RU2273102C2 - Способ и устройство для шифрования передач в системе связи - Google Patents

Способ и устройство для шифрования передач в системе связи Download PDF

Info

Publication number
RU2273102C2
RU2273102C2 RU2002111551/09A RU2002111551A RU2273102C2 RU 2273102 C2 RU2273102 C2 RU 2273102C2 RU 2002111551/09 A RU2002111551/09 A RU 2002111551/09A RU 2002111551 A RU2002111551 A RU 2002111551A RU 2273102 C2 RU2273102 C2 RU 2273102C2
Authority
RU
Russia
Prior art keywords
value
encryption
authentication
signature
receiving side
Prior art date
Application number
RU2002111551/09A
Other languages
English (en)
Other versions
RU2002111551A (ru
Inventor
Рамин РЕЗАЙИФАР (US)
Рамин РЕЗАЙИФАР
Рой Ф. Мл. КВИК (US)
Рой Ф. Мл. КВИК
Пол ВИЛЛЬЯМСОН (US)
Пол ВИЛЛЬЯМСОН
Дзун ВАНГ (US)
Дзун ВАНГ
Эдвард Дж. мл. ТИДМАНН (US)
Эдвард Дж. мл. ТИДМАНН
Original Assignee
Квэлкомм Инкорпорейтед
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Квэлкомм Инкорпорейтед filed Critical Квэлкомм Инкорпорейтед
Publication of RU2002111551A publication Critical patent/RU2002111551A/ru
Application granted granted Critical
Publication of RU2273102C2 publication Critical patent/RU2273102C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/04Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks
    • H04L63/0428Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks wherein the data content is protected, e.g. by encrypting or encapsulating the payload
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F21/00Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F21/60Protecting data
    • G06F21/606Protecting data by securing the transmission between two devices or processes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0061Error detection codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0078Avoidance of errors by organising the transmitted data in a format specifically designed to deal with errors, e.g. location
    • H04L1/0083Formatting with frames or packets; Protocol or part of protocol for error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/06Network architectures or network communication protocols for network security for supporting key management in a packet data network
    • H04L63/061Network architectures or network communication protocols for network security for supporting key management in a packet data network for key exchange, e.g. in peer-to-peer networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/08Network architectures or network communication protocols for network security for authentication of entities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/12Applying verification of the received information
    • H04L63/123Applying verification of the received information received data contents, e.g. message integrity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/12Applying verification of the received information
    • H04L63/126Applying verification of the received information the source of the received data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/16Implementing security features at a particular protocol layer
    • H04L63/162Implementing security features at a particular protocol layer at the data link layer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/16Implementing security features at a particular protocol layer
    • H04L63/164Implementing security features at a particular protocol layer at the network layer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/12Transmitting and receiving encryption devices synchronised or initially set up in a particular manner
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
    • H04L9/3236Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials using cryptographic hash functions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/32Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials
    • H04L9/3247Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols including means for verifying the identity or authority of a user of the system or for message authentication, e.g. authorization, entity authentication, data integrity or data verification, non-repudiation, key authentication or verification of credentials involving digital signatures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/02Protecting privacy or anonymity, e.g. protecting personally identifiable information [PII]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/03Protecting confidentiality, e.g. by encryption
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/06Authentication
    • H04W12/069Authentication using certificates or pre-shared keys
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/10Integrity
    • H04W12/108Source integrity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/12Detection or prevention of fraud
    • H04W12/121Wireless intrusion detection systems [WIDS]; Wireless intrusion prevention systems [WIPS]
    • H04W12/122Counter-measures against attacks; Protection against rogue devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2221/00Indexing scheme relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F2221/21Indexing scheme relating to G06F21/00 and subgroups addressing additional information or applications relating to security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
    • G06F2221/2113Multi-level security, e.g. mandatory access control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2209/00Additional information or applications relating to cryptographic mechanisms or cryptographic arrangements for secret or secure communication H04L9/00
    • H04L2209/34Encoding or coding, e.g. Huffman coding or error correction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2209/00Additional information or applications relating to cryptographic mechanisms or cryptographic arrangements for secret or secure communication H04L9/00
    • H04L2209/80Wireless

Abstract

Изобретение относится к области радиосвязи и, более конкретно, к способам и устройству для обеспечения защищенных передач в системе радиосвязи. Сущность способа и устройства для шифрования трафика передачи на отдельных уровнях протокола состоит в том, что отдельным элементам шифрования назначают отдельные типы трафика передачи, что позволяет реализовать различные уровни шифрования в соответствии с требованиями услуг. Элементы шифрования используют входные сигналы переменной величины, называемые криптосинхронизациями, вместе с полупеременными ключами шифрования для защиты от попыток преодоления защиты путем копирования информации посторонними подвижными станциями. Также предусмотрен способ синхронизации значений криптосинхронизации алгоритма шифрования в подвижной и базовой станции. Технический результат - создание более надежных и защищенных процессов шифрования для защиты пользователей услуг радиосвязи и провайдеров услуг. 8 н. и 6 з.п. ф-лы, 12 ил.

Description

ОБЛАСТЬ ТЕХНИКИ
Настоящее изобретение относится к области радиосвязи и, более конкретно, к способам и устройству для обеспечения защищенных передач в системе радиосвязи.
ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ
Современная система связи должна поддерживать множество приложений. Примером такой системы связи является система множественного доступа с кодовым разделением каналов (МДКР), которая соответствует "Стандарту TIA/EIA/IS-95 совместимости подвижной станции с базовой станцией для двухрежимной широкополосной сотовой системы с расширенным спектром", далее упоминаемому как стандарт IS-95, или система МДКР, которая соответствует "Стандарту TIA/EIA/IS-2000 для систем расширенного спектра, mdcr 2000", далее упоминаемому как стандарт IS-2000. Еще одним стандартом МДКР является стандарт W-CDMA (широкополосный МДКР), как описано в Партнерском Проекте 3-го поколения "3GPP" документы №№3G TS 25.211, 3G TS 25.212, 3G TS 25.213 и 3G TS 25.214. Система МДКР позволяет использовать речевую связь и передачу данных между пользователями посредством наземной линии связи. Использование способов МДКР в системе связи множественного доступа раскрыто в патенте США №4901307 на "Систему связи множественного доступа расширенного спектра, использующую спутниковые или наземные ретрансляторы", и патенте США №5103459 на "Систему и способ для формирования сигналов в сотовой телефонной системе МДКР", права на которые переуступлены владельцу настоящего изобретения и которые включены в настоящее описание посредством ссылки. Другими примерами систем связи являются системы множественного доступа с временным разделением каналов (МДВР) и системы множественного доступа с частотным разделением каналов (МДЧР).
В этом описании понятие "базовая станция" относится к аппаратным средствам, с которыми осуществляют связь удаленные станции. Понятие "сотовая ячейка" относится к аппаратным средствам или географической области покрытия в зависимости от контекста, в котором используется это понятие. Сектор - это часть ячейки. Так как сектор системы МДКР имеет атрибуты ячейки, то все, что описано в контексте ячеек, относится и к секторам.
В системе МДКР связь между пользователями осуществляется через одну или более базовых станций. Первый пользователь одной удаленной станции взаимодействует со вторым пользователем второй удаленной станции путем передачи данных по обратной линии связи в базовую станцию. Базовая станция принимает данные и может направлять данные в другую базовую станцию. Данные передаются по прямой линии связи той же самой базовой станции или второй базовой станции ко второй удаленной станции. Прямая линия связи относится к передаче от базовой станции к удаленной станции, а обратная линия связи относится к передаче от удаленной станции к базовой станции. В системах стандартов IS-95 и IS-2000 в дуплексном режиме с частотным уплотнением (ДЧУ) для прямой линии связи и для обратной линии связи выделяются отдельные частоты.
В области радиосвязи защищенность передач по каналу радиосвязи стала чрезвычайно важным аспектом в системах связи. Защищенность обеспечивается с помощью протоколов шифрования, которые препятствуют раскрытию частных передач между сторонами и/или препятствуют доступу к услугам посторонних подвижных станций, оплата за которые не произведена провайдеру услуг связи. Шифрование - это процесс, посредством которого данными манипулируют с помощью случайного процесса так, что данные становятся неразличимыми для всех, кроме предполагаемого получателя. Дешифрование является просто процессом восстановления исходных данных. Одним из алгоритмов шифрования, обычно используемым в промышленности, является ЕСМЕА (Усовершенствованный алгоритм шифрования сообщения сотовой системы связи), который является блочным шифром. Из-за усложнения современных средств взлома кодов и с учетом возможностей "хакеров" в настоящее врем существует потребность в создании более надежных, более защищенных процессов шифрования для защиты пользователей услуг радиосвязи и провайдеров услуг.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Заявлен новый усовершенствованный способ и устройство для шифрования передач, причем способ шифрования трафика передачи включает генерирование переменного значения и ввод переменного значения ключа шифрования и трафика передачи в алгоритм шифрования.
В одном аспекте заявлен способ для передачи переменных аутентификации от передающей стороны к принимающей стороне, причем способ включает генерирование значения криптосинхронизации на передающей стороне; генерирование первой сигнатуры аутентификации из значения криптосинхронизации и ключа шифрования на передающей стороне; передачу значения криптосинхронизации и первой сигнатуры аутентификации к принимающей стороне; генерирование второй сигнатуры аутентификации из значения криптосинхронизации и ключа шифрования на принимающей стороне; приращение значения криптосинхронизации на принимающей стороне, если первая сигнатура аутентификации и вторая сигнатура аутентификации совпадают; и запрашивание обмена ключом шифрования, если первая сигнатура аутентификации и вторая сигнатура аутентификации не совпадают.
В другом аспекте заявлен способ для синхронизации значений криптосинхронизации алгоритма шифрования на передающей стороне и принимающей стороне, причем способ включает передачу кадра зашифрованного сообщения к принимающей стороне; проверку текущего значения криптосинхронизации, связанного с кадром зашифрованного сообщения на принимающей стороне; приращение текущего значения криптосинхронизации на передающей стороне и на принимающей стороне, если подтверждена правильность текущего значения криптосинхронизации; и передачу сообщения о сбое принимающей стороны к передающей стороне, если не подтверждена правильность текущего значения криптосинхронизации.
Еще в одном аспекте заявлена система для шифрования трафика передачи, причем трафик передачи содержит по меньшей мере два типа трафика, при этом система содержит по меньшей мере два элемента шифрования, причем каждый из по меньшей мере двух элементов шифрования связан по меньшей мере с одним из по меньшей мере двух типов трафика; и по меньшей мере один генератор номера последовательности для генерирования множества номеров последовательности, причем по меньшей мере один генератор номера последовательности связан по меньшей мере с двумя элементами шифрования.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Признаки, задачи и преимущества настоящего изобретения поясняются в подробном описании, изложенном ниже со ссылками на чертежи, на которых представлено следующее:
Фиг.1 - блок-схема приведенной для примера системы МДКР;
Фиг.2 - блок-схема архитектуры схемы шифрования;
Фиг.3А, 3В, 3С и 3D - образцы структур кадра передачи;
Фиг.4 - блок-схема процесса преобразования незашифрованного блока данных и зашифрованный блок данных;
Фиг.5 - структура кадра передачи для трафика пакетных данных;
Фиг.6 - диаграмма приведенной для примера передачи сигналов от подвижной станции к базовой станции;
Фиг.7 - диаграмма успешного обмена криптосинхронизацией между ЛПС (легитимной подвижной станцией) и базовой станцией;
Фиг.8 - диаграмма процедуры попытки нарушения защиты путем копирования информации;
Фиг.9 - диаграмма обмена ключами шифрования после неудачи регистрации;
Фиг.10 - кадр передачи в приведенной для примера системе связи;
Фиг.11 - диаграмма сигналов передачи, согласно которой базовая станция обнаруживает сбой шифрования; и
Фиг.12 - диаграмма сигналов передачи, согласно которой подвижная станция обнаруживает сбой шифрования.
ПОДРОБНОЕ ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ
Приведенные для примера варианты осуществления, описанные ниже, относятся к радиотелефонной системе связи, конфигурированной для использования интерфейса радиосвязи МДКР. Тем не менее, специалистам в данной области техники должно быть понятно, что способ и система для шифрования передач могут быть использованы любой из известных систем связи.
ПРИМЕР СИСТЕМЫ МДКР
Как показано на фиг.1, радиотелефонная система 10 МДКР обычно включает множество подвижных абонентских устройств 12, множество базовых станций 14, контроллеры 16 базовых станций (КБС) и центр коммутации мобильной связи (ЦКМС) 18. ЦКМС конфигурирован для сопряжения с обычной коммутируемой телефонной сетью общего пользования (КТСОП) 22, узлом 20 услуги передачи пакетных данных (УУПД) или функции межсетевого сопряжения (ФМС) и с сетью 24 протокола Интернет (IP) (в типовом случае с сетью Интернет). ЦКМС также конфигурирован для сопряжения с КБС 14. КБС 14 соединены с базовыми станциями 12 двусторонними линиями связи. Двусторонние линии связи могут быть конфигурированы для поддержки любого из нескольких известных интерфейсов, включая, например, Е1/Т1, ATM (асинхронный режим передачи), IP, ретрансляция кадров, HDSL (высокоскоростная цифровая абонентская линия), ADSL (асимметричная цифровая абонентская линия) или xDSL (х цифровая абонентская линия). Понятно, что может быть более двух КБС 16 в системе. Каждая базовая станция 14 преимущественно имеет по меньшей мере один сектор (не показан), причем каждый сектор содержит ненаправленную антенну или антенну, ориентированную в определенном направлении радиально от базовой станции 14. Альтернативно каждый сектор может содержать две антенны для разнесенного приема. Каждая базовая станция 14 может быть преимущественно предназначена для поддержки множества распределений частот. Сектор и распределение частоты могут определять канал МДКР. Базовые станции 14 также известны как подсистемы приемопередатчика базовых станций (ППБС) 14. Альтернативно понятие "базовая станция" может быть отнесено совместно к КБС 16 и одной или более ППБС 14. ППБС 14 могут быть также обозначены как "станции сотовых ячеек" 14. Альтернативно отдельные секторы данной ППБС 14 могут определяться как станции сотовых ячеек. Подвижные абонентские станции 12 обычно являются сотовыми телефонами или телефонами СПС (системы персональной связи). Система преимущественно конфигурирована для использования в соответствии со стандартом IS-95.
Во время обычной работы сотовой телефонной системы базовые станции 14 принимают множество сигналов обратной линии связи от множества подвижных станций 12. Подвижные станции 12 осуществляют телефонные вызовы или передают другие сообщения. Каждый сигнал обратной линии связи, принимаемый данной базовой станцией 14, обрабатывается этой базовой станцией 14. Полученные в результате данные передаются в КБС 16. КБС 16 обеспечивают распределение ресурсов вызова и функциональные возможности управления мобильным обслуживанием, включая обеспечение процедур "гибких" передач обслуживания между базовыми станциями 14. КБС 16 также направляют принятые данные в ЦКМС 18, который обеспечивает дополнительные услуги маршрутизации для сопряжения с КТСОП 22 или УУПД 20. Аналогично КТСОП 22 или УУПД 20 взаимодействует с ЦКМС 18, а ЦКМС 18 взаимодействует с КБС 16, которые, в свою очередь, управляют базовыми станциями 14 для передачи множества сигналов прямой линии связи к множеству подвижных станций 12. Специалистам должно быть понятно, что абонентские станции 12 в альтернативных вариантах осуществления могут быть стационарными станциями.
АРХИТЕКТУРА
Фиг.2 иллюстрирует пример архитектуры для схемы шифрования, которая может быть использована для шифрования речевого трафика, трафика данных и системных услуг, причем архитектура может быть реализована как на передающей стороне, так и на принимающей стороне. Структура схемы шифрования позволяет каждый из трех перечисленных типов трафика шифровать для обеспечения максимальной эффективности на отдельных уровнях, если это требуется. Как известно в данной области техники, иерархическое представление (разделение на уровни) является способом организации протоколов связи с использованием хорошо определенных пакетированных (инкапсулированных) блоков данных между разъединенными в иных аспектах объектами обработки, т.е. уровнями. В примере осуществления, проиллюстрированном на фиг.2, используются три уровня протоколов L1 220, L2 210 и L3 200, при этом L1 220 обеспечивает передачу и прием радиосигналов между базовой станцией и подвижной станцией, L2 210 обеспечивает корректную передачу и прием сообщений сигнализации, а L3 обеспечивает передачу сообщений управления для системы связи.
На уровне L3 200 речевой трафик 201, трафик 203 пакетных данных и системные услуги 205 передаются посредством блоков данных, сформированных в соответствии со стандартами, упомянутыми выше. Однако шифрование выполняется на этом уровне для блоков данных, относящихся к системным услугам (далее телеуслугам) 205, но шифрование не выполняется для трафика 203 пакетных данных или речевого трафика 201. В этом варианте осуществления шифрование трафика 203 пакетных данных и речевого трафика 201 реализуется с помощью более низких уровней.
Генератор 202 ENC_SEQ (последовательность шифрования) обеспечивает номер последовательности, который используется для формирования значения криптосинхронизации. В одном аспекте осуществления четыре наименее значащих бита номера последовательности используются для формирования значения криптосинхронизации. Значение криптосинхронизации является переменной, которая вводится в алгоритм шифрования вместе с ключом шифрования. Алгоритм шифрования генерирует маску, посредством которой незашифрованные данные шифруются. Криптосинхронизации отличаются от ключей шифрования тем, что ключ шифрования является полупостоянным совместно используемым "секретом", в то время как значение криптосинхронизации будет изменяться по отношению к блокам данных, передаваемым по линии связи для обеспечения защиты от попытки нарушения защиты путем копирования. В этом варианте осуществления значение криптосинхронизации будет изменяться ввиду зависимости либо от генерированного номера последовательности, системного времени, либо любого другого указанного идентификатора. Следует заметить, что можно изменить число битов, используемых для значения криптосинхронизации без изменения объема данного варианта осуществления.
Значение криптосинхронизации вводится в элементы 204 шифрования вместе с данными из элемента сигнализации 207 L3 и элемента 205 телеуслуг. Телеуслуги могут включать услуги передачи коротких пачек данных, услуги передачи коротких сообщений, услуги определения местоположения и т.д. На фиг.2 отдельный элемент 204 шифрования выделяется для обработки каждого выходного сигнала системной услуги. Преимуществом этой структуры является то, что каждая услуга может определить уровень шифрования, необходимый в соответствии с требованиями услуги. Однако может быть реализован альтернативный вариант осуществления, в котором элемент шифрования может совместно использоваться множеством системных услуг. В рассматриваемом варианте осуществления выходные сигналы элементов 204 шифрования мультиплексируются в элементе 206 мультиплексора/демультиплексора. В альтернативном варианте осуществления кадры трафика данных из элемента 203 пакетных данных также шифруются на уровне L3 200.
На уровне L2 210 выходной сигнал из элемента мультиплексора/демультиплексора проходит через блок 206 КДЗС (контроля доступности звеньев сигнализации). На уровне L1 200 кадры сообщения из элемента 203 пакетных данных проходят через уровень 225 протокола линии радиосвязи (ПЛРС), на котором шифрование производится на основе значений криптосинхронизации, сформированных с использованием номеров последовательности ПЛРС. В этом варианте осуществления уровень 225 ПЛРС находится в уровне L2 210 и несет ответственность за повторную передачу трафика пакетных данных, когда возникает ошибка передачи. Кадры речевого трафика из речевого элемента 201 шифруются отдельно в элементе 221 шифрования для того, чтобы предпочтительным образом использовать системное время как часть значения криптосинхронизации для каждого речевого кадра, а не номера последовательности из элемента 202 генератора ENC_SEQ.
Выходные сигналы элемента 221 шифрования, уровня 225 ПЛРС и блока КДЗС 206 мультиплексируются вместе на подуровне 227 мультиплексирования и определения качества обслуживания.
Эта архитектура обеспечивает множество преимуществ. Во-первых, каждая из телеуслуг и элементов сигнализации L3 на уровне L3 может задавать уровень защищенности для шифрования, реализуемый каждым из соответствующих соединенных элементов шифрования.
Во-вторых, каждый из типов трафика может выгодно использовать системные ресурсы для формирования значения криптосинхронизации для каждого кадра трафика. Например, кадры речевого трафика не имеют дополнительного места для переноса ENC_SEQ. Однако системное время может быть использовано как замена, так как системное время изменяется от кадра к кадру, и системное время неявно известно как на передающей стороне, так и на принимающей стороне. Системное время не должно быть использовано для шифрования трафика пакетных данных и телеуслуг. Если системное время используется для формирования значения криптосинхронизации, шифруемые данные должны шифроваться непосредственно перед передачей, чтобы использовать системное время при передаче. Следовательно, зашифрованные кадры не могут буферизироваться. Если используется номер последовательности ПЛРС или номер ENC_SEQ, то кадры передачи могут быть зашифрованы и временно запомнены в буфере до передачи. Кроме того, выгодно использовать величину ENC_SEQ, а не номер последовательности сообщения MSG_SEQ, так как сброс (установка в исходное состояние) уровня КДСЗ вызывает шифрование другого незашифрованного текста с использованием той же самой маски шифрования, что привело бы к снижению защищенности, обеспечиваемой процессом шифрования.
В-третьих, помещение элементов шифрования на уровне выше КДЗС решает проблему эффективности. Если шифрование/дешифрование происходило на физическом уровне, тогда потребовалось бы шифровать и расшифровывать поля ЗАПП, прежде чем можно было бы передать подтверждение приема (ПП). ЗАПП - акроним запроса автоматической повторной передачи, который является способом для проверки переданных данных посредством передачи подтверждений и негативных подтверждений. Другой трудностью, которая возникает, если шифрование/дешифрование происходит на физическом уровне, является то, что биты проверки циклическим избыточным кодом (ЦИК), используемые для определения ошибок передачи в приемнике, должны вычисляться на основе незашифрованных данных.
ШИФРОВАНИЕ СООБЩЕНИЙ СИГНАЛИЗАЦИИ
На Фиг.3А, 3В, 3С и 3D представлены альтернативные структуры для формирования кадров передачи в возможном варианте осуществления. Кадр 300 передачи формируется со следующими полями: поле 301 длины сообщения, поле 302 типа сообщения, поле 303 управления доступом к линии связи, которое обобщенно представляет различные поля ЗАЛП, поле 304 идентификации сообщения, поле 305 сообщения, поле 306 номера последовательности шифрования, поле 307 идентификации шифрования и поле 308 проверки ЦИК сообщения. В одном варианте осуществления шифрование применяется только для определенных полей кадра передачи. На фиг.3А и фиг.3В зашифровано поле 303 КДЗС. Однако шифрование поля 303 КДЗС проблематично, когда сигналы попыток доступа передаются из подвижной станции в базовую станцию, но базовая станция определяет, что передача сигналов попыток доступа должна быть остановлена с помощью ПП. В частности, если подвижная станция не может расшифровать поле КДЗС кадра сообщения от базовой станции, то подвижная станция не прекратит посылать сигналы попыток доступа до тех пор, пока не будет послано максимальное число сигналов попыток доступа.
На фиг.3А и фиг.3D зашифровано поле 308 проверки ЦИК сообщения. Однако шифрование битов ЦИК делает невозможной проверку правильности поля 301 длины сообщения. Следовательно, фиг.3С является предпочтительным кадром передачи, который используется в приведенном для примера варианте осуществления.
ГЕНЕРИРОВАНИЕ МАСКИ ШИФРОВАНИЯ
Фиг.4 иллюстрирует параметры, которые используются для шифрования данных в примере осуществления, в котором блок данных несет трафик пакетных данных. Криптосинхронизация 400 содержит номер последовательности 401 шифрования, ссылочный идентификационный номер 402 услуги, также известный как sr_id, и битовое значение для направления передачи 403. sr_id определяет услугу данных, которой соответствует sr_id. Криптосинхронизация 400 и ключ 410 шифрования вводятся в алгоритм 420 шифрования, такой как ЕСМЕА, как упомянуто выше. Следует заметить, что в этом варианте осуществления могут быть использованы другие схемы шифрования, что не оказывает влияния на объем этого варианта осуществления. К блоку данных применяется алгоритм 420 шифрования для того, чтобы получить из блока данных зашифрованный текст.
Обычно конкретное значение криптосинхронизации определяется для каждого блока данных, который должен быть зашифрован. Следовательно, каждое значение криптосинхронизации приводит в результате к различному зашифрованному тексту, даже для одного и того же нешифрованного текста.
Как проиллюстрировано выше, шифрование на уровне ПЛРС выполняется посредством использования номера расширенной последовательности, sr_id и направления канала. Эти три переменные содержат криптосинхронизацию для использования с трафиком пакетных данных. В некоторых случаях трафик пакетных данных может быть упакован в кадры, которые указывают короткую пачку данных (КПД), в которой упакованные кадры передаются по общим каналам. Фиг.5 иллюстрирует пример упакованного кадра ПЛРС, в котором зашифрованы поля ЗАПП. В кадре 500 полезная нагрузка сообщения 505 пачки данных содержит три поля: поле 506 sr_id, поле 507 номера последовательности и зашифрованный кадр 508 ПЛРС.
Фиг.6 - диаграмма примера обмена между элементами на уровнях протокола. В подвижной станции 600 короткая пачка данных (КПД) должна быть зашифрована и передана в базовую станцию 650. Элемент 610 ПЛРС принимает указание данных и данные из приемника преобразования данных (ППД) 602. ПЛРС 610 передает блок служебных данных (БСД) с номером последовательности, данными и sr_id в элемент телеуслуги КПД (ТУКПД) 612, который является частью телеуслуг на уровне L3. ТУКПД 612 передает другой БСД, содержащий информацию из ПЛРС 610 и команду идентификатора шифрования (ИДШ), на элемент 614 шифрования. Элемент 614 шифрования передает информацию кадра сообщения и зашифрованную информацию из предыдущих элементов в элемент 616 L2/мультиплексирования. Элемент 616 L2/мультиплексирования формирует кадр 620 сообщения для передачи по радиоканалу в базовую станцию 650. Базовая станция 650 передает подтверждение 621 в подвижную станцию 600. В базовой станции информация из кадра сообщения обрабатывается согласно соответствующим элементам, которые генерировали содержание кадра сообщения. Следовательно, элемент 622 L2/демультиплексирования обрабатывает информацию, добавленную элементом 616 L2/мультиплексирования, элемент 624 шифрования обрабатывает информацию, добавленную элементом 614 шифрования, элемент 626 ТУКПД обрабатывает информацию, добавленную элементом 612 ТСКПД, а элемент 628 ПЛРС обрабатывает информацию, добавленную элементом 610 ПЛРС, и данные переносятся в ППД 630.
СИНХРОНИЗАЦИЯ КРИПТОСИНХРОНИЗАЦИИ
В описании вариантов осуществления, приведенном выше, защита процесса шифрования реализуется посредством использования криптосинхронизации защиты, причем криптосинхронизация, используемая для шифрования конкретного блока данных, отличается от криптосинхронизации, используемой для шифрования других блоков данных. Следовательно, базовая станция и подвижная станция должны иметь возможность генерировать одну и ту же криптосинхронизацию для кодирования и декодирования одних и тех же данных в соответствующее время. Для поддержки синхронизации криптосинхронизаций, генерируемых подвижной станцией и базовой станцией необходимо осуществить определенные передачи по радиоканалу. Однако передачи по радиоканалу открыты для попыток преодоления защиты посторонними подвижными станциями (ППС). В предложенных схемах защиты базовая станция отклоняет прием значения криптосинхронизации, предложенного подвижной станцией, до тех пор, пока подвижная станция не докажет, что она является легитимным абонентом. Отклонение приема значения криптосинхронизации препятствует "попытке преодоления защиты копированием информации", когда ППС вынуждает базовую станцию применить одну и ту же маску шифрования к двум различным открытым текстам, что снижает защиту шифрованием. Например, предположим, что Е - зашифрованный текст, Р - открытый (нешифрованный) текст, а М - маска шифрования. Если криптосинхронизация является одной и той же для открытого текста Р и открытого текста Р', тогда Е=М+Р и Е'=М+Р', при использовании сложения по модулю 2. Следовательно, Е+Е'=Р+Р'. Даже, если ППС не знает маску М шифрования, открытый текст Р и открытый текст Р' могут быть определены. Следовательно, в конкретном примере попытки преодоления защиты ППС может передать повторные сообщения регистрации в базовую станцию, которые обусловили бы в базовой станции использовать ту же самую криптосинхронизацию.
В одном из вариантов осуществления между легитимной подвижной станцией (ЛПС) и базовой станцией поддерживается синхронизация наиболее значимых (старших) битов криптосинхронизации для обеспечения эффективности шифрования. В рассматриваемом примере осуществления ЛПС в процессе регистрации передает переменные параметры процедуры аутентификации, которые содержат старшие биты криптосинхронизации, и сигнатуру для аутентификации. Старшие биты криптосинхронизации далее обозначены как CD_h. Пример процесса регистрации подвижной станции, входящей в зону действия базовой станции, описан в патенте США №5289527 на "Способ регистрации устройства мобильной связи", включенном в настоящее описание посредством ссылки.
Фиг.7 иллюстрирует успешный обмен криптосинхронизацией между ЛПС 700 и базовой станцией 710. ЛПС 700 передает сообщение 720 регистрации в базовую станцию 710, причем сообщение регистрации содержит поля, несущие CS_h и сигнатуру для аутентификации. В одном из вариантов осуществления сигнатура для аутентификации вычисляется с использованием криптосинхронизации CS_h и ключа шифрования (Ks) и защищенной хэш-функции. Далее сигнатура криптосинхронизации или сигнатура для аутентификации обозначаются как f (CS_h, Ks).
Как описано выше, базовая станция 710 защищена от вышеупомянутой попытки преодоления защиты, осуществляемой ППС, так как ППС не может вычислить действительную сигнатуру аутентификации для CS_h.
В альтернативном варианте осуществления защищенные передачи между базовой станцией и ЛПС защищены от ППС, которая зарегистрировала сообщение регистрации от ЛПС. Для того, чтобы предотвратить случай, когда ППС вынуждает базовую станцию использовать одну и ту же CS_h, которая предназначена для использования с ЛПС, в базовой станции может быть предусмотрено использование приращения младшим битам криптосинхронизации каждый раз, когда сообщение из подвижной станции загружается в базовую станцию. Младшие биты криптосинхронизации далее обозначаются как CS_1. Следовательно, значение криптосинхронизации содержит CS_h, взаимосвязанное с CS_1. В этом варианте осуществления можно предотвратить в базовой станции повторное использование одинаковых криптосинхронизаций в процессе шифрования. В тех случаях, когда базовая станция не имеет предыдущего значения CS_1, связанного с ЛПС, базовая станция может либо генерировать CS_1 случайным образом, либо установить значение CS_1, равным 0.
Фиг.8 иллюстрирует пример попытки преодоления защиты путем воспроизведения записанной информации. ЛПС 700 передает легитимное сообщение 720 регистрации в базовую станцию 710. ППС 730 посылает регистрационное сообщение 720 и посылает скопированное сообщение 740 регистрации в базовую станцию 710. Базовая станцию 710 не будет использовать то же самое значение криптосинхронизации, как для ЛПС, так как младшие биты криптосинхронизации получили приращение.
Если базовая станция не может генерировать ту же самую сигнатуру для аутентификации, что и переданная подвижной станцией, то система определяет, что ключ шифрования, хранимый базовой станцией, не является тем же самым ключом шифрования, который хранится подвижной станцией. Тогда должен быть выполнен обмен ключами.
Фиг.9 иллюстрирует обмен ключами шифрования после неудачи регистрации. ЛПС 700 передает сообщение 720 регистрации, содержащее переменную CS_h криптосинхронизации и сигнатуру f(CS_h, Ks) для аутентификации, в базовую станцию 710. Базовая станцию 710 не может воспроизвести сигнатуру для аутентификации f(CS_h, Ks), так как ключ шифрования в базовой станции 710 отличается от ключа шифрования в ЛПС 700. Базовая станция 710 инициирует этап 770 обмена ключами, чтобы базовая станция 710 и ЛПС 700 имели один и тот же ключ шифрования. Защита обмена ключами известна специалистам в данной области техники. Однако проверка криптосинхронизации является проблемой, которая не решена в данной области техники. Как описано выше, криптосинхронизация является переменным значением, которое изменяется для каждого блока данных, который шифруется в потоке незашифрованных данных. Должен иметься некоторый способ проверки для того, чтобы гарантировать, что значение криптосинхронизации, с помощью которого зашифрован блок данных, является тем же самым значением криптосинхронизации, которое использовано на стороне дешифрования. Это не является проблемой, решаемой в способах обмена ключа, где производится обмен одним ключом в начале процесса регистрации. Следовательно, способы защищенных процедур обмена ключами являются неадекватными для потребностей проверки в процедуре защищенного обмена ключами криптосинхронизации.
В одном из вариантов осуществления новое и не очевидное использование битов проверки ЦИК может быть реализовано для проверки того, что криптосинхронизация, генерированная как подвижной станцией, так и базовой станцией для одного и того же блока данных, является одинаковой. В этом варианте осуществления ЦИК шифрования, также обозначенный как CRC_enc, включается в блок зашифрованных данных. ЦИК шифрования вычисляется перед тем как блок нешифрованных данных шифруется, а затем прибавляется к незашифрованному блоку данных. Когда незашифрованный блок данных шифруется с помощью соответствующей криптосинхронизации CS_h и ключа Ks шифрования, ЦИК шифрования также шифруется с помощью той же самой криптосинхронизации CS_h и ключа Ks шифрования. После генерирования зашифрованного текста ЦИК обнаружения ошибок передачи, называемый ЦИК сообщения, прибавляется к зашифрованному блоку данных вместе с отсортированными полями, необходимыми для передачи. Если ЦИК сообщения проходит проверку на принимающей стороне, то CRC_enc также проверяется на принимающей стороне. Если проверка CRC_enc безуспешна, то принимается решение, что имело место несовпадение CS_h. Следует заметить, что действительность ключа Ks шифрования уже проверялась во время процесса регистрации, когда вычислялась правильная сигнатура для аутентификации f(CS_h, Ks).
Фиг.10 иллюстрирует структуру кадра для передачи сообщения в системе стандарта cdma 2000. Кадр 800 состоит из полей, необходимых для пересылки трафика данных от одной станции в другую. CRC_enc 812 является ЦИК, вычисляемым для блока данных незашифрованного протокола L3 БПД 810. CRC_enc 812 и L3 БПД 810 затем шифруются для формирования зашифрованного поля 805. Поле CS_L 806 включено для указания номера последовательности, на основании которого вычисляется криптосинхронизация. Бит 807 ИДШ устанавливается в "0" либо "1" для указания наличия зашифрованного сообщения. Поле 808 КИЦК затем вычисляется на всем кадре 800 сообщения. Кадр 800 может включать поле 801 длины сообщения, поле 802 типа сообщения и поле L2 803.
Если на основании CRC_enc, вычисленного на принимающей стороне, определено, что криптосинхронизация CS_h не синхронизирована с криптосинхронизацией на передающей стороне, то должна быть реализована процедура восстановления. Фиг.11 и фиг.12 - две диаграммы передачи сообщений, которые иллюстрируют процедуру исправления ошибки. Согласно фиг.11 базовая станция обнаруживает ошибку в дешифровании. Согласно фиг.12 подвижная станция обнаруживает ошибку в дешифровании.
Согласно фиг.11 ЛПС 900 передает зашифрованное сообщение 920 в базовую станцию 910. Биты ЦИК зашифрованного сообщения 920 проходят проверку, указывая, что нет ошибок передачи или ошибки передачи могут быть исправлены. Однако базовая станция 910 не может декодировать закодированный ЦИК, CRC_enc. Базовая станция 910 передает сообщение 930 "Не могу расшифровать" к ЛПС 900. ЛПС 900 затем передает сообщение 940 регистрации, содержащее криптосинхронизацию CS_h, сигнатуру f(CS_h, Ks) аутентификации и добавочный параметр обмена. В этот момент как ЛПС 900, так и базовая станция 910 имеют одну и ту же криптосинхронизацию CS_h. ЛПС 900 затем повторно передает зашифрованное сообщение 950.
Согласно фиг.12 базовая станция 910 передает зашифрованное сообщение 920 в ЛПС 900. Биты ЦИК зашифрованного сообщения 920 проходят проверку, указывая, что нет ошибок передачи или они могут быть исправлены. Однако ЛПС 900 не может декодировать закодированный ЦИК, CRC_enc. ЛПС 900 затем передает сообщение регистрации 940, содержащее криптосинхронизацию CS_h, сигнатуру f(CS_h, Ks) для аутентификации и добавочный параметр обмена. В этот момент как ЛПС 900, так и базовая станция 910 имеют одну и ту же криптосинхронизацию CS_h. Базовая станция 910 затем повторно передает зашифрованное сообщение 950.
Следовательно, в обоих случаях, проиллюстрированных на фиг.11 и фиг.12, кадр сообщения, которому не удается пройти шаг дешифрования на принимающем конце, должен быть повторно передан, как если бы кадр сообщения был передан с неисправимыми ошибками.
Как следует из примеров, приведенных выше, поле CS_h инициализирует старшие биты криптосинхронизации как для прямой линии связи, так и для обратной линии связи. Несмотря на то, CS_h, получаются различные результаты шифрования, так как направление передачи является переменной, которая вводится в алгоритм генерирования ключа шифрования, т.е. '0' может указывать сообщение прямой линии связи, в то время как '1' указывает сообщение обратной линии связи. В одном из вариантов осуществления значения криптосинхронизации могут получать приращение независимо после инициализации.
Выбор значения криптосинхронизации, выполняемый подвижной станцией, может представлять важность. Для того, чтобы поддерживать защищенность шифрования, криптосинхронизация не должна повторяться в процессе передач по радиоканалу. В одном из вариантов осуществления подвижная станция устанавливает значение криптосинхронизации равным единице (1), сложенной с максимальным значением из старших битов текущего значения CS_hпрям. криптосинхронизации прямой линии связи и старших битов текущего значения CS_hобр. криптосинхронизации обратной линии связи. Следовательно, CS_h=1+max (CS_hпрям., CS_hобр.).
Таким образом представлен новый и усовершенствованный способ и устройство для шифрования передач. Специалистам в данной области техники понятно, что данные, инструкции, команды, информация, сигналы, биты, символы и элементарные сигналы, которые упоминаются в описании, преимущественно представляются напряжениями, токами, электромагнитными волнами, магнитными полями или частицами, оптическими полями или частицами или любым их сочетанием. Специалистам в данной области техники также понятно, что различные иллюстративные логические блоки, модули, схемы и шаги алгоритма, описанные в связи с вариантами осуществления, раскрытыми в настоящем описании, могут быть реализованы как электронные аппаратные средства, компьютерное программное обеспечение или сочетание того и другого. Различные иллюстративные компоненты, блоки, модули, схемы и шаги описаны через их функциональные возможности. Реализуются ли функциональные возможности в виде аппаратных средств или программного обеспечения, зависит от конкретного приложения и ограничений проектирования, накладываемых на всю систему. Опытным специалистам понятна взаимозаменяемость аппаратных средств и программного обеспечения при этих обстоятельствах и то, как наилучшим образом реализовать описанные функциональные возможности для каждого конкретного приложения. В качестве примеров, различные иллюстративные логические блоки, модули, схемы и шаги алгоритма, описанные в связи с вариантами осуществления, раскрытыми в настоящем описании, могут быть реализованы или выполнены с помощью процессора цифрового сигнала (ПЦС), интегральной схемы прикладной ориентации (ИСПО), вентильной матрицы, программируемой в условиях эксплуатации (ВМПУЭ) или другого программируемого логического устройства, дискретного вентиля или транзисторной логической схемы, дискретных компонентов аппаратных средств, таких как, например, регистры и устройств, функционирующих по принципу "первым пришел, первым обслужен", процессора, выполняющего множество программно-аппаратных команд, и любого обычного программируемого модуля программного обеспечения и процессора или любого их сочетания, предназначенного для выполнения функций, описанных выше. Процессор может быть преимущественно микропроцессором или любым обычным процессором, контроллером, микроконтроллером или конечным автоматом. Модуль программного обеспечения может находиться в ОЗУ, флэш-памяти, ПЗУ, СППЗУ, ЭСППЗУ, регистрах, жестком диске, сменном диске, ПЗУ на компакт диске или любом другом носителе памяти, известном в данной области техники. Приведенный для примера процессор преимущественно соединен с носителем памяти так, чтобы считывать информацию с носителя и записывать информацию на носитель. В альтернативе носитель памяти может быть единым целым с процессором. Процессор и носитель памяти могут находиться в ИСПО. ИСПО может находиться в телефоне. Как вариант, процессор и носитель памяти могут находиться в телефоне. Процессор может быть реализован как сочетание ПЦС и микропроцессора или как два микропроцессора вместе с ядром ПЦС и т.д.
Таким образом представлены и описаны предпочтительные варианты осуществления настоящего изобретения. Однако специалистам в данной области техники понятно, что в вариантах осуществления, раскрытых в настоящем описании, могут быть сделаны режимные изменения, не выходя за рамки сущности или объема изобретения. Следовательно, настоящее изобретение ограничивается только формулой изобретения.

Claims (14)

1. Способ передачи переменных параметров аутентификации от передающей стороны к принимаемой стороне, включающий
генерирование значения криптосинхронизации на передающей стороне,
генерирование первой сигнатуры для аутентификации из значения криптосинхронизации и ключа шифрования на передающей стороне,
передачу значения криптосинхронизации и первой сигнатуры для аутентификации к принимающей стороне,
генерирование второй сигнатуры для аутентификации из значения криптосинхронизации и ключа шифрования на принимающей стороне,
приращение значения криптосинхронизации на принимающей стороне, если первая сигнатура для аутентификации и вторая сигнатура для аутентификации совпадают, и
запрос обмена ключами шифрования, если первая сигнатура для аутентификации и вторая сигнатура для аутентификации не совпадают.
2. Способ по п.1, отличающийся тем, что этап генерирования значения криптосинхронизации на передающей стороне включает в себя использование значения номера последовательности, номера идентификации блока данных и бита направления.
3. Способ по п.1, отличающийся тем, что этап генерирования значения криптосинхронизации на передающей стороне включает в себя использование значения системного времени и бита направления.
4. Способ по п.1, отличающийся тем, что этап генерирования первой сигнатуры для аутентификации включает использование значения криптосинхронизации и ключа шифрования в хэш-функции.
5. Способ по п.4, отличающийся тем, что этап генерирования второй сигнатуры для аутентификации включает использование значения криптосинхронизации и ключа шифрования в хэш-функции.
6. Способ синхронизации значений криптосинхронизации алгоритма шифрования на передающей стороне и на принимающей стороне, включающий
передачу кадра зашифрованного сообщения к принимающей стороне,
проверку текущего значения криптосинхронизации, связанного с кадром зашифрованного сообщения, на принимающей стороне,
приращение текущего значения криптосинхронизации на передающей стороне и принимающей стороне, если текущее значение криптосинхронизации прошло проверку, и
передачу от принимающей стороны к передающей стороне сообщения отказа, если текущее значение криптосинхронизации не прошло проверку.
7. Способ по п.6, отличающийся тем, что этап проверки текущего значения криптосинхронизации содержит
декодирование множества битов проверки циклическим избыточным кодом (ЦИК) передачи, где биты ЦИК передачи предназначены для определения ошибок передачи, и
декодирование множества кодированных битов ЦИК, где закодированные биты ЦИК предназначены для определения, совпадает ли текущее значение криптосинхронизации, генерированное на принимающей стороне со значением криптосинхронизации, генерированным на передающей стороне.
8. Способ генерирования кадра сообщения, содержащий введение множества кодированных битов ЦИК в поле данных, шифрование поля данных, причем для шифрования поля данных используется криптосинхронизация, и добавление множества битов ЦИК передачи к полю данных.
9. Способ по п.8, отличающийся тем, что дополнительно содержит добавление информации номера последовательности к полю зашифрованных данных и добавление битов шифрования к полю зашифрованных данных, где бит шифрования указывает, зашифровано ли поле данных.
10. Система для шифрования трафика передачи, в которой трафик передачи содержит по меньшей мере два типа трафика, причем система содержит по меньшей мере два элемента шифрования, причем каждый из по меньшей мере двух элементов шифрования связан по меньшей мере с одним из по меньшей мере двух типов трафика, и по меньшей мере один генератор для генерирования множества номеров последовательности, который соединен по меньшей мере с двумя элементами шифрования.
11. Устройство для независимого шифрования трафика в системе радиосвязи в соответствии с типом трафика, содержащее
процессор,
запоминающий элемент, соединенный с процессором, содержащий множество команд, выполняемых процессором, причем множество команд содержит команды для
генерирования значения криптосинхронизации на передающей стороне,
генерирования первой сигнатуры для аутентификации из значения криптосинхронизации и ключа шифрования на передающей стороне,
передачи значения криптосинхронизации и первой сигнатуры для аутентификации к принимающей стороне,
генерирования второй сигнатуры для аутентификации из значения криптосинхронизации и ключа шифрования на принимающей стороне,
приращения значения криптосинхронизации на принимающей стороне, если первая сигнатура для аутентификации и вторая сигнатура для аутентификации совпадают, и
запроса обмена ключами шифрования, если первая сигнатура для аутентификации и вторая сигнатура для аутентификации не совпадают.
12. Устройство для независимого шифрования трафика в системе радиосвязи в соответствии с типом трафика, содержащее
процессор,
запоминающий элемент, соединенный с процессором, содержащий множество команд, выполняемых процессором, причем множество команд содержит команды для
передачи кадра зашифрованного сообщения к принимающей стороне,
проверки текущего значения криптосинхронизации, связанного с кадром зашифрованного сообщения на принимающей стороне,
приращения текущего значения криптосинхронизации на передающей стороне и принимающей стороне, если текущее значение криптосинхронизации прошло проверку, и
передачи от принимающей стороны к передающей стороне сообщения отказа, если текущее значение криптосинхронизации не прошло проверку.
13. Устройство для передачи переменных параметров аутентификации от передающей стороны к принимающей стороне, содержащее
средство для генерирования значения криптосинхронизации на передающей стороне,
средство для генерирования первой сигнатуры для аутентификации из значения криптосинхронизации и ключа шифрования на передающей стороне,
средство для передачи значения криптосинхронизации и первой сигнатуры для аутентификации к принимающей стороне,
средство для генерирования второй сигнатуры для аутентификации из значения криптосинхронизации и ключа шифрования на принимающей стороне,
средство для приращения значения криптосинхронизации на принимающей стороне, если первая сигнатура для аутентификации и вторая сигнатура для аутентификации совпадают, и
запрос обмена ключами шифрования, если первая сигнатура для аутентификации и вторая сигнатура для аутентификации не совпадают.
14. Устройство синхронизации значений криптосинхронизации алгоритма шифрования на передающей стороне и принимающей стороне, содержащее
средство для передачи кадра зашифрованного сообщения к принимающей стороне,
средство для проверки текущего значения криптосинхронизации, связанного с кадром зашифрованного сообщения, на принимающей стороне,
средство для приращения текущего значения криптосинхронизации на передающей стороне и принимающей стороне, если текущее значение криптосинхронизации прошло проверку, и
средство для передачи от принимающей стороны к передающей стороне сообщения отказа, если текущее значение криптосинхронизации не прошло проверку.
RU2002111551/09A 1999-09-30 2000-09-29 Способ и устройство для шифрования передач в системе связи RU2273102C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US15690599P 1999-09-30 1999-09-30
US60/156,905 1999-09-30
US09/676,036 2000-09-28

Publications (2)

Publication Number Publication Date
RU2002111551A RU2002111551A (ru) 2003-10-27
RU2273102C2 true RU2273102C2 (ru) 2006-03-27

Family

ID=22561603

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2002111551/09A RU2273102C2 (ru) 1999-09-30 2000-09-29 Способ и устройство для шифрования передач в системе связи

Country Status (16)

Country Link
US (2) US6980658B1 (ru)
EP (1) EP1216535B1 (ru)
JP (3) JP2004521521A (ru)
CN (1) CN100473192C (ru)
AT (1) ATE376730T1 (ru)
AU (1) AU1329501A (ru)
BR (1) BR0014396A (ru)
CA (3) CA2706056A1 (ru)
DE (1) DE60036878T2 (ru)
ES (1) ES2293929T3 (ru)
IL (1) IL148363A (ru)
MX (1) MXPA02003110A (ru)
NO (1) NO20021504L (ru)
RU (1) RU2273102C2 (ru)
UA (1) UA76407C2 (ru)
WO (1) WO2001024436A2 (ru)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8437739B2 (en) 2007-08-20 2013-05-07 Qualcomm Incorporated Method and apparatus for generating a cryptosync
RU2496269C1 (ru) * 2009-08-20 2013-10-20 ДжейВиСи КЕНВУД КОРПОРЭЙШН Устройство формирования кадров передачи, устройство беспроводной связи, базовая станция и способ формирования кадров передачи
RU2573256C2 (ru) * 2010-08-16 2016-01-20 Нтт Докомо, Инк. Способ мобильной связи, ретрансляционный узел и базовая радиостанция
RU2580018C2 (ru) * 2014-05-26 2016-04-10 Закрытое акционерное общество "Лаборатория Касперского" Способ определения маски зашифрованной области диска
RU2580014C2 (ru) * 2014-05-26 2016-04-10 Закрытое акционерное общество "Лаборатория Касперского" Система и способ изменения маски зашифрованной области при возникновении сбоя в компьютерной системе
US10193871B2 (en) 2014-11-13 2019-01-29 Canon Kabushiki Kaisha Information processing apparatus, control method, and program

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6980658B1 (en) * 1999-09-30 2005-12-27 Qualcomm Incorporated Method and apparatus for encrypting transmissions in a communication system
US7627121B1 (en) * 2001-02-15 2009-12-01 At&T Mobility Ii Llc Apparatus, system and method for detecting a loss of key stream synchronization in a communication system
US7890129B2 (en) 2001-05-15 2011-02-15 Eric Rosen Method and apparatus for delivering information to an idle mobile station in a group communication network
US7603126B2 (en) 2001-05-15 2009-10-13 Qualcomm Incorporated Method and apparatus for avoiding simultaneous service origination and paging in a group communication network
US20040165722A1 (en) * 2001-07-06 2004-08-26 Van Rijnsoever Bartholomeus Johannes Streamcipher information redundant in next packet of encrypted frame
CN1941694B (zh) * 2001-07-17 2011-04-20 夏普株式会社 生成用于检测在处理期间加密数据的虚假改造的数据的设备及方法
US7388852B2 (en) * 2001-12-13 2008-06-17 Nortel Networks Limited Physical layer assisted retransmission
WO2003107706A1 (en) * 2002-06-12 2003-12-24 Nokia Corporation Synchronization of a counter value employed as a parameter for ciphering and deciphering in a mobile communication system
US7796752B2 (en) * 2002-11-04 2010-09-14 Marvell International Ltd. Cipher implementation
US7549159B2 (en) * 2004-05-10 2009-06-16 Liquidware Labs, Inc. System, apparatuses, methods and computer-readable media for determining the security status of a computer before establishing connection thereto
US7386889B2 (en) * 2002-11-18 2008-06-10 Trusted Network Technologies, Inc. System and method for intrusion prevention in a communications network
US7591001B2 (en) * 2004-05-14 2009-09-15 Liquidware Labs, Inc. System, apparatuses, methods and computer-readable media for determining the security status of a computer before establishing a network connection
US7660980B2 (en) * 2002-11-18 2010-02-09 Liquidware Labs, Inc. Establishing secure TCP/IP communications using embedded IDs
CN100388659C (zh) * 2003-09-10 2008-05-14 中兴通讯股份有限公司 实现异种网络间加密通信的装置、系统及方法
JP4107213B2 (ja) * 2003-10-06 2008-06-25 松下電工株式会社 パケット判定装置
US20050193197A1 (en) * 2004-02-26 2005-09-01 Sarvar Patel Method of generating a cryptosync
CN100397945C (zh) * 2004-11-19 2008-06-25 华为技术有限公司 空闲模式下防止消息重放攻击的方法
CN100441031C (zh) * 2004-11-19 2008-12-03 华为技术有限公司 一种空闲模式下防止消息重放攻击的方法
US7904714B2 (en) 2005-01-11 2011-03-08 Samsung Electronics Co., Ltd Apparatus and method for ciphering/deciphering a signal in a communication system
US20060205386A1 (en) * 2005-03-11 2006-09-14 Lei Yu Method and apparatus for providing encryption and integrity key set-up
US8228917B2 (en) 2005-04-26 2012-07-24 Qualcomm Incorporated Method and apparatus for ciphering and re-ordering packets in a wireless communication system
US7725709B2 (en) * 2005-09-09 2010-05-25 Telefonaktiebolaget L M Ericsson (Publ) Methods for secure and bandwidth efficient cryptographic synchronization
US8447968B2 (en) 2005-10-28 2013-05-21 Alcatel Lucent Air-interface application layer security for wireless networks
US8660145B2 (en) * 2006-02-08 2014-02-25 Agere Systems Llc MAC-HS processing in an HSDPA-compatible receiver in a 3G wireless network
US20070242828A1 (en) * 2006-04-12 2007-10-18 General Dynamics C4 Systems, Inc. Dynamic interleaving of state vector components in an encrypted data communication system
EP2087643B1 (en) * 2006-10-23 2020-02-12 Nokia of America Corporation Processing method for message integrity with tolerance for non-sequential arrival of message data
US8331386B2 (en) * 2007-02-07 2012-12-11 Agere Systems Llc CRC checking and MAC-HS processing in an HSDPA-compatible receiver in a 3G wireless network
JP4900007B2 (ja) 2007-04-12 2012-03-21 富士通株式会社 無線基地局、中継局、帯域割当方法
US8358669B2 (en) * 2007-05-01 2013-01-22 Qualcomm Incorporated Ciphering sequence number for an adjacent layer protocol in data packet communications
EP1988655A1 (en) * 2007-05-03 2008-11-05 NTT DoCoMo, Inc. Method and apparatus for using an error code in transmission of data
US8331399B2 (en) 2007-05-07 2012-12-11 Qualcomm Incorporated Re-using sequence number by multiple protocols for wireless communication
US8625793B2 (en) 2007-06-11 2014-01-07 Qualcomm Incorporated Resynchronization for push message security using secret keys
US8666077B2 (en) * 2008-05-07 2014-03-04 Alcatel Lucent Traffic encryption key generation in a wireless communication network
JP2010028747A (ja) * 2008-07-24 2010-02-04 Fujitsu Ltd 秘匿処理を行う送信装置及び受信装置
US20100235689A1 (en) * 2009-03-16 2010-09-16 Qualcomm Incorporated Apparatus and method for employing codes for telecommunications
JP5597053B2 (ja) * 2010-07-28 2014-10-01 Kddi株式会社 認証システム、認証方法およびプログラム
DE102012206272A1 (de) * 2012-04-17 2013-10-17 Beckhoff Automation Gmbh Feldbus-Datenübertragung
CN105246070A (zh) * 2014-06-17 2016-01-13 中兴通讯股份有限公司 通话的加密处理方法及装置
CN108768927B (zh) * 2018-04-04 2021-06-01 武汉船舶通信研究所(中国船舶重工集团公司第七二二研究所) 保密通信方法和装置

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4754482A (en) 1985-11-26 1988-06-28 Samco Investment Company Method and apparatus for synchronizing encrypting and decrypting systems
US4910777A (en) * 1988-09-20 1990-03-20 At&T Bell Laboratories Packet switching architecture providing encryption across packets
DE69125756T2 (de) 1990-06-29 1997-12-18 Digital Equipment Corp Verfahren und Einrichtung zur Entschlüsselung eines Informationspakets mit einem modifizierbaren Format
US5081679A (en) 1990-07-20 1992-01-14 Ericsson Ge Mobile Communications Holding Inc. Resynchronization of encryption systems upon handoff
US5142578A (en) * 1991-08-22 1992-08-25 International Business Machines Corporation Hybrid public key algorithm/data encryption algorithm key distribution method based on control vectors
US5448237A (en) * 1993-01-15 1995-09-05 The United States Of America As Represented By The Secretary Of The Navy Digital circuit for the introduction of dither into an analog signal
US5386469A (en) * 1993-08-05 1995-01-31 Zilog, Inc. Firmware encryption for microprocessor/microcomputer
US5319712A (en) 1993-08-26 1994-06-07 Motorola, Inc. Method and apparatus for providing cryptographic protection of a data stream in a communication system
US5528693A (en) * 1994-01-21 1996-06-18 Motorola, Inc. Method and apparatus for voice encryption in a communications system
JPH07325785A (ja) * 1994-06-02 1995-12-12 Fujitsu Ltd ネットワーク利用者認証方法および暗号化通信方法とアプリケーションクライアントおよびサーバ
US5467398A (en) * 1994-07-05 1995-11-14 Motorola, Inc. Method of messaging in a communication system
JP3491994B2 (ja) * 1994-11-21 2004-02-03 富士通株式会社 通信制御装置及び方法
JPH103256A (ja) * 1995-10-16 1998-01-06 Sony Corp 暗号化方法、暗号化装置、記録方法、復号化方法、復号化装置及び記録媒体
EP0768774A3 (en) * 1995-10-16 1999-08-04 Sony Corporation Method and apparatus for data encryption using a key generation hierarchy
FI112419B (fi) 1996-06-06 2003-11-28 Nokia Corp Menetelmä tiedonsiirron salaamiseksi
US5825889A (en) 1996-10-15 1998-10-20 Ericsson Inc. Use of duplex cipher algorithms for satellite channels with delay
US5958051A (en) * 1996-11-27 1999-09-28 Sun Microsystems, Inc. Implementing digital signatures for data streams and data archives
EP0885502A4 (en) 1996-11-29 2000-11-08 Motorola Inc AUTHENTICATION SYSTEM AND METHOD FOR A REMOTE KEYLESS OPENING SYSTEM
JPH10233770A (ja) 1997-02-20 1998-09-02 Fujitsu Ltd 回線秘匿装置
JP3760460B2 (ja) 1997-04-23 2006-03-29 ソニー株式会社 データ送信装置および方法、データ受信装置および方法、並びにデータ送受信システムおよび方法
JP3657745B2 (ja) * 1997-07-23 2005-06-08 横河電機株式会社 ユーザ認証方法及びユーザ認証システム
CA2299505A1 (en) 1997-08-04 1999-02-11 Russell E. Selph Data security in multipoint publish/subscribe communications
US6081600A (en) 1997-10-03 2000-06-27 Motorola, Inc. Method and apparatus for signaling privacy in personal communications systems
US6151676A (en) * 1997-12-24 2000-11-21 Philips Electronics North America Corporation Administration and utilization of secret fresh random numbers in a networked environment
US6055316A (en) * 1997-12-26 2000-04-25 Sun Microsystems, Inc. System and method for deriving an appropriate initialization vector for secure communications
US6459682B1 (en) * 1998-04-07 2002-10-01 International Business Machines Corporation Architecture for supporting service level agreements in an IP network
WO2000027090A2 (en) 1998-10-30 2000-05-11 Science Applications International Corporation Network protocol for secure communications
KR100331863B1 (ko) * 1998-11-03 2002-05-09 서평원 네트워크암호화장치및방법
FI107487B (fi) 1999-03-08 2001-08-15 Nokia Mobile Phones Ltd Datalähetyksen salausmenetelmä radiojärjestelmässä
US6980658B1 (en) * 1999-09-30 2005-12-27 Qualcomm Incorporated Method and apparatus for encrypting transmissions in a communication system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8437739B2 (en) 2007-08-20 2013-05-07 Qualcomm Incorporated Method and apparatus for generating a cryptosync
RU2496269C1 (ru) * 2009-08-20 2013-10-20 ДжейВиСи КЕНВУД КОРПОРЭЙШН Устройство формирования кадров передачи, устройство беспроводной связи, базовая станция и способ формирования кадров передачи
RU2573256C2 (ru) * 2010-08-16 2016-01-20 Нтт Докомо, Инк. Способ мобильной связи, ретрансляционный узел и базовая радиостанция
RU2580018C2 (ru) * 2014-05-26 2016-04-10 Закрытое акционерное общество "Лаборатория Касперского" Способ определения маски зашифрованной области диска
RU2580014C2 (ru) * 2014-05-26 2016-04-10 Закрытое акционерное общество "Лаборатория Касперского" Система и способ изменения маски зашифрованной области при возникновении сбоя в компьютерной системе
US10193871B2 (en) 2014-11-13 2019-01-29 Canon Kabushiki Kaisha Information processing apparatus, control method, and program
RU2682926C2 (ru) * 2014-11-13 2019-03-22 Кэнон Кабусики Кайся Устройство обработки информации, способ управления и программа

Also Published As

Publication number Publication date
NO20021504D0 (no) 2002-03-26
UA76407C2 (en) 2006-08-15
ATE376730T1 (de) 2007-11-15
WO2001024436A3 (en) 2002-02-14
BR0014396A (pt) 2003-07-29
NO20021504L (no) 2002-05-28
WO2001024436A9 (en) 2002-09-26
CN1451212A (zh) 2003-10-22
CA2383960A1 (en) 2001-04-05
DE60036878D1 (de) 2007-12-06
US6980658B1 (en) 2005-12-27
IL148363A (en) 2008-08-07
EP1216535A2 (en) 2002-06-26
ES2293929T3 (es) 2008-04-01
AU1329501A (en) 2001-04-30
JP2004521521A (ja) 2004-07-15
JP2012044675A (ja) 2012-03-01
MXPA02003110A (es) 2002-11-07
CN100473192C (zh) 2009-03-25
EP1216535B1 (en) 2007-10-24
WO2001024436A2 (en) 2001-04-05
CA2706056A1 (en) 2001-04-05
US8787578B2 (en) 2014-07-22
JP2011172244A (ja) 2011-09-01
DE60036878T2 (de) 2008-07-31
US20060056637A1 (en) 2006-03-16
CA2706045A1 (en) 2001-04-05

Similar Documents

Publication Publication Date Title
RU2273102C2 (ru) Способ и устройство для шифрования передач в системе связи
CN1193641C (zh) 尤其用于无线电帧的计数器初始化
EP0998080B1 (en) Method for securing over-the-air communication in a wireless system
JP2012044675A5 (ru)
EP1064799B1 (en) Method of ciphering data transmission and a cellular radio system employing the method
JP2011172244A5 (ru)
US8832449B2 (en) Security considerations for the LTE of UMTS
US8627092B2 (en) Asymmetric cryptography for wireless systems
KR100593576B1 (ko) 두 당사자 인증 및 키 일치 방법
RU2437239C1 (ru) Способ и устройство для формирования параметра криптосинхронизации
WO2001049058A1 (fr) Dispositif de radiocommunication et procede de radiocommunication
AU2005201982B2 (en) Method and apparatus for encrypting transmissions in a communication system
KR100915745B1 (ko) 통신 시스템에서의 전송을 암호화하기 위한 방법 및 장치
EP1881638A1 (en) Method and apparatus for encrypting transmissions in a communication system
US20240137757A1 (en) Systems and methods for authorization of proximity based services
KR20070050713A (ko) 통신 시스템에서 역방향 데이터 송/수신을 위한 mac제어 메시지 처리 방법 및 장치
MXPA06005168A (en) Authentication of a wireless communication using expiration marker

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20110930