TW201012991A - Fine denier partially oriented bicomponent fibers and flat and textured yarns for use in apparel - Google Patents

Fine denier partially oriented bicomponent fibers and flat and textured yarns for use in apparel Download PDF

Info

Publication number
TW201012991A
TW201012991A TW98125204A TW98125204A TW201012991A TW 201012991 A TW201012991 A TW 201012991A TW 98125204 A TW98125204 A TW 98125204A TW 98125204 A TW98125204 A TW 98125204A TW 201012991 A TW201012991 A TW 201012991A
Authority
TW
Taiwan
Prior art keywords
bicomponent fiber
core
fiber
dyeable
sheath
Prior art date
Application number
TW98125204A
Other languages
Chinese (zh)
Inventor
Paul Casey
Jesus Nieto
Jose M Rego
Bernard C Dems
Hong Peng
hua-jun Zhou
Jerry Chien-Ting Wang
John J Yang
Supriyo Das
Original Assignee
Dow Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow Chemical Co filed Critical Dow Chemical Co
Publication of TW201012991A publication Critical patent/TW201012991A/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/12Stretch-spinning methods
    • D01D5/16Stretch-spinning methods using rollers, or like mechanical devices, e.g. snubbing pins
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/06Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyolefin as constituent
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • D01F8/14Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Multicomponent Fibers (AREA)

Abstract

Methods that include a method directed to producing dyeable bicomponent, low denier per filament, partially oriented bicomponent fibers having a density of about 1.15 g/cm<SP>3</SP> or less for use in producing flat and textured yarns for use in a wide variety of textile applications, including apparel. Among the methods provided is a method comprising: (a) selecting a polyester resin for a core of the bicomponent fiber; (b) selecting a polyolefin resin for a sheath of the bicomponent fiber, wherein a viscosity ratio between the polyester resin and the polyolefin resin is in the range of about 0.4 to about 4; and (c) forming a dyeable sheath-core bicomponent fiber having a polyester core and a polyolefin sheath having a solid state density of about 1.15 g/cm<SP>3</SP> or less.

Description

201012991 六、發明說明: 【發明所屬之技術々貝域】 參考相關申請案 本案請求美國臨時專利申請案第61/〇84,153號,申請曰 2008年7月28日之權益’該案全文揭示係以引用方式併入此 處。 發明領域 本發明係’具有約U5^/立方厘米或以下之密度之 可染色雙成份且每纖絲低丹尼之部分定向雙成份纖維來用 於製造扁平紗及變形紗供用於寬廣多種_品應用包括服 裝之製造方法。201012991 VI. Description of the invention: [Technology 々 域 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 】 参考 参考 参考 参考 参考 参考 参考 美国 美国 美国 美国 美国 美国 美国 美国 美国 美国 美国 美国 美国 美国 美国 美国 美国 美国 美国 美国It is hereby incorporated by reference. FIELD OF THE INVENTION The present invention is a partially-oriented bicomponent fiber having a dyeable two-component density of about U5^/cm 3 or less and a low denier per filament for use in the manufacture of flat yarns and textured yarns for use in a wide variety of products. Applications include manufacturing methods for apparel.

C先前技術:J 發明背景 本質上為斥水性之纖維具有可用於多種纺織物件諸如 用於服裝躺之期望的性質。聚馳纖維(例如聚丙稀纖維) 屬於可用於製造_物件^具有期望之水分轉運性質及相 關性質之斥水性纖維之-例。聚埽烴纖維為製造纖維,其 中纖維形成物質為由至少85%重量比乙稀、祕或其它歸 烴單元所組成之任-種長鏈合成聚合物。聚稀煙纖維可為 多絲或單狀短纖轉、纖維束紗或薄麟。於若干實施 例中’纖維為無色及圓形截面。戴面可經修改用於不同終 端用途。於某些情況下,其物理性質純狀感及無色。此 等纖維傳統上主要係用於繩索、粗繩及用具織物。聚丙稀 由於熔點較1¾故通常為用於_般紡織應用上較為有利的聚 201012991 烯烴。 雖然聚烯烴纖維例如聚丙烯纖維其斥水本質而具有某 些期望的性質,但聚烯烴纖維用於紡織物件可能有某些挑 戰。例如,聚丙烯纖維通常不含染色位置,故聚丙烯纖維 之可染性極差。同理,使用聚丙烯纖維製成之紗或紡織物 件之可染性也極為不佳。相信此項可染性缺陷限制聚烯烴 用於服裝方面之用途。 至少於某些情況下,為了改良聚丙烯纖維之可染性, 使用兩種不同方法:(1)聚丙烯聚合物之化學改性,或(2)將 聚丙烯與可化學染色之材料(例如聚合物、添加劑或天然填 充纖維)摻混。化學改性方法例如包括較高極性化合物共聚 合且接枝至聚丙烯聚合物。但此種辦法於某些情況下不 利,原因在於允許已改性聚丙烯接受習知染色經常需要顯 著的改性濃度,結果導致聚合物之化學性質及物理性質改 變,故其特有性質喪失或大為受損。此外,紡紗已經化學 改性之聚丙烯及聚丙烯摻合物經常證實為困難,特別用於 細丹尼纖維為困難。 解決聚烯烴之可染性議題之另一項潛在解決之道為雙 成份纖維紡紗技術。使用此等技術,聚烯烴之可染性提升 且同時維持其期望的特有性質(例如手感、斥水性、及低密 度)。 雖然雙成份紡紗技術顯然為提供「雙方間最佳的」辦 法,但適合用於扁平紗、變形紗、或其它服裝紗之聚烯烴-聚酯雙成份纖維絲的製造對熔紡方法有多項挑戰,其中一 201012991 項挑戰係找出利用用於聚烯烴-聚酯雙成份纖維之兩個不 同聚合物系統之協同增效優點的製程條件。例如,識別且 實施於現有纺織品製造上及消費品效能屬性上之實際物理 限制有良好功效之製程條件的識別與實施極為困難。用於 連續長絲紗方法,由於例如藉針織或編織轉換成織物時, 需要使得細纖絲束(低抵每纖絲3丹尼或以下)夠均勻才不會 顯示出視覺缺陷,因而更進一步受限制。人眼可檢測出纖 絲尺寸、紗蓬鬆度及/或染色變化或色彩變化之微小變化所 造成的缺陷。進一步設計與控制紗性質來允許用於寬廣多 種纺織品加工及變換設備困難。 變形(業界也稱作為變形化)為一種常用於服裝用紗之 #法’用於合成纖維,對纖維提供蓬鬆度,來使衣物具有 #殊感覺及期望的美感。變形為藉機械增加蓬鬆度、中等 #展、及變形予扁平紗來改良扁平紗的覆蓋效率及手感之 方法。變形紗通常為連續長絲紗,其經加工處理來順著長 絲長度方向導入耐久的卷曲、線圈、環圈或其它精細扭曲。 呈連續長絲形式之人造纖維當共同加捻來製造有光滑表面 之連續長絲紗時,無法與紡紗特別為天然纖維製成的紡紗 有效競爭,原因在於前者不具有紡紗所具有的相同毛茸 感、蓬鬆度、及處理上的溫暖感或高水分吸收性。變形是 種有價值的方法,原因在於人造纖維製造商現在可製造 或夕或少準備用於編織或針織之紗’而無需切割已擠塑長 絲及於傳統紡織機器上將所得短纖再紡之處理程序。已經 發展出多項技術用來獲得此等長絲修改,某些方法比其它 201012991 方法更常用。 。拉伸變形為人造紗製造上的拉伸階段與變形處理組合 於單-機器之-種方法。拉伸階段及變形階段可於_部機 器的分開的通常為連續的區段(「循序拉伸變形」)或於同— 個區段共同進行(「同時拉伸變形」)。已經接受拉伸變形處 理之紗稱作為已拉伸變形紗(「dty」)。 部分定向紗或稱作為「POY」為連續長絲紗,係經由 擠塑合成聚合物製造,使得所得長絲存在有實質程度之分 子定向,但更進一步分子定向為可能,亦即為不完全拉伸 之長絲紗。將被拉伸變形之POY經常必須具有若干性質。 首先,ΡΟΥ之總紗強度須夠高而當其餵進以dty紗速度之約 1.2倍至約2.0倍速度旋轉的一組變形圓盤時不會造成拉伸 變形處理程序的中斷。為了可靠地變形,典型POY須具有 至少約1克/丹尼韌度,隨著韌度達到至少約12克/丹尼或甚 至約1.6或甚至約2·0或以上時工作能力更進一步改良。此 外,用於dty製造之ΡΟΥ須具有斷裂點伸長率於至少約6〇% 之範圍,隨著POY之趨近於約70%附近工作能力更進一步改 良。於斷裂點伸長率值約80%至約i25%或以上時,工作能 力更進一步改良。最後,POY須可形成卷曲或變形,該等 卷曲或變形提供耐熱性與回復強度間之適當平衡俾便於隨 後織物製造期間不容易被拉出,原因在於具有不穩定的卷 曲之dty最終將喪失其變形。 用於扁平紗、變形紗及其它服裝紗之部分定向聚烯烴_ 聚酯雙成伤纖維的製造是一種業界尚未能成功地解決的極 201012991 為複雜的問題。當長絲密度係維持於約1.15克/立方厘米或 以下時以及當紡紗後之最終伸長率需大於約60%時又屬更 大挑戰。 , 【發明内容】 發明概要 本發明係關於製造具有約1.15克/立方厘米或以下之密 度之可染色雙成份且每纖絲低丹尼之部分定向雙成份纖維 來用於製造扁平紗及變形紗供用於寬廣多種紡織品應用包 括服裝之方法。 於一個實施例中,本發明提供一種方法,包含:(a)選 定用於該雙成份纖維之芯之聚酯樹脂;(b)選定用於該雙成 份纖維之皮之聚烯烴樹脂,其中該聚酯樹脂與該聚烯烴樹 脂間之黏度比係於約0.4至約4之範圍;及(c)形成具有約1.15 克/立方厘米或以下之密度之具有聚酯芯及聚烯烴皮之可 染色皮芯型雙成份纖維。 紙—個實施例中,本發明提供一種方法,包含:(a)藉 一種方法形成具有約1.15克/立方厘米密度之可染色皮芯型 雙成份纖維,該方法包含:⑴選定用於該雙成份纖維之芯 之聚酯樹脂;(ii)選定用於該雙成份纖維之皮之聚烯烴樹 脂,其中該聚酯樹脂與該聚烯烴樹脂間之黏度比係於約0.4 至約4之範圍;及(iii)形成具有約1.15克/立方厘米或以下之 密度之具有聚酯芯及聚烯烴皮之可染色皮芯型雙成份纖 維;及(b)變形該可染色皮芯型雙成份纖維而形成已變形之 可染色皮芯型雙成份纖維。 201012991 本發明之特徵及優點對熟諳技藝人士將顯然自明。雖 然熟諳技藝人士已經做出多項變化,但此等變化皆係落入 本發明之精髓。 圖式簡單說明 圖式示例顯示本發明之若干實施例之某些面相,不可 用於限制或界定本發明。 第1A圖及第1B圖為可用於熔紡皮芯型雙成份纖維之 兩種POY方法之示意圖。第1A圖示例顯示s-包覆法之實 例,及第1B圖示例顯示旋轉拉伸POY法之實例。 第2圖為典型拉伸變形機之略圖。 【實施方式3 較佳實施例之詳細說明 本發明係關於製造具有約1.15克/立方厘米或以下之密 度之可染色雙成份且每纖絲低丹尼之部分定向雙成份纖維 來用於製造扁平紗及變形紗供用於寬廣多種紡織品應用包 括服裝之方法。 本發明之多個目的中之一項目的為設計適合用於扁平 紗及變形紗之可染色雙成份POY之製造方法。於若干實施 例中,本發明方法可用於獲得可被旋轉拉伸變形且使用分 散染料染色之低密度雙成份纖維。 包含本發明之雙成份纖維之織物之多項優點中之一者 為即使織物及/或纖維包含聚烯烴,織物仍然可染色。已染 色織物具有於使用分散染料染色之聚酯纖維類似的顯色強 度及色彩堅牢度。當纖維係於某些條件下加工處理時,可 201012991 達成其它可能之優點,包括出乎意外的期望的手感、色深 及色彩堅牢度。於若干實施例中,特定製程條件界定最佳C Prior Art: J BACKGROUND OF THE INVENTION Fibers that are inherently water repellent have desirable properties that can be used in a variety of textile articles such as garments. A condensed fiber (e.g., a polypropylene fiber) is an example of a water repellent fiber that can be used to manufacture a material having desired moisture transport properties and related properties. The polybenz hydrocarbon fibers are fibers from which the fiber forming material is any long chain synthetic polymer consisting of at least 85% by weight of ethylene, secret or other hydrocarbon-derived units. The polystyrene fiber can be a multifilament or a single staple fiber, a fiber bundle or a thin lin. In several embodiments, the fibers are colorless and circular in cross section. Wear the face can be modified for different end uses. In some cases, its physical properties are pure and colorless. These fibers have traditionally been used primarily for ropes, ropes and utensil fabrics. Polypropylene is generally a favorable 201012991 olefin for use in textile applications due to its melting point of 13⁄4. While polyolefin fibers, such as polypropylene fibers, are water repellent in nature and have certain desirable properties, polyolefin fibers may have certain challenges for use in textile articles. For example, polypropylene fibers generally do not contain dyed sites, so the dyeability of polypropylene fibers is extremely poor. For the same reason, the dyeability of yarns or textile articles made of polypropylene fibers is also extremely poor. It is believed that this dyeability defect limits the use of polyolefins for apparel purposes. In at least some cases, in order to improve the dyeability of polypropylene fibers, two different methods are used: (1) chemical modification of the polypropylene polymer, or (2) polypropylene and chemically dyeable materials (eg Blend with polymers, additives or natural filler fibers. The chemical modification method includes, for example, copolymerization of a relatively polar compound and grafting to a polypropylene polymer. However, this method is disadvantageous in some cases, because allowing the modified polypropylene to receive conventional dyeing often requires a significant modification concentration, resulting in a change in the chemical and physical properties of the polymer, so that its characteristic properties are lost or large. For damage. In addition, polypropylene and polypropylene blends which have been chemically modified by spinning have often proven to be difficult, especially for fine denier fibers. Another potential solution to the problem of polyolefin dyeability is the two-component fiber spinning technology. Using these techniques, the dyeability of the polyolefin is enhanced while maintaining its desired unique properties (e.g., hand, water repellency, and low density). Although the two-component spinning technology clearly provides the “best of the best” approach, the manufacture of polyolefin-polyester bicomponent filaments suitable for flat yarns, textured yarns, or other garment yarns has many The challenge, one of the challenges of 201012991, was to identify process conditions that utilized the synergistic benefits of two different polymer systems for polyolefin-polyester bicomponent fibers. For example, the identification and implementation of process conditions that identify and implement actual physical limitations on existing textile manufacturing and consumer product performance attributes are extremely difficult. For the continuous filament yarn method, since it is converted into a fabric by, for example, knitting or weaving, it is necessary to make the fine fiber tow (lower than each filament 3 denier or less) uniform enough to not show visual defects, and thus further Restricted. The human eye can detect defects caused by filament size, yarn bulk and/or small changes in dyeing or color change. Further design and control of yarn properties allows for a wide variety of textile processing and transformation equipment difficulties. The deformation (also referred to as deformation in the industry) is a method commonly used for clothing yarns for synthetic fibers, which provides bulkiness to the fibers, so that the clothes have a sense of beauty and a desired aesthetic. The deformation is a method of improving the coverage efficiency and feel of the flat yarn by mechanically increasing the bulkiness, the medium spread, and the deformation to the flat yarn. The textured yarn is typically a continuous filament yarn that is processed to introduce durable curls, loops, loops or other fine distortions along the length of the filament. Synthetic fibers in the form of continuous filaments, when co-twisted to produce continuous filament yarns having a smooth surface, cannot compete effectively with spinning, especially for natural fibers, because the former does not have the properties of spinning. The same furry feel, bulkiness, and warmth of treatment or high moisture absorption. Deformation is a valuable method because rayon manufacturers can now manufacture yarns that are woven or knitted at night or less without the need to cut extruded filaments and re-spin the resulting staples on conventional textile machines. The handler. A number of techniques have been developed to obtain such filament modifications, some of which are more commonly used than other 201012991 methods. . The tensile deformation is a combination of the stretching stage and the deformation treatment in the manufacture of artificial yarns in a single-machine method. The stretching and deformation stages can be performed in separate, generally continuous sections of the machine ("sequential tensile deformation") or in the same section ("simultaneous tensile deformation"). The yarn which has been subjected to the tensile deformation treatment is referred to as a stretched textured yarn ("dty"). Partially oriented yarns, or "POY", are continuous filament yarns, which are made by extrusion of synthetic polymers, so that the resulting filaments have a substantial degree of molecular orientation, but further molecular orientation is possible, that is, incompletely drawn Stretched filament yarn. The POY to be stretched and deformed often has several properties. First, the total yarn strength of the crucible must be high enough to not interrupt the stretching deformation process when it is fed a set of deformed discs rotating at a speed of about 1.2 times to about 2.0 times the speed of the dty yarn. For reliable deformation, a typical POY must have a toughness of at least about 1 gram per denier, with further improvement in workability as the toughness reaches at least about 12 grams per dandy or even about 1.6 or even about 2.0 or more. In addition, it is not necessary to have a break point elongation of at least about 6% in the manufacture of the dty, and the workability is further improved as the POY approaches a near 70%. The working ability is further improved when the elongation at break point is from about 80% to about i25% or more. Finally, the POY must be capable of forming curls or deformations that provide an appropriate balance between heat resistance and recovery strength to facilitate subsequent pull-out during subsequent fabric manufacture because the dty with unstable curl will eventually lose its Deformation. Partially oriented polyolefins for flat yarns, textured yarns and other clothing yarns _ Polyester double-injured fibers are a complex problem that has not been successfully solved in the industry 201012991. It is a further challenge when the filament density is maintained at about 1.15 grams per cubic centimeter or less and when the final elongation after spinning needs to be greater than about 60%. SUMMARY OF THE INVENTION The present invention relates to the manufacture of partially dyed bicomponent fibers having a density of about 1.15 g/cc or less and a low-denier per frond fiber for the production of flat and textured yarns. A method for a wide variety of textile applications including apparel. In one embodiment, the present invention provides a method comprising: (a) selecting a polyester resin for the core of the bicomponent fiber; (b) selecting a polyolefin resin for the skin of the bicomponent fiber, wherein The viscosity ratio between the polyester resin and the polyolefin resin is in the range of from about 0.4 to about 4; and (c) forming a dyeable polyester core and polyolefin skin having a density of about 1.15 g/cc or less. Leather core type bicomponent fiber. In one embodiment, the present invention provides a method comprising: (a) forming a dyeable sheath-core bicomponent fiber having a density of about 1.15 g/cc by a method, the method comprising: (1) selected for the pair a polyester resin of a core of a component fiber; (ii) a polyolefin resin selected for the skin of the bicomponent fiber, wherein a viscosity ratio between the polyester resin and the polyolefin resin is in a range of from about 0.4 to about 4; And (iii) forming a dyeable sheath-core bicomponent fiber having a polyester core and a polyolefin sheath having a density of about 1.15 g/cc or less; and (b) deforming the dyeable sheath core bicomponent fiber A deformed dyeable sheath core bicomponent fiber is formed. 201012991 The features and advantages of the present invention will be apparent to those skilled in the art. Although many skilled practitioners have made a number of changes, these changes fall within the essence of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS The drawings illustrate certain aspects of several embodiments of the present invention and are not intended to limit or define the invention. Figures 1A and 1B are schematic illustrations of two POY processes that can be used for melt-spun core-core bicomponent fibers. The example of Fig. 1A shows an example of the s-wrapping method, and the example of Fig. 1B shows an example of the rotational stretching POY method. Figure 2 is a schematic view of a typical tensile texturing machine. [Embodiment 3] DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention relates to the manufacture of a partially dyeable bicomponent fiber having a density of about 1.15 g/cc or less and a low-denier per frond fiber for flattening. Yarns and textured yarns are used in a wide variety of textile applications including garments. One of the objects of the present invention is to devise a method of manufacturing a dyeable two-component POY suitable for use in flat yarns and textured yarns. In several embodiments, the method of the invention can be used to obtain low density bicomponent fibers that can be rotationally stretched and dyed using a disperse dye. One of the many advantages of a fabric comprising the bicomponent fiber of the present invention is that the fabric can be dyed even if the fabric and/or fiber comprises a polyolefin. The dyed fabric has similar color development and color fastness to polyester fibers dyed with disperse dyes. When the fiber is processed under certain conditions, 201012991 can achieve other possible advantages, including unexpectedly unexpected hand, color depth and color fastness. In certain embodiments, specific process conditions define the best

性質來獲得可使用分散染料拉伸加捻變形及染色之低密度 纖維。 X 於又有其它實施例中,本發明方法可用於製造可染色 雙成份聚烯烴-聚酯皮芯型纖維,其隨後可經拉伸變形而具 有每長絲3丹尼或以下之細丹尼dty,且維持約丨^克/立方 厘米或以下例如約1.08克/立方厘米之ρ〇γ纖維密度。於若 干實施例中,纖維密度為約㈤克/立方厘米或以;例如: 1 ·0克/立方厘米至約0.95克/立方厘米至約〇.7克/立方厘米二 此處使用之若干術語詞棄 除非於此處特別定義,否則全部術語皆具有其一般尋 常定義。 如此處使用,「雙成份纖維」一詞係指兩種或多種聚人 物組分組賴維m更多分㈣域錢維。雙成份: 維也稱作為耗合雙成份纖維或輛合多組分纖維。於「^成 伤」中之雙」並未暗示只使用兩個元件。雙成 維之結構例如可為皮芯型排列(其中—種聚合物被另—種 聚合物包圍)、派型排列、島於海型排列、新月型排列等。 此等不同制具❹種不同截面如技藝界已知此等不同排 列可具有多種不同剖面。The property is to obtain a low-density fiber which can be stretched and dyed by using a disperse dye. In still other embodiments, the method of the invention can be used to make dyeable two-component polyolefin-polyester core-sheath fibers which can then be stretch-deformed to have a fine denier of 3 denier per filament or less Dty, and maintains a density of ρ 〇 γ fibers of about 克 / g / cm or less, for example about 1.08 g / cm 3 . In several embodiments, the fiber density is about (five) grams per cubic centimeter or; for example: from 1 to 0 grams per cubic centimeter to about 0.95 grams per cubic centimeter to about 0.17 grams per cubic centimeter. Words are specifically defined unless otherwise defined herein, otherwise all terms have their usual definitions. As used herein, the term "bi-component fiber" refers to two or more groups of poly-components that are more sub-divided into four (four) domains. Two-component: Dimensional is also referred to as a two-component fiber or a multi-component fiber. The double in "^成伤" does not imply that only two components are used. The double-dimensional structure may be, for example, a sheath-core type arrangement in which a polymer is surrounded by another polymer, a pattern arrangement, an island arrangement in a sea type, a crescent arrangement, and the like. These different arrangements have different cross sections as is known in the art. These different arrangements can have a variety of different profiles.

如此處使用「可相容劑」一詞係指可促進纖維中之 合物摻混及/或黏附之組分。 A 如此處制「dPf」—詞係指每長絲丹尼。 201012991 如此處使用「拉伸比」一詞係定義為捲繞機速度/第一 ' 導絲輥速度。 「dty」一詞係指已經接受拉伸變形處理之紗。 如此處使用「彈性纖維」一詞係指於初次拉伸且於第 四次拉伸至100%應變(雙倍長度)後將回復其已伸長長度至 少約50%,更佳至少約60% ’及又更佳約70%。進行本測試 之一種適當方式係基於人造絲國際標準局,BISFA 1998 年’第7章’選項A。於本測試下,纖維玫置於設定為間隔4 吋的二夾具間。然後以每分鐘約20吋之速率將夾具拉開至8 〇 吋距離,然後允許其即刻回復。 如此處使用,「織物」係指纖維及/或紗之已製造總成, 相對於其厚度具有實質面積及足夠機械強度來獲得總成特 有之内聚力。織物可為針織物、編織物或非織物。織物可 ^ 用於例如製造服裝衣著。 如此處使用,「纖維」一詞係指其中長度對直徑比係大 於約10之材料。纖維典型係根據其丹尼歸類,丹尼為線性 密度之測量值單位,定義為每9,000米之重量(克)。長絲纖 鲁 維通常定義為具有大於約10 (11分特(dtex))之每纖維丹 尼,通常大於約30 (33分特)。細丹尼纖維係指每纖維之丹 尼數小於約15之纖維。微丹尼纖維通常被視為具有每長絲 丹尼數(「dpf」)小於約1之多絲纖維。「長絲纖維」或「單 絲纖維」表示具有無限(換言之並非預定)長度之單一連續材 料股線,與「短纖維」相反,短纖維為有限長度之非連續 材料股線(亦即股線已經被切割或以其它方式分成具有預 10 201012991 定長度之節段)。纖維可稱作為個別纖維或多根個別纖維之 集合。 如此處使用「扁平紗」一詞係指實質上未經加捻且未 變形之完全拉伸連續長絲紗。於若干實施例中,扁平紗可 為已製備未經加捻紗俾便獲得特殊性質,例如衣物平坦度 增加。 如此處使用「部分定向紗」或「POY」一詞係指經由 擠塑合成聚合物使得所得長絲存在有實質程度之分子定 向,但可進一步進行分子定向製造之連續長絲紗,亦即不 完全拉伸之長絲紗。 如此處使用,「聚合物」一詞係指經由聚合同型或不同 型單體製成之聚合化合物。通稱「聚合物」一詞涵蓋均聚 物、共聚物、三聚物、樹狀聚合物、異種共聚物、及寡聚 物。 如此處使用「聚烯烴」一詞係指由稀烴單體所製成之 聚合物家族。烯烴單體係由烯類製造。聚烯烴之實例有聚 丙烯、聚乙烯、或聚烯烴。「聚烯烴」及「聚稀烴類」等詞 於此處通常用來表示全部聚烯烴類別及由烯烴所製成之基 質,包括纖維織物及衣物。 如此處使用「冷激」一詞係指於纖維形成過程中快速 冷卻。 「紡紗」一詞為此處使用來描述由纖維或長絲製造紗 所需之多種處理程序之集合名詞。 如此處使用「紡紗」拉伸一詞為一種方法,其中於擠 11 201012991 塑生產線製造連續長絲纖維,後來於製程中接受拉伸處 理,其中使用輥輪來施加機械拉伸,使得韌度及伸長率控 制為期望水準。本方法之變化例也使用一根或多根加熱 輥輪來施熱,同時纖維經機械拉伸來協助穩定紗免於收 縮。 「S-包覆」為於擠塑生產線製造連續長絲纖維之一種方 法,其中使用一根或多根輥輪來控制於捲繞紗綑包前之初 捲取速度,偶爾稱作為紗之丹尼捲取輥,使得紗於捲取後 而於捲繞前不會被機械拉伸。 如此處使用「加捻」一詞係指於紗中之纖維或長絲之 螺旋組態。加捻偶爾稱作為於紗或其它紡織品股線中觀察 得每單位長度以其軸線為中心之匝數。通常以Τ·Ρ·Ι·(每吋匝 數)或Τ.Ρ.Μ.(每尺匝數)表示。也係藉於已知直徑之結構中之 螺旋角測量。 「黏度比」一詞係指至少兩種樹脂於規定的紡紗條件 下之黏度比。紡紗條件包含生產線速度及dpf。 如此處使用,「紗」一詞包括藉加捻或以其它方式結合 而形成連續股線之單絲纖維以及多數纖維(例如長絲纖 維、單絲纖維、短纖維等)。芯紡紗為已經藉將纖維環繞芯 加捻之紗,該芯為另一根纖絲或先前已紡之紗,而該加捻 係至少部分隱藏該芯。 「變形紗」一詞係指經常經由變形處理,比較習知具 有類似纖維支數或纖絲支數及線性密度之紗,已經顯著給 予更多名目體積之纖絲或紡紗。變形紗可為已經經過加工 12 201012991 處理而順著纖絲長度被導入耐久的卷曲、線圈、環圈或其 它細小扭曲之連續長絲紗。 「變形」、「變形化」或「變形處理」等詞係指對合成 熱塑性紗提供額外蓬鬆度、中等延伸及變形之處理。變形 處理對較強力的連續合成長絲提供主要為短絲紗相關的性 質。藉將卷曲、線圈、環圈及縐縮永久性導入筆直長絲而 發展出此等改良性質。已經發展出多種技術來獲得此等長 絲的改良,其中某些方法比其它方法更常用。拉伸加捻變 形法屬於其中一類方法。此種方法中,紗藉拉伸定向,及 然後於多個整合之循序階段加捻來讓紗增加變形。 如此處使用「紡織品物件」一詞係指織物以及由織物 所製造之物件例如包括服裝及其它項目。 纖維中各個組分之體積百分比可由根據如下方程式(1) 之組成組分之重量百分比計算,此處v*%為皮中聚合物之 體積%,W*%為皮中聚合物之重量%,Ws%為芯中聚合物 之重量%,db*為皮中聚合物之固態密度,db«為芯中聚合物 之固態密度。 ⑴ 厂皮%= 雙成份纖維固態密度(dbBIC0)係根據方程式(2)由組成 組分之重量百分比計算。方程式(2)中各項定義係如方程式 (1)之規定。 1 W.% K,%,As used herein, the term "compatibilizer" means a component that promotes the incorporation and/or adhesion of a compound in a fiber. A "dPf" as used here - the word means Denny per filament. 201012991 As used herein, the term "stretch ratio" is defined as the winder speed / first 'guide roller speed. The term "dty" refers to a yarn that has been subjected to tensile deformation treatment. As used herein, the term "elastomeric fiber" means to have a stretched length of at least about 50%, more preferably at least about 60% after initial stretching and after a fourth stretch to 100% strain (double length). And better about 70%. One suitable way to perform this test is based on the Rayon International Bureau of Standards, BISFA 1998 'Chapter 7' Option A. Under this test, the fiber rose was placed between two clamps set at intervals of 4 。. Then pull the clamp to a distance of 8 〇 at a rate of about 20 mph and allow it to respond immediately. As used herein, "fabric" means a manufactured assembly of fibers and/or yarns having a substantial area relative to its thickness and sufficient mechanical strength to achieve a cohesive strength characteristic of the assembly. The fabric can be a knit, a woven or a non-woven fabric. The fabric can be used, for example, to make garments. As used herein, the term "fiber" refers to a material in which the length to diameter ratio is greater than about 10. Fibers are typically classified according to their Danny, which is a unit of linear density measurement, defined as weight per gram of 9,000 meters. Filament fibers are generally defined as having a fiber denier of greater than about 10 (11 dtex), typically greater than about 30 (33 dtex). Fine denier fibers are fibers having a denier of less than about 15 per fiber. Micro-dani fibers are generally considered to have a multifilament fiber having a Dani number per filament ("dpf") of less than about 1. "Filament fiber" or "monofilament fiber" means a single continuous material strand having an infinite (in other words, not predetermined) length, as opposed to "short fiber", which is a finite length of discontinuous material strand (ie, strand) Has been cut or otherwise divided into segments with a pre-10 201012991 length). Fibers can be referred to as individual fibers or as a collection of individual fibers. The term "flat yarn" as used herein refers to a fully drawn continuous filament yarn that is substantially untwisted and undeformed. In several embodiments, the flat yarn can achieve special properties such as increased flatness of the garment after the untwisted yarn has been prepared. The term "partially oriented yarn" or "POY" as used herein refers to a continuous filament yarn having a substantial degree of molecular orientation by extrusion of a synthetic polymer such that the resulting filaments are further produced by molecular orientation, that is, no Fully stretched filament yarn. As used herein, the term "polymer" refers to a polymeric compound made by polymerizing monomers of the same type or different types. The term "polymer" is used to refer to homopolymers, copolymers, terpolymers, dendrimers, heteropolymers, and oligomers. The term "polyolefin" as used herein refers to a family of polymers made from dilute hydrocarbon monomers. The olefinic single system is made from an olefin. Examples of the polyolefin are polypropylene, polyethylene, or polyolefin. The terms "polyolefin" and "polycarbonate" are used herein to refer to all polyolefin classes and substrates made from olefins, including fabrics and clothing. As used herein, the term "cold shock" refers to rapid cooling during fiber formation. The term "spinning" is used herein to refer to a collection of various processing procedures required to make yarn from fibers or filaments. As used herein, the term "spinning" is used as a method in which a continuous filament fiber is produced in a plastic production line, and then subjected to a stretching process in a process in which a roller is used to apply mechanical stretching to make a toughness. And the elongation is controlled to the desired level. Variations of the method also use one or more heated rolls to apply heat while the fibers are mechanically stretched to assist in stabilizing the yarn from shrinkage. "S-Cover" is a method of making continuous filament fibers in an extrusion line where one or more rolls are used to control the initial take-up speed before the winding of the wrapped yarn, occasionally referred to as the yarn. The roll is taken up so that the yarn is not mechanically stretched after being taken up. The term "twisting" as used herein refers to the helical configuration of the fibers or filaments in the yarn. Coronation is occasionally referred to as the number of turns per unit length that is centered on its axis as observed in yarn or other textile strands. Usually expressed as Τ·Ρ·Ι·(per number of turns) or Τ.Ρ.Μ. (number of turns per foot). It is also measured by the helix angle in a structure of known diameter. The term "viscosity ratio" means the viscosity ratio of at least two resins under the specified spinning conditions. Spinning conditions include line speed and dpf. As used herein, the term "yarn" includes monofilament fibers that form a continuous strand by twisting or otherwise joining, as well as a plurality of fibers (e.g., filament fibers, monofilament fibers, staple fibers, etc.). The core spun yarn is a yarn that has been twisted around the core by the fiber, the core being another filament or previously spun yarn, and the twisting at least partially conceals the core. The term "textured yarn" refers to a yarn which is often subjected to deformation treatment and which has a similar fiber count or filament count and linear density, and has been given a relatively large volume of filament or spinning. The textured yarn can be a continuous filament yarn that has been subjected to processing 12 201012991 and is introduced into the durable crimp, coil, loop or other small twist along the length of the filament. The terms "deformation", "deformation" or "deformation" refer to the treatment of additional bulk, medium elongation and deformation of synthetic thermoplastic yarns. The deformation treatment provides a predominantly short yarn related property to the stronger continuous filaments. These improved properties have been developed by permanently introducing crimps, coils, loops and crimps into straight filaments. A variety of techniques have been developed to achieve improvements in these filaments, some of which are more commonly used than others. The stretching and twisting method belongs to one of the methods. In this method, the yarn is oriented by stretching, and then twisted in a plurality of integrated sequential stages to increase the yarn deformation. The term "textile article" as used herein refers to fabrics and articles made from fabrics, for example, including clothing and other items. The volume percentage of each component in the fiber can be calculated from the weight percentage of the constituent components according to the following equation (1), where v*% is the volume % of the polymer in the skin, and W*% is the weight % of the polymer in the skin. Ws% is the weight % of the polymer in the core, db* is the solid density of the polymer in the sheath, and db« is the solid density of the polymer in the core. (1) Factory skin % = Two-component fiber solid density (dbBIC0) is calculated from the weight percentage of the constituent components according to equation (2). The definitions in equation (2) are as defined in equation (1). 1 W.% K,%,

Jb v ib ib ^ aBICO ^皮 *^芯 13 (2) 201012991 「黏度」一詞係指流體對被剪切應力或延長應力變形 之抗性之測量值。黏度之測定方法可獲得不同測量值。當 於此處列舉黏度時標不適用之測量方法。 此處揭示之全部數目皆為近似值,而與是否關聯使用 「約」或「近似」等詞無關。該等數值可改變。 當揭示有下限RL及上限ru之數值範圍時,皆特別揭示 落入於該範圍内之任何數值及任何含括之範圍。 此外,如申請專利範圍使用之不定冠詞「一」於此處 係定義表示一個或多於一個導入的元件。 參 若干本發明實施例之細節說明 雙成份纖維之實例 至少於务干實施例中,本發明之部分定向雙成份纖維 為包含聚烯烴皮及聚酯芯之皮芯型雙成份纖維。 適當聚烯烴之實例包括具有乙烯、丙烯、或其它烯烴 單元之聚合物。適當聚烯烴之額外實例包括具有高熔點(大 於約135C)之聚烯烴,包括但非限於聚丙烯均聚物、聚丙 烯共I物、經齊格勒-納塔(Zieg丨er_Natta)催化之聚丙婦、及 經金屬茂催化之聚丙烯均聚物或其它高熔點(大於約丨”。^ 之聚烯烴,諸如聚~4_甲基-1-戊烯、環狀烯烴共聚物、及間 規聚苯乙烯。此等聚烯烴之摻合物亦屬適宜。高熔點聚烯 烴與具有熔點低於約135〇C2其它聚烯烴之摻合物也屬適 宜。低熔點聚烯煙之實例包括但非限於聚乙烯、6稀共聚 物(極性或非極性)或以丙烯為主之共聚物。此等高熔點聚烯 煙與非晶形聚合物諸如無規料乙料氫化聚苯乙歸之摻 14 201012991 合物也屬適宜。 含括於本發明之雙成份纖維之聚烯烴數量係依據多項 因素包括期望之應用及性質而改變。於若干實施例中,本 發B月之雙成份纖維之聚烯烴部分組成該雙成份纖維皮之相 當大部分。於若干實施例中,聚烯烴可以占該雙成份纖維 約 40%至約 90%重量比(例如45%、50%、55%、60%、65%、 70%、75%、80%、85%等)及另外占該雙成份纖維約50%至 約80%重量比之數量存在於雙成份纖維。須注意可觀察得 高於約70%聚烯烴含量有染色差異。 雙成份纖維之芯包含聚酯。於若干實施例中,聚酯包 含酯鍵聯且具有低於約265。(:之熔點。適當聚酯之實例包括 但非限於聚伸乙基對苯二甲酸酯、聚伸丁基對苯二曱酸酯 (「PBT」)、聚三曱基對苯二曱酸酯、聚四甲基對苯二甲酸 酯、聚乳酸、非晶形聚酯類、聚酯共聚物、及其組合物。 用於本發明之目的’非晶形聚酯具有使用目前技術不易測 定之熔點,其具有藉差動掃描量熱術測得高K1〇(rc之玻璃 轉換溫度被視為具有低於265°C之熔點。雙成份纖維之芯組 分也包含聚酯與前述聚烯烴之摻合物。 欲含括於本發明之雙成份纖維之聚酯數量依據多項因 素包括期望之應用及性質而異。於若干實施例中,聚醋可 以占雙成份纖維約10%至約60%重量比(例如10%、15%、 20%、25%、30%、35%、40%、45%、50%、55❶/〇等)及另 外’占雙成份纖維約20%至約50%重量比之數量存在於雙成 份纖維。 15 201012991 份纖維中第二聚合物對第_聚合物之比係依據 多項因素蚊,包_錢収性f。於若干實施例中, 重董比係於約1:1〇至約95:5之範圍;另外約6〇4〇至約9〇 1〇 之範圍;及另外約40:60至職2〇之範圍。於若干實施例 中,於約65:35至峽默範圍之重量比可用於皮芯型排 列。於若干實施例中,於約40:60至約8〇:2〇範圍之重量比可 用於皮芯型排列,其中第三聚合物組分係摻混 混於皮。 ^汉修Jb v ib ib ^ aBICO ^皮 *^芯 13 (2) 201012991 The term "viscosity" refers to the measurement of the resistance of a fluid to shear stress or prolonged stress deformation. Different measurements can be obtained by measuring the viscosity. The measurement methods for which the viscosity time scale is not applicable are listed here. All numbers disclosed herein are approximate and have nothing to do with the use of the terms "about" or "approximate". These values can be changed. Any numerical value falling within the range and any range encompassed are specifically disclosed when the numerical range of the lower limit RL and the upper limit ru are disclosed. In addition, the indefinite article "a" or "an" is used to mean one or more than one. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS OF THE INVENTION Example of Bicomponent Fibers At least in the dry embodiment, the partially oriented bicomponent fibers of the present invention are sheath-core bicomponent fibers comprising a polyolefin sheath and a polyester core. Examples of suitable polyolefins include polymers having ethylene, propylene, or other olefin units. Additional examples of suitable polyolefins include polyolefins having a high melting point (greater than about 135 C) including, but not limited to, polypropylene homopolymers, polypropylene co-I, Ziegler-Natta catalyzed polypropylene. Polypropylene homopolymers or other high melting point (greater than about 丨). Polystyrene. Blends of such polyolefins are also suitable. Blends of high melting point polyolefins with other polyolefins having a melting point of less than about 135 C2 are also suitable. Examples of low melting point polyene smoke include but not Limited to polyethylene, 6 dilute copolymer (polar or non-polar) or propylene-based copolymer. These high melting point polyene smoke and amorphous polymer such as random material, hydrogenated polystyrene, blended into 14 201012991 The composition is also suitable. The amount of polyolefin included in the bicomponent fiber of the present invention varies depending on a number of factors including the desired application and properties. In several embodiments, the polyolefin portion of the bicomponent fiber of the present month Composing the considerable size of the bicomponent fiber In some embodiments, the polyolefin may comprise from about 40% to about 90% by weight of the bicomponent fiber (eg, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%). , 85%, etc.) and additionally in an amount of from about 50% to about 80% by weight of the bicomponent fiber are present in the bicomponent fiber. It should be noted that a difference in dyeing of more than about 70% of the polyolefin content is observed. The core comprises a polyester. In several embodiments, the polyester comprises an ester linkage and has a melting point of less than about 265. (Examples of suitable polyesters include, but are not limited to, polyethylene terephthalate, poly Butyl terephthalate ("PBT"), polytrimethylene terephthalate, polytetramethyl terephthalate, polylactic acid, amorphous polyester, polyester copolymer And its composition. For the purpose of the present invention, the amorphous polyester has a melting point which is difficult to measure using the prior art, and has a high K1 测 measured by differential scanning calorimetry (the glass transition temperature of rc is regarded as having a melting point below 265 ° C. The core component of the bicomponent fiber also comprises a blend of polyester and the aforementioned polyolefin. The amount of polyester of the bicomponent fiber varies depending on a number of factors including the desired application and properties. In some embodiments, the polyester may comprise from about 10% to about 60% by weight of the bicomponent fiber (eg, 10%, 15%, 20) %, 25%, 30%, 35%, 40%, 45%, 50%, 55❶/〇, etc.) and additionally 'about 20% to about 50% by weight of the bicomponent fiber are present in the bicomponent fiber. 15 201012991 The ratio of the second polymer to the first polymer in the fiber is based on a number of factors, in a number of factors, in several embodiments, the weight ratio is from about 1:1 〇 to about 95:5. Scope; in addition to the range of about 6〇4〇 to about 9〇1〇; and another range of about 40:60 to 2〇. In several embodiments, a weight ratio of from about 65:35 to the range of the galaxy can be used for the sheath-core arrangement. In several embodiments, a weight ratio ranging from about 40:60 to about 8 Torr:2 Torr can be used in the sheath-core arrangement wherein the third polymer component is blended and blended. ^Han Xiu

,皮芯型雙成份纖維之截面各異,如業界已知可為圓 形、印圓形、矩形、星形及其它形狀。芯對皮之相對位置 可為對稱性或非對稱性,但以對稱性為佳。 於本發明使用之雙成份纖維之若干實施例中聚醋直 有低於約2机之魅,聚烯烴組成皮芯型雙成份纖維之皮 之相當數量。The sheath-core bicomponent fibers have various cross-sections, and are known in the art to be circular, printed, rectangular, star-shaped, and other shapes. The relative position of the core to the skin may be symmetrical or asymmetrical, but symmetry is preferred. In some embodiments of the bicomponent fibers used in the present invention, the polyacetate has a lacquer of less than about 2, and the polyolefin constitutes a substantial amount of sheath of the sheath-core bicomponent fiber.

除了聚稀烴及聚醋外’於若干實施例中,雙成份纖維 可包含額外聚合物組分。例如,額外組分可與料烴或聚 醋摻混。另外’例如額外組分可組成得自輯烴及聚醋之 纖維之-分開區。舉例言之,雙成份纖維包含:組成該纖 維外表面之至少一部分之聚烯烴;包含聚合物之中層,該 聚合物包含酯鍵聯且具有低於約265t之熔點;及包含聚烯 烴之内芯。於内芯之聚烯烴例如可為前文說明適合用作為 聚婦烴外表面之聚烯烴。可摻混第一聚合物或第二聚合物 或作為第一聚合物及第二聚合物之分開組分之適當聚合物 組分之實例包括但非限於具有乙嫦之重量分量為3%至2〇% 16 201012991 之丙烯與乙烯之共聚物;或具有總α_烯烴含量大於5%重量 比之乙烯與-種或多種CX-烯烴之共聚物;或丙稀或乙稀與 極性共聚單體例如丙烯酸及其金屬鹽或乙酸乙婦醋、甲基 丙烯酸甲酯等之共聚物。 對特定應用若屬期望’可含括添加劑於雙成份纖維, 但限制條件為任何此等添加劑不會非期望地影響本發明之 目的。例如,可使用對氧化及紫外光暴露有耐性之添加劑、 Φ 用於靜電耗散之添加劑、用於氣味控制之添加劑、用於纖 維著色之添加劑、紡紗整理劑及其它助劑。於若干實施例 中,纖維也可含有分散顆粒用於包括但非限於可染性改良 • 目的。此等顆粒例如可為聚合物、黏土、金屬氫氧化物等: — 於若干實施例中,也可使用可相容劑例如用來促進於 冑成份纖維巾聚合物之緊密摻混及/或軸。適當可相容劑 之實例包括但非限於均質分支乙烯聚合物,諸如以可與二 胺或經胺反應之含幾基化合物例如順丁稀二軒接枝之ϋ • &gt;支實f乙稀聚合物。可相容劑—般應可協助芯組分之播 塑入皮組分内部。熟諸技藝人士由本揭示獲益,須可選擇 適當類型及數量之可相容#1來歸特定應用。 例如依據期望應用而定,纖維可為任—種適當尺寸 截面形狀。用於多項應用,由於摩擦力低以約略圓形之 面為較佳。但也可採用其它形狀例如三葉形或扁平形(例如 「帶狀」)。 多絲纖維可包含顺、36根或其倍數之_於0 至3 dPf之範圍,個別纖維係於請dpf至2 dpf之範圍。隨著 17 201012991 dpf的減少,可於紗中使用更多長絲來讓紗更能忍受下游加 工處理條件。於若干實施例中,適當纖維具有至少約0.5 dpf 至約50 dpf之dpf。於若干實施例中,雙成份纖維可為具有 低於約15 dpf之細丹尼纖維。舉例言之,雙成份纖維具有約 0.5至約 15 (例如 1、2、3、4、5、6、7、8、9、10、11、12、 13、14等)dpf,及另外約0.7 dpf至約3 dpf。 於若干實施例中,雙成份纖維可紡成具有約20至約 1,500及另外約30至約300之總丹尼之紗。 雙成份纖維之密度可由組分之體積比及標稱密度求 出。於若干實施例中,雙成份纖維具有約1.14克/立方厘米, 例如約1.08克/立方厘米至約1.07克/立方厘米之POY纖維密 度。於若干情況下,纖維密度可為約1.02克/立方厘米或以 下例如約0.9克/立方厘米至約0.95克/立方厘米至約1 ·0克/立 方厘米。 於若干實施例中,包含根據本發明之實施例之雙成份 纖維之單絲纖維或多絲纖維可用於變形紗、拉伸變形紗、 環紡紗、旋轉拉伸紗、或部分定向紗。 本發明方法之實例 如前述,本發明提供可用於製造服裝用之扁平紗及變 形紗之具有約1.15克/立方厘米或以下之密度之可染色雙成 份低每纖絲丹尼之部分定向雙成份纖維之製造方法。若干 本發明方法涉及下列步驟。某些步驟為選擇性,若視為期 望則可選擇性採用。 樹脂選擇:該方法之第一步驟為妥善選擇用於形成雙 201012991 成份纖維之聚烯烴樹脂及聚酯樹脂。選擇樹脂時,可考慮 與組成分相關聯之熱特徵及流變學特徵。舉例言之考慮的 因素之一為所使用樹脂之兩個熔點間之差。獲得樹脂之正 確平衡將有助於避免於第二步驟中就不同的熔點所討論之 問題。 於較佳實施例中,樹脂例如聚酯樹脂可經乾燥而由樹 脂去除水分。此外,於較佳實施例中,樹脂係於具有經控 制之水分含量之已調理環境處理。 重要參數為熔點之選擇。可經由考慮所使用之樹脂之 熔點、轉運線路配置、紡嘴之溫度極限而達成。至於溫度 極限,挑戰係在於平衡不同樹脂之熔點。較低熔點樹脂為 加熱中之系統;而較高熔點樹脂為冷卻中之系統。挑戰係 在於非期望太快速冷激較高熔點。如此可能成問題。例如, 若聚酯樹脂來到約30(TC,撞擊紡嘴中之285。(:冷點,冷卻 時將變成太過黏稠。則由紡嘴形成纖絲變困難,導致缺陷 (例如纖維發泡、纖絲斷裂等)。此外,若聚烯烴部分之溫度 過熱,則纖維將分解,至少於某些情況下纖維可能形成黑 色焦/由。如此鑑於選用之樹脂必須小心平衡設計參數。 本發明之重要面相為於芯及皮中聚合物之選擇及加工 條件之選擇,使得於紡紗條件下芯黏度對皮黏度之比為約 0.4至約4。由於黏度係依據材料、毛細尺寸、毛細形狀、 及聚合物進入及離開毛細管時之相對熔體溫度決定,聚合 物之選擇有助益。經由選擇溫度及紡嘴毛細管設計之正確 組合,於若干實施例中’可製造具有聚烯烴皮及聚酯芯及 19 201012991 符合隨後之拉伸加捻變形需求之雙成份纖維。 為了獲得最佳效能,至少於若干實施例中,相信聚稀 烴細C/2斯克具有職由Q 5至6q,較佳由咖,及 ,佳由2至35。為了獲得最佳_結果,期望聚烯烴之分子 量分布係低於4。In addition to the polybasic hydrocarbons and the polyacetate, in several embodiments, the bicomponent fibers can comprise additional polymeric components. For example, additional components can be blended with the hydrocarbon or polyester. Further, for example, the additional component may constitute a separate zone from the fibers of the hydrocarbon and the polyester. By way of example, the bicomponent fiber comprises: a polyolefin comprising at least a portion of an outer surface of the fiber; a layer comprising a polymer comprising an ester linkage and having a melting point of less than about 265t; and a core comprising a polyolefin . The polyolefin of the inner core may, for example, be a polyolefin which has been described above as being suitable as the outer surface of a polysulfide. Examples of suitable polymer components which may be blended with the first polymer or the second polymer or as separate components of the first polymer and the second polymer include, but are not limited to, having a weight fraction of 3% to 2 with acetamidine. 〇% 16 201012991 a copolymer of propylene and ethylene; or a copolymer having ethylene and one or more CX-olefins having a total α-olefin content of more than 5% by weight; or propylene or ethylene and a polar comonomer, for example A copolymer of acrylic acid and its metal salt or ethyl acetate, methyl methacrylate or the like. If desired for a particular application, an additive may be included in the bicomponent fiber, provided that any such additive does not undesirably affect the purpose of the present invention. For example, an additive resistant to oxidation and ultraviolet light exposure, an additive for Φ for static dissipation, an additive for odor control, an additive for fiber coloring, a spinning finish, and other auxiliaries may be used. In several embodiments, the fibers may also contain dispersed particles for purposes including, but not limited to, dyeability improvement. Such particles may, for example, be polymers, clays, metal hydroxides, etc.: - In several embodiments, compatibilizers may also be used, for example, to promote intimate blending and/or shafting of the bismuth component fiberglass polymer. . Examples of suitable compatibilizers include, but are not limited to, homogeneous branched ethylene polymers, such as those grafted with a diamine or an amine-containing compound containing a compound such as cis-butanthene; &gt; polymer. The compatibilizer should generally assist in the incorporation of the core component into the interior of the skin component. Those skilled in the art will benefit from this disclosure and may choose the appropriate type and quantity of compatible #1 for a particular application. For example, depending on the desired application, the fibers can be of any suitable cross-sectional shape. For a variety of applications, it is preferred to have a relatively rounded surface due to low friction. However, other shapes such as a trilobal shape or a flat shape (e.g., "ribbon") may be employed. The multifilament fibers may comprise cis, 36 or a multiple thereof in the range of 0 to 3 dPf, and the individual fibers are in the range of dpf to 2 dpf. As the dpf of 17 201012991 is reduced, more filaments can be used in the yarn to make the yarn more tolerant of downstream processing conditions. In several embodiments, suitable fibers have a dpf of at least about 0.5 dpf to about 50 dpf. In some embodiments, the bicomponent fibers can be fine denier fibers having less than about 15 dpf. By way of example, the bicomponent fibers have a dpf of from about 0.5 to about 15 (eg, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, etc.), and additionally about 0.7. Dpf to about 3 dpf. In several embodiments, the bicomponent fibers can be spun into a total denier yarn having from about 20 to about 1,500 and additionally from about 30 to about 300. The density of the bicomponent fibers can be determined from the volume ratio of the components and the nominal density. In several embodiments, the bicomponent fibers have a POY fiber density of about 1.14 grams per cubic centimeter, such as from about 1.08 grams per cubic centimeter to about 1.07 grams per cubic centimeter. In some cases, the fiber density can be about 1.02 grams per cubic centimeter or less, such as from about 0.9 grams per cubic centimeter to about 0.95 grams per cubic centimeter to about 1 kilogram per cubic centimeter. In several embodiments, monofilament or multifilament fibers comprising bicomponent fibers in accordance with embodiments of the present invention can be used in textured yarns, stretch textured yarns, ring spun yarns, rotationally drawn yarns, or partially oriented yarns. EXAMPLES OF THE PROCESS OF THE INVENTION As described above, the present invention provides a dyeable two-component low-density partial D-component of each of the filaments having a density of about 1.15 g/cm 3 or less which can be used for the manufacture of flat yarns and textured yarns for clothing. The method of manufacturing fibers. Several methods of the invention involve the following steps. Some of the steps are optional and can be used selectively if desired. Resin selection: The first step of the method is to properly select the polyolefin resin and polyester resin used to form the double 201012991 component fiber. When selecting a resin, consider the thermal and rheological characteristics associated with the composition. One of the factors considered for example is the difference between the two melting points of the resin used. Obtaining the correct balance of the resin will help to avoid the problems discussed in the second step for different melting points. In a preferred embodiment, a resin such as a polyester resin can be dried to remove moisture from the resin. Moreover, in the preferred embodiment, the resin is treated in a conditioned environment having a controlled moisture content. The important parameter is the choice of melting point. This can be achieved by considering the melting point of the resin used, the transfer line configuration, and the temperature limit of the spun. As for the temperature limit, the challenge is to balance the melting points of different resins. The lower melting point resin is the system in heating; the higher melting point resin is the system in cooling. The challenge is that it is not expected to be too fast to cool the higher melting point. This can be a problem. For example, if the polyester resin comes to about 30 (TC, hitting 285 in the spinning nozzle. (: cold spot, it will become too viscous when cooled. It will become difficult to form filaments from the spinning nozzle, resulting in defects (such as fiber foaming). In addition, if the temperature of the polyolefin portion is overheated, the fiber will decompose, and at least in some cases, the fiber may form a black coke/caus. Therefore, the design parameters must be carefully balanced in view of the resin selected. The important aspect is the selection of the polymer in the core and the skin and the choice of processing conditions such that the ratio of core viscosity to skin viscosity under spinning conditions is from about 0.4 to about 4. Since the viscosity is based on the material, capillary size, capillary shape, And the relative melt temperature of the polymer as it enters and exits the capillary, the choice of polymer is beneficial. By choosing the right combination of temperature and spout capillary design, in some embodiments, it can be made with polyolefin skin and polyester. Core and 19 201012991 Bicomponent fibers that meet the subsequent tensile and twisting requirements. For best performance, at least in several embodiments, it is believed that the thin hydrocarbon C/2 Q 5 to have a level 6Q, preferably coffee, and, best of 2 to 35. _ For best results, the desired molecular weight distribution of the polyolefin-based 4 below.

至少於若干實施例中,本發明之紡紗方法及若有所需 拉伸變形法包㈣合物流變學料當尺寸設備以及於扁平 紗之纖輯紗難中之最佳域程條件及變形紗之纖維纺 紗及變形過程之最佳化製雜件之·。本發明之纺紗及 選擇性的拉伸㈣方法’至少於若干實施例中對紗獲得 熱安定性及/錢械安錄及改良卷曲穩定性。 ,纖維纺紗(也稱作為纖維形成):該方法之第二步驟為纖In at least some embodiments, the spinning method of the present invention and the optimum range conditions and deformations of the sizing equipment and the sizing material of the flat yarn are difficult if the desired tensile deformation method (tetra) rheology material is difficult. The optimization of the fiber spinning and deformation process of the yarn. The spinning and selective stretching (four) method of the present invention achieves thermal stability and/or mechanical stability and improved curl stability for at least a few embodiments. , fiber spinning (also known as fiber formation): the second step of the method is fiber

料成。至)有兩種適當方法可用於纖轉成步驟。包括 s-包覆法及旋轉拉伸法。s_包覆法對纖維提供s方向加检。 旋轉拉伸法只拉伸纖維;由於並未對纖維提供加检故並未 導入變形。S·包覆法為於擠塑生產線巾製造_長絲纖維之 方法,其巾制-根或多根輥輪來控制於捲繞紗包之前之 初捲取速度,偶爾稱作為紗之丹尼捲取輥使得於捲取後 至捲繞則紗不會被機械拉伸。旋轉拉伸處理為於擠塑生產 線製造連續長絲紗及後來於拉伸處理中接受拉伸處理之方 法其中使用親輪來施加機械拉伸,使得韌度及伸長率被 控制於期望程度。本方法之變化例也使用一根或多根已加 熱輕輪來施熱’同時纖維經機械拉伸來協助讓紗穩定化免 於收縮。各種方法皆有其本身之挑戰及優點。 [S ] 20 201012991 本發明之POY可於s_包覆紡紗生產線(參考第1A圖)或 方疋轉拉伸生產線(參考第1B圖)製造。於旋轉拉伸法中,纖 維於捲繞於筒管之前係於一組導絲輥拉伸。導絲輥之溫度 可經控制來達成期望之纖維安定性。兩種方法皆可用於製 造本發明之雙成份纖維,但以旋轉拉伸法為佳,原因在於 相信機械拉伸(使用經加熱之導絲輥或冷導絲輥)可穩定化 紗,使筒管捲繞更容易及變形化處理更加可靠。 於較佳實施例中,旋轉拉伸處理用於加熱拉伸。於其 它較佳實施例中,旋轉拉伸處理用於冷拉伸。於另外較佳 實施例中,使用s-包覆法。本發明之雙成份ρ〇γ製造上之主 要挑戰之一為紡紗期間斷裂。長絲斷裂可能弱化纖維,而 紗斷裂將中斷生產線。避免長絲斷裂及控制ρΟγ之最終伸 長率及韌度對於製造不含斷裂之變形ΡΟΥ有助益。 為了獲得南品質纖維,須考慮的一項重要參數係於其 冰點冷激纖雉。可於高達約30°C範圍之溫度進行。於較佳 方法中,可於約〇°C至約2(TC範圍之温度進行。冷激空氣流 動速率須經設計來控制冷激能力。冷激流速之變化可基於 dpf使用。例如較細的dpf無法忍受如較大dpf一般大量之空 氣流速。 於本發明之若干實施例中,本發明之雙成份纖維之紡 紗速度較為可靠(較少斷裂),當生產線於快速生產線速率操 作且空氣冷激流速高時,纖維品質較為一致。較佳紡紗生 產線速率係由1500至5000米/分鐘,最佳約為至4〇〇〇米 /分鐘。較佳冷激空氣流速係由〇.2至1米/秒及最佳由〇 5至 21 201012991 0.8米/秒。 於冷激點可被纖維増加紡紗整理。較佳於冷激點之前 並未對纖維增加紡紗整理,原因在於如此將於纖維表面上 形成缺陷,此點不合所需,原因在於拉伸加捻變形需要均 勻的紗表面摩擦力來於紗達成均勻卷曲變形。可使用之紡 紗整理為用來產生市售以聚烯烴為主之纖維之類別施用 系統亦為熟諸技藝人士已知。 下個步驟係將紗捲繞於筒管上。於較佳實施例中,纖 維容易掉出筒管之外。適當捲繞機為用於聚稀煙之纺紗也 φ 用於PES之紡紗且為熟諳技藝人士已知。 一旦捲繞於紗包上,允許紗包接受調理。調理紗包為 確保變形處理如同計劃進行之重要步驟。典型調理條件為 7〇°F±5°F及5〇%±5%相對濕度歷5日至1〇日。如此有助於纖 維表面化學及變形前筒管上之紗力道平衡。 變形:下個步驟視需要可變形雙成份纖維。變形纖維 為對纖維提供蓬鬆度使得由該等纖維製成的衣物對消費者 具有特殊感覺及期望的美感所需。變形處理以機械方式增 馨 加蓬鬆度、中等延伸度、及變形與扁平紗而改良扁平紗之 覆蓋效率及手感。 變形例如涉及空氣噴射變形法、假加捻變形法、加柃/ 解除加检法、加检_分離法、填塞框卷曲法、BCF噴射法、 針織·解針織法、邊緣卷曲法、或齒輪卷曲法。拉伸變形較 佳例如係施用至包含此處所述雙成份纖維之部分定向紗。 欲變形之POY若具有若干特性相信於處理程序之表現 22 201012991 較佳。首先,最終伸長率須夠高使得於拉伸變形處理期間 纖維不會斷裂。拉伸變形處理涉及於低於纖維熔點之溫度 進行機械拉伸。此種拉伸可高達5〇%來提供紡織品應用所 需的卷曲及蓬鬆度。適當斷裂點伸長度範圍之實例可為約 6〇0/。至約125%。此外,ρογ紗須可形成卷曲或變形,其具 有耐熱性及回復強度之適當平衡來於隨後織物製造期間不 會被拉出。如此避免喪失變形,結果導致POY紗的感覺類 似扁平紗,極少有或不具有機械彈性特性之問題。 本發明之一項優點為纖維須具有高卷曲穩定性,變形 期間提供的卷曲穩定,結果可對使用此種纖維製成的織物 獲得長期維持期望的感覺。 於若干實施例中,於調理後,纖維置於拉伸變形機。 於較佳實施例中,拉伸變形機的運轉相當慢。於若干實施 例中,期望以約L2至約2.1之因數延長紗;於其它實施例 中’該因數可為約1.45至約1.9。紗可於恰低於聚酯熔點而 恰高於聚烯烴熔點之溫度拉伸及加熱。於若干實施例中, 此溫度可為約l24&lt;t至約134°c之溫度。當拉長及加熱紗時 可提供加捻。較佳加捻溫度為與製程中之加熱期相等溫 度,使得紗被加捻時為溫熱。 於加检後,紗可經由冷卻桿加工。某些情況下冷卻桿 相當重要。當設計製料須考慮冷卻桿長度。於較佳實施 例中’期望冷卻桿於纖維導人m㈣之前冷卻纖維,圓盤 移動時快速捲起纖維。圓盤可為金屬或陶瓷。以陶瓷圓盤 為佳’原因在於陶兔圓盤隨著時間的改變不會如同金屬圓 23 201012991 盤般快速。雖言如此’二者皆適合。聚胺基甲酸酿圓盤也 適合;但相信可能快速磨耗且可能吸收紡紗整理劑。適當 圓盤對紗之比由1至2.25。於1.5之比例’圓盤的轉數約為紗 的1.5倍。相信本差值導致促成紗的變形。冷卻椁於此處有 幫助’原因在於若不存在有冷卻桿,則溫熱紗於圓盤接受 處理。於此種情況下,溫熱紗受損。通常於圓盤後紗未加 检。 須注意若變形期間之條件不均勻,則變形可能稀鬆校 準且配置古怪(為非期望)。非均勻典型係來自於紗二摩擦及 φ 收縮變化’來自於與磨耗的圓盤摩擦,來自於圓盤上存在 有灰塵’及來自於可能改變變形過程之摩_性之任狀 它理由。摩擦變化係與變形紗品質不良同異。注意若干此 等缺陷即使於織物染色後仍未顯現,此乃太遲。通常不合 所需。 口 織物之形成.下個步驟為織物之开多成’涉及熟諳技藝 人士已知之適當針織或編織技術。選擇性地,織物可包含 維摻°物適虽摻合物不僅包括此處所述包含聚稀烴皮 _ 及聚S曰4之可染色斥水性已變形雙成份纖維’同時也包含 彈性纖維、天然纖維等。 存在於織物之雙成份纖維含量依據多項因素決定,包 疋纖維、應用及期望之性質。於若千實施例中,雙成 份纖維可* 1;义诚&amp; 占織物至多約100%重量比之數量存在於織 物。舉例士夕 , 量t 。&lt;,雙成份纖維可以占織物約50。/。至約100。/〇重 數量存在於織物。舉又另一實例,雙成份纖維可以 24 201012991 占織物約70°/。至約1 〇〇%重量比之數量存在於織物。 於若干實施例中,纖維也包含其它纖維,包括彈性纖 維來提供延伸及彈性回復性質。適當彈性纖維之實例包括 但非限於橡膠纖絲、彈性酯類、萊斯妥(last〇1)、史邦 (spandex)、萊卡(LYCRA)纖維(通常係得自多個全球來源)、 及陶氏(〇〇\\〇又1^纖維(得自陶氏化學公司(1)(^〇^1111£^1 Company))。但須注意雙成份纖維與史邦之組合由於於較輕 重量時強力延伸,故具有非期望的性質,諸如非期望之手 感、尺寸安定性、不舒適。如此,以雙成份纖維與陶氏XLA 纖維物件之組合為較佳。 可摻混於織物之額外纖維包括但非限於天然纖維及合 成纖維諸如尼龍、棉、毛、絲等。 染色:選擇性地,於織物形成前下個步驟為染色織物 或纖維。於染色織物或纖維前可經洗淨。根據本發明之實 施例之織物及/或雙成份纖維可使用任一種適當染色方法 染色。適當染色方法之實例包括但非限於分散染色、鹼染 色、及酸染色。須注意於具有聚烯烴含量大於7〇%之雙成 份纖維中,纖維被染色之方式可能受影響或延遲。 包含根據本發明之實施例之雙成份纖維之織物之一項 優點為即使織物及/或纖維包含聚烯烴,該等織物及/或纖維 仍然可被染色。已染色之織物經決定特徵為例如具有與分 散染料染色之PES纖維相同的顯色強度及色彩堅牢度。 染色後可進行還原清潔。 整理:選擇性地,下個步驟可整理織物,因而對織物 25 201012991 提供期望之特性。於若干實施例中,織物可以功能塗覆成 功能化來提供效能性質,諸如但非限於氣味的控制、水八 的芯吸、阻燃性等。 衣物形成:最末步驟為衣物形成。於若干實施例中, 根據本發明之實施例製造之雙成份纖維可摻混於紡織品物 件。如前文說明,紡織品物件包括織物以及由織物製成之 物件(例如服裝)。適當紡織品物件之實例包括但非限於運動 服、貼身内衣、泳衣、職業服、工作服(例如制服及防護服)、 醫事服、及其它技術服。由根據本發明之實施例製備之糾、 針織所得織物具有於高溫之收縮程度及尺寸安定性相每於 業界對使用純質聚酯紗或聚烯烴紗製成之織物之標準品的 性質。 本發明之雙成份纖維適合用於運動服、貼身内衣、泳 衣、及方便穿著的衣物。 於一個實施例中,本發明提供一種方法,包含下列步 驟:(a)選定用於該雙成份纖維之芯之聚酯樹脂;(b)選定用 於該雙成份纖維之皮之聚烯烴樹脂,其中該聚酯樹脂與該 聚烯烴樹脂間之黏度比係於約0.4至約4之範圍;及(c)形成 具有約1.15克/立方厘米或以下之密度之具有聚酯芯及聚烯 烴皮之可染色皮芯梨雙成份纖維。 於一個實施例中,本發明提供—種方法,包含:(幻藉 一種方法形成具有約1.15克/立方厘米密度之可染色皮芯型 雙成份纖維’财法包含:⑴選定用㈣雙絲纖維之芯 之聚醋樹脂;⑼選㈣於該雙成份纖維之皮之聚稀煙^ 201012991 、 聚知樹脂與該聚歸煙樹脂間之黏度比係於約0.4 士約4之範圍;及⑽形成具有約1.15克/立方厘米或以下之 '’、 、有歜芯及聚稀座皮之可染色皮芯型雙成份纖 維;及⑼變形該可染色皮芯型雙成份纖維而形成已變形之 可染色皮芯型雙成份纖維。 為了有助於更明白瞭解本發明,舉出若干實施例之某 二面相之下列實例。下列實例絕不可解讀為限制或界定本 發月之凡I範圍。比值、份數及百分比除非另行陳述否則 係以體積計。 實例 可使用之適用的測試方法討論如下。 用於韋刀度’妙拉力測試法係基於ASTM D3822-01。用 於拉伸變形紗卷❹、彳試,使用變形麥特(Textunnat) M。遵 照根據DIN 53 840之程序測試變形紗之自動卷曲收縮。於 本別试程序期Μ,一亨克化触)總細度約2猶分特(办⑶)之 變形&amp;接$不同負載。所得長度個於計算特徵性卷曲收 縮(E%)、卷曲模數(κ%)及卷曲穩定度(B%)。此外變形麥 特Μ允許進行其它測試,諸如長絲紗及纖維紗之收縮測試 以及塔斯蘭(Taslan)紗之測試。裝置包括欲測試之紗亨克卡 匡、負载裝置連同電子天平對來產生不同的負載階段、附 有顯示器指示長度讀數之控制裝置、線上連結的個人電腦 (pC)用於列印出且分析測得之數值。變形麥特Μ之微處理器 控制系統允許以高度可變之負載及負載時間測量亨克長 度。加熱篋及熱水浴用於發展出紗卷曲,後來甚至發展出 27 201012991 沸騰時的_ ’也可有其它卡£。染色係以纖維及織物進 行。織物使用小型機針織機製造。卡匿有觸表規,織物係 以每針3毫米之針腳長度針織。 ' 染色岫,纖維試樣及織物試樣於9〇c&gt;c使用〇 3毫升/升氫 氧化鈉洗淨20分鐘移除任何油及塵土。然後於1〇〇1將試樣 熱洗20分鐘,接著於室溫冷洗1〇分鐘。 , 染色係於實驗室規模之旋轉染色機(R〇tadyer)得自叱乙 亞特拉斯(Atlas)紡織品測試溶液進行。該旋轉染色機包括 最大容量為250毫升各自有氣密蓋之小型鋼耗。容⑼冑 ^ 裝所需染色錢及規定的制,關随,浸沒於㈣内&amp; 旋轉。油浴以加熱線圈加熱,油浴加熱含染色液之容器。 機器可經程式規劃來控制加熱速率、停駐時間及冷卻時 間。藉連續供應冷水冷卻機器。 織物係染成三種不同色:福隆(FORON)亮紅e_2Bl 200、福隆亮紅藍as_bg、及福隆亮黃。可得自克萊恩國際 公司(Clariant International Inc.)。 染色液之製造如下。於蒸餾水製造2%福隆染料(得自克 〇 萊恩國際公司)、1毫升/升萊可(Lyocol) RDN (得自克萊恩國 際公司之分散劑)、2重量%伊嘉諾(EGANAL) PS液(得自克 萊恩國際公司之均染劑)、及2重量%硫酸銨之溶液。 織物置於樣本對液體比為1:3〇之染色液内,及以3°C/ 分鐘之速率加熱至130°C。染色溫度於130°C維持90分鐘, 接著以4°C/分鐘之速率冷卻至70°C。 為了移除未固定之染料分子,進行還原清潔。還原清 28 201012991 潔液包含2克/升亞硫酸氫鈉及〗克/升氫氧化鈉。試樣以試樣 對液體比為1:30浸沒於此溶液内。溶液於此浴内以每分鐘 4 C之速率加熱至70 C,且於此溫度維持2〇分鐘。進行還原 清潔步驟兩次。於還原清潔後,試樣於卯它接受熱洗3〇分 鐘,试樣對洗滌液之比為1:3〇 ’接著於室溫冷洗1〇分鐘。 將織物與使用相同針織機製造的聚酯(「pES」)織物標 準品之織物色深作比較。染色後PES織物為參考織物,染色 後雙成份織物與參考品比較來確定染色後雙成份織物之色 深。此種評估略為主觀。 為了測試色彩堅牢度,使用色彩堅牢度方法AATCC 61 2A名稱「對洗衣之色彩堅牢度,家用及商業··加速」。加速 洗衣測試協助評估預期忍受頻繁洗衣之紡織品對洗衣之色 衫堅牢度。試樣於49°C(±2t)於含150毫升水溶液帶有占溶 液總體積為0.15%清潔劑(根據標準)之桶罐内測試。為了激 起如同手洗衣或機器洗衣期間之磨蝕動作,每個桶罐内放 置50顆直徑各6毫米的鋼珠。此處理程序使用多纖維芯吸織 物持續處理45分鐘,隨後試樣以蒸餾水洗滌及乾燥。洗滌 後之試樣與原先未經洗滌試樣作比較,來測量因洗滌造成 之色办改變。藉灰階定量測量色彩改變。於多纖維芯吸織 物之不同組分上染料之玷染係藉玷染灰階(根據標準)測定。 用於製造實例所述纖維之原料列舉於表1。於 230 C/2.16千克條件,遵照測試方法ASTmd 1238測量聚丙 烯(PP」)甙樣之熔體指數。使用測試方法ASTM D 4603 測量PES試樣之特性減。於給定溫度之聚合祕體黏度係 29 201012991 使用裝配有長20毫米直徑1毫米之扁平入口(180度)壓模之 高福流變計(Goettfert Rheograph) 2003,於 100至6300秒-1之 標稱剪切速率測定。反映於表2。 表1.實例令纖維原料 原料 供應商 商品名 熔體指數 特性黏度 PP1 陶氏化學公司 5E66 8.8 未經測試 PP2 陶氏化學公司 5D49 38 未經測試 PET1 伊士曼化學公司(Eastman Chemical Co.) F61 HC 未經測試 0.65 PBT1 辛康公司(Shinkong)(台灣) DHKF 未經測試 0.87 紡紗整理 魯洛(Lurol) 7521 魯洛 未經測試 未經測試 下列方程式之資料可參考下表2A-2D。 若屬期望,為了比較PP及PES於紡嘴之黏度,可基於 下列方程式算出於壁及於二組分間之界面之剪切速率:Expected. There are two suitable methods for the fiber to be converted into steps. Including s-cladding and rotary stretching. The s_cladding method provides s-direction inspection of the fibers. The rotary drawing method only stretches the fiber; since the fiber is not checked, no deformation is introduced. The S·cladding method is a method for manufacturing a filament yarn for extrusion molding, and the towel-root or rollers are used to control the winding speed before winding the yarn package, and occasionally referred to as the yarn Danny. The take-up rolls are such that the yarn is not mechanically stretched after winding up to winding. The rotary drawing treatment is a method of producing a continuous filament yarn in an extrusion line and then subjecting it to a stretching treatment in a stretching treatment in which a mechanical stretching is applied using a parent wheel, so that the toughness and elongation are controlled to a desired degree. Variations of the method also use one or more heated light wheels to apply heat while the fibers are mechanically stretched to assist in stabilizing the yarn from shrinkage. Each method has its own challenges and advantages. [S ] 20 201012991 The POY of the present invention can be produced in an s_coated spinning production line (refer to Fig. 1A) or a square twist drawing production line (refer to Fig. 1B). In the spin stretching method, the fibers are stretched by a set of godet rolls before being wound around the bobbin. The temperature of the godet can be controlled to achieve the desired fiber stability. Both methods can be used to make the bicomponent fiber of the present invention, but the rotary stretching method is preferred because it is believed that mechanical stretching (using a heated godet or cold godet) stabilizes the yarn and makes the cylinder Tube winding is easier and the deformation process is more reliable. In a preferred embodiment, a rotary stretching process is used to heat the stretching. In other preferred embodiments, the rotary stretching process is used for cold stretching. In another preferred embodiment, the s-cladding method is used. One of the main challenges in the manufacture of the two-component ρ〇γ of the present invention is the breakage during spinning. Filament breakage may weaken the fiber, and yarn breakage will interrupt the line. Avoiding filament breakage and controlling the ultimate elongation and toughness of ρΟγ can be helpful in making deformation without fracture. An important parameter to consider in order to obtain a South quality fiber is its cold spot on the freezing point. It can be carried out at temperatures up to about 30 °C. In a preferred method, it can be carried out at a temperature of from about 〇 ° C to about 2 (the range of TC. The flow rate of the cold shock air must be designed to control the cold shock capability. The change in the flow rate of the cold shock can be based on dpf. For example, finer Dpf cannot tolerate a large amount of air flow rate as large dpf. In several embodiments of the invention, the bicomponent fibers of the present invention have a relatively high spinning speed (less breakage) when the line is operated at a rapid line rate and air is cold. When the excitation flow rate is high, the fiber quality is relatively uniform. The preferred spinning line speed is from 1500 to 5000 m/min, preferably about 4 mm/min. The preferred cold air flow rate is from 〇.2 to 1 m / s and best from 〇 5 to 21 201012991 0.8 m / s. The cold stimuli can be finished by fiber reinforced spun yarn. It is better to add spinning to the fiber before the cold stimuli, because this will Defects are formed on the surface of the fiber, which is undesirable because the stretching and twisting deformation requires uniform yarn surface friction to achieve uniform crimping of the yarn. Spinning can be used to produce commercially available polyolefins. Mainly The type application system is also known to those skilled in the art. The next step is to wind the yarn around the bobbin. In the preferred embodiment, the fibers tend to fall out of the bobbin. A suitable winder is used for The spinning of poly-smoke is also used for the spinning of PES and is known to those skilled in the art. Once wrapped on the yarn package, the yarn package is allowed to be conditioned. The conditioning yarn package is an important step to ensure that the deformation process is as planned. The conditioning conditions are 7〇F±5°F and 5〇%±5% relative humidity for 5 days to 1 day. This will help the surface of the fiber and the yarn balance on the bobbin before deformation. The step is to deform the bicomponent fiber as needed. The deformed fiber provides fluffiness to the fiber so that the garment made of the fiber has a special feeling and desired aesthetic feeling for the consumer. The deformation treatment mechanically increases the blistering degree, Medium elongation, deformation and flat yarn to improve the coverage efficiency and hand feeling of flat yarn. Deformation, for example, involves air jet deformation method, false twist deformation method, twisting/de-adding method, inspection_separation method, stuffing frame curling Law, BC F-spraying method, knitting/unwinding method, edge curling method, or gear curling method. Tensile deformation is preferably applied, for example, to a partially oriented yarn comprising the bicomponent fiber described herein. If the POY to be deformed has several characteristics, it is believed Preferably, the final elongation is such that the fibers do not break during the tensile deformation process. The tensile deformation process involves mechanical stretching at a temperature below the melting point of the fiber. Stretch can be as high as 5% to provide the curl and bulk required for textile applications. Examples of suitable break point elongation ranges can range from about 6 〇 0 / to about 125%. In addition, ρο γ yarns can be crimped or deformed. It has an appropriate balance of heat resistance and recovery strength so as not to be pulled out during subsequent fabric manufacture. This avoids loss of deformation, resulting in a POY yarn that feels like a flat yarn with little or no mechanical elastic properties. An advantage of the present invention is that the fibers must have high curl stability and provide stable curl during deformation, with the result that a fabric made from such fibers can be used to maintain a desired feel for a long period of time. In several embodiments, after conditioning, the fibers are placed in a stretch texturing machine. In the preferred embodiment, the stretch texturing machine operates relatively slowly. In several embodiments, it is desirable to extend the yarn by a factor of from about L2 to about 2.1; in other embodiments, the factor can range from about 1.45 to about 1.9. The yarn can be stretched and heated at a temperature just below the melting point of the polyester and just above the melting point of the polyolefin. In some embodiments, this temperature can range from about 1224&lt;t to about 134&lt;0&gt;C. Twisting is provided when the yarn is stretched and heated. Preferably, the twisting temperature is the same as the heating period in the process so that the yarn is warmed when it is twisted. After the check, the yarn can be processed via a cooling rod. In some cases the cooling rod is quite important. The length of the cooling rod must be considered when designing the material. In the preferred embodiment, the cooling rod is desirably cooled to cool the fibers prior to the fiber guide m(d), and the fibers are quickly rolled up as the disk moves. The disc can be metal or ceramic. The reason for the ceramic disc is that the ceramic rabbit disc does not change as fast as the metal circle 23 201012991. Although so, both are suitable. Polyurethane trays are also suitable; however, it is believed that they may wear quickly and may absorb the spinning finish. The ratio of the appropriate disc to yarn is from 1 to 2.25. The number of revolutions in the ratio of 1.5 is about 1.5 times that of the yarn. It is believed that this difference causes the deformation of the yarn to be promoted. Cooling is helpful here. The reason is that if there is no cooling rod, the warm yarn is treated on the disc. In this case, the warm yarn is damaged. Usually the back of the disc is not checked. It should be noted that if the conditions during the deformation are not uniform, the deformation may be loosely calibrated and the configuration may be eccentric (unexpected). The non-uniformity is derived from the yarn rubbing and the φ shrinkage change 'from the friction with the worn disc, from the presence of dust on the disc' and from the possibility of changing the deformation process. The friction change is the same as the quality of the textured yarn. Note that some of these defects are not too late even after the dyeing of the fabric, which is too late. Usually not desirable. The formation of the woven fabric. The next step is the opening of the fabric' which involves appropriate knitting or weaving techniques known to those skilled in the art. Alternatively, the fabric may comprise a temperate blend, although the blend includes not only the dyeable water-reducing deformed bicomponent fibers comprising the polythene epoxide _ and poly S 曰 4 as described herein, but also elastic fibers, Natural fiber, etc. The bicomponent fiber content present in the fabric is determined by a number of factors, including the fiber, the application, and the desired properties. In the embodiment, the bicomponent fibers can be present in the fabric in an amount of up to about 100% by weight of the fabric. For example, Shi Xi, quantity t. &lt;The bicomponent fiber can comprise about 50% of the fabric. /. To about 100. /〇 Heavy Quantity exists in the fabric. As another example, the bicomponent fiber can be 24, 2010, and the fabric is about 70°/. The amount to about 1% by weight is present in the fabric. In several embodiments, the fibers also comprise other fibers, including elastic fibers, to provide elongation and elastic recovery properties. Examples of suitable elastic fibers include, but are not limited to, rubber fibrils, elastomeric esters, last(1), spandex, lycra (LYCRA) fibers (usually derived from a number of global sources), and pottery (〇〇\\〇1^ fiber (available from The Dow Chemical Company (1) (^〇^1111£^1 Company)). However, it should be noted that the combination of bicomponent fiber and Shibang is strong due to light weight. Extends, thus having undesired properties such as undesired hand, dimensional stability, and discomfort. Thus, a combination of bicomponent fibers and Dow XLA fiber articles is preferred. Additional fibers that can be blended into the fabric include Not limited to natural fibers and synthetic fibers such as nylon, cotton, wool, silk, etc. Dyeing: Optionally, the next step before the formation of the fabric is dyed fabric or fiber. It can be washed before dyeing the fabric or fiber. The fabric and/or bicomponent fibers of the examples may be dyed using any suitable dyeing method. Examples of suitable dyeing methods include, but are not limited to, dispersion dyeing, alkali dyeing, and acid dyeing. It is noted that the polyolefin content is greater than 7% by weight. Double Among the fibers, the manner in which the fibers are dyed may be affected or delayed. One advantage of fabrics comprising bicomponent fibers in accordance with embodiments of the present invention is that even if the fabric and/or fibers comprise polyolefin, the fabrics and/or fibers It can still be dyed. The dyed fabric is determined to have, for example, the same color strength and color fastness as the PES fiber dyed with the disperse dye. The dye can be subjected to reduction cleaning after finishing. Finishing: Selectively, the next step can be finished. The fabric, thus providing the desired characteristics to the fabric 25 201012991. In several embodiments, the fabric can be functionally coated to functionalize to provide performance properties such as, but not limited to, odor control, wicking of water eight, flame retardancy, and the like. Clothing formation: The final step is garment formation. In several embodiments, bicomponent fibers made in accordance with embodiments of the present invention can be blended into textile articles. As previously explained, textile articles include fabrics and articles made of fabrics ( For example, clothing). Examples of suitable textile items include, but are not limited to, sportswear, underwear, swimsuits, occupations Work clothes (such as uniforms and protective clothing), medical service clothes, and other technical clothes. The fabric obtained by the correction and knitting according to the embodiment of the present invention has a shrinkage degree at a high temperature and dimensional stability. The properties of a standard of a fabric made of polyester yarn or polyolefin yarn. The bicomponent fiber of the present invention is suitable for use in sportswear, underwear, swimwear, and clothes that are convenient to wear. In one embodiment, the present invention provides a The method comprises the steps of: (a) selecting a polyester resin for the core of the bicomponent fiber; (b) selecting a polyolefin resin for the skin of the bicomponent fiber, wherein the polyester resin and the polyolefin resin The viscosity ratio is between about 0.4 and about 4; and (c) forming a dyeable sheathed bicomponent fiber having a polyester core and a polyolefin skin having a density of about 1.15 g/cc or less. In one embodiment, the present invention provides a method comprising: (a method of forming a dyeable sheath core bicomponent fiber having a density of about 1.15 g/cc by one method). The method comprises: (1) selecting (four) twin fiber The core of the polyester resin; (9) selected (d) in the skin of the bicomponent fiber of the thin smoke ^ 201012991, the viscosity ratio between the poly-resin resin and the poly-smoke resin is in the range of about 0.4 ± about 4; and (10) formation a dyeable sheath-core bicomponent fiber having a core of about 1.15 g/cm 3 or less, having a core and a thin skin; and (9) deforming the dyeable core-core bicomponent fiber to form a deformed fiber Dyed-sheath core-type bicomponent fibers. In order to facilitate a better understanding of the present invention, the following examples of certain two-sided phases of several embodiments are given. The following examples are in no way to be construed as limiting or defining the scope of the present invention. Parts and percentages are by volume unless otherwise stated. Examples of applicable test methods that can be used are discussed below. The Wiley's 'Tail Strength Test' is based on ASTM D3822-01. For the test, use Textunnat M. Test the automatic crimp shrinkage of the textured yarn according to the procedure of DIN 53 840. During the test period, a gram of touch is about 2 deg Do (3)) deformation &amp; receive $ different load. The resulting length was calculated by calculating the characteristic crimp shrinkage (E%), the crimp modulus (κ%), and the curl stability (B%). In addition, the modified Mate allows for other tests, such as shrinkage testing of filament yarns and fiber yarns, and testing of Taslan yarns. The device consists of a gauze cassette to be tested, a load device with an electronic balance pair to generate different load phases, a control device with a display indicating the length reading, an online connected personal computer (pC) for printing and analysis. The value obtained. The modified Mate's microprocessor control system allows the measurement of the Genk length with a highly variable load and load time. Heating crucibles and hot water baths were used to develop yarn crimping, and later even developed 27 201012991 _ ’ when boiling. The dyeing is carried out using fibers and fabrics. The fabric is manufactured using a mini machine knitting machine. The card has a gauge and the fabric is knitted with a stitch length of 3 mm per stitch. 'Pigmentation, fiber samples and fabric samples were washed at 9 °c&gt;c using 〇3 ml/L sodium hydroxide for 20 minutes to remove any oil and dust. The sample was then hot washed at 1 Torr for 20 minutes and then cold rinsed at room temperature for 1 Torr. The dyeing was performed on a laboratory scale rotary dyeing machine (R〇tadyer) from the Atlas textile test solution. The rotary dyeing machine includes a small steel consumption of 250 ml each having a gas-tight cover. Rong (9) 胄 ^ Install the required dyeing money and the prescribed system, close it, and immerse it in (4) & rotate. The oil bath is heated by a heating coil, and the oil bath heats the container containing the dyeing liquid. The machine can be programmed to control the heating rate, dwell time and cooling time. Cool the machine by continuous supply of cold water. The fabric is dyed in three different colors: FORON bright red e_2Bl 200, Fulong bright red blue as_bg, and Fulong bright yellow. Available from Clariant International Inc. The dyeing liquid was produced as follows. 2% Fulong dye (available from Klein Ryan International), 1 ml/L of Lyocol RDN (a dispersant from Kline International), 2 wt% EGANAL PS solution in distilled water (a uniform dye obtained from Klein International) and a 2% by weight ammonium sulfate solution. The fabric was placed in a dye solution having a sample to liquid ratio of 1:3 Torr and heated to 130 ° C at a rate of 3 ° C / minute. The dyeing temperature was maintained at 130 ° C for 90 minutes and then cooled to 70 ° C at a rate of 4 ° C / minute. In order to remove unfixed dye molecules, reduction cleaning is performed. Reduced clear 28 201012991 Cleansing solution contains 2 g / liter of sodium hydrogen sulfite and gram / liter of sodium hydroxide. The sample was immersed in this solution at a sample to liquid ratio of 1:30. The solution was heated to 70 C at a rate of 4 C per minute in this bath and maintained at this temperature for 2 minutes. Make a restore The cleaning step is twice. After the reduction and cleaning, the sample was subjected to hot washing for 3 minutes, and the ratio of the sample to the washing liquid was 1:3 〇 ', followed by cold washing at room temperature for 1 minute. The fabric was compared to the fabric color depth of a polyester ("pES") fabric standard made using the same knitting machine. The dyed PES fabric is the reference fabric, and the dyed two-component fabric is compared with the reference to determine the color depth of the dyed two-component fabric. This assessment is slightly subjective. In order to test the color fastness, the color fastness method AATCC 61 2A name "color fastness to laundry, home and business · acceleration" was used. Accelerated laundry testing assists in assessing the fastness of laundry shirts that are expected to endure frequent laundry. The sample was tested at 49 ° C (± 2 t) in a tank containing 150 ml of an aqueous solution containing 0.15% of the total volume of the solution (according to the standard). In order to provoke an abrasion action during hand laundry or machine laundry, 50 steel balls each having a diameter of 6 mm are placed in each can. This treatment was continued for 45 minutes using a multi-fiber wicking fabric, after which the sample was washed and dried with distilled water. The washed sample is compared with the original unwashed sample to measure the color change caused by the washing. Quantitative measurement of color changes by gray scale. The dyeing of the dyes on the different components of the multi-fiber wicking fabric was determined by ash dyeing (according to the standard). The materials used to make the fibers of the examples are listed in Table 1. The melt index of the polypropylene (PP) was measured in accordance with the test method ASTMd 1238 at 230 C/2.16 kg. The characteristic reduction of the PES sample was measured using the test method ASTM D 4603. Polymeric secret viscosity system at a given temperature 29 201012991 Using a Goettfert Rheograph 2003 equipped with a flat inlet (180 degrees) of 1 mm long and 1 mm in diameter, nominally 100 to 6300 sec-1 Shear rate determination. Reflected in Table 2. Table 1. Examples of Fiber Raw Material Suppliers Trade Name Melt Index Characteristic Viscosity PP1 Dow Chemical Company 5E66 8.8 Untested PP2 Dow Chemical Company 5D49 38 Untested PET1 Eastman Chemical Co. F61 HC Not tested 0.65 PBT1 Shinkong (Taiwan) DHKF Untested 0.87 Spinning finishing Lurol 7521 Lulu untested Untested The following equations can be found in Table 2A-2D below. If desired, in order to compare the viscosity of PP and PES at the nozzle, the shear rate at the interface between the wall and the two components can be calculated based on the following equation:

LS.LD n,— 90〇5^ . K.%'Pt (W+&amp;%·¥) Ρ: 此處Q為熔體流速;LS為紡紗速度;LD為紗丹尼;〆 及β分別為皮及芯之固態密度;V?/。及V,,%分別為皮及芯 之體積分量;及以及%分別為皮及芯之熔體密度。 剪切速率(r)=-4p r πΡ.ΗΝ 此處Q為熔體流速;r為距紡嘴中心距離,r為纺嘴半徑 或表中列舉之毛細管直徑之半;HN為紡嘴孔數。紡嘴中心 至界面距離d係為給定雙成份纖維組成物計算:LS.LD n,— 90〇5^ . K.%'Pt (W+&amp;%·¥) Ρ: where Q is the melt flow rate; LS is the spinning speed; LD is the yarn dandel; 〆 and β The solid density of the skin and the core respectively; V?/. And V,,% are the volume components of the sheath and the core, respectively; and % is the melt density of the sheath and the core, respectively. Shear rate (r)=-4p r πΡ.ΗΝ where Q is the melt flow rate; r is the distance from the center of the spinning nozzle, r is the radius of the spinning nozzle or half of the capillary diameter listed in the table; HN is the number of nozzle holes . Spinner center to interface distance d is calculated for a given bicomponent fiber composition:

[S 30 201012991 當r=d時之剪切速率為於界面之剪切速率。 PES (PET及PBT)樹脂係於纖維製造前於乾燥作用之乾 燥器内使用約-4〇°C露點空氣,於約125。(:溫度乾燥。 下列表2A-H係參考於下列實例。 表2A·實例1-9之樹脂[S 30 201012991 The shear rate at r = d is the shear rate at the interface. PES (PET and PBT) resins are used at about -40 ° C dew point air in a desiccant dryer prior to fiber manufacture, at about 125. (: Temperature drying. Table 2A-H below refers to the following examples. Table 2A·Resin of Examples 1-9

.. .: 實例1 實例2 實例3 貪例4 ’貪例5 實例6 實例7 貧例8 _9 皮聚合物 PP2 PP2 PP2 PP2 PP2 PP2 PP1 PP1 PP1 芯聚合物 PET PET PET PET PET PET PBT PBT PBT 表2B·實例10-17之樹脂.. .: Example 1 Example 2 Example 3 Greedy 4 'Corruption 5 Example 6 Example 7 Lean 8 _9 Skin polymer PP2 PP2 PP2 PP2 PP2 PP2 PP1 PP1 PP1 core polymer PET PET PET PET PET PET PBT PBT PBT 2B·Resin of Example 10-17

實例i( 貧例11 貧例π 實例12 貧例^ 寶例u 實例1( 實例U 貧例is 皮聚合物 PP1 PP1 ΡΡ1 PP1 PP1 PP1 PP1 PP1 PP1 芯聚合物 PBT PBT PBT PBT PBT PBT PBT PBT PBT 31 201012991 6冢駟 8冢駟 9革駟 S军駟 H4ikIf#私 #:奉灸绽 W6-I^駟 ϋκ sll ΙΉ1Η mu 苕i) 御糾蟣举 璲2 获細璲 醒遵喇 (3un)(q4sluH) Μί 鸯®_ m.s^. s-sExample i (lean 11 poor π instance 12 poor ^ treasure example u example 1 (example U lean is skin polymer PP1 PP1 ΡΡ1 PP1 PP1 PP1 PP1 PP1 PP1 core polymer PBT PBT PBT PBT PBT PBT PBT PBT PBT 31 201012991 6冢驷8冢驷9革驷S军驷H4ikIf#私#: 奉灸灸W6-I^驷ϋκ sll ΙΉ1Η mu 苕i) 御虮虮举璲 2 Get 璲 遵 遵 (3un) (q4sluH ) Μί 鸯®_ ms^. ss

QL s 60QL s 60

ΙΓΪ—I 90.1 8寸 sΙΓΪ—I 90.1 8 inch s

S8(N ιη9(Ν s_s s_s s-s s_sS8(N ιη9(Ν s_s s_s s-s s_s

If s_sIf s_s

QLQL

QL 19 19 98QL 19 19 98

UU

QL 19 s 60 ιε·Ι 901 8寸 s Γ0 58(ν § s 60 ιει 90· 一 8寸 s ro s8(nQL 19 s 60 ιε·Ι 901 8 inch s Γ0 58(ν § s 60 ιει 90· an 8 inch s ro s8(n

S9(N 60 sri 寸ΙΊ 8寸 s sd s 06(ν 05 60 8ε·Ι 寸ΙΊS9(N 60 sri inch ΙΊ 8 inch s sd s 06(ν 05 60 8ε·Ι inchΙΊ

U 寸 s s s 06(ν 08 60 8ε·ιU inch s s s 06(ν 08 60 8ε·ι

IL 寸 s s 06&lt;νIL inch s s 06&lt;ν

QL 60 8ε·ι 寸0ΊQL 60 8ε·ι inch 0Ί

U s s 06(ν 09 60 ΟΟΓΙU s s 06(ν 09 60 ΟΟΓΙ

60· I60· I

IL 寸 $IL inch $

SO 06(ν Αν 05 60 οοε.Ι 寸Ι·ΙSO 06(ν Αν 05 60 οοε.Ι inchΙ·Ι

U 寸 $U inch $

SO β (采15!!柃 τ/τ)^楔 1·回 W 均 Ϊ&amp;4轳坟 απ (3。)甸朗 ddfe_ 绽 (ett5&lt;^SHd 柘 32 201012991 290 1015 in Ο ON 寸 Ο 16/2800 16/2800 1- 2800 1 〇 1 0.5-2 290 906 496 ___ 1 Os ON v〇 寸 ο 16/2500 16/2500 2500 1 〇 1 0.5-2 290 797 437 〇 \〇 16/2200 16/2200 2200 〇 0.5-2 290 in oo s in yr\ rn 15/1200 15/1200 40/1200 1 100/2240 20/2450 2460 1 —— 0.5-2 290 s 00 s 00 fN cn 20/1400 20/1400 100/1415 130/2800 20/2750 2500 1__ . 00 0.5-2 290 1 909 o m s rj m 20/2500 20/2500 2500 1_ 〇 0.5-2 290 00 409 in o 00 yr\ CN rn 20/2500 20/2500 2500 〇 0.5-2 290 o 00 460 CN cn 20/2500 20/2500 2500 〇 0.5-2 290 00 s 00 (N 20/2500 20/2500 2500 1_ 〇 0.5-2 紡嘴設定溫度(°C) 剪切速率皮(秒_1) 剪切速率芯(秒_1) 黏度皮(Pa.s) 黏度芯(Pa.s) 冷激溫度(°C) 冷激空氣流速(米/秒) 導絲輥1溫度(°c)/速度(米/分鐘) 導絲輥2溫度(°C)/速度(米/分鐘) 導絲輥3溫度(°C)/速度(米/分鐘) 導絲輥4溫度(°C)/速度(米/分鐘) 導絲輥5溫度(°C)/速度(米/分鐘) 捲繞機速度(線性速度)(米/分鐘) 冷拉伸比 紡紗整理含量(%) 33 201012991 ^璨套货 wu-olf#iK.az^ 實例Π iiWy; s-包覆 00 Ο 1.31 CN (N 圓形 1 0.35 「300 265 290 1158 s m 實例16 ! iMrt/ s-包覆 1—Η 00 ί〇 〇\ ο 1.31 (N CN 1 圓形 1_ 〇 285 VO (N 290 1158 vo cn 實例15 lltV 命 •id 1 00 JO ON ο ψ—* cn (N CN 圓形 &lt;n ο 1 285 265 290 992 cn 卜 實例14 iArt/ -5) C/3 00 JO ο 1.31 r—^ CN (N 圓形 ο 285 i________ IT) CM 290 ι- 827 to oo 實例13 TTRI 旋轉拉伸 § 04 σ\ ο 1.31 m ΓΜ 圓形 in ο 285 CN 290 1- 836 374 oo 實例12 TTRI 旋轉拉伸 g (N Ον Ο m ΓΟ (N 圓形 c5 ! 285 265 290 950 425 f^l 實例11 TTRI 旋轉拉伸 g ο 1.31 Ο m (N 圓形 们 ο 285 in (N 290 950 1 425 p 實例10 1 i TTRI 旋轉拉伸 % (N ο 1.31 r-H CN 圓形 in ο 285 265 290 950 I 425 cn 紡紗設備 紡紗生產線類型 皮聚合物之體積% 皮聚合物之重量% 皮之固態密度(克/立方厘米) 芯之固態密度(克/立方厘米) 固態紗密度(克/立方厘米) 紡嘴細節 紡嘴孔數% L/D 毛細管幾何形狀 毛細管直徑(毫米) 紡嘴前pp溫度(°c) 紡嘴前PES溫度(°C) P 热· /&lt;—s &amp; 黏度皮(Pa.s) 201012991 Ο ο 16/3500 16/3500 3500 〇 0.5-2 Ο 16/3500 16/3500 3500 〇 0.5-2 Ο r-H ιη ο 16/3000 16/3000 3000 〇 0.5-2 S Ό ο ο 16/2500 16/2500 2500 〇 0.5-2 S 寸 ο 16/1550 16/1550 40/1550 100/1550 25/2200 2200 0.5-2 ο 寸 d&gt; 16/1200 16/1200 40/1200 100/1200 25/2500 2500 Η 0.5-2 ο 寸 ο 16/1800 16/1800 40/1800 100/1800 25/2500 2500 0.5-2 ο 寸 ο 16/2400 16/2400 40/2400 100/2400 25/2500 2500 q r-H 0.5-2 黏度芯(Pa· s) _I S 冷激空氣流速(米/秒) 導絲輥1溫度(°C)/速度(米/分鐘) 導絲輥2溫度(°C)/速度(米/分鐘) 導絲輥3溫度(°C )/速度(米/分鐘) 導絲輥4溫度(°C)/速度(米/分鐘) 導絲輥5溫度(°C)/速度(米/分鐘) 捲繞機速度(線性速度)(米/分鐘) 冷拉伸比 紡紗整理含量(%) 35 201012991 抹趄费1iw6-lt#駟·3Ζ&lt; Ο 2 Η ν〇 〇 〇 私 Η τ·^ 00 S Η ο 1-Η 〇 ΪΚ Η 1-Η 實例7 TTRI ^〇 'Ο ίΝ 〇 實例6 ^^2 酬S ㈣5 〇\ ^ο 〇\ VO 苌側鲮 泛' mMH ΟΟ r4 寸 苌w璲 寸 斑赛_ jn 贫w镑 mMM § m (N 军 in 00 &lt;n IK 跨一 *^ί ^―Η 苌w鲮 Οψ X (D z s s Ul)^ S 拿 w 费 费 孽 壤 Μ Φ 柘 槁 梃 實例Π i&lt;W Ta^ Φ 1.75 〇 ^-Η (Ν 實例16 τ3^ 00 Ο 實例15 nW T!^ Ο) ο 宕 1-Η 實例14 lAV 13^ οο 1-Η 實例13 TTRI ο (Ν s Ι^Η in 實例12 TTRI νο oi 實例11 TTRI Ον 00 σν jn Ο τ-Η »ί H CN CN H \ΐφί 拿 Φ 费 费 孽 Μ 鱒 ΐ 柘 36 996军駟2 ΊΧ ο ΊΧ20· mu $ ff想 $ 寸-ε 寸·ε 寸-ε ce^lk 卜 ίφικ sll ranSO β (take 15!!柃τ/τ)^Wedge 1·Back W Ϊ&amp;4轳墓απ (3.)Dian ding ddfe_ ((ett5&lt;^SHd 柘32 201012991 290 1015 in Ο ON inch Ο 16/ 2800 16/2800 1- 2800 1 〇1 0.5-2 290 906 496 ___ 1 Os ON v〇 inch ο 16/2500 16/2500 2500 1 〇1 0.5-2 290 797 437 〇\〇16/2200 16/2200 2200 〇0.5-2 290 in oo s in yr\ rn 15/1200 15/1200 40/1200 1 100/2240 20/2450 2460 1 —— 0.5-2 290 s 00 s 00 fN cn 20/1400 20/1400 100/ 1415 130/2800 20/2750 2500 1__ . 00 0.5-2 290 1 909 oms rj m 20/2500 20/2500 2500 1_ 〇0.5-2 290 00 409 in o 00 yr\ CN rn 20/2500 20/2500 2500 〇 0.5-2 290 o 00 460 CN en 20/2500 20/2500 2500 〇0.5-2 290 00 s 00 (N 20/2500 20/2500 2500 1_ 〇0.5-2 Spinner set temperature (°C) Shear rate leather (seconds_1) Shear rate core (seconds_1) Viscosity skin (Pa.s) Viscosity core (Pa.s) Cold shock temperature (°C) Cold air flow rate (m/s) Guide roll 1 temperature ( °c) / speed (m / min) guide roller 2 temperature ( ° C) / speed (m / min) guide roller 3 temperature ( ° C) / speed (m / min ) Guide roller 4 temperature (°C) / speed (m / min) Guide roller 5 temperature (°C) / speed (m / min) Winder speed (linear speed) (m / min) Cold draw ratio Spinning finishing content (%) 33 201012991 ^璨套货wu-olf#iK.az^ Example Π iiWy; s-wrapping 00 Ο 1.31 CN (N round 1 0.35 "300 265 290 1158 sm example 16 ! iMrt/ S-Cover 1—Η 00 ί〇〇\ ο 1.31 (N CN 1 Round 1_ 〇 285 VO (N 290 1158 vo cn Example 15 lltV Life • id 1 00 JO ON ο ψ—* cn (N CN Round &lt;n ο 1 285 265 290 992 cn 卜 Example 14 iArt/ -5) C/3 00 JO ο 1.31 r—^ CN (N round ο 285 i________ IT) CM 290 ι- 827 to oo Example 13 TTRI Rotary pull § 04 σ\ ο 1.31 m ΓΜ round in ο 285 CN 290 1- 836 374 oo Example 12 TTRI rotational stretching g (N Ον Ο m ΓΟ (N circular c5 ! 285 265 290 950 425 f^l Example 11 TTRI Rotating Stretching g ο 1.31 Ο m (N Rounds ο 285 in (N 290 950 1 425 p Example 10 1 i TTRI Rotating Stretch % (N ο 1.31 rH CN Round in ο 285 265 290 950 I 425 cn Spinning equipment spinning line type skin % by volume of the compound % by weight of the skin polymer Solid density of the skin (g/cm 3 ) Solid density of the core (g/cm 3 ) Solid yarn density (g/cm 3 ) Spinner detail spinner hole % L/ D Capillary Geometry Capillary Diameter (mm) pp Temperature before Spinner (°c) PES Temperature before Spinner (°C) P Heat· /&lt;-s & Viscosity Skin (Pa.s) 201012991 Ο ο 16/3500 16/3500 3500 〇0.5-2 Ο16/3500 16/3500 3500 〇0.5-2 Ο rH ιη ο 16/3000 16/3000 3000 〇0.5-2 S Ό ο ο 16/2500 16/2500 2500 〇0.5-2 S inch ο 16/1550 16/1550 40/1550 100/1550 25/2200 2200 0.5-2 ο inch d&gt; 16/1200 16/1200 40/1200 100/1200 25/2500 2500 Η 0.5-2 ο inch ο 16 /1800 16/1800 40/1800 100/1800 25/2500 2500 0.5-2 ο inchο 16/2400 16/2400 40/2400 100/2400 25/2500 2500 q rH 0.5-2 Viscosity core (Pa· s) _I S Cold air flow rate (m / sec) Guide roller 1 temperature (°C) / speed (m / min) Guide roller 2 temperature (°C) / speed (m / min) Guide roller 3 temperature (°C ) / speed (m / min) guide roller 4 temperature (°C) / speed ( /min) Guide roller 5 temperature (°C) / speed (m / min) Winder speed (linear speed) (m / min) Cold drawing ratio spinning finishing content (%) 35 201012991 Wipe fee 1iw6- Lt#驷·3Ζ&lt; Ο 2 Η ν〇〇〇私Η τ·^ 00 S Η ο 1-Η 〇ΪΚ Η 1-Η Example 7 TTRI ^〇'Ο ίΝ 〇Example 6 ^^2 Reward S (4) 5 〇\ ^ο 〇\ VO 苌 鲮 ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' (D zss Ul)^ S Take w Fee 孽 孽 Φ 柘槁梃 Example Π i&lt;W Ta^ Φ 1.75 〇^-Η (Ν Example 16 τ3^ 00 Ο Example 15 nW T!^ Ο) ο 宕1 -Η Example 14 lAV 13^ οο 1-Η Example 13 TTRI ο (Ν s Ι^Η in Example 12 TTRI νο oi Example 11 TTRI Ον 00 σν jn Ο τ-Η »ί H CN CN H \ΐφί Take Φ fee孽Μ 鳟ΐ 柘36 996 驷2 ΊΧ ο ΊΧ20· mu $ ff 想$ inch-ε inch·ε inch-ε ce^ Lk 卜 φφφκ sll ran

Ms $ $ $ $ s 寸-Γη 寸-ε 寸ΓΑ 寸-ε 寸·ε 寸·ε 9f#lk S#-#嬸一^ 苌暖_Ms $ $ $ $ s inch - Γη inch - ε inch inch inch - ε inch · ε inch · ε 9f#lk S#-#婶一^ 暖暖_

S 寸-ε 寸·£ 寸·ε 缺繇&lt;&amp;3琛46-1莩駟.01^ ιηΙ#^S inch - ε inch · £ inch · ε 繇 繇 &lt;&amp;3琛46-1莩驷.01^ ιηΙ#^

寸 f#iK εί#駟 lf#ik 镑一r·^ 菜5 %漆_ 苌®阳 (馨壬tlwwt&gt;g«s-皞 S3d^)羧 9Inch f#iK εί#驷 lf#ik Pound a r·^ Dish 5 % paint _ 苌® Yang (Xin 壬tlwwt&gt;g«s-皞 S3d^) Carboxy 9

SS 1?珈 1ΪΦ m伞 $ ff璁 Ms ψί ΐ&gt; 寸 _rn 寸ΓΑ 寸-ε 寸-ε 寸-ε 寸· ε 寸 _Γη 寸-e 寸-ε 寸_ε 寸·ε 寸· ε 寸-ε 寸—ε 寸-ε 37 201012991 ^^&lt;6)^wz,l-0=#^.HZ&lt; 實例Π 來 良好 m rf ro m 實例16 &lt;iW 良好 jsid. Γ^Ί 實例15 ι!^ 良好 m r^i 寸 1 實例14 tiW ta^ 良好 良好 m C^i -^- m 實例13 TTRI -Βέί 良好 m ^t m 實例12 TTRI /ri^ ^ m 可 ^ m 實例11 TTRI 泶 JCtU 可 m rn m 實例10 TTRI 索 Λΐ&gt;( 索 jnU m cn -^t m 紡紗設備 色深(與PES標準品之定性比較) ήκ 4 色彩堅牢度 4 38 201012991 實例1-4 使用s-包覆法製造具有不同皮芯體積比62:38、71:29、 79:21及87:13 PP:PET之若干pp/pET雙成份纖維。第1A圖提 供此種方法實例之示意圖,表2A及表2C提供方法條件及纖 維性質摘要。經由使用位於陶氏化學公司研究發展部德州 自由港(Freeport,Texas)之席爾斯雙成份單端纖維製備此等 PP/PET雙成份纖維試樣。 紡紗生產線包含於290。(:進給共用紗束之兩部1对單螺 桿擠塑機。聚丙烯擠塑機具有下列溫度側寫:區段丨·設定 溫度180°C ’區段2-設定溫度200°C,區段3-設定溫度2l〇°C, 及區段4-設定溫度220°C。聚伸乙基對苯二甲酸酯擠塑機具 有下列溫度側寫.區段1-設定溫度280°C,區段2-設定溫度 290C ’區段3-設定溫度295°C,及區段4-設定溫度3〇〇。〇。 兩部齊尼斯(Zenith)齒輪幫浦以體積計量方式供給聚合物 熔體至熔體毛細管。 於紡嘴之後’使用纖維冷激筒管來以丨]^:空氣溫度冷 激纖維,冷激空氣速度為0.3米/秒。 擠塑纖維直接藉捲繞裝置捲繞獲得部分定向紗 (ΡΟΥ)。使用巴美(Barmag) SW4捲繞機來捲繞纖維紗包。 表2E及表2G顯不此等纖維所得結果。ρρ/ρΕτ比顯然對 PP/PET雙成份纖維之機械性質有強力影響。提高ρρ/ρΕτ雙 成份纖維中之PP組分重量百分比顯然造成纖維之韌度及斷 裂點伸長率減低。至於可染性,大致上此等試樣之色調皆 視為足約用於商業織物生產。但當聚合物皮組分係占雙成 39 201012991 份纖維之6 0 %至約8 0 %重量比時,觀察得達成深色調的能力 降低。至少於若干實施例中,經由設計雙成份纖維為70:30% 重量比PP:PET組成物可達成於最低合理聚S旨百分比時合理 的染料攝取。 實例5 使用旋轉拉伸法製造PP/PET雙成份纖維。第1B圖提供 該方法之示意圖,及表2A及表2C提供方法條件及纖維性質 之摘要。此等PP/PET雙成份纖維試樣係使用位於德州自由 港陶氏化學公司研究發展部門之席爾斯雙成份單端纖維生 © 產線製造。 本紡紗生產線係與實例1-4相同,擠塑機的設定值亦 同。捲繞前使用五根導絲輥而非s-包覆實例使用兩根。細節 · 示於表2C。表2E顯示本實例纖維所得結果。本纖維相關之 伸長率不允許製造變形纖維。 實例6 使用旋轉拉伸法製造PP/PET雙成份纖維。第iB圖提供 該方法之示意圖,及表2A及表2C提供方法條件及纖維性質 ® 之摘要。此等PP/PET雙成份纖維試樣係使用位於美國佛羅 里達州,墨爾本席爾斯貝席爾公司(Hills Bayhill company)。 聚丙烯係使用如下擠塑機側寫擠塑:約18〇t之區段1 設定點,約200°C之區段2設定點,約210。(:之區段3設定點,SS 1?珈1ΪΦ m umbrella $ ff璁Ms ψί ΐ&gt; inch_rn inch inch inch-ε inch-ε inch-ε inch ε inch _Γη inch-e inch-ε inch _ε inch·ε inch ε inch -ε inch - ε inch - ε 37 201012991 ^^&lt;6)^wz,l-0=#^.HZ&lt; Instance Π To be good m rf ro m Example 16 &lt;iW Good jsid. Γ^Ί Example 15 ι !^ Good mr^i inch 1 Example 14 tiW ta^ Good good m C^i -^- m Example 13 TTRI -Βέί Good m ^tm Example 12 TTRI /ri^ ^ m OK ^ m Example 11 TTRI 泶JCtU m Rn m Example 10 TTRI Λΐ Λΐ ( ( ( n n n n n n n n 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 Different sheath-to-core ratio 62:38, 71:29, 79:21 and 87:13 PP: several pp/pET bicomponent fibers of PET. Figure 1A provides a schematic of an example of such a method, and Table 2A and Table 2C provide methods. Summary of Conditions and Fiber Properties. These PP/PET duplexes were prepared by using the Sils two-component single-ended fiber from the Dow Chemical Company's Research and Development Department in Freeport, Texas. Fiber sample. The spinning line is included in 290. (: Two 1-pair single-screw extruders for feeding the shared yarn bundle. The polypropylene extruder has the following temperature profile: section 丨 · set temperature 180 ° C ' Section 2 - set temperature 200 ° C, section 3 - set temperature 2 l ° ° C, and section 4 - set temperature 220 ° C. Polyethylene terephthalate extruder has the following temperature profile Section 1 - Set Temperature 280 ° C, Section 2 - Set Temperature 290C ' Section 3 - Set Temperature 295 ° C, and Section 4 - Set Temperature 3 〇〇. 〇. Two Zenith Gears The pump supplies the polymer melt to the melt capillary in a volumetric manner. After the spinning nozzle, 'use the fiber chilled tube to chill the fiber, and the cold air velocity is 0.3 m/s. The plastic fiber was directly wound by a winding device to obtain a partially oriented yarn (ΡΟΥ). The fiber pack was wound using a Barmag SW4 winder. Table 2E and Table 2G show the results of the fibers. ρρ/ρΕτ The ratio has a strong influence on the mechanical properties of the PP/PET bicomponent fiber. Increasing the weight percentage of the PP component in the ρρ/ρΕτ bicomponent fiber The ratio is significantly lower than the toughness of the fiber and the elongation at break point. As for dyeability, the hue of these samples is generally considered to be sufficient for commercial fabric production. However, when the polymer skin component accounts for 60% to about 80% by weight of the double-fibre 39 201012991 fibers, the ability to achieve a dark tone is observed to decrease. In at least some embodiments, a reasonable ratio of dye uptake can be achieved by designing a bicomponent fiber to a 70:30% by weight PP:PET composition at a minimum reasonable polysalination percentage. Example 5 A PP/PET bicomponent fiber was produced using a rotational stretching method. Figure 1B provides a schematic of the process, and Tables 2A and 2C provide a summary of the process conditions and fiber properties. These PP/PET bicomponent fiber samples were manufactured using the Sils two-component single-ended fiber production © production line at the Research and Development Division of Dow Chemical Company, Texas. The spinning production line is the same as in Examples 1-4, and the setting values of the extruder are also the same. Two rolls were used before winding, instead of the s-cladding example. Details · Shown in Table 2C. Table 2E shows the results obtained for the fibers of this example. The elongation associated with the fiber does not allow the manufacture of textured fibers. Example 6 A PP/PET bicomponent fiber was produced using a rotational stretching method. Figure iB provides a schematic of the process, and Tables 2A and 2C provide a summary of process conditions and fiber properties. These PP/PET bicomponent fiber samples were used at the Hills Bayhill company in Melbourne, Florida, USA. The polypropylene was extruded using the following extruder: section 1 set point of about 18 〇t, section 2 set point of about 200 ° C, about 210. (: section 3 set point,

及約220°C之區段4設定點。聚伸乙基對笨二曱酸酷係使用 恰於熔體幫浦後方測量得紡紗束熔體溫度約為302°C擠 塑’使用如下擠塑機侧寫··約280°C之區段1設定點,約29〇°C 40 201012991 之區段2設定點,約295°C之區段3設定點,及約3〇〇°C之區 段4設定點。 同時使用圓形孔圖案之有48根纖絲之紡嘴製造四條紗 線。圓形熔體毛細孔具有0.3毫米直徑及L/D為2。 紡嘴安裝於裝配有40微米過濾器之紡紗包裝。連同經 陶瓷塗覆之輥,以0.5至2重量百分比濃度施用古斯頓 (Goulston)魯洛(Lurol) 7521 呈 15%水溶液。 離開紡嘴之纖維使用二區段冷激系統冷卻。上冷激區 段具有15°C溫度及1300 rpm風扇速度。下冷激區段具有 15°C溫度及1200 rpm風扇速度。然後紗束中之紗可於交織 喷射器内使用30 psi周圍溫度空氣略為交織。於周圍溫度, 纖維捲取於1200米/分鐘速率之一對丹尼親上。然後使用三 對鉻導絲拉伸輥機械拉伸纖維。第一對導絲進料輥設定於 40°C及以每分鐘1200米運轉。第二對導絲進料輥設定於 100°C及以每分鐘2440米運轉。第三對導絲進料輥設定於周 圍溫度及以每分鐘245G米運轉。卿使用東贿啊)心轴 驅動捲繞機以每分鐘2460米運轉而捲繞成紗包,使用7.8螺 旋角及薄帶數目為2。此紗測得之性質顯示於表2。 POY於MPS變形機器上變形。Mps變形機器之一個實 例顯示於第2圖。該機㈣基於假加_形原理。刪變形 機器有傳統機器加熱區別,接著冷卻區段,接著加捻插件 接著捲取錢。加熱係以接觸式電氣加熱進行 適合相對低熔點熱塑性聚合物。 第-加熱室包含二部分,一部分長j 3米第二部分長 201012991 0.6米。變形單tl之前有約〗』米長之冷卻軌。試驗期間將第 -加熱器溫度維持於12(rc楊米/分鐘變形速度。試驗期 間’ 1‘32至1.38拉伸比整個範圍皆係基於此進行實驗發現 最適合之拉伸比為h37。試驗期間維持向下拉伸比為ι78 及使用具有圓盤厚度9毫米、直徑52毫米之4個聚胺甲酸醋 圓盤。 於下述系統進行100克紗包的捲取,最大行程約為25〇 毫米,最大直從約為300毫米,重量筆直/75度雙錐高達千 克10及體積筆直/75度雙錐立方分米為19。 ® 此4變形雙成份纖維之性質示於表3。 表3.實例6之纖維之性質 細度(dtex) 81 纖維韌度(cN/dtex) 2.5 纖維伸長率(%) 23 卷曲收縮(E%) 5.1 卷曲模數(K%) 3.4 卷曲穩定度(B%) 匕 -6.6 實例7-9 以s-包覆法製造具有皮芯體積比為7〇:3〇之若干pp/pBT 雙成份纖維。PP/PBT雙成份纖維試樣係經由使用位於台北 台灣紡織品研究所(TTRI)之席爾斯雙成份纖維生產線製 備。表2A及表2C提供有關該纖維之資訊。 聚丙烯擠塑機具有如下溫度側寫:區段1_設定點 200°C,區段2-設定點240°C ’區段3-設定點260。(:,及區段 42 201012991 4-設定點285°C。聚伸乙基對苯二甲酸酯擠塑機具有如下溫 度側寫:區段1-設定點250°C,區段2_設定點26〇°c,區段3_ 設定點265°C,及區段4-設定點265°C。其餘紡紗條件示於 表2。使用不同紡紗速度。 表2E顯示此等纖維之資料。紡紗速度顯然對雙成份纖 維之纖維伸長率有強力影響。此等雙成份纖維之韌度維持 相對怪定。各例之色深被視為良好。 實例10-13 以s-包覆法製造具有皮芯體積比為80:2〇之若干ΡΡ/ΡΒΤ 雙成份纖維。ΡΡ/ΡΒΤ雙成份纖維試樣係經由使用位於台北 台灣紡織品研究所(TTRI)之席爾斯雙成份纖維生產線製 備。此等實例之資訊示於表2Β及表2D。 聚丙稀擠塑機具有如下溫度側寫:區段1_設定點 200°C,區段2-設定點240°C,區段3-設定點260°C,及區段 4_設定點285°C。聚伸乙基對苯二甲酸酯擠塑機具有如下溫 度側寫:區段1-設定點250°C,區段2-設定點260°C,區段3_ 設定點265°C,及區段4-設定點265°C。其餘紡紗條件示於 表2D。使用不同紡紗速度及拉伸比。 表2F及表2H顯示此等纖維之資料。不幸旋轉拉伸法顯 然比s-包覆法獲得更寬廣的韌度及伸長率範圍。拉伸比對雙 成份纖雉之纖維伸長率有強力影響。各例之色深皆良好。 實例14至I7 使用s-包覆法製備具有皮芯體積比為81:19之若干 ΡΡ/ΡΒΤ雙成份纖維。此等ΡΡ/ΡΒΤ雙成份纖維試樣係使用位 43 201012991 在台北辛康纖雉公司之凱森(Kasen)雙成份纖維生產線製 造。此等實例之資訊參考表2B及表2D。 聚丙烯擠塑機具有如下溫度側寫:區段1·設定點 200°C,區段2-設定點240°C,區段3-設定點260。(:,及區段 4-設定點285°C。聚伸乙基對苯二甲酸酯擠塑機具有如下溫 度側寫:區段1-設定點250°C ’區段2-設定點260。(:,區段3-設定點265°C,及區段4-設定點265°C。其餘紡紗條件示於 表2。使用不同紡紗速度、毛細管直徑、冷激空氣流速及pp 溫度。此處製造較低dp f纖絲。 參 表2F及表2H顯示此等纖維之資料。dpf、纺紗速度、冷 激空氣流速及紡紗溫度之組合顯然對纖維勃度及伸長率產 生出乎意外的控制能力,此點對於變形過程相當重要。各 例之色深皆良好。 因此本發明極為適合達成所述目的及優點以及此處特 有之目的及優點。前文揭示之特定實施例僅供舉例說明之 用,本發明可以對由本文教示獲益之熟諳技藝人士顯然易 ❹ 知之不同的但相當的方式修改及實施。此外,除了如下申 請專利範圍之說明外,絕非意圖限制於此處所述組成及設 計細節。因此顯然前文揭示之特定具體實施例町經變更及 修改,全部此等變化皆視為落入本發明之精髓及範圍。特 定言之,此處揭示之每個數值範圍(「由約3至約b」之形式 或相當地「由約a至b」或相當地「由約a_b」)須暸解係指個 別數值範圍之次羃集合(全部子集之集合),且陳述於該數值 寬廣範圍内所涵蓋的每個範圍。此外申請專利範圍中使用 44 201012991 之不定冠詞「一」於此處定義表示一個或多於一個所介紹 的元件。此外,申請專利範圍中之術語除非由專利權人另 行明白清晰指示否則具有一般尋常定義。 【圖式簡單說明】 第1A圖及第1B圖為可用於熔紡皮芯型雙成份纖維之 兩種POY方法之示意圖。第1A圖示例顯示s-包覆法之實 例,及第1B圖示例顯示旋轉拉伸POY法之實例。 第2圖為典型拉伸變形機之略圖。 【主要元件符號說明】 (無) 45And a section 4 set point of about 220 °C. Polyethylene on the use of stupid acid is measured just after the melt pump. The melt temperature of the spinning bundle is about 302 ° C. Extrusion 'Use the following extruder to write on the surface. · About 280 ° C Segment 1 set point, section 29 set point of approximately 29 ° ° C 40 201012991, section 3 set point of approximately 295 ° C, and section 4 set point of approximately 3 ° ° C. At the same time, four yarns were produced using a circular fiber pattern of 48 filaments. The circular melt capillary has a diameter of 0.3 mm and an L/D of 2. The nozzle is mounted in a spinning package equipped with a 40 micron filter. A 15% aqueous solution of Goulston Lurol 7521 was applied at a concentration of 0.5 to 2 weight percent, along with a ceramic coated roll. The fibers exiting the spinner are cooled using a two-stage cold shock system. The upper cold shock zone has a 15 °C temperature and a 1300 rpm fan speed. The lower chill zone has a 15 °C temperature and a 1200 rpm fan speed. The yarn in the yarn bundle can then be slightly interlaced with an ambient temperature of 30 psi in the interlaced injector. At ambient temperature, the fiber was taken at a rate of 1200 m/min for Danny. The fibers were then mechanically drawn using three pairs of chrome guide rolls. The first pair of guide wire feed rolls were set at 40 ° C and operated at 1200 meters per minute. The second pair of guide wire feed rolls were set at 100 ° C and operated at 2440 meters per minute. The third pair of wire feed rolls were set at ambient temperature and operated at 245 G meters per minute. Qing used the bribe. The mandrel drives the winder to run into a yarn package at 2,460 meters per minute. The 7.8 screw angle and the number of thin belts are 2. The properties measured for this yarn are shown in Table 2. POY is deformed on the MPS deformation machine. An example of an Mps morphing machine is shown in Figure 2. The machine (4) is based on the principle of false addition. Deleting the machine The machine has a difference in traditional machine heating, followed by a cooling section, followed by a twisting insert and then taking the money. The heating is carried out by contact electric heating for a relatively low melting point thermoplastic polymer. The first heating chamber consists of two parts, a part of which is longer than 3 meters and a second part of which is 201012991 0.6 m. Before the deformation single t1, there is a cooling rail of about 〖m long. During the test, the first heater temperature was maintained at 12 (rc angmi/min deformation rate. The entire range of '1'32 to 1.38 stretch ratio during the test period was based on this experiment and found that the most suitable draw ratio was h37. During the period, the downward draw ratio was maintained as ι78 and four melamine discs having a disc thickness of 9 mm and a diameter of 52 mm were used. The 100 g yarn package was taken up in the following system, and the maximum stroke was about 25 〇. Millimeter, maximum straight from about 300 mm, weight straight / 75 degree double cone up to kilograms 10 and volume straight / 75 degrees double cone cubic decimeter is 19. ® The properties of this 4 deformed bicomponent fiber are shown in Table 3. Table 3 . Properties of Fibers of Example 6 (dtex) 81 Fiber Tenacity (cN/dtex) 2.5 Fiber Elongation (%) 23 Curl Shrinkage (E%) 5.1 Curl Modulus (K%) 3.4 Curl Stability (B%匕-6.6 Example 7-9 Several pp/pBT bicomponent fibers with a core-to-core ratio of 7〇:3〇 were produced by s-cladding method. PP/PBT bicomponent fiber samples were used in Taipei Taiwan textiles. Preparation of the Siers bicomponent fiber line from the Institute (TTRI). Table 2A and Table 2C provide information on the fiber. The polypropylene extruder has the following temperature profiles: Section 1_Setpoint 200 °C, Section 2 - Setpoint 240 °C 'Section 3 - Setpoint 260. (:, and Section 42 201012991 4-Set point 285 ° C. The polyethylene terephthalate extruder has the following temperature profile: Section 1 - set point 250 ° C, section 2_ set point 26 ° ° c, section 3_ set point 265 ° C, and section 4 - set point 265 ° C. The remaining spinning conditions are shown in Table 2. Different spinning speeds are used. Table 2E shows the data of these fibers. The spinning speed is obviously for bicomponent fibers. The fiber elongation has a strong influence. The toughness of these bicomponent fibers is relatively strange. The color depth of each case is considered good. Example 10-13 is manufactured by the s-cladding method with a core-to-core ratio of 80: 2〇 Several ΡΡ/ΡΒΤ bicomponent fibers. The ΡΡ/ΡΒΤ bicomponent fiber samples were prepared using the Sils bicomponent fiber production line at the Taiwan Taiwan Textile Research Institute (TTRI). Information on these examples is shown in Table 2. And Table 2D. The polypropylene extruder has the following temperature profile: section 1_set point 200 ° C, section 2 - set point 240 ° C, Section 3 - set point 260 ° C, and section 4_ set point 285 ° C. Polyethylene terephthalate extruder has the following temperature profile: Section 1 - set point 250 ° C, zone Section 2 - set point 260 ° C, section 3_ set point 265 ° C, and section 4 - set point 265 ° C. The remaining spinning conditions are shown in Table 2D. Different spinning speeds and draw ratios are used. Table 2F And Table 2H shows the data of these fibers. Unfortunately, the rotational stretching method clearly achieves a wider range of toughness and elongation than the s-cladding method. The draw ratio has a strong influence on the fiber elongation of the bicomponent fiber. The color depth of each case is good. Examples 14 to I7 Several ΡΡ/ΡΒΤ bicomponent fibers having a core-to-core ratio of 81:19 were prepared by the s-cladding method. These ΡΡ/ΡΒΤ bicomponent fiber samples were manufactured at the Kasen bicomponent fiber production line of Taipei Xinkang Fiber & Co., Ltd. using the position 43 201012991. The information of these examples is shown in Table 2B and Table 2D. The polypropylene extruder has the following temperature profile: section 1 · set point 200 ° C, section 2 - set point 240 ° C, section 3 - set point 260. (:, and Section 4-set point 285 ° C. The polyethylene terephthalate extruder has the following temperature profile: Section 1 - Set point 250 ° C 'Section 2 - Set point 260 (:, Section 3 - set point 265 ° C, and Section 4 - set point 265 ° C. The remaining spinning conditions are shown in Table 2. Different spinning speeds, capillary diameters, cold air flow rates, and pp temperatures are used. The lower dp f filaments are produced here. Table 2F and Table 2H show the data of these fibers. The combination of dpf, spinning speed, cold air flow rate and spinning temperature obviously produces fiber brilliance and elongation. Unexpected control, this is important for the deformation process. The color depth of each case is good. The present invention is therefore well adapted to achieve the objects and advantages described and the specific objects and advantages herein. The invention may be modified and carried out in a different and apparent manner, which is apparent to those skilled in the art in the <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; The composition and design details. It is apparent that the specific embodiments disclosed above are subject to change and modifications, all of which are considered to fall within the spirit and scope of the invention. In particular, each numerical range disclosed herein ("from about 3 to about The form of b" or equivalently "from about a to b" or equivalently "from a_b") is understood to mean a sub-set of individual numerical ranges (a collection of all subsets) and is stated within a broad range of such values. In addition, the indefinite article "a" or "an" is used to mean one or more of the elements that are described herein. In addition, the terms in the scope of the claims are not otherwise limited by the patentee. Clearly indicate clearly or otherwise have a general definition. [Simplified Schematic] Figures 1A and 1B are schematic diagrams of two POY methods that can be used for melt-spun core-core bicomponent fibers. Example 1A shows s-packages. Examples of the coating method, and Example 1B show an example of the rotary stretching POY method. Fig. 2 is a schematic view of a typical tensile deformation machine. [Main component symbol description] (None) 45

Claims (1)

201012991 七、申請專利範圍: 1. 一種方法包含·· (a) 選定一用於該雙成份纖維之芯之聚酯樹脂; (b) 選定用於該雙成份纖維之皮(也⑸也)之聚烯烴樹 脂,其中該聚酯樹脂與該聚烯烴樹脂間之黏度比係於約 0.4至約4之範圍;及 (c) 形成一具有約1.15克/立方厘米或以下之固態密 度之具有聚酯芯及聚烯烴皮之可染色皮芯型雙成份纖 維。 2·如申請專利範圍第丨項之方法,其中該聚酯樹脂包含選 自於由下列所組成之組群之樹脂:聚伸乙基對苯二甲酸 . 酯、聚伸丁基對笨二曱酸酯、聚三曱基對笨二曱酸酯、 ‘ 聚四曱基對苯二甲酸酯、聚乳酸、非晶形聚酯類、聚酯 共聚物、及其組合物。 3.如申請專利範圍第1項之方法,其中該聚烯烴樹脂包含 選自於下列所組成之組群之樹脂:乙烯、丙稀、聚丙稀 均聚物、聚丙婦共聚物、經齊格勒_納塔(Ziegier_Natta) ® 催化之聚丙稀、經金屬茂催化之聚丙稀均聚物、聚_4_ 曱基-1-戊稀、環狀稀經共聚物、間規聚笨乙烯、無規聚 笨乙烯、氫化聚苯乙烯及其組合物。 4·如申請專利範圍第1項之方法,其中該形成可染色皮芯 型雙成份纖維之步驟涉及一種紡紗處理其對可染色皮 芯型雙成份纖維提供至少約60%伸長率,藉DIN 53 834 測定。 46 201012991 5. 如申請專利範圍第1項之方法,其中該形成可染色皮芯 型雙成份纖維之步驟涉及一種具有紡紗生產線之紡紗 處理,該紡紗生產線具有由約1500米/分鐘至約5000米/ 分鐘之範圍之速度。 6. 如申請專利範圍第1項之方法,其中該形成可染色皮芯 型雙成份纖維之步驟涉及一種冷激處理其中冷激空氣 流速係由約0.2米/秒至1米/秒。 7·如申請專利範圍第1項之方法,其中該形成可染色皮芯 型雙成份纖維之步驟涉及一種冷激處理其中冷激空氣 溫度係由約5。(:至約25。(:。 8. 如申請專利範圍第1項之方法,其中該形成可染色皮芯 型雙成份纖維之步驟涉及一種拉伸處理其中定義為捲 繞機速度/第一導絲輥速度之拉伸比係由1變化至3。 9. 如申請專利範圍第1項之方法,其中該形成可染色皮芯 型雙成份纖維之步驟涉及s-包覆處理或旋轉拉伸處理。 10·如申請專利範圍第1項之方法,其中該可染色皮芯型雙 成份纖維具有每纖絲之丹尼低於約3。 11·如申請專利範圍第1項之方法,其中該可染色皮芯型雙 成份纖維具有低於約330分特(dtex)之丹尼。 12. 如申請專利範圍第1項之方法,其中該可染色皮芯型雙 成份纖維具有大於約1.3厘牛頓/丹尼(cN/den)之勒度。 13. 如申請專利範圍第1項之方法,進一步包含於形成該可 染色皮芯型雙成份纖維之步驟後,變形該可染色皮芯型 雙成份纖維之步驟俾形成已變形之可染色皮芯型雙成 47 201012991 份纖維。 14. 如申請專利範圍第1或11項之方法,進一步包含於形成 該可染色皮芯型雙成份纖維之步驟之後位於變形該可 染色皮芯型雙成份纖維之步驟之後,染色該可染色皮芯 型雙成份纖維之步驟。 15. 如申請專利範圍第11項之方法,其中該可染色皮芯型雙 成份纖維係經拉伸變形。 16. 如申請專利範圍第11項之方法,其中該已變形之可染色 皮芯型雙成份纖維係結合入針織物或編織物。 17. 如申請專利範圍第14項之方法,進一步包含染色該針織 物或編織物。 18. 如申請專利範圍第15項之方法,進一步包含施用整理劑 至該織物來提供氣味控制、水分芯吸、阻燃性、或其組 合。 19. 如申請專利範圍第15項之方法,進一步包含由該針織物 或編織物形成一衣物。 20. —種方法,包含: (a)藉一種方法來形成一具有約1.15克/立方厘米之 密度之可染色皮芯型雙成份纖維,該方法包含: ⑴選定一用於該雙成份纖維之芯之聚酯樹脂; (ii) 選定一用於該雙成份纖維之皮之聚烯烴樹 脂,其中該聚酯樹脂與該聚烯烴樹脂間之黏度比係於約 0.4至約4之範圍;及 (iii) 形成一具有約1.15克/立方厘米或以下之密 48 201012991 度之具有聚酯芯及聚烯烴皮之可染色皮芯型雙成份纖 維;及 (b)變形該可染色皮芯型雙成份纖維而形成已變形 之可染色皮芯型雙成份纖維。 21. 如申請專利範圍第20項之方法,其中該聚酯樹脂包含選 自於由下列所組成之組群之樹脂:聚伸乙基對苯二甲酸 酯、聚伸丁基對苯二曱酸酯、聚三甲基對苯二甲酸酯、 聚四曱基對苯二曱酸酯、聚乳酸、非晶形聚酯類、聚酯 共聚物、及其組合物。 22. 如申請專利範圍第20項之方法,其中該聚烯烴樹脂包含 選自於下列所組成之組群之樹脂:乙稀、丙烯、聚丙烯 均聚物、聚丙烯共聚物、經齊格勒-納塔催化之聚丙烯、 經金屬茂催化之聚丙烯均聚物、聚-4-甲基-1-戊稀、環 狀烯烴共聚物、間規聚苯乙烯、無規聚苯乙烯、氫化聚 苯乙烯及其組合物。 23. 如申請專利範圍第20項之方法,進一步包含於變形該可 染色皮芯型雙成份纖維來形成已變形可染色皮芯型雙 成份纖維之步驟之後,形成包含該已變形可染色皮芯型 雙成份纖維之一織物之步驟。 24. 如申請專利範圍第23項之方法,進一步包含染色該織物 來形成一已染色織物之步驟。 25. 如申請專利範圍第20項之方法,其中該形成可染色皮芯 型雙成份纖維之步驟涉及s-包覆處理或旋轉拉伸處理。 26. 如申請專利範圍第20項之方法,其中該可染色皮芯型雙 49 201012991 成份纖維具有每纖絲之丹尼低於約3。 27. 如申請專利範圍第20項之方法,其中該可染色皮芯型雙 成份纖維具有低於約330分特(dtex)之丹尼。 28. 如申請專利範圍第20項之方法,其中該可染色皮芯型雙 成份纖維具有大於約1.3厘牛頓/丹尼(cN/den)之韌度。 29. 如申請專利範圍第20項之方法,進一步包含施用整理劑 至該織物來提供氣味控制、水分芯吸、阻燃性、或其組 合。 30. 如申請專利範圍第20項之方法,進一步包含由該針織物 或編織物形成一衣物。 50201012991 VII. Patent application scope: 1. A method comprising: (a) selecting a polyester resin for the core of the bicomponent fiber; (b) selecting a skin for the bicomponent fiber (also (5) also) a polyolefin resin, wherein a viscosity ratio between the polyester resin and the polyolefin resin is in the range of from about 0.4 to about 4; and (c) forming a polyester having a solid density of about 1.15 g/cm 3 or less Dyed core-type bicomponent fiber of core and polyolefin skin. 2. The method of claim 2, wherein the polyester resin comprises a resin selected from the group consisting of polyethylene terephthalate, ester, and polybutylene. An acid ester, a polytrimethylene p-benzoate, a polytetradecyl terephthalate, a polylactic acid, an amorphous polyester, a polyester copolymer, and combinations thereof. 3. The method of claim 1, wherein the polyolefin resin comprises a resin selected from the group consisting of ethylene, propylene, polypropylene homopolymer, polypropylene copolymer, and Ziegler. _Ziagier_Natta ® catalyzed polypropylene, metallocene-catalyzed polypropylene homopolymer, poly- 4_ fluorenyl-1-pentane, cyclic dilute copolymer, syndiotactic polystyrene, random polymerization Stupid ethylene, hydrogenated polystyrene, and combinations thereof. 4. The method of claim 1, wherein the step of forming a dyeable sheath core bicomponent fiber involves a spinning process that provides at least about 60% elongation to the dyeable sheath core bicomponent fiber by DIN 53 834 determination. 46 201012991 5. The method of claim 1, wherein the step of forming a dyeable sheath-core bicomponent fiber involves a spinning process having a spinning line having from about 1500 m/min to Speed in the range of approximately 5,000 m/min. 6. The method of claim 1, wherein the step of forming the dyeable sheath core bicomponent fiber involves a cold shock treatment wherein the flow rate of the cold air is from about 0.2 m/sec to 1 m/sec. 7. The method of claim 1, wherein the step of forming the dyeable sheath core bicomponent fiber involves a cold shock treatment wherein the cold air temperature is about 5. (: to about 25. (8) The method of claim 1, wherein the step of forming the dyeable sheath-core bicomponent fiber involves a stretching process defined as the winder speed/first guide The draw ratio of the wire roll speed is changed from 1 to 3. 9. The method of claim 1, wherein the step of forming the dyeable sheath core type bicomponent fiber involves s-coating treatment or spin stretching treatment. 10. The method of claim 1, wherein the dyeable sheath-core bicomponent fiber has a denier per filament of less than about 3. 11. The method of claim 1, wherein the The dyed sheath core bicomponent fiber has a denier of less than about 330 dtex. 12. The method of claim 1, wherein the dyeable sheath core bicomponent fiber has a diameter greater than about 1.3 centimeter/ Denier (cN/den). 13. The method of claim 1, further comprising the step of forming the dyeable sheath core bicomponent fiber, deforming the dyeable sheath core bicomponent fiber The step of forming a deformed dyeable sheath core 47 201012991 Parts of fiber 14. The method of claim 1 or 11, further comprising the step of deforming the dyeable sheath-core bicomponent fiber after the step of forming the dyeable sheath-core bicomponent fiber The method of dyeing the dyeable sheath-core bicomponent fiber. The method of claim 11, wherein the dyeable sheath-core bicomponent fiber is stretch-deformed. The method wherein the deformed dyeable sheath-core bicomponent fiber is incorporated into a knit or knit. 17. The method of claim 14, further comprising dyeing the knit or knit. The method of claim 15 further comprising applying a finishing agent to the fabric to provide odour control, moisture wicking, flame retardancy, or a combination thereof. 19. The method of claim 15 further comprising Knitted fabric or woven fabric forms a garment. 20. A method comprising: (a) forming a dyeable dye having a density of about 1.15 grams per cubic centimeter by a method a sheath-core bicomponent fiber, the method comprising: (1) selecting a polyester resin for the core of the bicomponent fiber; (ii) selecting a polyolefin resin for the skin of the bicomponent fiber, wherein the polyester resin The viscosity ratio to the polyolefin resin is in the range of from about 0.4 to about 4; and (iii) forming a polyester core and polyolefin skin having a density of about 1.15 g/cm 3 or less. a dyed sheath core bicomponent fiber; and (b) a dyeable sheath core bicomponent fiber to form a deformed dyeable sheath core bicomponent fiber. 21. The method of claim 20, wherein The polyester resin comprises a resin selected from the group consisting of polyethylene terephthalate, polybutylene terephthalate, polytrimethyl terephthalate, Polytetradecyl terephthalate, polylactic acid, amorphous polyester, polyester copolymer, and combinations thereof. 22. The method of claim 20, wherein the polyolefin resin comprises a resin selected from the group consisting of ethylene, propylene, polypropylene homopolymer, polypropylene copolymer, and Ziegler - Nata catalyzed polypropylene, metallocene catalyzed polypropylene homopolymer, poly-4-methyl-1-pentane, cyclic olefin copolymer, syndiotactic polystyrene, atactic polystyrene, hydrogenation Polystyrene and its compositions. 23. The method of claim 20, further comprising forming the deformed dyeable sheath core after the step of deforming the dyeable sheath core bicomponent fiber to form the deformed dyeable sheath core bicomponent fiber The step of one of the two-component fibers. 24. The method of claim 23, further comprising the step of dyeing the fabric to form a dyed fabric. 25. The method of claim 20, wherein the step of forming the dyeable sheath core bicomponent fiber involves an s-coating treatment or a rotary stretching treatment. 26. The method of claim 20, wherein the dyeable sheath-core double 49 201012991 component fiber has a denier per filament of less than about 3. 27. The method of claim 20, wherein the dyeable sheath-core bicomponent fiber has a denier of less than about 330 dtex. 28. The method of claim 20, wherein the dyeable sheath-core bicomponent fiber has a tenacity greater than about 1.3 centiNewtons per denier (cN/den). 29. The method of claim 20, further comprising applying a finish to the fabric to provide odour control, moisture wicking, flame retardancy, or a combination thereof. 30. The method of claim 20, further comprising forming a garment from the knit or knit. 50
TW98125204A 2008-07-28 2009-07-27 Fine denier partially oriented bicomponent fibers and flat and textured yarns for use in apparel TW201012991A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US8415308P 2008-07-28 2008-07-28

Publications (1)

Publication Number Publication Date
TW201012991A true TW201012991A (en) 2010-04-01

Family

ID=41077612

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98125204A TW201012991A (en) 2008-07-28 2009-07-27 Fine denier partially oriented bicomponent fibers and flat and textured yarns for use in apparel

Country Status (2)

Country Link
TW (1) TW201012991A (en)
WO (1) WO2010014556A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113279075A (en) * 2021-06-01 2021-08-20 福建闽瑞新合纤股份有限公司 Manufacturing process of superfine denier PE and PET bi-component composite short fiber

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017136791A1 (en) * 2016-02-05 2017-08-10 Torgerson Robert D High tenacity fibers
US10760186B2 (en) * 2017-03-29 2020-09-01 Welspun Flooring Limited Manufacture of bi-component continuous filaments and articles made therefrom
US11225733B2 (en) 2018-08-31 2022-01-18 Arun Agarwal Proliferated thread count of a woven textile by simultaneous insertion within a single pick insertion event of a loom apparatus multiple adjacent parallel yarns drawn from a multi-pick yarn package
GB202107272D0 (en) * 2021-05-20 2021-07-07 Amphibio Ltd Water-repellent fibre

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02139465A (en) * 1988-11-16 1990-05-29 Unitika Ltd Nonwoven fabric for secondary cloth of carpet
JP3097019B2 (en) * 1995-08-07 2000-10-10 チッソ株式会社 Heat-fusible composite fiber and nonwoven fabric using the fiber
US6776858B2 (en) * 2000-08-04 2004-08-17 E.I. Du Pont De Nemours And Company Process and apparatus for making multicomponent meltblown web fibers and webs
WO2003069039A1 (en) * 2002-02-15 2003-08-21 Colbond B.V. Primary carpet backing
JP4233580B2 (en) * 2004-02-23 2009-03-04 帝人ファイバー株式会社 Synthetic short fibers for airlaid nonwovens

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113279075A (en) * 2021-06-01 2021-08-20 福建闽瑞新合纤股份有限公司 Manufacturing process of superfine denier PE and PET bi-component composite short fiber

Also Published As

Publication number Publication date
WO2010014556A1 (en) 2010-02-04

Similar Documents

Publication Publication Date Title
TWI725267B (en) Eccentric core sheath composite fiber and mixed fiber yarn
US20100215895A1 (en) Process of producing ultra fine microdenier filaments and fabrics made thereof
CN109477254B (en) False twist textured yarn formed from dyeable polyolefin fibers
CN108779583B (en) Dyeable polyolefin fiber and fiber structure comprising same
CN105648606A (en) Anti-static polyester wool-like fiber and preparation method for same
TW201012991A (en) Fine denier partially oriented bicomponent fibers and flat and textured yarns for use in apparel
TW593808B (en) Melt spun yarns having high lustre
KR101374774B1 (en) Blended filament yarn with sheath-core type yarn and latent crimp yarn, and fabric using the blended filament yarn
JP7290025B2 (en) Dyeable polyolefin core-sheath type composite fiber and fiber structure composed thereof
JP2016204817A (en) Polyamide crimped yarn and manufacturing method thereof
TWI454601B (en) A dyed-core type composite fiber, a method for producing the same, and a garment made using the same
KR102232005B1 (en) Composite yarn having a fine melange effect and manufacturing method thereof
JP6308127B2 (en) Spun yarn containing polymethylpentene fiber and fiber structure comprising the same
JP2006233380A (en) Polyamide multifilament yarn, method for producing the same and knitted product for inner
TW201012992A (en) Dyeable and hydrophobic bi-component fibers comprising a polyolefin exterior surface and articles made terefrom
CN111101236B (en) Self-curling elastic combined filament yarn for knitted denim and preparation method thereof
JP5362249B2 (en) Core-sheath composite fiber for tufted carpet and its use
JP2007056412A (en) Blended article of polyester fiber and polytrimethylene terephthalate-based fiber
JP4207607B2 (en) Polyester sewing thread for embroidery
JPH11217730A (en) Production of polyester fiber and false-twist textured yarn
CN117966298A (en) Wear-resistant elastic composite processing yarn and preparation method thereof
JP2022092736A (en) Dyeable polypropylene fiber
JP2022042110A (en) Dyeable polypropylene fiber
JP2007231472A (en) Synthetic fiber multifilament yarn and method for producing the same