TW201027261A - Wet-etchable antireflective coatings - Google Patents

Wet-etchable antireflective coatings Download PDF

Info

Publication number
TW201027261A
TW201027261A TW098137779A TW98137779A TW201027261A TW 201027261 A TW201027261 A TW 201027261A TW 098137779 A TW098137779 A TW 098137779A TW 98137779 A TW98137779 A TW 98137779A TW 201027261 A TW201027261 A TW 201027261A
Authority
TW
Taiwan
Prior art keywords
group
value
resin
carboxylic acid
reflective coating
Prior art date
Application number
TW098137779A
Other languages
Chinese (zh)
Inventor
Peng-Fei Fu
Eric Moyer
Craig Yeakle
Original Assignee
Dow Corning
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Corning filed Critical Dow Corning
Publication of TW201027261A publication Critical patent/TW201027261A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/006Anti-reflective coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • G03F7/0752Silicon-containing compounds in non photosensitive layers or as additives, e.g. for dry lithography
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/091Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers characterised by antireflection means or light filtering or absorbing means, e.g. anti-halation, contrast enhancement

Abstract

Antireflective coatings produced from silsesquioxane resin is comprised of the units (Ph(CH2)rSiO(3-x)/2(OR')x)m (HSiO(3-x)/2(OR')x)n (MeSiO(3-x)/2(OR')x)o (RSiO(3-x)/2(OR')x)p (R1SiO(3-x)/2(OR')x)q where Ph is a phenyl group, Me is a methyl group; R' is hydrogen atom or a hydrocarbon group having from 1 to 4 carbon atoms; R is selected from a carboxylic acid group or a carboxylic acid forming group with the proviso that there is a sufficient amount of carboxylic acid groups to make the resin wet etchable after cure; and R1 is selected from substituted phenyl groups, ester groups, polyether groups; mercapto groups, sulfur-containing organic functional groups, hydroxyl producing group, aryl sulphonic ester groups, and reactive or curable organic functional groups; and r has a value of 0, 1, 2, 3, or 4; x has a value of 0, 1 or 2; wherein in the resin m has a value of 0 to 0.90; n has a value of 0.05 to 0.99; o has a value of 0 to 0.95; p has a value of 0.01 to 0.5; q has a value of 0 to 0.5; and m + n + o + p + q ≈ 1.

Description

201027261 六、發明說明: 【發明所屬之技術領域】 本發明係關於一種由倍半矽氧烷樹脂製造之抗反射塗 層。 【先前技術】 隨著對半導體產業中較小特徵尺寸的持續需求,193 nm 光刻術最近已出現用作生產具有次-100 nm特徵之裝置之 技術。此較短波長光之使用需要底部抗反射塗層(BARC) 以減少在基材上之反射,以及藉由吸收通經該光阻劑之光 而減緩光阻劑之擺動固化。可購得之抗反射塗層係由基於 有機與無機之兩種材料組成。通常,展示良好的抗蝕刻性 之無機ARC,係基於CVD且受極端表面構形之所有整合缺 點限制;另一方面,有機ARC材料係藉由旋塗製程而施 用,且具有優良的填充及平面化性質,但苦於有機光阻劑 的較差蝕刻選擇性。因此,高度需要一種提供綜合有機與 無機ARC的優點之材料。 就此而言,最近已發現某些基於倍半矽氧烷樹脂之苯 基-氫化物展現出針對193 nm光之優良的抗反射塗層性 質。雖然底部抗反射塗層(BARC)材料可有效地減少活化 輻射之反射,但在不損壞上層光阻劑及/或下層基材的情 況下移除BARC材料已經相當富有挑戰性。用於移除BARC 之典型方法係藉由電漿蝕刻之方法。電漿蝕刻經常會引起 光阻劑層的薄化。因此,光阻劑層上之圖案會被毁壞或變 得不能轉移至基材層。電漿蝕刻亦可能引起基材的損壞並 144126.doc 201027261 因而'v響最終裝置之性能。此外,用於移除材料之 額外姓刻步驟會增加成本及在攝影平版印刷實踐中處理的 困難。 一種解决此問題之方法係使用濕式-可顯影之BARC。在 ·.、光阻劑層藉由圖案化遮罩進行曝光之後,經曝光區域變得 濕式可顯影,且隨後用水性顯影劑將其移除,以顯示出所 需的溝槽及/或孔型圖案。下層的濕式_可顯影BARC塗層 參係、在此顯影步驟期間同時被移除,藉此省去額外的電浆姓 刻步驟。有機濕式-可顯影ARC材料係已以聚酿胺酸為 主β依罪由聚醯胺酸部份形成聚醯胺以獲得所需溶解性質 之此種類型BARC,具有相當有限之溫度窗口,並且難以 有效控制其他有機BARC包含至少一種具有酸不穩定性 基團、内酯或馬來醯亞胺之單元。然而,此等濕式-可顯 影有機BARC材料中無一具有所需要的作為BARC用於隨後 圖案轉移之乾式-抗姓刻性。 Φ 本發明係關於一種由羧基官能性倍半矽氧烷樹脂製造之 用於光刻術的濕式可蝕刻抗反射塗層。該羧基官能性倍半 矽氧烷樹脂形成優良的旋塗薄膜,且可抵抗諸如 . PGMEA、2-hePtonene之有機溶劑,但其在25(rc或低於 - 250 C的溫度下固化時係濕式可蝕刻。此外該等由羧基官 能基倍半矽氧烷樹脂製造之ARC顯示出優良的抗乾蝕刻 性0 【發明内容】 本發明係關於一種由倍半矽氧烷樹脂製造之濕式可蝕刻 144126.doc 201027261 抗反射塗層’該倍半矽氧烷樹脂係由下列單元组成. (Ph(CH2)rSiO(3.X)/2(〇R,)x)m (HSiO(3.x)/2(〇R,)x)„ (MeSiO(3-x)/2(〇R,)x)〇 (RSiO(3-x)/2(〇R')x)p201027261 VI. Description of the Invention: [Technical Field of the Invention] The present invention relates to an antireflection coating made of a sesquioxane resin. [Prior Art] With continued demand for smaller feature sizes in the semiconductor industry, 193 nm lithography has recently emerged as a technique for producing devices having sub-100 nm characteristics. The use of this shorter wavelength light requires a bottom anti-reflective coating (BARC) to reduce reflection on the substrate and to slow the oscillating cure of the photoresist by absorbing light passing through the photoresist. Commercially available anti-reflective coatings are composed of two materials based on organic and inorganic. In general, inorganic ARC exhibiting good etch resistance is based on CVD and is limited by all the integration disadvantages of extreme surface configurations; on the other hand, organic ARC materials are applied by a spin coating process with excellent filling and planarity. Properties, but suffer from poor etch selectivity of organic photoresists. Therefore, there is a high need for a material that provides the advantages of integrated organic and inorganic ARC. In this regard, it has recently been found that certain phenyl-hydrides based on sesquiterpene oxide resins exhibit excellent anti-reflective coating properties for 193 nm light. While the bottom anti-reflective coating (BARC) material is effective in reducing the reflection of the activating radiation, removing the BARC material without damaging the upper photoresist and/or the underlying substrate has been quite challenging. A typical method for removing BARC is by plasma etching. Plasma etching often causes thinning of the photoresist layer. Therefore, the pattern on the photoresist layer may be destroyed or become untransferred to the substrate layer. Plasma etching can also cause damage to the substrate and 144126.doc 201027261 thus 'v sounds the performance of the final device. In addition, the extra surpassing step for removing material adds cost and difficulties in processing lithography practices. One way to solve this problem is to use a wet-developable BARC. After exposure of the photoresist layer by the patterned mask, the exposed areas become wet developable, and then removed with an aqueous developer to reveal the desired trenches and/or Hole pattern. The underlying wet _ developable BARC coating is removed at the same time during this development step, thereby eliminating the need for an additional plasma surname step. The organic wet-developable ARC material has been made up of polyamic acid to form polyamine to form the desired solubility properties of this type of BARC with a fairly limited temperature window. It is also difficult to effectively control other organic BARCs comprising at least one unit having an acid labile group, a lactone or a maleimide. However, none of these wet-developable organic BARC materials have the required dry-anti-scratch for BARC for subsequent pattern transfer. Φ This invention relates to a wet etchable anti-reflective coating for lithography made from a carboxyl functional sesquiterpene oxide resin. The carboxyl functional sesquiterpene oxide resin forms an excellent spin-on film and is resistant to organic solvents such as PGMEA and 2-hePtonene, but is wet when cured at 25 (rc or below -250 C) The invention can be etched. Further, the ARC manufactured from the carboxyl functional sesquioxane resin exhibits excellent dry etching resistance. [Invention] The present invention relates to a wet type which can be manufactured from a sesquioxane resin. Etching 144126.doc 201027261 Antireflective coating 'The sesquiterpene oxide resin is composed of the following units. (Ph(CH2)rSiO(3.X)/2(〇R,)x)m (HSiO(3.x )/2(〇R,)x)„ (MeSiO(3-x)/2(〇R,)x)〇(RSiO(3-x)/2(〇R')x)p

(RSiCV^ORW 在此Ph係苯基,Me係甲基;R,係氫原子或含丨至4個碳原 子之烴基;R係選自羧酸基或羧酸形成基團,其限定條件 為在固化之後存在足夠量之羧酸基以使得樹脂濕式可蝕 刻,且R係選自經取代之苯基、酯基、聚醚基;巯基、含 硫之有機官能基、羥基生成基團、芳基磺酸酯基' 及反應(RSiCV^ORW where Ph is a phenyl group, Me is a methyl group; R is a hydrogen atom or a hydrocarbon group containing fluorene to 4 carbon atoms; and R is selected from a carboxylic acid group or a carboxylic acid forming group, which is defined by A sufficient amount of carboxylic acid groups are present after curing to render the resin wet etchable, and R is selected from substituted phenyl, ester, polyether groups; mercapto groups, sulfur-containing organic functional groups, hydroxyl-forming groups, Aryl sulfonate group' and reaction

性或可固化有機官能基;且!·具有〇、i、2、3或4之值;X 具有〇、1或2之值;其中在該樹脂具有〇至〇 95之值;n 具有0.05至0.95之值;〇具有〇至〇95之值;ρ具有〇〇5至〇5 之值,q具有〇至0.95之值;並且爪^切+口叫^^。當該等樹 脂用於抗反射塗層中時’其等可在無任何添加劑且在 250 C或低於250 C的溫度下於}分鐘内固化。該等經固化 之薄膜展現出優良的抗溶劑性(即pGMEA)。該等經固化之 薄膜係濕式可蝕刻且可易於用鹼性顯影劑(諸如TMAH)及/ 或剝除劑(諸如基於氟化物之剝除溶液(例如ne_89及CCT_ 1))移除。 【實施方式】 可用於形成抗反射塗層之倍半矽氧烷樹脂係由下列單元 組成: 144126.doc 201027261 (Ph(CH2)rSiO(3-x)/2(OR 丨)x)m (HSiO(3.X)/2(〇R')x)„ (MeSiO(3-x)/2(OR 丨)x)0 (RSiO(3.x)/2(OR,)x)p (RlSiOi3.x)/2(OR')x)q 在此Ph係苯基’ Me係甲基;R'係氫原子或含i至4個碳原 子之烴基;R係選自羧酸基或羧酸形成基團,其限定條件 0 為在固化之後存在足夠量之羧酸基以使得樹脂濕式可蝕 刻;以及R1係選自經取代之苯基、酯基、聚醚基;巯基、 含硫之有機官能基、羥基生成基團、芳基磺酸酯基、及反 應性或可固化有機官能基;且r具有〇、1、2、3或4之值; X具有0、1或2之值;其中在該樹脂中’ m具有〇至〇 之 值;η具有〇·〇5至0·99之值;〇具有〇至0.95之值;p具有〇.〇1 至0.5之值,q具有〇至〇.5之值,並且m+n+o+p+q«l。般 而言’ m具有0.05至0.25之值,或者〇.〇5至〇·ΐ5之值。一般 參 而言’ n具有0.15至0.80之值,或者0.2至0.75之值。一般而 言’ 〇具有0.25至0.80之值,或者0.4至0.75之值。一般而 言’ Ρ具有0.015至0.35之值,或者0.025至0.25之值。一般 而言,q具有0至0.15之值,或者0至0.1之值。 R'獨立為氫原子或含1至4個碳原子之烴基。R,可舉例為 Η、甲基、乙基、丙基、異丙基及丁基。 在樹脂中’ R係羧酸基團或羧酸形成基團,其限定條件 為在不存在熱酸產生劑及/或光酸產生劑的情況下,在固 化之後存在足夠量之羧酸基以使得樹脂濕式可蝕刻。濕式 144126.doc 201027261 可蚀刻意指用驗性顯影劑及/或蝕刻溶液將經固化之塗層 移除。叛酸基團之實例係彼等具有通式_r2c(0)oh者,其 中R2係選自含1至1〇個碳原子之伸烷基。羧酸形成基團之 實例係彼等具有通式_R2c(〇)OR3者,其中R2係選自含1至 10個碳原子之伸烷基且R3係保護基。保護基係有機或矽烷 基基團’其在酸性條件下斷裂以生成相應的羧酸基團。保 護基可舉例為(但不限於)第三丁基、三曱基矽烷基、酸酐 基、曱硫基甲醋、苯曱氧基曱酯、二苯基曱酯、對曱氧基 苯甲醋、及其他。很多保護基闡述於Greene及Wuts之「在 有機合成中之保 s蔓基(pr〇tective groUpS in 〇rganic Synthesis)」 ’第3版,第369至453頁中。 R1係選自經取代之笨基、酯基、聚醚基、毓基、含硫之 有機官能基、羥基生成基團、芳基磺酸酯基、及反應性或 可固化有機官能基。經取代之苯基包含至少一11〇-、]^^0-、Me-、Et-、C1-及/或其他取代基。酯基可為任何包含至 少一個酯官能基之有機取代基。文中有用酯基之實例係 -(CH2)2-0-C(0)Me及-(CH2)2-C(0)-0Me。聚醚基係一種具 有藉由氧原子連接之烴單元之有機取代基,其藉由下列結 構表不(但不限於): -(CH2)a[0(CH2)b]c〇R4,其中 a=2 至 12,· b=2 至 6 ; c=2 至 200 ; R4=H、烷基、或其他有機基團。文中有用之聚醚基 之實例係-(CH2)3-(OCH2CH2)c-OMe ' -(CH2)3-(OCH2CH2)c-OH 及-(CH2)3-(OCH2CH2)7-OAc 及-(CH2)3-(OCH2CH2)c-OC(0)Me 。巯基具有通式HS(CH2)d-,在此d具有1至18之值,諸如巯 144126.doc 201027261 丙基、巯乙基及巯甲基。芳基磺酸酯基具有式R5o-so2-Ph-(CH2)r-,在此R5係氬原子、脂族基或芳族基且r具有〇、1、 2 3或4之值。芳基磺酸酯基可舉例為(但不限於)h〇_s〇2_Or curable organic functional group; and have a value of 〇, i, 2, 3 or 4; X has a value of 〇, 1 or 2; wherein the resin has a value of 〇95 to ;95; n has 0.05 to The value of 0.95; the value has a value from 〇 to 〇 95; ρ has a value of 〇〇5 to 〇5, q has a value of 〇 to 0.95; and the claw is cut + the mouth is called ^^. When the resins are used in an antireflective coating, they can be cured in any minute without any additives and at a temperature of 250 C or less. The cured films exhibit excellent solvent resistance (i.e., pGMEA). The cured films are wet etchable and can be easily removed with an alkaline developer such as TMAH and/or a stripper such as a fluoride based stripping solution (e.g., ne_89 and CCT_1). [Embodiment] A sesquiterpene oxide resin which can be used to form an antireflection coating layer is composed of the following units: 144126.doc 201027261 (Ph(CH2)rSiO(3-x)/2(OR 丨)x)m (HSiO (3.X)/2(〇R')x)„(MeSiO(3-x)/2(OR 丨)x)0 (RSiO(3.x)/2(OR,)x)p (RlSiOi3. x)/2(OR')x)q where Ph is a phenyl 'Me methyl group; R' is a hydrogen atom or a hydrocarbon group having from 1 to 4 carbon atoms; and R is selected from a carboxylic acid group or a carboxylic acid. a group having a condition of 0 having a sufficient amount of carboxylic acid groups after curing to render the resin wet etchable; and R1 being selected from substituted phenyl, ester, polyether groups; sulfhydryl, sulfur-containing organic a functional group, a hydroxyl group, an aryl sulfonate group, and a reactive or curable organofunctional group; and r has a value of 〇, 1, 2, 3 or 4; X has a value of 0, 1 or 2; Wherein 'm has a value of 〇 to 〇; η has a value of 〇·〇5 to 0·99; 〇 has a value of 〇 to 0.95; p has a value of 〇.〇1 to 0.5, q has 〇 to 〇.5 value, and m+n+o+p+q«l. Generally, 'm has a value of 0.05 to 0.25, or 〇.〇5 to 〇·ΐ5. 'n has a value of 0.15 to 0.80, or a value of 0.2 to 0.75. In general, '〇 has a value of 0.25 to 0.80, or a value of 0.4 to 0.75. Generally, 'Ρ has a value of 0.015 to 0.35, or 0.025 to a value of 0.25. In general, q has a value of 0 to 0.15, or a value of 0 to 0.1. R' is independently a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms. R, for example, anthracene, methyl group, Ethyl, propyl, isopropyl and butyl. In the resin, the 'R-carboxylic acid group or the carboxylic acid forming group is defined in the absence of a thermal acid generator and/or a photoacid generator. Next, a sufficient amount of carboxylic acid groups are present after curing to render the resin wet etchable. Wet 144126.doc 201027261 etchable means removing the cured coating with an experimental developer and/or etching solution. Examples of acid groups are those having the formula _r2c(0)oh, wherein R2 is selected from alkylene groups having 1 to 1 carbon atoms. Examples of carboxylic acid forming groups are those having the formula _R2c(〇)OR3, wherein R2 is selected from the group consisting of an alkylene group having 1 to 10 carbon atoms and a protecting group for R3. The protecting group is an organic or a decyl group. The group 'clears under acidic conditions to form the corresponding carboxylic acid group. The protecting group can be exemplified by, but not limited to, a tert-butyl group, a tridecyl decyl group, an acid anhydride group, a sulfonyl thioacetate, a benzoquinone oxygen. Baseline esters, diphenyl decyl esters, p-methoxy phenoxy acetoacetate, and others. Many protecting groups are described in Greene and Wuts, "pr〇tective groUpS in 〇rganic Synthesis" Third edition, pages 369 to 453. R1 is selected from substituted strepyl, ester, polyether, mercapto, sulfur-containing organic functional groups, hydroxyl generating groups, arylsulfonate groups, and reactive or curable organic functional groups. The substituted phenyl group contains at least one of 11 〇-,]^^0-, Me-, Et-, C1- and/or other substituents. The ester group can be any organic substituent containing at least one ester functional group. Examples of useful ester groups herein are -(CH2)2-0-C(0)Me and -(CH2)2-C(0)-0Me. A polyether group is an organic substituent having a hydrocarbon unit bonded by an oxygen atom, which is represented by, but not limited to, the following structure: -(CH2)a[0(CH2)b]c〇R4, wherein a = 2 to 12, · b = 2 to 6; c = 2 to 200; R4 = H, alkyl, or other organic group. Examples of useful polyether groups are -(CH2)3-(OCH2CH2)c-OMe '-(CH2)3-(OCH2CH2)c-OH and -(CH2)3-(OCH2CH2)7-OAc and -(( CH2)3-(OCH2CH2)c-OC(0)Me. The fluorenyl group has the formula HS(CH2)d-, where d has a value from 1 to 18, such as 巯 144126.doc 201027261 propyl, decylethyl and fluorenylmethyl. The aryl sulfonate group has the formula R5o-so2-Ph-(CH2)r-, where R5 is an argon atom, an aliphatic group or an aromatic group and r has a value of ruthenium, 1, 2 or 4 or 4. The aryl sulfonate group can be exemplified by, but not limited to, h〇_s〇2_

Ph-(CH2)r-或(CH3)2CH0-S02-Ph-(CH2)r-。反應性或可固化 有機官能基可舉例為(但不限於)烯基(諸如乙烯基及烯丙 基)、環氧基(諸如甘油氧丙基及環氧環己烷基)、丙烯酸酯 基(諸如甲基丙烯醯氧基丙基、丙烯醯氧基丙基以及其他 ❷ 用於生產羧基官能性倍半矽氧烷樹脂之典型方法涉及到 適當的鹵或烷氧矽烷之水解及縮合。有一實例係苯基三氯 矽烷、二氣矽烷、具有羧酸基及/或羧酸形成基團之矽 烷、甲基三氯矽烷及視需要之其他有機官能性三氯矽烷之 混合物之水解及縮合。經由此方法可能會由於不完全水解 或縮合而造成殘留_OH及/或_〇R,保留於倍半矽氧烷樹脂 中。若在倍半矽氧烷樹脂中含_〇R,基的單元之總量超過仙 莫耳%,則該樹脂可能會出現膠凝化及不穩定。一般而 φ a ’倍半矽氧烷樹脂包含6至38莫耳%的含_〇r'基之單元, 或少於5莫耳%’或少於1莫耳%。 該倍半矽氧烷樹脂具有的重量平均分子量在5〇〇至 200,000的範圍内,或者在5〇〇至1〇〇,〇〇〇的範圍内或者在 700至30,000的範圍内,此係藉由凝膠滲透層析法,使用 RI檢測以及聚苯乙烯標準物測定。 一種用於製備矽氧烷樹脂之方法包括使水、HSiX3、 RSiX3、及視需要之MeSiX3、phSiX3、或RlsiX3於有機溶 劑中反應’其中X係獨立選自α、Br、Ch3C〇2_、烷氧基_〇&, 144126.doc 201027261 之可水解基團或其他可水解基團。文中有用之矽烷可舉例 為(但不限於)HSi(OEt)3、HSiCl3、PhCH2CH2SiCl3、及Ph-(CH2)r- or (CH3)2CH0-S02-Ph-(CH2)r-. Reactive or curable organic functional groups can be exemplified by, but not limited to, alkenyl groups (such as vinyl and allyl groups), epoxy groups (such as glyceroloxypropyl and epoxycyclohexane groups), and acrylate groups ( Typical processes such as methacryloxypropyl, acryloxypropyl and other hydrazines for the production of carboxyl functional sesquiterpene resins involve the hydrolysis and condensation of suitable halo or alkoxysilanes. Hydrolysis and condensation of a mixture of phenyltrichloromethane, dioxane, a carboxylic acid group and/or a carboxylic acid forming group, a decane, methyltrichlorodecane, and optionally other organofunctional trichloromethane. This method may cause residual _OH and/or _〇R due to incomplete hydrolysis or condensation, and is retained in the sesquioxane resin. If sesquiterpene oxide resin contains _〇R, the unit of the group If the total amount exceeds the centromere, the resin may be gelatinized and unstable. Generally, the φ a 'sesquioxane resin contains 6 to 38 mol% of the unit containing _〇r' groups, or Less than 5 mol%' or less than 1 mol%. The sesquiterpene oxide The resin has a weight average molecular weight in the range of 5 〇〇 to 200,000, or in the range of 5 〇〇 to 1 〇〇, 〇〇〇 or in the range of 700 to 30,000, by gel permeation chromatography Method, using RI detection and polystyrene standard determination. A method for preparing a decane resin comprises reacting water, HSiX3, RSiX3, and optionally MeSiX3, phSiX3, or RlsiX3 in an organic solvent. Hydrolyzable groups or other hydrolyzable groups independently selected from α, Br, Ch3C〇2_, alkoxy_〇 &, 144126.doc 201027261. The decane useful herein may be exemplified by, but not limited to, HSi (OEt) 3) HSiCl3, PhCH2CH2SiCl3, and

PhSiCl3、MeSi(OMe)3、MeSiCl3、WSiCb及WsKOMeA,在 此R係如上定義,Me表示甲基,Et表示乙基及ph表示笨 基。 具有羧酸基及/或羧酸形成基團且可用於製備倍半石夕氧 烧樹脂的石夕烧可舉例為(但不限於): (ΜεΟ)33ί-((:Η2)2-(:ΟΟιΒιι (MeO)3Si-(CH2)d-(OCH2CH2)e-COOtBu (MeO)3Si-(CH2)2-COO-SiMe3 (MeO)3Si-(CH2)d-(OCH2CH2)e-COO-SiMe3PhSiCl3, MeSi(OMe)3, MeSiCl3, WSiCb and WsKOMeA, wherein R is as defined above, Me represents a methyl group, Et represents an ethyl group and ph represents a stupid group. A scouring furnace having a carboxylic acid group and/or a carboxylic acid forming group and which can be used for preparing a sesquiterpene oxide resin can be exemplified by (but not limited to): (ΜεΟ) 33ί-((:Η2)2-(: ΟΟιΒιι (MeO)3Si-(CH2)d-(OCH2CH2)e-COOtBu(MeO)3Si-(CH2)2-COO-SiMe3(MeO)3Si-(CH2)d-(OCH2CH2)e-COO-SiMe3

〇及And

其中Me係甲基,lBu係第三丁基’ g具有2或3之值且h具有1 至10之值。 反應中水的含量通常係在每莫耳矽烷反應物中X基為0.5 144126.doc 201027261 至2莫耳水,或每莫耳矽烷反應物中χ基為〇.5至丨5莫耳水 的範圍内。 形成倍半矽氧烷樹脂之時間取決於諸多因素,諸如溫 度、矽烷反應物之類型及量、及觸媒(若存在的話)之量。 較佳係進行充足時間的反應,以使基本上所有又基皆經歷 水解反應。一般而言反應時間係自數分鐘至數小時,或者 1 〇刀鐘至1小時。用於製造倍半矽氧烷樹脂之反應可在任 ❹ ❹ 何/m度下進行,只要不引起倍半矽氧烷樹脂之明顯的膠凝 化或固化即可。反應進行溫度一般係在25。。至反應混合物 之回流溫度的範圍H而言,該反應職由在回流下 加熱10分鐘至1小時而進行。 6反應步驟包括水解及縮合錢組分兩h為便於反應的 π成可使用觸媒。觸媒可為鹼或酸,例如礦物質酸。有 用的礦物質酸包括(但不限於)HC1、HF、、聊3、及 H2S〇4’其中,_般為阳。或其他揮發性酸之益處在Wherein Me is a methyl group, and the lBu-based tertiary butyl group g has a value of 2 or 3 and h has a value of from 1 to 10. The water content of the reaction is usually 0.5 144 126.doc 201027261 to 2 moles of water per mole of molybdenum reactant, or χ.5 to 丨5 moles of water per mole of mordenane reactant. Within the scope. The time to form the sesquioxanese resin depends on a number of factors such as temperature, the type and amount of decane reactant, and the amount of catalyst, if any. Preferably, the reaction is carried out for a sufficient period of time such that substantially all of the groups undergo a hydrolysis reaction. In general, the reaction time is from a few minutes to a few hours, or 1 knives to 1 hour. The reaction for producing the sesquioxanese resin can be carried out at any degree / m degree as long as it does not cause significant gelation or solidification of the sesquioxane resin. The reaction temperature is generally at 25. . To the range H of the reflux temperature of the reaction mixture, the reaction is carried out by heating under reflux for 10 minutes to 1 hour. 6 The reaction step comprises hydrolyzing and condensing the money component for two hours to facilitate the reaction of the π into a catalyst. The catalyst can be a base or an acid such as a mineral acid. Useful mineral acids include, but are not limited to, HCl, HF, Chat 3, and H2S 〇 4', of which _ is yang. Or the benefits of other volatile acids

於揮發性酸可在反應宗出+ A B ,,凡成之後易於從組合物中藉由汽提而 移除。觸媒的量取決於桥 、/、丨生質。觸媒之量基於反應混合物 之總重量-般係0. 〇 5重量%至1重量%。 士,Λ /丨燒反應物係不溶於水或微溶於水。就此而 反應係在有機溶劑中進行。有機溶液係以任何足以溶 解該矽烷反應物之量存右 、、Β人 在。一般而言有機溶劑以基於反應 作匕合物總置之1至99重詈。/ ... 。,或者70至90重量%存在。可利 用之有機溶劑可舉例為( 不限於)飽和脂族化合物(諸如正 戍烷、己烷、正庚烷、 /、辛烧)、%脂族化合物(諸如環 144126.doc 201027261 戊烧及環己院),芳族物(諸如苯、甲苯、二曱苯、均三甲 苯);醚(諸如四氫呋喃、二氧雜環乙烷、乙烯二醇二乙 醚、乙烯二醇二甲醚);酮(諸如曱基異丁基酮(ΜΙΒΚ)及環 己酮);經鹵素取代之烷烴(諸如三氣乙烷);經鹵化之芳族 物(諸如溴苯及氣苯);酯(諸如丙二醇單甲基醚醋酸酯 (PGMEA)、異丁基異丁酸酯及丙基丙酸酯)。有用之聚矽 氧溶劑可舉例為(但不限於)環矽氧烷(諸如辛曱基環四矽氧 烷、及癸曱基環五矽氧烷)。可使用單個溶劑或溶劑之混 合物。 在用於製造倍半矽氧烷樹脂之方法中,在反應完成之 後,易揮發性物質可在減壓條件下從倍半矽氧烷樹脂溶液 中移除。該等易揮發性物質包括副產物酵、多餘的水、觸 媒鹽酸(氯代矽烷路徑)及溶劑。用於移除揮發性物質之 方法在技藝中已悉知,其包括,例如蒸餾或在減壓下汽 提。 在反應完成之後,可視需要移除觸媒。用於移除觸媒之 方法已在技藝中悉知,其包括中和、汽提或水洗或其等之 組合。觸媒可負面影響倍半矽氧烷樹脂之壽命(尤其係在 溶液中時),因此建議將其移除。 為增加倍半矽氧烷樹脂之分子量及/或改良倍半矽氧烷 樹脂之儲存安定性,應在自4(TC加熱至溶劑的回流溫度的 凊況下,進行延長時間的反應(「增稠步驟」)。該增稠步 驟可繼反應步驟之後或作為反應步驟之部份進行。一般而 5 ’該増祠步驟的進行時間係在10分鐘至6小時的範圍 144126.doc 201027261 内,或者20分鐘至3小時的範圍内。 繼用於製造倍半石夕氧燒樹脂之反應之後,可進行大量視 需要之步驟以獲得呈所需形式之半石夕氧烧樹脂。舉例而 _ §,可藉由移除溶劑而回收固體形式之倍半矽氧 , 肖移除溶劑之方法並非關鍵步驟並且許多方法都已在二 中悉知(例如在加熱及/或真空條件下蒸餾)。—旦倍半矽氧 烷樹脂以固體形式回收,則該樹脂可視需要再次溶解於相 ❹ 同的或其他的溶劑中以備特殊錢。或者舉例而言,若一 種不同的溶劑,除在反應中所用之溶劑外,係最終產物所 需要的’則溶劑交換可藉由加入第二溶劑並經由蒸館移除 第-溶劑而完成。此外,溶劑中樹脂的濃度可藉由移除某 些溶劑或加入另外量的溶劑而調整。 另一種用於生產倍半石夕氧烧樹脂之方&包括將相應的包 含羧酸及/或羧酸形成基團之單體接枝於起始倍半矽氧烷 樹脂之上。用於將相應的單體接枝於起始倍半矽氧烷樹脂 # 之上之典型方法係藉由在過渡金屬觸媒存在下使含羧基之 烯烴於含Si-H之倍半矽氧烷樹脂上進行氫化矽烷化。 文中有用之含羧基之烯烴包括含雙鍵及羧*_C〇〇R3之 有機分子,其中R3係如上所述。該含縣之基團可舉例為 羧酸(R3=H)、羧酸酐或羧酸酯。當該含羧基之基團係羧酸 醋基時,其具有經保護之有機基團,該有機基團可能在反 應條件下裂開以得到相應的羧酸。 文中有用之含羧基之烯烴包括(但不限於): CH2=CH-(CH2)g-COOR3 144126.doc •13· 201027261 在此 R3 可為 lBu、SiMe3、SpBuMez、或 CPh3 ;並且 g=0 至 8 ; CH2=CH-(CH2)g-COO-CH2-OMe 在此m=0至8 ; CH2=CH-(CH2)g-(OCH2CH2)h-COOR3 在此R可為Au、SiMe3、SfBuMe〗、或CPh3 ; g=〇至8且h具 有1至10之值;或The volatile acid can be easily removed from the composition by stripping after the reaction is carried out + A B . The amount of catalyst depends on the bridge, /, and the biomass. The amount of the catalyst is based on the total weight of the reaction mixture, generally 0. 〇 5 wt% to 1 wt%. The Λ/丨烧 reactant is insoluble in water or slightly soluble in water. In this connection, the reaction is carried out in an organic solvent. The organic solution is stored in any amount sufficient to dissolve the decane reactant. In general, the organic solvent is present in an amount of from 1 to 99 based on the total amount of the reaction. / ... . , or 70 to 90% by weight. The organic solvent that can be used can be exemplified by (not limited to) a saturated aliphatic compound (such as n-decane, hexane, n-heptane, /, octane), a % aliphatic compound (such as ring 144126.doc 201027261 pentane and ring) Affiliation), aromatics (such as benzene, toluene, diphenylbenzene, mesitylene); ethers (such as tetrahydrofuran, dioxane, ethylene glycol diethyl ether, ethylene glycol dimethyl ether); Such as mercaptoisobutyl ketone (oxime) and cyclohexanone); halogen-substituted alkanes (such as tri-ethane); halogenated aromatics (such as bromobenzene and gas benzene); esters (such as propylene glycol monomethyl) Ethyl ether acetate (PGMEA), isobutyl isobutyrate and propyl propionate). Useful polyoxyl solvents can be exemplified by, but not limited to, cyclodecane oxides such as octylcyclotetraoxane and decylcyclopentaoxane. A single solvent or a mixture of solvents can be used. In the method for producing a sesquioxane resin, after the reaction is completed, the volatile matter can be removed from the sesquioxane resin solution under reduced pressure. Such volatile materials include by-product fermentation, excess water, catalyst hydrochloric acid (chloro decane path), and solvents. Methods for removing volatile materials are well known in the art and include, for example, distillation or stripping under reduced pressure. After the reaction is completed, the catalyst can be removed as needed. Methods for removing catalysts are well known in the art and include neutralization, stripping or water washing or combinations thereof. The catalyst can negatively affect the life of the sesquioxane resin (especially when in solution), so it is recommended to remove it. In order to increase the molecular weight of the sesquioxane resin and/or improve the storage stability of the sesquioxane resin, an extended time reaction should be carried out from 4 (TC heating to the reflux temperature of the solvent). a thickening step"). The thickening step can be carried out after the reaction step or as part of the reaction step. Typically, the 5' step is carried out in the range of 10 minutes to 6 hours in the range of 144126.doc 201027261, or In the range of 20 minutes to 3 hours. After the reaction for producing the sesquiterpene oxide resin, a large number of optional steps can be carried out to obtain a semi-stone oxide resin in a desired form. For example, _ §, The solid form of sesquiterpene oxide can be recovered by removing the solvent. The method of removing the solvent by shawl is not a critical step and many methods are known in the second (for example, distillation under heating and/or vacuum). If the sesquiterpene oxide resin is recovered as a solid, the resin may be redissolved in the same or other solvent as needed to prepare special money. Or, for example, if a different solvent, in addition to the reaction In addition to the solvent used, the solvent exchange required for the final product can be accomplished by adding a second solvent and removing the first solvent through the vaporizer. In addition, the concentration of the resin in the solvent can be removed by removing some solvent or Adjusted by adding another amount of solvent. Another method for producing a sesquiterpene oxide resin comprises: grafting a corresponding monomer comprising a carboxylic acid and/or a carboxylic acid forming group to the starting sesquiterpene Above the oxyalkylene resin. A typical method for grafting the corresponding monomer onto the starting sesquiterpene oxide resin is by subjecting the carboxyl group-containing olefin to Si-H in the presence of a transition metal catalyst. Hydrogenation of the sesquioxane resin. The carboxy-containing olefins useful herein include organic molecules containing a double bond and a carboxy group *_C〇〇R3, wherein R3 is as described above. The group containing the county can be exemplified. Is a carboxylic acid (R3=H), a carboxylic acid anhydride or a carboxylic acid ester. When the carboxyl group-containing group is a carboxylic acid vine group, it has a protected organic group which may be cleaved under the reaction conditions. To obtain the corresponding carboxylic acid. The carboxy-containing olefins useful herein include (but are not limited to ): CH2=CH-(CH2)g-COOR3 144126.doc •13· 201027261 where R3 can be lBu, SiMe3, SpBuMez, or CPh3; and g=0 to 8; CH2=CH-(CH2)g-COO -CH2-OMe where m = 0 to 8; CH2=CH-(CH2)g-(OCH2CH2)h-COOR3 where R can be Au, SiMe3, SfBuMe, or CPh3; g = 〇 to 8 and h has a value between 1 and 10; or

文中在製造倍半矽氧烷樹脂中有用之含SiH之倍半石夕氧 烷樹脂係由下列單元組成: (Ph(CH2)rSiO(3-X)/2(〇R,)x)m (HSiO(3-x)/2(〇R’)x)n” (MeSiO(3-x)/2(〇R,)x)0 (R SiO(3_x)/2(〇R’)x)q 參 在此Ph係苯基,Me係曱基;R’係氫原子或1至4個碳原子之 烴基;以及R1係選自經取代之苯基、酯基、聚醚基;疏 基、含硫之有機官能基、羥基生成基團、芳基磺酸酯基、 及反應性或可固化有機官能基;且r具有〇、i、2、3或4之 值,X具有0、1或2之值;其中在該樹脂中m具有〇至〇.9〇之 值;η”具有〇.1〇至1之值;〇具有〇至〇95之值;q具有〇至 0.5之值;並且m+n&quot; + 0 + qf«i。 144126.doc -14- 201027261 一般而言,m具有0.05至0.25之值,或者0.05至0.15之 值。一般而言,η&quot;具有0.165至0.95之值,或者0.225至0.95 之值。一般而言,〇具有0.25至〇.8〇之值,或者0.25至0.75 之值。一般而言’ q具有〇至〇 15之值,或者〇至〇丨之值。 含鼓基之烯烴及含Si-H之倍半矽氧烷樹脂係在過渡金屬 觸媒存在的條件下反應。有用之過渡金屬觸媒可選自不同 的已知用於促進乙烯官能基與經矽鍵接之氫原子的反應之 φ 氫化石夕烧化觸媒。適當的過渡金屬觸媒可包括含鉑及铑之 化合物及錯合物。鉑觸媒諸如乙醯丙酮化鉑或氣鉑酸係此 等化合物之代表物且適於使用。典型的過渡金屬觸媒係二 乙烯基四甲基一石夕氧烧之氣始酸錯合物,該二乙豨基四甲 基一矽氧烷係於經二甲基乙烯基矽氧基封端之聚二甲基矽 氧烷十稀釋。 含羧基之烯烴相對於含Si_H之倍半矽氧烷樹脂之量一般 係使得最終樹脂包含5至99莫耳%的(Hsi〇(3 x)/2(〇R,)x)及ι ❿至50莫耳%的(RSi〇(3.x)/2(0R,)x),或者15至8〇莫耳%的 (HSl〇(3-x)/2(OR,)x)&amp; L5至 35莫耳 %的(RSi〇(3 y,2(〇R,D, 或者20至75莫耳。/。的㈣“⑽^及以至“莫耳%的 (RSi〇(3-xV2(OR’)x)。所用過渡金屬觸媒之量一般以基於含 竣基之稀烴與含Si_H之倍半石夕氧院之總重量之一定量存在 以提供2 ppm,或者5至2〇〇 ppm的過渡金屬(即R)。 倍半矽氧烷樹脂一般係自溶劑施用。可利用之溶劑 包括(但不限於)尤其是卜甲氧基_2·丙醇、丙二醇單甲基醋 酸乙醋、γ_丁内_、及環⑽。該ARC組合物一般包括基 144126.doc -15- 201027261 於ARC組合物總重量之l〇重量%至99.9重量%,或者8〇至 95重量%的溶劑。 抗反射塗層係藉由將倍半石夕氧烧樹脂、溶劑及視需要之 其他添加劑混合一起而形成。 該抗反射塗層係藉由一種方法在電子裝置上形成,該方 法包括: (A)將ARC組合物應用於電子裝置上,該arC組合物包 括: (i)倍半石夕氧烧樹脂,其由下列單元組成: (Ph(CH2)rSiO(3.x)/2(〇RI)x)m (HSiO(3-x)/2(OR,)x)n (MeSiO(3-x&quot;2(〇R’)x)0 (RSiO(3-x)/2(〇R')x)p (R1SiO(3-x)/2(ORi)x)q 在此Ph係苯基,Me係甲基;R,係氫原子或丨至4個碳原子 之烴基,R係選自羧酸基或羧酸形成基團,其限定條件為 在固化之後存在足夠量之羧酸基以使得樹脂濕式可蝕刻; 以及R1係選自經取代之苯基、酯基、㈣基;魏基、含琉 之有機官能基、羥基生成基團、芳基磺酸 或可固化有機官能基:且㈣^叫之值應^ 有0、1或2之值;其中在該樹脂中m具有〇至〇 9〇之值· n具 有〇.〇5至〇.99之值;。具有仏❹95之值;ρ具有〇至〇 $之 值;q具有0至0.5之值;並且m+n+〇+p+qa;1 ;及 (ii)溶劑,及 144126.doc 201027261 (B)移除該溶劑並使該倍半矽氧烷樹脂固化以在該有 機裝置上形成抗反砬塗層。 该抗反射塗層組合物係應用於電子裝置以製造經塗覆之 基材。將該溶劑移除且使該倍半矽氧烷樹脂固化以在該電 - 子裝置上製造抗反射塗層。 一般而言,該電子裝置係一種希望用於倍半導體組件製 &amp;中之半導體裝置,諸如基於矽之裝置及基於砷化鎵之裝 參 置。一般而言,該裝置包括至少一個半導體層及多個包括 不同傳導性、半傳導性、或絕緣材料之其他層。 將ARC組合物施加於電子裝置之具體方法包括(但不限 於)旋塗、浸塗、喷塗、流塗、網印及其他方法。較佳施 加方法係旋塗。一般而言,塗覆包括以1〇〇〇至2〇〇()111&gt;1^ 的速度旋轉該電子裝置,及將ARC組合物加至該旋轉電子 裝置之表面上。 移除溶劑並使倍半矽氧烷樹脂固化以在電子裝置上形成 攀抗反射塗層。固化一般包括在充足的持續時間内將塗層加 熱至足夠高的溫度,以引起固化。固化係在發生足夠的交 聯時發生,以使倍半矽氧烷樹脂基本上不溶於其在施用時 的溶劑中《固化可發生於例如藉由將經塗覆電子裝置於 80C至450°C加熱0.1至60分鐘,或者在^代至之饥將經 塗覆電子裝置加熱0.5至5分鐘,或者在20〇。(:至25〇。(:將經 塗覆電子裝置加熱0.5至2分鐘。在固化步驟中可使用任何 加熱方法。舉例而言,可將經塗覆電子裝置置於石英管 爐、對流烘箱中或靜置於加熱板上。 144126.doc 201027261 為保護經塗覆組合物之倍半矽氧烷樹脂防止在固化期間 與氧或碳反應,固化步驟可在惰性氛圍中進行。文中有用 之惰性氛圍包括(但不限於)氮氣及氬氣。「惰性」意指環 境中包含少於50 ppm及或者少於1〇 ppm的氧。進行固化及 移除步驟時的壓力並不是關鍵因素。雖然在負壓或超大氣 壓力下亦可進行,但固化步驟一般在大氣壓下進行。 一般而言’在固化之後抗反射塗層係不溶於光阻劑鑄造 溶劑。此等溶劑包括(但不限於)酯類及醚類諸如丙二醇單 甲基醚醋酸酯(PGMEA)及乙氧基丙酸乙酯(EPpp不溶意 指當抗反射塗層暴露於溶劑時,在暴露1分鐘之後塗層的 厚度幾乎或完全無損失。一般而言,塗層厚度損失係少於 塗層厚度的10%,或者少於塗層厚度的7.5%。 本發明亦係關於一種方法,其包括: (a) 在基材上形成抗反射塗層; (b) 在該抗反射塗層上形成抗姓劑塗層; (0使抗蝕劑接受輻射; (d)使抗蝕劑及抗反射塗層顯影; 其中该抗反射塗層係自倍半矽氧烷樹脂製造,該倍半矽氡 烷樹脂係由下列單元組成: (Ph(CH2)rSiO(3-x)/2(〇R’)x)m (HSiO(3.x)/2(OR')x)n (MeSiO(3-x)/2(OR,)x)0 (RSiO(3-X)/2(〇R')x)p (R,SiO(3.x)/2(〇R,)x)q 144126.doc •18· 201027261 在此Ph係苯基,Me係f基;R,係氫原子或丨至4個碳原子之 烴基’· R係選自羧酸基或羧酸形成基團,其限定條件為在 固化之後存在足夠量之羧酸基以使得樹脂濕式可蝕刻,·以 -及R1係選自經取代之苯基、醋基、聚_基;疏基、含硫之 . 有機官能基、經基生成基團、彡基續酸醋基、及反應性或 可固化有機官能基;具有〇、1、2、3或4之值;χ具有 0、1或2之值;其中在該樹脂中瓜具有〇至〇 9〇之值;η具有 _ 0.05至0.99之值,· 〇具有〇至〇·95之值;ρ具有〇〇1至(^之 值;q具有0至0.5之值;並且m+n+〇+p+qwl。 抗反射塗層如上所述而形纟。之後在該抗反射塗層上形. 成抗钱劑塗層。此抗姓劑塗層可使用任何已知抗姓劑材料 及用於形成之方法形成。一般而言,該抗敍㈣以類 似於製造文中抗反射塗層之方法自溶劑溶液施加。可洪烤 該抗㈣i塗層以移除任何溶劑。視所用於烘烤源而定^共 烤一般藉由將塗層自9(rc加熱至13〇t若干分鐘至一小時 ^ 或者更久而進行。 在抗蝕劑層形成之後,使其暴露於輻射,亦即υν、χ_ 射線、電子束' EUV等等。一般而言,使用波長為⑸nm 至365 nm的紫外線輻射或者使用波長為157 ^⑺或丨^打瓜的 紫外線輻射。適當的輻射源包括汞、汞/氣、及氣燈。較 佳之輻射源係KrF準分子雷射(248 nm)或ArF準分子雷射 093 nm)。若使用更長波長輻射(例如365 nm),則建議將 敏化劑加入光阻劑組合物中以加強輻射的吸收。光阻劑組 合物之完全暴露-般可以少於1〇〇 mJ/cm2的輕射達到,或 144126.doc .】9· 201027261 者以少於50 mJ/cm的輪射達到。一般而言,抗蚀劑層係 透過遮罩曝光,從而在塗層上形成圖案。 當暴露於輻射時’該輻射由抗蝕劑組合物中之酸產生劑 吸收以生成游離酸。當抗蝕劑組合物係正性抗姓劑時,若 加熱’則游離酸可引起抗姓劑之酸可分離基團的分開。者 ^ 田 抗蝕劑係負性抗蝕劑時,游離酸可引起交聯劑與抗蝕劑反 應’並藉此形成已曝光抗触劑之不溶區域。在抗姓劑層暴 露於輻射中之後,該抗蝕劑組合物一般係經歷曝光後烘 烤’其係將其加熱至30°C至200。(:的溫度範圍内、或者 75C至150C —段較短時間,一般係3〇秒至5分鐘,或者6〇 至90秒。 將經曝光抗餘劑及抗反射塗層用適當的顯影劑或剝除溶 液移除以生成影像。因為該抗反射塗層係濕式可蝕刻,所 以其等可在經曝光抗蝕劑移除的同時被移除,並藉此排除 對單獨的蝕刻步驟以移除抗反射塗層的需要。適當的顯影 劑溶液一般包含鹼水溶液,較佳係不含金屬離子之鹼水溶 液,及視需要之有機溶劑。熟悉此項技術者能選擇出適當 的顯影劑溶液。標準產業顯影劑溶液可舉例為(但不限於) 有機驗金屬(諸如氫氧化鈉、氫氧化鉀、碳酸鈉、石夕酸 鈉、偏矽酸鈉及氨水)、一級胺類(諸如乙胺及正丙基胺)、 二級胺(諸如二乙胺、及二正丁基胺)、三級胺(諸如三乙胺 及甲基二乙胺)、酵胺(諸如二甲基乙醇胺及三乙醇胺)、四 級銨鹽(諸如四甲基氫氧化銨、四乙基氫氧化銨及膽鹼)、 以及環狀胺(諸如吡咯及哌啶)。一般而言,使用四級銨鹽 144126.doc -20- 201027261 之'容液’諸如四曱基氫氧化銨(TMAH)或膽鹼。適合的基 於氣化物之剝除溶液包括(但不限於)NE_89&amp;cCT_i。在經 曝光薄膜已顯影之後,一般用水洗殘留的抗蝕劑(「圖 案J )以移除任何殘留顯影劑溶液。 之後可將抗蚀劑及抗反射塗層中所產生的圖案轉移至下 層基材之材料上。在經塗覆或雙層光阻劑中,此會涉及到 將圖案經由可能存在的塗層及經由下層轉移至基層之上。 _ 在單層光阻劑中會直接轉移至基材。一般而言,圖案係藉 由用反應性離子諸如氧、電漿、及/或氧/二氧化硫電漿蝕 刻而進行轉移。適當的電漿器具包括(但不限於)電子迴旋 加速器共振(ECR)、螺旋波子、感應藕合式電漿(ICp)、及 傳輸耦合式電漿(TCP)系統。蝕刻技術在技藝中已悉知且 熟悉此項技術者對不同的可購得設備很熟悉。 可使用額外步驟或移除抗蝕劑薄膜及殘留抗反射塗層以 製造具有所需架構之裝置。 Φ 本發明之抗反射塗層組合物可用於製造圖案化材料層結 構,例如金屬線路、用於接觸之孔洞或通孔、絕緣部份 (例如鑲嵌溝槽或淺槽隔離)、用於電容器結構之溝槽等, 其等可用於設計積體電路裝置。此等用於製造此等特徵之 方法在技藝中已悉知。 固i顯示包括抗反射 …1叫示化万法。此 法包括在該抗反射塗層上形成抗姓齊)塗層。該抗蝕劑塗 係使用曝光裝置及遮罩而曝光,繼而進行曝光後供 (PEB)。隨後使用驗金屬溶液將該抗餘劑層進行顯多(、、羅 I44l26.doc 201027261 顯影)。之後將該抗反射塗層用典型方法(諸如RI(钱刻))移 除以暴露基材。然後對該基材施以一般製程,例如基材触 刻及/或離子植入。 圖2顯示一種使用文中所述之抗反射塗層之濕式圖案化 方法。此方法包括在該抗反射塗層上形成抗蝕劑塗層。該 抗餘劑塗層係使用曝光裝置進行曝光,繼之進行曝光後供 烤(PEB)。然後該抗蝕劑塗層及抗反射塗層同時使用驗性 溶液進行濕式顯影。之後對該基材施以一般製程,諸如基 材蝕刻及/或離子植入。 實例 下列實例係包括在内以闡述本發明之實施例。熟悉此項 技術者應瞭解:以下實例中所揭示的技術代表本發明者所 發現在本發明之實施中運作良好的技術。然而,熟悉此項 技術者應就本發明而言瞭解可以在所揭示之特定實施例中 發生很多變化並且仍可在不偏離本發明之精神及範疇的條 件下獲得相同或類似結果。所有百分比係以重量。/。之形 式。在實例1至6中所給之結構係基於反應物之理論結構。 實例1 T(PhViQT('.2〇T,)。625 T(PS'〇75 取445.1 g的丙二醇曱基醋酸乙酯、3〇 89 ^的3_ (一乙氧基石夕燒基)丙基號珀酸酸酐(〇1〇1莫耳)、2862 g的 苯基三氣代矽烷(〇 135莫耳)、126 4〇 g的曱基三氣矽烷 (〇·846莫耳)、及36·65 g的三氯矽烷(0.271莫耳)裝入反應器 中將夾套溫度設定在25。(:。劇烈攪拌溶液。將丨〇8〇 g的 144126.doc 201027261 PGMEA及54.1 g的去離子水置於燒瓶中。劇烈攪拌PGMEA 與水之混合物,直至所有水皆溶於PGMEA中。接下來, 在氮氣下在劇烈攪拌反應物下以1小時將PGMEA/水溶液加 入反應器中。在添加完畢之後,將反應器中的混合物用DI 水(2x571 g)洗三次。之後在加入120 g的乙酵(EtOH)之後 汽提溶液以得到澄清PGMEA溶液。藉由添加更多的 PGMEA將溶液稀釋至10重量%及隨後經由0.2 mm特氟龍 (Teflon)過濾器過濾。GPC(對聚苯乙烯):Mw=l 1300, Mw/Mn=2.70。 實例2 rp(Ph) -γ(Η) rp(Me) T(PSA) 丄 0.05 1 0.50 丄 0.425 丄 0.075 取672.5 g的丙二醇甲基醋酸乙酯(PGMEA)、11.42 g的3-(三乙氧基矽烷基)丙基琥珀酸酸酐(0.038莫耳)、15.78 g的 苯基三氣代矽烷(0.075莫耳)、95.29 g的曱基三氯矽烷 (0.638莫耳)、及101.59 g的三氯矽烷(0.750莫耳)裝入反應 器中。將夹套温度設定在25°C。劇烈攪拌溶液。將1080 g 的PGMEA及59.4 g的去離子水置於燒瓶中。劇烈攪拌 PGMEA與水之混合物,直至所有水皆溶於PGMEA中。接 下來,在氮氣下在劇烈攪拌反應物下以1小時將PGMEA/水 溶液加入反應器中。在添加完畢之後,將反應器中的混合 物用DI水(2x500 g)洗三次。之後在加入EtOH(120 g)之後 汽提溶液以得到澄清PGMEA溶液《藉由添加更多的 PGMEA將溶液稀釋至10重量0/〇及隨後經由0.2 mm特氟龍 (Teflon)過濾器過濾。GPC(對聚苯乙烯):Mw=44300, 144126.doc -23- 201027261The SiH-containing sesquiterpene oxide resin useful in the manufacture of sesquioxane resin is composed of the following units: (Ph(CH2)rSiO(3-X)/2(〇R,)x)m ( HSiO(3-x)/2(〇R')x)n" (MeSiO(3-x)/2(〇R,)x)0 (R SiO(3_x)/2(〇R')x)q Wherein Ph is a phenyl group, a Me-based fluorenyl group; R' is a hydrogen atom or a hydrocarbon group of 1 to 4 carbon atoms; and R1 is selected from a substituted phenyl group, an ester group, a polyether group; An organofunctional group of a sulfur, a hydroxyl group, an arylsulfonate group, and a reactive or curable organofunctional group; and r has a value of 〇, i, 2, 3 or 4, and X has 0, 1 or 2 a value; wherein m has a value of 〇 to 〇.9〇 in the resin; η" has a value of 〇.1〇 to 1; 〇 has a value of 〇 to 〇95; q has a value of 〇 to 0.5; and m +n&quot; + 0 + qf«i. 144126.doc -14- 201027261 In general, m has a value of 0.05 to 0.25, or a value of 0.05 to 0.15. In general, η&quot; has a value from 0.165 to 0.95, or a value from 0.225 to 0.95. In general, 〇 has a value of 0.25 to 〇.8〇, or a value of 0.25 to 0.75. In general, 'q has a value from 〇 to 〇 15, or a value from 〇 to 〇丨. The drum-containing olefin and the Si-H-containing sesquiterpene oxide resin are reacted in the presence of a transition metal catalyst. Useful transition metal catalysts can be selected from the various φ hydride calcining catalysts known to promote the reaction of ethylene functional groups with hydrazine-bonded hydrogen atoms. Suitable transition metal catalysts can include compounds and complexes containing platinum and rhodium. Platinum catalysts such as acetonitrile pyroplatin or gas platinum acid are representative of such compounds and are suitable for use. A typical transition metal catalyst is a divinyltetramethyl-alkali-oxygenated gas-acid complex, which is terminated with a dimethylvinyl methoxy group. The polydimethyloxane was diluted ten times. The amount of the carboxyl group-containing olefin relative to the Si-H-containing sesquioxane resin is generally such that the final resin contains 5 to 99 mol% (Hsi〇(3 x)/2(〇R,)x) and ι ❿ to 50% by mole (RSi〇(3.x)/2(0R,)x), or 15 to 8〇% by mole (HSl〇(3-x)/2(OR,)x)&amp; L5 Up to 35 mol% (RSi〇(3 y, 2 (〇R, D, or 20 to 75 mol. / (4) "(10)^ and even "Mole%" (RSi〇(3-xV2(OR ')x). The amount of transition metal catalyst used is generally present in a quantity based on one of the total weight of the sulfhydryl-containing dilute hydrocarbon and the Si_H-containing sesquiterpene to provide 2 ppm, or 5 to 2 ppm. Transition metal (ie R). The sesquioxane resin is generally applied from a solvent. Solvents which may be used include, but are not limited to, especially methoxy-2-propanol, propylene glycol monomethyl acetate, Γ_丁内_, and Ring (10). The ARC composition generally comprises a base 144126.doc -15- 201027261 from 1% by weight to 99.9% by weight, or from 8〇 to 95% by weight, based on the total weight of the ARC composition. The anti-reflective coating is obtained by doubling the resin, solvent and, if necessary, The additive is formed by mixing together. The anti-reflective coating is formed on an electronic device by a method comprising: (A) applying an ARC composition to an electronic device, the arC composition comprising: (i) half Shixi Oxygen Burning Resin consisting of the following units: (Ph(CH2)rSiO(3.x)/2(〇RI)x)m (HSiO(3-x)/2(OR,)x)n (MeSiO (3-x&quot;2(〇R')x)0 (RSiO(3-x)/2(〇R')x)p (R1SiO(3-x)/2(ORi)x)q in this Ph system Phenyl, Me is a methyl group; R is a hydrogen atom or a hydrocarbyl group of fluorene to 4 carbon atoms, and R is selected from a carboxylic acid group or a carboxylic acid forming group, which is defined by the presence of a sufficient amount of carboxylic acid after curing. The base is such that the resin is wet etchable; and R1 is selected from the group consisting of substituted phenyl, ester, and (iv) groups; weigen, oxime-containing organic functional groups, hydroxyl-forming groups, aryl sulfonic acids, or curable organic functional groups. Base: and (4) The value of ^ should be 0, 1 or 2; where m has a value of 〇 to 〇9〇 in the resin. n has a value of 〇.〇5 to 〇.99; ❹95 value; ρ has a value from 〇 to 〇$; q has a value from 0 to 0.5; and m+n+〇+p+qa;1; and (ii) dissolve And 144126.doc 201027261 (B) removing the solvent and curing the sesquioxanated resin to form an anti-reverse coating on the organic device. The anti-reflective coating composition is applied to an electronic device for manufacturing Coated substrate. The solvent is removed and the sesquioxane resin is cured to produce an anti-reflective coating on the electro-device. In general, the electronic device is a semiconductor device intended for use in a semiconductor device, such as a germanium-based device and a gallium arsenide-based device. Generally, the device includes at least one semiconductor layer and a plurality of other layers including different conductive, semi-conductive, or insulating materials. Specific methods of applying the ARC composition to an electronic device include, but are not limited to, spin coating, dip coating, spray coating, flow coating, screen printing, and other methods. The preferred method of application is spin coating. In general, coating involves rotating the electronic device at a speed of 1 Torr to 2 Torr (111) and applying an ARC composition to the surface of the rotating electronic device. The solvent is removed and the sesquioxane resin is cured to form an anti-reflective coating on the electronic device. Curing generally involves heating the coating to a temperature high enough for sufficient duration to cause curing. Curing occurs when sufficient cross-linking occurs such that the sesquiterpene oxide resin is substantially insoluble in its solvent at the time of application. "Curing can occur, for example, by coating the electronic device at 80 C to 450 ° C. Heat for 0.1 to 60 minutes, or heat the coated electronics for 0.5 to 5 minutes, or at 20 Torr. (: to 25 〇. (: The coated electronic device is heated for 0.5 to 2 minutes. Any heating method can be used in the curing step. For example, the coated electronic device can be placed in a quartz tube furnace, convection oven Or statically placed on a hot plate. 144126.doc 201027261 To protect the coated composition of the sesquiterpene oxide resin from reacting with oxygen or carbon during curing, the curing step can be carried out in an inert atmosphere. This includes, but is not limited to, nitrogen and argon. “Inert” means that the environment contains less than 50 ppm and or less than 1 ppm of oxygen. The pressure at which the curing and removal steps are carried out is not a critical factor. Pressure or superatmospheric pressure can also be carried out, but the curing step is generally carried out under atmospheric pressure. Generally speaking, the antireflective coating is insoluble in the photoresist casting solvent after curing. These solvents include, but are not limited to, esters. And ethers such as propylene glycol monomethyl ether acetate (PGMEA) and ethyl ethoxy propionate (EPpp insoluble means that when the anti-reflective coating is exposed to a solvent, the thickness of the coating is almost or after 1 minute of exposure. There is no loss at all. In general, the coating thickness loss is less than 10% of the coating thickness, or less than 7.5% of the coating thickness. The invention also relates to a method comprising: (a) on a substrate Forming an anti-reflective coating; (b) forming an anti-surname coating on the anti-reflective coating; (0 causing the resist to receive radiation; (d) developing the resist and the anti-reflective coating; wherein the anti-reflection The coating is made from a sesquioxane resin consisting of the following units: (Ph(CH2)rSiO(3-x)/2(〇R')x)m (HSiO(3) .x)/2(OR')x)n (MeSiO(3-x)/2(OR,)x)0 (RSiO(3-X)/2(〇R')x)p (R, SiO( 3.x)/2(〇R,)x)q 144126.doc •18· 201027261 Here Ph is a phenyl group, Me is a f group; R is a hydrogen atom or a hydrocarbon group of 丨 to 4 carbon atoms'·R Is selected from a carboxylic acid group or a carboxylic acid forming group, which is defined by the presence of a sufficient amount of carboxylic acid groups after curing to render the resin wet etchable, and - and R1 is selected from substituted phenyl, vinegar Base, poly-based; sulfhydryl, sulfur-containing. Organic functional group, thiol-forming group, thiol-based vinegar group, and reactive or curable organic functional group Having a value of 〇, 1, 2, 3 or 4; χ having a value of 0, 1, or 2; wherein the guacamper has a value of 〇 to 〇9〇 in the resin; η has a value of _ 0.05 to 0.99, · 〇 Having a value from 〇 to 95; ρ has a value of 〇〇1 to (^; q has a value of 0 to 0.5; and m+n+〇+p+qwl. The antireflection coating is shaped as described above. An anti-smudge coating is formed on the anti-reflective coating. The anti-surname coating can be formed using any known anti-surname material and methods for forming. In general, the anti-syndication (4) is applied from a solvent solution in a similar manner to the method of making an anti-reflective coating herein. The anti-(iv)i coating can be bake to remove any solvent. Depending on the baking source used, the total baking is generally carried out by heating the coating from 9 (rc to 13 〇t for several minutes to one hour or longer). After the resist layer is formed, it is exposed to Radiation, ie υν, χ_ ray, electron beam 'EUV, etc. Generally, use ultraviolet radiation with a wavelength of (5) nm to 365 nm or use ultraviolet radiation with a wavelength of 157 ^(7) or 打^. These include mercury, mercury/gas, and gas lamps. The preferred source is KrF excimer laser (248 nm) or ArF excimer laser 093 nm). If longer wavelength radiation (eg 365 nm) is used, it is recommended to add a sensitizer to the photoresist composition to enhance the absorption of radiation. The complete exposure of the photoresist composition can generally be achieved with a light shot of less than 1 〇〇 mJ/cm2, or 144126.doc.] 9· 201027261 is achieved with a shot of less than 50 mJ/cm. In general, the resist layer is exposed through the mask to form a pattern on the coating. When exposed to radiation, the radiation is absorbed by the acid generator in the resist composition to form a free acid. When the resist composition is a positive anti-surname agent, the free acid can cause separation of the acid-separable groups of the anti-surname agent if heated. When the field resist is a negative resist, the free acid can cause the crosslinking agent to react with the resist and thereby form an insoluble region of the exposed anti-touching agent. After the anti-surname layer is exposed to radiation, the resist composition typically undergoes post-exposure baking, which is heated to 30 ° C to 200. (: within the temperature range, or 75C to 150C - short period of time, usually 3 sec to 5 minutes, or 6 〇 to 90 sec. Use exposed anti-reagent and anti-reflective coating with appropriate developer or The stripping solution is removed to create an image. Since the anti-reflective coating is wet etchable, it can be removed while the exposed resist is removed, and thereby removing the separate etching steps to remove In addition to the need for an anti-reflective coating, suitable developer solutions typically comprise an aqueous base solution, preferably an aqueous solution containing no metal ions, and optionally an organic solvent. Those skilled in the art will be able to select a suitable developer solution. Standard industry developer solutions can be exemplified by, but not limited to, organic metals such as sodium hydroxide, potassium hydroxide, sodium carbonate, sodium sulphate, sodium metasilicate, and aqueous ammonia, and primary amines such as ethylamine. N-propylamine), secondary amines (such as diethylamine, and di-n-butylamine), tertiary amines (such as triethylamine and methyldiethylamine), and amines (such as dimethylethanolamine and triethanolamine) a quaternary ammonium salt (such as tetramethyl hydrogen) Ammonium oxide, tetraethylammonium hydroxide and choline), and cyclic amines (such as pyrrole and piperidine). In general, the use of quaternary ammonium salt 144126.doc -20- 201027261 'liquid" such as four 曱Suitable ammonium hydroxide (TMAH) or choline. Suitable vapor-based stripping solutions include, but are not limited to, NE_89 &amp; cCT_i. After the exposed film has been developed, the residual resist is typically washed with water ("Pattern J To remove any residual developer solution. The pattern produced in the resist and anti-reflective coating can then be transferred to the material of the underlying substrate. In coated or double-layered photoresist, this will involve To transfer the pattern through the coating that may be present and through the underlying layer to the substrate. _ Direct transfer to the substrate in a single layer of photoresist. In general, the pattern is by using reactive ions such as oxygen, plasma And/or oxygen/sulfur dioxide plasma etching for transfer. Suitable plasma appliances include, but are not limited to, electron cyclotron resonance (ECR), spiral wave, inductively coupled plasma (ICp), and transmission coupled electrical Slurry (TCP) system. Etching technology Those skilled in the art and familiar with the art are familiar with different commercially available equipment. Additional steps or removal of the resist film and residual anti-reflective coating can be used to make a device having the desired architecture. The antireflective coating composition of the present invention can be used to fabricate patterned material layer structures, such as metal lines, holes or vias for contact, insulating portions (such as damascene trenches or shallow trench isolation), for capacitor structures. Grooves, etc., etc., can be used to design integrated circuit devices. These methods for fabricating such features are well known in the art. Solid-state displays include anti-reflection... 1 is shown in this method. An anti-reflective coating is formed on the anti-reflective coating. The resist is applied by exposure using an exposure device and a mask, followed by exposure (PEB). The anti-reagent layer is then exposed using a metal-detecting solution. More (,, Luo I44l26.doc 201027261 development). The antireflective coating is then removed by a typical method such as RI (money engraving) to expose the substrate. The substrate is then subjected to a general process, such as substrate etching and/or ion implantation. Figure 2 shows a wet patterning process using an anti-reflective coating as described herein. The method includes forming a resist coating on the anti-reflective coating. The anti-drug coating is exposed using an exposure apparatus, followed by exposure to post-bake (PEB). The resist coating and the anti-reflective coating are then simultaneously wet developed using an inert solution. The substrate is then subjected to a general process such as substrate etching and/or ion implantation. EXAMPLES The following examples are included to illustrate embodiments of the invention. Those skilled in the art will appreciate that the techniques disclosed in the examples below represent techniques discovered by the inventors to function well in the practice of the present invention. However, it will be apparent to those skilled in the art that <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; All percentages are by weight. /. The form. The structures given in Examples 1 to 6 are based on the theoretical structure of the reactants. Example 1 T (PhViQT('.2〇T,). 625 T (PS'〇75 Take 445.1 g of propylene glycol thioglycolate, 3〇89^ of 3_(ethoxylated) Peric acid anhydride (〇1〇1 mol), 2862 g of phenyl trioxane (〇135 mol), 126 4 g of decyl trioxane (〇·846 mol), and 36·65 g of trichloromethane (0.271 mol) was charged into the reactor to set the jacket temperature to 25. (:. Stir the solution vigorously. Place 1448〇g of 144126.doc 201027261 PGMEA and 54.1 g of deionized water. In the flask, the mixture of PGMEA and water was vigorously stirred until all the water was dissolved in PGMEA. Next, PGMEA/water solution was added to the reactor under nitrogen for 1 hour under vigorous stirring of the reactants. The mixture in the reactor was washed three times with DI water (2 x 571 g). The solution was then stripped after addition of 120 g of ethyl acetate (EtOH) to give a clear PGMEA solution. The solution was diluted to 10 weights by adding more PGMEA. % and subsequently filtered through a 0.2 mm Teflon filter. GPC (for polystyrene): Mw = l 1300, Mw / Mn = 2.70. Example 2 rp(Ph) - γ(Η) rp(Me) T(PSA) 丄0.05 1 0.50 丄0.425 丄0.075 Take 672.5 g of propylene glycol methyl acetate (PGMEA), 11.42 g of 3-(triethoxy) Alkyl propyl succinic anhydride (0.038 mol), 15.78 g of phenyl trioxane (0.075 mol), 95.29 g of decyl trichlorodecane (0.638 mol), and 101.59 g of trichloro Put decane (0.750 mol) into the reactor. Set the jacket temperature to 25 ° C. Stir the solution vigorously. Place 1080 g of PGMEA and 59.4 g of deionized water in the flask. Stir the mixture of PGMEA and water vigorously. Until all the water is dissolved in PGMEA. Next, PGMEA/water solution is added to the reactor under nitrogen for 1 hour under vigorous stirring of the reactants. After the addition is completed, the mixture in the reactor is treated with DI water (2x500). g) Wash three times. Then strip the solution after adding EtOH (120 g) to obtain a clear PGMEA solution. Dilute the solution to 10 wt. 0/〇 by adding more PGMEA and then via 0.2 mm Teflon. Filter filtration. GPC (for polystyrene): Mw=44300, 144126.doc -23- 201027261

Mw/Mn=5.99 〇 實例3 丁(PhEt)Mw/Mn=5.99 〇 Example 3 D (PhEt)

將苯乙烯(7.29g,0.07莫耳)與甲基丙烯酸第三丁酯 (32.71 g ’ 0.23莫耳)加入於200 mL甲苯中含倍半石夕氧燒樹 脂(Mn=2200,37.10 g,0.7莫耳)之燒瓶中,繼之將鉑觸媒 加入其中。將混合物攪拌並且用uv燈在室溫下照射。18 小時之後,在40°C下移除揮發性物質以得到呈黏性油之標 題樹脂。將樹脂溶於PGMEA中以得到1 〇重量%溶液並將該 溶液經由0.2 mm特氟龍(Teflon)過濾器過濾。GPC (相對於 聚笨乙烯):Mw=4890,Mw/Mn=2.44 ; 實例4 T(PhEt)〇 〇7ΐΓ(Η)〇Tf(CH2)3COOtBu)]〇 i9 將苯乙烯(3.65 g,0.035莫耳)與丁烯酸第三丁酯(1 7 〇 g,0.115莫耳)加入於2〇〇 甲苯中含倍半矽氧烷樹脂 (Mn=2200,26.5 g,0.5莫耳)之燒瓶中,繼之將鉑觸媒加 入其中。將混合物攪拌並回流過夜。在40°c下移除揮發性 〇 物質以得到黏性油。將樹脂溶於PGME A中以得到1 〇重量% 溶液並將該溶液經由〇.2 mm特氟龍(Tefl〇n)過濾器過濾。 GPC (對聚苯乙烯):mw=5 73 0,Mw/Mn=2.21 ; 實例5 T(PhEt)〇.〇7T(H)〇.7〇T[(CH2)3COOtBu]〇23 將苯乙烯(3.65 g ’ 0.035莫耳)與丁烯酸第三丁酯(14·22 g ’ 0·095莫耳)加入於1〇〇 mL甲苯中含倍半矽氧烷樹脂 M4126.doc -24- 201027261 (]^11=11,800,20 §,0.3 8莫耳)之燒瓶中,繼之將鉑觸媒加 入其中。將混合物攪拌並回流過夜。在40°C下旋轉蒸發以 得到黏性油。將樹脂溶於PGMEA中以得到10重量%溶液並 將該溶液經由0.2 mm特氟龍(Teflon)過濾器過濾。GPC (對 聚苯乙烯):Mw=15,300,Mw/Mn=2.78 ; 實例6Styrene (7.29 g, 0.07 mol) and butyl methacrylate (32.71 g '0.23 mol) were added to 200 mL of toluene containing sesquiterpene oxide resin (Mn = 2200, 37.10 g, 0.7 In a flask of Mohr, a platinum catalyst was added thereto. The mixture was stirred and irradiated with a uv lamp at room temperature. After 18 hours, the volatiles were removed at 40 ° C to give the title resin as a viscous oil. The resin was dissolved in PGMEA to give a 1% by weight solution and the solution was filtered through a 0.2 mm Teflon filter. GPC (relative to polystyrene): Mw = 4890, Mw / Mn = 2.44; Example 4 T (PhEt) 〇〇 7 ΐΓ (Η) 〇 Tf (CH2) 3COOtBu)] 〇i9 will be styrene (3.65 g, 0.035 Mo Ears and tert-butyl crotonate (1 7 〇g, 0.115 mol) were added to a flask containing sesquiterpene oxide resin (Mn = 2200, 26.5 g, 0.5 mol) in 2 Torr toluene. The platinum catalyst is then added to it. The mixture was stirred and refluxed overnight. The volatile hydrazine was removed at 40 ° C to obtain a viscous oil. The resin was dissolved in PGME A to give a 1% by weight solution and the solution was filtered through a 2.2 mm Teflon filter. GPC (for polystyrene): mw=5 73 0, Mw/Mn=2.21; Example 5 T(PhEt)〇.〇7T(H)〇.7〇T[(CH2)3COOtBu]〇23 styrene ( 3.65 g '0.035 mol) and tert-butyl crotonate (14·22 g '0·095 mol) added to 1 〇〇mL toluene containing sesquiterpene oxide resin M4126.doc -24- 201027261 ( In a flask of ^11=11,800,20 §, 0.38 mol), a platinum catalyst was added thereto. The mixture was stirred and refluxed overnight. Rotary evaporation at 40 ° C to obtain a viscous oil. The resin was dissolved in PGMEA to give a 10% by weight solution and the solution was filtered through a 0.2 mm Teflon filter. GPC (polystyrene): Mw = 15,300, Mw / Mn = 2.78; Example 6

T(Ph)〇 1 T(H)〇 2 T(Me)〇 6 j((CH2)3COOtBu)〇 J 將丁烯酸第三丁酯(3.26 g,0.022莫耳)加入於100 mL甲 苯中含TXPhViTCHVJCMe)。』樹脂(20 g,0.38莫耳)之燒瓶 中,繼之將鉑觸媒加入其中。將混合物攪拌並回流過夜。 在40°C下使用旋轉蒸發移除易揮發性物質以得到白色固 體。將樹脂溶於PGMEA中以得到10重量%溶液並將該溶液 經由0.2 mm特氟龍(Teflon)過濾器過濾。GPC (對聚苯乙 稀):Mw=12,450,Mw/Mn=2.95 〇 實例7 將在晶圓上之薄膜塗層用Karl Suss CT62旋轉塗覆機處 理。首先用0.2微米特氟龍(TEFLON)過濾器過濾樹脂 PGMEA溶液,其後旋轉塗覆於標準單面四英寸拋光低耐 阻晶圓或雙面拋光FTIR晶圓(旋轉速度=2000 rpm ;加速度 = 5 000 ;除非另外指明則時間=20秒)之上。在25 0°C的溫度 下薄膜固化於加熱板上。在固化之後PGMEA及TMAH虧損 係藉由在PGMEA或TMAH浸潰之前及之後的薄膜厚度變化 而測定。結果顯示於表1中。 I44126.doc •25- 201027261T(Ph)〇1 T(H)〇2 T(Me)〇6 j((CH2)3COOtBu)〇J Adding butyl butenoate (3.26 g, 0.022 mol) to 100 mL of toluene TXPhViTCHVJCMe). In a resin (20 g, 0.38 mol) flask, a platinum catalyst was added thereto. The mixture was stirred and refluxed overnight. The volatile matter was removed by rotary evaporation at 40 ° C to give a white solid. The resin was dissolved in PGMEA to give a 10% by weight solution and the solution was filtered through a 0.2 mm Teflon filter. GPC (p-phenylene): Mw = 12,450, Mw / Mn = 2.95 实例 Example 7 The film coating on the wafer was treated with a Karl Suss CT62 spin coater. The resin PGMEA solution was first filtered with a 0.2 micron Teflon filter and then spin coated onto a standard single-sided four inch polished low resistance wafer or double side polished FTIR wafer (rotation speed = 2000 rpm; acceleration = 5 000 ; time = 20 seconds unless otherwise indicated. The film was cured on a hot plate at a temperature of 25 °C. The PGMEA and TMAH losses after curing were determined by film thickness changes before and after PGMEA or TMAH impregnation. The results are shown in Table 1. I44126.doc •25- 201027261

SZ&lt;N 〇〇0!&gt;· oos 寸 i Γη9 寸 ι ε£SZ&lt;N 〇〇0!&gt;· oos inch i Γη9 inch ι ε£

8 卜 9CN Μ«ΦΙ(Υ)蠢 vlod ι τ 16 τ 寸oi8 卜 9CN Μ«ΦΙ(Υ) stupid vlod ι τ 16 τ inch oi

II ε 寸.6 669CN 9¾00§ SI 06 卜 I S06卜B 00,6 I ΓΙΐ Z卜寸I 6_ 寸I—ιI 5 AS寸 I rlnoos&lt;N Γ900_ 0.9 寸 δ ais 0 0¾ γ γ 蛘 们卜0. 0 τ s 寸Ό To-o Js.o j (vsd)h(3Eh(H)卜(Md)卜 -0·0 二so T 0-°:T-°'- (vsd)h(9sh(H)l· s (nsoo°0SHuII ε inch.6 669CN 93⁄400§ SI 06 卜 I S06 Bu B 00,6 I ΓΙΐ Z Bu inch I 6_ inch I—ιI 5 AS inch I rlnoos&lt;N Γ900_ 0.9 inch δ ais 0 03⁄4 γ γ 卜 卜 0. 0 τ s Ό Ό To-o Js.oj (vsd)h(3Eh(H)Bu(Md)Bu-0·0 Two so T 0-°:T-°'- (vsd)h(9sh(H) l· s (nsoo°0SHu

:τ°·0 τε·'°- sp {HT (S£T 2.0:Mnfl—:τ°·0 τε·'°- sp {HT (S£T 2.0:Mnfl—

【(nsoou( H3)T(n)卜(sMd)L s ez-o-o、-—、- =8003( H3)l 卜(H)h 03£ΐ τ 寸 5(li5tsgl-.€ 9 144126.doc 26- 201027261 【圖式簡單說明】 圖1顯示一種使用抗蝕劑層及抗反射塗層之傳統乾式圖 案化製程;及 - 圖2顯示一種使用抗蝕劑層及文中所述之抗反射塗層之 . 濕式圖案化製程。[(nsoou( H3)T(n) 卜(sMd)L s ez-oo,--,- =8003( H3)l 卜(H)h 03£ΐ τ 寸 5(li5tsgl-.€ 9 144126.doc 26- 201027261 [Simplified Schematic] FIG. 1 shows a conventional dry patterning process using a resist layer and an anti-reflective coating; and - FIG. 2 shows a resist layer and an anti-reflective coating as described herein. Wet patterning process.

144126.doc -27-144126.doc -27-

Claims (1)

201027261 七、申請專利範圍: 1. 一種在電子裝置上形成抗反射塗層之方法,其包括: (A)將抗反射塗層組合物施用於電子裝置上,該抗反 .射塗層組合物包括: 、 (i)倍半矽氧烧樹脂,其由下列單元組成: (Ph(CH2)rSiO(3-x)/2(OR')x)m (HSiO(3.x)/2(〇R')x)n ©(MeSiO(3.x)/2(〇R,)x)〇 (RSiO(3_x)/2(OR’)x)p (R】SiO(3.x)/2(OR|)x)q 其中Ph係苯基,Me係曱基;R,係氫原子或具i至4個碳 原子之烴基;R係選自羧酸基或羧酸形成基團,其限制 條件為在固化之後存在足夠量之缓酸基以使得樹脂濕式 可顯影;以及R1係選自經取代之苯基、酯基、聚醚基; 巯基、含硫之有機官能基、羥基生成基團、芳基橫酸酯 φ 基、及反應性或可固化有機官能基;且r具有0、1、2、3 或4之值;X具有〇、1或2之值;其中在該樹脂中,m具有 0至0.90之值;η具有〇.〇5至〇·99之值;〇具有〇至0.95之 值;Ρ具有0.01至0.5之值;q具有〇至0.5之值;並且 m+n+〇+p+q«i ;及 (Π)溶劑,及 (B)移除該溶劑’並使該倍半矽氧烷樹脂固化,以在 該電子裝置上形成抗反射塗層。 2. —種方法,其包括 144126.doc 201027261 (a) 在基材上形成抗反射塗層; (b) 在該抗反射塗層上形成抗蝕劑塗層; (c) 使該抗蝕劑暴露於輻射; (d) 使該抗餘劑及該抗反射塗層顯影; 其中該抗反射塗層係自倍半矽氧燒樹脂製造’該倍半矽 氧烧樹脂係由下列單元組成: (Ph(CH2)rSiO(3-x)/2(OR')x)m (HSiO(3_x)/2(〇R,)x)n (MeSiO(3.x)/2(OR')x)0 φ (RSiO(3-X)/2(OR,)x)p (R1SiO(3.x)/2(OR,)x)q 其中Ph係苯基,Me係曱基;R'係氫原子或含1至4個碳原 子之烴基;R係選自羧酸基或羧酸形成基團,其限制條 件為在固化之後存在足夠量之羧酸基以使得樹脂濕式可 顯影’·以及R1係選自經取代之苯基、酯基、聚醚基;巯 基、含硫之有機官能基、羥基生成基團、芳基磺酸酯 基、及反應性或可固化有機官能基具有〇、1、2、3 ® 或4之值;X具有〇、之值;其中在該樹脂中,^具有 0至0.90之值;n具有0.05至〇99之值;〇具有〇至〇95之 值;Ρ具有0.01至0.5之值;q具有〇至0.5之值;且 m+n+o+p+q«i 〇 3. 4. 如响求項1或2之方法’其中該抗反射塗層組合物係藉由 旋塗而施用。 如請求項1或2之方法,其中藉由在8CTC至450。(:下加熱 144126.doc 201027261 0.1至60分鐘而移除該溶劑及固化該倍半矽氧烷樹脂。 5. 如請求項1之方法,其中該溶劑(ii)係選自1-甲氧基_2-丙 醇、丙—醇單曱基醋酸乙酯、γ-丁内酯、及環己酮。 6. 如請求項1之方法,其中該溶劑係以基於該抗反射塗層 組合物總重量之10至9.9重量%存在。 7·如請求項1或2之方法,其中該倍半矽氧烷樹脂係由 (PhSiO(3.x)/2(〇R')x)m , (HSiO(3-x)/2(〇R')x)„ ' (MeSiO(3.x)/2(OR')x)0 ❹ 、及(RSi〇(3_x)/2(OR,)x)p單元組成, 其中Ph係苯基,Me係甲基;Rl係氫原子或含i至4個碳原 子之煙基,R係選自竣酸基或緩酸形成基團,其限制條 件為在固化之後存在足夠量之羧酸基以使得樹脂濕式可 顯影,X具有〇、!或2之值;其中在該樹脂中,m具有 0.05至0.15之值;n具有〇·ΐ5至0.80之值;〇具有0.25至 0.80 之值;ρ 具有 0.015至〇.25 之值;且 m+n+0+pfta。 8. 如請求項1或2之方法,其中該倍半矽氧烷樹脂係由 ❿ (Ph(CH2)2SiO(3.x)/2(〇R')x)m、(HSiO(3.x)/2(〇R')x)n、及 (RSiO(3_x)/2(〇R')x)p單元組成, 其中Ph係本基,R1係氫原子或含1至4個碳原子之烴 基;R係選自羧酸基或羧酸形成基團,其限制條件為在 固化之後存在足夠量之羧酸基以使得樹脂濕式可顯影; X具有0、1或2之值;其中在該樹脂中,^具有〇.〇5至0.15 之值;η具有0·15至0.80之值;p具有0.015至0.25之值; 且 m+n 士 ρ»1。 9. 如請求項1或2之方法,其中R係-r2C(〇)〇h,其中R2係選 144126.doc 201027261 自含1至10個碳原子之伸烷基。 10.如請求項1或2之方法,其中R係-R2C(0)0H與-R2C(0)0R 之混合物,其中R2係選自含1至10個碳原子之伸烷基, 且R3係保護基。 144126.doc201027261 VII. Patent Application Range: 1. A method of forming an anti-reflective coating on an electronic device, comprising: (A) applying an anti-reflective coating composition to an electronic device, the anti-reflective coating composition Including: (i) sesquiterpene oxide resin consisting of the following units: (Ph(CH2)rSiO(3-x)/2(OR')x)m (HSiO(3.x)/2(〇 R')x)n ©(MeSiO(3.x)/2(〇R,)x)〇(RSiO(3_x)/2(OR')x)p (R)SiO(3.x)/2( OR|)x)q wherein Ph is a phenyl group, Me is a fluorenyl group; R is a hydrogen atom or a hydrocarbon group having from 1 to 4 carbon atoms; and R is selected from a carboxylic acid group or a carboxylic acid forming group, and the restrictions thereof In order to have a sufficient amount of a slow acid group after curing to make the resin wet developable; and R1 is selected from substituted phenyl, ester, polyether groups; mercapto group, sulfur-containing organic functional group, hydroxyl group , an aryl carboxylic acid φ group, and a reactive or curable organic functional group; and r has a value of 0, 1, 2, 3 or 4; X has a value of ruthenium, 1 or 2; wherein in the resin, m has a value of 0 to 0.90; η has a value of 〇.〇5 to 〇·99; 〇 has a value of 〇 to 0.95; Ρ has 0. a value of 01 to 0.5; q has a value of 〇 to 0.5; and m+n+〇+p+q«i; and (Π) a solvent, and (B) remove the solvent' and the sesquioxane resin Curing to form an anti-reflective coating on the electronic device. 2. A method comprising: 144126.doc 201027261 (a) forming an anti-reflective coating on a substrate; (b) forming a resist coating on the anti-reflective coating; (c) rendering the resist Exposure to radiation; (d) developing the anti-surplus agent and the anti-reflective coating; wherein the anti-reflective coating is produced from a sesquiterpene oxide resin. The sesquiterpene oxide resin is composed of the following units: Ph(CH2)rSiO(3-x)/2(OR')x)m (HSiO(3_x)/2(〇R,)x)n (MeSiO(3.x)/2(OR')x)0 φ (RSiO(3-X)/2(OR,)x)p (R1SiO(3.x)/2(OR,)x)q wherein Ph is a phenyl group, Me is a fluorenyl group; R' is a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms; R is selected from a carboxylic acid group or a carboxylic acid forming group, with the proviso that a sufficient amount of a carboxylic acid group is present after curing to make the resin wet developable'· and the R1 system Selected from substituted phenyl, ester, polyether; thiol, sulfur-containing organic functional group, hydroxyl generating group, aryl sulfonate group, and reactive or curable organic functional group having 〇, 1, 2, the value of 3 ® or 4; X has a value of 〇; wherein in the resin, ^ has a value of 0 to 0.90; n has 0.05 〇 has a value of 99; 〇 has a value of 〇95; Ρ has a value of 0.01 to 0.5; q has a value of 〇 to 0.5; and m+n+o+p+q«i 〇3. The method of claim 1 or 2 wherein the antireflective coating composition is applied by spin coating. The method of claim 1 or 2, wherein the method is at 8 CTC to 450. (: heating 144126.doc 201027261 0.1 to 60 minutes to remove the solvent and curing the sesquiterpene oxide resin. 5. The method of claim 1, wherein the solvent (ii) is selected from the group consisting of 1-methoxy _2-propanol, propanol mono-mercaptoacetate, γ-butyrolactone, and cyclohexanone. The method of claim 1, wherein the solvent is based on the total anti-reflective coating composition. The method of claim 1 or 2, wherein the sesquiterpene oxide resin is derived from (PhSiO(3.x)/2(〇R')x)m , (HSiO) (3-x)/2(〇R')x)„ ' (MeSiO(3.x)/2(OR')x)0 ❹ , and (RSi〇(3_x)/2(OR,)x)p a unit composition, wherein Ph is a phenyl group, a Me-based methyl group; R1 is a hydrogen atom or a nicotinyl group having from 1 to 4 carbon atoms, and R is selected from a decanoic acid group or a slow acid forming group, and the limitation is that it is cured. A sufficient amount of carboxylic acid groups are then present to render the resin wet developable, X having a value of 〇, !, or 2; wherein in the resin, m has a value of 0.05 to 0.15; n has a value of 〇·ΐ5 to 0.80; 〇 has a value of 0.25 to 0.80; ρ has a value of 0.015 to 〇.25; and m+n+0+pfta. The method of claim 1 or 2, wherein the sesquiterpene oxide resin is composed of ruthenium (Ph(CH2)2SiO(3.x)/2(〇R')x)m, (HSiO(3.x)/2 (〇R')x)n, and (RSiO(3_x)/2(〇R')x)p unit composition, wherein Ph is a base group, R1 is a hydrogen atom or a hydrocarbon group having 1 to 4 carbon atoms; Is selected from a carboxylic acid group or a carboxylic acid forming group, with the proviso that a sufficient amount of carboxylic acid groups are present after curing to render the resin wet developable; X has a value of 0, 1, or 2; wherein in the resin , ^ has a value of 〇.〇5 to 0.15; η has a value of 0·15 to 0.80; p has a value of 0.015 to 0.25; and m+n 士ρ»1. 9. The method of claim 1 or 2, Wherein R is -r2C(〇)〇h, wherein R2 is selected from 144126.doc 201027261 from an alkyl group having from 1 to 10 carbon atoms. 10. The method of claim 1 or 2 wherein R is -R2C (0) a mixture of 0H and -R2C(0)0R, wherein R2 is selected from the group consisting of an alkylene group having 1 to 10 carbon atoms, and a protecting group for R3. 144126.doc
TW098137779A 2008-12-10 2009-11-06 Wet-etchable antireflective coatings TW201027261A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12135708P 2008-12-10 2008-12-10

Publications (1)

Publication Number Publication Date
TW201027261A true TW201027261A (en) 2010-07-16

Family

ID=42243019

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098137779A TW201027261A (en) 2008-12-10 2009-11-06 Wet-etchable antireflective coatings

Country Status (7)

Country Link
US (1) US20110236835A1 (en)
EP (1) EP2376584B1 (en)
JP (1) JP5632387B2 (en)
KR (1) KR20110096155A (en)
CN (1) CN102245723B (en)
TW (1) TW201027261A (en)
WO (1) WO2010068337A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI776915B (en) * 2017-07-06 2022-09-11 日商日產化學股份有限公司 Alkaline developer soluble silicon-containing resist underlayer film forming composition
TWI799443B (en) * 2017-08-30 2023-04-21 日商富士軟片股份有限公司 Pattern forming method, ion implantation method, laminate, kit, composition for forming resist underlayer film, resist composition, and method for manufacturing electronic device

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101910253B (en) * 2008-01-15 2013-04-10 陶氏康宁公司 Silsesquioxane resins
WO2009111122A2 (en) * 2008-03-04 2009-09-11 Dow Corning Corporation Silsesquioxane resins
WO2010068336A1 (en) * 2008-12-10 2010-06-17 Dow Corning Corporation Silsesquioxane resins
US8507179B2 (en) * 2008-12-10 2013-08-13 Dow Corning Corporation Switchable antireflective coatings
US9353268B2 (en) 2009-04-30 2016-05-31 Enki Technology, Inc. Anti-reflective and anti-soiling coatings for self-cleaning properties
US9376593B2 (en) * 2009-04-30 2016-06-28 Enki Technology, Inc. Multi-layer coatings
KR101296889B1 (en) * 2009-07-23 2013-08-14 다우 코닝 코포레이션 Method and materials for reverse patterning
CN102478763A (en) * 2010-11-30 2012-05-30 中芯国际集成电路制造(上海)有限公司 Photoetching method
JP6060590B2 (en) * 2011-09-30 2017-01-18 Jsr株式会社 Resist pattern forming method
US8999625B2 (en) 2013-02-14 2015-04-07 International Business Machines Corporation Silicon-containing antireflective coatings including non-polymeric silsesquioxanes
JP6895600B2 (en) * 2014-02-25 2021-06-30 東京エレクトロン株式会社 Chemical Amplification Methods and Techniques for Developable Bottom Anti-Reflective Coatings and Colored Implant Resists
WO2015146524A1 (en) 2014-03-24 2015-10-01 Jsr株式会社 Pattern forming method
JP6503630B2 (en) * 2014-04-01 2019-04-24 Jsr株式会社 Silicon-containing film forming composition and pattern forming method
US9399720B2 (en) 2014-07-14 2016-07-26 Enki Technology, Inc. High gain durable anti-reflective coating
US9598586B2 (en) 2014-07-14 2017-03-21 Enki Technology, Inc. Coating materials and methods for enhanced reliability
KR102395936B1 (en) * 2016-06-16 2022-05-11 다우 실리콘즈 코포레이션 Silicon-rich silsesquioxane resin
KR102611256B1 (en) * 2018-02-05 2023-12-08 제이에스알 가부시끼가이샤 Film forming composition for semiconductor lithography process, silicon-containing film and resist pattern forming method

Family Cites Families (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4587138A (en) * 1984-11-09 1986-05-06 Intel Corporation MOS rear end processing
US5010159A (en) * 1989-09-01 1991-04-23 Dow Corning Corporation Process for the synthesis of soluble, condensed hydridosilicon resins containing low levels of silanol
US5100503A (en) * 1990-09-14 1992-03-31 Ncr Corporation Silica-based anti-reflective planarizing layer
US5210168A (en) * 1992-04-02 1993-05-11 Dow Corning Corporation Process for forming siloxane bonds
DE69300616T2 (en) * 1992-04-30 1996-05-30 Ibm Positive photoresist material containing silicone and its use in thin film packaging technology.
US5412053A (en) * 1993-08-12 1995-05-02 The University Of Dayton Polymers containing alternating silsesquioxane and bridging group segments and process for their preparation
US5484867A (en) * 1993-08-12 1996-01-16 The University Of Dayton Process for preparation of polyhedral oligomeric silsesquioxanes and systhesis of polymers containing polyhedral oligomeric silsesqioxane group segments
US5441765A (en) * 1993-09-22 1995-08-15 Dow Corning Corporation Method of forming Si-O containing coatings
JP3542185B2 (en) * 1995-02-02 2004-07-14 ダウ コーニング アジア株式会社 Silicone resin, composition containing the same, and method of curing the same
JP3499032B2 (en) * 1995-02-02 2004-02-23 ダウ コーニング アジア株式会社 Radiation curable composition, curing method and pattern forming method
JP3324360B2 (en) * 1995-09-25 2002-09-17 信越化学工業株式会社 Polysiloxane compound and positive resist material
JPH09124794A (en) * 1995-11-06 1997-05-13 Dow Corning Asia Ltd Polysiloxane resin composition containing optically functional organic material and transparent optically functional element obtained therefrom
JP3192947B2 (en) * 1995-11-16 2001-07-30 東京応化工業株式会社 Method for producing coating liquid for forming silica-based coating
US5939236A (en) * 1997-02-07 1999-08-17 Shipley Company, L.L.C. Antireflective coating compositions comprising photoacid generators
US6143855A (en) * 1997-04-21 2000-11-07 Alliedsignal Inc. Organohydridosiloxane resins with high organic content
US6057239A (en) * 1997-12-17 2000-05-02 Advanced Micro Devices, Inc. Dual damascene process using sacrificial spin-on materials
US6344284B1 (en) * 1998-04-10 2002-02-05 Organic Display Technology Organic electroluminescent materials and devices made from such materials
US6156640A (en) * 1998-07-14 2000-12-05 United Microelectronics Corp. Damascene process with anti-reflection coating
US6087064A (en) * 1998-09-03 2000-07-11 International Business Machines Corporation Silsesquioxane polymers, method of synthesis, photoresist composition, and multilayer lithographic method
US6177143B1 (en) * 1999-01-06 2001-01-23 Allied Signal Inc Electron beam treatment of siloxane resins
US6461955B1 (en) * 1999-04-29 2002-10-08 Texas Instruments Incorporated Yield improvement of dual damascene fabrication through oxide filling
US6509259B1 (en) * 1999-06-09 2003-01-21 Alliedsignal Inc. Process of using siloxane dielectric films in the integration of organic dielectric films in electronic devices
US6281285B1 (en) * 1999-06-09 2001-08-28 Dow Corning Corporation Silicone resins and process for synthesis
US6824879B2 (en) * 1999-06-10 2004-11-30 Honeywell International Inc. Spin-on-glass anti-reflective coatings for photolithography
US6268457B1 (en) * 1999-06-10 2001-07-31 Allied Signal, Inc. Spin-on glass anti-reflective coatings for photolithography
EP1190277B1 (en) * 1999-06-10 2009-10-07 AlliedSignal Inc. Semiconductor having spin-on-glass anti-reflective coatings for photolithography
US6890448B2 (en) * 1999-06-11 2005-05-10 Shipley Company, L.L.C. Antireflective hard mask compositions
US6329118B1 (en) * 1999-06-21 2001-12-11 Intel Corporation Method for patterning dual damascene interconnects using a sacrificial light absorbing material
US6982006B1 (en) * 1999-10-19 2006-01-03 Boyers David G Method and apparatus for treating a substrate with an ozone-solvent solution
US6359096B1 (en) * 1999-10-25 2002-03-19 Dow Corning Corporation Silicone resin compositions having good solution solubility and stability
KR100355604B1 (en) * 1999-12-23 2002-10-12 주식회사 하이닉스반도체 Anti-reflective coating polymers and preparation thereof
JP3795333B2 (en) * 2000-03-30 2006-07-12 東京応化工業株式会社 Anti-reflection film forming composition
US6420088B1 (en) * 2000-06-23 2002-07-16 International Business Machines Corporation Antireflective silicon-containing compositions as hardmask layer
US6420084B1 (en) * 2000-06-23 2002-07-16 International Business Machines Corporation Mask-making using resist having SIO bond-containing polymer
US20030176614A1 (en) * 2000-06-30 2003-09-18 Nigel Hacker Organohydridosiloxane resins with high organic content
US6368400B1 (en) * 2000-07-17 2002-04-09 Honeywell International Absorbing compounds for spin-on-glass anti-reflective coatings for photolithography
JP4141625B2 (en) * 2000-08-09 2008-08-27 東京応化工業株式会社 Positive resist composition and substrate provided with the resist layer
KR100828313B1 (en) * 2000-09-19 2008-05-08 롬 앤드 하스 일렉트로닉 머트어리얼즈, 엘.엘.씨 Antireflective composition
TW538319B (en) * 2000-10-10 2003-06-21 Shipley Co Llc Antireflective composition, method for forming antireflective coating layer, and method for manufacturing electronic device
TW588072B (en) * 2000-10-10 2004-05-21 Shipley Co Llc Antireflective porogens
US6589711B1 (en) * 2001-04-04 2003-07-08 Advanced Micro Devices, Inc. Dual inlaid process using a bilayer resist
US6746530B2 (en) * 2001-08-02 2004-06-08 Chunghwa Pictures Tubes, Ltd. High contrast, moisture resistant antistatic/antireflective coating for CRT display screen
KR100436220B1 (en) * 2001-08-30 2004-06-12 주식회사 네패스 Organic polymers for bottom antireflective coating, processes for preparing the same, and compositions containing the same
US20030096090A1 (en) * 2001-10-22 2003-05-22 Boisvert Ronald Paul Etch-stop resins
US6844131B2 (en) * 2002-01-09 2005-01-18 Clariant Finance (Bvi) Limited Positive-working photoimageable bottom antireflective coating
US7261997B2 (en) * 2002-01-17 2007-08-28 Brewer Science Inc. Spin bowl compatible polyamic acids/imides as wet developable polymer binders for anti-reflective coatings
US6730454B2 (en) * 2002-04-16 2004-05-04 International Business Machines Corporation Antireflective SiO-containing compositions for hardmask layer
US6872506B2 (en) * 2002-06-25 2005-03-29 Brewer Science Inc. Wet-developable anti-reflective compositions
JP4556670B2 (en) * 2002-08-07 2010-10-06 チッソ株式会社 Silicon compounds
AU2003302526A1 (en) * 2002-12-02 2004-06-23 Tokyo Ohka Kogyo Co., Ltd. Composition for forming antireflection coating
JP2004361692A (en) * 2003-04-07 2004-12-24 Dow Corning Asia Ltd Curable organopolysiloxane resin composition for optical transmission components, optical transmission components consisting of organopolysiloxane resin cured product, and method for fabricating optical transmission components
JP4796498B2 (en) * 2003-05-23 2011-10-19 ダウ コーニング コーポレーション Siloxane resin anti-reflective coating composition with high wet etch rate
KR100857967B1 (en) * 2003-06-03 2008-09-10 신에쓰 가가꾸 고교 가부시끼가이샤 Antireflective Film Material, and Antireflective Film and Pattern Formation Method Using the Same
WO2004113966A1 (en) * 2003-06-18 2004-12-29 Asahi Kasei Kabushiki Kaisha Antireflective film
JP4819676B2 (en) * 2003-07-03 2011-11-24 ダウ・コーニング・コーポレイション Photosensitive silsesquioxane resin
US8101015B2 (en) * 2003-10-07 2012-01-24 Honeywell International Inc. Coatings and hard mask compositions for integrated circuit applications methods of production and uses thereof
EP1586603B1 (en) * 2004-04-14 2007-06-13 Rohm and Haas Electronic Materials LLC Waveguide compositions and waveguides formed therefrom
JP2006117867A (en) * 2004-10-25 2006-05-11 Takemoto Oil & Fat Co Ltd Organic silicone fine particle, method for producing the organic silicone fine particle, modifier for polymer material, and raw material for cosmetic
ATE486098T1 (en) * 2004-12-17 2010-11-15 Dow Corning SILOXANE RESIN COATING
CN101073039B (en) * 2004-12-17 2011-12-14 陶氏康宁公司 Method for forming anti-reflective coating
ATE400672T1 (en) * 2004-12-17 2008-07-15 Dow Corning METHOD FOR FORMING AN ANTIREFLECTION COATING
KR101253487B1 (en) * 2004-12-17 2013-04-11 다우 코닝 코포레이션 Method for forming anti-reflective coating
JP2006292929A (en) * 2005-04-08 2006-10-26 Teijin Chem Ltd Binder resin for electrophotographic photoreceptor
JP5459929B2 (en) * 2005-11-14 2014-04-02 ローム・アンド・ハース・エレクトロニック・マテリアルズ,エル.エル.シー. Silicon-containing polymer and optical waveguide formed from the polymer
JP2007182555A (en) * 2005-12-05 2007-07-19 Jsr Corp Polysiloxane and radiation-sensitive resin composition
JP4638380B2 (en) * 2006-01-27 2011-02-23 信越化学工業株式会社 Antireflection film material, substrate having antireflection film, and pattern forming method
KR101324052B1 (en) * 2006-02-13 2013-11-01 다우 코닝 코포레이션 Antireflective coating material
WO2007094849A2 (en) * 2006-02-13 2007-08-23 Dow Corning Corporation Antireflective coating material
US20070212886A1 (en) * 2006-03-13 2007-09-13 Dong Seon Uh Organosilane polymers, hardmask compositions including the same and methods of producing semiconductor devices using organosilane hardmask compositions
DE602007000498D1 (en) * 2006-04-11 2009-03-12 Shinetsu Chemical Co Silicon-containing, film-forming composition, silicon-containing film, silicon-containing, film-carrying substrate and structuring method
US7855043B2 (en) * 2006-06-16 2010-12-21 Shin-Etsu Chemical Co., Ltd. Silicon-containing film-forming composition, silicon-containing film, silicon-containing film-bearing substrate, and patterning method
US20070298349A1 (en) * 2006-06-22 2007-12-27 Ruzhi Zhang Antireflective Coating Compositions Comprising Siloxane Polymer
JP4574595B2 (en) * 2006-06-23 2010-11-04 東京応化工業株式会社 Positive resist composition and resist pattern forming method
JP5000250B2 (en) * 2006-09-29 2012-08-15 東京応化工業株式会社 Pattern formation method
US8026035B2 (en) * 2007-03-30 2011-09-27 Cheil Industries, Inc. Etch-resistant disilane and saturated hydrocarbon bridged silicon-containing polymers, method of making the same, and method of using the same
WO2009111122A2 (en) * 2008-03-04 2009-09-11 Dow Corning Corporation Silsesquioxane resins
US8241707B2 (en) * 2008-03-05 2012-08-14 Dow Corning Corporation Silsesquioxane resins
WO2010068336A1 (en) * 2008-12-10 2010-06-17 Dow Corning Corporation Silsesquioxane resins
US8507179B2 (en) * 2008-12-10 2013-08-13 Dow Corning Corporation Switchable antireflective coatings
WO2010066305A1 (en) * 2008-12-12 2010-06-17 Widex A/S A method for fine tuning a hearing aid

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI776915B (en) * 2017-07-06 2022-09-11 日商日產化學股份有限公司 Alkaline developer soluble silicon-containing resist underlayer film forming composition
TWI799443B (en) * 2017-08-30 2023-04-21 日商富士軟片股份有限公司 Pattern forming method, ion implantation method, laminate, kit, composition for forming resist underlayer film, resist composition, and method for manufacturing electronic device

Also Published As

Publication number Publication date
JP2012511742A (en) 2012-05-24
WO2010068337A1 (en) 2010-06-17
US20110236835A1 (en) 2011-09-29
JP5632387B2 (en) 2014-11-26
EP2376584A1 (en) 2011-10-19
EP2376584B1 (en) 2014-07-16
CN102245723B (en) 2014-12-17
EP2376584A4 (en) 2012-09-12
KR20110096155A (en) 2011-08-29
CN102245723A (en) 2011-11-16

Similar Documents

Publication Publication Date Title
TW201027261A (en) Wet-etchable antireflective coatings
CN105492972B (en) Stable metallic compound, its composition and application method as hard mask and packing material
KR101849638B1 (en) Wet-strippable silicon-containing antireflectant
TWI449756B (en) Silsesquioxane resins
TWI490656B (en) Switchable antireflective coatings
KR101286631B1 (en) Method and materials for reverse patterning
KR101295858B1 (en) Method and materials for double patterning
CN113015940A (en) Silanol-containing organic-inorganic hybrid coatings for high resolution patterning
KR101296889B1 (en) Method and materials for reverse patterning
KR20160065811A (en) Metal-containing resist underlayer film-forming composition containing polyacid
US20090226824A1 (en) Hardmask composition and associated methods
TW201802146A (en) Silicon-rich silsesquioxane resins
TW200920791A (en) Silicon-containing film-forming composition, silicon-containing film, silicon-containing film-bearing substrate, and patterning method
KR100713231B1 (en) Hardmask composition coated under photoresist and process of producing integrated circuit devices using thereof
FI20195142A1 (en) Functional hydrogen silsesquioxane resins and the use thereof
JP2008034604A (en) Method of manufacturing patterned film, positive photosensitive composition, and semiconductor element
JP2573996B2 (en) Pattern forming material