SU681366A1 - Method of the ultrasonic control of condition of a material - Google Patents

Method of the ultrasonic control of condition of a material

Info

Publication number
SU681366A1
SU681366A1 SU772543869A SU2543869A SU681366A1 SU 681366 A1 SU681366 A1 SU 681366A1 SU 772543869 A SU772543869 A SU 772543869A SU 2543869 A SU2543869 A SU 2543869A SU 681366 A1 SU681366 A1 SU 681366A1
Authority
SU
USSR - Soviet Union
Prior art keywords
waves
wave
transverse
order
acoustic
Prior art date
Application number
SU772543869A
Other languages
Russian (ru)
Inventor
Георгий Трофимович Продайвода
Михаил Иванович Толстой
Original Assignee
Киевский Ордена Ленина Государственный Университет Им.Т.Г.Шевченко
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Киевский Ордена Ленина Государственный Университет Им.Т.Г.Шевченко filed Critical Киевский Ордена Ленина Государственный Университет Им.Т.Г.Шевченко
Priority to SU772543869A priority Critical patent/SU681366A1/en
Application granted granted Critical
Publication of SU681366A1 publication Critical patent/SU681366A1/en

Links

Description

(54) СПОСОБ УЛЬТРАЗВУКОВОГО КОНТРОЛЯ СОСТОЯНИЯ МАТЕРИАЛОВ(54) METHOD OF ULTRASONIC CONTROL OF THE CONDITION OF MATERIALS

материалов дополнительно прикладывают механическую нагрузку, направление которой согласуют с элементами симметрии акустического тензора.и по величине относительного изменен1   его главных значений определ ют величины механических напр жений в материале .materials additionally apply a mechanical load, the direction of which is consistent with the symmetry elements of the acoustic tensor. and the magnitude of the relative change1 of its principal values determines the magnitudes of the mechanical stresses in the material.

Способ заключаетс  в следующем. В материале возбуждают в каждом из шести (или более) неэквивалентных произвольно заданных направлений ультразвуковые продольную и две поперечные линейно пол ризованные волны , плоскости пол ризации которых взаимно ортогональны. Вычисл ют дл  каждого направлени  величину, равную сумме квадратов скоростей ульразвуковых волн, и составл ют матрицу компонент акустического тензора:The method is as follows. The material excites in each of six (or more) nonequivalent arbitrarily specified directions ultrasonic longitudinal and two transverse linearly polarized waves, the polarization planes of which are mutually orthogonal. For each direction, a value equal to the sum of the squares of the velocities of the ultrasonic waves is calculated, and the matrix of the components of the acoustic tensor is composed:

(Ъ20  (B20

. ,. ,

в которой благодар  свойствам симмет- 25 ричности число неэависиг влх констант сокращаетс  до шести -,.- where, due to symmetry properties, the number of unavoidable constants is reduced to six -, .-

.(З. . . (H.

Затем рассчитывают главные значе ни  акустического тензора одним из известных способов (решением характеристического уравнени  акустического тензора или методом последовательных приближений с использованием свой ства радиуса - вектора характеристической поверхности акустического тензора ) и по ним суд т об элементах симметрии текстуры.Then, the principal values of the acoustic tensor are calculated by one of the known methods (by solving the characteristic equation of the acoustic tensor or by the method of successive approximations using the radius property — the vector of the characteristic surface of the acoustic tensor) and the symmetry elements of the texture are judged by them.

Дл  определени  напр жений дополнительно нагружают материал извне и измер пот акустический тензор. Сравнивают значение тензоров материала до и после нагружени  и по величине изменени  суд т о величинах механических напр жений в материале.To determine the stresses, the material is additionally loaded from the outside and the acoustic tensor is measured. The value of the material tensors before and after loading is compared and the magnitude of the change is judged on the magnitudes of the mechanical stresses in the material.

Claims (2)

Формула изобретени  1. Способ ультразвукового контрол  состо ни  материалов, заключающийс  в том, что в материале возбуждают продольные и поперечные ультразвуковые волны, измер ют скорости их распространени  и по ним суд т о состо нии материала, отличающийс   тем, что, с целью повышени  точности и производительности контрол  анизотропных материалов, возбуждают одну продольную волну и две поперечные линейно-пол ризованные волны, плоскости пол ризации которых взаимно ортогонсшьны, а скорости распространени  волн измер ют вдоль не менее шести неэквивалентных, произвольно заданных направлений, определ ют компоненты симметричного акустического тензора второго рангаClaim 1. Ultrasonic monitoring of the state of materials, which consists in exciting longitudinal and transverse ultrasonic waves in the material, measuring their propagation speeds and judging them about the state of the material, characterized in that, in order to increase the accuracy and the control performance of anisotropic materials, excite one longitudinal wave and two transverse linearly polarized waves, the polarization planes of which are mutually orthogonal, and the propagation speeds of the waves are measured along not It six nonequivalent arbitrarily given directions, determined components of a symmetric second order tensor acoustic .. где Vwhere v - скорость йродольной вол1 ны в заданном направлении ;—the velocity of the idiol wave in a given direction; V, Vj- скорости поперечных волн распростран ющихс  в том же направлении, но с перпендикул рными направлени ми смещени  в волне, и по его главным значени м суд т об элементах симметрии текстуры.V, Vj are the velocities of the transverse waves propagating in the same direction, but with perpendicular directions of displacement in the wave, and its main values are judged on the elements of symmetry of the texture. 2. Способ ПОП.1, отличающийс  тем, что, с целью определени  напр женного состо ни  неоднородных анизотропных материалов, дополнительно прикладывают механическую нагрузку, направление которой согласуют с элементами симметрии акустического тензора, и по величине относительного изменени  его главных значений определ ют величины механических напр жений в материале.2. Method POP.1, characterized in that, in order to determine the stress state of inhomogeneous anisotropic materials, a mechanical load is additionally applied, the direction of which is consistent with the symmetry elements of the acoustic tensor, and the magnitudes of the mechanical stresses are determined by the magnitude of the relative change in its main values zheny in the material. Источники информацинеприн тые во внимание при экспертизеSources of information are taken into account in the examination 1.Геологи  рудных месторождений, т. 15, 1973, № 5, с. 19-31.1. Geologists of ore deposits, vol. 15, 1973, No. 5, p. 19-31. 2.Авторское свидетельство СССР № 191867, кл. G 01 L 1/14, 1969.2. USSR author's certificate number 191867, cl. G 01 L 1/14, 1969.
SU772543869A 1977-11-09 1977-11-09 Method of the ultrasonic control of condition of a material SU681366A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
SU772543869A SU681366A1 (en) 1977-11-09 1977-11-09 Method of the ultrasonic control of condition of a material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
SU772543869A SU681366A1 (en) 1977-11-09 1977-11-09 Method of the ultrasonic control of condition of a material

Publications (1)

Publication Number Publication Date
SU681366A1 true SU681366A1 (en) 1979-08-25

Family

ID=20733175

Family Applications (1)

Application Number Title Priority Date Filing Date
SU772543869A SU681366A1 (en) 1977-11-09 1977-11-09 Method of the ultrasonic control of condition of a material

Country Status (1)

Country Link
SU (1) SU681366A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4399702A (en) * 1980-11-25 1983-08-23 Hitachi, Ltd. Method of measuring stress distribution in a solid body
US4790188A (en) * 1986-07-18 1988-12-13 Canadian Patents And Development Limited Method of, and an apparatus for, evaluating forming capabilities of solid plate
US4899589A (en) * 1988-04-29 1990-02-13 Iowa State University Research Foundation Semi-automatic for ultrasonic measurement of texture
US4926692A (en) * 1986-04-18 1990-05-22 Polska Akademia Nauk Instytut Podstrowowych Problemow Method of measurement of residual stresses in the material of the object under test
US5048340A (en) * 1988-05-23 1991-09-17 Iowa State University Research Foundation, Inc. Semi-automatic system for ultrasonic measurement of texture
US5251486A (en) * 1988-04-29 1993-10-12 Iowa State University Research Foundation, Inc. Method of ultrasonic measurement of texture

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4399702A (en) * 1980-11-25 1983-08-23 Hitachi, Ltd. Method of measuring stress distribution in a solid body
US4926692A (en) * 1986-04-18 1990-05-22 Polska Akademia Nauk Instytut Podstrowowych Problemow Method of measurement of residual stresses in the material of the object under test
US4790188A (en) * 1986-07-18 1988-12-13 Canadian Patents And Development Limited Method of, and an apparatus for, evaluating forming capabilities of solid plate
US4899589A (en) * 1988-04-29 1990-02-13 Iowa State University Research Foundation Semi-automatic for ultrasonic measurement of texture
US5251486A (en) * 1988-04-29 1993-10-12 Iowa State University Research Foundation, Inc. Method of ultrasonic measurement of texture
US5048340A (en) * 1988-05-23 1991-09-17 Iowa State University Research Foundation, Inc. Semi-automatic system for ultrasonic measurement of texture

Similar Documents

Publication Publication Date Title
Thompson et al. Microstructure‐independent acoustoelastic measurement of stress
US11906472B2 (en) Non-destructive concrete stress evaluation
SU681366A1 (en) Method of the ultrasonic control of condition of a material
US4033182A (en) Method for measuring biaxial stress in a body subjected to stress inducing loads
Noronha et al. An ultrasonic technique for the measurement of residual stress
Levy et al. Ultrasonic attenuation in magnetic single crystals
Buck et al. Crack tip shielding by asperity contact as determined by acoustic measurements
Noronha et al. Residual stress measurement and analysis using ultrasonic techniques
US4462257A (en) Strain sensitive ultrasonic surface wave detector
US7062386B1 (en) Method to estimate the mechanical properties of a solid material subjected to isonification
Khalifa et al. Modeling of the Far-field Acoustic Emission from a Crack under Stress
SU1270626A1 (en) Method of determining third-order elasticity constants
Zhu Stress and strain analysis of plates subjected to transverse wedge impact
RU2810679C1 (en) Ultrasonic method for determining difference in principal mechanical stresses in orthotropic structural materials
Hsiao et al. Nondestructive evaluation of concrete quality and integrity in composite columns
SU949487A1 (en) Method of determination of material stressed state
SU1610433A1 (en) Method of determining speed of propagation of transverse ultrasonic waves through core
Predoi et al. Parametric study of guided waves dispersion curves for composite plates
SU1244552A1 (en) Method of determing third order modulus of material elasticity
Kaplan Recent developments in non-destructive methods of testing concrete with particular reference to the ultrasonic pulse technique
Mikhailova Problems on nonstationary interaction of structural elements with shock waves
Khuri-Yakub et al. Surface Crack Characterization: Geometry and Stress Intensity Factor Measurements
SU1132219A1 (en) Method of determination of mountain rock dynamic modules
Åberg Wave propagation and damage in composite laminates
SU1742661A1 (en) Method for determining mechanical parameters of shell