JP2010030847A - Production method of semiconductor single crystal - Google Patents

Production method of semiconductor single crystal Download PDF

Info

Publication number
JP2010030847A
JP2010030847A JP2008195829A JP2008195829A JP2010030847A JP 2010030847 A JP2010030847 A JP 2010030847A JP 2008195829 A JP2008195829 A JP 2008195829A JP 2008195829 A JP2008195829 A JP 2008195829A JP 2010030847 A JP2010030847 A JP 2010030847A
Authority
JP
Japan
Prior art keywords
crystal
crucible
semiconductor
crystal growth
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008195829A
Other languages
Japanese (ja)
Inventor
Masatomo Shibata
真佐知 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2008195829A priority Critical patent/JP2010030847A/en
Publication of JP2010030847A publication Critical patent/JP2010030847A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a production method of a semiconductor single crystal, by which a high-quality semiconductor single crystal can be obtained with high reproducibility, having small variance in the impurity concentration in the growing direction of the crystal. <P>SOLUTION: The production method of a semiconductor single crystal comprises housing a semiconductor melt 5 with addition of an impurity in a crucible 6 and gradually solidifying the melt upward from the seed crystal 10 side while rotating the crucible 6 in a state where the semiconductor melt 5 is brought into contact with a seed crystal 10 which is placed in a seed crystal placement part formed at the bottom of the crucible 6, wherein the rotation speed of the crucible 6 is gradually decreased with proceeding of the crystal growth. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、半導体融液を原料とする半導体単結晶の製造方法に係り、特に、結晶成長方向に沿って不純物濃度を均一に制御するための半導体単結晶の製造方法に関するものである。   The present invention relates to a method for manufacturing a semiconductor single crystal using a semiconductor melt as a raw material, and more particularly to a method for manufacturing a semiconductor single crystal for uniformly controlling the impurity concentration along the crystal growth direction.

これまでに、III−V族化合物半導体結晶などの製造方法として、半導体融液をルツボなどの容器に収容し、半導体融液の一端に種結晶を接触させた状態で種結晶側から他端に向けて徐々に固化させることにより単結晶を成長させる結晶成長技術が多数開発され、実用に供されてきた。   Up to now, as a method for producing a III-V compound semiconductor crystal or the like, the semiconductor melt is accommodated in a container such as a crucible, and the seed crystal is in contact with one end of the semiconductor melt from the seed crystal side to the other end. Many crystal growth techniques for growing a single crystal by gradually solidifying it have been developed and put into practical use.

例えば、縦型のルツボに半導体融液を収容し、その下端に種結晶を配して、下方から上方へ向けて結晶を成長させる、いわゆる縦型成長法としては、垂直ブリッジマン(Vertical Bridgman:VB)法、垂直温度勾配凝固(Vertical Gradient Freeze:VGF)法、垂直帯溶融凝固(Vertical Zone Melt:VZM)法などが知られている。   For example, as a so-called vertical growth method in which a semiconductor melt is accommodated in a vertical crucible, a seed crystal is arranged at the lower end thereof, and the crystal is grown from below to above, vertical bridgman (Vertical Bridgman: VB) method, vertical gradient freeze (VGF) method, vertical zone melt solidification (VZM) method and the like are known.

VB法、VGF法に関しては、非特許文献1に詳しく解説が記載されている。また、特許文献1〜4などにもその応用技術が記載されている。   Non-patent document 1 describes in detail the VB method and the VGF method. Also, Patent Documents 1 to 4 and the like describe the applied technology.

例えば、特許文献1には原料となる半導体融液を収容する容器と、容器の周囲に配置した温度勾配炉と、温度勾配炉を容器に対して相対的に移動する手段とを有し、容器の一端から固化成長させる単結晶の製造装置において、容器の壁内にB23を含有させたBN(Boron Nitride)製容器を用いた単結晶の製造装置が記載されている。 For example, Patent Document 1 includes a container for storing a semiconductor melt as a raw material, a temperature gradient furnace disposed around the container, and means for moving the temperature gradient furnace relative to the container. Describes a single crystal production apparatus using a BN (Boron Nitride) container containing B 2 O 3 in the wall of the container.

また、特許文献3に記載の単結晶製造装置によれば、使用時にBN製容器の壁面から徐々にB23が染み出してB23膜でルツボの壁面が覆われるので、原料となる半導体融液とルツボ表面の凹凸壁面とが接触することにより生じる結晶核の発生を防止できる。 In addition, according to the single crystal manufacturing apparatus described in Patent Document 3, B 2 O 3 gradually oozes out from the wall surface of the BN container during use, and the wall surface of the crucible is covered with the B 2 O 3 film. The generation of crystal nuclei caused by the contact between the semiconductor melt and the irregular wall surface of the crucible surface can be prevented.

特許第2585415号公報Japanese Patent No. 2558515 特許第2664085号公報Japanese Patent No. 2664085 特許第2850581号公報Japanese Patent No. 2850581 特許第3391503号公報Japanese Patent No. 3391503 干川圭吾著「アドバンストエレクトロニクス I−4 バルク結晶成長技術」培風館、1994年5月版、p.222−241T. Hikawa “Advanced Electronics I-4 Bulk Crystal Growth Technology” Baifukan, May 1994, p. 222-241

しかしながら、上述した従来の化合物半導体結晶の製造技術では、ドーピングした不純物の偏析効果により、結晶内部で結晶成長方向に沿って不純物濃度が大きく変化してしまうという問題があった。   However, the above-described conventional technology for manufacturing a compound semiconductor crystal has a problem that the impurity concentration largely changes along the crystal growth direction inside the crystal due to the segregation effect of the doped impurities.

不純物濃度のばらつきは、結晶基板の電気特性のばらつきとなるため、最終的に結晶基板を使って製造されるデバイスの特性ばらつきにつながってしまう。また、偏析による不純物の過度な凝縮は、結晶成長中の多結晶発生の原因となる場合もある。   The variation in impurity concentration results in variation in electrical characteristics of the crystal substrate, which ultimately leads to variation in the characteristics of devices manufactured using the crystal substrate. In addition, excessive condensation of impurities due to segregation may cause polycrystal generation during crystal growth.

そこで、本発明の目的は、上記課題を解決し、結晶の成長方向に対して不純物濃度のばらつきが少なく、高品質な半導体単結晶を再現性よく得ることのできる半導体単結晶の製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a method for producing a semiconductor single crystal that solves the above-described problems and that can obtain a high-quality semiconductor single crystal with good reproducibility with little variation in impurity concentration in the crystal growth direction. There is to do.

本発明は上記目的を達成するために創案されたものであり、請求項1の発明は、ルツボ内に、ドーパントとしての不純物を添加した半導体融液を収容し、この半導体融液を前記ルツボの底部に形成された種結晶配置部に配置した種結晶と接触させた状態で、前記ルツボを回転させながら、前記種結晶側から上方に向けて徐々に半導体融液を固化させる半導体単結晶の製造方法において、結晶成長の進行に伴って前記ルツボの回転速度を徐々に遅くする半導体単結晶の製造方法である。   The present invention has been devised to achieve the above object, and the invention of claim 1 contains a semiconductor melt to which an impurity as a dopant is added in a crucible, and the semiconductor melt is contained in the crucible. Production of a semiconductor single crystal that gradually solidifies the semiconductor melt from the seed crystal side upward while rotating the crucible while in contact with the seed crystal arranged in the seed crystal arrangement part formed at the bottom The method is a method for producing a semiconductor single crystal in which the rotational speed of the crucible is gradually decreased with the progress of crystal growth.

請求項2の発明は、結晶成長の進行に伴って前記ルツボの回転速度を徐々に遅くすると共に、結晶成長速度を徐々に遅くする請求項1に記載の半導体単結晶の製造方法である。   The invention according to claim 2 is the method for producing a semiconductor single crystal according to claim 1, wherein the rotation speed of the crucible is gradually decreased and the crystal growth speed is gradually decreased as the crystal growth proceeds.

請求項3の発明は、前記ルツボの直径が160mm、長さが300mmであり、前記ルツボの回転速度を成長開始時の20rpmから成長終了時の1rpmまで、結晶成長の進行に伴って0.25rpm/hの割合で徐々に遅くする請求項1または2に記載の半導体単結晶の製造方法である。   According to a third aspect of the present invention, the diameter of the crucible is 160 mm and the length is 300 mm, and the rotational speed of the crucible is changed from 20 rpm at the start of growth to 1 rpm at the end of the growth, with 0.25 rpm as the crystal growth proceeds. 3. The method for producing a semiconductor single crystal according to claim 1, wherein the semiconductor single crystal is gradually slowed at a rate of / h.

本発明によれば、単結晶の成長方向に対し、ドープした不純物濃度の変化を小さく抑えることができ、その結果、電気特性の揃った結晶基板を歩留まりよく製造することができる。   According to the present invention, it is possible to suppress a change in the doped impurity concentration with respect to the growth direction of the single crystal, and as a result, a crystal substrate with uniform electrical characteristics can be manufactured with a high yield.

以下、本発明の好適な一実施の形態を添付図面にしたがって説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, a preferred embodiment of the invention will be described with reference to the accompanying drawings.

本発明者は、上述した結晶成長方向に沿って不純物濃度が不均一となる問題を解決すべく種々検討した結果、不純物の実効偏析係数が成長境界層厚さの関数であることに着目し、ドープしたい不純物の平衡偏析係数に合わせて結晶の成長境界層厚さを成長中に次第に連続的または段階的に変化させていく方法を考案した。   As a result of various studies to solve the problem of uneven impurity concentration along the crystal growth direction described above, the present inventor has focused on the fact that the effective segregation coefficient of impurities is a function of the growth boundary layer thickness, A method has been devised in which the growth boundary layer thickness of the crystal is gradually or gradually changed during the growth in accordance with the equilibrium segregation coefficient of the impurity to be doped.

結晶に取り込まれる不純物の濃度Csは、次式(1)で表される。 The concentration C s of impurities taken into the crystal is expressed by the following formula (1).

s=ke0(1−g)ke-1 ・・・(1)
ここで、keは実効偏析係数、C0は半導体融液の初期の不純物濃度、gは結晶の固化率(初期の半導体融液重量と固化した結晶の重量との比を表す値)である。
C s = k e C 0 ( 1-g) ke-1 ··· (1)
Here, k e is the effective segregation coefficient, C 0 is the impurity concentration of the initial semiconductor melt, g is the solidification ratio of the crystal (the value representing the ratio of the weight of the crystals solidified initial semiconductor melt weight) .

さらに、実効偏析係数keは、次式(2)で表される。 Further, the effective segregation coefficient k e is expressed by the following equation (2).

e=k0/(k0+(1−k0)・exp(−R・d/D)) ・・・(2)
ここで、k0は平衡偏析係数、Rは結晶成長速度、Dは不純物の半導体融液中の拡散係数、dは界面近傍の半導体融液中の成長境界層の厚さである。
k e = k 0 / (k 0 + (1-k 0) · exp (-R · d / D)) ··· (2)
Here, k 0 is the equilibrium segregation coefficient, R is the crystal growth rate, D is the diffusion coefficient of impurities in the semiconductor melt, and d is the thickness of the growth boundary layer in the semiconductor melt near the interface.

式(2)から分かる通り、不純物の実効偏析係数keは、結晶成長速度Rならびに成長境界層厚さdの関数となっており、結晶成長速度Rが遅いほど、また成長境界層厚さdが薄いほど実効偏析係数keは平衡偏析係数k0に近づく。逆に結晶成長速度Rが速くなれば、また成長境界層厚さdが厚くなれば実効偏析係数keは1に近づく。 As can be seen from equation (2), the effective segregation coefficient k e impurities, crystal growth rate R and has a function of growth boundary layer thickness d, as the crystal growth rate R is low, also the growth boundary layer thickness d the thinner the effective segregation coefficient k e closer to the equilibrium segregation coefficient k 0. The faster the crystal growth rate R Conversely, also the effective segregation coefficient k e thicker the growth boundary layer thickness d approaches 1.

また、式(1)から分かる通り、結晶に取り込まれる不純物は結晶の固化率gの関数で表され、ke>1の場合は、固化率gが大きくなるほど不純物濃度は低下する。逆にke<1の場合は、固化率gが大きくなるほど不純物濃度は増加する。 Further, as can be seen from the equation (1), the impurities taken into the crystal are expressed as a function of the solidification rate g of the crystal. When k e > 1, the impurity concentration decreases as the solidification rate g increases. On the other hand, when k e <1, the impurity concentration increases as the solidification rate g increases.

不純物の偏析の影響をなくすには、実効偏析係数keは1に近いほどよいが、実際には有限の結晶成長速度R、成長境界層厚さdを取らざるを得ない以上、keは1と平衡偏析係数k0の間の値を取る。 To eliminate the influence of segregation of impurities, but the effective segregation coefficient k e better the closer to 1, actually finite crystal growth rate R is forced to take the growth boundary layer thickness d can not but more, k e is It takes a value between 1 and the equilibrium segregation coefficient k 0 .

ここで、本発明者は、結晶成長速度Rならびに成長境界層厚さdは、結晶成長中、常に一定の値を保たなければならないことはないはずであると考え、不純物偏析を緩和するという観点で、結晶成長中の結晶成長速度Rならびに成長境界層厚さdがどうあるべきかを検討した。   Here, the present inventor believes that the crystal growth rate R and the growth boundary layer thickness d should not always remain constant during crystal growth, and alleviates impurity segregation. From the viewpoint, the crystal growth rate R and the growth boundary layer thickness d during crystal growth were examined.

結晶成長の初期の段階では、結晶の体積が少なく、逆に半導体融液の体積が大きい。この時は、結晶中の温度勾配が大きくなりやすく、結晶欠陥も発生しやすい。また、半導体融液の対流による温度変動が生じやすく、結晶を通して放熱する熱流が安定しにくい。   In the initial stage of crystal growth, the volume of the crystal is small, and conversely, the volume of the semiconductor melt is large. At this time, the temperature gradient in the crystal tends to increase, and crystal defects tend to occur. Also, temperature fluctuations are likely to occur due to convection of the semiconductor melt, and the heat flow that dissipates heat through the crystal is difficult to stabilize.

このため、結晶成長速度Rを安定に維持して、結晶に加わる歪を抑制する必要がある。また、半導体融液の温度変動を抑えるためには、ルツボ回転などの手法を用いて対流を抑制した方が結晶成長が安定しやすい。その結果、成長境界層厚さdはある程度厚くならざるを得ない。   For this reason, it is necessary to keep the crystal growth rate R stable and suppress strain applied to the crystal. Moreover, in order to suppress the temperature fluctuation of the semiconductor melt, the crystal growth is more stable when the convection is suppressed by using a method such as crucible rotation. As a result, the growth boundary layer thickness d must be increased to some extent.

しかし、結晶成長が進行して、結晶の体積が増加し、半導体融液の体積が減少してくれば、成長も安定してくるため、必ずしも結晶成長開始当初の結晶成長速度Rならびに成長境界層厚さdを一定に保つ必要はない。   However, if the crystal growth progresses and the volume of the crystal increases and the volume of the semiconductor melt decreases, the growth becomes stable. Therefore, the crystal growth rate R at the beginning of crystal growth and the growth boundary layer are not necessarily limited. It is not necessary to keep the thickness d constant.

翻って不純物の濃度分布を考えると、結晶中の長手方向(結晶成長方向)の不純物濃度分布は、成長初期の不純物濃度と解離の少ない結晶領域が長く続くほどよい。   Considering the impurity concentration distribution, the impurity concentration distribution in the longitudinal direction (crystal growth direction) in the crystal is better as the crystal region with less dissociation from the initial growth of the impurity concentration lasts longer.

しかし実際は、偏析のために結晶の後端に行くにしたがって、成長初期の不純物濃度から大きく外れてきてしまう。結晶中の不純物濃度分布は、初期の半導体融液中の不純物濃度C0と不純物の実効偏析係数keにしたがって決まるわけだが、結晶成長中に実効偏析係数keを変化させることができれば、少しでも成長初期の不純物濃度と解離の少ない結晶領域を長く成長させることができるはずである。 However, in actuality, the impurity concentration greatly deviates from the initial concentration of growth as it goes to the rear end of the crystal due to segregation. Impurity concentration distribution in the crystal, but it not determined according to the initial impurity concentration C 0 and the effective segregation coefficient k e of impurities into the semiconductor melt, if it is possible to vary the effective segregation coefficient k e during crystal growth, slightly However, it should be possible to grow a crystal region with little impurity concentration and dissociation at the beginning of growth for a long time.

そのためには、偏析による成長初期の不純物濃度との解離の大きい領域をなるべく結晶の後端部に持ってくる方がよく、そのためには、成長中に実効偏析係数keの値を、平衡偏析係数k0に近づけるようにすればよい。 For this purpose, it is better to bring the rear end of the large area of the dissociation of the impurity concentration of the initial growth by segregation possible crystal, in order that the value of the effective segregation coefficient k e during growth, the equilibrium segregation it may be set so as to be close to the coefficient k 0.

以上の関係から、不純物をドープして結晶成長を行う場合は、結晶の固化率gが大きくなるにつれて実効偏析係数keが平衡偏析係数k0に近づくように、結晶成長速度Rを徐々に遅くする、または成長境界層厚さdを徐々に薄くすることで、不純物の偏析の影響を緩和することができるのである。 From the above relationship, when crystal growth is performed with an impurity doped, as the effective segregation coefficient k e approaches equilibrium segregation coefficient k 0 as solidification rate g of the crystal increases, gradually slow the crystal growth rate R In other words, the influence of the segregation of impurities can be mitigated by gradually reducing the growth boundary layer thickness d.

さて、本発明の実施の形態に係る半導体単結晶の製造方法およびこの製造方法で用いる結晶成長炉を説明する。   Now, a method for manufacturing a semiconductor single crystal according to an embodiment of the present invention and a crystal growth furnace used in this manufacturing method will be described.

まず、半導体単結晶の製造に用いる結晶成長炉の一例を説明する。図1は、本発明で用いる結晶成長炉の断面模式図である。   First, an example of a crystal growth furnace used for manufacturing a semiconductor single crystal will be described. FIG. 1 is a schematic cross-sectional view of a crystal growth furnace used in the present invention.

結晶成長炉1は、成長する化合物半導体結晶の原料を収容する容器としてのルツボ6と、ルツボ6を収容するルツボ収容容器としてのサセプタ7と、サセプタ7を保持するサセプタ支持部材8と、ルツボ6を側面から加熱する複数の外周加熱部としての外周加熱ヒータ3とを備える。外周加熱ヒータ3は、図示例では、炉内に上下に配置された4つの外周加熱ヒータ3a,3b,3c,3dから構成されている。   The crystal growth furnace 1 includes a crucible 6 as a container for containing a raw material of a compound semiconductor crystal to be grown, a susceptor 7 as a crucible container for containing the crucible 6, a susceptor support member 8 for holding the susceptor 7, and the crucible 6. And a peripheral heater 3 as a plurality of peripheral heaters that heat the surface from the side. In the illustrated example, the outer peripheral heater 3 is composed of four outer peripheral heaters 3a, 3b, 3c, and 3d arranged vertically in the furnace.

さらに、結晶成長炉1は、複数の外周加熱ヒータ3が発する熱の結晶成長炉1の外部への伝熱を防止する複数の断熱材2と、上部の外周加熱ヒータ3a 3bと下部の外周加熱ヒータ3c,3dとの間に設けられる断熱材4と、これら断熱材4と、これら断熱材2,4などを外部から覆うチャンバー11とを備える。   Further, the crystal growth furnace 1 includes a plurality of heat insulating materials 2 that prevent heat generated by the plurality of outer peripheral heaters 3 from being transmitted to the outside of the crystal growth furnace 1, an upper outer peripheral heater 3a 3b, and a lower outer peripheral heater. The heat insulating material 4 provided between the heaters 3c and 3d, these heat insulating materials 4, and the chamber 11 which covers these heat insulating materials 2 and 4 from the outside are provided.

ルツボ6は、円筒体状の直胴部と、直胴部の下端に接続して設けられ、下方に向かって漸次縮径して形成された円錐筒体状の傾斜部と、傾斜部に接続して設けられ、化合物半導体結晶の種結晶10を収容する種結晶配置部としての有底円筒体状の細径部とからなる。   The crucible 6 is connected to a cylindrical straight body part, a conical cylinder-like inclined part formed by being connected to the lower end of the straight body part and gradually reducing the diameter downward, and to the inclined part. And a small-diameter portion having a bottomed cylindrical shape as a seed crystal arrangement portion that accommodates the seed crystal 10 of the compound semiconductor crystal.

ルツボ6の直胴部は、一例として、直径160mm、長さ300mmの円筒である。ルツボ6は、熱分解窒化ホウ素(Pyrolytic Boron Nitride:pBN)から形成される。また、ルツボ6は石英から形成することもできる。   As an example, the straight body portion of the crucible 6 is a cylinder having a diameter of 160 mm and a length of 300 mm. The crucible 6 is formed from pyrolytic boron nitride (pBN). The crucible 6 can also be formed from quartz.

すなわち、ルツボ6は、細径部を底部に有すると共に、直胴部の上端にルツボ開口部を有する。ルツボ6は、細径部に種結晶10を収容すると共に、ルツボ開口部から導入された化合物半導体結晶の原料と必要に応じてp型用またはn型用の所定のドーパントとを所定量ずつ収容する。化合物半導体結晶の原料には、成長する化合物半導体の多結晶を用いる。また、ルツボ6には、B23などの液体封止剤9をさらに収容してもよい。 That is, the crucible 6 has a narrow diameter portion at the bottom and a crucible opening at the upper end of the straight body portion. The crucible 6 accommodates the seed crystal 10 in the small diameter portion and also contains a predetermined amount of the compound semiconductor crystal raw material introduced from the crucible opening and a predetermined dopant for p-type or n-type as required. To do. The compound semiconductor crystal material is a growing compound semiconductor polycrystal. The crucible 6 may further contain a liquid sealant 9 such as B 2 O 3 .

サセプタ7はグラファイトから形成され、ルツボ6を保持して収容する。また、サセプタ支持部材8は、結晶成長炉1内で昇降および回転ができるように設けられている。そして、サセプタ支持部材8の上にサセプタ7が搭載されて保持される。   The susceptor 7 is made of graphite, and holds and accommodates the crucible 6. The susceptor support member 8 is provided so that it can be moved up and down and rotated in the crystal growth furnace 1. The susceptor 7 is mounted and held on the susceptor support member 8.

この場合に、サセプタ7下部がサセプタ支持部材8に接触して、サセプタ支持部材8の上にサセプタ7が搭載される。これにより、結晶成長中にルツボ6内の温度分布を緩やかに、かつ、一定に保ってルツボ6を回転させることができる。   In this case, the lower part of the susceptor 7 comes into contact with the susceptor support member 8, and the susceptor 7 is mounted on the susceptor support member 8. Thereby, the crucible 6 can be rotated while keeping the temperature distribution in the crucible 6 gently and constant during crystal growth.

結晶成長炉1の上部から下部へ向かう方向に沿って配置される複数の外周加熱ヒータ3(3a,3b,3c,3d)は、サセプタ7の周囲を囲むように結晶成長炉1の内部の所定の高さの位置にそれぞれ配置される。複数の外周加熱ヒータ3の設定温度は、結晶成長炉1の上部から下部へ向かう方向に沿って順次、低下するように設定される。   A plurality of outer peripheral heaters 3 (3 a, 3 b, 3 c, 3 d) arranged along the direction from the upper part to the lower part of the crystal growth furnace 1 are predetermined inside the crystal growth furnace 1 so as to surround the periphery of the susceptor 7. Are arranged at respective heights. The set temperatures of the plurality of outer peripheral heaters 3 are set so as to decrease sequentially along the direction from the upper part to the lower part of the crystal growth furnace 1.

外周加熱ヒータ3は、一例として、グラファイトなどの材料から形成される抵抗加熱ヒータで構成される。また、外周加熱ヒータ3は、炭化ケイ素(SiC)ヒータ、赤外線加熱ヒータ、RFコイルで加熱した発熱体を2次ヒータとして用いるヒータなどで構成することもできる。   As an example, the outer periphery heater 3 is formed of a resistance heater formed of a material such as graphite. Moreover, the outer periphery heater 3 can also be comprised by the heater etc. which use the heating element heated with the silicon carbide (SiC) heater, the infrared heating heater, and the RF coil as a secondary heater.

断熱材2は、複数の外周加熱ヒータ3の外側を包囲して設けられる。断熱材2を設けることにより、複数の外周加熱ヒータ3が発した熱を、ルツボ6に効率的に伝熱させることができる。一方、断熱材4は、上部の外周加熱ヒータ3a,3bと下部の外周加熱ヒータ3c,3dとの間に所定の温度差を確保するために配置されるが、設置が必ず必要というわけではない。   The heat insulating material 2 is provided so as to surround the outside of the plurality of outer peripheral heaters 3. By providing the heat insulating material 2, the heat generated by the plurality of outer peripheral heaters 3 can be efficiently transferred to the crucible 6. On the other hand, the heat insulating material 4 is disposed in order to ensure a predetermined temperature difference between the upper outer peripheral heaters 3a and 3b and the lower outer peripheral heaters 3c and 3d, but the installation is not necessarily required. .

断熱材2は、一例として、グラファイトの成型材から構成される。また、断熱材2は、アルミナ材、グラスウール、耐火レンガなどで構成することもできる。   The heat insulating material 2 is comprised from the molding material of a graphite as an example. Moreover, the heat insulating material 2 can also be comprised with an alumina material, glass wool, a firebrick, etc.

チャンバー11は、ルツボ6と、ルツボ6を収容するサセプタ7と、サセプタ7を保持するサセプタ支持部材8と、複数の外周加熱ヒータ3と、断熱材2および断熱材4とを密閉する。結晶成長炉1は、チャンバー11内の雰囲気を所定のガス雰囲気に設定する機構と、チャンバー11内の圧力を一定値に保つガス圧制御機構とを有する。   The chamber 11 seals the crucible 6, the susceptor 7 that accommodates the crucible 6, the susceptor support member 8 that holds the susceptor 7, the plurality of outer peripheral heaters 3, the heat insulating material 2, and the heat insulating material 4. The crystal growth furnace 1 has a mechanism for setting the atmosphere in the chamber 11 to a predetermined gas atmosphere, and a gas pressure control mechanism for keeping the pressure in the chamber 11 at a constant value.

結晶成長炉1は、VGF法で化合物半導体結晶の単結晶を成長する。すなわち、結晶成長炉1は、外周加熱ヒータ3の加熱により、ルツボ6内に収容したドーパントを含む原料を所定の温度で融解した半導体融液5を、ルツボ6の底部に設置された種結晶10と接触させた状態で、種結晶10側のルツボ6の下端を、ルツボ6の上端(ルツボ開口部側)よりも低温に保持しつつ、半導体融液5の温度を降下させる。ルツボ6内では融解した化合物半導体の原料の半導体融液5が細径部の種結晶10と接触して単結晶の成長を開始し、種結晶10側から結晶成長炉1の上方に向かって半導体融液5が徐々に固化し、化合物半導体の単結晶が成長していく。結晶成長炉1で成長する化合物半導体結晶は、一例として、III−V族化合物半導体であるGaAsの単結晶である。   The crystal growth furnace 1 grows a single crystal of a compound semiconductor crystal by a VGF method. That is, in the crystal growth furnace 1, the seed crystal 10 installed at the bottom of the crucible 6 is a semiconductor melt 5 in which a raw material containing a dopant contained in the crucible 6 is melted at a predetermined temperature by the heating of the outer peripheral heater 3. The temperature of the semiconductor melt 5 is lowered while keeping the lower end of the crucible 6 on the seed crystal 10 side at a lower temperature than the upper end of the crucible 6 (crucible opening side). In the crucible 6, the melted semiconductor melt 5 of the compound semiconductor material comes into contact with the seed crystal 10 of the small diameter portion to start the growth of the single crystal, and the semiconductor is directed from the seed crystal 10 side to the upper side of the crystal growth furnace 1. The melt 5 gradually solidifies and a compound semiconductor single crystal grows. As an example, the compound semiconductor crystal grown in the crystal growth furnace 1 is a single crystal of GaAs which is a III-V group compound semiconductor.

また、結晶成長炉1において、化合物半導体の半導体融液5が大気圧以上の解離圧を有する場合、チャンバー11を圧力容器とすることもできる。チャンバー11を圧力容器とすることにより、化合物半導体の半導体融液5が大気圧以上の解離圧を有する場合であっても、液体封止剤9を用いると同時に、チャンバー内を解離圧以上の圧力に設定することにより、半導体融液5の解離を防止して化合物半導体の単結晶を成長させることができる。   Further, in the crystal growth furnace 1, when the compound semiconductor semiconductor melt 5 has a dissociation pressure equal to or higher than atmospheric pressure, the chamber 11 can be used as a pressure vessel. By using the chamber 11 as a pressure vessel, even when the semiconductor melt 5 of the compound semiconductor has a dissociation pressure equal to or higher than atmospheric pressure, the liquid sealant 9 is used and at the same time the pressure inside the chamber is equal to or higher than the dissociation pressure. By setting to, dissociation of the semiconductor melt 5 can be prevented and a single crystal of a compound semiconductor can be grown.

また、ルツボ6の全体を石英などから形成されたアンプルに封入することもできる。そして、ルツボ6を封入したアンプルを結晶成長炉1内の所定の位置に設置して、化合物半導体の単結晶を成長することもできる。   Also, the entire crucible 6 can be enclosed in an ampoule made of quartz or the like. Then, an ampoule in which the crucible 6 is sealed can be installed at a predetermined position in the crystal growth furnace 1 to grow a compound semiconductor single crystal.

また、結晶成長炉1においては、複数の外周加熱ヒータ3の設定温度を所定の速度で徐々に低下させて、ルツボ6内の温度を低下させ、ルツボ6内の半導体融液5から単結晶を成長させているが、結晶の製造方法はこれに限られない。例えば、サセプタ支持部材8を回転させながら徐々に降下させることにより単結晶を成長させてもよい。   In the crystal growth furnace 1, the set temperature of the plurality of outer peripheral heaters 3 is gradually lowered at a predetermined speed to lower the temperature in the crucible 6, and the single crystal is obtained from the semiconductor melt 5 in the crucible 6. Although it is grown, the manufacturing method of the crystal is not limited to this. For example, the single crystal may be grown by gradually lowering the susceptor support member 8 while rotating it.

上述の結晶成長炉1では、GaAsの単結晶だけではなく、他のIII−V族化合物半導体結晶を成長することもできる。例えば、結晶成長炉1を用いて、InP、InAs、GaSb、またはInSbなどの化合物半導体の単結晶を成長することができる。また、結晶成長炉1を用いてAlGaAs、InGaAsまたはInGaPなどのIII−V族化合物半導体結晶の三元混晶結晶、若しくは、AlGaInPなどのIII−V族化合物半導体結晶の四元混晶結晶の成長にも応用が可能である。   In the crystal growth furnace 1 described above, not only a GaAs single crystal but also other III-V group compound semiconductor crystals can be grown. For example, a single crystal of a compound semiconductor such as InP, InAs, GaSb, or InSb can be grown using the crystal growth furnace 1. Further, using the crystal growth furnace 1, growth of a ternary mixed crystal of a III-V compound semiconductor crystal such as AlGaAs, InGaAs or InGaP or a quaternary mixed crystal of a III-V compound semiconductor crystal such as AlGaInP is performed. Application is also possible.

また、結晶成長炉1を用いて、ZnSe、CdTeなどのII−VI族化合物半導体結晶、または、Si、GeなどのIV族半導体結晶の成長をすることもできる。さらに、結晶成長炉1を用いて、化合物半導体結晶または半導体単結晶ではない材料の結晶である、金属結晶、酸化物結晶、フッ化物結晶などの結晶を成長させることもできる。   In addition, the crystal growth furnace 1 can be used to grow II-VI group compound semiconductor crystals such as ZnSe and CdTe or IV group semiconductor crystals such as Si and Ge. Furthermore, the crystal growth furnace 1 can be used to grow crystals such as metal crystals, oxide crystals, and fluoride crystals, which are crystals of materials that are not compound semiconductor crystals or semiconductor single crystals.

次に、本実施の形態に係る半導体単結晶の製造方法を説明する。   Next, a method for manufacturing a semiconductor single crystal according to the present embodiment will be described.

本実施の形態に係る半導体単結晶の製造方法は、半導体融液5内の対流を抑制することで成長境界層厚さdが増加する現象を利用し、ドーパントとしての不純物を添加した半導体融液5を凝固させて半導体単結晶を成長させる結晶成長中にルツボ6を回転させて、半導体融液5に遠心力を付加することで半導体融液5の自然対流を抑制すると共に、結晶成長の進行に伴って(結晶の固化率gの増加に伴って)、実効偏析係数keが平衡偏析係数k0に近づくように、ルツボ6の回転数を徐々に遅くすることで自然対流の影響を徐々に開放して結晶成長方向に沿う不純物濃度の均一化を図る方法である。 The method for manufacturing a semiconductor single crystal according to the present embodiment uses a phenomenon in which the growth boundary layer thickness d increases by suppressing convection in the semiconductor melt 5, and a semiconductor melt to which an impurity as a dopant is added. 5 is solidified to grow a semiconductor single crystal. The crucible 6 is rotated during crystal growth to apply centrifugal force to the semiconductor melt 5 to suppress natural convection of the semiconductor melt 5 and progress of crystal growth. with the (with increasing solidification rate g of crystals), so that the effective segregation coefficient k e approaches equilibrium segregation coefficient k 0, gradually the effect of gradually slow to be a natural convection the rotational speed of the crucible 6 In this method, the impurity concentration is made uniform along the crystal growth direction.

例えば、上述した直径160mmのルツボ6の場合には、ルツボ6の回転速度を成長開始時の20rpmから成長終了時の1rpmまで、結晶成長の進行に伴って0.25rpm/hの割合で徐々に遅くするとよい。   For example, in the case of the above-described crucible 6 having a diameter of 160 mm, the rotational speed of the crucible 6 is gradually increased from 20 rpm at the start of growth to 1 rpm at the end of growth at a rate of 0.25 rpm / h as the crystal growth proceeds. It is good to be late.

半導体単結晶の製造方法によれば、結晶成長中にルツボ6を回転させて、半導体融液5に遠心力を付加することで半導体融液5の自然対流を抑制すると共に、結晶成長の進行に伴って(結晶の固化率gの増加に伴って)、実効偏析係数keが平衡偏析係数k0に近づくように、ルツボ6の回転数を徐々に遅くするため、単結晶の成長方向に対し、ドープした不純物濃度の変化を小さく抑えることができ、その結果、電気特性の揃った結晶基板を歩留まりよく製造することができる。 According to the method for producing a semiconductor single crystal, the crucible 6 is rotated during crystal growth, and centrifugal force is applied to the semiconductor melt 5 to suppress the natural convection of the semiconductor melt 5 and to progress the crystal growth. with it (with increasing solidification rate g of crystals), so that the effective segregation coefficient k e approaches equilibrium segregation coefficient k 0, to gradually slow the rotational speed of the crucible 6, with respect to the growth direction of the single crystal As a result, a change in the doped impurity concentration can be kept small, and as a result, a crystal substrate with uniform electrical characteristics can be manufactured with a high yield.

また、ドーパントとしての不純物を添加した半導体融液5を凝固させて半導体単結晶を成長させる半導体単結晶の製造方法において、結晶成長の進行に伴って(結晶の固化率gの増加に伴って)、実効偏析係数keが平衡偏析係数k0に近づくようにするためには、結晶成長速度を徐々に遅くすることも有効である。 Further, in the method of manufacturing a semiconductor single crystal by solidifying the semiconductor melt 5 to which an impurity as a dopant is added to grow a semiconductor single crystal, as the crystal growth proceeds (with an increase in the solidification rate g of the crystal) in order to effective segregation coefficient k e is to approach equilibrium segregation coefficient k 0, it is also effective to gradually slow the crystal growth rate.

そこで、これを上述の実施の形態、すなわち、結晶成長中にルツボ6を回転させ、結晶成長の進行に伴って、ルツボ6の回転速度を徐々に遅くする方法と組み合わせて、不純物を添加した半導体融液5を凝固させて半導体単結晶を成長させる際に、半導体融液5に遠心力を付加して半導体融液5の自然対流を抑制し、結晶成長の進行に伴って(結晶の固化率gの増加に伴って)、ルツボの回転数を遅くしていくと同時に、結晶成長速度を徐々に遅くして(或いは半導体融液5の温度降下速度を徐々に小さくして)、結晶成長方向に沿う不純物濃度の均一化を図ることもできる。   Therefore, this is combined with the above-described embodiment, that is, the method in which the crucible 6 is rotated during crystal growth, and the rotational speed of the crucible 6 is gradually decreased as the crystal growth proceeds, and a semiconductor doped with impurities. When the semiconductor single crystal is grown by solidifying the melt 5, centrifugal force is applied to the semiconductor melt 5 to suppress the natural convection of the semiconductor melt 5. As the g increases, the crucible rotation speed is slowed down, and at the same time the crystal growth rate is gradually slowed (or the temperature drop rate of the semiconductor melt 5 is gradually reduced), and the crystal growth direction The impurity concentration along the line can also be made uniform.

本発明において、半導体融液5に加わる遠心力をなくし、半導体融液5の対流の影響を最も大きくするためには、ルツボ6の回転を完全に止めてしまえばよいが、そうすると、半導体融液5内の温度分布の軸対称性が崩れて結晶成長が安定しなくなったり、結晶の電気特性の分布が乱れるなどの別の問題が生じてしまうため、ルツボ6の回転は完全に止めてしまわない方がよい。   In the present invention, in order to eliminate the centrifugal force applied to the semiconductor melt 5 and maximize the influence of the convection of the semiconductor melt 5, the rotation of the crucible 6 may be stopped completely. Since the axial symmetry of the temperature distribution in 5 collapses and other problems such as unstable crystal growth and disordered distribution of electrical characteristics of the crystal occur, the rotation of the crucible 6 cannot be completely stopped. Better.

本発明は、成長される結晶が、II−VI族またはIII−V族の化合物半導体結晶、特に、GaAsの単結晶である場合に適用すると効果的である。   The present invention is effective when applied to a case where the crystal to be grown is a II-VI group or III-V group compound semiconductor crystal, particularly a GaAs single crystal.

例えば、GaAsの結晶成長に適用する場合、不純物としては、Si、S、Se、Mg、Zn、Cd、In、Ge、Sn、Sb、Te、Cr、Mn、Fe、C、Al、P、Beなどが挙げられる。   For example, when applied to crystal growth of GaAs, the impurities include Si, S, Se, Mg, Zn, Cd, In, Ge, Sn, Sb, Te, Cr, Mn, Fe, C, Al, P, and Be. Etc.

本発明は、縦型ボート法(VB法、VGF法など)に適用されることが望ましい。引上げ法(CZ法、LEC法)、カイロポーラス法などの結晶製造方法にも適用は可能であるが、これらの結晶成長においては、半導体融液5中に結晶回転に伴う強制対流が生じるため、ルツボ回転で生じる遠心力で半導体融液5中の対流を制御することが難しく、本発明の効果が得られにくい。   The present invention is preferably applied to the vertical boat method (VB method, VGF method, etc.). Although it can be applied to crystal production methods such as pulling method (CZ method, LEC method) and chiroporus method, in these crystal growths, forced convection is generated in the semiconductor melt 5 due to crystal rotation. It is difficult to control the convection in the semiconductor melt 5 by the centrifugal force generated by the crucible rotation, and it is difficult to obtain the effects of the present invention.

(実施例1)
実施例1では、上述した結晶成長炉1を用いて、VGF法により、SiをドープしたGaAsの単結晶成長を行った。
Example 1
In Example 1, single crystal growth of GaAs doped with Si was performed by the VGF method using the crystal growth furnace 1 described above.

ルツボ6は、その直胴部の直径160mm、直胴部の長さ300mmのpBN製のものを用い、まず、ルツボ6の細径部にGaAsの種結晶10を収納した。続いて、予め合成した塊状のGaAs多結晶をルツボ6内に24000g充填した。次に、ドーパント(不純物)としてシリコンを7.2g、液体封止剤9としてB23を400gルツボ6内に装填した。 The crucible 6 was made of pBN having a diameter of the straight body portion of 160 mm and the length of the straight body portion of 300 mm. First, the GaAs seed crystal 10 was stored in the narrow diameter portion of the crucible 6. Subsequently, 24,000 g of a bulk GaAs polycrystal synthesized in advance was filled in the crucible 6. Next, 7.2 g of silicon as a dopant (impurity) and 400 g of B 2 O 3 as a liquid sealant 9 were charged in the crucible 6.

次に、このルツボ6を、グラファイト製のサセプタ7に収容した。さらに、このサセプタ7を、サセプタ支持部材8上に搭載した。次に、結晶成長炉1を密閉して、結晶成長炉1内を窒素ガスでガス置換した。これにより、結晶成長炉1内のガス雰囲気は、窒素ガス雰囲気となった。   Next, the crucible 6 was accommodated in a susceptor 7 made of graphite. Further, the susceptor 7 was mounted on the susceptor support member 8. Next, the crystal growth furnace 1 was sealed, and the inside of the crystal growth furnace 1 was replaced with nitrogen gas. Thereby, the gas atmosphere in the crystal growth furnace 1 became a nitrogen gas atmosphere.

続いて、ルツボ6の回転を開始した。ルツボ6の回転は、サセプタ支持部材8を回転させて行い、ルツボ6の回転速度は20rpmに設定した。また、複数の外周加熱ヒータ3に通電して、ルツボ6の加熱を開始した。ルツボ6の加熱の開始後、所定時間ルツボ6を加熱し続けることにより、ルツボ6内のGaAs多結晶を完全に融解して半導体融液5とした。   Subsequently, the crucible 6 started to rotate. The crucible 6 was rotated by rotating the susceptor support member 8 and the rotational speed of the crucible 6 was set to 20 rpm. Further, the crucible 6 was heated by energizing the plurality of outer peripheral heaters 3. By continuing to heat the crucible 6 for a predetermined time after the start of the heating of the crucible 6, the GaAs polycrystal in the crucible 6 was completely melted to obtain the semiconductor melt 5.

ルツボ6を加熱する工程で、チャンバー内の雰囲気ガスの体積は膨張する。そこで、チャンバー内の圧力が0.5MPaを超えないように、チャンバー内の圧力を制御した。すなわち、本実施例1においては、チャンバー内の圧力が結晶成長中も常に0.5MPaに保持されるように、自動的かつ連続的にチャンバー内のガス圧を制御した。   In the process of heating the crucible 6, the volume of the atmospheric gas in the chamber expands. Therefore, the pressure in the chamber was controlled so that the pressure in the chamber did not exceed 0.5 MPa. That is, in Example 1, the gas pressure in the chamber was controlled automatically and continuously so that the pressure in the chamber was always maintained at 0.5 MPa even during crystal growth.

ルツボ6内のGaAs多結晶を融解させる過程において、ルツボ6内に添加されたB23は、GaAs多結晶が融解するより早く軟化した。軟化したB23は、透明な水飴状になって半導体融液5の表面を覆った。これにより、GaAsの分解によるAsの揮発を抑制できた。 In the process of melting the GaAs polycrystal in the crucible 6, the B 2 O 3 added to the crucible 6 softened faster than the GaAs polycrystal melted. The softened B 2 O 3 covered the surface of the semiconductor melt 5 in a transparent water tank shape. Thereby, the volatilization of As due to the decomposition of GaAs could be suppressed.

続いて、複数の外周加熱ヒータ3の設定温度を、結晶成長炉1の上から下に行くにつれて低下する温度に設定した。   Subsequently, the set temperature of the plurality of outer peripheral heaters 3 was set to a temperature that decreased from the top to the bottom of the crystal growth furnace 1.

具体的には、4基の外周加熱ヒータ3のうち最上部に配置されている外周加熱ヒータ3aの設定温度を1290℃に設定し、その下に配置されている外周加熱ヒータ3bの設定温度を1260℃に設定した。さらに、断熱材4の下に配置されている外周加熱ヒータ3cの設定温度を1150℃、最下段に配置されている外周加熱ヒータ3dの設定温度を1050℃に設定した。このようにヒータ温度を設定した後、半導体融液5の温度が安定するまで2時間保持した。   Specifically, the set temperature of the outer peripheral heater 3a arranged at the top of the four outer heaters 3 is set to 1290 ° C., and the set temperature of the outer heater 3b arranged therebelow is set. Set to 1260 ° C. Furthermore, the set temperature of the outer peripheral heater 3c arranged under the heat insulating material 4 was set to 1150 ° C., and the set temperature of the outer peripheral heater 3d arranged in the lowest stage was set to 1050 ° C. After setting the heater temperature in this way, the temperature was maintained for 2 hours until the temperature of the semiconductor melt 5 was stabilized.

複数の外周加熱ヒータ3の位置に対するルツボ6の位置は、予め結晶成長炉1内に熱電対を挿入して計測した温度分布に基づいて決定した。具体的には、ルツボ6を保持している間に種結晶10が融解して消失することを防止すべく、GaAsの融点である1238℃の等温線が、種結晶10の上端部分にかかるようにルツボ6を配置した。   The position of the crucible 6 relative to the positions of the plurality of outer peripheral heaters 3 was determined based on a temperature distribution measured by inserting a thermocouple into the crystal growth furnace 1 in advance. Specifically, in order to prevent the seed crystal 10 from melting and disappearing while holding the crucible 6, an isotherm of 1238 ° C. which is the melting point of GaAs is applied to the upper end portion of the seed crystal 10. The crucible 6 was placed in

結晶成長炉1内の温度が安定した後、各外周加熱ヒータ3の設定温度を、0.5K/hの速度で降下させ、この一定の温度降下速度を保ち、約3日かけて最上部の外周加熱ヒータ3aの設定温度が1250℃になるまで冷却した。また、各外周加熱ヒータ3の設定温度の降下開始と合わせてルツボ6の回転数を減少させ始め、回転数が1rpmになるまで0.25rpm/hの割合で回転数を徐々に減少させた。   After the temperature in the crystal growth furnace 1 is stabilized, the set temperature of each of the outer peripheral heaters 3 is lowered at a rate of 0.5 K / h, and this constant temperature drop rate is maintained. It cooled until the preset temperature of the outer periphery heater 3a became 1250 degreeC. In addition, the rotational speed of the crucible 6 was started to decrease along with the start of lowering of the set temperature of each outer peripheral heater 3, and the rotational speed was gradually decreased at a rate of 0.25 rpm / h until the rotational speed reached 1 rpm.

その後、1rpmでルツボ6を回転させたまま、各外周加熱ヒータ3の温度降下を停止し、そこからさらに、各外周加熱ヒータ3の温度が全て950℃になるように24時間かけて徐冷し、次いで、各外周加熱ヒータ3の温度が400℃になるまで、−20℃/hの速度で各外周加熱ヒータ3の温度を低下させた。続いて、ルツボ6の回転を止め、各外周加熱ヒータ3の通電を停止して、ルツボ6を室温まで冷却した。ルツボ6を室温まで冷却した後、結晶成長炉1からルツボ6を取り出し、B23(液体封止剤9)を除去して成長結晶を取り出した。その結果、成長結晶が全長にわたってGaAsの単結晶であることが確認された。 Thereafter, while the crucible 6 is rotated at 1 rpm, the temperature drop of each outer heater 3 is stopped, and then gradually cooled over 24 hours so that the temperature of each outer heater 3 becomes 950 ° C. Then, the temperature of each outer peripheral heater 3 was decreased at a rate of −20 ° C./h until the temperature of each outer peripheral heater 3 reached 400 ° C. Subsequently, the rotation of the crucible 6 was stopped, the energization of each outer peripheral heater 3 was stopped, and the crucible 6 was cooled to room temperature. After cooling the crucible 6 to room temperature, remove the crucible 6 from the crystal growth furnace 1, was taken out grown crystals were removed B 2 O 3 (liquid sealant 9). As a result, it was confirmed that the grown crystal was a GaAs single crystal over the entire length.

上述の工程で、連続して20回の結晶成長を実施した。その結果、いずれの結晶成長においても、全長がGaAsの単結晶である結晶を得ることができた。   In the above-described process, crystal growth was performed 20 times continuously. As a result, it was possible to obtain a crystal whose entire length was a single crystal of GaAs in any crystal growth.

(比較例1)
上述の実施例1と比較するための比較例1として、実施例1と同一の第一の結晶成長炉1を用いVGF法により、SiをドープしたGaAsの単結晶成長を行った。
(Comparative Example 1)
As Comparative Example 1 for comparison with Example 1 described above, single crystal growth of GaAs doped with Si was performed by the VGF method using the same first crystal growth furnace 1 as Example 1.

この比較例1における結晶成長作業の手順は、上述の実施例1と同じである。実施例1と比較例1とが異なるのは、ルツボ6の回転数である。比較例1においては、結晶成長開始から成長結晶の冷却が完了するまでの間、ルツボ6の回転数を20rpmのままとして定速で回転させた。   The procedure of crystal growth work in this comparative example 1 is the same as that of the above-mentioned example 1. The difference between Example 1 and Comparative Example 1 is the rotational speed of the crucible 6. In Comparative Example 1, the crucible 6 was rotated at a constant speed while maintaining the rotation speed of the crucible 6 from the start of crystal growth until the cooling of the grown crystal was completed.

比較例1においても、ルツボ6を室温まで冷却した後、ルツボ6内の成長結晶を取り出して調べたところ、全長にわたってGaAsの単結晶であることが確認された。   Also in Comparative Example 1, after cooling the crucible 6 to room temperature, the grown crystal in the crucible 6 was taken out and examined, and it was confirmed that it was a GaAs single crystal over the entire length.

(実施例1と比較例1の比較)
実施例1と比較例1とを比較するため、上述の実施例1の工程で得られた20本のGaAs単結晶の内の1本を選択した。そして、選択した1本のGaAs単結晶の直胴部分に該当する部分をスライスして、(100)面を有する略円形状の複数のウェハを切り出した。次に、切り出したウェハから固化率が0.1おきに該当する位置のウェハを抜き出し、その中央部分のシリコン濃度をSIMS(Secondary Ion Mass Spectrometry)で測定した。
(Comparison between Example 1 and Comparative Example 1)
In order to compare Example 1 and Comparative Example 1, one of the 20 GaAs single crystals obtained in the process of Example 1 described above was selected. Then, a portion corresponding to the straight body portion of one selected GaAs single crystal was sliced to cut out a plurality of substantially circular wafers having a (100) plane. Next, a wafer at a position corresponding to a solidification rate of every 0.1 was extracted from the cut wafer, and the silicon concentration in the central portion was measured by SIMS (Secondary Ion Mass Spectrometry).

また、同様に、上述の比較例1の工程で得られたGaAs単結晶1本を選択し、そのGaAs単結晶の直胴部分に該当する部分をスライスして、(100)面を有する略円形状の複数のウェハを切り出し、切り出したウェハから固化率が0.1おきに該当する位置のウェハを抜き出し、その中央部分のシリコン濃度をSIMSで測定した。   Similarly, one GaAs single crystal obtained in the process of Comparative Example 1 described above is selected, and a portion corresponding to the straight body portion of the GaAs single crystal is sliced to obtain a substantially circular shape having a (100) plane. A plurality of wafers having a shape were cut out, wafers at positions corresponding to solidification rates of every 0.1 were extracted from the cut out wafers, and the silicon concentration at the center was measured by SIMS.

図2に、上述の実施例1および比較例1で成長したGaAs単結晶における、シリコン濃度の結晶長手方向の分布をSIMSで測定した結果を示す。   FIG. 2 shows the result of SIMS measurement of the distribution of the silicon concentration in the crystal longitudinal direction in the GaAs single crystals grown in Example 1 and Comparative Example 1 described above.

比較例1で成長させたGaAs単結晶では、通常のシリコンの偏析現象に倣い、シリコン濃度の結晶長手方向の分布は、結晶の後端に行くにしたがって高濃度になっていた。   In the GaAs single crystal grown in Comparative Example 1, following the normal segregation phenomenon of silicon, the distribution of the silicon concentration in the longitudinal direction of the crystal became higher as it reached the rear end of the crystal.

すなわち、固化率が0.1の位置ではシリコン濃度は1.01×1018cm-3であったものが、固化率が0.9の位置ではシリコン濃度は6.16×1018cm-3まで高くなっており、その差は5.15×1018cm-3であった。 That is, the silicon concentration was 1.01 × 10 18 cm −3 at the solidification rate of 0.1, whereas the silicon concentration was 6.16 × 10 18 cm −3 at the solidification rate of 0.9. The difference was 5.15 × 10 18 cm −3 .

これに対し、実施例1においては、シリコン濃度の結晶長手方向の分布は、比較例1に比べて変化の度合いが若干緩やかで、固化率が0.1の位置ではシリコン濃度に差はないが、固化率が0.9の位置ではシリコン濃度は6.01×1018cm-3までしか高くなっておらず、その差は5.00×1018cm-3であった。 On the other hand, in Example 1, the distribution of the silicon concentration in the longitudinal direction of the crystal is slightly slower than that in Comparative Example 1, and there is no difference in the silicon concentration at the position where the solidification rate is 0.1. When the solidification rate was 0.9, the silicon concentration was increased only to 6.01 × 10 18 cm −3 , and the difference was 5.00 × 10 18 cm −3 .

実施例1と比較例1で、シリコン濃度の値を比較すると、それほど大きな差はないように見えるが、仮に良品基板のキャリア濃度の仕様(許容範囲)を(2.0±1.0)×1018cm-3とすると、実施例1では歩留まりが68.6%であるのに対し、比較例1では歩留まりが65.7%となってしまい、これは、1本の結晶インゴットから得られる良品基板の枚数に10枚近い開きが出ることを意味している、したがって、十分に有意な差が見られると言える。 When the silicon concentration values in Example 1 and Comparative Example 1 are compared, it seems that there is not much difference, but the carrier concentration specification (allowable range) of the non-defective substrate is assumed to be (2.0 ± 1.0) × If it is 10 18 cm −3 , the yield is 68.6% in Example 1, whereas the yield is 65.7% in Comparative Example 1, which is obtained from one crystal ingot. This means that there is an opening of nearly 10 to the number of non-defective substrates. Therefore, it can be said that there is a sufficiently significant difference.

良品基板のキャリア濃度の仕様は、基板の使用条件によって左右される性格のものであるため、その範囲を限定することはできず、したがって本発明の効果も数値で表すことは難しいが、偏析の影響を緩和して、結晶成長の初期と後期での不純物濃度分布の差を低減する効果があることは間違いない。   The specification of the carrier concentration of a non-defective substrate is of a character that depends on the conditions of use of the substrate, so the range cannot be limited, and therefore the effect of the present invention is difficult to express numerically. There is no doubt that it has the effect of mitigating the influence and reducing the difference in impurity concentration distribution between the early and late stages of crystal growth.

(実施例2)
実施例2では、上述した実施例1と同一の第一の結晶成長炉1を用いVGF法により、SiをドープしたGaAsの単結晶成長を行った。
(Example 2)
In Example 2, single crystal growth of GaAs doped with Si was performed by the VGF method using the same first crystal growth furnace 1 as in Example 1 described above.

この実施例2における結晶成長作業の手順は、上述の実施例1と基本的に同じである。実施例2と実施例1とが異なるのは、成長中に結晶成長速度を変化させた点である。実施例2では、半導体融液5を形成し、結晶成長炉1内の温度が安定した後、各外周加熱ヒータ3の設定温度を、0.6K/hの速度で降下させた。   The procedure of the crystal growth operation in the second embodiment is basically the same as that in the first embodiment. The difference between Example 2 and Example 1 is that the crystal growth rate was changed during growth. In Example 2, after the semiconductor melt 5 was formed and the temperature in the crystal growth furnace 1 was stabilized, the set temperature of each outer peripheral heater 3 was lowered at a rate of 0.6 K / h.

そして、その状態で6時間放置後、各外周加熱ヒータ3の設定温度の降下速度を0.6K/hから0.008K/hの割合でゆっくりと落としていき、最終的に50時間かけて0.2K/hの降下速度にまで下げて、そのまま6時間放置した。その結果、最上部の外周加熱ヒータ3aの設定温度は、約1265℃まで下がった。   Then, after being left for 6 hours in this state, the rate of decrease in the set temperature of each of the outer peripheral heaters 3 is slowly reduced from 0.6 K / h to 0.008 K / h, and finally 0 over 50 hours. The speed was lowered to 2 K / h and left for 6 hours. As a result, the set temperature of the uppermost peripheral heater 3a was lowered to about 1265 ° C.

また、ルツボ6の回転数を、実施例1と同様に、各外周加熱ヒータ3の設定温度の降下開始と合わせて減少させ始め、回転数が1rpmになるまで0.25rpm/hの割合で徐々に減少させた。   Further, as in the first embodiment, the rotational speed of the crucible 6 begins to decrease in conjunction with the start of lowering of the set temperature of each outer peripheral heater 3, and is gradually increased at a rate of 0.25 rpm / h until the rotational speed reaches 1 rpm. Decreased.

上述の操作により、結晶成長速度、すなわち、結晶と半導体融液の界面の移動速度は、成長開始当初は約4mm/hであったものが、ヒータ温度の降下速度の低下につれて徐々に遅くなり、最終的には約1.5mm/hまで低下した。   By the above operation, the crystal growth rate, that is, the moving rate of the interface between the crystal and the semiconductor melt was about 4 mm / h at the beginning of the growth, but gradually becomes slower as the heater temperature lowering rate decreases, Eventually it decreased to about 1.5 mm / h.

その後、各外周加熱ヒータ3の温度降下を停止し、そこからさらに、全ての外周加熱ヒータ3の温度が950℃になるように24時間かけて徐冷し、次いで、各外周加熱ヒータ3の温度が400℃になるまで、−20℃/hの速度で各外周加熱ヒータ3の温度を低下させた。続いて、各外周加熱ヒータ3の通電を停止して、ルツボ6を室温まで冷却した。   Thereafter, the temperature drop of each of the outer peripheral heaters 3 is stopped, and from there, further cooling is performed over 24 hours so that the temperature of all the outer peripheral heaters 3 becomes 950 ° C., and then the temperature of each of the outer peripheral heaters 3 Until the temperature reached 400 ° C., the temperature of each outer peripheral heater 3 was decreased at a rate of −20 ° C./h. Subsequently, energization of each outer peripheral heater 3 was stopped, and the crucible 6 was cooled to room temperature.

室温まで冷却して取り出した結晶を観察することにより、本実施例で得られたGaAs結晶も、全長にわたって単結晶となっていることが確認された。この結晶中のSi濃度を、実施例1と同様の方法で測定し、比較例1の結果と並べたものを図3に示す。   By observing the crystal taken out after cooling to room temperature, it was confirmed that the GaAs crystal obtained in this example was also a single crystal over the entire length. FIG. 3 shows the Si concentration in the crystal measured by the same method as in Example 1 and aligned with the result of Comparative Example 1.

実施例2においては、シリコン濃度の結晶長手方向の分布は、実施例1に比べて変化の度合いがさらに緩やかで、固化率が0.1の位置ではシリコン濃度は1.01×1018cm-3であったものが、固化率が0.9の位置ではシリコン濃度は5.78×1018cm-3まで高くなっており、その差は4.77×1018cm-3であった。 In Example 2, the distribution of the silicon concentration in the longitudinal direction of the crystal is more gradual than that of Example 1, and the silicon concentration is 1.01 × 10 18 cm when the solidification rate is 0.1. Although it was 3 , the silicon concentration was increased to 5.78 × 10 18 cm −3 at the position where the solidification rate was 0.9, and the difference was 4.77 × 10 18 cm −3 .

このように、本発明の半導体単結晶の製造方法によれば、成長した結晶の頭部と尾部の不純物濃度差を小さくすることができる。これにより、成長結晶をスライスして形成される複数の半導体基板間での電気的特性、光学的特性、および機械的特性などのばらつきが低減する。また、良品基板の取得率が向上し、原料を効率良く使うことができ、製造コストの低減にもつながる。   Thus, according to the method for producing a semiconductor single crystal of the present invention, the difference in impurity concentration between the head and tail of the grown crystal can be reduced. This reduces variations in electrical characteristics, optical characteristics, mechanical characteristics, and the like among a plurality of semiconductor substrates formed by slicing the grown crystal. In addition, the acquisition rate of non-defective substrates can be improved, raw materials can be used efficiently, and manufacturing costs can be reduced.

上述の実施例では、偏析係数が1よりも小さい不純物を添加した場合の例を述べたが、偏析係数が1よりも大きい不純物を添加した場合にも適用が可能である。   In the above-described embodiment, an example in which an impurity having a segregation coefficient smaller than 1 has been described has been described. However, the present invention can also be applied when an impurity having a segregation coefficient larger than 1 is added.

本発明で用いた結晶成長炉の断面模式図である。It is a cross-sectional schematic diagram of the crystal growth furnace used by this invention. 本発明および従来技術で作製したGaAs単結晶における、シリコン濃度の結晶長手方向の分布を示す図である。It is a figure which shows distribution of the crystal | crystallization longitudinal direction of a silicon concentration in the GaAs single crystal produced by this invention and the prior art. 本発明の他の実施の形態および従来技術で作製したGaAs単結晶における、シリコン濃度の結晶長手方向の分布を示す図である。It is a figure which shows distribution of the crystal | crystallization longitudinal direction of a silicon concentration in the GaAs single crystal produced by other embodiment of this invention and the prior art.

符号の説明Explanation of symbols

1 結晶成長炉
2,4 断熱材
3 外周加熱ヒータ
5 半導体融液
6 ルツボ
7 サセプタ
8 サセプタ支持部材
9 液体封止剤
10 種結晶
11 チャンバー
DESCRIPTION OF SYMBOLS 1 Crystal growth furnace 2, 4 Heat insulating material 3 Peripheral heater 5 Semiconductor melt 6 Crucible 7 Susceptor 8 Susceptor support member 9 Liquid sealing agent 10 Seed crystal 11 Chamber

Claims (3)

ルツボ内に、ドーパントとしての不純物を添加した半導体融液を収容し、この半導体融液を前記ルツボの底部に形成された種結晶配置部に配置した種結晶と接触させた状態で、前記ルツボを回転させながら、前記種結晶側から上方に向けて徐々に半導体融液を固化させる半導体単結晶の製造方法において、
結晶成長の進行に伴って前記ルツボの回転速度を徐々に遅くすることを特徴とする半導体単結晶の製造方法。
In the crucible, a semiconductor melt to which an impurity as a dopant is added is accommodated, and the crucible is placed in contact with a seed crystal placed in a seed crystal placement portion formed at the bottom of the crucible. In the method for producing a semiconductor single crystal, in which the semiconductor melt is gradually solidified from the seed crystal side upward while rotating,
A method for producing a semiconductor single crystal, wherein the rotational speed of the crucible is gradually decreased as the crystal growth proceeds.
結晶成長の進行に伴って前記ルツボの回転速度を徐々に遅くすると共に、結晶成長速度を徐々に遅くする請求項1に記載の半導体単結晶の製造方法。   2. The method for producing a semiconductor single crystal according to claim 1, wherein the rotation speed of the crucible is gradually decreased and the crystal growth speed is gradually decreased as the crystal growth proceeds. 前記ルツボの直径が160mm、長さが300mmであり、前記ルツボの回転速度を成長開始時の20rpmから成長終了時の1rpmまで、結晶成長の進行に伴って0.25rpm/hの割合で徐々に遅くする請求項1または2に記載の半導体単結晶の製造方法。   The diameter of the crucible is 160 mm and the length is 300 mm, and the rotational speed of the crucible is gradually increased from 20 rpm at the start of growth to 1 rpm at the end of growth at a rate of 0.25 rpm / h as the crystal growth proceeds. The manufacturing method of the semiconductor single crystal of Claim 1 or 2 made late.
JP2008195829A 2008-07-30 2008-07-30 Production method of semiconductor single crystal Pending JP2010030847A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008195829A JP2010030847A (en) 2008-07-30 2008-07-30 Production method of semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008195829A JP2010030847A (en) 2008-07-30 2008-07-30 Production method of semiconductor single crystal

Publications (1)

Publication Number Publication Date
JP2010030847A true JP2010030847A (en) 2010-02-12

Family

ID=41735819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008195829A Pending JP2010030847A (en) 2008-07-30 2008-07-30 Production method of semiconductor single crystal

Country Status (1)

Country Link
JP (1) JP2010030847A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103882518A (en) * 2014-03-28 2014-06-25 大连理工大学 Polycrystalline silicon ingot casting process achieving uniform distribution of boron
US20220298673A1 (en) * 2021-03-22 2022-09-22 Axt, Inc. Method and system for vertical gradient freeze 8 inch gallium arsenide substrates

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103882518A (en) * 2014-03-28 2014-06-25 大连理工大学 Polycrystalline silicon ingot casting process achieving uniform distribution of boron
US20220298673A1 (en) * 2021-03-22 2022-09-22 Axt, Inc. Method and system for vertical gradient freeze 8 inch gallium arsenide substrates

Similar Documents

Publication Publication Date Title
US8231727B2 (en) Crystal growth apparatus and method
JP2008105896A (en) METHOD FOR PRODUCING SiC SINGLE CRYSTAL
TWI582277B (en) GaAs single crystal and GaAs single crystal wafer
JP4830312B2 (en) Compound semiconductor single crystal and manufacturing method thereof
TW201109483A (en) Systems, methods and substrates of monocrystalline germanium crystal growth
JP5671057B2 (en) Method for producing germanium ingot with low micropit density (MPD) and apparatus for growing germanium crystals
JP2009149452A (en) Method for growing semiconductor crystal
JP2010260747A (en) Method for producing semiconductor crystal
JP2010030847A (en) Production method of semiconductor single crystal
JP2010064936A (en) Method for producing semiconductor crystal
JPH10259100A (en) Production of garium-arsenic single crystal
JP2010030868A (en) Production method of semiconductor single crystal
WO2011043777A1 (en) Crystal growth apparatus and method
JP2009190914A (en) Method for producing semiconductor crystal
JP2690419B2 (en) Single crystal growing method and apparatus
JP2004099390A (en) Method of manufacturing compound semiconductor single crystal and compound semiconductor single crystal
JP2531875B2 (en) Method for producing compound semiconductor single crystal
JPH11130579A (en) Production of compound semiconductor single crystal and apparatus for producing the same
JPH03193689A (en) Production of compound semiconductor crystal
JPH10212192A (en) Method for growing bulk crystal
TWI513865B (en) Germanium ingots/wafers having low micro-pit density (mpd) as well as systems and methods for manufacturing same
JP2009208992A (en) Method for manufacturing compound semiconductor single crystal
JP2013193942A (en) Single crystal manufacturing apparatus and method for manufacturing single crystal using the same
JP2009067620A (en) Method and apparatus for producing compound semiconductor single crystal
JPH0867593A (en) Method for growing single crystal