TW201109483A - Systems, methods and substrates of monocrystalline germanium crystal growth - Google Patents

Systems, methods and substrates of monocrystalline germanium crystal growth Download PDF

Info

Publication number
TW201109483A
TW201109483A TW98137937A TW98137937A TW201109483A TW 201109483 A TW201109483 A TW 201109483A TW 98137937 A TW98137937 A TW 98137937A TW 98137937 A TW98137937 A TW 98137937A TW 201109483 A TW201109483 A TW 201109483A
Authority
TW
Taiwan
Prior art keywords
crystal
ampoule
crucible
melt
container
Prior art date
Application number
TW98137937A
Other languages
Chinese (zh)
Inventor
Weiguo Liu
Original Assignee
Axt Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/554,902 external-priority patent/US8506706B2/en
Application filed by Axt Inc filed Critical Axt Inc
Publication of TW201109483A publication Critical patent/TW201109483A/en

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

Systems, methods, and substrates directed to growth of monocrystalline germanium (Ge) crystals are disclosed. In one exemplary implementation, there is provided a method for growing a monocrystalline germanium (Ge) crystal. Moreover, the metbod may include loading first raw Ge material into a crucible, loading second raw Ge material into a container for supplementing the Ge melt material, sealing the crucible and the container in an ampoule, placing the ampoule with the crucible into a crystal growth furnace, as well as melting the first and second raw Ge material and controlling the crystallizing temperature gradient of the melt to reproducibly provide monocrystalline germanium ingots with improved/desired characteristics.

Description

201109483 六、發明說明: 【發明所屬之技術領域】 本發明涉及單晶鍺(Ge)晶體的生長,以及所用之系統 、方法和基材。 【先前技術】 電子裝置及光電裝置製造商通常需要尺寸較大並電性 能均勻的半導體單晶材料,將所述單晶材料經切片和拋光 後’作爲生產微電子裝置的基材。對於半導體晶體的生長 ’其工藝包括加熱多晶原料至其熔點(通常超過1,200。〇從 而產生多晶原料熔融體,使該熔融體與由相同材料製成的 高品質晶種接觸,並使該熔融體在與所述晶種接觸面上進 行結晶。爲完成此目的所採用方法有多種,可見於文獻的 有:提拉(CzochraiskiMCz)法及其衍生的液封直拉(Liquid Encapsulated Czochralski)(LEC)法、水平布裏奇曼和坩堝 下降(Horizontal Bridgman and B r i d gm an - S t o ckb ar g er) (Η B ) 法及其垂直變型(VB)、以及梯度冷凝(GF)法及其衍生的垂 直梯度冷凝(VGF)法。參見,例如《光、電及光電材料的本 體晶體生長》(Bulk Crystal Growth of Electronic,Optical and Optoelectronic Materials, P.Clapper, Ed., John Wiley and Sons Ltd, Chichester, England, 2005),其中對這些技 術及它們在多種材料的生長中的應用有廣泛討論。 關於已知的方法,目前使用提拉技術並用於商業生產 的是直徑爲150 mm (6英吋)的低位錯鍺單晶。較大直徑的 -5- 201109483 晶片已經被討論,但尙未經證實(Vanhellemont and simoen, J.Electrochemical Society, 154 (7) H5 72-H583 (2007))。 此外,直徑爲100 mm (4英寸)的鍺單晶已由VGF和VB技 術方法生長出來,如文獻中所述(Ch.Frank-Rotsch, et al., J.Crystal Growth (2008),doi ·· 10.1016, J.Crys. Growth 2007.12.020) » 如文獻中報導的許多硏究所表明,同Cz/LEC技術相 比,VB/VGF生長技術一般是使用較小的熱梯度和較低的 生長速率,從而生產出位錯密度低得多的單晶(參見: A.S.Jordan et al., J . C r y s t. G r o w t h 1 2 8 ( 1 993 )444-450 - 2), M.Jurisch et al·,J.Cryst.Growth 275(2005)283-291,和 S.Kawarabayashi, 6th Intl.Conf.on InP and Related Materials (1 994),22 7-23 0)。所以,在一些應用中,用VB/VGF方法 生長大直徑、低位錯密度(或無位錯)鍺單晶爲較佳的方法 〇 在所有單晶生長的商業操作中,追求的目標是以最低 可能成本生長晶棒(ingot)和由晶棒高產率切出晶片,即由 單一晶棒上切出最大數目的可用晶片。因而,如果希望在 所用方法的其他限制條件下盡可能生長出最長的晶棒,則 意味著需要使用一個大尺寸坩堝《通常由於待塡充至坩堝 的多晶塊料形狀不等,原料之間不含材料的餘留空隙很多 ’因此塡充係數很低。故當所述的塡充料熔化後,熔融體 僅塡滿部分的坩堝。考慮到所需之熔融體的體積和現有坩堝 的結構’用附加的材料來補充熔融體在整個晶體生長過程中 201109483 是一重要的步驟’也是複雜的步驟。對於某些材料例如錯尤 其如此’因爲與Si(熱導率和密度分別爲i.3 58 w cnr, 和 2.3 332 gem·3)相比’鍺具有低的熱導率(0.58 w β(:-,)和 高的密度(5.32 genT3) ’因而受到特別的方法限制。 已知在晶體生長中補充熔融體已有幾種尙未成熟的形 式。在矽生長系統中’例如,存在有將多晶原料塊加至用 於生長Si單晶的Si熔融體之裝置,及將原料裝入用來生 長Cz單晶i甘渦的系統。類似這些的技術均是可行的,因 爲Cz(或LEC)系統爲開放系統’而且給坩堝添料是相對容 易的。但是’對於ί甘渦被封裝在安飯中的VGF和VB技術 ’所述方法則行不通。此外’對於與特殊摻雜的鍺單晶之 生長有關的特殊要求也限制了上述方法的使用。例如,當 砷(As)作爲摻雜劑時,由於砷具有高蒸氣壓和毒性,使得 涉及摻雜砷的鍺單晶之方法受到限制。 【發明內容】 本發明之系統、方法和基材係有關單晶鍺(Ge)晶體的 生長。 於一示例性實施方式中,本發明提供一種生長單晶鍺 (Ge)晶體的方法。此外,所述之方法包括:將第一 Ge原 料裝入一個坩堝中;將第二(^原料裝入—個用以補充Ge 溶融材料的容器中;將所述坩堝和容器密封在一個安瓿內 :將所述帶有坩堝的安瓿放入一個晶體生長熔爐中;控制 第一和第二Ge原料的熔化;及控制熔融體的結晶溫度梯 201109483 度,以再現性地得到具有所欲晶體性質之單晶鍺晶棒。 須明白的是,上文的一般敘述和下文的詳細描述均只 是範例及說明,決不用以限制本發明於所述內容。此外, 除了本文所揭示的內容以外,亦可具有其他特徵和/或變 體。例如,本發明可爲以下詳細說明中所述之特徵的各種 組合和次組合及/或數種特徵之組合和次組合。 【實施方式】 以下將詳細說明本發明,而其範例將以圖式方式說明 。下文中之實施方式並不代表本發明之全部的實施方式。 反之’其只是爲本發明之態樣的範例。文中和圖式中之參 考符號均表示相同或類似的部件。 本發明的態樣特別可應用於生長直徑1 5 0 m m ( 6,,)的鍺 晶棒晶體之方法和裝置,本文揭示其裝置和方法。然而, 須明白的是,本發明之態樣具有較高的實用性,例如,相 關的裝置和方法可用於製造直徑50 mm(2")或更大的鍺 (G e)晶棒’例如直徑1 〇 〇 m m (4 ”)和2 〇 〇 m m (8,,)的晶棒。 配合圖1 A-2 ’本發明提供生長單晶鍺(Ge)晶體的系統 和方法,其中一旦原先裝入的原料熔化,但在晶體開始生 長之前’可將額外的原料熔融體加入坩堝(例如於VGF和/ 或VB法等等如此使得以生長出更長的單晶晶棒。此外 ’所述之方法可包含將第一Ge原料裝入帶有放置晶種的 晶種槽之坩堝內’將第二Ge原料裝入用以補充Ge熔融材 料的容器內’將該坩渦和容器密封於安瓿內,及將安瓿和 "8 - 201109483 坩堝置於具有可移動的安瓿支座以支承該安瓿之晶體生長 熔爐中。此外,示例性的實施方式可包含熔化該坩堝中的 第一 Ge原料從而生成一種熔融體,熔化該容器中的第二 Ge原料,並將該熔化的第二Ge原料添加至該熔融體中。 其他示例性的實施方式可包含控制熔融體的結晶溫度梯度 ’使該熔融體在與該晶種接觸時結晶且形成單晶鍺晶棒, 及任意地,冷卻該單晶鍺晶棒。 於一示例性實施方式中,形成單晶鍺晶棒的步驟可包 含在晶體生長區建立約0.3至約2.5 t/ cm的溫度梯度。此 外’以約0.2至約0.5°C/小時的速率冷卻該單晶鍺晶棒。 再者’在結晶溫度梯度移動過程中,保持該坩堝穩定。 根據本發明之一些示例性實施方式,單晶鍺晶棒具有 約50 mm至約200 mm(約2英吋至約8英吋)的直徑。於 —示例性實施方式中’例如,單晶鍺晶棒可具有】52.4 mm(6英吋)的直徑。此外,本文中之單晶鍺晶棒和晶片可 具有小於約3 50位錯/ cm3,小於約3 00位錯/ cm3,小於約 250位錯/ cm3,或甚至小於約200位錯/cm3。 關於本文所述之本發明的系統,用以生長大直徑的單 晶鍺晶體之示例性裝置可包括一個包含熱源和多個加熱區 的晶體生長熔爐’和一個可安裝於該熔爐中的安瓿,其中 所述安瓿包括一個裝載容器和一個帶晶種槽的坩堝,一個 可移動的安瓿支座’和一個偶聯至該晶體生長熔爐和該可 移動的安瓿支座上之控制器。此外,該控制器控制該熱源 的一或多個加熱區和該可移動的安瓿支座,用以當坩堝位 * 9 - 201109483 於該熔爐中時在該坩堝上實施垂直梯度冷凝法。 根據一些實施方式,該晶體生長熔爐可具有數個加熱 區,例如4至8個加熱區,.5至7個加熱區,或6個加熱 區。配合所欲的晶棒/晶片直徑,示例性的坩堝之內徑可 爲約50 mm至約200 mm(約2至約8英吋),或於某些實 施方式中,內徑爲約150mm(約6英吋)。 關於圖式,圖1A-1D爲說明有關本發明某些態樣的一 個示例性晶體生長方法之單晶鍺晶體的生長裝置之縱向切 面示圖。其中,圖1A說明晶體生長裝置的一個實例的橫 切面視圖。該裝置例如爲在垂直梯度冷凝(VGF)生長法, 或垂直布裏奇曼(VB)生長法中使用的熔爐,可包括一個位 於熔爐1中的安瓿支座11,其中加熱器2由多個區組成, 每一區分別由電腦控制的系統所控制。調節每一區的溫度 ,以提供控制熔融體固化所需的總體溫度分佈和溫度梯度 ,調整爐中溫度分佈和溫度梯度,使結晶介面在熔融體各 處按預期向上移動,例如在晶棒生長區建立約0.3至約 2.51/cm的溫度梯度。安瓿支座11對含有坩堝12的安瓿 3 (在一個實施方式中,由石英製成)提供物理支援並對其 進行熱梯度控制,安瓿中的坩堝1 2有一個晶種槽1 8用於 存放晶種。在熔爐運行時,所述安瓿支座Π可在晶體生 長過程中軸向上下移動。坩堝12可含有一個晶種17,晶 體沿晶種頂部生長出單晶。在一個實施方式中,坩堝1 2 可爲一個熱解氮化硼(pBN)結構體,具有一個圓筒狀晶體 生長部分1 3、一個較小直徑的晶種槽圓筒1 8和一個錐形 -10- 201109483 過渡部分7。晶體生長部分1 3在坩堝1 2的頂部是開放的 ,其直徑等於晶體產物的所欲直徑。當前工業上標準的晶 體直徑爲50.8、76.2、101.6和152.4 mm(2英寸、3英寸 、4英寸和6英寸)之可切成晶片的晶棒。在一個示例性實 施方式中,在坩堝12的底部的晶種槽圓筒丨8可具有一個 封閉的底部和稍大於優質晶種1 7的直徑’例如約6-25 mm,以及約30-100 mm的長度。圓筒狀晶體生長部分13 和晶種槽圓筒18可具有垂直壁,或錐形向外逐漸擴張約 一至若干度,以利於移出坩堝12中的晶體。生長部分13 和晶種槽圓筒1 8之間的錐形過渡部分7具有一個傾斜例 如約45-60度的傾斜側壁,其較大的直徑等於生長區的直 徑並連接生長區的壁,較小的直徑等於晶種槽的直徑並連 接晶種槽的壁。該傾斜側壁也可以爲比45-60度更陡或陡 度更小的其他角度。 在一個示例性實施方式中,安瓿3可由石英製成。安 瓿3具有一個類似於坩堝12的形狀。安瓿3在晶種生長 區域19爲圓筒狀,而在晶種槽區域19內的圓筒具有狹小 直徑,並且在所述兩區域之間具有一個錐形過渡區域8。 坩堝1 2適配於安瓿3的內部並且在它們之間具有一個狹 窄空隙。作爲原料容器之第二頂部容器4置於石英支座6 上。石英支座6封裝在安瓿3的中間部分。在本發明的一 個實施方式中’該第二容器4由pBN構成。大部分原料5 裝入該第二容器4中。在加熱過程中,原料熔化並從第二 容器4的底部孔滴入主坩堝12中。而安瓿3在其晶種槽 -11 - 201109483 區域19的底部是封閉的’並在裝入坩堝和原料之後在頂 部密封。 在安瓿-坩堝組合體具有漏斗形狀的實施方式中,需 要安瓿支座11來適應該漏斗形狀並保持安瓿12穩定並直 立於熔爐1內部。在其他實施方式中,安瓿-坩堝組合體 可保持不同形狀,並且安瓿支座11的基本結構將根據不 同形狀而改變。依據一個實施方式,對安瓿及其內容物的 穩定和支援強度通過安瓿支座11的實心薄壁圓筒16提供 。所述實心薄壁圓筒16容納安瓿結構3的漏斗狀底部。 在一個實施方式中’坩堝支座圓筒16由導熱材料(較佳是 石英)構成。在其他實施方式中,碳化砂或陶瓷也可用於 形成坩堝支座圓筒16。所述圓筒16與安瓿3圓周接觸, 其中圓筒16的上部邊緣接觸安飯的錐形區域8的肩狀部 分。所述構型導致固體對固體的接觸最小化,這樣可確保 很少的甚至沒有不希望的、相對不可控的熱傳導發生。因 此,可用其他更可控的方法加熱。 在其他實施方式中,低密度絕緣材料,例如陶瓷纖維 ,可塡充支座圓筒11的大部分內部,僅在所述絕緣材料 的約中心處有一個軸向中空芯體20保持空的狀態,用以 容納安瓿3的晶種槽1 9。在其他實施方式中,低密度絕緣 材料還可含有氧化鋁纖維(1,8 00t)、氧化鋁-氧化矽纖維 (1,42 6°C),和/或氧化鉻纖維(2,200°C)。將絕緣材料小心地 放在安瓿支座11中。安瓿3的重量,當其置於圓筒16的 頂部時,推動絕緣材料向下並形成傾斜的絕緣材料邊緣9 -12- 201109483 。用低密度絕緣體塡充圓筒的大部分內部能減少空氣流動 ,這可確保很少的或沒有不需要的、相對不可控的對流的 發生。類似於傳導,對流是一種對VGF及其他晶體生長 方法不利之不可控的熱傳遞過程。 直徑約等於安瓿晶種槽19的中空芯體20,向下伸至 距安瓿晶種槽1 9底部下方一小段距離。在另一個實施方 式中,中空芯體2 0從晶種槽的底部經過坩堝支座延伸至 熔爐裝置1的底部。中空芯體20提供一種自晶體中心冷 卻的途徑。該途徑有助於晶種槽和所生長晶體中心的冷卻 。採用該構造,熱能可向下逃逸穿過固態晶體和晶種的中 心、向下逃逸穿過晶體支座 Π內絕緣材料中的中空芯體 20。沒有中空芯體20的話,正在冷卻的晶棒中心的溫度 將理所當然地高於接近外表面的晶體材料之溫度。在此情 況下,晶棒任一水平橫切面的中心將在該晶棒周邊已固化 後才更遲地結晶。在這樣的條件下不可能製備具有均一電 性能的晶體。藉由在晶體支座方法中提供中空芯體20,熱 能向下傳導穿過安瓿3和空芯20的底部,並由此幅射回 並穿出幅射通道1 〇。降低生長晶體中心處的熱能很重要, 這樣才能使等溫層在整個晶體直徑方向保持平直(flat)。 保持平直的晶體-熔融體介面能產生具有均一電性能和物 理性能的晶體。 圓筒1 1內的低密度絕緣材料阻礙熱輻射從一組熔爐 加熱元件2流動至安瓿3中晶種槽區域1 9,所以該方法需 要形成多個貫穿絕緣材料的水平輻射通道/開口 /管道1 〇。 -13- 201109483 輻射通道1 〇貫穿絕緣材料從而提供熱輻射出口,以可控 地將熱量從熔爐加熱元件2轉移至安瓿晶種槽1 9。輻射通 道10的數目、形狀和直徑根據具體情況而變。輻射通道 也可以是傾斜的、彎曲的或波狀的。輻射通道也不必是連 續的,因爲它們可以只部分地穿過絕緣材料。這有助於對 流最小化。在一個實施方式中,這些通道的直徑較小,約 一支鉛筆的寬度,所以對流氣流不顯著。根據本發明的其 他實施方式,也可使用橫切面面積約6.4516 cm2(—平方 英寸)或更大的大孔。穿過絕緣材料的輻射通道10也可和 絕緣材料中心的中空芯體20 —起作用,從而輻射來自晶 體中心的熱能,並以平面等溫溫度梯度層的方式冷卻晶體 。輻射通道10能控制溫度並直接與晶體生長的產率有關 〇 在本發明的一示例性實施方式中,在單晶鍺晶棒生長 階段,爐溫以約0 · 2至約0 · 5 °C /小時的速率降低使單晶鍺 晶棒得以生長。 圖1 A至圖1 D依序說明熔化並供給鍺的示例性方法 。圖〗A說明初始狀態,其中固態鍺存在於頂部容器4和 坩堝1 2中。本發明之加熱技術特徵和方法中之鍺熔融體 的中間狀態緊接著示於圖1 B中,圖1 B說明固態鍺在坩堝 1 2中已熔化爲液態的一種狀態。 調整熔爐不同加熱區之加熱元件的功率,使頂部容器 得到所需的熱量。具體而言,對頂部容器實施加熱,使得 頂部容器3內的鍺料開始熔化,熔化的鍺料沿頂部容器3 -14 - 201109483 底端的孔流入坩堝1 2。在一個示例性實施方式中,熔爐內 有頂部容器的區域被加熱至約940°C到約955°C或約945°C 至約9 5 0 °C的範圍內。該過程持續進行,直至頂部容器3 內的原料全部熔化且流入坩堝12爲止。 圖1A-1D中所示熔爐1爲可用於垂直梯度冷凝(VGF) 晶體生長方法的熔爐的一個實例。也可使用其他熔爐和構 型,例如垂直布裏奇曼方法9在VGF晶體生長方法中, 固定熱源的結晶溫度梯度經電控制方式而移動,而晶體固 定。 爲實施垂直梯度冷凝生長(VGF)( 3 2),需在熔爐內建 立適當的溫度梯度分佈。而熔爐的加熱區功率大小則通過 電腦分別並單獨地控制’該電腦以程式控制加熱和降溫以 適合熔爐結晶溫度和溫度梯度的需要。對於生產鍺晶棒, 例如’熔爐的溫度波動可能需要控制在小於約± 〇. 1 。熔 爐準備過程中,將鍺多晶原料裝載入安瓿3中,更多詳細 描述參見圖2 ^ 如圖中所示’將在錐形部分具有—個孔的pBN裝載容 器4固定在安瓿3中位於坩堝丨2上方之由石英製成的支 座ό上。裝載容器4使坩堝12將裝載更多原料。特別是 ’鍺原料5爲固態的塊或片’因此不能緊密地塡充入坩堝 12中進行熔化。因此’所述裝載容器用於存放額外的可進 行熔化的原料’然後將其向下排至坦堝1 2中,這使坩摘 12中有更多量的鍺裝料,從而獲得較長和較大直徑的鍺晶 體。例如,初始時可將約6 5 %的原料裝入裝載容器4中, -15- 201109483 將3 5 %的原料直接裝入i甘渦1 2中。在一個非限制性實施 例中,將5.115 kg原料量裝入坩堝12中,將9.885kg原 料量裝入裝載容器4中,使得共裝入1 5000 g(15 kg)料·, 產生直徑爲152.4 mm (6英寸)的鍺晶棒。 在一個實施例中,在鍺中摻雜砷(As)。將<100>偏向9。 的晶種裝入坩堝晶種槽內,然後再裝料。將原料和合適量 的摻雜劑裝入坩堝和裝載容器中,並將坩堝和裝載容器放 在石英安瓿3中。將安瓿及其內含物抽真空至約2.00x10“ 帕斯卡(約1.5xl(T6托),將安瓿密封,並將密封的安瓿隨 即裝入熔爐,如圖1中所示。啓動熔爐,使安瓿及其內含 物受熱,以使坩堝1 2中所塡充的原料熔化。晶體生長過 程中,熔爐的溫度爲1 000 °C左右,因爲鍺的熔點約爲 940°C。結晶介面的溫度梯度可根據晶棒的不同位置調爲 約0.5至約10 °C/cm。此外,調節整個溫度分佈至得約1-2 mm/小時的結晶速率。固化完成之後,將熔爐以約 20-4 0 °C /小時進行冷卻。由此方法所得的鍺晶棒具有以下特徵 使用以上方法生產的鍺晶體可具有小於約3 00位錯 /cm2,或約 150/cm2 至約 300/cm2,或約 180/cm2 至約 270/crn2,或約 60/cm2 至約 3 00/cm2 ’ 或約 80/cm2 至約 280/cm2,或約100/cm2至約260/cm2,或爲本文中所測量 或提及的量之10%、20%或30%範圍內的其他數値範圍。 在另一個實施例中,本發明的裝置係由石英安韶所構 成,而石英安瓿內放置有pBN裝載容器和坩堝’以及支撐 -16- 201109483 pBN裝載容器和坩堝的支座6。坩堝的尺寸是在晶體生長 區域直徑爲約1 5 0 mm、長度爲1 6 0 mm ’和晶種區域直徑 爲7 mm。在一示例性的實施方式中’將一個<1〇〇>取向的 鍺晶種置入pBN坩堝的晶種槽中’並將96g作爲液體密封 劑的三氧化二硼放入pBN坩堝中晶種之上。然後,將總計 1 4,974 g的Ge多晶材料分別裝入pBN坩堝和pBN容器中 ,並將pBN容器及坩堝放入石英安瓿中,並將該石英安瓿 在約2.00x1 (Γ4帕斯卡(1.5x1 (Γ6托)的真空條件下用石英蓋 密封。然後將密封的安瓿裝入熔爐並放置在安瓿支座上。 將以上所述石英安瓿以約270°C /小時的速率加熱。當 溫度比結晶材料的熔點高約3 0 °C時,維持加熱直至所有多 晶材料熔化。 如圖5所示,本發明提供一種本發明之生長單晶鍺 (G e)晶體的示例性方法。於一示例性的實施方式中,所述 之方法包括將第一Ge原料裝入坩堝內,該坩堝帶有放置 晶種的晶種槽;將第二Ge原料裝入用以補充原料的容器 內’將該容器放入該安瓿內;將該坩堝和該容器密封於該 安飯內;將該安瓿和其內含的坩堝和容器置於晶體生長熔 爐中;控制該坩堝中的第一 G e原料之熔化以生成熔融體 ,控制該容器中的第二G e原料之熔化。此外,所述之方 法包括一或多次控制該熔化的第二Ge原料添加至該熔融 體中,控制該熔融體的結晶溫度梯度,使該熔融體在與該 晶種接觸時結晶且形成單晶鍺晶棒,及冷卻該單晶鍺晶棒 -17- 201109483 在其他示例性的實施方式中,所述之方法可包括控制 該容器中的第二Ge原料的熔化’包含控制施加至該第二 Ge原料的加熱,及維持該熔化的第二Ge原料在一溫度範 圍內。此外’控制該熔化的第二Ge原料添加至該熔融體 的步驟可包含維持該熔融體在特定的溫度範圍內,所述之 範圍可爲約940°C至約955 °C,或約945t至約95(TC。此 外’控制該熔化的第二Ge原料添加至該熔融體可包含維 持該熔融體在特定的溫度範圍內,例如上述之範圍。 另外其他示例性的實施方式中,熱源和/或一或多種 冷卻速率可以一種控制得到具有在可再現得到範圍內的晶 體性質之G e晶棒的方式加以控制或降低。此外,由於所 述之控制步驟,可再現地產製具有低於約300位錯/cm3或 任何文中所提及的其他範圍之單晶鍺晶棒。 此外,由於本文所揭示的方法,可再現地產製具有各 種上述範圍內的位錯密度之鍺晶體,而不必使用外加氣體 源摻雜技術。這些優點態樣係有關,例如,使用密封的安 瓿(例如在真空,在特定壓力或其他條件下密封),和與空 隙有關的複雜性,例如需要昂貴的氣體供應硬體和控制系 統/電子裝置等。在某些範例中,本發明可有利地與需要 非接觸性摻雜技術之系統和方法結合。因而,可再現地產 製具有各種上述範圍內的位錯密度之鍺晶體,而不必使用 接觸摻雜技術和/或外加氣體源摻雜技術。 在某些實施方式中,使用VGF方法進行晶體生長。 此外,首先在最底部加熱區降低加熱器功率以開始由晶種 -18- 201109483 生長晶體’然後降低過渡區域的功率,該區域中的冷卻速 率爲約0.3至約0.4 °C/小時。保持該冷卻速率約70小時。 一旦結晶作用到達主要生長區域,即降低適當區域中的加 熱器功率至提供約0.4至約〇.7°C/小時的冷卻速率和約1.2 至約3.0°C/cm的結晶介面溫度梯度,所述兩者均保持約 120小時。結晶完成之後,將熔爐以約20至約40°C/小時 的速率冷卻至室溫。 所得的示例性晶棒具有1 25 mm晶體長度,並且爲完 全單晶。從起始生長部分至終端生長部分,晶體具有 9.05><1017 至 4.86><1018/cm3 的自由載流子(carrier)濃度和 7.29><1(Γ3 至 2.78xl〇-3Q,cm 的電阻率及 95 5 cm2/Vs 至 467cm2/Vs遷移率。位錯密度在起始部分爲186/cm2,如 圖3中所示,在終端生長部分位的錯密度爲270/cm2,如 圖4中所示。 須明白的是,由本發明的方法/製程所製得之鍺晶體 基材(例如晶棒、晶片等)特別是在本發明範圍內。此外, 所述之含有由本文所揭示的方法/製程所製得之鍺晶體基 材之所有產物(例如電子裝置或光電裝置等)亦涵蓋在本發 明的範圍內。 雖然上述內容已參照本發明的特定實施方式進行了說 明,但是熟知本領域技術人員應該認識到的是,在不偏離 本發明原則和主旨的情況下可對所述實施方式進行改變, 本發明的範圍係經由所附申請專利範圍而限定。 19· 201109483 【圖式簡單說明】 下列圖式爲本發明的一部份,詳細說明各種本發明的 實施方式和態樣’且與下文之描述內容一起說明本發明的 原理。 圖1 A -1 D爲說明有關本發明某些態樣的一個示例性晶 體生長方法之單晶鍺晶體的生長裝置之縱向切面示圖。 圖2爲展示有關本發明某些態樣的使用裝載原料的 PBN(熱解氮化硼)容器進行晶體生長的一個示例性狀態示 圖。 圖3爲符合有關本發明某些態樣的所生長的直徑150 mm的鍺晶棒頭部的EPD(腐鈾坑密度)圖(57點EPD ’平均 EPD:186)的一個實例。 圖4爲符合有關本發明某些態樣的所生長的直徑1 5 0 mm的鍺晶棒尾部的EPD圖(57點EPD ’平均EPD:270)的 一個實例。 圖5爲有關本發明某些態樣之示例性的晶體生長方法 之流程圖。 【主要元件符號說明】 1 :熔爐 2 :加熱器 3 :安瓿 4 :第二容器 5 :原料 -20- 201109483 6 :支座 7 :錐形過渡部分 8 :錐形區域 9 :絕緣材料邊緣 1 〇 :幅射通道 1 1 :安瓿支座 1 2 :坩堝 1 3 :晶體生長部分 1 6 :圓筒 1 7 :晶種 1 8 :晶種槽 19:晶種生長區域 20 :中空芯體201109483 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to the growth of single crystal germanium (Ge) crystals, and systems, methods and substrates therefor. [Prior Art] Manufacturers of electronic devices and optoelectronic devices generally require a semiconductor single crystal material having a large size and uniform electrical properties, which is subjected to slicing and polishing as a substrate for producing a microelectronic device. For the growth of semiconductor crystals, the process involves heating the polycrystalline raw material to its melting point (usually exceeding 1,200 Å to produce a polycrystalline raw material melt that is brought into contact with high quality seed crystals made of the same material, and The melt is crystallized on the contact surface with the seed crystal. There are various methods for accomplishing this purpose, and the literature can be found in the literature: the Czochraiski MCz method and the liquid encapsulated Czochralski derived therefrom (Liquid Encapsulated Czochralski) (LEC) method, Horizontal Bridgman and B rid gm an - S to ckb ar g er (Η B ) method and its vertical variant (VB), and gradient condensation (GF) method And its derived vertical gradient condensation (VGF) method. See, for example, "Bulk Crystal Growth of Electronic, Optical and Optoelectronic Materials, P. Clapper, Ed., John Wiley and Sons." Ltd, Chichester, England, 2005), which has extensive discussion of these techniques and their use in the growth of a variety of materials. About known methods, currently using lifting techniques Also used for commercial production is a 150 mm (6 inch) diameter low dislocation silicon single crystal. The larger diameter -5 - 201109483 wafer has been discussed, but it has not been confirmed (Vanhellemont and simoen, J. Electrochemical Society, 154 (7) H5 72-H583 (2007)). In addition, 100 mm (4 in.) diameter single crystals have been grown by VGF and VB techniques, as described in the literature (Ch. Frank-Rotsch, et Al., J.Crystal Growth (2008), doi ·· 10.1016, J.Crys. Growth 2007.12.020) » As shown by many studies reported in the literature, VB/VGF growth techniques compared to Cz/LEC technology Generally, a smaller thermal gradient and a lower growth rate are used to produce a single crystal with a much lower dislocation density (see: ASJordan et al., J. Crys t. Growth 1 2 8 (1 993) 444-450 - 2), M. Jurisch et al., J. Cryst. Growth 275 (2005) 283-291, and S. Kawarabayashi, 6th Intl. Conf. on InP and Related Materials (1 994), 22 7 -23 0). Therefore, in some applications, it is better to grow large diameter, low dislocation density (or no dislocation) germanium single crystal by VB/VGF method. In all commercial operations of single crystal growth, the goal is to be the lowest. It is possible to cost the ingot and cut the wafer from the ingot at a high yield, i.e., cut the maximum number of available wafers from a single ingot. Thus, if it is desired to grow the longest ingot as much as possible under the other constraints of the method used, it means that a large size is required. "Usually the shape of the polycrystalline block to be filled into the crucible is not equal, between the raw materials. There are a lot of residual spaces without materials, so the coefficient of charge is very low. Therefore, when the crucible is melted, the melt is only partially filled with helium. Considering the volume of the desired melt and the structure of the existing crucibles 'adding the melt with additional materials throughout the crystal growth process 201109483 is an important step' is also a complicated step. This is especially true for certain materials such as 'because's have a low thermal conductivity (0.58 w β(:) compared to Si (thermal conductivity and density are i.3 58 w cnr, and 2.3 332 gem·3, respectively). -,) and high density (5.32 genT3) 'Therefore is limited by special methods. It is known that there are several immature forms of replenishing the melt in crystal growth. In the 矽 growth system, for example, there will be more A crystal material block is applied to a device for growing a Si melt of a Si single crystal, and a material is charged into a system for growing a Cz single crystal i-gly vortex. Techniques similar to these are feasible because Cz (or LEC) The system is an open system' and it is relatively easy to add material to the crucible. However, the method described for 'VGF and VB technology encapsulated in a rice bowl' does not work. In addition, 'for a special doped single crystal The particular requirements associated with growth also limit the use of the above methods. For example, when arsenic (As) is used as a dopant, the method involving arsenic-doped germanium single crystals is limited due to the high vapor pressure and toxicity of arsenic. SUMMARY OF THE INVENTION The system, method and method of the present invention The present invention relates to the growth of single crystal germanium (Ge) crystals. In an exemplary embodiment, the present invention provides a method of growing a single crystal germanium (Ge) crystal. Further, the method includes: loading a first Ge material Putting into a crucible; loading the second material into a container for replenishing the Ge molten material; sealing the crucible and the container in an ampoule: placing the crucible ampule into a crystal growth In the furnace; controlling the melting of the first and second Ge materials; and controlling the crystallization temperature of the melt to 201109483 degrees to reproducibly obtain a single crystal twin rod having the desired crystal properties. It should be understood that the above The general description and the following detailed description are intended to be illustrative and not restrictive, and the invention is not limited to the details of the invention. In addition, other features and/or variations may be present in addition to those disclosed herein. For example, the present invention may Various combinations and sub-combinations and/or combinations and sub-combinations of the various features are described in the following detailed description. [Embodiment] The present invention will be described in detail below, and an example thereof will be illustrated. The embodiments of the present invention are not intended to represent all of the embodiments of the present invention. Conversely, they are merely examples of aspects of the invention. Reference numerals in the drawings and drawings represent the same or similar components. The aspect is particularly applicable to a method and apparatus for growing a crystal of a strontium rod having a diameter of 150 mm (6,6), the apparatus and method of which are disclosed herein. However, it should be understood that the aspect of the invention has a higher aspect. Practicality, for example, related devices and methods can be used to make 锗 (G e) ingots of diameter 50 mm (2") or larger, such as diameters of 1 〇〇mm (4 ”) and 2 〇〇mm (8 Ingots of Fig. 1 A-2 'The present invention provides a system and method for growing a single crystal germanium (Ge) crystal in which an additional material is melted, but before the crystal begins to grow, an additional The raw material melt is added to the crucible (for example, in the VGF and/or VB method or the like to grow a longer single crystal ingot. In addition, the method may include loading the first Ge material into a crucible with a seed crystal seeding tank, and filling the second Ge material into a container for replenishing the Ge molten material. The container is sealed in the ampoule, and the ampoule and "8 - 201109483 are placed in a crystal growth furnace having a movable ampoule support to support the ampoule. Moreover, an exemplary embodiment can include melting a first Ge feedstock in the crucible to form a melt, melting a second Ge feedstock in the vessel, and adding the molten second Ge feedstock to the melt. Other exemplary embodiments may include controlling the crystallization temperature gradient of the melt to cause the melt to crystallize upon contact with the seed crystal and to form a single crystal twin rod, and optionally, to cool the single crystal twin rod. In an exemplary embodiment, the step of forming a single crystal twin rod may comprise establishing a temperature gradient of from about 0.3 to about 2.5 t/cm in the crystal growth region. Further, the single crystal twin rod is cooled at a rate of from about 0.2 to about 0.5 ° C / hour. Furthermore, the enthalpy is kept stable during the crystallization temperature gradient movement. According to some exemplary embodiments of the present invention, the single crystal twin rod has a diameter of from about 50 mm to about 200 mm (about 2 inches to about 8 inches). In an exemplary embodiment, for example, a single crystal twin rod may have a diameter of 52.4 mm (6 inches). Moreover, the single crystal twin rods and wafers herein can have less than about 3 50 dislocations/cm3, less than about 300 dislocations/cm3, less than about 250 dislocations/cm3, or even less than about 200 dislocations/cm3. With respect to the system of the present invention as described herein, an exemplary apparatus for growing a large diameter single crystal germanium crystal can include a crystal growth furnace comprising a heat source and a plurality of heating zones and an ampoule mountable in the furnace. The ampoule includes a loading container and a crucible with a seeding tank, a movable ampoule holder and a controller coupled to the crystal growth furnace and the movable ampoule holder. Additionally, the controller controls one or more heating zones of the heat source and the movable ampoule mount for performing a vertical gradient condensation process on the crucible when the nibble is in the furnace. According to some embodiments, the crystal growth furnace may have several heating zones, such as 4 to 8 heating zones, .5 to 7 heating zones, or 6 heating zones. An exemplary crucible may have an inner diameter of from about 50 mm to about 200 mm (about 2 to about 8 inches) in conjunction with the desired ingot/wafer diameter, or in some embodiments, an inner diameter of about 150 mm ( About 6 inches). BRIEF DESCRIPTION OF THE DRAWINGS Figures 1A-1D are longitudinal cross-sectional views showing a growth apparatus for a single crystal germanium crystal according to an exemplary crystal growth method of some aspects of the present invention. Here, Fig. 1A illustrates a cross-sectional view of an example of a crystal growth apparatus. The apparatus is, for example, a furnace used in a vertical gradient condensation (VGF) growth method, or a vertical Bridgman (VB) growth method, and may include an ampoule holder 11 located in the furnace 1, wherein the heater 2 is composed of a plurality of The composition of the area, each area is controlled by a computer-controlled system. The temperature of each zone is adjusted to provide an overall temperature profile and temperature gradient required to control the solidification of the melt, to adjust the temperature profile and temperature gradient in the furnace, to cause the crystallographic interface to move upwardly as desired throughout the melt, such as in the growth of the ingot The zone establishes a temperature gradient of from about 0.3 to about 2.51/cm. The ampoule holder 11 provides physical support to the ampoule 3 (in one embodiment, made of quartz) containing the crucible 12 and performs thermal gradient control thereon. The crucible 1 2 has a seed slot 1 8 for storage. Seed crystal. The ampoule holder can move up and down axially during crystal growth during furnace operation.坩埚12 may contain a seed crystal 17, and the crystal grows a single crystal along the top of the seed crystal. In one embodiment, the crucible 1 2 may be a pyrolytic boron nitride (pBN) structure having a cylindrical crystal growth portion 13 , a smaller diameter seed crystal cylinder 18 and a cone. -10- 201109483 Transition section 7. The crystal growth portion 13 is open at the top of the crucible 12 and has a diameter equal to the desired diameter of the crystal product. Current industry standard crystal ingots are 50.8, 76.2, 101.6, and 152.4 mm (2 inches, 3 inches, 4 inches, and 6 inches) that can be cut into wafers. In an exemplary embodiment, the seed tank cylinder 8 at the bottom of the crucible 12 may have a closed bottom and a diameter slightly larger than the quality seed crystal 17 'eg, about 6-25 mm, and about 30-100. The length of mm. The cylindrical crystal growth portion 13 and the seed crystal groove cylinder 18 may have vertical walls or may be tapered outwardly by about one to several degrees to facilitate removal of crystals in the crucible 12. The tapered transition portion 7 between the growth portion 13 and the seed tank cylinder 18 has an inclined side wall inclined by, for example, about 45-60 degrees, the larger diameter of which is equal to the diameter of the growth zone and connects the walls of the growth zone. The small diameter is equal to the diameter of the seed tank and connects the walls of the seed tank. The sloping side walls may also be other angles that are steeper or steeper than 45-60 degrees. In an exemplary embodiment, the ampoule 3 may be made of quartz. The ampoule 3 has a shape similar to the crucible 12. The ampoule 3 is cylindrical in the seed growth region 19, and the cylinder in the seed groove region 19 has a narrow diameter and has a tapered transition region 8 between the two regions.坩埚1 2 fits inside the ampoule 3 and has a narrow gap between them. A second top container 4 as a raw material container is placed on the quartz holder 6. The quartz holder 6 is enclosed in the middle portion of the ampoule 3. In one embodiment of the invention, the second container 4 is composed of pBN. Most of the raw material 5 is loaded into the second container 4. During the heating, the raw material melts and drops into the main crucible 12 from the bottom hole of the second container 4. The ampoule 3 is closed at the bottom of its seed zone -11 - 201109483 zone 19 and is sealed at the top after loading the crucible and the stock. In embodiments where the ampoule-clam assembly has a funnel shape, the ampoule support 11 is required to accommodate the funnel shape and to maintain the ampoule 12 stable and upright inside the furnace 1. In other embodiments, the ampoule-twist combination can maintain a different shape and the basic structure of the ampoule support 11 will vary depending on the shape. According to one embodiment, the stability and support strength of the ampoule and its contents is provided by the solid thin-walled cylinder 16 of the ampoule support 11. The solid thin-walled cylinder 16 houses the funnel-shaped bottom of the ampoule structure 3. In one embodiment, the crucible support cylinder 16 is constructed of a thermally conductive material, preferably quartz. In other embodiments, carbonized sand or ceramic may also be used to form the crucible support cylinder 16. The cylinder 16 is in circumferential contact with the ampoule 3, wherein the upper edge of the cylinder 16 contacts the shoulder portion of the tapered region 8 of the rice. The configuration results in minimal contact of the solids with the solids, which ensures little or no undesired, relatively uncontrollable heat transfer. Therefore, it can be heated by other more controllable methods. In other embodiments, a low density insulating material, such as a ceramic fiber, can fill a majority of the interior of the abutment cylinder 11 with only one axial hollow core 20 remaining empty about the center of the insulating material. The seed tank 1 9 for accommodating the ampoule 3. In other embodiments, the low density insulating material may further comprise alumina fibers (1,800 t), alumina-yttria fibers (1,426 ° C), and/or chromium oxide fibers (2,200 ° C). The insulating material is carefully placed in the ampoule holder 11. The weight of the ampoule 3, when placed on top of the cylinder 16, pushes the insulating material down and forms a sloping edge of the insulating material 9-12-201109483. Filling most of the interior of the cylinder with a low density insulator reduces air flow, which ensures little or no unwanted, relatively uncontrollable convection. Similar to conduction, convection is an uncontrollable heat transfer process that is detrimental to VGF and other crystal growth methods. The hollow core 20 having a diameter approximately equal to that of the ampoule seed tank 19 extends downwardly a short distance from the bottom of the ampoule seed tank 19. In another embodiment, the hollow core 20 extends from the bottom of the seed tank through the crucible support to the bottom of the furnace apparatus 1. The hollow core 20 provides a means of cooling from the center of the crystal. This pathway contributes to the cooling of the seed crystal tank and the center of the crystal grown. With this configuration, thermal energy can escape downward through the center of the solid crystal and the seed crystal, and escape downward through the hollow core 20 in the inner insulating material of the crystal holder. Without the hollow core 20, the temperature of the center of the ingot being cooled will naturally be higher than the temperature of the crystalline material near the outer surface. In this case, the center of either horizontal cross section of the ingot will crystallize later after the ingot has solidified. It is impossible to prepare crystals having uniform electrical properties under such conditions. By providing the hollow core 20 in the crystal support method, heat is conducted downwardly through the bottom of the ampoule 3 and the hollow core 20, and thereby radiates back and exits the radiation passage 1〇. It is important to reduce the thermal energy at the center of the growing crystal so that the isothermal layer remains flat throughout the crystal diameter. Maintaining a flat crystal-melt interface produces crystals with uniform electrical and physical properties. The low-density insulating material in the cylinder 1 1 blocks the flow of heat radiation from a set of furnace heating elements 2 to the seed tank region 1 in the ampoule 3, so the method requires the formation of a plurality of horizontal radiant channels/openings/pipes through the insulating material. 1 〇. -13- 201109483 The radiant channel 1 〇 penetrates the insulating material to provide a heat radiation outlet for controllably transferring heat from the furnace heating element 2 to the ampoules seed tank 19. The number, shape and diameter of the radiant channels 10 vary depending on the circumstances. The radiant channels can also be slanted, curved or wavy. The radiant channels also need not be continuous as they can only partially pass through the insulating material. This helps minimize convection. In one embodiment, the diameter of the channels is small, about the width of a pencil, so the convective airflow is not significant. According to other embodiments of the present invention, large holes having a cross-sectional area of about 6.4516 cm2 (-square inch) or more may also be used. The radiant passage 10 through the insulating material also acts with the hollow core 20 at the center of the insulating material to radiate thermal energy from the center of the crystal and to cool the crystal in a planar isothermal temperature gradient layer. The radiant channel 10 is capable of controlling temperature and is directly related to the yield of crystal growth. In an exemplary embodiment of the invention, the furnace temperature is from about 0. 2 to about 0. 5 ° C during the growth phase of the single crystal twin rod. The rate of decrease in /hour allows the single crystal twin rod to grow. Figures 1A through 1D illustrate an exemplary method of melting and supplying helium in sequence. Figure A illustrates the initial state in which solid helium is present in the top vessel 4 and 坩埚12. The intermediate state of the crucible melt in the heating technique features and methods of the present invention is shown immediately in Figure 1 B, which illustrates a state in which the solid helium has melted into a liquid state in the crucible 12. The power of the heating elements in the different heating zones of the furnace is adjusted to provide the desired heat to the top vessel. Specifically, the top container is heated such that the crucible in the top container 3 begins to melt, and the molten crucible flows into the crucible 12 along the hole at the bottom end of the top container 3-14-201109483. In an exemplary embodiment, the region of the furnace having the top vessel is heated to a temperature in the range of from about 940 °C to about 955 °C or from about 945 °C to about 950 °C. This process continues until the material in the top vessel 3 has completely melted and flows into the crucible 12. The furnace 1 shown in Figures 1A-1D is an example of a furnace that can be used in a vertical gradient condensation (VGF) crystal growth process. Other furnaces and configurations can also be used, such as the vertical Bridgman method. In the VGF crystal growth method, the crystallization temperature gradient of the fixed heat source is moved by electrical control while the crystal is fixed. To implement vertical gradient condensing growth (VGF) (32), an appropriate temperature gradient distribution is established in the furnace. The power of the heating zone of the furnace is separately controlled by the computer and the computer is programmed to control the heating and cooling to suit the melting temperature and temperature gradient of the furnace. For the production of twin rods, for example, the temperature fluctuations of the furnace may need to be controlled to less than about ± 〇. During the furnace preparation process, the polycrystalline raw material is loaded into the ampoule 3, as described in more detail in Fig. 2 ^ As shown in the figure, 'pBN loading container 4 having a hole in the tapered portion is fixed in the ampoule 3 Located on the support cymbal made of quartz above the 坩埚丨2. Loading the container 4 will cause the crucible 12 to load more material. In particular, the block or sheet in which the raw material 5 is solid is therefore not sufficiently packed into the crucible 12 for melting. Thus 'the loading container is used to store additional meltable material' and then drain it down to the tantalum 1 2, which allows for a greater amount of crucible in the pick 12, resulting in longer and Larger diameter germanium crystals. For example, about 65 % of the raw material can be initially charged into the loading container 4, -15-201109483, and 35 % of the raw material is directly charged into the i-Graft vortex 12. In one non-limiting embodiment, 5.115 kg of stock material is charged to crucible 12, and 9.885 kg of stock material is charged into loading vessel 4 such that a total of 15,000 g (15 kg) of material is charged to produce a diameter of 152.4. Mm (6 inch) crystal rod. In one embodiment, arsenic (As) is doped in the crucible. Deviate <100> to 9. The seed crystals are loaded into the seed crystal tank and then refilled. The stock and the appropriate amount of dopant are charged into the crucible and the loading container, and the crucible and the loading container are placed in the quartz ampoule 3. The ampoule and its contents were evacuated to about 2.00 x 10" Pascals (about 1.5 x 1 (T6 torr), the ampoule was sealed, and the sealed ampoule was immediately loaded into the furnace, as shown in Figure 1. The furnace was started to make the ampoule The contents and the contents thereof are heated to melt the raw materials contained in the crucible 12. During the crystal growth, the temperature of the furnace is about 1 000 °C, because the melting point of the crucible is about 940 ° C. The temperature gradient of the crystal interface It can be adjusted to about 0.5 to about 10 ° C / cm depending on the position of the ingot. In addition, the entire temperature distribution is adjusted to a crystallization rate of about 1-2 mm / hour. After the curing is completed, the furnace is about 20 - 4 0 Cooling is carried out at ° C / hr. The twin rod obtained by this method has the following characteristics. The cerium crystal produced by the above method may have less than about 300 dents/cm 2 , or about 150/cm 2 to about 300 / cm 2 , or about 180. From /cm2 to about 270/crn2, or from about 60/cm2 to about 300/cm2' or from about 80/cm2 to about 280/cm2, or from about 100/cm2 to about 260/cm2, or as measured or extracted herein Other ranges within 10%, 20%, or 30% of the amount. In another embodiment, the device of the present invention It consists of a quartz ampoule, and the quartz ampoule is filled with a pBN loading container and a crucible' and a support 6-201109483 pBN loading container and crucible support 6. The size of the crucible is about 150 mm in the crystal growth region. The length is 1 60 mm 'and the seed region diameter is 7 mm. In an exemplary embodiment 'a seed of a <1〇〇> oriented seed crystal is placed in the seed bath of pBN坩埚' And 96 g of boron trioxide as a liquid sealant was placed on the seed crystal of pBN. Then, a total of 14,498 g of Ge polycrystalline material was separately charged into the pBN crucible and the pBN container, and the pBN container and the crucible were placed. It was placed in a quartz ampoule and the quartz ampoule was sealed with a quartz lid under a vacuum of about 2.00 x 1 (1.5 x 1 (Γ 6 Torr). The sealed ampoule was then placed in a furnace and placed on an ampoule holder. The quartz ampoule described above is heated at a rate of about 270 ° C / hour. When the temperature is about 30 ° C higher than the melting point of the crystalline material, heating is maintained until all of the polycrystalline material melts. As shown in Figure 5, the present invention provides Growth single crystal germanium (G e of the invention) An exemplary method of crystals. In an exemplary embodiment, the method includes loading a first Ge feedstock into a crucible with a seed crystal seeding seed; and loading a second Ge feedstock Putting the container into the ampoule in the container for replenishing the raw material; sealing the crucible and the container in the ampoule; placing the ampoule and the contained crucible and the container in the crystal growth furnace; controlling the Melting of the first G e feedstock in the crucible to form a melt controls the melting of the second Ge feedstock in the vessel. In addition, the method includes one or more times controlling the addition of the molten second Ge raw material to the melt, controlling a crystallization temperature gradient of the melt, so that the melt crystallizes and forms a single sheet upon contact with the seed crystal. Crystalline ingot, and cooling the single crystal twin rod -17-201109483 In other exemplary embodiments, the method can include controlling melting of a second Ge material in the container, including control applied to the The heating of the second Ge material and maintaining the molten second Ge material are within a temperature range. Further, the step of controlling the addition of the molten second Ge material to the melt may comprise maintaining the melt within a specific temperature range, which may range from about 940 ° C to about 955 ° C, or about 945 t to Approximately 95 (TC. Further 'adding the molten second Ge feedstock to the melt may include maintaining the melt within a particular temperature range, such as the range described above. In still other exemplary embodiments, the heat source and/or Or one or more cooling rates may be controlled or reduced in a manner that results in a G e ingot having crystal properties within a reproducible range. Further, due to the control steps described, the reproducible property has less than about 300 Dislocations/cm3 or any other range of single crystal twin rods as mentioned herein. Furthermore, due to the methods disclosed herein, it is possible to reproduce real estate crystals having dislocation densities in various ranges described above without having to use additional Gas source doping techniques. These advantages are related, for example, to the use of sealed ampoules (eg, under vacuum, under specific pressure or other conditions), and with voids The complexity, for example, requires expensive gas supply hardware and control systems/electronic devices, etc. In some examples, the invention may advantageously be combined with systems and methods that require non-contact doping techniques. Thus, reproducible real estate A germanium crystal having various dislocation densities in the above ranges is not required, and it is not necessary to use a contact doping technique and/or an applied gas source doping technique. In some embodiments, the VGF method is used for crystal growth. The bottom heating zone reduces heater power to begin growing crystals from seed crystals -18-201109483 and then reduces the power of the transition zone, which has a cooling rate of from about 0.3 to about 0.4 ° C / hr. Maintaining this cooling rate for about 70 hours Once the crystallization reaches the main growth zone, ie reducing the heater power in the appropriate zone to provide a cooling rate of from about 0.4 to about 1.7 ° C / hour and a crystal interface temperature gradient of from about 1.2 to about 3.0 ° C / cm, Both are maintained for about 120 hours. After the crystallization is complete, the furnace is cooled to room temperature at a rate of from about 20 to about 40 ° C / hour. The resulting exemplary ingot has 1 25 mm crystal length, and is completely single crystal. From the initial growth portion to the terminal growth portion, the crystal has a free carrier concentration of 9.05 <1017 to 4.86>< 1018/cm3 and 7.29>;<1 (Γ3 to 2.78xl〇-3Q, resistivity of cm and mobility of 95 5 cm2/Vs to 467 cm2/Vs. The dislocation density is 186/cm2 at the beginning, as shown in Fig. 3, The terminal growth portion has a mis-density of 270/cm2 as shown in Fig. 4. It should be understood that the ruthenium crystal substrate (e.g., ingot, wafer, etc.) produced by the method/process of the present invention is particularly Within the scope of the invention. In addition, all of the products (e.g., electronic devices or optoelectronic devices, etc.) containing the ruthenium crystalline substrate produced by the methods/processes disclosed herein are also encompassed within the scope of the present invention. While the foregoing has been described with respect to the specific embodiments of the present invention, it will be understood by those skilled in the art The scope is defined by the scope of the appended claims. BRIEF DESCRIPTION OF THE DRAWINGS [0009] The following drawings are a part of the invention, and are intended to illustrate the principles of the invention BRIEF DESCRIPTION OF THE DRAWINGS Figure 1A - 1D is a longitudinal cross-sectional view showing a growth apparatus for a single crystal germanium crystal relating to an exemplary crystal growth method of some aspects of the present invention. Fig. 2 is a view showing an exemplary state of crystal growth of a PBN (boiled boron nitride) container using a loading material in accordance with some aspects of the present invention. Figure 3 is an illustration of an EPD (Fusion Uranium Pit Density) map (57 point EPD 'average EPD: 186) of a 150 mm diameter twin rod head grown in accordance with certain aspects of the present invention. Fig. 4 is an example of an EPD diagram (57 point EPD 'average EPD: 270) of a tail of a grown crystal rod having a diameter of 150 mm which is in accordance with certain aspects of the present invention. Figure 5 is a flow diagram of an exemplary crystal growth method in accordance with certain aspects of the present invention. [Explanation of main component symbols] 1 : Furnace 2 : Heater 3 : Ampoule 4 : Second container 5 : Raw material -20- 201109483 6 : Support 7 : Tapered transition part 8 : Tapered area 9 : Edge of insulating material 1 〇 : Radiation channel 1 1 : Ampoule holder 1 2 : 坩埚 1 3 : Crystal growth portion 1 6 : Cylinder 1 7 : Seed crystal 1 8 : Seed groove 19: Seed growth region 20: Hollow core

Claims (1)

201109483 七、申請專利範圍: 1·—種生長單晶鍺(Ge)晶體的方法,其包括: 將第一 Ge原料裝入一個坩堝中,該坩堝帶有放置晶 種的晶種槽; 將第二Ge原料裝入一個用以補充原料的容器中,將 該容器置於安瓿內; 將該坩堝和該容器密封在該安瓿內; 將該安瓿和內含的該坩堝和該容器放入具有可移動的 安瓿支座用以支承該安瓿的晶體生長熔爐中; 熔化該坩堝中的該第一Ge原料從而生成熔融體; 熔化該容器中的該第二Ge原料,並將該熔化的第二 Ge原料添加至該熔融體中; 控制該熔融體的結晶溫度梯度’使該熔融體在與該晶 種接觸時結晶且形成單晶鍺晶棒;和 冷卻該單晶鍺晶棒。 2 .如申請專利範圍第1項的方法,其中形成單晶鍺晶 棒的步驟包括在晶體生長區建立〇.3-2.5 t:/cm的溫度梯度 〆 〇 3.如申請專利範圍第1項的方法,其中以0.2-0.5 °C/ 小時的速率冷卻該單晶鍺晶棒。 4 ·如申請專利範圍第1項的方法,其另外包括在結晶 溫度梯度移動過程中’保持丨甘渦穩定。 5 .如申請專利範圍第1項的方法,其中該單晶鍺晶棒 具有約50 mm(約2英吋)至約200 mm(約8英吋)的直徑。 -22- 201109483 6.如申請專利範圍第5項的方法,其中該單晶鍺晶棒 具有約150 mm(約6英吋)的直徑。 7 ·如申請專利範圍第1項的方法,其中該單晶鍺晶棒 具有小於約300位錯/cm3。 8.—種生長單晶鍺晶體的裝置,其包括: 一個包括熱源和多個加熱區的晶體生長熔爐, 一個可安裝於該熔爐中的安瓿,其中該安瓿包括一個 裝載容器和一個帶有晶種槽的坩堝; 一個可移動的安瓿支座;和 一個偶聯至該晶體生長熔爐和該可移動的安瓿支座上 之控制器,該控制器控制該熱源的一或多個加熱區和該可 移動的安瓿支座,用以當坩堝位於該熔爐中時在該坩堝上 貫施垂直梯度冷凝法。 9 ·如申請專利範圍第8項的裝置,其中該晶體生長熔 爐具有5至7個加熱區。 1 0 .如申請專利範圍第8項的裝置,其中該晶體生長 熔爐具有6個加熱區。 11. 如申請專利範圍第8項的裝置,其中該坩堝具有 約5 0 m m (約2英吋)至約2 0 0 m m (約8英吋)的內徑。 12. 如申請專利範圍第8項的裝置,其中該增渦具有 約1 5 0 m m (約6英吋)的內徑。 13·—種生長單晶鍺(Ge)晶體的方法,其包括: 將第一 Ge原料裝入坩堝內,該坩堝帶有放置晶種的 晶種槽; -23- 201109483 將第二Ge原料裝入用以補充原料的容器內,將該容 器放入該安瓿內; 將該坩堝和該容器密封於該安瓿內; 將該安瓿和內含的該坩堝和該容器置於晶體生長熔爐 中; 控制該坩堝中的該第一 Ge原料之熔化以生成熔融體 控制該容器中的該第二Ge原料之熔化; 添加/控制該熔化的第二G e原料至該熔融體中; 控制該熔融體的結晶溫度梯度,使該熔融體在與該晶 種接觸時結晶且形成單晶鍺晶棒;及 冷卻該單晶鍺晶棒。 14.如申請專利範圍第13項的方法,其中控制該容器 中的第二Ge原料之熔化的步驟包含控制施加至該第二Ge 原料的加熱,及維持該熔化的第二Ge原料在一溫度範圍 內。 1 5.如申請專利範圍第1 3項的方法,其中控制該熔化 的第一 Ge原料添加至該熔融體的步驟包含維持該熔融體 在特定的溫度範圍內。 16.如申請專利範圍第14項的方法’其中該溫度範圍 舄約94〇t至約95 5它。 1 7 ·如申請專利範圍第1 4項的方法,其中該溫度範圍 爲約945。(:至約95〇〇c。 1 8.如申請專利範圍第1 3項的方法,其中控制該熔化 -24- 201109483 的弟—Ge原料添加至該熔融體的步驟包含維持該熔融體 在特定的溫度範圍內。 1 9 ·如申請專利範圔第1 8項的方法,其中該特定的溫 度範圍爲約94〇。(:至約955»c。 2 0 .如申請專利範圍第1 8項的方法,其中該特定的溫 度範圍爲約945°C至約950°C。 21.如申請專利範圍第13至20項中任一項的方法, 其中熱源和/或一或多種冷卻速率係以一種控制得到具有 在可再現範圍內的晶體性質之Ge晶棒的方式加以控制或 降低。 2 2 .如申請專利範圍第1 3至2 1項中任一項的方法, 其中藉由所述之一或多個控制步驟,可再現地產製具有低 於約3 00位錯/cm3之單晶鍺晶棒。 23. 如申請專利範圍第13項的方法,其中該晶體生長 熔爐可以彼此相對的方式移動該安瓿和/或周遭的熔爐/裝 置。 24. 如申請專利範圍第13或23項的方法,其中該晶 體生長熔爐具有可移動的安瓿支座用以支承該安瓿。 25. 如申請專利範圍第13至24項中任一項的方法, 其中由於該晶體製造方法,可再現地產製具有設定範圍內 的位錯密度之鍺晶體,而不必使用外加氣體源摻雜技術。 2 6.如申請專利範圍第25項的方法,其中該設定範圍 是低於約300位錯/cm3。 2 7.如申請專利範圍第13至24項中任一項的方法, -25- 201109483 內氣 圍加 範外 定或 設術 有技 具雜 製摻 產觸 地接 現用 再使 可必 ’ 不 法而 方, 造體 製晶 體鍺。 晶之術 該度技 於密雜 由錯摻 中位源 其的體 28.如申請專利範圍第27項的方法,其中該設定範圍 是低於約3 00位錯/cm3。 2 9 . —種鍺晶體基材,其係由申請專利範圍第1至7 項中任一項的方法’或申請專利範圍第〗3至2 8項中任一 項的方法,或任何文中提及之方法製得。 30.—種包含鍺晶體基材的產物,其中該鍺晶體基材 係由申請專利範圍第I至7項中任一項的方法,或申請專 利範圍第1 3至2 8項中任一項的方法,或任何文中提及之 方法製得。 -26-201109483 VII. Patent application scope: 1. A method for growing a single crystal germanium (Ge) crystal, comprising: loading a first Ge material into a crucible with a seed crystal seed crystal; The second Ge material is placed in a container for replenishing the material, and the container is placed in the ampoule; the crucible and the container are sealed in the ampoule; the ampoule and the contained crucible and the container are placed in the ampoule; a moving ampoule holder for supporting the crystal growth furnace of the ampoule; melting the first Ge material in the crucible to form a melt; melting the second Ge material in the vessel, and melting the second Ge A raw material is added to the melt; a crystallization temperature gradient of the melt is controlled to cause the melt to crystallize upon contact with the seed crystal and form a single crystal twin rod; and the single crystal twin rod is cooled. 2. The method of claim 1, wherein the step of forming a single crystal twin rod comprises establishing a temperature gradient of 〇.3-2.5 t:/cm in the crystal growth region 〆〇3. The method wherein the single crystal twin rod is cooled at a rate of 0.2-0.5 ° C / hour. 4. The method of claim 1, further comprising maintaining the turbulent vortex stability during the movement of the crystallization temperature gradient. 5. The method of claim 1, wherein the single crystal twin rod has a diameter of from about 50 mm (about 2 inches) to about 200 mm (about 8 inches). The method of claim 5, wherein the single crystal twin rod has a diameter of about 150 mm (about 6 inches). The method of claim 1, wherein the single crystal twin rod has less than about 300 dislocations/cm3. 8. A device for growing a single crystal germanium crystal comprising: a crystal growth furnace comprising a heat source and a plurality of heating zones, an ampoule mountable in the furnace, wherein the ampoule comprises a loading container and a crystal a grooved crucible; a movable ampoule holder; and a controller coupled to the crystal growth furnace and the movable ampoule holder, the controller controlling one or more heating zones of the heat source and the A movable ampoule holder for applying a vertical gradient condensation method on the crucible when the crucible is located in the furnace. 9. The apparatus of claim 8, wherein the crystal growth furnace has 5 to 7 heating zones. 10. The device of claim 8, wherein the crystal growth furnace has six heating zones. 11. The device of claim 8 wherein the crucible has an inner diameter of from about 50 m (about 2 inches) to about 200 mm (about 8 inches). 12. The device of claim 8 wherein the vortex has an inner diameter of about 1 500 m (about 6 inches). 13. A method of growing a single crystal germanium (Ge) crystal, comprising: loading a first Ge material into a crucible having a seed crystal seed crystal; -23- 201109483 loading the second Ge material Putting the container into the ampoule; filling the container with the container in the ampoule; and placing the ampoule and the container in the crystal growth furnace; Melting of the first Ge material in the crucible to form a melt to control melting of the second Ge material in the vessel; adding/controlling the molten second Ge material to the melt; controlling the melt The crystallization temperature gradient causes the melt to crystallize upon contact with the seed crystal and form a single crystal twin rod; and to cool the single crystal twin rod. 14. The method of claim 13, wherein the step of controlling the melting of the second Ge material in the vessel comprises controlling heating applied to the second Ge material and maintaining the molten second Ge material at a temperature Within the scope. The method of claim 13, wherein the step of controlling the addition of the molten first Ge material to the melt comprises maintaining the melt within a specific temperature range. 16. The method of claim 14, wherein the temperature range is from about 94 〇t to about 95 5 of it. 1 7 The method of claim 14, wherein the temperature range is about 945. (: to about 95 〇〇c. 1 8. The method of claim 13, wherein the step of controlling the addition of the Ge-Ge material to the melt of the melt--24-201109483 comprises maintaining the melt at a specific Within the temperature range. 1 9 · The method of claim 18, wherein the specific temperature range is about 94 〇. (: to about 955»c. 2 0. If the patent application scope is item 18 The method, wherein the specific temperature range is from about 945 ° C to about 950 ° C. The method of any one of claims 13 to 20, wherein the heat source and/or one or more cooling rates are A method of controlling a method of obtaining a Ge ingot having a crystal property in a reproducible range, wherein the method of any one of claims 1 to 3, wherein One or more control steps for reproducing a single crystal twin rod having a property of less than about 300 dents/cm3. 23. The method of claim 13, wherein the crystal growth furnace can be opposed to each other Move the ampoules and/or surrounding furnaces/devices. The method of claim 13 or 23, wherein the crystal growth furnace has a movable ampoule holder for supporting the ampoule. The method of any one of claims 13 to 24, wherein the crystal The manufacturing method can reproduce a real crystal system having a dislocation density within a set range without using an external gas source doping technique. 2 6. The method of claim 25, wherein the setting range is lower than about 300-bit error/cm3. 2 7. The method of any one of claims 13 to 24, -25- 201109483, the internal gas-filling plus external setting or the setting of the technique It is impossible to make a system crystal. The technique of crystal is the method of mixing the medium source with the wrong source. The method of claim 27, wherein the setting range is lower than Approximately 30,000 dislocations/cm3. 2 9 . — A kind of ruthenium crystal substrate, which is the method of any one of claims 1 to 7 or the patent application s 3 to 28 Method of item, or any method mentioned in the text 30. A product comprising a ruthenium crystal substrate, wherein the ruthenium crystal substrate is the method of any one of claims 1 to 7, or the patent application range of items 13 to 28 A method, or any of the methods mentioned in the text. -26-
TW98137937A 2009-09-05 2009-11-09 Systems, methods and substrates of monocrystalline germanium crystal growth TW201109483A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/554,902 US8506706B2 (en) 2008-11-08 2009-09-05 Systems, methods and substrates of monocrystalline germanium crystal growth

Publications (1)

Publication Number Publication Date
TW201109483A true TW201109483A (en) 2011-03-16

Family

ID=44838265

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98137937A TW201109483A (en) 2009-09-05 2009-11-09 Systems, methods and substrates of monocrystalline germanium crystal growth

Country Status (2)

Country Link
CN (1) CN102272361A (en)
TW (1) TW201109483A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI620841B (en) * 2016-07-13 2018-04-11 鴻海精密工業股份有限公司 Method for making semimetal compound of pt

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102517624A (en) * 2011-12-16 2012-06-27 华中科技大学 Multi-segment temperature control crystal growing furnace
DE102013203740B4 (en) * 2013-03-05 2020-06-18 Solarworld Industries Gmbh Device and method for producing silicon blocks
CN104328483A (en) * 2014-11-13 2015-02-04 吴晟 Single crystal growth method and device
CN108091708B (en) * 2017-12-08 2020-08-14 北京通美晶体技术有限公司 Germanium single crystal wafer, method for producing the same, method for producing crystal bar, and use of single crystal wafer
CN108277528A (en) * 2018-02-28 2018-07-13 昆明凯航光电科技有限公司 A kind of method of germanium single crystal annealing process resistance control
CN110195256A (en) * 2019-06-10 2019-09-03 苏州亚傲鑫企业管理咨询有限公司 Monocrystalline silicon repeatedly feeds the device continuously grown and technique
CN112176399A (en) * 2020-09-21 2021-01-05 广东先导先进材料股份有限公司 Preparation method and preparation device of single crystal containing doping elements

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI620841B (en) * 2016-07-13 2018-04-11 鴻海精密工業股份有限公司 Method for making semimetal compound of pt

Also Published As

Publication number Publication date
CN102272361A (en) 2011-12-07

Similar Documents

Publication Publication Date Title
US8506706B2 (en) Systems, methods and substrates of monocrystalline germanium crystal growth
US8231727B2 (en) Crystal growth apparatus and method
TW201109483A (en) Systems, methods and substrates of monocrystalline germanium crystal growth
JP5005651B2 (en) Method and apparatus for growing semiconductor crystals with rigid support with carbon doping, resistivity control, temperature gradient control
JP4830312B2 (en) Compound semiconductor single crystal and manufacturing method thereof
EP2510138B1 (en) Methods for manufacturing monocrystalline germanium ingots/wafers having low micro-pit density (mpd)
JP5370394B2 (en) Compound semiconductor single crystal substrate
CN116334759A (en) Seed crystal dissolving method and device for growing tellurium-zinc-cadmium crystals based on THM
WO2011043777A1 (en) Crystal growth apparatus and method
EP1114884A1 (en) Process for producing compound semiconductor single crystal
WO2010053586A2 (en) Systems, methods and substrates of monocrystalline germanium crystal growth
JP2004203721A (en) Apparatus and method for growing single crystal
JP2010030847A (en) Production method of semiconductor single crystal
JP2010030868A (en) Production method of semiconductor single crystal
TW201224228A (en) Germanium ingots/wafers having low micro-pit density (MPD) as well as systems and methods for manufacturing same
JP2733898B2 (en) Method for manufacturing compound semiconductor single crystal
JPH10212192A (en) Method for growing bulk crystal
JPH03193689A (en) Production of compound semiconductor crystal
JPH0867593A (en) Method for growing single crystal
JP2004018319A (en) Compound semiconducting crystal growth apparatus
JPH07165486A (en) Method for growing compound semiconductor single crystal in vertical container