid finger portion and a wafer substrate (eg, a doped polysilicon having a thickness of 100 nanometers or more) The greater thickness of the film, in turn, can reduce the recombination induced by the metal grid fingers and provide a smaller thickness on the wafer surface area on the FB between the fingers of each grid to allow for infrared wavelengths. The so-called free carrier absorption rate of photons is reduced. Therefore, the performance of the bottom solar cell can be improved. Such variations in thickness can be accomplished, for example, by a local chemical etch back process for polycrystalline germanium as is known in the art. Advantageously, the selective carrier extraction material used between the metal grid finger portion and the wafer substrate extends laterally from the metal grid finger portion by a length to provide alignment during the application of the metal grid finger portion. Alignment tolerance. For example, the finger portion of the selective carrier extraction material located below the metal grid finger portion can be 100 microns to 500 microns wider than the metal grid finger portion. Advantageously, in the front surface of the wafer substrate of the bottom cell (for example in a surface located between and below the fingers of each grid), a blend of the same carrier type as the selective carrier extraction material may be provided. The impurity layer, which reduces the series resistance of the bottom cell.

根據本發明的實施例的串接式太陽電池可由基於矽基板的底部太陽電池與基於薄膜光伏裝置的頂部太陽電池製造而成。A tandem solar cell according to an embodiment of the present invention may be fabricated from a tantalum substrate-based bottom solar cell and a thin film photovoltaic device based top solar cell.

一種製造此種串接式太陽電池的方法包括: 提供具有前表面及後表面的底部太陽電池; 提供具有前表面及後表面的頂部太陽電池; 將頂部太陽電池配置成使其後表面位於底部太陽電池的前表面上,以使得頂部太陽電池的前表面與底部太陽電池的前表面在使用期間面對輻射源; 其中頂部太陽電池包括光伏吸收,所述光伏吸收具有較結晶矽的帶隙大的帶隙; 底部太陽電池包括結晶矽基板; 在底部太陽電池的前表面上,矽基板包括鈍化層堆疊,所述鈍化層堆疊包括薄的介電質膜及由選擇性載子收集材料或多晶矽形成的輔助層,所述薄的介電質膜配置於矽基板與輔助層之間。A method of manufacturing such a tandem solar cell includes: providing a bottom solar cell having a front surface and a rear surface; providing a top solar cell having a front surface and a rear surface; configuring the top solar cell such that the rear surface is at the bottom sun The front surface of the battery such that the front surface of the top solar cell and the front surface of the bottom solar cell face the radiation source during use; wherein the top solar cell comprises photovoltaic absorption, the photovoltaic absorption having a larger band gap than the crystalline germanium a band gap; the bottom solar cell comprises a crystalline germanium substrate; on the front surface of the bottom solar cell, the germanium substrate comprises a passivation layer stack comprising a thin dielectric film and formed by a selective carrier collecting material or polysilicon The auxiliary layer is disposed between the germanium substrate and the auxiliary layer.

在對各圖的前述說明中,已參照本發明的具體實施例而闡述了本發明。然而,將顯而易見,在不背離如在所附申請專利範圍中所總結的本發明的範圍的條件下,可對其作出各種潤飾及改變。The foregoing invention has been described with reference to the specific embodiments of the invention However, it will be apparent that various modifications and changes can be made thereto without departing from the scope of the invention as set forth in the appended claims.

另外,在不背離本發明的本質範圍的條件下,可作出潤飾以使具體的情況或材料適應本發明的教示內容。因此,旨在使本發明並非僅限於所揭露的具體實施例,而是使本發明包括落於隨附申請專利範圍的範圍內的所有實施例。In addition, retouching may be made to adapt a particular situation or material to the teachings of the present invention without departing from the scope of the invention. Therefore, it is intended that the invention not be limited to the particular embodiments disclosed,

具體而言,可對本發明的各種態樣的具體特徵加以組合。本發明的態樣可藉由添加已針對本發明的另一態樣所述的特徵而進一步有利地增強。In particular, specific features of various aspects of the invention may be combined. Aspects of the invention may be further advantageously enhanced by the addition of features already described for another aspect of the invention.

應理解,本發明僅受附帶的申請專利範圍及其技術性等效範圍限制。在此文獻中且在其申請專利範圍中,動詞「包括(to comprise)」及其變位是以其非限制性意義來使用,以意指包括跟隨在所述詞語之後的項,同時不排除未具體提及的項。另外,除非上下文中明確要求存在元件中的一者且僅一者,否則提及帶有不定冠詞「一(a或an)」的元件不排除存在多於一個所述元件的可能性。不定冠詞「一(a或an)」因此常常意指「至少一者」。It is to be understood that the invention is limited only by the scope of the appended claims and their technical equivalents. In this document and in the scope of its patent application, the verb "to comprise" and its variations are used in their non-limiting sense to mean to include the item that follows the word, and does not exclude Items not specifically mentioned. In addition, an element having the indefinite article "a" or "an" or "an" The indefinite article "a" or "an" is often used to mean "at least one."

1、2、3、4‧‧‧串接式太陽電池
2a‧‧‧四端子串接式太陽電池
4a‧‧‧二端子串接式太陽電池
10、210‧‧‧頂部太陽電池
12、212‧‧‧光伏吸收層
14、214‧‧‧上部載子提取層
16‧‧‧下部載子提取層
18‧‧‧第一接觸層
20‧‧‧第二接觸層
22‧‧‧覆板
24‧‧‧間隔壁層/層堆疊
30、130、230‧‧‧底部太陽電池/矽系底部太陽電池
32、232、332‧‧‧結晶矽基板
34‧‧‧下部接觸端子/接觸端子
36‧‧‧鈍化層堆疊
38‧‧‧薄的介電質膜/薄的介電質
40、340‧‧‧輔助層/層
42‧‧‧上部接觸端子/接觸端子/手指部
44‧‧‧抗反射塗層
132‧‧‧底部太陽電池
134‧‧‧介電質層堆疊
136‧‧‧第二鈍化層堆疊/經鋁摻雜的矽
138‧‧‧第二薄穿隧氧化物膜/金屬層
140‧‧‧後表面輔助層/輔助層
144‧‧‧抗反射塗層
216‧‧‧下部載子提取層/下部接觸層/層
218‧‧‧頂部接觸層
234‧‧‧下部接觸端子
236、336‧‧‧鈍化層堆疊
238、338‧‧‧薄的介電質膜
240‧‧‧輔助層
250、350‧‧‧分隔層
FB、FT‧‧‧前表面
RB、RT‧‧‧後表面
T1、T2‧‧‧紋理
1, 2, 3, 4‧‧‧ tandem solar cells
2a‧‧‧ four-terminal tandem solar cell
4a‧‧‧Two-terminal tandem solar cell
10, 210‧‧‧ top solar cells
12. 212‧‧‧Photovoltaic absorption layer
14, 214‧‧‧ upper carrier extraction layer
16‧‧‧Lower carrier extraction layer
18‧‧‧First contact layer
20‧‧‧Second contact layer
22‧‧‧Slate
24‧‧‧ partition wall/layer stacking
30, 130, 230‧‧‧ bottom solar cells / tethered bottom solar cells
32, 232, 332‧‧ ‧ crystallization substrate
34‧‧‧Lower contact terminal/contact terminal
36‧‧‧ Passivation layer stacking
38‧‧‧Thin dielectric film/thin dielectric
40, 340‧‧‧Auxiliary layer/layer
42‧‧‧Upper contact terminal/contact terminal/finger
44‧‧‧Anti-reflective coating
132‧‧‧Bottom solar cell
134‧‧‧Dielectric layer stacking
136‧‧‧Second passivation layer stack/aluminum doped germanium
138‧‧‧Second thin tunnel oxide film/metal layer
140‧‧‧Back surface auxiliary layer/auxiliary layer
144‧‧‧Anti-reflective coating
216‧‧‧Lower carrier extraction layer/lower contact layer/layer
218‧‧‧ top contact layer
234‧‧‧Lower contact terminal
236, 336‧‧‧ Passivation layer stacking
238, 338‧‧‧ Thin dielectric film
240‧‧‧Auxiliary layer
250, 350‧‧‧ separate layers
FB, FT‧‧‧ front surface
RB, RT‧‧‧ rear surface
T1, T2‧‧‧ texture

以下將參照其中示出本發明的說明性實施例的圖式來更詳細地闡釋本發明。 圖1示出根據本發明的實施例的四端子串接式太陽電池的示意性剖視圖。 圖2示出根據本發明的實施例的四端子串接式太陽電池的示意性剖視圖。 圖3示出根據本發明的實施例的四端子串接式太陽電池的示意性剖視圖。 圖4示出根據本發明的實施例的二端子串接式太陽電池的示意性剖視圖。 圖5示出根據本發明的實施例的二端子串接式太陽電池的示意性剖視圖。 圖6示出根據本發明的實施例的二端子串接式太陽電池的示意性剖視圖。The invention will be explained in more detail below with reference to the drawings in which an illustrative embodiment of the invention is illustrated. 1 shows a schematic cross-sectional view of a four terminal tandem solar cell in accordance with an embodiment of the present invention. 2 shows a schematic cross-sectional view of a four terminal tandem solar cell in accordance with an embodiment of the present invention. 3 shows a schematic cross-sectional view of a four terminal tandem solar cell in accordance with an embodiment of the present invention. 4 shows a schematic cross-sectional view of a two terminal tandem solar cell in accordance with an embodiment of the present invention. Figure 5 shows a schematic cross-sectional view of a two terminal tandem solar cell in accordance with an embodiment of the present invention. Figure 6 shows a schematic cross-sectional view of a two terminal tandem solar cell in accordance with an embodiment of the present invention.

3‧‧‧串接式太陽電池 3‧‧‧ tandem solar cells

22‧‧‧覆板 22‧‧‧Slate

210‧‧‧頂部太陽電池 210‧‧‧Top solar cell

212‧‧‧光伏吸收層 212‧‧‧Photovoltaic absorption layer

214‧‧‧上部載子提取層 214‧‧‧Upper carrier extraction layer

216‧‧‧下部載子提取層/下部接觸層/層 216‧‧‧Lower carrier extraction layer/lower contact layer/layer

218‧‧‧頂部接觸層 218‧‧‧ top contact layer

230‧‧‧底部太陽電池/矽系底部太陽電池 230‧‧‧Bottom solar cell/矽 bottom solar cell

232‧‧‧結晶矽基板 232‧‧‧crystal substrate

234‧‧‧下部接觸端子 234‧‧‧Lower contact terminal

236‧‧‧鈍化層堆疊 236‧‧‧ Passivation layer stacking

238‧‧‧薄的介電質膜 238‧‧‧Thin dielectric film

240‧‧‧輔助層 240‧‧‧Auxiliary layer

250‧‧‧分隔層 250‧‧‧Separation layer

FB、FT‧‧‧前表面 FB, FT‧‧‧ front surface

RB、RT‧‧‧後表面 RB, RT‧‧‧ rear surface

Claims (29)

一種串接式太陽電池,包括頂部太陽電池及底部太陽電池;所述頂部太陽電池及所述底部太陽電池分別具有各自的前表面及後表面;所述各自的前表面適以在使用期間面對輻射源;所述頂部太陽電池被配置成使所述頂部太陽電池的其所述後表面覆蓋至所述底部太陽電池的所述前表面; 所述頂部太陽電池包括光伏吸收層,所述光伏吸收層具有較結晶矽的帶隙大的帶隙; 所述底部太陽電池包括結晶矽基板; 在所述底部太陽電池的所述前表面的至少一部分上安置有鈍化層堆疊,所述鈍化層堆疊包括薄的介電質膜及由選擇性載子提取材料或多晶矽形成的輔助層,所述薄的介電質膜配置於所述矽基板與所述輔助層之間。A tandem solar cell comprising a top solar cell and a bottom solar cell; the top solar cell and the bottom solar cell respectively have respective front and back surfaces; the respective front surfaces are adapted to face during use a radiation source; the top solar cell being configured to cover the back surface of the top solar cell to the front surface of the bottom solar cell; the top solar cell comprising a photovoltaic absorber layer, the photovoltaic absorption The layer has a band gap larger than that of the crystalline germanium; the bottom solar cell includes a crystalline germanium substrate; a passivation layer stack is disposed on at least a portion of the front surface of the bottom solar cell, the passivation layer stack including A thin dielectric film and an auxiliary layer formed of a selective carrier extraction material or a polysilicon, the thin dielectric film being disposed between the germanium substrate and the auxiliary layer. 如申請專利範圍第1項所述的串接式太陽電池,其中所述輔助層包含本征多晶矽。The tandem solar cell of claim 1, wherein the auxiliary layer comprises an intrinsic polysilicon. 如申請專利範圍第1項所述的串接式太陽電池,其中所述輔助層包含摻雜有第一導電類型或第二導電類型的雜質的多晶矽。The tandem solar cell of claim 1, wherein the auxiliary layer comprises a polysilicon doped with an impurity of a first conductivity type or a second conductivity type. 如前述申請專利範圍第1項至第3項中任一項所述的串接式太陽電池,其中所述輔助層對紅外輻射實質上透明。A tandem solar cell according to any one of the preceding claims, wherein the auxiliary layer is substantially transparent to infrared radiation. 如申請專利範圍第1項至第4項中任一項所述的串接式太陽電池,其中所述薄的介電質膜具有介於0.5奈米與5奈米之間的厚度。The tandem solar cell according to any one of claims 1 to 4, wherein the thin dielectric film has a thickness of between 0.5 nm and 5 nm. 如申請專利範圍第1項至第4項中任一項所述的串接式太陽電池,其中所述薄的介電質膜是厚度介於1奈米與2.5奈米之間的由氧化矽或氮氧化矽形成的層。The tandem solar cell according to any one of claims 1 to 4, wherein the thin dielectric film is yttrium oxide having a thickness between 1 nm and 2.5 nm. Or a layer formed by ruthenium oxynitride. 如申請專利範圍第1項至第6項中任一項所述的串接式太陽電池,其中所述多晶矽具有介於約5奈米至約500奈米範圍中、較佳地介於約10奈米與約200奈米之間的厚度。The tandem solar cell of any one of claims 1 to 6, wherein the polycrystalline germanium has a range of from about 5 nm to about 500 nm, preferably about 10 The thickness between nano and about 200 nm. 如申請專利範圍第6項或第7項所述的串接式太陽電池,其中所述多晶矽層的摻雜水準高於約1´1019 cm-3The tandem solar cell according to claim 6 or 7, wherein the doping level of the polycrystalline germanium layer is higher than about 1 ́10 19 cm -3 . 如申請專利範圍第1項所述的串接式太陽電池,其中所述輔助層包含金屬氧化物。The tandem solar cell of claim 1, wherein the auxiliary layer comprises a metal oxide. 如申請專利範圍第9項所述的串接式太陽電池,其中所述金屬氧化物對於電洞觸點而言選自包含氧化鉬、氧化鎳、氧化鎢、氧化釩、經鋁摻雜的氧化鋅的群組;或者對於電子觸點而言選自包含氧化鈦、氧化鉭、氧化銦錫的群組。The tandem solar cell of claim 9, wherein the metal oxide is selected from the group consisting of molybdenum oxide, nickel oxide, tungsten oxide, vanadium oxide, and aluminum doped oxidation for the hole contact. a group of zinc; or for an electrical contact selected from the group consisting of titanium oxide, cerium oxide, indium tin oxide. 如前述申請專利範圍中任一項所述的串接式太陽電池,其中所述頂部太陽電池包括作為光伏吸收層的金屬有機鹵化物鈣鈦礦層。A tandem solar cell according to any of the preceding claims, wherein the top solar cell comprises a metal organic halide perovskite layer as a photovoltaic absorber layer. 如前述申請專利範圍第1項至第10項中任一項所述的串接式太陽電池,其中所述頂部太陽電池包括作為光伏吸收層的CdTe層。A tandem solar cell according to any one of the preceding claims, wherein the top solar cell comprises a CdTe layer as a photovoltaic absorber layer. 如前述申請專利範圍中任一項所述的串接式太陽電池,其中所述底部太陽電池的所述前表面是紋理化的,且紋理的尖銳特徵中的至少某些以大於約25奈米直至約1000奈米的增大的曲率半徑被修圓(平滑化)。A tandem solar cell according to any of the preceding claims, wherein the front surface of the bottom solar cell is textured and at least some of the sharp features of the texture are greater than about 25 nm The increased radius of curvature up to about 1000 nm is rounded (smoothed). 如申請專利範圍第13項所述的串接式太陽電池,其中所述紋理化的所述前表面包括中間具有谷的棱錐體形狀,所述谷以具有選自約25奈米至約1000奈米範圍的半徑的曲率被修圓。The tandem solar cell of claim 13, wherein the textured front surface comprises a pyramid shape having a valley in between, the valley having a shape selected from about 25 nm to about 1000 nm The curvature of the radius of the meter range is rounded. 如前述申請專利範圍中任一項所述的串接式太陽電池,其中所述頂部太陽電池包括薄膜光伏層結構,所述薄膜光伏層結構包括上部載子提取層、下部載子提取層及配置於所述上部載子提取層與所述下部載子提取層之間的所述光伏吸收層,且所述頂部太陽電池包括被配置成與所述上部提取層接觸的至少第一接觸層; 所述底部太陽電池包括為基本導電類型的矽基板,在所述底部太陽電池的後表面處具有至少第一接觸端子。A tandem solar cell according to any one of the preceding claims, wherein the top solar cell comprises a thin film photovoltaic layer structure comprising an upper carrier extraction layer, a lower carrier extraction layer and a configuration The photovoltaic absorber layer between the upper carrier extraction layer and the lower carrier extraction layer, and the top solar cell includes at least a first contact layer configured to be in contact with the upper extraction layer; The bottom solar cell includes a germanium substrate of a substantially conductive type having at least a first contact terminal at a rear surface of the bottom solar cell. 如申請專利範圍第15項所述的串接式太陽電池,其中所述頂部太陽電池包括位於所述光伏層結構下方的與所述下部載子提取層接觸的第二接觸層;所述第一接觸層具有第一極性且所述第二接觸層具有與所述第一極性相反的第二極性;所述底部太陽電池包括第二接觸端子,所述第二接觸端子的極性與所述第一接觸端子的極性相反,且 所述第二接觸端子接觸所述輔助層,且所述第二接觸層電性連接所述第二接觸端子。The tandem solar cell of claim 15, wherein the top solar cell comprises a second contact layer under the photovoltaic layer structure in contact with the lower carrier extraction layer; The contact layer has a first polarity and the second contact layer has a second polarity opposite the first polarity; the bottom solar cell includes a second contact terminal, a polarity of the second contact terminal and the first The polarity of the contact terminals is opposite, and the second contact terminals contact the auxiliary layer, and the second contact layer is electrically connected to the second contact terminals. 如申請專利範圍第16項所述的串接式太陽電池,其中所述下部載子提取層或所述第二接觸層中的一者與所述輔助層或所述第二接觸端子中的一者重合。The tandem solar cell of claim 16, wherein one of the lower carrier extraction layer or the second contact layer and one of the auxiliary layer or the second contact terminal Coincident. 如申請專利範圍第17項所述的串接式太陽電池,其中所述串接式太陽電池包括位於所述底部太陽電池與所述頂部太陽電池之間的第三接觸層,所述第三接觸層接觸所述下部載子提取層並接觸所述結晶矽電池上的所述輔助層,其中所述下部載子提取層的極性與所述輔助層的極性相反。The tandem solar cell of claim 17, wherein the tandem solar cell comprises a third contact layer between the bottom solar cell and the top solar cell, the third contact A layer contacts the lower carrier extraction layer and contacts the auxiliary layer on the crystalline germanium cell, wherein the lower carrier extraction layer has a polarity opposite to that of the auxiliary layer. 如申請專利範圍第17項所述的串接式太陽電池,其中所述下部載子提取層或所述下部接觸層中的一者直接接觸所述輔助層或所述第二接觸端子中的一者。The tandem solar cell of claim 17, wherein one of the lower carrier extraction layer or the lower contact layer directly contacts one of the auxiliary layer or the second contact terminal By. 如申請專利範圍第17項所述的串接式太陽電池,其中在作為選擇性載子提取層的所述輔助層與位於頂部太陽電池的所述後表面處的所述下部載子提取層之間配置有複合層,所述複合層電性接觸所述輔助層及所述下部載子提取層,且 所述頂部太陽電池的所述第一接觸層具有第一極性,且所述第一接觸端子具有與所述第一極性相反的第二極性。The tandem solar cell according to claim 17, wherein the auxiliary layer as a selective carrier extraction layer and the lower carrier extraction layer at the rear surface of the top solar cell Interposed with a composite layer electrically contacting the auxiliary layer and the lower carrier extraction layer, and the first contact layer of the top solar cell has a first polarity, and the first contact The terminal has a second polarity opposite the first polarity. 如申請專利範圍第15項所述的串接式太陽電池,其中作為選擇性載子提取層的所述輔助層電性接觸位於頂部太陽電池的所述後表面處的所述下部提取層,且 所述頂部太陽電池的所述第一接觸層具有第一極性且所述第一接觸端子具有與所述第一極性相反的第二極性。The tandem solar cell of claim 15, wherein the auxiliary layer as a selective carrier extraction layer electrically contacts the lower extraction layer at the rear surface of the top solar cell, and The first contact layer of the top solar cell has a first polarity and the first contact terminal has a second polarity opposite the first polarity. 如前述申請專利範圍第1項至第21項中任一項所述的串接式太陽電池,其中所述薄的介電質層是二氧化矽層或氮氧化矽層。The tandem solar cell according to any one of the preceding claims, wherein the thin dielectric layer is a ruthenium dioxide layer or a ruthenium oxynitride layer. 一種製造串接式太陽電池的方法,包括: 提供具有前表面及後表面的底部太陽電池; 提供具有前表面及後表面的頂部太陽電池; 將所述頂部太陽電池配置成使所述頂部太陽電池的所述後表面位於所述底部太陽電池的所述前表面上或鄰近所述底部太陽電池的所述前表面,以使得所述頂部太陽電池的所述前表面與所述底部太陽電池的所述前表面在使用期間面對輻射源; 其中所述頂部太陽電池包括光伏吸收層,所述光伏吸收層具有較結晶矽的帶隙大的帶隙; 所述底部太陽電池包括結晶矽基板; 在所述底部太陽電池的所述前表面上,所述結晶矽基板包括鈍化層堆疊,所述鈍化層堆疊包括薄的介電質膜及輔助層,所述薄的介電質膜配置於所述矽基板與所述輔助層之間;所述輔助層由選擇性載子提取材料或多晶矽製成。A method of manufacturing a tandem solar cell, comprising: providing a bottom solar cell having a front surface and a rear surface; providing a top solar cell having a front surface and a rear surface; configuring the top solar cell to cause the top solar cell The rear surface is located on or adjacent to the front surface of the bottom solar cell such that the front surface of the top solar cell and the bottom solar cell The front surface faces the radiation source during use; wherein the top solar cell comprises a photovoltaic absorber layer having a larger band gap than the crystalline germanium; the bottom solar cell comprises a crystalline germanium substrate; On the front surface of the bottom solar cell, the crystalline germanium substrate includes a passivation layer stack, the passivation layer stack includes a thin dielectric film and an auxiliary layer, and the thin dielectric film is disposed on the Between the substrate and the auxiliary layer; the auxiliary layer is made of a selective carrier extraction material or polycrystalline germanium. 如申請專利範圍第23項所述製造串接式太陽電池的方法,包括: 所述頂部太陽電池在所述後表面處包括與所述光伏層結構的所述下部提取層接觸的第二接觸層,所述第一接觸層具有第一極性且所述第二接觸層具有與所述第一極性相反的第二極性; 所述底部太陽電池包括第二接觸端子,所述第二接觸端子的極性與所述第一接觸端子的極性相反。A method of manufacturing a tandem solar cell according to claim 23, comprising: said top solar cell comprising a second contact layer in contact with said lower extraction layer of said photovoltaic layer structure at said rear surface The first contact layer has a first polarity and the second contact layer has a second polarity opposite to the first polarity; the bottom solar cell includes a second contact terminal, a polarity of the second contact terminal The polarity of the first contact terminal is opposite. 如申請專利範圍第24項所述製造串接式太陽電池的方法,其中所述方法包括在所述底部太陽電池的所述輔助層與頂部太陽電池的所述後表面之間配置絕緣層。A method of manufacturing a tandem solar cell according to claim 24, wherein the method comprises disposing an insulating layer between the auxiliary layer of the bottom solar cell and the rear surface of the top solar cell. 如申請專利範圍第24項所述的方法,其中所述第二接觸層電性接觸所述第二接觸端子。The method of claim 24, wherein the second contact layer electrically contacts the second contact terminal. 如申請專利範圍第23項所述製造串接式太陽電池的方法,包括: 在所述底部太陽電池的所述輔助層與頂部太陽電池的所述下部載子提取層之間配置第三接觸層; 所述第三接觸層電性接觸所述輔助層及所述下部載子提取層,所述輔助層與所述下部載子提取層具有相同的極性。A method of manufacturing a tandem solar cell according to claim 23, comprising: disposing a third contact layer between the auxiliary layer of the bottom solar cell and the lower carrier extraction layer of the top solar cell; The third contact layer electrically contacts the auxiliary layer and the lower carrier extraction layer, and the auxiliary layer and the lower carrier extraction layer have the same polarity. 如申請專利範圍第23項所述製造串接式太陽電池的方法,包括: 在所述底部太陽電池的所述輔助層與所述頂部太陽電池的所述下部載子提取層之間配置複合層。A method of manufacturing a tandem solar cell according to claim 23, comprising: disposing a composite layer between the auxiliary layer of the bottom solar cell and the lower carrier extraction layer of the top solar cell; . 一種太陽面板,包括至少一個如前述申請專利範圍第1項至第22項中任一項所述的串接式太陽電池或由如前述申請專利範圍第23項至第28項中任一項所述的方法製成。A solar panel comprising at least one of the tandem solar cells of any one of the preceding claims, or any one of items 23 to 28 of the aforementioned patent application. The method described is made.
TW105142003A 2015-12-18 2016-12-19 Tandem solar cell and method for manufacturing thereof, and solar panel TW201725746A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NL2015987A NL2015987B1 (en) 2015-12-18 2015-12-18 Tandem solar cell and method for manufacturing such a solar cell.
NL2017380A NL2017380B1 (en) 2015-12-18 2016-08-26 Hybrid tandem solar cell

Publications (1)

Publication Number Publication Date
TW201725746A true TW201725746A (en) 2017-07-16

Family

ID=57794328

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105142003A TW201725746A (en) 2015-12-18 2016-12-19 Tandem solar cell and method for manufacturing thereof, and solar panel

Country Status (3)

Country Link
CN (2) CN116193880A (en)
TW (1) TW201725746A (en)
WO (1) WO2017105248A1 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3069705A1 (en) * 2017-07-28 2019-02-01 Centre National De La Recherche Scientifique TANDEM PHOTOVOLTAIC CELL
KR102541127B1 (en) * 2017-09-05 2023-06-09 상라오 징코 솔라 테크놀러지 디벨롭먼트 컴퍼니, 리미티드 Tandem solar cell and manufacturing method the same
WO2020060487A1 (en) * 2018-09-17 2020-03-26 National University Of Singapore Solar cell and method for fabricating a solar cell
KR20200075640A (en) 2018-12-18 2020-06-26 엘지전자 주식회사 Tandem solar cell
EP4014259A4 (en) * 2019-08-12 2023-06-28 Arizona Board of Regents on behalf of Arizona State University Perovskite/silicon tandem photovoltaic device
US11961927B2 (en) * 2020-09-04 2024-04-16 Alliance For Sustainable Energy, Llc Cascade photocatalysis device
CN113257925A (en) * 2021-04-12 2021-08-13 杭州电子科技大学 Silicon solar cell utilizing infrared anti-reflection heat dissipation
CN114256387B (en) * 2021-11-01 2023-09-05 江苏日托光伏科技股份有限公司 Preparation method of perovskite-heterojunction three-terminal MWT structure laminated solar cell

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015017885A1 (en) * 2013-08-06 2015-02-12 Newsouth Innovations Pty Limited A high efficiency stacked solar cell
US20160307704A1 (en) * 2013-12-03 2016-10-20 University Of Washington Through Its Center For Commercialization Photovoltaic architectures incorporating organic-inorganic hybrid perovskite absorber
WO2016069758A1 (en) * 2014-10-29 2016-05-06 Sru Corporation Tandem photovoltaic device
US10535791B2 (en) * 2014-12-03 2020-01-14 The Board Of Trustees Of The Leland Stanford Junior University 2-terminal metal halide semiconductor/C-silicon multijunction solar cell with tunnel junction
US20160181456A1 (en) * 2014-12-22 2016-06-23 Yong-Hang Zhang Low-Cost and High-Efficiency Tandem Photovoltaic Cells
CN105810772B (en) * 2016-05-30 2017-07-14 中南大学 A kind of antimony trisulfide/silicon stacked solar cell, cascade solar cell and preparation method thereof

Also Published As

Publication number Publication date
CN116193880A (en) 2023-05-30
CN116193881A (en) 2023-05-30
WO2017105248A1 (en) 2017-06-22

Similar Documents

Publication Publication Date Title
US11152527B2 (en) Hybrid tandem solar cell
Yan et al. A review on the crystalline silicon bottom cell for monolithic perovskite/silicon tandem solar cells
CN109728103B (en) Solar cell
TW201725746A (en) Tandem solar cell and method for manufacturing thereof, and solar panel
KR101627217B1 (en) Sollar Cell And Fabrication Method Thereof
KR101000064B1 (en) Hetero-junction silicon solar cell and fabrication method thereof
CN111710746B (en) Perovskite/crystalline silicon tandem solar cell structure
TWI420700B (en) Solar cell
CN115241298B (en) Solar cell, preparation method thereof and photovoltaic module
CN114038921B (en) Solar cell and photovoltaic module
CN115172477B (en) Solar cell and photovoltaic module
US20130125964A1 (en) Solar cell and manufacturing method thereof
CN113257940A (en) Laminated photovoltaic device and production method
KR101886818B1 (en) Method for manufacturing of heterojunction silicon solar cell
AU2022200624B2 (en) Solar cell and photovoltaic module
CN116404071A (en) Solar cell, preparation method thereof and photovoltaic module
EP4113629B1 (en) Solar cell and solar cell module
CN115172602B (en) Doped metal oxide composite layer structure
WO2022134994A1 (en) Solar cell, production method, and photovoltaic module
CN215183999U (en) Contact structure applied to tunneling type solar cell and solar cell with contact structure
KR20120009562A (en) Solar cell and method of manufacturing the same
JP7248856B1 (en) SOLAR CELL AND SOLAR CELL MANUFACTURING METHOD, PHOTOVOLTAIC MODULE
CN115172478B (en) Solar cell and photovoltaic module
CN108565298B (en) Solar cell
CN108630763B (en) Photoelectric conversion device and preparation method thereof