TW201200103A - Gait analysis system - Google Patents

Gait analysis system Download PDF

Info

Publication number
TW201200103A
TW201200103A TW99120877A TW99120877A TW201200103A TW 201200103 A TW201200103 A TW 201200103A TW 99120877 A TW99120877 A TW 99120877A TW 99120877 A TW99120877 A TW 99120877A TW 201200103 A TW201200103 A TW 201200103A
Authority
TW
Taiwan
Prior art keywords
acceleration
gait analysis
acceleration signal
analysis system
angular acceleration
Prior art date
Application number
TW99120877A
Other languages
Chinese (zh)
Other versions
TWI417083B (en
Inventor
Shun-Ping Lin
jun-zhong Chen
bo-zhao Guo
Original Assignee
China University Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University Science And Technology filed Critical China University Science And Technology
Priority to TW99120877A priority Critical patent/TWI417083B/en
Publication of TW201200103A publication Critical patent/TW201200103A/en
Application granted granted Critical
Publication of TWI417083B publication Critical patent/TWI417083B/en

Links

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Abstract

A gait analysis system includes at least one detector fixed at a predetermined part of human body; the detector comprises an accelerometer to detect linear acceleration of activity, a gyroscope to detect angular acceleration of activity, a microcontroller for processing the linear acceleration signal and angular acceleration signal detected by the accelerometer and the gyroscope respectively, and a power source to provide electric power to the abovementioned elements; a transmission device to transmit the linear acceleration signal and angular acceleration signal out; and a calculating device to receive the linear acceleration signal and angular acceleration signal transmitted from the transmission device and then analyzes the signals to obtain gait analysis information of the activity.

Description

201200103 六、發明說明: 【發明所屬之技術領域】 本發明與量職備有關’特別是關於_種低成本,實驗環 境較不受限制之步態分析系統。 【先前技術】 步態分析(Gait Analysis)是有系統測量、描述及評估有 關人體行動能力的量化參數。經由步態分析,行走的時空參數 鲁 (time_distance P咖meters ),運動學(kinematics ),動力學 (kinetics)及動態肌電圖(dynamic EMG data),利用演算出 來的各項步態參數與特性’可以提供臨床醫師、物理治療師與 教練判讀成為重要參考㈣。而其臨床更足以使臨床醫師 有充为旎力量化描述一個因為某一種特殊疾病所造成步態改 變或惡化的程度,或甚至去定義疾病嚴重的程度。 步態分析應該被視為一個診斷病情的工具,就如同放射線 • 檢查或生化檢查一樣。步態分析所提供的資料足以協助定義一 種特別的疾病狀態。目前臨床利用之的實例包括有:I)在腦 性麻痺病例作為病理步態的評估及治療計劃參考工具(Davis 1991 ; Deluca 1991 » 1996 ; Grage 1984 ^ 1987 ^ 1991 ; Sutherland 1980,1998 ’ 1990 ; Lai 1991)。II)在許多神經血管疾病如巴 金森症上作為病情發展的評估工具。ΙΠ)在骨科手術的前後作 為手術治療成功與否及行走類型改變的檢查工具 (Andricacchi 1982 ; Baumann 1991)。 201200103 一般而言,神經病變與骨骼肌肉系統的疾病都會造成行走 的問題。從臨床的角度來看,治療如何真正地改變病情的演化 呢?疾病的自然病史最終的演變結果為何呢?病理步態與正 常人的差別有多大或多有意義呢?這些問題,我們期望步態分 析可以來回答,因為疾病狀態改變了肌肉、骨骼及神經乃至關 節的協調平衡及互動,因而影響了步態,而步態分析正可以抽 絲剝闕幫仙分解Λ來。目此,树解,復健及神經學的領 域裡,應肖錢分析來解決臨床問題的研究正如雨後春荀地發 展了起來。 在美國,電腦化的步態分析實驗室已成立約有兩百多個, 而且在臨床的診斷及治療的功效上,已有許多成功的範例。尤 其在以腦性麻痒為主的治療及分析上,如Newington201200103 VI. Description of the Invention: [Technical Field to Which the Invention Is Affected] The present invention relates to a volume of work. In particular, it relates to a gait analysis system which is low in cost and has an unrestricted experimental environment. [Prior Art] Gait Analysis is a quantitative parameter that systematically measures, describes, and evaluates human mobility. Through gait analysis, the time-space parameters of walking, time_distance P-meters, kinematics, kinetics, and dynamic EMG data, using the calculated gait parameters and characteristics 'It can be an important reference for clinicians, physiotherapists and coaches to interpret (4). And its clinical nature is more than enough to enable clinicians to describe the extent to which a gait changes or worsens due to a particular disease, or even defines the severity of the disease. Gait analysis should be seen as a tool for diagnosing a condition, just like a radiation check or a biochemical test. The information provided by gait analysis is sufficient to help define a particular disease state. Examples of current clinical uses include: I) cerebral palsy cases as a reference tool for the assessment and treatment planning of pathological gait (Davis 1991 ; Deluca 1991 » 1996 ; Grage 1984 ^ 1987 ^ 1991 ; Sutherland 1980 , 1998 ' 1990 ; Lai 1991). II) As an assessment tool for disease progression in many neurovascular diseases such as Parkinson's disease. ΙΠ) Before and after orthopedic surgery, an examination tool for successful surgical treatment and changes in walking type (Andricacchi 1982; Baumann 1991). 201200103 In general, neuropathy and diseases of the musculoskeletal system cause walking problems. From a clinical perspective, how does treatment really change the evolution of the disease? What is the final evolution of the natural history of the disease? How much or more is the difference between pathological gait and normal people? For these problems, we expect gait analysis to answer, because the disease state changes the coordinated balance and interaction of muscles, bones, nerves and even joints, thus affecting gait, and gait analysis can be used to extract and decompose. In this way, in the field of tree solution, rehabilitation and neurology, the research on solving clinical problems by Xiao Qian analysis is just like the spring after the rain. In the United States, there are more than two hundred computerized gait analysis laboratories, and there are many successful examples in the clinical diagnosis and treatment. Especially in the treatment and analysis of cerebral itch, such as Newington

Children's Hospital 及 San Diego Children’s Hospital,經由步態 分析提供資料的協助,它已經成為一個術前術後皆不可或缺的 工具。 傳統的步態分析均是在實驗室中進行,相關的設備包含 有:測力板、攝影機、肌電訊號(EMG)量測器、電腦與分析軟 體等。攝影機(一般為六部攝影機)架設於實驗室中的特定位 置,測力板鋪权在地上。實驗開始前,先在受測者身上的特定 部位(例如:肩、肘、膝等關節與其他參考座標處,例如:大 轉子)貼上光標’以及在特定肌肉處(例如:斜方肌、腹直肌等) 貼上肌電訊號的感測器。接著要求受測者以特定的狀態(走路 201200103 、肌電訊號(EMG) ’再傳送到電腦中 或跑步)通過測力板,此時,測力板、攝影機 量測器偵測受測者通過測力板時的各項訊阜、 分析處理。 然,習知的步態分析祕具有許多的_與問題: 1. 設備昂貴: 測力板、攝影機、EMG量·等設備_需要數百萬的 資金,並非一般機構所能夠負擔。Children's Hospital and San Diego Children's Hospital, assisted by gait analysis, have become an indispensable tool for preoperative and postoperative procedures. Traditional gait analysis is performed in the laboratory, and related equipment includes: force plates, cameras, electromyography (EMG) meters, computers and analysis software. The camera (usually six cameras) is placed at a specific location in the laboratory and the force plate is placed on the ground. Before the start of the experiment, first attach a cursor to a specific part of the subject (for example, shoulders, elbows, knees and other reference coordinates, such as the greater trochanter) and at specific muscles (for example: trapezius, Abdominal rectus, etc.) A sensor with a myoelectric signal attached. Then, the subject is required to pass the force measuring board in a specific state (walking 201200103, myoelectric signal (EMG) 're-transmission to the computer or running), at this time, the force measuring board and the camera measuring instrument detect the passing of the subject Various signals, analysis and processing of the force plate. However, the well-known gait analysis has many problems and problems: 1. The equipment is expensive: the force plate, the camera, the amount of EMG, etc. _ need millions of funds, which is not affordable for the general organization.

2. 測試僅限制於實驗室中進行: 由於測力板-經架設後,要移動是一件相當困難的事(包 括移動後的校正)’所以-般的步態分析僅在架設有測力板的 實驗至中進行。然’實驗至中僅能模擬—般狀態下的步態,對 於特殊狀細如:坡度、不平的路面)是無法進行測試的。 3·只能進行短距離的測試: 由於實驗㈣空間树,再加上設備昂貴關題,傳統的 步態分析僅能it行舰離的測試,,好的活動均是在長時 間、長距離下進行;如伽短轉的步·析的結果來解釋長 距離、長時間的活動,可能發生一些問題。 基於以上之原因,利用習知的步態分析設備所進行的測 5式,仍具有許多無法克服的問題有待改善。 【發明内容】 本毛月之主要發明目的在於提供一種步態分析系統與以 此系統進行步態分析的方法,其設制費用較低。 201200103 本發明之次一發明目的在於提供一種步態分析系統與以 此系統進行步態分析的方法,其可在實地進行長時間、長距離 的步態分析。 為達成前述之發明目的,本發明所提供之步態分析系統包含 有:至少一偵測器,固定於人體之預定部位;該偵測器中具有一 加速規偵測活動之線性加速度,一陀螺儀偵測活動之角加速度, 以及-微控對於該加速規與該陀職所侧的雜加速度訊 號與角加速度域進行初步之處理;—傳輸裝置,將該線性加速 度訊號與該角加速度訊號傳輸出去;以及一計算機裝置,接收該 傳輸裝置所傳來之該線性加速度訊號與該肖加速度訊號並加以計 算分析,以得到活動之步態分析資料。 【實施方式】 請參閱第-圖所示,本發明一較佳實施例所提供之步態分 析系統主要包括有:若干感測器1〇、一傳輸裝置32以及一計 算機裝置34。 請參閱第二圖所示,感測器1〇具有一殼體12,殼體12 j具有-螢幕14、若干按鍵16以及USB接頭18。請參閱第 ^圖所示,在該感· 1G中具有—加速規I —陀螺儀a、 微控制H 24、-無線傳輸n 26 一儲魏體%以及一電源 〇。加速規(accelerometer)為—種量測自身運動的線性加速度 的裝置;陀螺儀(gy職ope)則為一種量測自身運動的角加速度 、X置在本發明中’該加速規2〇可量测三個向度的線性加 201200103 速度(AccX,AccY,AccZ);而該陀螺儀22可量測三個向度的角 加速度(GyroX,GyroY,GyroZ)。該加速規20與該陀螺儀22分 別電性連接至該微控制器24 ’將所偵測到的線性加速度與角 加速度訊號作初步處理,而這些訊號則透過該傳輪裝置32傳 送至該計算齡置34。料算錄置Μ巾具有特定的分析軟 體,可將各感測器10所傳來的訊號進行分析處理。本發明之 感測器提供了兩條傳輸途徑,一為偵測器1〇中的無線傳輸器 26,另在計算機裝置中設置接收器36,以無線傳輸的方式傳 送到該計算機裝置34 ;另-為先將線性加速度與肖加速度儲 存於儲存媒體28,之後再透過USB接頭18,將訊號傳送至計 异機裝置34。在此技術領域中具有通常知識者均可輕易瞭解, 以上兩種訊號傳輸方式,均為前述之傳輸裝置的類型之―,其 他利用藍芽(Bluetooth)、紅外線’以及其他有線或無線傳輪方 式也均為本案所述之傳輸裝置之等效結構。 月’J述之感測器10會利用一固定手段(未顯示)固定在受測 者的預定部位上。在本發明中,感測器1〇大多會被要求固定 在關節或其他特定區段,例如:頭部、頸椎、下背部第四、五 腰椎處、腸骨前上棘、膝外側、足踝、足背等處,因此需要在 不影響活動的前提下,具有良好的固定效果,因此建議的固定 手段包含有:彈性貼布或是肌内效貼布(Kinesi〇 taping)。一般 短時間、短距離的步態分析以彈性貼布固定即可;而長時間、 長距離,或運動範圍較大的活動則建議以肌内效貼布固定。未 201200103 來科技的進步’感_的尺寸應會大幅縮小,為此,固定手段 可能只是一片雙面膠而已。 在進行步態为析之前,首先將感測器固定於受測者的特定 邛位然後先靜止—分鐘進行校正。接著要求受測者進行特定 的活動例如.行走、跑步等。在活動的過程中,感測器中的 加速規與_儀會收集三個向度的線性加速度(AeeX,AccY, AccZ)與角加速度(Gyr〇x,Gyr〇Y,Gyr〇z)資料並透過該傳輪 裝置傳送至該st算機裝置。該計算機裝置會針對這些資料進行 座標與方_演算’以得職雜在活動巾的細活動資訊, 例如:直線加速度與角加速度、角度、長度與徑度、步長、步 頻、步著地時間、步騰空時間、對稱性與不對稱性、穩定度、 頻譜分析與小波分析等,提供者之參雜據。第四圖 顯示特妹體所計算出來步態分析各項數據的畫面。 本發明尚可在測試的過程中偵測各項生理資料,例如:心 跳率、心電訊號(EKG)、呼吸、肌電訊號(EMG)等,經整合後, 可得到更完整的分析結果。 本發明所提供之步態分析系統可應用於骨科步態分析,作 為骨科疾病治療前後的偵測及評估。在復健上,它可以作為治 療診斷,治療評估及恢復狀態衡量的參考。在義肢上,也可作 為協助設計’測試及義肢或辅具適應良窳的輔助。在神經學上, 它可以用來測量特殊肢體活動,抓握能力及步態特殊來分析巴 金森症的特性及治療效果的追蹤。在脊柱侧彎,它可偶作脊椎 201200103 ’治療的侧,及背架的最 活動二度空間的量測,演變的推測 佳化。 本發明所提供之錢分㈣、統亦可朗料動場上, 教練評估選手技術或做騎才之參考,例如:短、中距離 跑步,可麟射速度與加速度之魏,或其他絲干擾因 素’作為訓練處方之依據;長轉、馬拉松、甚至超級馬拉松,2. The test is only restricted to the laboratory: Due to the force plate - after erection, it is quite difficult to move (including the correction after the move) 'so the general gait analysis only has the force on the frame. The experiment of the plate was carried out to the middle. However, the experiment can only simulate the gait in the normal state, and it is impossible to test for the special shape such as slope and uneven road surface. 3. Only short-distance tests can be carried out: Due to the experimental (four) space tree and the expensive equipment, the traditional gait analysis can only test the ship, and the good activities are long and long distances. The next step; such as the result of the gamma short step to explain long-distance, long-term activities, some problems may occur. For the above reasons, there are still many insurmountable problems to be solved by using the conventional gait analysis equipment. SUMMARY OF THE INVENTION The main object of the present invention is to provide a gait analysis system and a method for performing gait analysis using the system, which has a low manufacturing cost. 201200103 A second object of the present invention is to provide a gait analysis system and a method for performing gait analysis using the system, which can perform long-term, long-distance gait analysis in the field. In order to achieve the foregoing object, the gait analysis system of the present invention comprises: at least one detector fixed to a predetermined part of a human body; the detector has an acceleration gauge detecting linear acceleration of activity, a gyroscope The instrument detects the angular acceleration of the activity, and - the micro-control performs preliminary processing on the accelerometer and the acceleration signal and the angular acceleration domain on the side of the gyro; the transmission device transmits the linear acceleration signal and the angular acceleration signal Going out; and a computer device receiving the linear acceleration signal and the Xiao acceleration signal transmitted by the transmission device for calculation and analysis to obtain active gait analysis data. [Embodiment] Referring to the first embodiment, a gait analysis system according to a preferred embodiment of the present invention mainly includes: a plurality of sensors 1A, a transmission device 32, and a computer device 34. Referring to the second figure, the sensor 1 has a housing 12 having a screen 14, a plurality of buttons 16, and a USB connector 18. Referring to the figure, in the sense 1G, there are - an acceleration gauge I - a gyroscope a, a micro control H 24, a wireless transmission n 26 - a storage body %, and a power supply 〇. An accelerometer is a device that measures the linear acceleration of its own motion; a gyroscope (gy ope) is an angular acceleration that measures its own motion, and X is placed in the present invention. The linearity of the three dimensions is measured plus the 201200103 speed (AccX, AccY, AccZ); and the gyroscope 22 can measure the angular acceleration of three dimensions (GyroX, GyroY, GyroZ). The accelerometer 20 and the gyroscope 22 are electrically connected to the microcontroller 24 respectively to perform preliminary processing on the detected linear acceleration and angular acceleration signals, and the signals are transmitted to the calculation through the transmission device 32. Age is 34. The data recording wipe has a specific analysis software, and the signals transmitted from the sensors 10 can be analyzed and processed. The sensor of the present invention provides two transmission paths, one is a wireless transmitter 26 in the detector 1 ,, and the receiver 36 is disposed in the computer device, and transmitted to the computer device 34 by wireless transmission; - The linear acceleration and the chirp acceleration are first stored in the storage medium 28, and then transmitted to the metering device 34 via the USB connector 18. It is easy for those of ordinary skill in the art to understand that the above two types of signal transmission methods are all of the types of transmission devices described above, and others use Bluetooth, infrared, and other wired or wireless transmission methods. Also equivalent to the equivalent structure of the transmission device described in this case. The sensor 10 described in the month is fixed to a predetermined portion of the subject by a fixing means (not shown). In the present invention, most of the sensors 1〇 are required to be fixed in joints or other specific sections, such as: head, cervical vertebra, lower back fourth, fifth lumbar vertebrae, anterior superior iliac spine, lateral knee, ankle , the back of the foot, etc., so it needs to have a good fixation effect without affecting the activity, so the recommended fixation means include: elastic patch or Kinesi〇taping. Generally, short-term and short-distance gait analysis can be fixed with elastic patches; while long-term, long-distance, or large-motion activities are recommended to be fixed with intramuscular patches. No 201200103 The advancement of technology will be greatly reduced. For this reason, the fixed means may be just a piece of double-sided tape. Before performing the gait analysis, the sensor is first fixed to the specific position of the subject and then corrected for a minute-minute. The subject is then asked to perform specific activities such as walking, running, and the like. During the activity, the accelerometer and the _meter in the sensor collect data of three linear accelerations (AeeX, AccY, AccZ) and angular acceleration (Gyr〇x, Gyr〇Y, Gyr〇z). It is transmitted to the st device through the transfer device. The computer device will perform coordinate and square calculus on the data to obtain the detailed activity information of the activity towel, such as: linear acceleration and angular acceleration, angle, length and diameter, step size, step frequency, step by step. Time, step vacancy time, symmetry and asymmetry, stability, spectrum analysis and wavelet analysis, etc., the provider's parameters. The fourth picture shows the picture of the gait analysis data calculated by the special body. The invention can also detect various physiological data during the test, such as heart rate, electrocardiogram (EKG), respiration, electromyography (EMG), etc. After integration, a more complete analysis result can be obtained. The gait analysis system provided by the present invention can be applied to orthopedic gait analysis as a detection and evaluation before and after treatment of orthopedic diseases. In rehabilitation, it can be used as a reference for treatment diagnosis, treatment evaluation, and recovery status measurement. On the prosthetic, it can also be used as an aid to the design of the test and the prosthetic or accessory to adapt to the good. Neurologically, it can be used to measure special physical activity, grip ability and gait speciality to analyze the characteristics of Parkinson's disease and the tracking of treatment effects. In the scoliosis, it can be used as the side of the treatment of the spine 201200103 ', and the measurement of the most active second space of the back frame, the evolution of speculation. The money provided by the present invention (4), the system can also be used on the field, the coach evaluates the player's technology or the reference of the rider, for example: short, medium distance running, lining speed and acceleration Wei, or other wire interference Factor 'as the basis for training prescriptions; long turn, marathon, even super marathon,

可記錄分析跑者跑步經濟性,例如對稱性、流暢性、步長與步 頻之最佳化等。當然也可做為其他項目之運動紀聰使用= 為後續分析之用。 以下兹舉二實驗,制_本發明之步態分獅統進行測 试的狀態,與分析結果: 實驗一:正常超級馬拉松跑者診斷測試 受測者:c小姐 性別.女,身咼:154公分,體重:44公斤 年齡:52 生理狀fe .成績優異之選手’每週跑步訓練最少MO公里。 跑步姿勢輕盈,身體狀況極佳。 感測器位置:1.下背部Z雙膝3.雙躁4.雙足背 進行之活動:在標準化醫療級跑步機上以時速8公里之速度 連續跑5分鐘’在身體逐漸適應與穩定下,操取3 5_4.5 分鐘時的感測器訊號。 實驗結果:見表一與表二 201200103 表一:重心: 測量變數 量測結果 右步長(cm) 75.4 左步長(cm) 74.8 步長對稱性(ASI) 0.8% 步頻(Hz) 3.0833 步時(ms) 323.0 下背加速度X右(m/sec2) 1.0332 下背加速度X左(m/sec2) 1.0453 加速度X對稱性(ASI) 1.17% 下背加速度Y右(m/sec2) 1.6706 下背加速度Y左(m/sec2) 1.8823 加速度Y對稱性(ASI) -11.9% 下背加速度Z右(m/sec2) 2.2001 下背加速度Z左(m/sec2) 2.2455 加速度Z對稱性(ASI) 2.04%It can record and analyze the running economy of runners, such as symmetry, fluency, step size and step frequency optimization. Of course, it can also be used as a sports item for other projects = for subsequent analysis. The following two experiments, the system of the gait of the invention is tested in the state of the test, and the results of the analysis: Experiment 1: normal super marathon runner diagnostic test subject: c Miss gender. Female, body: 154 Centimeters, weight: 44 kg Age: 52 Physiological fe. Players with excellent results 'Minimum running training at least MO km. The running position is light and the body is in excellent condition. Sensor position: 1. Lower back Z knees 3. Double cymbals 4. Activities on both sides of the foot: Continuous running for 5 minutes at a speed of 8 kilometers per hour on a standardized medical grade treadmill' , take the sensor signal at 3 5_4.5 minutes. Experimental results: See Table 1 and Table 2 201200103 Table 1: Center of gravity: Measurement variable quantity measurement result Right step length (cm) 75.4 Left step length (cm) 74.8 Step symmetry (ASI) 0.8% Step frequency (Hz) 3.0833 Step Time (ms) 323.0 Lower back acceleration X right (m/sec2) 1.0332 Lower back acceleration X left (m/sec2) 1.0453 Acceleration X symmetry (ASI) 1.17% Lower back acceleration Y right (m/sec2) 1.6706 Lower back acceleration Y left (m/sec2) 1.8823 Acceleration Y symmetry (ASI) -11.9% Lower back acceleration Z right (m/sec2) 2.2001 Lower back acceleration Z left (m/sec2) 2.2455 Acceleration Z symmetry (ASI) 2.04%

註:Absolute Symmetry Index, ASI=(R-L)/((R+L)/2)x 100% ASI<5%+表示正常 5.1% < ASI <10% +表示些微不對稱 10.1 % < ASI <20% +表示明顯不對稱 20.1% < ASI <30% +表示嚴重不對稱 30.1%<ASI +表示極不對稱(病理性) 表二:各部位:Note: Absolute Symmetry Index, ASI=(RL)/((R+L)/2)x 100% ASI<5%+ means normal 5.1% < ASI <10% + means slightly asymmetric 10.1% < ASI <20% + indicates significant asymmetry 20.1% < ASI < 30% + indicates severe asymmetry 30.1% < ASI + indicates extreme asymmetry (pathological) Table 2: Parts:

測量變數 膝關節 踝關節 足部 右角加速度Χ(ω) 45.2511 22.3639 12.3439 左角加速度Χ(ω) 44.6423 21.8694 12.3838 角加速度X對稱性(ASI) 1.35% 2.23% -0.32% 右角加速度Ζ(ω) 186.2236 116.4536 176.8535 左角加速度Ζ(ω) 188.6266 118.6678 178.6225 角加速度Ζ對稱性(ASI) -1.28% -1.88% -1.00% 右偏移X(d) 2.3698 3.7678 2.7698 左偏移X(d) 2.5044 3.5698 2.5665 偏移X對稱性(ASI) -5.52% 5.40% 7.62% 右仰角Z(d) 32.4765 13.7654 12.8684 左仰角Z(d) 33.7767 12.7704 13.9663 仰角Z對稱性(ASI) -3.92% 7.50% -8.18% 右加速度Y(m/sec2) 4.5607 6.5232 -7.3239 左加速度Y(m/sec2) 4.6687 6.6766 -7.7279 加速度Y對稱性(ASI) -2.34% -2.32% -5.37% 10 201200103 結果分析: 1. 重心評估: 加速度γ對稱性(ASI)呈現-11.9%的明顯不對稱性,縱使 是優異選手,仍有改進空間。 2. 膝關節評估: 僅左膝網内偏移稍多’其餘數值與對稱性均相當優異。 3. 踝關節評估: 僅在偏移X與仰角ζ對稱性(ASI)呈現略微不對稱,其餘 均相當正常。 4. 足部評估: 在偏移X、#角Z與加速度γ對稱性(ASI)均呈現些微不 對稱,且均是左側較優異。 實驗二:左膝受傷合併關節退化之超級馬拉松跑者診斷測試 受測者:Η小姐 性別·女,身尚.165公分,體重:53公斤 年齡:43 生理狀態:左膝_半月軟f受損,切除三分之―,合併關 節退化,每週跑步訓練最少公里。雖然跑步姿勢 、座異(嚴重左傾),身體除左膝些微酸痛,無其他異狀。 感測器位置:1.下背部2.雙膝3.雙踝4.雙足背 進行之活動.在;^準化醫療級跑步機上以時速8公里之速度 201200103 連續跑5分鐘,在身體逐漸適應與穩定下,擷取3.5-4.5 分鐘時的感測器訊號。 實驗結果:見表三與表四 表三:重心: 測量變數 量測結果 右步長(cm) 71.7 左步長(cm) 73.2 步長對稱性(ASI) -2.07% 步頻(Hz) 3.0667 步時(ms) 327.3 下背加速度X右(m/sec2) 0.7514 下背加速度X左(m/sec2) 1.1185 加速度X對稱性(ASI) -39.26% 下背加速度Y右(m/sec2) 1.0278 下背加速度Y左(m/sec2) 1.1367 加速度Y對稱性(ASI) -10.06% 下背加速度Z右(m/sec2) 2.6885 下背加速度Z左(m/sec2) 2.7974 加速度Z對稱性(ASI) -3.97%Measurement of the knee joint ankle joint right angle acceleration ω (ω) 45.2511 22.3639 12.3439 Left angle acceleration ω (ω) 44.6423 21.8694 12.3838 Angular acceleration X symmetry (ASI) 1.35% 2.23% -0.32% Right angle acceleration ω (ω) 186.2236 116.4536 176.8535 Left-angle acceleration ω(ω) 188.6266 118.6678 178.6225 Angular acceleration Ζsymmetry (ASI) -1.28% -1.88% -1.00% Right offset X(d) 2.3698 3.7678 2.7698 Left offset X(d) 2.5044 3.5698 2.5665 Offset X symmetry (ASI) -5.52% 5.40% 7.62% Right elevation angle Z(d) 32.4765 13.7654 12.8684 Left elevation angle Z(d) 33.7767 12.7704 13.9663 Elevation Z symmetry (ASI) -3.92% 7.50% -8.18% Right acceleration Y ( m/sec2) 4.5607 6.5232 -7.3239 Left acceleration Y(m/sec2) 4.6687 6.6766 -7.7279 Acceleration Y symmetry (ASI) -2.34% -2.32% -5.37% 10 201200103 Analysis of results: 1. Center of gravity evaluation: Acceleration γ symmetry (ASI) presents a significant asymmetry of -11.9%, and even if it is a good player, there is still room for improvement. 2. Knee evaluation: only a slight shift in the left knee mesh. The remaining values and symmetry are excellent. 3. Ankle joint evaluation: Only the offset X and elevation angle symmetry (ASI) are slightly asymmetrical, and the rest are quite normal. 4. Foot evaluation: The offset X, #角Z and acceleration γ symmetry (ASI) are slightly asymmetrical, and both are superior on the left side. Experiment 2: Super Marathon Runner Diagnostic Test for Left Knee Injury with Joint Degeneration: Ms. Yan Gender, Female, Body Still. 165 cm, Weight: 53 kg Age: 43 Physiological Status: Left knee _ half moon soft f damaged , cut off three-points, combined with joint deterioration, running for at least a few kilometers per week. Although the running posture and seat (severe left leaning), the body has a slight soreness in the left knee, and no other abnormalities. Sensor position: 1. Lower back 2. Double knees 3. Double cymbals 4. Activities on both sides of the foot. On the; quasi-medical grade treadmill at a speed of 8 km per hour 201200103 for 5 minutes in a row, in the body Gradually adapt and stabilize, and take the sensor signal at 3.5-4.5 minutes. Experimental results: See Table 3 and Table 4 Table 3: Center of gravity: Measurement variable quantity measurement result Right step length (cm) 71.7 Left step length (cm) 73.2 Step symmetry (ASI) -2.07% Step frequency (Hz) 3.0667 Step Time (ms) 327.3 Lower back acceleration X right (m/sec2) 0.7514 Lower back acceleration X left (m/sec2) 1.1185 Acceleration X symmetry (ASI) -39.26% Lower back acceleration Y right (m/sec2) 1.0278 Lower back Acceleration Y left (m/sec2) 1.1367 Acceleration Y symmetry (ASI) -10.06% Lower back acceleration Z right (m/sec2) 2.6885 Lower back acceleration Z left (m/sec2) 2.7974 Acceleration Z symmetry (ASI) -3.97 %

表四:各部位:Table 4: Parts:

測量變數 膝關節 踩關節 足部 右角加速度Χ(ω) 45.1885 25.3139 13.1986 左角加速度Χ(ω) 49.6355 20.6475 12.5753 角加速度X對稱性(ASI) -9.38% 20.31% 4.84% 右角加速度Ζ(ω) 188.3808 121.8463 175.6766 左角加速度Ζ(ω) 123.5306 98.7736 168.3845 角加速度Ζ對稱性(ASI) 41.59% 20.92% 4.24% 右偏移X(d) 2.7969 3.9895 2.8312 左偏移X(d) 2.1336 3.8606 2.7993 偏移X對稱性(ASI) 26.9% 3.28% 1.13% 右仰角Z(d) 31.7322 13.2621 13.4542 左仰角Z(d) 19.4457 10.3945 12.1037 仰角Z對稱性(ASI) 48.01% 24.24% 10.57% 右加速度Y(m/sec2) 4.6054 7.3201 -7.7477 左加速度Y(m/sec2) 3.9679 5.2475 -5.9658 加速度Y對稱性(ASI) 14.87% 32.98% 25.99% 12 201200103 結果分析: ι·重心評估: 因左膝受損,所以加速度X對稱性(ASI)高達_39 26%(負號 表左側)之不對稱一向左傾斜嚴重,加速度Y對稱性(ASI)也達 •10.06%,表示左腳推蹬力較不足。 2. 膝關節評估: 在膝角加速度Z對稱性(ASI)與膝仰角z對稱性(ASI)分別 達非常嚴重礼寫與娜%之稍稱,齡左膝嚴重功能不 需明專豕移斷與治療。此外也連帶影響内外偏移與推燈力 不對稱。 3. 踝關節評估: _踝4角加速度χ、角加速度z、仰角Z與加速度Y對稱性 均成現嚴重不對稱性,顯示踝部受膝部影響,均呈現角度不足 與加速度降低的現象。 4. 足部評估: 在4卩角Z與加速度γ對稱性(ASI)呈現右側較優異,可能 是要彌補相之从,所財料赶較大_力時,先將足 旁上揚再進行向下推踏。 總結以上’本發騎提供之錢分㈣統,可不受到地 點、距離、時間等因素的限制。對於具有疾病的人可進行短距 離紐時間的測試;對於一般正常人,則可進行長時間、長距 13 201200103 離的實地測試。再者 傳統的步態分析Μ / 錢分㈣統,相較於 :機構均可_起本二是!測 【圖式簡單說明】 第圖為本發明一較佳實施例之示意圖; 第一圖為本發明一較佳實施例之偵測器的外觀圖; 第三圖為本發明一較佳實施例之方塊圖;以及 第四圖為執行數據分析之晝面。 【主要元件符號說明】 10感測器 12殼體 16按鍵 22陀螺儀 28儲存媒體 34計算機裝置 18 USB接頭 24微控制器 30電源 36接收器 14螢幕 20加速規 26無線傳輸器 32傳輸裝置Measuring variable knee joint foot right angle acceleration ω (ω) 45.1885 25.3139 13.1986 Left angle acceleration ω (ω) 49.6355 20.6475 12.5753 Angular acceleration X symmetry (ASI) -9.38% 20.31% 4.84% Right angular acceleration ω (ω) 188.3808 121.8463 175.6766 Left-angle acceleration ω(ω) 123.5306 98.7736 168.3845 Angular acceleration Ζsymmetry (ASI) 41.59% 20.92% 4.24% Right offset X(d) 2.7969 3.9895 2.8312 Left offset X(d) 2.1336 3.8606 2.7993 Offset X symmetry (ASI) 26.9% 3.28% 1.13% Right elevation angle Z(d) 31.7322 13.2621 13.4542 Left elevation angle Z(d) 19.4457 10.3945 12.1037 Elevation Z symmetry (ASI) 48.01% 24.24% 10.57% Right acceleration Y(m/sec2) 4.6054 7.3201 -7.7477 Left acceleration Y(m/sec2) 3.9679 5.2475 -5.9658 Acceleration Y symmetry (ASI) 14.87% 32.98% 25.99% 12 201200103 Analysis of results: ι·Center of gravity assessment: Acceleration X symmetry due to damage to the left knee (ASI The asymmetry of the _39 26% (left side of the negative sign) is severely tilted to the left, and the acceleration Y symmetry (ASI) is also up to 10.06%, indicating that the left foot push force is insufficient. 2. Knee evaluation: The knee symmetry (ASI) and the knee elevation z symmetry (ASI) are very serious, respectively, and the singularity of the left knee is not required to be removed. With treatment. In addition, it also affects the internal and external offset and the thrust force asymmetry. 3. Ankle joint evaluation: _踝4 angular acceleration χ, angular acceleration z, elevation angle Z and acceleration Y symmetry are all severe asymmetry, showing that the ankle is affected by the knee, and both have insufficient angle and acceleration. 4. Foot evaluation: The 4 卩 angle Z and the acceleration γ symmetry (ASI) are superior on the right side, which may be to make up for the phase. When the material is rushed to a larger _ force, first raise the foot and then proceed. Push down. Summarize the above-mentioned money distribution (four) provided by the hair ride, which can be limited by factors such as location, distance and time. For people with diseases, they can be tested for short-distance travel time; for normal people, field tests for long-term, long-distance 13 201200103 can be performed. In addition, the traditional gait analysis Μ / money points (four) system, compared to: the organization can be _ 本 是 是 测 测 测 测 测 测 测 测 测 测 测 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第 第An external view of a detector according to a preferred embodiment of the present invention; a third block diagram of a preferred embodiment of the present invention; and a fourth figure for performing data analysis. [Main component symbol description] 10 sensor 12 housing 16 button 22 gyroscope 28 storage medium 34 computer device 18 USB connector 24 microcontroller 30 power supply 36 receiver 14 screen 20 acceleration gauge 26 wireless transmitter 32 transmission device

Claims (1)

201200103 七、申請專利範圍: 1. 一種步態分析系統,包含有: 至少-偵測器’固定於人體之預定部位;該偵測器中具有一加 速規_活動之線性加速度’ —_儀_活動之角加速度,— 微控制器對於該加速規與該陀螺儀所_的線性加速度訊號與角 加速度訊號進行初步之處理,以及一電源提供前述元件所需的電 力; # -倾裝置’㈣線性加速度職_肖加速度峨傳輸出 去;以及 -計算機錢,減稱齡置轉來之魏性加速度訊號與 該角加速度纖並加崎算分析,以得船動之步齡析資料。 2. 依據申請專利範圍第i項所述之步態分析系統,其中該加 速規偵測活動加速度三個向度的加速度。 3·依據帽專概11第丨顿述之步態分析祕,其中該陀 • 螺儀偵測活動加速度三個向度的角加速度。 4.依據申請專利範圍帛1項所述之步態分析系統,其中該傳 輸裝置包含有在_財設置無線傳輸器,另在計算機裝置中設 置接收器’將該線性加速度訊號與角加速度訊號以無線傳輸的方 式傳送到該計算機褒置。 5·依據巾請專概II第丨項所述之步態分析纽,其中該傳 輸裝置包含有在細ϋ巾設置—儲存媒體,該雜加速度訊號與 角加速度訊號先傳到儲存媒體中儲存起來,之後再傳送至該計算 15 201200103 機裝置。 6.依據申請專利範圍第5項所述之步態分析系統 偵測器中更設有一 USB接頭連接該儲存媒體。 7·依射請專利麵第丨項所述之步態分析系統 一固定手段,將該偵測器固定於人體上。 8·依據申請專利範圍第7項所述之步態分析系統, 定手段是以彈性貼布將該偵測器固定於人體上。 9.依據申請專利範圍第7項所述之步態分析系統, 疋手#又疋以肌内效貼布將該摘測器固定於人體上。 ’其中在該 '更包含有 其中該固 其中該固201200103 VII. Patent application scope: 1. A gait analysis system, comprising: at least - the detector is fixed to a predetermined part of the human body; the detector has an acceleration gauge _ active linear acceleration '__仪_ The angular acceleration of the motion, the microcontroller handles the linear acceleration signal and the angular acceleration signal of the accelerometer and the gyroscope, and the power required by a power supply to provide the aforementioned components; #-tilting device(4) linear Acceleration job _ Xiao acceleration 峨 transmission; and - computer money, reduce the age of the Wei Wei acceleration signal and the angular acceleration fiber and add the analysis of the analysis, in order to obtain the ship's step analysis. 2. The gait analysis system according to item i of the patent application scope, wherein the acceleration gauge detects acceleration of three dimensions of the active acceleration. 3. According to the gait analysis of the cap profile, the gyro detects the angular acceleration of the three dimensions of the active acceleration. 4. The gait analysis system according to claim 1, wherein the transmission device comprises a wireless transmitter disposed in the virtual device, and the receiver is configured to set the linear acceleration signal and the angular acceleration signal in the computer device. The wireless transmission method is transmitted to the computer device. 5. According to the gait analysis of the item described in the second item, the transmission device includes a storage medium in the fine towel setting, and the noise acceleration signal and the angular acceleration signal are first transmitted to the storage medium and stored. And then transferred to the calculation 15 201200103 machine. 6. The gait analysis system according to item 5 of the patent application scope is further provided with a USB connector to connect the storage medium. 7. According to the gait analysis system described in the third paragraph of the patent, a fixed means is used to fix the detector to the human body. 8. According to the gait analysis system described in claim 7 of the patent application, the method is to fix the detector to the human body with an elastic patch. 9. According to the gait analysis system described in item 7 of the patent application scope, the hand is attached to the human body with an intramuscular patch. Where the 'more' contains the solid where the solid
TW99120877A 2010-06-25 2010-06-25 Gait analysis system TWI417083B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW99120877A TWI417083B (en) 2010-06-25 2010-06-25 Gait analysis system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW99120877A TWI417083B (en) 2010-06-25 2010-06-25 Gait analysis system

Publications (2)

Publication Number Publication Date
TW201200103A true TW201200103A (en) 2012-01-01
TWI417083B TWI417083B (en) 2013-12-01

Family

ID=46755308

Family Applications (1)

Application Number Title Priority Date Filing Date
TW99120877A TWI417083B (en) 2010-06-25 2010-06-25 Gait analysis system

Country Status (1)

Country Link
TW (1) TWI417083B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103142234A (en) * 2013-01-25 2013-06-12 中国科学院深圳先进技术研究院 Sensor system and method for judging body falldown and body protection device
CN103519819A (en) * 2012-07-06 2014-01-22 王振兴 Gait analysis method and gait analysis system
TWI474851B (en) * 2012-11-22 2015-03-01 Footwear & Recreation Technology Res Inst Interactive sensing rehabilitation system
TWI494084B (en) * 2012-05-04 2015-08-01 Univ Nat Cheng Kung Cognitive ability detection apparatus
CN105046904A (en) * 2014-04-23 2015-11-11 光旴科技股份有限公司 Motion information transmission system and information transmission device thereof
CN105105756A (en) * 2015-07-24 2015-12-02 重庆三峡学院 Portable type balance capacity and gait analysis sensing device
TWI566747B (en) * 2014-06-25 2017-01-21 Hungkuang Univ Foot center of gravity offset assessment system
CN105105756B (en) * 2015-07-24 2018-08-31 重庆三峡学院 A kind of portable balanced capacity and gait analysis sensing device
CN108606795A (en) * 2018-02-06 2018-10-02 武汉纺织大学 A kind of human action data management system and its control method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI246586B (en) * 2004-12-09 2006-01-01 Ind Tech Res Inst Spatial inertia motion sensor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI494084B (en) * 2012-05-04 2015-08-01 Univ Nat Cheng Kung Cognitive ability detection apparatus
CN103519819A (en) * 2012-07-06 2014-01-22 王振兴 Gait analysis method and gait analysis system
CN103519819B (en) * 2012-07-06 2016-08-10 王振兴 Gait analysis method and gait analysis system
TWI474851B (en) * 2012-11-22 2015-03-01 Footwear & Recreation Technology Res Inst Interactive sensing rehabilitation system
CN103142234A (en) * 2013-01-25 2013-06-12 中国科学院深圳先进技术研究院 Sensor system and method for judging body falldown and body protection device
CN103142234B (en) * 2013-01-25 2015-04-01 中国科学院深圳先进技术研究院 Method for judging body falldown
CN105046904A (en) * 2014-04-23 2015-11-11 光旴科技股份有限公司 Motion information transmission system and information transmission device thereof
TWI566747B (en) * 2014-06-25 2017-01-21 Hungkuang Univ Foot center of gravity offset assessment system
CN105105756A (en) * 2015-07-24 2015-12-02 重庆三峡学院 Portable type balance capacity and gait analysis sensing device
CN105105756B (en) * 2015-07-24 2018-08-31 重庆三峡学院 A kind of portable balanced capacity and gait analysis sensing device
CN108606795A (en) * 2018-02-06 2018-10-02 武汉纺织大学 A kind of human action data management system and its control method
CN108606795B (en) * 2018-02-06 2021-07-20 武汉纺织大学 Human body action data management system

Also Published As

Publication number Publication date
TWI417083B (en) 2013-12-01

Similar Documents

Publication Publication Date Title
Papi et al. Wearable technology for spine movement assessment: A systematic review
Ha et al. Measurement of lumbar spine range of movement and coupled motion using inertial sensors–a protocol validity study
Larivière et al. The comparison of trunk muscles EMG activation between subjects with and without chronic low back pain during flexion–extension and lateral bending tasks
Noamani et al. Validity of using wearable inertial sensors for assessing the dynamics of standing balance
Kolber et al. The reliability and concurrent validity of measurements used to quantify lumbar spine mobility: an analysis of an iphone® application and gravity based inclinometry
Audette et al. Validity and between-day reliability of the cervical range of motion (CROM) device
Roggio et al. Technological advancements in the analysis of human motion and posture management through digital devices
Najafi et al. Estimation of center of mass trajectory using wearable sensors during golf swing
TW201200103A (en) Gait analysis system
Li et al. The development, validity, and reliability of a manual muscle testing device with integrated limb position sensors
Lee et al. Comparison of 3D spinal motions during stair-climbing between individuals with and without low back pain
Cortell-Tormo et al. Lumbatex: a wearable monitoring system based on inertial sensors to measure and control the lumbar spine motion
Bergmann et al. The subjective postural vertical in standing: reliability and normative data for healthy subjects
Witchel et al. Thigh-derived inertial sensor metrics to assess the sit-to-stand and stand-to-sit transitions in the timed up and go (TUG) task for quantifying mobility impairment in multiple sclerosis
Morphett et al. The use of electromagnetic tracking technology for measurement of passive cervical range of motion: a pilot study
Cimolin et al. Computation of spatio-temporal parameters in level walking using a single inertial system in lean and obese adolescents
Ryan et al. Analysis of 3D multi-segment lumbar spine motion during gait and prone hip extension
Agiovlasitis et al. Prediction of energy expenditure from wrist accelerometry in people with and without Down syndrome
Pitt et al. Reliability and practical clinical application of an accelerometer-based dual-task gait balance control assessment
Hwang et al. The effects of ankle weight loading on the walking factors of adults without symptoms
Oh et al. Concurrent validity and intra-trial reliability of a bluetooth-embedded inertial measurement unit for real-time joint range of motion
US20170020437A1 (en) System, apparatus and method for measurement of muscle stiffness
Daponte et al. Electronic measurements in rehabilitation
Graham et al. Between-day reliability of IMU-derived spine control metrics in patients with low back pain
Gorelick et al. Test–retest reliability of the IDEEA system in the quantification of step parameters during walking and stair climbing

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees