TW200528709A - 3D stereoscopic x-ray system - Google Patents

3D stereoscopic x-ray system Download PDF

Info

Publication number
TW200528709A
TW200528709A TW93134424A TW93134424A TW200528709A TW 200528709 A TW200528709 A TW 200528709A TW 93134424 A TW93134424 A TW 93134424A TW 93134424 A TW93134424 A TW 93134424A TW 200528709 A TW200528709 A TW 200528709A
Authority
TW
Taiwan
Prior art keywords
dimensional
ray
sensor
image
scan
Prior art date
Application number
TW93134424A
Other languages
Chinese (zh)
Inventor
David C Swift
Sadeg M Faris
Original Assignee
Vrex Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/017,186 external-priority patent/US20030062734A1/en
Application filed by Vrex Inc filed Critical Vrex Inc
Publication of TW200528709A publication Critical patent/TW200528709A/en

Links

Abstract

The present invention provides a means to augment or upgrade a traditional single beam 2D x-ray system to produce 3D stereoscopic output. The system utilizes the cross-sectional beam divergence of a single source x-ray unit to generate perspective information. This is achieved by scanning the object twice where the object is shifted parallel to the cross-sectional beam plane between scans. The resulting two scans can be displayed on a 3D stereoscopic viewing system to produce a 3D stereoscopic representation of the object thus revealing all three-depth dimensions.

Description

200528709 九、發明說明: I:發明戶斤屬之技術領域3 參考相關文件 本申請案是有關申請於西元2001年1〇月31日之第 5 60/334,865號的美國暫時專利申請案,名稱為r3D立體X光 系統與方法」,其内容併此附送。 發明領域 本發明是有關於一種立體X光系統,特別是一種用來檢 查行李之立體X光系統,而毋需額外X光源即可改變現行之 10 二維X光檢查系統者。 L· iltr ]3 發明背景 傳統X光掃猫系統利用卓固定X光束(呈一薄伸展平面 狀的光束)掃瞄移動經過該光束之物件。掃瞄結果是該物件 15的一個二維平面投影圖,係表示X光束穿過該物件之透射強 度。终多系統設有多種敏感性感應器來協助辨別在不同的X 光強度下,物件之各種吸收特性。惟以此系統產生的二維 影像僅能提供在二維方向的空間資訊。傳統系統並無法提 供該第三空間的尺寸或深度。若針對如保全與檢查之用途 20時,此缺少第三維度將會導致遺漏資訊或誤解資訊。此系 統已經發展成利用雙X光束光束來擷取該第三維度。這些裝 置已經成功地驗證。該等雙光束系統乃需要一個對該χ光裝 置而言的新構造,且將需要以新構造取代傳統單光束裝 置。本發明不需要傳統單光束的新構造,因為它是伴隨著 200528709 現行二維x光裝置的平行系統來運作。 【發明内容】 發明概要 本發明提供一種用來加強或提升一傳統單光束二維X 5 光系統之裝置而來產生三維立體輸出者。本系統係利用一 單射源X光單元之橫斷面的分叉光束而來產生透視圖資 訊。此係藉由掃礙該物件兩次,且使該物件在兩次掃猫之 過程中沿著平行於該光束平面之橫斷面方向偏移,而來達 成。兩次掃瞄的結果可以被顯示在一個三維立體觀看系統 10 上,來產生一該物件的三維立體圖像而可以顯示全部三個 深度之尺寸。 圖式簡單說明 第1圖是示出一種傳統X光系統之一正視圖(前視); 第2圖是示出傳統X光系統之一側視圖; 15 第3圖是示出一現行的三維立體X光之運作方式; 第4圖是示出一種形成三維立體X光之側向偏移方法; 第5圖是示出使用一側向偏移方法所產生之立體基礎; 第6圖是示出一側向偏移方法之兩次掃瞄過程; 第7圖是示出一具有對準標記之物件支撐托盤; 20 第8圖是示出一物件移動方向與一立體基礎方向; 第9圖是一附加掃瞄過程之流程圖;及 第10圖是一附加系統之方塊圖。 I:實施方式3 較佳實施例之詳細說明 200528709 第1圖是示出一傳統單光束x光裝置100的正視圖。一χ 光源102是以一個準直儀1〇4成形一薄平面光束型態來產生 χ光此平面型怨光束會通過一物件輸送裝置,或者輸送帶 106,且該要被掃瞄之物件108會被以一線性χ光感應器11〇 5檢測。典型的感應器可感應出高或低能量微粒。該輸送帶 106會移動該物件108穿過掃瞄光束。第2圖是示出第i圖中 之系統的側視圖,而其中之各編號2〇2〜210乃代表第1圖中 之相同元件。 第3圖是示出現行三維立體χ光運作方式3〇〇,其中單χ 10 光源如2被以準直儀304校準成為兩分岔之平面光束。每一 光束指向不同的感應器310及312。當該物件308通過該二光 束時,會產生二具有稍微不同旋轉軸線之物件的視圖。一 旦處理後,該等視圖會形成具有該物件之χ光透視/吸收特 性之三維立體影像。此系統乃需要將傳統χ光裝置修改成為 15 包含兩個感應器,一感應器A 310及另一感應器β 312。 本發明提供一系統來產生三維立體X光影像,以及一用 來加強或修改現行的二維X光系統以提供一個三維立體χ 光影像之裝置。藉由使用傳統X光裝置掃瞄該物件兩次,並 在兩次掃瞄之間稍微地側向偏移該物件,即可擷取兩個影 20 像嗣將該兩影像組合成一個三維立體影像。第4圖是示出使 用傳統二維X光系統來掃瞄一物件,再側向偏移該物件,又 接著再掃瞄物件400—次之概念。該物件406在第一次通過 掃瞄400Α時係被示於一第一位置,而該X光源及輸送帶與 感應器皆與第1、2圖所示者相同。請注意該物件406是由該 200528709 物件406之先前物件位置41〇稍微偏移至右邊物件位置 412,以進行如第二次通過掃瞄4〇〇B所示之第二次掃瞄,且 其中X光源402、輸送裝置404以及感應器408均未改變。此 側向偏移具有使X光發射器光源相對於該物件有偏移之作 5用。該側向偏移係發生在該X光掃瞄光束之一平面中。該χ 光束的定向平面能夠被以一垂直於該平面之向量來表示。 該物件會沿垂直此法線向量來偏移。假使該第一次與第二 次通過掃瞄使用相同之物件位置來結合,其將顯而易見會 產生如第5圖所示之三維立體影像。該有效的立體基礎 10 (stewc)baSe)是依據該物件5〇8之第一次掃瞄位置5〇4相對於 該物件508之第二次掃瞄位置。該有效的立體基礎是與在兩 次掃瞄之間側向偏移量相同。對於熟知此技術者而言,該 所需之側向偏移量係與使用立體照相機演算法所計算出之 立體基礎相同。 15 第6圖示出側向偏移方法600之俯視圖。在第一次掃瞄 期間,該物件602會沿著執道A 6〇6由感應器6〇4底下通過。 在第一次掃瞄之後,一物件偏移系統6〇8會使該物件沿著執 CB 610向右移動,且反轉該輸送帶,使該物件沿著執道匸 612移動向後穿過遠感應器。第一次與第二次掃猫的結果能 20夠被組合成為-個三維立體影像。該第一次掃瞒產生右側 透視圖而第二次掃猫產生左側透視圖。由一成對之左側與 右側影像組合形成-立體影像之過程在三維立體造像中為 習知技術。 第7圖示iB 來托住該物件以便被掃猫之托盤的第 200528709 一實施例700。該托盤702包含一個或多個為金屬或其他質 密材料之對準標諸704,其會顯示在最後掃嘴之麥像上。卞 等對準標誌704被三維立體影像處理器用來對齊該成對之 左側與右側影像。對準左側與右側影像之過程亦為專業人 5 士所習知之技術。 第8圖示出在該觀看監視器800中該物件之行進方向的 差異。傳統的X光系統802會以輸送裝置之行進方向沿著該 監視器804水平的軸線來顯示所掃瞄之物件,本發明會 以輸送裝置之行進方向沿著監視器之垂直轴線來顯示所掃 10瞄之物件,因為该二維立體影像基礎是垂直於輸送帶之行 進方向。 第9圖示出一掃瞄過程之流程圖。該物件會被掃瞄9〇4200528709 IX. Description of the invention: I: The technical field of the inventors 3 Reference to related documents This application is related to the US provisional patent application No. 5 60 / 334,865, dated October 31, 2001. The name is r3D stereo X-ray system and method ", the contents of which are enclosed herewith. FIELD OF THE INVENTION The present invention relates to a three-dimensional X-ray system, particularly a three-dimensional X-ray system for inspecting luggage, without requiring an additional X light source to change the current 10-dimensional X-ray inspection system. L. iltr] 3 Background of the Invention A conventional X-ray cat scanning system uses a fixed X-ray beam (a thin stretched flat beam) to scan objects moving through the beam. The scanning result is a two-dimensional plan view of the object 15, which indicates the transmission intensity of the X-ray beam through the object. Ultimate Multi-System is equipped with multiple sensitive sensors to help identify the various absorption characteristics of objects under different X-ray intensities. However, the two-dimensional images generated by this system can only provide spatial information in two-dimensional directions. Traditional systems cannot provide the size or depth of this third space. For applications such as security and inspection 20, this lack of a third dimension would result in missing or misunderstood information. This system has been developed to use dual X-ray beams to capture this third dimension. These devices have been successfully verified. These two-beam systems require a new configuration for the x-ray device, and will require replacing the traditional single-beam device with a new configuration. The present invention does not require a new construction of a traditional single beam, because it operates with a parallel system of the 200528709 current two-dimensional x-ray device. SUMMARY OF THE INVENTION The present invention provides a device for enhancing or enhancing a conventional single-beam two-dimensional X 5 light system to generate a three-dimensional stereo output. This system uses a split beam of a single source X-ray unit to generate perspective information. This is achieved by obstructing the object twice and offsetting the object along the cross-section direction parallel to the plane of the beam during the two sweeps of the cat. The results of the two scans can be displayed on a three-dimensional stereoscopic viewing system 10 to generate a three-dimensional stereoscopic image of the object that can display all three depth dimensions. Brief Description of the Drawings Figure 1 is a front view (front view) showing one of the conventional X-ray systems; Figure 2 is a side view showing one of the conventional X-ray systems; 15 is a view showing a current three-dimensional The operation method of stereo X-ray; Figure 4 shows a lateral shift method for forming a three-dimensional stereo X-ray; Figure 5 shows the three-dimensional foundation generated by using the lateral shift method; Figure 6 shows The two scanning processes of the lateral offset method are shown; FIG. 7 shows an object support tray with alignment marks; 20 FIG. 8 shows an object moving direction and a three-dimensional base direction; FIG. 9 Is a flowchart of an additional scanning process; and FIG. 10 is a block diagram of an additional system. I: Detailed description of the preferred embodiment of Embodiment 3 200528709 FIG. 1 is a front view showing a conventional single-beam x-ray device 100. A χ light source 102 is formed by a collimator 104 to form a thin planar beam pattern to generate χ light. This planar beam will pass through an object conveying device or a conveyor belt 106, and the object to be scanned 108 Will be detected by a linear X-ray sensor 1105. Typical sensors can detect high or low energy particles. The conveyor belt 106 moves the object 108 through the scanning beam. Fig. 2 is a side view showing the system in Fig. I, and each of the numbers 202-210 represents the same elements in Fig. 1. FIG. 3 shows the current three-dimensional stereo x-ray operation mode 300, in which a single x 10 light source such as 2 is calibrated by a collimator 304 to form a bifurcated planar light beam. Each light beam is directed to a different sensor 310 and 312. When the object 308 passes through the two beams, two views of the object with slightly different rotation axes are produced. Once processed, these views will form a three-dimensional stereoscopic image with the x-ray perspective / absorption characteristics of the object. This system needs to modify the traditional X-ray device to 15 including two sensors, a sensor A 310 and another sensor β 312. The present invention provides a system for generating a three-dimensional stereo X-ray image, and a device for enhancing or modifying an existing two-dimensional X-ray system to provide a three-dimensional stereo X-ray image. By using a conventional X-ray device to scan the object twice, and slightly shifting the object laterally between the two scans, two images can be captured. The two images are combined into a three-dimensional volume. image. Figure 4 shows the concept of scanning an object using a conventional two-dimensional X-ray system, then laterally offsetting the object, and then scanning the object 400-second time. The object 406 is shown in a first position when it is scanned 400A for the first time, and the X light source, the conveyor belt, and the sensor are the same as those shown in Figs. Please note that the object 406 is slightly offset from the previous object position 41o of the 200528709 object 406 to the right object position 412 for the second scan as shown in the second pass scan 400B, and The X light source 402, the conveying device 404, and the sensor 408 are unchanged. This lateral offset serves to offset the X-ray emitter light source relative to the object. The lateral offset occurs in a plane of the X-ray scanning beam. The directional plane of the χ beam can be represented by a vector perpendicular to the plane. The object is offset along this normal vector. If the first and second scans are combined using the same object position, it will obviously produce a three-dimensional image as shown in Figure 5. The effective three-dimensional base 10 (stewc) baSe) is based on the first scanning position 504 of the object 508 relative to the second scanning position of the object 508. This effective stereo basis is the same as the lateral offset between the two scans. For those skilled in the art, the required lateral offset is the same as the stereo basis calculated using a stereo camera algorithm. 15 Figure 6 shows a top view of the lateral offset method 600. During the first scan, the object 602 will pass under the sensor 604 along the road A 606. After the first scan, an object deflection system 608 will move the object to the right along CB 610, and reverse the conveyor belt, so that the object will move backwards along the execution path 612 and pass far away. sensor. The results of the first and second scans can be combined into a three-dimensional stereo image. This first sweep produces a right perspective and the second sweep produces a left perspective. The process of combining a pair of left and right images to form a stereo image is a well-known technique in 3D stereo imaging. Fig. 7 illustrates a 200528709 embodiment 700 of an iB to hold the object so that the cat can be swept. The tray 702 contains one or more alignment marks 704 made of metal or other dense material, which will be displayed on the wheat image of the last sweeping nozzle. The iso-alignment mark 704 is used by the 3D stereo image processor to align the left and right images of the pair. The process of aligning the left and right images is also a technique known to professionals. Fig. 8 shows the difference in the traveling direction of the object in the viewing monitor 800. The conventional X-ray system 802 displays the scanned object along the horizontal axis of the monitor 804 with the traveling direction of the transport device. The present invention displays the scanned object along the vertical axis of the monitor with the traveling direction of the transport device. Scan 10-pointed objects because the two-dimensional stereo image base is perpendicular to the direction of travel of the conveyor belt. FIG. 9 shows a flowchart of a scanning process. The object will be scanned 904

而產生之影像會被以二維立體影像處理,而來儲存成影像A 906。操作者可選擇檢閱該二維影像9〇8並決定是否需要第 15二次掃瞄91()。假使不需要第二次掃瞄,即掃瞄下一個物 件。則泫第一次掃瞄之決定點91〇可被略除,假使所有掃瞄 白扁要二維立體輸出。假若該物件需再被掃瞄以形成一個 二維影像912,該托盤偏移機構914用來側向偏移在輸送裝 置916上之該物件,而該物件會被第二次掃瞄且所產生之影 20像被存成影像B 918。接著,影像A與影像B是在三維空間 上對齊920(習知技術),且最後顯示在一個三維立體顯示裝 置922上。The resulting image will be processed as a two-dimensional stereo image and stored as image A 906. The operator can choose to review the two-dimensional image 908 and decide whether or not a 15th scan 91 () is required. If a second scan is not required, the next object is scanned. Then, the decision point 91 of the first scan can be omitted, if all the scans are to be output in two dimensions. If the object needs to be scanned again to form a two-dimensional image 912, the tray offset mechanism 914 is used to laterally offset the object on the conveying device 916, and the object will be scanned a second time and generated The 20 images of Shadow are saved as image B 918. Next, the image A and the image B are aligned in a three-dimensional space 920 (a conventional technique), and finally displayed on a three-dimensional stereoscopic display device 922.

第10圖示出一推薦系統1〇〇〇之方塊圖。其中該五個方 塊·標準處理器1〇〇2、輸送操縱器1〇〇4、感應器1〇〇6 ' X 200528709 光系統1008以及二維顯示器1()1〇,均在表示一標準χ光處理 系統的粗黑線方塊1011外部。該標準處理器1〇〇2會控制該 輸送系統1004來移動物件通過一由該X光系統1〇〇8產生的 X光束。5亥感應器1〇〇6轉換該X光強度成為一數位形式,而 5再被该標準處理器1〇〇2轉換成一個二維影像。該二維影像 會被顯示在該二維顯示器1010上。 第10圖中之該粗黑線方塊1011示出該附加的三維立體 特徵。該三維立體影像處理器1012會令該標準χ光處理器來 掃瞄該物件,然後使該機械式偏移系統1〇14來側向偏移該 10物件,接著,會令該標準處理器1〇〇2再次掃瞄該物件。該 三維立體影像處理器1012會接受由該標準處理器所形成之 掃瞄影像,或選擇地在它被顯示在二維顯示器之前攔截該 資料(即如點狀資訊線1016所示)。該三維立體影像處理器 1012接著會對齊左側與右側影像(由兩次掃瞄間所獲得)並 U將其顯示在三維顯示系統麵。一光學式三維影像儲存系 統1020可被用來複製被掃瞄之三維χ光影像以供未來參考。 另一個實施例係一種將一個二維χ光系統修改成為三 維立體系統的方法,其中該二維系統包含光源、一準 直儀、一用來輸送物件之輸送系統、一個二維處理器、一 2〇感應器以及-個二維顯示器。該方法包含添加一個三維立 體附加系統,該附加系統包含:一個三維立體影像處理器 與該二維處理器結合;一機械式偏移系統電性連接於該三 、准立體衫像處理器及機械連接於該物件輸送裝置;一個二 維衫像儲存裝置與該三維立體影像處理器結合 200528709 三維顯示器與該三維立體影像處理器結合,其中該三雉立 體附加系統不需要改變二維X光系統之X光的產生、光學、 感應系統等各部分。 三維立體X光系統之另一實施例,係在系統之雨次掃磁 5 之間使物件之位置產生角度變化。在該第一次通過時,該 物件係於一第一位置來通過該檢測系統,且在第二次通過 之前,該物件會繞其移動方向之軸線來旋轉,例如2至5度 之些微角度。該物件會在其旋轉位置來第二次通過。該立 體效果係可由上述類似之立體運算法獲得。 10 於此所述之三維立體X光系統標準運用在輸送行業之 行李與包裹安全上。然而其餘運用在包括醫療上的、品質 控制以及材料檢驗。同樣原理能夠被使用在適用船運貨物 與卡車貨物之大型X光掃瞄器上。該三維立體X光系統的另 一附加特色為:移動之構件可以被顯示出來,而如三維立 15體影像之模糊亂像。由於左側與右側影像在不同的時間點 被指員取,故將可使用二維造像方法來容易地看出類似一鐘 錶機構或其他的移動性裝置。 上述修正系統與方法僅為舉例,應可瞭解該系統與該 修正方法之其他實施例,對業界熟知技藝之人士乃可容易 20實施。所有這樣的實施例與修正變化仍包含在以下專利範 圍所界定之本發明的範疇與精神之中。 【圖式簡單說明】 第1圖是示出—傳統x光系統之-正視圖(前視); 第2圖是示出傳統X光系統之—側視圖; 200528709 第3圖是示出一現行的三維立體X光運作方式; 第4圖是示出一形成三維立體X光之側向偏移方法; 第5圖是示出使用一側向偏移方法產生之立體基礎; 第6圖是示出側向偏移方法之兩次掃瞄過程; 5 第7圖是示出具有對準標記之一物件支撐托盤; 第8圖是示出一移動物件方向與一立體基礎方向; 第9圖是一附加掃瞒過程之流程圖;及 第10圖是一附加系統之方塊圖。 【主要元件符號說明】 100…單光束X光裝置 408、604、1006…感應器 102、402···Χ光源 410…先前物件位置 104、304…準直儀 412…右邊物件位置 106···輸送帶 504…第一次掃瞄位置 108、308、406、508、602…物 600…側向偏移方法 件 606…軌道A 110…X光感應器 608…物件偏移系統 300···Χ光運作方式 610…執道B 302…單X光源 612…執道C 310…感應器A 700…第一實施例 312…感應器B 702…托盤 400…掃瞄物件之概念 704…對準標誌 400A…第一次通過掃瞄 800…觀看監視器 400B…第二次通過掃瞄 802、1008···Χ光系統 404…輸送裝置 804…監視器 12 200528709 1000…推薦系統 1014…機械式偏移系統 1002···標準處理器 1016···點狀資訊線 1004…輸送操縱器 1018…三維顯示系統 1010…二維顯示器 1011…粗黑線方塊 1012…三維立體影像處理器 1020…三維影像儲存系統 13Figure 10 shows a block diagram of a recommendation system 1000. Among them, the five blocks, the standard processor 1002, the transport manipulator 1004, the sensor 1006 'X 200528709 light system 1008, and the two-dimensional display 1 () 10 are all representing a standard χ The thick black line block 1011 of the light processing system is external. The standard processor 1002 controls the transport system 1004 to move objects through an X-ray beam generated by the X-ray system 1008. The sensor 50 converts the X-ray intensity into a digital form, and 5 is converted into a two-dimensional image by the standard processor 1002. The two-dimensional image is displayed on the two-dimensional display 1010. The thick black line box 1011 in FIG. 10 shows the additional three-dimensional solid feature. The 3D stereo image processor 1012 will cause the standard X-ray processor to scan the object, and then cause the mechanical offset system 1014 to laterally offset the 10 objects, and then, the standard processor 1 〇〇2 Scan the object again. The 3D stereo image processor 1012 accepts the scanned image formed by the standard processor, or optionally intercepts the data before it is displayed on the 2D display (ie, as indicated by the dotted information line 1016). The 3D stereo image processor 1012 then aligns the left and right images (obtained between two scans) and displays them on the 3D display system surface. An optical three-dimensional image storage system 1020 can be used to reproduce the scanned three-dimensional x-ray image for future reference. Another embodiment is a method for modifying a two-dimensional x-ray system into a three-dimensional stereo system, wherein the two-dimensional system includes a light source, a collimator, a conveying system for conveying objects, a two-dimensional processor, a 20 sensors and a two-dimensional display. The method includes adding a three-dimensional stereo add-on system. The additional system includes: a three-dimensional stereo image processor is combined with the two-dimensional processor; a mechanical offset system is electrically connected to the three- and three-dimensional shirt image processors and machinery. Connected to the object conveying device; a two-dimensional shirt image storage device is combined with the three-dimensional stereo image processor 200528709 a three-dimensional display is combined with the three-dimensional stereo image processor, wherein the three-dimensional stereoscopic additional system does not need to change the two-dimensional X-ray system X-ray generation, optics, induction system and other parts. Another embodiment of the three-dimensional stereo X-ray system is to change the angle of the position of the object between the magnetic sweeps 5 of the system. During the first pass, the object passes through the detection system at a first position, and before the second pass, the object will rotate about the axis of its moving direction, such as a slight angle of 2 to 5 degrees . The object will pass a second time in its rotated position. The stereo effect can be obtained by a similar stereo algorithm as described above. 10 The three-dimensional stereo X-ray system standard described here is used for luggage and parcel security in the transportation industry. However, the remaining applications include medical, quality control and material inspection. The same principle can be applied to large X-ray scanners suitable for shipping and trucking cargo. Another additional feature of the 3D stereo X-ray system is that moving components can be displayed, such as blurry chaos in a 3D stereo image. Since the left and right images were taken by the accused at different points in time, the two-dimensional imaging method can be used to easily see that it is similar to a clockwork or other mobile device. The above correction system and method are merely examples. It should be understood that the system and other embodiments of the correction method can be easily implemented by those skilled in the art. All such embodiments and modifications are still included in the scope and spirit of the present invention as defined by the following patent scope. [Brief Description of the Drawings] Figure 1 shows a traditional front view of the X-ray system-front view (front view); Figure 2 shows a traditional side view of the X-ray system-side view; 200528709 Figure 3 shows a current 3D stereo X-ray operation; Figure 4 shows a lateral offset method for forming a three-dimensional stereo X-ray; Figure 5 shows a three-dimensional basis generated using the lateral offset method; Figure 6 shows The two scanning processes of the lateral offset method; 5 FIG. 7 shows an object support tray with an alignment mark; FIG. 8 shows a moving object direction and a three-dimensional base direction; FIG. 9 shows A flowchart of an additional concealment process; and Figure 10 is a block diagram of an additional system. [Description of main component symbols] 100 ... Single beam X-ray devices 408, 604, 1006 ... Sensors 102, 402 ... X light source 410 ... Previous object positions 104, 304 ... Collimator 412 ... Right object position 106 ... Conveyor belt 504 ... First scanning position 108, 308, 406, 508, 602 ... Object 600 ... Lateral offset method 606 ... Track A 110 ... X-ray sensor 608 ... Object offset system 300 ... Light operation mode 610 ... B-302 ... Single X light source 612 ... C-310 ... Sensor A 700 ... First embodiment 312 ... Sensor B 702 ... Tray 400 ... Scanning object concept 704 ... Alignment mark 400A … Scanning 800 for the first time ... watching the monitor 400B ... scanning 802, 1008 for the second time ... the X-ray system 404 ... the conveyor 804 ... the monitor 12 200528709 1000 ... the recommended system 1014 ... the mechanical offset system 1002 ... Standard processor 1016 ... Dot-shaped information line 1004 ... Manipulator 1018 ... 3D display system 1010 ... 2D display 1011 ... Thick black line box 1012 ... 3D stereo image processor 1020 ... 3D image storage system 13

Claims (1)

200528709 十、申請專利範圍·· 1· 一種用來掃瞄物件之立體X光系統,包含·· 一 X光源; 一準直儀; 5 10 一物件輪送裝置; 一感應器;及 一物件偏移系統; 其中該物件偏移系統會使該物件沿著一第一軌道 通過該感應ϋ底下而來執行第—次掃瞒;該系統會藉由 雜物件沿著-第二執道移向右側,且反轉該物件^送 /置使。亥物件沿著第三軌道後退移動通過該感應器, 而來執行第二次掃瞄;且 該物件輸送裝置包含一 料之對準標誌。 或以上金屬或其他質密材 2. 如 15 20 次與第二次 申請專利範圍第1項之系統,其中該第 掃猫結果會組合成為—三維立體影像二 Τ=範圍第2項之系統,其中該第-_會產 生一右側透而該第二次掃料產生—左側透視圖。 (I申請專利顔第丨項之系統,其 出現於最狀掃的彡像h 5·如申請專利範圍第4項之 維立體影像處理器用來對其中該對準標誌、係被三 6. -種用來細勿件之立简之左側與右側影像。 -X光源;體Χ光系統’包含: 14 200528709 一準直儀; 一物件輸送裝置; 一感應器;及 一物件偏移系統; 5 、其中亥物件偏移系統會使物件沿著第一軌、首、、 該感應器底下而來執行第-次掃H系統會藉由3 物件繞第-執道之軸線旋轉2至5度,且反轉該物件輪= 裝置,使該物件沿著第三軌道後退移動通過該感應器= 而來執行第二次掃瞒;且 10 該物件輸送裝置包含一或以上金屬或其他質密材 料之對準標誌。 ' 414 7•如申請專利範圍第6項之系統,其中該第_次與第二次 掃猫結果會組合成為一三維立體影像。 8. 如:請專利範圍第7項之系統,其中該第—次掃瞒會產 15 生 幻透視圖且該第二次掃瞄會產生一左側透視圖。 9. 如申請專利範圍第6項之系統,其中該等對準標諸係 出現於最終之掃插影像上。 10•如申1利範圍第9項之系統,其中該對準標諸係被三 維體〜像處理器用來對齊該成對之左側與右側影像。 15200528709 X. Patent application scope 1. A stereo X-ray system for scanning objects, including an X light source; a collimator; 5 10 an object rotation device; a sensor; and an object bias Moving system; where the object offset system will cause the object to perform the first-time concealment along the first track under the sensor; the system will move miscellaneous objects along the second lane to the right And reverse the object ^ send / set. The object moves backward through the sensor along the third track to perform a second scan; and the object transport device includes an alignment mark of the material. Or above metal or other dense materials 2. If 15 20 times and the second application of the scope of the first item of the system, the results of the first scan will be combined into a three-dimensional stereo image 2 T = system of the second item, Among them, the first -_ will produce a right side penetration and the second sweep will produce-a left side perspective view. (I apply for the system of item No. 丨, which appears in the most beautiful image h 5. If the patent application scope of the fourth dimension of the three-dimensional image processor is used to register the alignment mark, it is three. 6.- A kind of left and right images used for detailing. -X light source; body X-ray system 'includes: 14 200528709 a collimator; an object conveying device; a sensor; and an object offset system; 5 In which, the object offset system will make the object perform the first scan along the first track, the first, and the sensor. The H system will rotate the object by 2 to 5 degrees around the axis of the second execution. And reverse the object wheel = device to make the object move backward along the third track and pass the sensor = to perform a second concealment; and 10 the object conveying device contains one or more metals or other dense materials Alignment mark. '414 7 • If the system of the 6th scope of the patent application is applied, the results of the first and second scans will be combined into a three-dimensional stereo image. 8. For example: the system of the 7th scope of the patent Of which the first-time concealment will produce 15 psychic perspectives The second scan will produce a left perspective view. 9. For the system in the scope of patent application No. 6, where the alignment marks appear on the final scan image. The system of 9 items, wherein the alignment marks are used by the three-dimensional body to image processor to align the pair of left and right images. 15
TW93134424A 2001-10-31 2002-10-31 3D stereoscopic x-ray system TW200528709A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US33486501P 2001-10-31 2001-10-31
US10/017,186 US20030062734A1 (en) 2001-10-02 2001-12-07 Device and method for handling fragile objects, and manufacturing method thereof

Publications (1)

Publication Number Publication Date
TW200528709A true TW200528709A (en) 2005-09-01

Family

ID=38646228

Family Applications (2)

Application Number Title Priority Date Filing Date
TW91132298A TWI276371B (en) 2001-10-31 2002-10-31 3D stereoscopic X-ray system
TW93134424A TW200528709A (en) 2001-10-31 2002-10-31 3D stereoscopic x-ray system

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW91132298A TWI276371B (en) 2001-10-31 2002-10-31 3D stereoscopic X-ray system

Country Status (1)

Country Link
TW (2) TWI276371B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI504887B (en) * 2012-12-10 2015-10-21 Nat Inst Chung Shan Science & Technology X - ray tomography
TWI565450B (en) * 2014-05-14 2017-01-11 Diagnostic system and method of human body parts for diagnosis and treatment equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI504887B (en) * 2012-12-10 2015-10-21 Nat Inst Chung Shan Science & Technology X - ray tomography
TWI565450B (en) * 2014-05-14 2017-01-11 Diagnostic system and method of human body parts for diagnosis and treatment equipment

Also Published As

Publication number Publication date
TW200300323A (en) 2003-05-16
TWI276371B (en) 2007-03-11

Similar Documents

Publication Publication Date Title
US6904122B2 (en) 3D stereoscopic X-ray system
Kuhnert et al. Fusion of stereo-camera and pmd-camera data for real-time suited precise 3d environment reconstruction
EP3185046B1 (en) Portable backscatter imaging inspection apparatus and imaging method
JP6184289B2 (en) 3D image processing apparatus, 3D image processing method, 3D image processing program, computer-readable recording medium, and recorded apparatus
Lindner et al. Data-fusion of PMD-based distance-information and high-resolution RGB-images
JP6132275B2 (en) Size measuring apparatus and size measuring method
JP2005530153A (en) Stereoscopic X-ray imaging apparatus for obtaining three-dimensional coordinates
CN105190235A (en) Compensation of a structured light scanner that is tracked in six degrees-of-freedom
JPH09231373A (en) Device for measuring three-dimensional position
JPH0355765B2 (en)
JP5260175B2 (en) Non-contact measuring method and measuring system for measuring coordinates of target surface
Zhang et al. Development of an omni-directional 3D camera for robot navigation
Himpel et al. Three-view stereoscopy in dusty plasmas under microgravity: A calibration and reconstruction approach
JP2008014882A (en) Three-dimensional measuring device
TW200528709A (en) 3D stereoscopic x-ray system
JP2011075336A (en) Three-dimensional shape measuring instrument and method
JP2006220424A (en) X-ray ct inspection device and x-ray ct inspection method
JP2007240197A (en) Three-dimensional shape measuring system
CN111146062B (en) Electron microscope and image processing method
JP3111869B2 (en) Two-dimensional position and orientation measurement method and apparatus
JPH04313052A (en) X-ray inspecting apparatus
JP2006266725A (en) Device for optical measurement
JPH07209573A (en) 3-d vision camera
JP2748294B2 (en) Scanning charged particle microscope
JPH06103950A (en) Three dimensional image forming method in scanning electron microscope