TW201010365A - Pilot pattern design method and wireless communications device - Google Patents

Pilot pattern design method and wireless communications device Download PDF

Info

Publication number
TW201010365A
TW201010365A TW098111960A TW98111960A TW201010365A TW 201010365 A TW201010365 A TW 201010365A TW 098111960 A TW098111960 A TW 098111960A TW 98111960 A TW98111960 A TW 98111960A TW 201010365 A TW201010365 A TW 201010365A
Authority
TW
Taiwan
Prior art keywords
pilot
resource block
frequency
pilots
tones
Prior art date
Application number
TW098111960A
Other languages
Chinese (zh)
Other versions
TWI390936B (en
Inventor
Chih-Yuan Lin
Pei-Kai Liao
Original Assignee
Mediatek Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mediatek Inc filed Critical Mediatek Inc
Publication of TW201010365A publication Critical patent/TW201010365A/en
Application granted granted Critical
Publication of TWI390936B publication Critical patent/TWI390936B/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

In OFDMA wireless communications systems, pilot pattern design is optimized based on predefined resource block size. The number of pilots and the spacing between pilots within a resource block is determined based on a set of system requirements. In one novel aspect, in a high-rank MIMO system, pilots are allocated within a resource block to avoid channel extrapolation in frequency domain only. Because high-rank MIMO only supports low-mobility environment, time-domain extrapolation is no longer a dominant factor. For uplink transmission, one or more frequency tones at one or more edges of the resource block are reserved to be pilot-free to reduce multiuser synchronization error effect. When continuous resource blocks are jointly used for channel estimation, the upper and lower edges of each resource block are left with blanks such that edge pilots of adjacent resource blocks are not too close to each other to improve channel estimation.

Description

201010365 六、發明說明: ’ 【發明所屬之技術領域】 本發明係有關於一種無線網路通訊,且特別有關於一 種正交分頻多重擷取(Orthogonal Frequency Division Multiple Access,OFDMA )傳送系統中的導頻(pilot)符號 型樣設計。 【先前技術】 OFDMA係為一種多用戶形式之正交分頻多工 _ (Orthogonal Frequency Division Multiplexing,OFDM)數 位調變技術。OFDM係為分頻多工(Frequency Division Multiplexing,FDM )之特例,其利用多個次載波 (sub-cairier)載送資訊串流,且所述多個次載波之間彼此 正交。所述正交性允許同時在多個次載波上進行傳送而不 會產生彼此間的干擾。於OFDMA中,多重擷取係藉由為 早獨用戶#曰疋次載波之子集來達成’從而允許幾個用戶同 時進行低資料速率(data rate)之傳送。 ❷ 然而,於絕大多數無線系統中,多路徑(multipath) 係為常見之不良傳播現象,其導致無線電信號藉由兩條或 多條路徑到達接收天線。多路徑效應包含建設性干涉 (constructive interference )與破壞性干涉( interference)、放大或減弱接收天線處之信號功率。多路 徑亦可導致信號之相移。由多路徑導致的信號幅值及相位 的變化亦被稱為通道響與。若接收器能夠估測通道響應, 由多路徑效應導致之信號退化可得到補償。因此,為促進 0758-A34157TWF_MTKJ.〇9-040 4 。 201010365 通道響應之估測,0FDMA系統週期地於傳送信號中插入 導頻符號,其中所述導頻符號對於接收器而言係已知的。 於頻域(frequency domain)及聘域(timed〇main)中 插入傳送信號之導頻符號的位置及數量被稱為導頻型樣 (pilotpattern)。先前技術中存在可於〇FDM系統中提供 導頻型樣设計之不同技術。舉例而言’編號為2〇〇6/〇12〇272 之美國專利申請指述了一種傳送裝置,用以於〇FDM系統 ❹ 中傳送資料符號及導頻符號。如第i圖(先前技術)所示, 兩種導頻符號彼此正交,且於頻域及時域中可交替傳送。 編號為2006/0285484之美國專利申請提出了 一種鑽 石型(diamond-shaped)導頻型樣’用以獲取高用戶設備速 度之準確通道估測’其亦提出利用具有最小延遲的後續訊 框之實質導頻能量之性能。所述導頻型樣如第2圖(先前 技術)所示。 編號為2006/0209732之美國專利申請描述了 一種導 ❹ 頻型樣設計方法。如第3圖(先前技術)所示,建議的〇fdM 無線系統可基於頻率選擇性及都卜勒頻移(D〇ppier shift)資 訊改變導頻型樣。 編號為2007/0195688之美國專利申請描述了多天線 (multi-antenna)及多層(multi-layer)傳送無線通訊系統 之一種空間導頻架構。於一範例中’單層(single-layer)導頻 型樣被擴充至多入多出(Multi-Input Multi-Output, ΜΙΜΟ ) 接收器之多層導頻型樣。 •於,OFDMA無線系統中,資源區塊係藉由一定數量之 連續OFD1V[符號而被定義為包含一定數量之連續次載波之 0758-Α34157TWF_MTKI-09-040 5 201010365 二維(two-dimensional, ZD)區塊’所述次載波亦被稱作頻 率音調(frequrency tone),而OFDM符號亦被稱作時槽(time slot)。IEEE 802.16m標準藉由5個OFDM符號將5符號 (5-symbol)資源區塊定義為18個次載波,藉由6個OFDM 符號將6符號資源區塊定義為18個次載波,以及藉由7個 OFDM符號將7符號資源區塊定義為18個次載波。其係為 可分派至行動台之用戶的最小早元。小尺寸之資源區塊具 有較佳實時特性’其可用於網路電話(v〇ice over internet Protocol,VoIP)或其他小封包應用。 然而,先前技術中建議的導頻型樣設計並未考慮資源 區塊之尺寸。因此,於OFDMA系統中,需要基於預定資 源區塊尺寸來確定最佳導頻型樣設計。 【發明内容】 於正交分頻多重擷取無線通訊系統中,導頻符號可用 於促進通道響應估測。於頻域及時域中插入傳送信號之導 頻符號的位置及數量被稱為導頻型樣。於所揭露之實施例 中,導頻型樣設計係基於預定資源區塊尺寸而被最佳化。 資源區塊中導頻之數量及導頻間距係基於—組系統需求而 利用二維採樣理論來衫,所述系統需求可例如都卜勒展 延、延遲擴散、峰值資料迷率及吞吐量。 於第-實施例中,導頻於頻域及時域中被分配於資源 塊中以避免通道外插。首先,四個導頻被分配於鄰近 ㈣區塊U㈣處。接著:沿著時域及頻域,將剩餘導 頻平均地分佈於所述資料塊巾。最後,驗賴於每一資 ° 0758-A34157TWFMTKI-09-040 201010365 域或時域中小於;使=源區塊尺寸於類201010365 VI. Description of the Invention: 'Technical Fields of the Invention>> The present invention relates to a wireless network communication, and more particularly to an Orthogonal Frequency Division Multiple Access (OFDMA) transmission system. Pilot symbol design. [Prior Art] OFDMA is a multi-user form of Orthogonal Frequency Division Multiplexing (OFDM) digital modulation technology. OFDM is a special case of Frequency Division Multiplexing (FDM), which uses a plurality of sub-caries to carry information streams, and the plurality of sub-carriers are orthogonal to each other. The orthogonality allows for simultaneous transmission on multiple subcarriers without causing interference with each other. In OFDMA, multiple acquisitions are achieved by pre-existing a subset of users. This allows several users to simultaneously transmit low data rates. ❷ However, in most wireless systems, multipath is a common undesirable propagation phenomenon that causes radio signals to reach the receiving antenna by two or more paths. Multipath effects include constructive interference and destructive interference, amplifying or attenuating the signal power at the receiving antenna. Multiple paths can also cause phase shifts in the signal. The change in signal amplitude and phase caused by multipath is also known as channel ringing. If the receiver is able to estimate the channel response, the signal degradation caused by the multipath effect can be compensated. Therefore, to promote 0758-A34157TWF_MTKJ.〇9-040 4 . 201010365 Estimation of channel response, the OFDM system periodically inserts pilot symbols into the transmitted signal, wherein the pilot symbols are known to the receiver. The position and number of pilot symbols inserted into the frequency domain and the time domain 〇main are called pilot patterns. There are different techniques in the prior art that provide pilot pattern design in a 〇FDM system. For example, U.S. Patent Application Serial No. 2, the disclosure of which is incorporated herein by reference. As shown in the figure i (prior art), the two pilot symbols are orthogonal to each other and are alternately transmitted in the frequency domain and the time domain. US Patent Application No. 2006/0285484 proposes a diamond-shaped pilot pattern 'accurate channel estimate for obtaining high user equipment speeds' which also proposes to utilize the essence of subsequent frames with minimal delay The performance of pilot energy. The pilot pattern is shown in Figure 2 (prior art). U.S. Patent Application Serial No. 2006/0209732 describes a method of designing a frequency profile. As shown in Figure 3 (prior art), the proposed 〇fdM wireless system can change the pilot pattern based on frequency selectivity and D〇ppier shift information. U.S. Patent Application Serial No. 2007/0195688 describes a spatial pilot architecture for a multi-antenna and multi-layer transmission wireless communication system. In one example, the single-layer pilot pattern is extended to the multi-level pilot pattern of the Multi-Input Multi-Output ( ΜΙΜΟ ) receiver. In the OFDMA wireless system, the resource block is defined as a number of consecutive OFD1V [symbols defined as 0758-Α34157TWF_MTKI-09-040 5 201010365 two-dimensional (ZD) containing a certain number of consecutive sub-carriers. The block 'the subcarrier is also referred to as a frequency tone, and the OFDM symbol is also referred to as a time slot. The IEEE 802.16m standard defines a 5-symbol resource block as 18 sub-carriers by 5 OFDM symbols, a 6-symbol resource block as 18 sub-carriers by 6 OFDM symbols, and The 7 OFDM symbols define 7 symbol resource blocks as 18 subcarriers. It is the smallest early element that can be assigned to users of the mobile station. Small-sized resource blocks have better real-time characteristics. They can be used for v〇ice over internet protocol (VoIP) or other small packet applications. However, the pilot pattern design suggested in the prior art does not take into account the size of the resource block. Therefore, in an OFDMA system, it is necessary to determine an optimal pilot pattern design based on a predetermined resource block size. SUMMARY OF THE INVENTION In an orthogonal frequency division multiple acquisition wireless communication system, pilot symbols can be used to facilitate channel response estimation. The position and number of pilot symbols inserted into the transmission signal in the frequency domain and time domain are referred to as pilot patterns. In the disclosed embodiment, the pilot pattern design is optimized based on a predetermined resource block size. The number of pilots in the resource block and the pilot spacing are based on a set of system requirements using a two-dimensional sampling theory, such as Doppler spread, delay spread, peak data rate, and throughput. In a first embodiment, pilots are allocated in resource blocks in the frequency domain and in time domain to avoid channel extrapolation. First, four pilots are allocated adjacent to the (four) block U (four). Then: along the time domain and the frequency domain, the remaining pilots are evenly distributed over the data block towel. Finally, the verification depends on each capital ° 0758-A34157TWFMTKI-09-040 201010365 domain or time domain is less than; make = source block size in the class

距最小化,並使得導頻與導頻之間距儘可ί 所述㈣2中’m個導頻被分配於ixj之資源區塊。 的子區塊,其中,n i係為nH最賴料歡衫大於3且 f.’所㈣職塊沿著賴齡^時槽之 分係為n的倍數’所述資源區塊沿著時域被 啖算於3 ϋ:右資㈣塊之尺寸於頻域及時域皆大於 或等於3,導頻被分配㈣免通道外插。 :M0系統係至少具有四個或更多串流之系 統。由於㈣MlM〇僅支援低移動性環境,因此,時域之 夕插不,係為導輕樣設計之主要影響因素。於第三實施 例中’间階MIMG线巾之導㈣分配於#雜塊中,為 避免頻^之外插° —般而言’兩個導頻首先於頻域被定位 於,近資源區塊之兩個邊緣處,以避免頻域之通道外插。 接著,剩料紐定m著時域平均分佈於已分配的兩 個導頻之間。此外,驗證對於每—串流而言,大體相等數. 量之導頻沿著時域平均分佈,以最小化功率波動。對於上 0758-A34157TWF_MTKI-〇9-〇4〇 201010365 鏈傳送而言,資源區塊之一個或多個邊緣之一個或多個頻 率音調被保留為無導頻狀態,以減小多用戶同步誤差效 應。當相鄰資源區塊被聯合地用於通道估測時,每一資源 區塊之上邊緣及下邊緣被空出,從而使相鄰資源區塊之邊 緣處的導頻不會過於彼此接近’以益於通道估測。 其他實施例及優點將於下面詳細描述。以上所述彙總 並非本發明之限制。本發明之範圍當以後續之申請專利範 圍來限定。 【實施方式】 以下參考之詳細描述係依據本發明之實施例而作出, 所述之範例係結合附圖一並描述。 第4A圖係上鏈傳送中OFDMA無線通訊系統11之方 塊圖。OFDMA系統11包含多個行動台MSI, MS2…MSN 以及基地台BS1。行動台MSI包含第一傳送模組12以及 第二傳送模組14。傳送模組12包含導頻分配模組16、資 料分配模組18以及耦接至天線22的傳送器20。類似地, 傳送模組14包含導頻分配模組24、資料分配模組26以及 耦接至天線30的傳送器28。基地台BS1包含第一接收模 組32以及第二接收模組34。接收模組32包含導頻去分配 (de-allocation)模組36、導頻音調(pii〇t_tone)通道估測 模組38、資料去分配模組40、資料音調(datat〇ne)通道 估測模組42以及耦接至天線46之接收器44。類似地,接 收模組34包含導頻去分配模組48、導頻責調通道估測模 姐50、資料去分配模組52、資料音調通道估測模組54以 0758-A34157TWF__MTKI-09-040 8 201010365 及麵接至天線58之接收器54。 於上鏈傳送中,OFDMA系統u中的行動台傳送被基 地台BS1接收之資料串流。每一資料串流皆利用一個二維 資源區塊來傳送,所述資源區塊包含一定數量之連續次裁 波(亦被稱作頻率音調)以及一定數量之連續OFDM符號 (亦被稱作時槽)。如第4A圖所示,於mimO系統中, 行動台MSI透過天線22傳送串流#丨,並透過天線30傳送 串流#2,所述兩串流之傳送皆利用包含5個連續頻率音調 及3個連續時槽之相同資源區塊60。每一串流皆包含分別 藉由導頻分配模組16或24,以及資料分配模組18或26 分配之導頻音調及資料音調。當基地台BS1從行動台MS1 接收到串流#1及#2時,其接收模紐執行導頻通道估測,並 隨後執行資料通道估測。於第4A圖所示之範例中,導頻 去分配模組36或48去分配導頻音調,且導頻音調通道估 測模組38或50基於接收的導頻音調執行導頻音調通道估 〇 測。此外,資料去分配模組4〇或52去分配資料音調,且 資料音調通道估測模組42或54執行接收的資料音調之内 插(interpolation)或外插(extrap〇iati〇n)。 第4B圖係下鏈傳送中〇FDMa無線通訊系統u之方 塊圖,其中基地台BS1傳送被行動台MS1,MS2…MSN接 收之資料串流。如第4B圖所示,基地台包含用以分 配及傳送導頻音調與資料音調之傳送模組,而行動台腿 則包含接收模組,所述接收模組用以接收、去分配導頻音 調與資料音調,並對其執行通道枯測。類似於上鍵傳送, 每一串流皆利用包含-連續數量之頻率音調及時槽之二維 « * 〇758-A34157TWF_MTKI-09-040 9 201010365 資源區塊來傳送。於第4B圖所示範例中,串流#1及串流 #2包含資料音調及導頻音調,所述串流係藉由包含6個連 續頻率音調及5個連續時槽之資源區塊70來傳送。 弟5圖係依本發明第一實施例之基於資源區塊尺寸之 導頻型樣設計方法之流程圖。於OFDMA無線通訊系統 中’導頻音調(亦被稱作導頻符號)係被週期地插入傳送 信號中以促進通道響應估測。於頻域及時域中插入傳送信 號之導頻音調的位置及數量被稱為導頻型樣。如第5圖所 示’導頻型樣設計開始於設定一組通訊系統需求,例如都 _ 卜勒展延(Doppler spread)、延遲擴散(delay spread)、 峰值速率(peak rate )、吞吐量(throughput)等等(步驟 101)。下述之表1係列示兩種設計範例中之系統需求。於 第一設計範例之0FDMA系統1A中’資源區塊係定義為 18x6 (18個頻率音調及6個時槽),於第二設計範例之 0FDMA系統1B中’資源區塊係定義為6x6 (6個頻率音 調及6個時槽)(步驟1〇2)。The distance is minimized, and the distance between the pilot and the pilot is made as follows: (4) The 'm pilots in 2 are allocated to the resource block of ixj. Sub-block, where ni is nH, the most important thing is greater than 3 and f. 'four (4) job block along the Lai age ^ time slot is a multiple of n 'the resource block along the time domain It is calculated in 3 ϋ: the size of the right-hand (four) block is greater than or equal to 3 in the frequency domain and the time domain, and the pilot is allocated (4) channel-free extrapolation. The M0 system is a system with at least four or more streams. Since (4) MlM〇 only supports low-mobility environments, the time domain is not inserted, which is the main influencing factor for the light-weight design. In the third embodiment, the guide (4) of the inter-level MIMG wire towel is allocated in the #-block, in order to avoid the frequency interpolation, the two pilots are first positioned in the frequency domain, near the resource region. At the two edges of the block, to avoid channel extrapolation in the frequency domain. Then, the residual material is uniformly distributed in the time domain between the two pilots that have been allocated. In addition, verification is that for each-stream, substantially equal numbers of pilots are evenly distributed along the time domain to minimize power fluctuations. For the uplink transmission of 0758-A34157TWF_MTKI-〇9-〇4〇201010365, one or more frequency tones of one or more edges of the resource block are reserved for the pilotless state to reduce the multi-user synchronization error effect. . When adjacent resource blocks are jointly used for channel estimation, the upper and lower edges of each resource block are vacated, so that the pilots at the edges of adjacent resource blocks are not too close to each other' In order to benefit from channel estimation. Other embodiments and advantages will be described in detail below. The above summary is not a limitation of the present invention. The scope of the invention is defined by the scope of the appended claims. The following detailed description is made in accordance with the embodiments of the present invention, which are described in conjunction with the accompanying drawings. Fig. 4A is a block diagram of the OFDMA wireless communication system 11 in the uplink transmission. The OFDMA system 11 includes a plurality of mobile stations MSI, MS2...MSN and a base station BS1. The mobile station MSI includes a first transmission module 12 and a second transmission module 14. The transmission module 12 includes a pilot distribution module 16, a data distribution module 18, and a transmitter 20 coupled to the antenna 22. Similarly, the transmission module 14 includes a pilot allocation module 24, a data distribution module 26, and a transmitter 28 coupled to the antenna 30. The base station BS1 includes a first receiving module 32 and a second receiving module 34. The receiving module 32 includes a pilot de-allocation module 36, a pilot tone (pii〇t_tone) channel estimation module 38, a data de-allocation module 40, and a data tone (datat〇ne) channel estimation. The module 42 is coupled to the receiver 44 of the antenna 46. Similarly, the receiving module 34 includes a pilot de-allocation module 48, a pilot-accumulated channel estimation module 50, a data de-allocation module 52, and a data tone channel estimation module 54 to 0758-A34157TWF__MTKI-09-040 8 201010365 is connected to the receiver 54 of the antenna 58. In the uplink transmission, the mobile station in the OFDMA system u transmits the data stream received by the base station BS1. Each data stream is transmitted using a two-dimensional resource block that contains a number of consecutive secondary cuts (also referred to as frequency tones) and a number of consecutive OFDM symbols (also referred to as time) groove). As shown in FIG. 4A, in the mimO system, the mobile station MSI transmits the stream #丨 through the antenna 22, and transmits the stream #2 through the antenna 30, and the two streams are transmitted using five consecutive frequency tones and The same resource block 60 of 3 consecutive time slots. Each stream includes pilot tones and data tones respectively assigned by pilot allocation module 16 or 24 and data distribution module 18 or 26. When the base station BS1 receives the streams #1 and #2 from the mobile station MS1, its receiving module performs the pilot channel estimation, and then performs the data channel estimation. In the example shown in FIG. 4A, the pilot de-allocation module 36 or 48 allocates pilot tones, and the pilot tone channel estimation module 38 or 50 performs pilot tone channel estimation based on the received pilot tones. Measurement. In addition, the data de-allocation module 4 or 52 is used to distribute the data tones, and the data tone channel estimation module 42 or 54 performs interpolation or extrapolation of the received data tones. Fig. 4B is a block diagram of the 〇FDMa wireless communication system u in the downlink transmission, in which the base station BS1 transmits the data stream received by the mobile stations MS1, MS2, ... MSN. As shown in FIG. 4B, the base station includes a transmission module for allocating and transmitting pilot tones and data tones, and the mobile station leg includes a receiving module for receiving and allocating pilot tones. With the data tone, and perform channel test on it. Similar to the up key transfer, each stream is transmitted using a two-dimensional «* 〇758-A34157TWF_MTKI-09-040 9 201010365 resource block containing a continuous number of frequency tones and time slots. In the example shown in FIG. 4B, stream #1 and stream #2 include data tones and pilot tones, which are represented by resource blocks 70 comprising six consecutive frequency tones and five consecutive time slots. To transfer. Figure 5 is a flow chart of a pilot pattern design method based on resource block size according to the first embodiment of the present invention. In the OFDMA wireless communication system, 'pilot tones (also known as pilot symbols) are periodically inserted into the transmitted signal to facilitate channel response estimation. The position and number of pilot tones in which the transmitted signal is inserted in the frequency domain and time domain is referred to as the pilot pattern. As shown in Figure 5, the 'pilot pattern design begins with setting a set of communication system requirements, such as Doppler spread, delay spread, peak rate, throughput ( Throughput, etc. (step 101). The following Table 1 series shows the system requirements in the two design examples. In the 0FDMA system 1A of the first design example, the 'resource block system is defined as 18x6 (18 frequency tones and 6 time slots), and in the second design example of the 0FDMA system 1B, the 'resource block system is defined as 6x6 (6). Frequency tones and 6 time slots) (Step 1〇2).

0758-A34157TWF MTK1-09-040 - -10 201010365 系統參數 系統1A 系統IB 系統類型 ΜΙΜΟ MEMO 資源區塊中串流數量 2 2 中心頻率 2.5GHz 2.5GHz 頻寬 10MHz N/A 锋值速率 8bps/Hz 5.6bps/Hz 最大通道延遲擴散(Tmax) 12μΞ 12με 最大速度(都卜勒頻移fD,max) 350km/h 350km/h (810Hz) (810Hz) 次載波間距(Δί) 10.94kHz 10.94kHz OFDM符號長度(Tsymbd) 102.82 μβ 102.82 ps 資源區塊尺寸 18x6 6x6 每串流之導頻數 6 4 表1系統需求 於步驟103中,利用延遲擴散及都卜勒展延,基於二 維採樣理論叶算導頻間距約束條件(pilot Spacin.g constraint)。傳送信號所發生之最大時間延遲被稱作信號 於特定環境下之延遲擴散。頻域中導頻之最佳化間距可藉 由延遲擴散來決定。導致信號衰落通道接點(signal fading channel tap)之不同信號組分之都卜勒頻移差異被稱作都卜 勒展延。時域中導頻之最佳化間距可藉由都卜勒展延來決 疋。總而g之,利用二維採樣理論,時域中導頻間距(Μ ) 及頻域中導頻間距(TV/)必須符合下述方程式: 〇758-A34157TWF_MTKI-09-040 201010365 Νί《^maxA/ 因此,為利用導頻音調估測特定環境中的通道響應, W可係為時域中允許的最大導頻間距,而々可係為頻域中 允許的最大導姻距。於範⑽及线1Β中鳴等 於 6 而 ~則等於 8 (% = = 6,斤= 1/(12χ1〇·6χι〇 94χΐ〇3) = 7.6)。 ’ 對於預定資祕塊而言,插人f源區塊之導頻數量可 基於步驟1G3中計算之導頻間距約束條件、峰值速率以及 吞吐量需求來決定(步驟1〇4)。於第-範例系、統1A中, 為滿足峰值速率之需求,每—串流允許之最大數量導頻為 18個。因為頻域中所需最大導頻間距為8(外=8),而時 域中所,最大導頻間距為6(% = 6),對於系統1A中18沾 之資源區塊而言,至少f要沿著頻域的4個導頻以及沿著 時域的2個導頻。此外,為達成最大吞吐量,分配於18x6 之資源區塊的導頻總數被選定為每一串流6個。類似地, 於第二範例系統1B中’每—串流所允許之導頻的最大數量 為9個,以達成峰值速率需求。因此,對於系統1B中6χ6 之資源區塊而言,至少需要沿著頻域的2個導頻以及沿著 時域的2個導頻。此外,為達成最大吞吐量,分配於6x6 之資源區塊的導頻總數被選定為每一串流4個。 若插入預定資源區塊之導頻的數量被决定,所述導頻 隨後將被定位於資源區塊之特定位置以避免通道外插(步 驟Η)5)。當導頻㈣域及輯中被用於通道響應估測時’ 可執行利用先前導頻符號之外插。可選择地,亦可執行利 〇758.A34157TWF_MTKI.〇9-〇4〇 12 201010365 用最近之導_紅_,_ 頻符號之祕_。如本領域浦麵減及後一導 插,外插可導料道估測 ,相較於内 忽略之速度移動的時候(例如,於汽::當行動台以不可 持相似導頻開鎖(overhead)及通道^)。因此,當保 需要儘可騎免外㈣發生。 應相複雜度時, ❹0758-A34157TWF MTK1-09-040 - -10 201010365 System Parameter System 1A System IB System Type ΜΙΜΟ Number of Streams in MEMO Resource Block 2 2 Center Frequency 2.5GHz 2.5GHz Bandwidth 10MHz N/A Front Rate 8bps/Hz 5.6 Bps/Hz Maximum channel delay spread (Tmax) 12μΞ 12με Maximum speed (Doppler shift fD, max) 350km/h 350km/h (810Hz) (810Hz) Subcarrier spacing (Δί) 10.94kHz 10.94kHz OFDM symbol length ( Tsymbd) 102.82 μβ 102.82 ps Resource block size 18x6 6x6 Pilot number per stream 6 4 Table 1 System requirements in step 103, using delay spread and Doppler spread, based on two-dimensional sampling theory, leaflet pilot spacing constraints Condition (pilot Spacin.g constraint). The maximum time delay at which a signal is transmitted is referred to as the delay spread of the signal in a particular environment. The optimized spacing of the pilots in the frequency domain can be determined by delay spread. The difference in the Bucher shift of the different signal components that cause the signal fading channel tap is called the Doppler spread. The optimal spacing of pilots in the time domain can be determined by Doppler extension. In general, using the two-dimensional sampling theory, the pilot spacing (Μ) in the time domain and the pilot spacing (TV/) in the frequency domain must conform to the following equation: 〇758-A34157TWF_MTKI-09-040 201010365 Νί“^maxA / Therefore, to estimate the channel response in a particular environment using pilot tones, W can be the maximum allowed pilot spacing in the time domain, and 々 can be the maximum allowed margin in the frequency domain. Yu Fan (10) and Line 1 Β are equal to 6 and then equal to 8 (% == 6, kg = 1/(12χ1〇·6χι〇 94χΐ〇3) = 7.6). For a predetermined secret block, the number of pilots inserted into the source block can be determined based on the pilot spacing constraints, peak rates, and throughput requirements calculated in step 1G3 (steps 1〇4). In the first-example system, system 1A, to meet the peak rate requirement, the maximum number of pilots allowed per-stream is 18. Since the maximum pilot spacing required in the frequency domain is 8 (outer = 8), and the maximum pilot spacing is 6 (% = 6) in the time domain, for the resource blocks in system 1A, at least f is to follow 4 pilots in the frequency domain and 2 pilots along the time domain. In addition, to achieve maximum throughput, the total number of pilots allocated to the 18x6 resource block is selected to be 6 per stream. Similarly, the maximum number of pilots allowed per 'streaming' in the second example system 1B is nine to achieve peak rate requirements. Therefore, for a resource block of 6χ6 in system 1B, at least 2 pilots along the frequency domain and 2 pilots along the time domain are required. In addition, to achieve maximum throughput, the total number of pilots allocated to the 6x6 resource block is selected to be 4 per stream. If the number of pilots inserted into the predetermined resource block is determined, the pilot will then be located at a particular location in the resource block to avoid channel extrapolation (step Η) 5). When the pilot (four) field and the series are used for channel response estimation, the extrapolation of the previous pilot symbols can be performed. Alternatively, it can also be implemented 利 758.A34157TWF_MTKI.〇9-〇4〇 12 201010365 with the latest guide _ red _, _ frequency symbol secret _. If the surface of the field is reduced by the latter, the extrapolation can be estimated by the guide channel, compared to the speed of the neglected movement (for example, in the steam: when the mobile station unlocks with a similar pilot (overhead) ) and channel ^). Therefore, when it is necessary to protect the ride (4). When it comes to complexity, ❹

配於之時Ϊ及頻域中將導頻分 二緣時,導頻符號可最大限度框定資料符 ϊ 料㈣都具有執行通道内插所需之 則一付號及後一符號。 第6A圖係基於系統认中18χ6之資源區塊8〇以實現 最佳化通道響應估測之導頻型樣的範例。於第从圖所示 之範例中’兩㈣料串流串_與串触鋪由資源區塊 80來傳送,資源區塊80具有18個連續頻率音調及6個連 續時槽。如第5圖中步驟104相關之插述,總數為6個之 導頻將被分配’對於18x6之資源區塊中每一資料串流而 & ’需要沿著時域的至少4個導頻’以及沿著頻域的至少 2個導頻。如第6A圖所不’依據第5圖之步驟1〇5,首先 將四個導頻分配於鄰近資源區塊80之四個角處,以避免每 一資料串流之通道外插(步驟#1)。對於每一資料串流而 言,剩餘之兩個導頻隨後沿著時域及頻域被最大限度地平 均分散於已分配的四個導頻之間(步驟#2)。因此,最佳 化通道響應估測可藉由此種新的導頻型樣設計兩達成。 請再次參考第5圖,進一步驗證對於每一資料串流而 0758-A34157TWF—ΜΤΚΐ-〇9»〇40- 13 201010365 言,所分配之導頻是否沿著時域平均分佈(步驟1〇6)。 其原因係為當功率脈衝(power boosting)被應用於傳送導 頻符號時’分配於相同時槽之多個導頻通常會導致顯著的 功率波動(power fluctuation)。因此,如第6A圖所示, 需要驗證對於每一資料串流而言,每一時槽皆具有不超過 一個之被分配的導頻,以最小化功率波動(步驟#3)。 第7圖係多用戶同步錯誤(synchronization error)導 致之導頻符號衝突之示意圖。於寬頻多用戶環境下,基於 OFDMA之系統於達成高頻譜效率(Spectrai efficiency )方 面具有明顯之優勢’尤其下鏈傳送時,若通道於一個OFDM 符號期間無太大改變,所述系統於利用低複雜度之頻域等 化器方面具有優勢。然而對於上鏈而言,〇FDMA系統並 非多用戶上鏈狀況下之適合解決方案,因此準確的上鏈多 用戶頻率同步係為具挑戰性之任務。 如第7圖所示’當頻率同步錯誤於多用戶上鏈狀況下 發生時,一個資源區塊中最後一個頻率音調將會與下一資 源區塊之第一個頻率音調發生衝突。因此,當上鏈同步錯 誤發生時,資源區塊邊緣之導頻將會無法區分。因此,分 配於兩相鄰資源區塊之邊緣的導頻將會因多用戶衝突而無 法恢復。其將會嚴重影響多用戶上鏈傳送之通道估測及預 測。因此,藉由避免同步錯誤導致之導頻衝突來保證可靠 之導頻傳送係為關鍵議題。 請再次參考第5圖,為避免同步錯誤導致之導頻衝 突,於上鏈傳送之導頻符號分配時,於每一資源區塊之一 個或多個邊緣處保留缓衝區域(步驟107)。若頻率同步 0758-A34157TWF_MTKl-〇9-〇4〇 14 … 201010365 錯誤導致一個資源區塊之第一個頻率音調與相鄰資源區塊 之最後一個頻率音調於頻域交疊,所述方案可有效避免導 頻衝突。 第6B圖係於資源區塊80之一個或多個邊緣處保留之 緩衝區域的範例的示意圖。於第6B圖所示之範例中,資源 區塊80中鄰近導頻音調之緩衝區域被保留為無導頻狀態 (pilot-free),即導頻不會分配於所述區域。當頻率同步 錯誤發生時,前兩個頻率音調可能會與相鄰資源區塊之後 兩個頻率音調於頻域相互干擾。然而,於第6B圖所示之導 頻佈局中,前兩個頻率音調中之導頻(P1與P2)不會與鄰 近資源區塊之後兩個頻率音調中之導頻(P1與P2)發生衝 突。 第6C圖係另一範例,資源區塊80中第一及最後一頻 率音調的整列皆被保留為不分配導頻之無導頻的緩衝區 域。若頻率同步錯誤僅影響資源區塊之第一及最後一頻率 音調,則於此方法中,導頻傳送不會受到頻率同步錯誤之 影響。因此,其係為處置頻率同步錯誤之有效的型樣。另 一方面,由於移除了邊緣頻率音調中所有導頻,其框定及 封閉更少之資料符號。因此,所述導頻型樣設計比第6B 圖所示導頻型樣設計需要更多之通道外插。 第8A圖係基於系統1B中6x6之資源區塊90以實現 最佳化通道響應估測之導頻型樣的範例。於第8A圖所示 之範例中’兩個資料串流串流# 1與串流#2係藉由資源區塊 90來傳送,資源區塊90具有6個連續頻率音調及6個連 續時槽。如第5圖中步驟104相關之描述,總數為4個之 0758-A34157TWF MTKI-09-040 15 201010365 導頻將被分配,對於6x6之資源區塊中每一資料串流而 言,需要沿著時域的至少2個導頻,以及沿著頻域的至少 2個導頻。如第8A圖所示,依據第5圖之步驟105,首先 將每一資料串流之四個導頻分配於鄰近資源區塊90之四 個角處,以避免每一資料串流之通道外插(步驟#1)。最 佳化通道響應估測可藉由此種新的導頻型樣設計而達成。 接著,依第5圖之步驟106,進一步驗證對於每一資料串 流而言,每一時槽皆具有不超過一個之被分配的導頻,以 最小化功率波動(步驟#3)。 對於上鏈傳送,導頻型樣需要進一步調整,以防止多 用戶同步錯誤導致的導頻衝突。第8B、8C、8D及8E圖係 為四種不同的導頻型樣調整方案。所述四種導頻型樣設計 皆遵循相同之原理,但於不同環境下,每一導頻型樣設計 亦具有各自的優點。於第8B圖中,為保留無導頻之緩衝區 域,位於四個角處之導頻被重新排列,以避免由頻率同步 錯誤導致的導頻衝突。更具體地,對於資源區塊90而言, 於頻率方向上,最頂部的列係為最小頻率音調;從頂部開 始的第二列係為第二小頻率音調;從底部開始之第二列係 為第二大頻率音調;而最底部的列具有最大頻率音調。於 時間方向上,最左側的行係為最小時槽;從左侧開始之第 二行係為第二小時槽;從右侧開始之第二行係為第二大時 槽;而最右側的行係為最大時槽。因此,對於串流# 1而言, 第一個P1位於最小頻率音調及最小時槽處;第二個P1位 於最小頻率音調及第二大時槽處;第三個P1位於第二大頻 率音調及第二小時槽處;第四個P1位於第二大頻率音調及 0758-A34157TWF MTKI-09-040 16 201010365 最大時槽處。對於串流#2而言,每一導頻P2之位置分別 低於每一導頻P1 一列。換言之,每一個p2皆位於對應之 P1的下一較大頻率音調及相同時槽處。中間的兩個時槽被 保留為無導頻狀態。 相較於第8B圖,藉由將每一串流之每一導頻分配於 不同的頻率音調,第8C圖中之導頻型樣可覆蓋更多頻率音 調。於第8D圖中,整個最頂部及最底部頻率音調被保留 為無導頻之緩衝區域。所述型樣係為防止頻率同步錯誤之 參 穩定型樣,然而卻並非避免通道外插之最佳型樣。相較於 第8D圖,第8E圖中之導頻型樣僅將最頂部之頻率音調保 留為無導頻之緩衝區域以防止導頻衝突。因此.,其可以很 好地權衡防止頻率同步錯誤及避免通道外插。 以上所述之新的導頻分配方案可以容易地擴充至具 有不同尺寸之資源區塊。第9A及9B圖係上鏈傳送中6χ5 之資源區塊92以及6x7之資源區塊94中導频型樣之範例 _ 的示意圖。於第9Α圖所示之範例中,相較於第圓,導 頻依然位於鄰近資源區塊92之四個角處,但中間的一個無 導頻時槽被移除。於第9Β所示之範例中,導頻之位置與第 8Β圖中所示導頻之位置相同,且只有最右側之時槽載^資 料。由於當6符號及7符號之資源區塊並存於同一系統中 時,6x6之資源區塊的通道估測係數可用於6χ7之資源區 塊的前6個時槽,因此,所述排列可最小化通道估測係數 之變動。 以上所述範例中所示之資料事流的索引係符合邏輯 觀點(logicalsense)。其<以相互交換而不會影響導頻型 0758-A34157TWF MTKI-09-040 17 201010365 樣。此外’ ΜΙΜΟ導頻型樣亦可藉由移除串流#1或串流#2 之導頻而直接用於早入單出(Singie_inpUt Single-Output, SISO )系統。移除之導頻的位置可用於分配資料。 小尺寸資源區塊之導頻設計 對於開銷減少且密度較低之導頻設計而言,通道外插 係不可避免的,且其通常發生於鄰近資源區塊邊緣之符號 處,其原因係由於所述符號可能不具有用於通道内插之前 一導頻及後一導頻。當資源區塊之尺寸較小時,所述狀況 尤其正確。小尺寸資源區塊通常用於上鏈回饋通道,有時 亦用於上鏈資料傳送。舉例而言,上鏈資源區塊可僅由兩 個連續次載波或兩個連績0FDM符號構成。因此,其可導 致開銷增加,且不再需要將四個導頻定位於鄰近小資源區 塊之四個角處。 第10圖係依本發明第二實施例之基於小資源區塊尺 寸之導頻型樣設計方法之流程圖。如第1〇圖所示,導頻型 樣設計開始之步驟201至步驟204與第5圖所示之步驟1〇1 至104相同。三個範例之系統需求列示於下述之表2。於 第一設計範例OFDMA系統2A中,定義了 SISO系統中2χ6 或6x2之資源區塊。於第二設計範例〇fD]V[A系統2Β中, 定義了兩串流ΜΙΜΟ系統中4x6或6x4之資源區塊。於第 三設計範例OFDMA系統2C中,定義了 sisq系統中* 6 或6x4之資源區塊。 基於二維採樣理論’對於三個系統而言,頻域中所需 最大導頻間距皆為8 (外=8),而時域中所需最大導頻門 0758-Α34157TWT_MTKI-09-040 18 201010365 距皆為6( Μ = 6)。因此,基於三個系統之資源區塊尺寸, 其皆至少需要沿著頰域的2個導頻以及沿著時域的2個導 頻。若再考慮系統峰值速率及吞吐量.,對於系統2Α及2Β 而言’每一資源區塊中每一串流所分配之導頻數量為2, 而對於系統2C而言則為4。 系統參數 系統2 A 系統2B 系統2C 系統類型 SISO ΜΙΜΟ SISO 串流數量 1 2 1 中心頻率 2.5GHz 2.5GHz 2.5GHz 頻寬 10MHz 10MHz 10MHz 最大通道延遲擴散(Tnlax) 12ps 12μβ 12 με 最大速度(都卜勒頻移 350km/h 350km/h 350km/h fc^max) (810Hz) (810Hz) (810Hz) 次載波間距(Μ) 10.94kHz 10.94kHz 10.94kHz OFDM 符號長度(TsvmbC)1) 102.82 μβ 102.82 με 102.82 μβ 資源區塊尺寸 2x6 及 6x2 4x6 及 6x4 4x6 及 6x4 每串流之導頻數 2 2 4 表2系統需求 若欲分配之特定數量之導頻被決定,則隨後依據第10 圖中步驟205所示之規則將所述導頻定位於每一資源區塊 之特定位置。若資源區塊尺寸於頻率方向或時間方向上小 於3,導頻被定位以使得被分配之導頻與資料間之平均間 ^ " 0758-A34157TWF ΜΤΚΙ-09-040 19 201010365 距最小化,並使得導頻與導頻之間距儘可能大。另一方面, 若資源區塊尺寸於頻率方向及時間方向上皆大於或等於 3,則導頻被定位以避免通道外插。 第11A及11B圖係系統2A中基於2x6及6x2之資源 區塊之導頻型樣設計的範例的示意圖。於第11A圖中,2x6 之資源區塊210沿著時域被分割成兩個尺寸相等之子區 塊。每一導頻皆位於每一子區塊之中心時槽,以最小化導 頻至資料平均間距。此外,每一導頻皆位於不同之頻率音 調,以使得導頻至導頻間距儘可能大。類似地,於第11B 圖所示之範例中,6x2之資源區塊220沿著頻域被分割成 兩個尺寸相等之子區塊。每一導頻皆位於每一子區塊之中 心頻率音調,以使導頻至資料平均間距最小化。此外,每 一導頻皆位於不同之時槽,以使得導頻至導頻間距儘可能 大。因此,通道估測之性能可被提升。 通常’對於頻率方向或時間方向上小於3之小尺寸資 源區塊而言’若欲分配m個導頻於i xj之資源區塊,則所 述資源區塊可被分割成η個相等的子區塊,其中m係為η 的倍數。若i小於3且j等於或大於3,則j必須為η的倍 數’ i X j之資源區塊沿著時域被分割成η個子區塊。m/n 個導頻被分配於每一分割的子區塊以使導頻至資料平均間 距最小化。另一方面,若j小於3且i等於或大於3,則i 必須為η的倍數,i X j之資源區塊沿著頻域被分割成η個 子區塊。m/n個導頻被分配於每一分割的子區塊以使導頻 至資料平均間距最小化。 第12A及12B圖係系統2B中基於4x6之資源區塊230 0758-A34157TWF_>iTKI-()5U〇40 "20- 201010365 及6x4之資源區塊240之導頻型樣設計的範例的示音 由於資源區塊230及240之尺寸於頻率及時間方向上皆滿 足等於或大於3之條件,因此,導頻之分配可避免通道外 插。於第UA圖所示之範例中’串流#ι之两個導類成對 式位於資源區塊230之两個角,而串流#2之两個導頻成、 角式位於資源區塊240之另外两個角。類似地,於第When the pilot is divided into two frequencies in the frequency domain and the frequency domain, the pilot symbol can maximize the frame data. (4) Both have the one and the last symbols required to perform channel interpolation. Figure 6A is an example of a pilot pattern based on the resource block 8χ6 of the system to achieve an optimized channel response estimate. In the example shown in the figure, the 'two (four) stream stream string_ and the string palpation are transmitted by the resource block 80, which has 18 consecutive frequency tones and 6 consecutive time slots. As explained in step 104 of Figure 5, a total of six pilots will be allocated 'for each data stream in the 18x6 resource block & 'requires at least 4 pilots along the time domain 'and at least 2 pilots along the frequency domain. As shown in FIG. 6A, according to step 1〇5 of FIG. 5, four pilots are first allocated to the four corners of the adjacent resource block 80 to avoid channel extrapolation of each data stream (step # 1). For each data stream, the remaining two pilots are then spread out to the maximum of the allocated four pilots along the time and frequency domains (step #2). Therefore, the optimized channel response estimate can be achieved by this new pilot pattern design. Please refer to Figure 5 again to further verify that for each data stream, 0758-A34157TWF-ΜΤΚΐ-〇9»〇40- 13 201010365, whether the assigned pilots are evenly distributed along the time domain (steps 1〇6) . The reason for this is that when power boosting is applied to transmit pilot symbols, multiple pilots allocated to the same time slot typically result in significant power fluctuations. Therefore, as shown in Fig. 6A, it is necessary to verify that for each data stream, each time slot has no more than one allocated pilot to minimize power fluctuations (step #3). Figure 7 is a schematic diagram of pilot symbol collisions caused by multi-user synchronization errors. In a broadband multi-user environment, OFDMA-based systems have significant advantages in achieving high spectral efficiency, especially in downlink transmissions. If the channel does not change much during an OFDM symbol, the system is low in utilization. The complexity of the frequency domain equalizer has advantages. However, for the uplink, the 〇FDMA system is not a suitable solution for multi-user uplink conditions, so accurate uplink multi-user frequency synchronization is a challenging task. As shown in Figure 7, when the frequency synchronization error occurs in a multi-user uplink condition, the last frequency tone in one resource block will collide with the first frequency tone of the next resource block. Therefore, when the uplink synchronization error occurs, the pilots at the edge of the resource block will be indistinguishable. Therefore, pilots assigned to the edges of two adjacent resource blocks will not recover due to multi-user collisions. It will seriously affect the channel estimation and prediction of multi-user uplink transmission. Therefore, ensuring reliable pilot transmission is a key issue by avoiding pilot collisions caused by synchronization errors. Referring again to Figure 5, to avoid pilot conflicts caused by synchronization errors, the buffer regions are reserved at one or more edges of each resource block when the pilot symbols are allocated for uplink transmission (step 107). If the frequency synchronization 0758-A34157TWF_MTKl-〇9-〇4〇14 ... 201010365 error causes the first frequency tone of one resource block and the last frequency tone of the adjacent resource block overlap in the frequency domain, the scheme can be effective Avoid pilot conflicts. Figure 6B is a schematic diagram of an example of a buffer region reserved at one or more edges of resource block 80. In the example shown in Figure 6B, the buffer region of the adjacent pilot tones in resource block 80 is reserved for pilot-free, i.e., pilots are not allocated to the region. When a frequency synchronization error occurs, the first two frequency tones may interfere with the two frequency tones in the frequency domain after the adjacent resource block. However, in the pilot layout shown in Figure 6B, the pilots (P1 and P2) in the first two frequency tones do not occur with the pilots (P1 and P2) in the two frequency tones after the adjacent resource block. conflict. Another example is shown in Fig. 6C. The entire column of the first and last frequency tones in resource block 80 is reserved as a pilotless buffer domain in which pilots are not allocated. If the frequency synchronization error only affects the first and last frequency tones of the resource block, then in this method, the pilot transmission is not affected by the frequency synchronization error. Therefore, it is an effective type for handling frequency synchronization errors. On the other hand, since all pilots in the edge frequency tones are removed, they frame and enclose fewer data symbols. Therefore, the pilot pattern design requires more channel extrapolation than the pilot pattern design shown in Figure 6B. Figure 8A is an example of a pilot pattern based on a resource block 90 of 6x6 in System 1B to achieve an optimized channel response estimate. In the example shown in FIG. 8A, 'two data stream stream #1 and stream #2 are transmitted by resource block 90, which has six consecutive frequency tones and six consecutive time slots. . As described in step 104 of Figure 5, a total of four 0758-A34157TWF MTKI-09-040 15 201010365 pilots will be allocated, for each data stream in the 6x6 resource block, along with At least 2 pilots in the time domain, and at least 2 pilots along the frequency domain. As shown in FIG. 8A, according to step 105 of FIG. 5, the four pilots of each data stream are first allocated to the four corners of the adjacent resource block 90 to avoid the outside of each data stream. Insert (step #1). The optimal channel response estimate can be achieved with this new pilot pattern design. Next, in accordance with step 106 of Figure 5, it is further verified that for each data stream, each time slot has no more than one assigned pilot to minimize power fluctuations (step #3). For uplink transmission, the pilot pattern needs to be further adjusted to prevent pilot collisions caused by multi-user synchronization errors. Figures 8B, 8C, 8D and 8E are four different pilot pattern adjustment schemes. The four pilot pattern designs follow the same principle, but each pilot pattern design also has its own advantages in different environments. In Figure 8B, to preserve the pilot-free buffer domain, the pilots at the four corners are rearranged to avoid pilot collisions caused by frequency synchronization errors. More specifically, for the resource block 90, in the frequency direction, the topmost column is the minimum frequency tone; the second column from the top is the second small frequency tone; the second column from the bottom It is the second largest frequency tone; the bottommost column has the maximum frequency tone. In the time direction, the leftmost row is the minimum time slot; the second row from the left is the second hour slot; the second row from the right is the second largest slot; and the far right The line is the maximum time slot. Therefore, for stream #1, the first P1 is located at the minimum frequency tone and the minimum time slot; the second P1 is located at the minimum frequency tone and the second largest time slot; and the third P1 is located at the second largest frequency tone And the second hour slot; the fourth P1 is located at the second largest frequency tone and 0758-A34157TWF MTKI-09-040 16 201010365 maximum time slot. For stream #2, the position of each pilot P2 is lower than one column per pilot P1, respectively. In other words, each p2 is located at the next larger frequency tone and the same time slot of the corresponding P1. The two time slots in the middle are left in a pilotless state. Compared to Figure 8B, the pilot pattern in Figure 8C can cover more frequency tones by assigning each pilot of each stream to a different frequency tone. In Figure 8D, the entire topmost and bottommost frequency tones are reserved as pilotless buffer regions. The pattern is a stable type that prevents frequency synchronization errors, but is not the best way to avoid channel extrapolation. Compared to the 8D picture, the pilot pattern in Figure 8E only preserves the topmost frequency tone as a pilot-free buffer area to prevent pilot collisions. Therefore, it can be well balanced against frequency synchronization errors and avoiding channel extrapolation. The new pilot allocation scheme described above can be easily extended to resource blocks having different sizes. 9A and 9B are diagrams showing an example _ of the pilot pattern in the resource block 92 of the uplink transmission and the resource block 94 of the 6x7. In the example shown in Figure 9, the pilot is still located at the four corners of the adjacent resource block 92 compared to the first circle, but the middle one has no pilot time slot removed. In the example shown in Figure 9, the position of the pilot is the same as the position of the pilot shown in Figure 8 and only the rightmost slot is loaded. Since the channel estimation coefficients of the 6x6 resource block can be used for the first 6 time slots of the resource block of 6χ7 when the resource blocks of 6 symbols and 7 symbols coexist in the same system, the arrangement can be minimized. The change in the channel estimation factor. The index of the data flow shown in the example above is logically compliant. It is interchanged without affecting the pilot type 0758-A34157TWF MTKI-09-040 17 201010365. In addition, the ΜΙΜΟ pilot pattern can also be directly used in the Singie_inpUt Single-Output (SISO) system by removing the pilot of stream #1 or stream #2. The location of the removed pilot can be used to assign data. Pilot design for small-sized resource blocks For extra-cost reduction and lower-density pilot designs, channel extrapolation is unavoidable and usually occurs at symbols near the edge of the resource block, due to The symbols may not have a pilot and a subsequent pilot for channel interpolation. This situation is especially true when the size of the resource block is small. Small-sized resource blocks are often used for uplink feedback channels and sometimes for uplink data transfer. For example, an uplink resource block may consist of only two consecutive subcarriers or two consecutive 0FDM symbols. Therefore, it can result in an increase in overhead and it is no longer necessary to locate four pilots at four corners adjacent to the small resource block. Fig. 10 is a flow chart showing a pilot pattern design method based on a small resource block size according to a second embodiment of the present invention. As shown in Fig. 1, steps 201 to 204 at the start of the pilot pattern design are the same as steps 1〇1 to 104 shown in Fig. 5. The system requirements for the three examples are listed in Table 2 below. In the first design example OFDMA system 2A, a resource block of 2χ6 or 6x2 in the SISO system is defined. In the second design example 〇fD]V[A system 2Β, a resource block of 4x6 or 6x4 in two streams of rogue systems is defined. In the third design example OFDMA system 2C, resource blocks of *6 or 6x4 in the sisq system are defined. Based on two-dimensional sampling theory 'For the three systems, the maximum required pilot spacing in the frequency domain is 8 (outer = 8), while the maximum pilot gate required in the time domain is 0758-Α34157TWT_MTKI-09-040 18 201010365 The distance is 6 ( Μ = 6). Therefore, based on the resource block sizes of the three systems, they all require at least 2 pilots along the buccal domain and 2 pilots along the time domain. If the system peak rate and throughput are reconsidered, the number of pilots allocated to each stream in each resource block is 2 for systems 2 and 2, and 4 for system 2C. System Parameter System 2 A System 2B System 2C System Type SISO ΜΙΜΟ SISO Number of Streams 1 2 1 Center Frequency 2.5GHz 2.5GHz 2.5GHz Bandwidth 10MHz 10MHz 10MHz Maximum Channel Delay Diffusion (Tnlax) 12ps 12μβ 12 με Maximum Speed (Doppler Frequency shift 350km/h 350km/h 350km/h fc^max) (810Hz) (810Hz) (810Hz) Subcarrier spacing (Μ) 10.94kHz 10.94kHz 10.94kHz OFDM Symbol length (TsvmbC)1) 102.82 μβ 102.82 με 102.82 μβ Resource block size 2x6 and 6x2 4x6 and 6x4 4x6 and 6x4 pilot number per stream 2 2 4 Table 2 System requirements If the specific number of pilots to be allocated is determined, then according to step 205 in Figure 10 The rules locate the pilot at a particular location in each resource block. If the resource block size is less than 3 in the frequency direction or the time direction, the pilot is positioned such that the average interval between the allocated pilot and the data is minimized, and the distance between the pilot and the data is minimized, and Make the pilot and pilot spacing as large as possible. On the other hand, if the resource block size is greater than or equal to 3 in both the frequency direction and the time direction, the pilot is positioned to avoid channel extrapolation. 11A and 11B are diagrams showing an example of a pilot pattern design based on 2x6 and 6x2 resource blocks in system 2A. In Fig. 11A, the 2x6 resource block 210 is divided into two equal-sized sub-blocks along the time domain. Each pilot is located in the center slot of each sub-block to minimize the pilot-to-data average spacing. In addition, each pilot is located at a different frequency tone such that the pilot to pilot spacing is as large as possible. Similarly, in the example shown in Figure 11B, the 6x2 resource block 220 is split into two equal-sized sub-blocks along the frequency domain. Each pilot is located in the center frequency tone of each sub-block to minimize the pilot-to-data average spacing. In addition, each pilot is located at a different time slot so that the pilot-to-pilot spacing is as large as possible. Therefore, the performance of channel estimation can be improved. Usually, 'for a small size resource block of less than 3 in the frequency direction or the time direction, if the resource blocks of m pilots are to be allocated, the resource blocks can be divided into n equal children. Block, where m is a multiple of η. If i is less than 3 and j is equal to or greater than 3, then j must be a multiple of η ' i X j The resource block is divided into n sub-blocks along the time domain. m/n pilots are allocated to each divided sub-block to minimize the pilot-to-data average spacing. On the other hand, if j is less than 3 and i is equal to or greater than 3, i must be a multiple of η, and the resource block of i X j is divided into n sub-blocks along the frequency domain. m/n pilots are allocated to each divided sub-block to minimize the pilot-to-data average spacing. 12A and 12B are diagrams showing an example of a pilot pattern design based on a 4x6 resource block 230 0758-A34157TWF_>iTKI-()5U〇40 "20- 201010365 and 6x4 resource block 240 in system 2B Since the sizes of the resource blocks 230 and 240 satisfy the condition of equal to or greater than 3 in both the frequency and time directions, the allocation of the pilots can avoid channel extrapolation. In the example shown in the figure UA, the two classes of the stream stream #1 are in the two corners of the resource block 230, and the two pilots of the stream #2 are in the resource block. The other two corners of 240. Similarly, in the first

圖所示之範例中,串流及串流#2之兩對導頻成對角弋仅 於資源區塊240之四個角處。因此,通道外插可最 地被避免。第12A及12B圖所示之資料串流#1及寿2的^ 引係符合邏輯觀點(logical sense )。其可以相互少拖 、 會影響導頻型樣。 、而不 第13A及13B圖係系統2C中基於4x6之資療區塊25〇 及6x4之資源區塊260之導頻型樣設計的範例的示意圖。 於第13A及13B圓所示之範例中,其各自的四询導頻八別 位於資源區塊250及260之四個角處。此外,戍斜角气之 两個導頻被調整為向内移動一個時槽,以使導讀城$ , π力率脈衝 導致之功率波動最小化。 高階ΜΙΜΟ系統之導頻型樣設計 由於可提供資料吞吐量之顯著增長而無, %領外頻 寬,ΜΙΜΟ技術於無線通訊系統中變得引人注目 。於多天 線ΜΙΜΟ系統中,每一資料串流皆利用相同之資藏區塊而 藉由對應之天線傳送。對於具有至少四個或更多串 階ΜΙΜΟ系統而言,每一串流欲分配之導頻數襲更^格间 因此, 高階ΜΙΜΟ OFDMA系統中導頻型樣之最隹 設計尤 0758-A34157TWF ΜΓΚΙ-09-040 21 201010365 為複雜。通常’每一串流欲分配之導頻數量一般不能太大, 以達成高吞吐量,同時亦不能太小’以獲取良好之通道估 測品質。 第14圖係依本發明第三實施例之高階ΜΙΜΟ OFDMA 通訊系統之導頻型樣設計方法的流程圖。如第14圖所示, 導頻型樣設計開始之步驟301至步驟304與第5圖所示之 步驟101至104相同。三個範例之系統需求列示於下述之 表3。 系統參數 系統3A 系統3B 系統3C 系統類型 ΜΙΜΟ ΜΙΜΟ ΜΙΜΟ 串流數量 4 8 8 峰值速率 15 bps/Hz 30bps/Hz 30bps/Hz 最大通道延遲擴散(Tmax) ΙΟμε ΙΟμε ΙΟμε 次載波間距(Δί) 10.94kHz 10.94kHz 10.94kHz OFDM 符號長度(Tsvmhn1) 102.82 102.82 ms 102.82 ns 資源區塊尺寸 18x6 18x6 36x6 每串流之導頻數 4 3 5 表3系統需求 於第一設計範例OFDMA系統3Α中,定義了四串流 Μ励系統中18χ6之資源區塊。每—資源區塊之導頻數量 被選定為四個,以達成吞吐量及獲取良好通道估測品質。 於第二設計範例OFDMA祕3Β中,定義了八串流ΜΜ〇 0758-Α34157TWF_MTKI-09-040 22 201010365 系統中18x6之資源區塊,且每一資源區塊之導頻數量被選 定為三個,以達成吞吐量及獲取良好通道估測品質。於第 三設計範例OKDMA系統3C中,定義了八串流MIM0系 統中36x6之資源區塊,且每一資源區塊之導頻數量被選定 為五個,以達成吞吐量及獲取良好通道估測品質。 若欲分配之特定數量之導頻被決定,則隨後依據第14 圖中步驟305所示之規則將所述導頻定位於每一資源區塊 之特定位置。由於高階ΜΙΜΟ系統通常運作於低移動性 (low-mobility)環境下(時間變動不顯著),因此,時域 之外插不再係為主要影響因素。因此,導頻之分配僅為避 免頻域之外插。考慮以下兩種狀況。於第一種狀況下,僅 有一個資源區塊可用於通道估測;於第二種狀況下,兩個 或更多的相鄰資源區塊可聯合地用於通道估測。一般而 言,對於第一種狀況,兩個導頻首先於頻域被定位於鄰近 母一資源區塊之兩個邊緣處,以避免頻域之通道外插。接 菩,剩1实瓶姑它你α迅签祕ϋΑ .In the example shown, the two pairs of pilots of stream and stream #2 are diagonally located at only four corners of resource block 240. Therefore, channel extrapolation is most avoided. The data stream #1 and life 2 shown in Figures 12A and 12B are logical senses. They can drag each other less and affect the pilot pattern. A schematic diagram of an example of a pilot pattern design based on 4x6-based grant blocks 25A and 6x4 resource blocks 260 in Figures 13A and 13B. In the example shown in circles 13A and 13B, their respective four-inquiry pilots are located at the four corners of resource blocks 250 and 260. In addition, the two pilots of the skewed angular gas are adjusted to move inward by a time slot to minimize power fluctuations caused by the pilot city $, π force rate pulses. The pilot pattern design of the high-order ΜΙΜΟ system has become a significant increase in data throughput, and the % extra-bandwidth bandwidth has become compelling in wireless communication systems. In a multi-day line system, each data stream is transmitted by the corresponding antenna using the same resource block. For systems with at least four or more series-order systems, the number of pilots to be allocated for each stream is more complex. Therefore, the best design of the pilot pattern in the high-order ΜΙΜΟ OFDMA system is especially 0758-A34157TWF ΜΓΚΙ- 09-040 21 201010365 is complicated. Usually, the number of pilots to be allocated for each stream is generally not too large to achieve high throughput, and not too small to obtain good channel estimation quality. Figure 14 is a flow chart showing a pilot pattern design method of a high-order ΜΙΜΟ OFDMA communication system in accordance with a third embodiment of the present invention. As shown in Fig. 14, steps 301 to 304 of the start of the pilot pattern design are the same as steps 101 to 104 shown in Fig. 5. The system requirements for the three examples are listed in Table 3 below. System Parameter System 3A System 3B System 3C System Type ΜΙΜΟ ΜΙΜΟ 串 Number of Streams 4 8 8 Peak Rate 15 bps/Hz 30bps/Hz 30bps/Hz Maximum Channel Delay Diffusion (Tmax) ΙΟμε ΙΟμε ΙΟμε Subcarrier Spacing (Δί) 10.94kHz 10.94 kHz 10.94kHz OFDM Symbol length (Tsvmhn1) 102.82 102.82 ms 102.82 ns Resource block size 18x6 18x6 36x6 Pilot number per stream 4 3 5 Table 3 System requirements In the first design example OFDMA system 3Α, four streams are defined. The resource block of 18χ6 in the excitation system. The number of pilots per resource block was chosen to be four to achieve throughput and to obtain good channel estimation quality. In the second design example OFDMA secret, three resource blocks of 18x6 are defined in the system, and the number of pilots in each resource block is selected to be three. To achieve throughput and obtain good channel estimation quality. In the third design example OKDMA system 3C, 36x6 resource blocks in the eight-stream MIM0 system are defined, and the number of pilots in each resource block is selected to be five to achieve throughput and obtain good channel estimation. quality. If the particular number of pilots to be allocated is determined, then the pilot is then located at a particular location in each resource block in accordance with the rules shown in step 305 of Figure 14. Since high-order chirp systems usually operate in low-mobility environments (time changes are not significant), time domain extrapolation is no longer a major factor. Therefore, the allocation of pilots is only to avoid extrapolation in the frequency domain. Consider the following two conditions. In the first case, only one resource block can be used for channel estimation; in the second case, two or more adjacent resource blocks can be jointly used for channel estimation. In general, for the first case, the two pilots are first located in the frequency domain at two edges adjacent to the parent-resource block to avoid channel extrapolation in the frequency domain. Pick up the bodhisattva, left 1 bottle, and you are the secret of your fast sign.

要向内移動幾個導頻音調,以使得末端導頻不會過於鄰 近。接著,剩餘導頻被定位以沿著時域平均分佈Μ分配 的兩個導頻之間。 進一步驗證對於每一資斜Move a few pilot tones inwards so that the end pilots are not too close. The remaining pilots are then positioned to evenly distribute the two pilots distributed along the time domain. Further verification for each slant

於第14圖之步驟306中 201010365 第15A圏係四串流之Mim〇 〇FDMA系統3A中基於 18x6之資源區塊310之導頻型樣設計的範例的示意圖。每 一資料串流欲分配之導頻數量為四個。如第15A圖所示, 對於每一資料串流而言,兩個導頻沿著頻域被定位於資源 區塊310之頂部邊緣及底部邊緣(步驟#1)處。剩餘之兩 個導頻沿著頻域最大程度地平均分佈於已分配的兩個導頻 之間(步驟#2)。儘管時間方向之通道外插不再係為主要 影響因素,導頻依然沿著頻域方向以儘可能大的間距定 位。因此,如第15A圖所示,沒有導頻位於兩個中間時槽。 於第15A圖所示之範例中,進一步驗證對於每一資料串流 而5,母一時槽皆具有不超過一個之被分配的導頻以最 小化功率波動(步驟#3)。 第15B圖係於資源區塊之一個或多個邊緣處保留 缓衝區域以減小多用戶同步錯誤效應之範例的示意圈。於 第15B圖所示之範例巾,資源區塊31〇 +鄰近導頻音調之 緩衝區域被保留為無導頻狀態,即導頻不會分配於所述區 域。當頻率同步錯誤發生時,前兩個頻率音調可能會與相 鄰資源區塊之後兩個頻率音調於頻域相互干擾。然而,於 第15B圖所示之導頻佈局中,前兩個頻率音調中之導頻不 會與相鄰資源區塊之後兩個頻率音調發生衝突。 第15C圖係為另一範例,資源區塊之整個第一及最後 一頻率音調皆被保留為無導頻狀態之緩衝區域,即導礦不 會分配於所述區域。若頻率同步錯誤僅影響資源區塊之第 一及最後一頻率音調,則於此方法中,導頻傳送不會受刻 頻率同步錯誤之影響。第15A、15B及15C中所示之資科 0758-A34157TWF_MTKJ-〇9-040 24 201010365 串流的索引係符合邏輯觀點。其可以相互交換而不會影響 導頻型樣。 第16A圖係八串流之ΜΙΜΟ OFDMA系統3B中基於 18x6之資源區塊320之導頻型樣設計的範例的示意圖。每 一資料串流欲分配之導頻數量為三個。如第16Α圖所示, 對於每一資料串流而言’兩個導頻沿著頻域被定位於資源 區塊320之頂部邊緣及底部邊緣處。剩餘之一個導頻沿著 頻域定位於已分配的兩個導頻中間處。如第16Α圖所示, 導頻沿著頻域方向以儘可能大的間距定位以降低通道外 插。此外,其進一步驗證對於每一資料串流而言,每一時 槽皆具有不超過一個之被分配的導頻,以最小化功率波動。 第16Β圖係於資源區塊320之一個或多個邊緣處保留 緩衝區域之範例的示意圖。於第16Β圖所示之範例中,整 個第一及最後一頻率音調皆被保留為無導頻狀態之緩衝區 域’即導頻不會分配於所述區域。若頻率同步錯誤僅影響 資源區塊之第一及最後一頻率音調,則於此方法中,導頻 傳送不會受到頻率同步錯誤之影響。 以上所述之新的導頻型樣設計可輕易地擴充至具有 其他尺寸之資源區塊。第17Α圖係基於18x5之資源區塊 330之導頻型樣設計的範例的示意圖,第17]Β圖係基於18Χ7 之資源區塊340之導頻型樣設計的範例的示意圖。於第17Α 圖所示之範例中’導頻係依據第14圖步驟305所示之規則 定位。於第17Β圖所示之範例中,除了最右側之時槽不載 送資料外,導頻4定位與第16 Α圖所示之定位相同。由於 當6符號及7符號之資源區境並存於同一系統中時,18X6 0758-A34157TWF MTKI-09-040 25 201010365 之資源區塊的通道估測係數可用於18x7之資源區塊的前6 個時槽’因此,所述排佈可最小化通道估測係數之變動。 第18圖係八串流之ΜΙΜΟ OFDMA系統3C中基於 36x6,資源區塊35〇之導頻型樣設計的範例的示意圖。每 一f料串流欲分配之導頻數量為五個。如第18圖所示,對 於每一資料串流而言,兩個導頻沿著頻域被定位於資源區 塊350之頂部邊緣及底部邊緣處。剩餘之三個導頻沿著頻 域平均地分佈於已分配的兩個導頻之間。如第18圖所示, 導頻沿著頻域方向以儘可能大的間距定位以降低通道外 插。此外,其進一步驗證對於每一資料串流而言,每一時 槽皆具有不超過一個之被分配的導頻,以最小化功率波動。 第19圖係八串流之ΜΙΜΟ OFDMA系統3B中兩個連 續的18x6之資源區塊360及370之示意圖。每一資源區塊 及每一資料串流欲分配之導頻數量為三個。於一些ΜΙΜΟ OTDMA $統環;^下’連續的資源區塊可聯合地用於通道 估測。如第19圖所示,資源區塊360及370中鄰近頂部邊 緣之兩列頻率音調及鄰近底部邊緣之兩列頻率音調被空出 (blank)。因此’資源區塊360之底部導頻與資源區塊370 之頂部導頻不會過於鄰近。當資源區塊36〇及37〇被聯合 使用時’其可以提供較佳之通道估測品質。第19圖亦可擴 充至36x5及36x7之資源區塊。對於36χ5之資源區塊而 、吕’其對應之導頻型樣可藉由移除第19圖中第三或第四無 導頻符號而獲得。對於36x7之資源區塊而言,其對應之導 頻型樣可藉由於第19圖之六個符號後添加-個無導頻符 號而獲得。 0758-Α34157TWF—ΜΤΚΙ-09-040 26 201010365 第20A及20B圖係人串流之MIM〇 〇FDMA系統中聯 合=利用連續資源區塊以進行通道估測之另外幾個範例的 二圖些實施例中,由於相鄰資源區塊之導頻於每 ,區邊緣的資料音調通道估測中具有優勢因 C之導頻被進一步減少至兩個。於第寫圖所 不之範例中]8x6之資源區塊38〇與ΐ8χ6 A圖所 彼此相鄰。資源區塊38〇及385 缝、⑽塊385 Γ=底部邊緣之,率音二;Γ 一-貝料串流之另-導頻難於第〗 ^調,而每 此,資源區塊380之底部導頻鱼—第頻率音調。因 了保持良好轉,以提供良好的 項部導續 如第20B圖所示, 以;原區境地, 塊395彼此相鄰。資源區塊390及395由、 之資源區 三列頻率音調及鄰近底部邊緣 部邊緣之 言之,每-資料串流之—個導頻位頰=調破空出。換 而每-資料串流之另一導頻則位於第或第5韻率音調, 調。因此,資源區塊39〇及395中所有‘皆乂,率音 均地分佈,以提供較佳之通道估剛品質。此/〇香纊域平 如第20A及20B圖所示之連續資源區塊中逡,意’ 間距,皆符合由二維採樣理論得4之導賴=導續 第20A及20B圖亦可撼右$ 18x5 Λ 、果條件。 於18x5之資源區塊而言’其對應之導頻型樣可。對 18x6之資源區塊的導頻型樣中第三或第四無導海 移除 得。對於㈣之資源區塊而言,其姆應之導頻型^而獲 1轉由 0758-A34157TWF_MTKI-09-040 27 201010365 於18x6之資源區塊的導頻型樣之六個符號後添加一個無 導頻符號而獲得。 應注意,以上所述範例中所示之資料串流的索引係符 合邏輯觀點。其可以相互交換而不會影響導頻型樣。此外, 以上範例所示之八串流ΜΙΜΟ系統之導頻型樣可直接擴充 至五串流、六串流及七串流之ΜΙΜΟ系統。對於五串流之 ΜΙΜΟ系統而言,第六、第七及第八串流之導頻位置係用 以分配資料而非導頻。類似地,對於六串流之ΜιΜ〇系統 而言’第七及第八串流之導頻位置係用以分配資料;而對 於七串流之ΜΙΜΟ系統而言’第八串流之導頻位置係用以 分配資料。 於多天線ΜΙΜΟ OFDMA系統中,傳送器透過多個傳 送天線來傳送資料’而接收器透過多個接收天線接收資 料。由於每一接收天線皆接收所有傳送天線傳送之資料, 因此’信號傳播之通道的數量係由傳送天線數量及接收天 線數量之组合來決定。舉例而言,若有Ρ個傳送天線及Q 個接收天線’則信號將於PxQ個通道上傳播,而每一通道 皆具有各自的通道響應。因此,於ΜΙΜΟ OFDMA系統中, 由於估測PxQ個通道之計算能力的限制,好的通道估測方 法顯得尤為重要。藉由最大限度地最小化外插及提供簡單 快速之通道估測,以上實施例中所述之導頻型樣設計非常 有益於ΜΙΜΟ OFDMA系統。 於ΜΙΜΟ系統中,每一傳送天線皆將導頻符號插入相 同次載.波及OFDM符號之時槽中,其藉由所述天線傳送。 此種做法將於接收器處引入每一傳送天線之導頻符號間的 0758-A34157TWF MTKI-09-040 28 201010365 干優。為最小化每一傳送天線之導頻符號間的干擾,導頻 符號將於傳送天線間保持彼此正交。此外,對於每一天線, 若導頻符號插入於特定時槽及特定頻率音調,則其他天線 於時域及頻域之相同位置插入空符號。因此,藉由一個天 線傳送之一個導頻可能會受到藉由其他天線傳送之其他信 號之干擾;。 儘管本發明係與特定實施例相結合來插述,以達成指 參 導之目的,但本發明並非僅限於此。不超出後附之申請專 利範圍的各種修飾、變化以及上述實施例之各種特性之組 合皆可被實作。 【圓式簡單說明】 第1圖(先前技術)係彼此正交且於頻域及時域中可 選地傳送之導頻符號之示意圖。 第2圖(先前技術)係獲取準確通道估測之鑽石塑導 頻型樣的示意圖。 第3圏(先前技術)係基於頻率選擇性及都卜勒頻移 資訊改變導頻型樣之OFDM無線系統的示意圖。 第4A圖係上鏈傳送中OFDMA無線通訊系統之方塊 圖。 第4B圖係下鏈傳送中OFDMA無線通訊系統之方塊 圖。 第5圖係依本發明第一實施例之OFDMA通訊系統中 基於資源區塊尺寸之導頻型樣設計方绛之流程圖。 第6A圖係基於18x6之資源區塊之導頻型樣設計的範 0758-A34157TWF_MTKI-09-040 29 201010365 例的示意圖。 第6B、6C圖係上鏈傳送中基於丨8χ6之資源區塊之導 頻型樣設計的範例的示意圖。 第7圖係多用戶同步錯誤導致之導頻衝突之示意圖。 第8A圖係基於6x6之資源區塊之導頻型樣設計的範 例的示意圖。 第8B、8C、8D及8E圖係上鏈傳送中基於6X6之資 源區塊之導頻S樣設計的範例的示意圖。 第9A及9B圖係基於6x5之資源區塊及6X7之資源區 塊之導頻型樣設計的範例的示意圈。 第10圖係依本發明第二實施例之OFDMA通訊系統 中基於小資源區塊尺寸之導頻型樣設計方法之流程圖。 第11A及11B圖係SISO系統中基於2x6之資源區塊 及6x2之資源區塊之導頻型樣設計的範例的示意圖。 第12A及12B圖係兩串流之ΜΙΜΟ系統中基於4x6 之資源區塊及6x4之資源區塊之導頻型樣設計的範例的示 意圖。 第13Α及13Β圖係SISO系統中基於4x6之資源區塊 及6x4之資源區塊之導頻型樣設計的範例的示意圖。 第14圖係依本發明第三實施例之高階ΜΙΜΟ系統之 導頻型樣設計方法的流程圖。 第15Α圖係四串流之ΜΙΜΟ系統中基於18x6之資源 區塊之導頻型樣設計的範例的示意圖。 第15Β及15C圖係上鏈傳送中四串流之ΜΙΜΟ系統^ 中基於18x6之資源區塊之導頻型樣設計的範例的示意圖。 0758-A34157TWF ΜΤΚΙ-09-040 30- 201010365 第16A圖係八串流之ΜΙΜΟ系統中基於18x6之資源 區塊之導頻型樣設計的範例的示意圖。 第16Β圖係上鏈傳送中八串流之ΜΙΜΟ系統中基於 18x6之資源區塊之導頻型樣設計的範例的示意圖。 第17Α及17Β圖係八串流之ΜΙΜΟ系統中基於18x5 之資源區塊及18x7之資源區塊之導頻型樣設計的範例的 示意圖。 第18圖係八串流之ΜΙΜΟ系統中基於36x6之資源區 ® 塊之導頻型樣設計的範例的示意圖。 第19圖係八串流之ΜΙΜΟ系統中利用連續資源區塊 之導頻型樣設計的範例的示意圖。 第20Α及20Β圖係八串流之ΜΙΜΟ系統中利用連續 資源區塊之導頻型樣設計的範例的示意圖。 【主要元件符號說明】 11 : OFDMA 系統; • 12 :第-傳送模組; 14 :第二傳送模組; 16、24 :導頻分配模組; 18、26 :資料分配模組; 20、28 :傳送器; 22、30 :天線; 32 :第一接收模組; . 34:第二接收模組; 36、48 :導頻去分配模組; 0758-A34157TWF ΜΤΚΙ-09-040 31 201010365 38、50 :導頻音調通道估測模組; 40、52 :資料去分配模組; 42、54 :資料音調通道估測模組; 46、58 :天線; 60、70 ' 80、90、92、94、210、220、230、240、250、 260、310、320、330、340、350、360、370、380、385、 390、395 :資源區塊; 101〜107 :步驟; 201〜206 :步驟; ❿ 301〜307 :步驟。 ^ 0758-A34157TWF MTKI-09-040 32In step 306 of FIG. 14, a schematic diagram of an example of a pilot pattern design based on the 18x6 resource block 310 in the Mim〇 〇 FDMA system 3A of the four-stream stream of the 1010 stream is shown in FIG. The number of pilots to be allocated for each data stream is four. As shown in Fig. 15A, for each data stream, two pilots are located along the frequency domain at the top and bottom edges of resource block 310 (step #1). The remaining two pilots are distributed most evenly along the frequency domain between the two allocated pilots (step #2). Although the channel extrapolation in the time direction is no longer the main factor, the pilots are still positioned at the largest possible distance along the frequency domain. Therefore, as shown in Fig. 15A, no pilot is located in the two intermediate time slots. In the example shown in Fig. 15A, it is further verified that for each data stream, 5, the parent one time slot has no more than one allocated pilot to minimize power fluctuations (step #3). Figure 15B is a schematic circle of an example of a buffer area reserved at one or more edges of a resource block to reduce the effects of multi-user synchronization errors. In the example towel shown in Fig. 15B, the buffer area of the resource block 31 〇 + adjacent pilot tone is reserved in a non-pilot state, i.e., the pilot is not allocated to the area. When a frequency synchronization error occurs, the first two frequency tones may interfere with the two frequency tones in the frequency domain after the adjacent resource block. However, in the pilot layout shown in Figure 15B, the pilots in the first two frequency tones do not collide with the two frequency tones after the adjacent resource block. The 15C diagram is another example in which the entire first and last frequency tones of the resource block are reserved as buffer regions without pilot conditions, i.e., the ore is not allocated to the region. If the frequency synchronization error only affects the first and last frequency tones of the resource block, then in this method, the pilot transmission is not affected by the crypto frequency synchronization error. The assets shown in 15A, 15B and 15C 0758-A34157TWF_MTKJ-〇9-040 24 201010365 The index of the stream is logical. They can be exchanged without affecting the pilot pattern. Figure 16A is a schematic diagram of an example of a pilot pattern design based on an 18x6 resource block 320 in OFDMA system 3B. The number of pilots to be allocated for each data stream is three. As shown in Figure 16, for each data stream, the two pilots are located along the frequency domain at the top and bottom edges of resource block 320. The remaining one pilot is located along the frequency domain at the middle of the two allocated pilots. As shown in Figure 16, the pilots are positioned along the frequency domain as far as possible to reduce channel interpolation. In addition, it further verifies that for each data stream, each slot has no more than one assigned pilot to minimize power fluctuations. Figure 16 is a schematic diagram of an example of retaining a buffer region at one or more edges of resource block 320. In the example shown in Figure 16, the entire first and last frequency tones are reserved as a buffer domain with no pilot state. That is, pilots are not allocated to the region. If the frequency synchronization error only affects the first and last frequency tones of the resource block, then in this method, the pilot transmission is not affected by the frequency synchronization error. The new pilot pattern design described above can be easily extended to resource blocks of other sizes. Figure 17 is a schematic diagram of an example of a pilot pattern design based on a resource block 330 of 18x5, which is a schematic diagram of an example of a pilot pattern design based on a resource block 340 of 18.7. In the example shown in Figure 17, the pilot is positioned according to the rules shown in step 305 of Figure 14. In the example shown in Figure 17, except that the rightmost slot does not carry data, the pilot 4 is positioned the same as the one shown in Figure 16. Since the channel estimation coefficients of the resource blocks of 18X6 0758-A34157TWF MTKI-09-040 25 201010365 can be used for the first 6 times of the 18x7 resource block when the resource regions of 6 symbols and 7 symbols coexist in the same system. Slot 'Therefore, the arrangement minimizes variations in channel estimation coefficients. Figure 18 is a schematic diagram of an example of a pilot pattern design based on 36x6, resource block 35〇 in OFDMA system 3C. The number of pilots to be allocated for each f stream is five. As shown in Figure 18, for each data stream, two pilots are located along the frequency domain at the top and bottom edges of resource block 350. The remaining three pilots are evenly distributed along the frequency domain between the two pilots that have been allocated. As shown in Figure 18, the pilots are positioned along the frequency domain as far as possible to reduce channel interpolation. In addition, it further verifies that for each data stream, each slot has no more than one assigned pilot to minimize power fluctuations. Figure 19 is a schematic diagram of two consecutive 18x6 resource blocks 360 and 370 in OFDMA system 3B. The number of pilots to be allocated for each resource block and each data stream is three. For some OT OTDMA $ system loops, ^ contiguous resource blocks can be used jointly for channel estimation. As shown in Fig. 19, the two columns of frequency tones in the resource blocks 360 and 370 adjacent to the top edge and the two column frequency tones adjacent to the bottom edge are blanked. Therefore, the bottom pilot of resource block 360 and the top pilot of resource block 370 are not too close. When resource blocks 36〇 and 37〇 are used in combination, they can provide better channel estimation quality. Figure 19 can also be expanded to the 36x5 and 36x7 resource blocks. For the resource block of 36χ5, the corresponding pilot pattern can be obtained by removing the third or fourth pilotless symbol in Fig. 19. For a 36x7 resource block, its corresponding pilot pattern can be obtained by adding a non-pilot symbol after the six symbols in Figure 19. 0758-Α34157TWF—ΜΤΚΙ-09-040 26 201010365 Figures 20A and 20B are diagrams of the MIM〇〇FDMA system in the human-streaming unit = another example of the use of continuous resource blocks for channel estimation. Among them, since the pilot of adjacent resource blocks has an advantage in the data tone channel estimation of each edge, the pilot of C is further reduced to two. In the example of the first drawing, the 8x6 resource blocks 38〇 and ΐ8χ6 A are adjacent to each other. Resource block 38〇 and 385 seam, (10) block 385 Γ=bottom edge, rate 2; Γ 1 - bee stream stream - the pilot is difficult to adjust, and each time, the bottom of resource block 380 Pilot fish - the first frequency tone. Because of the good turn, to provide a good guide, as shown in Figure 20B, in the original area, block 395 is adjacent to each other. The resource blocks 390 and 395 are in the resource zone, the three columns of frequency tones and the edge of the adjacent bottom edge, and each of the data streams is a pilot bit = vacated. In addition, the other pilot of each data stream is at the fifth or fifth rhythm tone. Therefore, all of the resource blocks 39〇 and 395 are distributed, and the rate is evenly distributed to provide a better channel quality. This / Muxiang 平 平 平 第 第 第 第 第 第 第 第 第 第 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 Right $18x5 Λ, fruit condition. In the case of a resource block of 18x5, the corresponding pilot pattern is available. The third or fourth unguided sea in the pilot pattern of the 18x6 resource block is removed. For the resource block of (4), the pilot type of the M should be 1 and be transferred by 0758-A34157TWF_MTKI-09-040 27 201010365 after the six symbols of the pilot pattern of the 18x6 resource block Obtained by the pilot symbol. It should be noted that the index of the data stream shown in the example above is logical. They can be exchanged without affecting the pilot pattern. In addition, the pilot patterns of the eight-stream rogue system shown in the above example can be directly extended to five-stream, six-stream and seven-stream systems. For a five-stream system, the pilot positions of the sixth, seventh, and eighth streams are used to distribute data rather than pilots. Similarly, for the six-stream ΜιΜ〇 system, the pilot positions of the seventh and eighth streams are used to allocate data; and for the seven-stream system, the pilot position of the eighth stream is used. Used to distribute data. In a multi-antenna ΜΙΜΟ OFDMA system, a transmitter transmits data through a plurality of transmission antennas, and a receiver receives data through a plurality of receiving antennas. Since each receiving antenna receives data transmitted by all transmitting antennas, the number of channels for signal propagation is determined by the combination of the number of transmitting antennas and the number of receiving antennas. For example, if there are one transmit antenna and Q receive antennas, then the signal will propagate on PxQ channels, and each channel has its own channel response. Therefore, in the OFDMA system, a good channel estimation method is particularly important due to the estimation of the computational power of PxQ channels. The pilot pattern design described in the above embodiments is very beneficial to the OFDMA system by minimizing extrapolation and providing simple and fast channel estimation. In the system, each transmit antenna inserts a pilot symbol into a time slot of the same secondary carrier and the OFDM symbol, which is transmitted by the antenna. This approach will introduce the 0758-A34157TWF MTKI-09-040 28 201010365 between the pilot symbols of each transmit antenna at the receiver. To minimize interference between pilot symbols for each transmit antenna, the pilot symbols will remain orthogonal to each other between the transmit antennas. In addition, for each antenna, if the pilot symbols are inserted in a specific time slot and a specific frequency tone, the other antennas insert an empty symbol at the same position in the time domain and the frequency domain. Therefore, one pilot transmitted by one antenna may be interfered with by other signals transmitted by other antennas; Although the present invention has been described in connection with specific embodiments for the purpose of the present invention, the invention is not limited thereto. Various modifications, variations, and combinations of various features of the above-described embodiments can be made without departing from the scope of the appended claims. [Circular Simple Description] Fig. 1 (Prior Art) is a schematic diagram of pilot symbols that are orthogonal to each other and selectively transmitted in the frequency domain and time domain. Figure 2 (Prior Art) is a schematic representation of a diamond-plastic pilot pattern for accurate channel estimation. Section 3 (Prior Art) is a schematic diagram of an OFDM radio system that changes pilot patterns based on frequency selectivity and Doppler shift information. Figure 4A is a block diagram of an OFDMA wireless communication system in uplink transmission. Figure 4B is a block diagram of an OFDMA wireless communication system in downlink transmission. Fig. 5 is a flow chart showing a pilot pattern design based on a resource block size in an OFDMA communication system according to a first embodiment of the present invention. Figure 6A is a schematic diagram of an example of a pilot pattern design based on a resource block of 18x6. 0758-A34157TWF_MTKI-09-040 29 201010365. The 6B, 6C diagram is a schematic diagram of an example of a pilot pattern design of a resource block based on 丨8χ6 in uplink transmission. Figure 7 is a schematic diagram of pilot collisions caused by multi-user synchronization errors. Figure 8A is a schematic diagram of an example of a pilot pattern design based on a 6x6 resource block. The 8B, 8C, 8D, and 8E diagrams are schematic diagrams of examples of pilot S-like designs based on 6X6 resource blocks in the uplink transmission. Figures 9A and 9B are schematic circles of an example of a pilot pattern design based on a 6x5 resource block and a 6X7 resource block. Figure 10 is a flow chart showing a pilot pattern design method based on a small resource block size in an OFDMA communication system according to a second embodiment of the present invention. 11A and 11B are diagrams showing an example of a pilot pattern design of a 2x6-based resource block and a 6x2 resource block in a SISO system. 12A and 12B are diagrams showing an example of a pilot pattern design based on a 4x6 resource block and a 6x4 resource block in a two-stream system. The 13th and 13th drawings are schematic diagrams of examples of pilot pattern designs based on 4x6 resource blocks and 6x4 resource blocks in the SISO system. Figure 14 is a flow chart showing a pilot pattern design method of a high-order chirp system in accordance with a third embodiment of the present invention. Figure 15 is a diagram showing an example of a pilot pattern design based on an 18x6 resource block in a four-stream system. The 15th and 15th pictures are schematic diagrams of an example of a pilot pattern design based on an 18x6 resource block in a four-stream system in the uplink transmission. 0758-A34157TWF ΜΤΚΙ-09-040 30- 201010365 Figure 16A is a diagram showing an example of a pilot pattern design based on an 18x6 resource block in an eight-stream system. Figure 16 is a diagram showing an example of a pilot pattern design based on an 18x6 resource block in an eight-stream system in an uplink transmission. Figure 17 and Figure 17 are diagrams showing examples of pilot pattern designs based on 18x5 resource blocks and 18x7 resource blocks in an eight-stream system. Figure 18 is a diagram showing an example of a pilot pattern design based on a 36x6 resource region ® block in an eight-stream system. Figure 19 is a diagram showing an example of a pilot pattern design using continuous resource blocks in an eight-stream system. The 20th and 20th drawings are schematic diagrams of examples of pilot pattern design using continuous resource blocks in an eight-stream system. [Main component symbol description] 11 : OFDMA system; • 12: first-transmission module; 14: second transmission module; 16, 24: pilot allocation module; 18, 26: data distribution module; : transmitter; 22, 30: antenna; 32: first receiving module; . 34: second receiving module; 36, 48: pilot de-allocation module; 0758-A34157TWF ΜΤΚΙ-09-040 31 201010365 38, 50: pilot tone channel estimation module; 40, 52: data distribution module; 42, 54: data tone channel estimation module; 46, 58: antenna; 60, 70 '80, 90, 92, 94 210, 220, 230, 240, 250, 260, 310, 320, 330, 340, 350, 360, 370, 380, 385, 390, 395: resource block; 101~107: step; 201~206: step ; 301 301~307: Steps. ^ 0758-A34157TWF MTKI-09-040 32

Claims (1)

201010365 七、申請專利範圍: 1 · 一種方法,包含: a) 於一正交分頻多重擷取通訊系統中定義一資源區 塊,其中該資源區塊係為一二維區塊,具有沿著頻域之一 列頻率音調以及沿著時域之一列時槽; b) 基於一組通訊系統需求,決定分配於該資源區塊之 導頻之一特定數量;以及 c) 於頻域中將兩個導頻定位於鄰近該資源區塊之邊 緣處以避免通道外插,隨後將該特定數量之導頻中剩餘導 頻沿著頻域最大限度地平均分散於已分配的兩個導頻之 間。 2. 如申請專利範圍第1項所述之方法,其中該組通訊 系統需求係由最大都卜勒展延、最大延遲擴散、+值資料 速率及吞吐量中至少一者來設定。 3. 如申請專利範圍第2項所述之方法,其中步驟b)中 鲁 之該決定包含基於二維採樣理論計算導頻間距約束條件。 4. 如申請專利範圍第1項所述之方法,其中步驟c)中 之該定位亦包含沿著時域分配一大體相等數量之導頻音 調,以最小化功率波動。 5. 如申請專利範圍第1項所述之方法,其中該正交分 頻多重擷取通訊系統係為至少具有四個串流之一高階多入 多出系統,步驟c)中之該定位相應於每一串流而重複。 6. 如申請專利範圍第5項所述之方法,其中對於每一 串流而言一大體相等之數量的導頻音調沿著時域平均分: 散,以最小化功率波動。 0758-A34157TWF MTKI-09-040 201010365 7. 如申請專利範圍第1項所述之方法,更包含: d)將位於該資源區塊之一個或多個邊緣之一個或多 個頻率音調保留為無導頻狀態,以減小多用戶同步誤差效 應。 8. 如申請專利範圍第1項所述之方法,更包含: d)當兩個或更多相鄰資源區塊可用於通道估測時,保 留頻域中位於該資源區塊之兩個邊緣之一個或多個頻率音 調,以使相鄰資源區塊之邊緣的導頻彼此充分分離,以益 於通道估測。 9. 如申請專利範圍第1項所述之方法,其中一選定頻 率音調及一選定時槽用於傳送該多個導頻音調中該特定數 量之導頻音調中之一導頻音調,且無資料符號利用該選定 頻率音調及該選定時槽來傳送。 10. —種無線通訊裝置,包含: 一傳送器,利用一二維的資源區塊傳送一資料串流之 多個導頻音調,該資源區塊具有沿著頻域之一列頻率音調 以及沿著時域之一列時槽;以及 一導頻分配模組,分配該多個導頻音調中之一特定數 量之導頻音調,其中,該特定數量係基於一組通訊系統需 求而決定,且於頻域中,兩個導頻被分配於鄰近該資源區 塊之兩個邊緣,該特定數量之導頻中剩餘導頻沿著頻域最 大限度地平均分散於已分配的兩個導頻之間。 11. 如申請專利範圍第10項所述之無線通訊裝置,其 中該組通訊系統需求係由最大都卜勒展延、最大延遲擴 散、峰值資料速率及吞吐量中至少一者來設定。 0758-A34157TWF MTK1-09-040 34 201010365 12. 如申請專利範圍第10項所述之無線通訊裝置,其 中一大體相等數量之導頻音調沿著時域平均分散,以最小 化功率波動。 13. 如申請專利範圍第10項所述之無線通訊裝置,其 中一高階多入多出系統中之至少四個串流係使用相同的資 源區塊來傳送。 14. 如申請專利範圍第13項所述之無線通訊裝置,其 中對於每一串流而言一大體相等之數量的導頻音調沿著時 ® 域平均分散,以最小化功率波動。 15. 如申請專利範圍第10項所述之無線通訊裝置,其 中位於該資源區塊之一個或多個邊緣之一個或多個頻率音 調被保留為無導頻狀態,以減小多用戶同步誤差效應。 16. 如申請專利範圍第10項所述之無線通訊裝置,其 中當兩個或更多相鄰資源區塊可用於通道估測時,於頻域 中位於該實源區塊之兩個邊緣之一個或多個頻率音調被保 留,以使相鄰資源區塊之邊緣的導頻彼此充分分離,以益 於通道估測。 17. 如申請專利範圍第10項所述之無線通訊裝置,更 包含: 多個天線,用於一多入多出系統,其中一個導頻音調 係利用一選定頻率音調及一選中時槽而藉由一個天線傳 送,且無資料符號利用該選定頻率音調及該選定時槽而藉 由其他天線來傳送。 18. —種無線通訊裝置,包含: 多個傳送器,利用一預設之二維的資源區塊分別傳送 0758-A34157TWF MTKI-09-040 35 201010365 多個資源串流之多組導頻音調,每組導頻音調包含三個導 頻音調,且該資源區塊具有沿著頻域之18個連續頻率音調 以及沿著時域之6個連續時槽;以及 一導頻分配模組,分別產生並分配每一資源串流之每 組導頻音調,其中每組導頻音調之一第一導頻係分配於兩 個最小頻率音調其中之一,每組導頻音調之一第二導頻係 分配於兩個最大頻率音調其中之一,同一組導頻音調之一 第三導頻係分配於頻域中該資源區塊之中心處的兩個頻率 音調其中之一,且中心處的兩個時槽處於無導頻狀態。 ❿ 19. 如申請專利範圍第18項所述之無線通訊裝置,其 中導頻組之數量及資料串流之數量具有相同之一數值範 圍,該數值範圍係為5至8。 20. 如申請專利範圍第18項所述之無線通訊裝置,其 中對於每一資料串流而言,相同時槽被分配之導頻不超過 一個,以最小化功率波動。 21. 如申請專利範圍第18項所述之無線通訊裝置,其 中該資源區塊可被縮減至具有五個連續時槽,其中處於無 ® 導頻狀態之中心處的两個時槽其中之一被移除。 22. 如申請專利範圍第18項所述之無線通訊裝置,其 中該資源區塊可被擴充至具有七個連續時槽,額外之一無 導頻時槽係作為一最大時槽添加,且無需重新分配任一導 頻。 23. —種無線通訊裝置,包含: 多個傳送器,利用一預設之二維的資源區塊分別傳送 多個資源串流之多組導頻音調,每組導頻音調包含兩個導 0758-A34157TWF MTKI-09-040 ^ 36 201010365 頻音調,且該資源區塊具有沿著頻域之18個連續頻率音調 以及沿著時域之6個連續時槽;以及 一導頻分配模組,分別產生並分配每一資源串流之每 組導頻音調,其中每組導頻音調之一第一導頻係分配於一 第四頻率音調或一第五頻率音調,每組導頻音調之一第二 導頻係分配於一第十四頻率音調或一第十五頻率音調,且 中心處的兩個時槽處於無導頻狀態。 24. 如申請專利範圍第23項所述之無線通訊裝置,其 ® 中導頻組之數量及資料串流之數量具有相同之一數值範 圍,該數值範圍係為5至8。 25. 如申請專利範圍第23項所述之無線通訊裝置,其 中對於每一資料串流雨言,相同時槽被分配之導頻不超過 一個,以最小化功率波動。 26. 如申請專利範圍第23項所述之無線通訊裝置,其 中連續的資源區塊係聯合地被用於通道估測。 27. 如申請專利範圍第23項所述之無線通訊裝置,其 中每組導頻之該第二導頻被向内移動一個頻率音調,以被 分配至一第十三頻率音調或該第十四頻率音調。 28. 如申請專利範圍第23項所述之無線通訊裝置,其 中該資源區塊可被縮減至具有五個連續時槽,其中處於無 導頻狀態之中心處的两個時槽其中之一被移除。 29. 如申請專利範圍第23項所述之無線通訊裝置,其 中該資源區塊可被擴充至具有七個連續時槽,額外之一無 導頻時槽係作為一最大時槽添加,且無需重新分配任一導 頻。 0758-A34157TW MTKI-09-040 37 ,201010365 VII. Patent application scope: 1 · A method comprising: a) defining a resource block in an orthogonal frequency division multiple capture communication system, wherein the resource block is a two-dimensional block having along a frequency tone in the frequency domain and a time slot along one of the time domains; b) determining a specific number of pilots allocated to the resource block based on a set of communication system requirements; and c) two in the frequency domain The pilot is located adjacent to the edge of the resource block to avoid channel extrapolation, and then the remaining pilots in the particular number of pilots are spread over the frequency domain to the greatest extent between the two allocated pilots. 2. The method of claim 1, wherein the set of communication system requirements are set by at least one of a maximum Doppler spread, a maximum delay spread, a + value data rate, and a throughput. 3. The method of claim 2, wherein the decision in step b) includes calculating pilot spacing constraints based on two-dimensional sampling theory. 4. The method of claim 1, wherein the positioning in step c) also includes allocating a substantially equal number of pilot tones along the time domain to minimize power fluctuations. 5. The method of claim 1, wherein the orthogonal frequency division multiple access communication system is a high-order multiple input multiple output system having at least four streams, and the positioning in step c) is corresponding. Repeated for each stream. 6. The method of claim 5, wherein a substantially equal number of pilot tones are averaged along the time domain for each stream: to minimize power fluctuations. 0758-A34157TWF MTKI-09-040 201010365 7. The method of claim 1, further comprising: d) leaving one or more frequency tones at one or more edges of the resource block as none Pilot state to reduce multi-user synchronization error effects. 8. The method of claim 1, further comprising: d) when two or more adjacent resource blocks are available for channel estimation, the reserved frequency domain is located at two edges of the resource block One or more frequency tones such that the pilots at the edges of adjacent resource blocks are sufficiently separated from each other to facilitate channel estimation. 9. The method of claim 1, wherein a selected frequency tone and a selected time slot are used to transmit one of the specific number of pilot tones of the plurality of pilot tones, and none The data symbol is transmitted using the selected frequency tone and the selected time slot. 10. A wireless communication device comprising: a transmitter for transmitting a plurality of pilot tones of a data stream using a two-dimensional resource block, the resource block having a frequency tone along a frequency domain and along a time slot in the time domain; and a pilot allocation module that allocates a specific number of pilot tones of the plurality of pilot tones, wherein the specific number is determined based on a set of communication system requirements, and the frequency is determined In the domain, two pilots are allocated adjacent to the two edges of the resource block, and the remaining pilots in the particular number of pilots are spread over the frequency domain to be evenly spread between the two allocated pilots. 11. The wireless communication device of claim 10, wherein the set of communication system requirements are set by at least one of a maximum Doppler spread, a maximum delay spread, a peak data rate, and a throughput. 0758-A34157TWF MTK1-09-040 34 201010365 12. The wireless communication device of claim 10, wherein a substantially equal number of pilot tones are evenly dispersed along the time domain to minimize power fluctuations. 13. The wireless communication device of claim 10, wherein at least four of the high-order MIMO systems are transmitted using the same resource block. 14. The wireless communication device of claim 13, wherein a substantially equal number of pilot tones for each stream are evenly dispersed along the time ® domain to minimize power fluctuations. 15. The wireless communication device of claim 10, wherein one or more frequency tones at one or more edges of the resource block are reserved in a pilotless state to reduce multi-user synchronization error effect. 16. The wireless communication device of claim 10, wherein when two or more adjacent resource blocks are available for channel estimation, the two edges of the real source block are located in the frequency domain. One or more frequency tones are reserved such that the pilots at the edges of adjacent resource blocks are sufficiently separated from each other to facilitate channel estimation. 17. The wireless communication device of claim 10, further comprising: a plurality of antennas for a multiple input and multiple output system, wherein one of the pilot tones uses a selected frequency tone and a selected time slot. Transmission by an antenna, and no data symbols are transmitted by other antennas using the selected frequency tone and the selected time slot. 18. A wireless communication device comprising: a plurality of transmitters for transmitting a plurality of sets of pilot tones of a plurality of resource streams using a predetermined two-dimensional resource block, respectively Each set of pilot tones includes three pilot tones, and the resource block has 18 consecutive frequency tones along the frequency domain and 6 consecutive time slots along the time domain; and a pilot allocation module, respectively And assigning each set of pilot tones of each resource stream, wherein one of the first pilots of each set of pilot tones is assigned to one of two minimum frequency tones, one of each set of pilot tones and a second pilot system One of the two maximum frequency tones, one of the same set of pilot tones, the third pilot is assigned to one of the two frequency tones at the center of the resource block in the frequency domain, and two at the center The time slot is in a pilotless state. 19. The wireless communication device of claim 18, wherein the number of pilot groups and the number of data streams have the same numerical range, the range of values being 5 to 8. 20. The wireless communication device of claim 18, wherein for each data stream, no more than one pilot is allocated for the same time slot to minimize power fluctuations. 21. The wireless communication device of claim 18, wherein the resource block can be reduced to have five consecutive time slots, wherein one of the two time slots at the center of the no-pilot state Was removed. 22. The wireless communication device of claim 18, wherein the resource block can be expanded to have seven consecutive time slots, and the additional one of the non-pilot time slots is added as a maximum time slot, and Reassign any pilot. 23. A wireless communication device, comprising: a plurality of transmitters, each of which transmits a plurality of sets of pilot tones of a plurality of resource streams by using a predetermined two-dimensional resource block, each set of pilot tones comprising two guides 0758 -A34157TWF MTKI-09-040 ^ 36 201010365 Tone tone, and the resource block has 18 consecutive frequency tones along the frequency domain and 6 consecutive time slots along the time domain; and a pilot allocation module, respectively Generating and assigning each set of pilot tones for each resource stream, wherein one of the first pilots of each set of pilot tones is assigned to a fourth frequency tone or a fifth frequency tone, one of each set of pilot tones The two pilot systems are assigned to a fourteenth frequency tone or a fifteenth frequency tone, and the two time slots at the center are in a pilotless state. 24. The wireless communication device of claim 23, wherein the number of pilot groups in the ® and the number of data streams have the same value range, the range of values is 5 to 8. 25. The wireless communication device of claim 23, wherein for each data stream, the same time slot is allocated no more than one pilot to minimize power fluctuations. 26. The wireless communication device of claim 23, wherein the continuous resource blocks are jointly used for channel estimation. 27. The wireless communication device of claim 23, wherein the second pilot of each set of pilots is shifted inward by a frequency tone to be assigned to a thirteenth frequency tone or the fourteenth frequency Frequency pitch. 28. The wireless communication device of claim 23, wherein the resource block can be reduced to have five consecutive time slots, wherein one of the two time slots at the center of the non-pilot state is Remove. 29. The wireless communication device of claim 23, wherein the resource block can be expanded to have seven consecutive time slots, and the additional one of the non-pilot time slots is added as a maximum time slot, and Reassign any pilot. 0758-A34157TW MTKI-09-040 37 ,
TW098111960A 2008-04-10 2009-04-10 Pilot pattern design method and wireless communications device TWI390936B (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US4376008P 2008-04-10 2008-04-10
US4978608P 2008-05-02 2008-05-02
US7587608P 2008-06-26 2008-06-26
US9450408P 2008-09-05 2008-09-05
US10954608P 2008-10-30 2008-10-30
US15657609P 2009-03-02 2009-03-02
US12/384,705 US8724717B2 (en) 2008-04-10 2009-04-08 Pilot pattern design for high-rank MIMO OFDMA systems

Publications (2)

Publication Number Publication Date
TW201010365A true TW201010365A (en) 2010-03-01
TWI390936B TWI390936B (en) 2013-03-21

Family

ID=41163964

Family Applications (2)

Application Number Title Priority Date Filing Date
TW098111964A TWI423639B (en) 2008-04-10 2009-04-10 Pilot pattern design method,wireless communications device and system for transmission
TW098111960A TWI390936B (en) 2008-04-10 2009-04-10 Pilot pattern design method and wireless communications device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW098111964A TWI423639B (en) 2008-04-10 2009-04-10 Pilot pattern design method,wireless communications device and system for transmission

Country Status (2)

Country Link
US (2) US8724718B2 (en)
TW (2) TWI423639B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI468062B (en) * 2011-12-12 2015-01-01 Intel Mobile Comm Gmbh Communication terminal and method for receiving data

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102394738B (en) * 2006-04-24 2014-09-24 韩国电子通信研究院 Transmitting/receiving method and device of terminal
KR101498060B1 (en) * 2008-02-19 2015-03-03 엘지전자 주식회사 Method for uplink transmittion in an ofdm(a) system
US20090262845A1 (en) * 2008-04-16 2009-10-22 Sung Ho Park Method for transmitting and receiving data using pilot structure
KR20090110208A (en) * 2008-04-16 2009-10-21 엘지전자 주식회사 Method of transmitting data using pilot structure
US8488694B2 (en) * 2008-05-06 2013-07-16 Industrial Technology Research Institute System and method for pilot design
KR101531515B1 (en) 2008-07-04 2015-06-26 엘지전자 주식회사 Wireless communication system with multiple transmission antennas using pilot subcarrier allocation
KR101498059B1 (en) 2008-07-22 2015-03-03 엘지전자 주식회사 Wireless communication system with multiple transmission antennas using pilot subcarrier allocation
US8483149B2 (en) * 2008-12-05 2013-07-09 Nokia Siemens Networks Oy Resource allocation technique for physical uplink control channel blanking
US8649357B2 (en) * 2009-04-23 2014-02-11 Sharp Kabushiki Kaisha Wireless communication system, mobile station apparatus, base station apparatus and wireless communication method
CN102025677B (en) * 2009-09-22 2015-04-22 北京三星通信技术研究有限公司 Method for transmitting pilot signal in multi-carrier wireless transmission system
KR101588747B1 (en) 2010-01-20 2016-02-12 엘지전자 주식회사 Apparatus of transmitting and receiving signal in distributed antenna system
KR101655269B1 (en) * 2010-05-28 2016-09-07 삼성전자주식회사 Apparatus and method for resource segmetation in wireless communication system
US8804671B2 (en) * 2010-07-15 2014-08-12 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for determining UE mobility status
CN102739382A (en) 2011-03-25 2012-10-17 北京新岸线无线技术有限公司 Adjustment method and system for demodulating pilot frequency in wireless communication system
CN103354478A (en) 2011-03-31 2013-10-16 北京新岸线移动多媒体技术有限公司 Method used for realizing link self adaption, network device and terminal device
US8971465B2 (en) 2012-03-30 2015-03-03 Qualcomm Incorporated Receiver-side estimation of and compensation for signal impairments
US20130301563A1 (en) * 2012-05-11 2013-11-14 Samsung Electronics Co., Ltd Pilot design for millimeter wave broadband
CN103687010B (en) * 2012-08-30 2017-07-04 电信科学技术研究院 A kind of method of transmission of reference signals, apparatus and system
US9143365B2 (en) * 2013-01-30 2015-09-22 Qualcomm Incorporated Channel estimation using averaging and interpolation
GB2511797B (en) * 2013-03-13 2020-12-23 Saturn Licensing Llc Transmitters, receivers and methods of transmitting and receiving
US9008203B2 (en) 2013-03-13 2015-04-14 Sony Corporation Transmitters, receivers and methods of transmitting and receiving
WO2014195303A1 (en) 2013-06-05 2014-12-11 Sony Corporation Transmitter and transmission method for transmitting payload data and emergency information
US20150103944A1 (en) * 2013-10-11 2015-04-16 Nippon Hoso Kyokai Mobile communication method and radio terminal
US9867187B2 (en) * 2014-08-04 2018-01-09 Qualcomm Incorporated Techniques for configuring uplink channel transmissions using shared radio frequency spectrum band
KR102655272B1 (en) 2015-12-09 2024-04-08 코히어 테크놀로지스, 아이엔씨. Pilot packing using complex orthogonal functions
EP3420641A4 (en) 2016-02-25 2019-12-11 Cohere Technologies, Inc. Reference signal packing for wireless communications
US10009793B2 (en) * 2016-04-04 2018-06-26 Cisco Technology, Inc. Reverse insertion of management packet into a deterministic track
CN108282312B (en) * 2017-01-06 2020-09-01 电信科学技术研究院 Uplink transmission method, terminal and base station

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1170897B1 (en) * 2000-07-05 2020-01-15 Wi-Fi One Technologies International Limited Pilot pattern design for a STTD scheme in an OFDM system
US7248559B2 (en) 2001-10-17 2007-07-24 Nortel Networks Limited Scattered pilot pattern and channel estimation method for MIMO-OFDM systems
US7046978B2 (en) 2002-02-08 2006-05-16 Qualcomm, Inc. Method and apparatus for transmit pre-correction in wireless communications
US7436757B1 (en) * 2002-06-21 2008-10-14 Nortel Networks Limited Scattered pilot and filtering for channel estimation
US7280467B2 (en) * 2003-01-07 2007-10-09 Qualcomm Incorporated Pilot transmission schemes for wireless multi-carrier communication systems
US7738437B2 (en) * 2003-01-21 2010-06-15 Nortel Networks Limited Physical layer structures and initial access schemes in an unsynchronized communication network
US8843142B2 (en) 2003-08-12 2014-09-23 Godo Kaisha Ip Bridge 1 Radio communication apparatus and pilot symbol transmission method
WO2005088882A1 (en) 2004-03-15 2005-09-22 Nortel Netowrks Limited Pilot design for ofdm systems with four transmit antennas
EP1622290B1 (en) * 2004-07-27 2008-03-05 Broadcom Corporation Method and apparatus for wide bandwidth mixed-mode wireless communications
US7123191B2 (en) 2004-09-23 2006-10-17 Interdigital Technology Corporation Blind signal separation using I and Q components
TWI269544B (en) 2004-09-23 2006-12-21 Interdigital Tech Corp Blind signal separation using array deflection
US9143305B2 (en) 2005-03-17 2015-09-22 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US20090213950A1 (en) * 2005-03-17 2009-08-27 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9461859B2 (en) 2005-03-17 2016-10-04 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
WO2006102771A1 (en) * 2005-03-30 2006-10-05 Nortel Networks Limited Methods and systems for ofdm using code division multiplexing
US8126066B2 (en) * 2005-06-09 2012-02-28 Telefonaktiebolaget Lm Ericsson (Publ) Time and frequency channel estimation
US8059608B2 (en) * 2005-06-14 2011-11-15 Qualcomm Incorporated Transmit spatial diversity for cellular single frequency networks
US7660229B2 (en) * 2005-06-20 2010-02-09 Texas Instruments Incorporated Pilot design and channel estimation
JP4841235B2 (en) * 2005-11-30 2011-12-21 富士通株式会社 Wireless base station, wireless communication method, and wireless communication system
ATE412297T1 (en) * 2005-12-02 2008-11-15 Alcatel Lucent MULTI CARRIER SIGNAL WITH SELECTABLE PILOT PATTERN
US8472424B2 (en) 2006-02-21 2013-06-25 Qualcomm Incorporated Method and apparatus for supporting multiple multiplexing schemes for wireless communication
WO2008013398A1 (en) * 2006-07-28 2008-01-31 Samsung Electronics Co., Ltd. Method and apparatus for positioning pilot in an ofdma mobile communication system
ES2365436T3 (en) * 2006-10-10 2011-10-05 Qualcomm Incorporated MULTIPLEXATION OF ASCENDING LINK PILOTS IN SU-MIMO AND SDMA FOR SC-FDMA SYSTEMS.
JP5092350B2 (en) * 2006-10-26 2012-12-05 富士通株式会社 Pilot signal transmission method and mobile communication system
EP1988676B1 (en) * 2007-05-03 2019-02-20 Telefonaktiebolaget LM Ericsson (publ) Determining a frequency error in a receiver of an wireless ofdm communications system
US20110026482A1 (en) * 2008-03-27 2011-02-03 Postdata Co., Ltd. Method and apparatus for pilot signal transmission
US8406279B2 (en) * 2008-04-09 2013-03-26 Industrial Technology Research Institute System and method for pilot design for data transmitted in wireless networks

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI468062B (en) * 2011-12-12 2015-01-01 Intel Mobile Comm Gmbh Communication terminal and method for receiving data

Also Published As

Publication number Publication date
TWI390936B (en) 2013-03-21
US20090257520A1 (en) 2009-10-15
TWI423639B (en) 2014-01-11
TW201010366A (en) 2010-03-01
US20090257519A1 (en) 2009-10-15
US8724717B2 (en) 2014-05-13
US8724718B2 (en) 2014-05-13

Similar Documents

Publication Publication Date Title
TW201010365A (en) Pilot pattern design method and wireless communications device
EP2277294B1 (en) A resource block based pilot pattern design for 1/2-stream mimo ofdma systems
EP3363250B1 (en) System and method for pilot signal transmission
KR101520667B1 (en) Allocation method of pilot subcarriers in mimo system
US7724777B2 (en) Quasi-orthogonal multiplexing for a multi-carrier communication system
CN109478970B (en) Method and apparatus for transmitting DMRS in wireless communication system
JP2019531633A5 (en)
US9860099B1 (en) Support of frequency diversity mode for block code based transmission in OFDMA
US8711672B2 (en) Wireless communication system using pilot allocation, method and pilot pattern thereof
US8503420B2 (en) Physical structure and design of sounding channel in OFDMA systems
US20190123876A1 (en) Method for operating a radio station in a mobile network
JP5480349B2 (en) Pilot subcarrier allocation method in multi-antenna system
EP2467985B1 (en) Methods and device for operating a radio station in a mobile network
US20230327916A1 (en) Channel estimation, throughput and fairness for multi-user, multipleinput, multiple-output (mu- mimo) systems through dynamic port allocation
AU2011236105A1 (en) Wireless Communication System Using Pilot Allocation, Method and Pilot Pattern Thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees