RU2009111106A - METHOD AND METHOD FOR PRODUCING METHOD - Google Patents

METHOD AND METHOD FOR PRODUCING METHOD Download PDF

Info

Publication number
RU2009111106A
RU2009111106A RU2009111106/04A RU2009111106A RU2009111106A RU 2009111106 A RU2009111106 A RU 2009111106A RU 2009111106/04 A RU2009111106/04 A RU 2009111106/04A RU 2009111106 A RU2009111106 A RU 2009111106A RU 2009111106 A RU2009111106 A RU 2009111106A
Authority
RU
Russia
Prior art keywords
carbon dioxide
methanol
wall
carbonic anhydrase
cell
Prior art date
Application number
RU2009111106/04A
Other languages
Russian (ru)
Inventor
Дан БОРГСТРЁМ (SE)
Дан БОРГСТРЁМ
Альф ЛАРССОН (SE)
Альф ЛАРССОН
Олоф ДАЛЬБЕРГ (SE)
Олоф ДАЛЬБЕРГ
Original Assignee
Морфик Текнолоджиз Актеболаг (публ.) (SE)
Морфик Текнолоджиз Актеболаг (публ.)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Морфик Текнолоджиз Актеболаг (публ.) (SE), Морфик Текнолоджиз Актеболаг (публ.) filed Critical Морфик Текнолоджиз Актеболаг (публ.) (SE)
Publication of RU2009111106A publication Critical patent/RU2009111106A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/1516Multisteps
    • C07C29/1518Multisteps one step being the formation of initial mixture of carbon oxides and hydrogen for synthesis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/02Monohydroxylic acyclic alcohols
    • C07C31/04Methanol
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/73After-treatment of removed components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/84Biological processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/10Combinations of wind motors with apparatus storing energy
    • F03D9/19Combinations of wind motors with apparatus storing energy storing chemical energy, e.g. using electrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Power Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Fuel Cell (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

1. Способ производства метанола, включающий стадии обеспечения стенки (1), образованной лопастью (5) ротора ветровой электростанции (6), причем стенка (1) имеет поверхность (2), на которой расположена карбоангидраза (3), обеспечения воздействия потока газа на поверхность (2) стенки (1) и применения карбоангидразы (3) для удаления диоксида углерода из потока газа; и применения полученного таким способом диоксида углерода для получения метанола в химической реакции, в которой для превращения воды и диоксида углерода в метанол применяют электроэнергию. ! 2. Способ по п.1, где электроэнергию, вырабатываемую ветровой электростанцией (6), применяют для превращения воды и диоксида углерода в метанол. ! 3. Способ по п.1, где газ представляет собой воздух. ! 4. Способ по п.3, где электроэнергию, вырабатываемую ветровой электростанцией, применяют для превращения воды и диоксида углерода в метанол. ! 5. Способ по п.1, где лопасть (5) ротора разделена на множество ячеек (8), отделенных друг от друга в радиальном направлении лопасти (5) ротора; каждая ячейка (8) включает стенку (1), на которой расположена карбоангидраза с возможностью извлечения диоксида углерода в каждой ячейке (8). ! 6. Способ по любому из пп.1-5, где полученный метанол впоследствии применяют для выработки электроэнергии в топливном элементе. ! 7. Устройство для производства метанола, которое включает стенку (1), образованную лопастью (5) ротора ветровой электростанции (6), причем стенка (1) имеет поверхность (2), на которой расположена карбоангидраза (3 с возможностью извлечения диоксида углерода, например, из воздуха; топливный элемент (9), в котором диоксид углерода превращают в метанол, пр� 1. A method for the production of methanol, comprising the steps of providing a wall (1) formed by a rotor blade (5) of a wind power plant rotor (6), the wall (1) having a surface (2) on which carbonic anhydrase (3) is located, to ensure the effect of gas flow on the surface (2) of the wall (1) and the use of carbonic anhydrase (3) to remove carbon dioxide from the gas stream; and using carbon dioxide obtained in this way to produce methanol in a chemical reaction in which electricity is used to convert water and carbon dioxide to methanol. ! 2. The method according to claim 1, where the electricity generated by the wind farm (6) is used to convert water and carbon dioxide to methanol. ! 3. The method according to claim 1, where the gas is air. ! 4. The method according to claim 3, where the electric power generated by the wind farm is used to convert water and carbon dioxide to methanol. ! 5. The method according to claim 1, where the rotor blade (5) is divided into many cells (8), separated from each other in the radial direction of the rotor blade (5); each cell (8) includes a wall (1) on which carbonic anhydrase is located with the possibility of extracting carbon dioxide in each cell (8). ! 6. The method according to any one of claims 1 to 5, where the obtained methanol is subsequently used to generate electricity in the fuel cell. ! 7. A device for the production of methanol, which includes a wall (1) formed by the blade (5) of the rotor of a wind power station (6), and the wall (1) has a surface (2) on which carbonic anhydrase (3 can be removed carbon dioxide, for example , from air; a fuel cell (9) in which carbon dioxide is converted to methanol, e.g.

Claims (8)

1. Способ производства метанола, включающий стадии обеспечения стенки (1), образованной лопастью (5) ротора ветровой электростанции (6), причем стенка (1) имеет поверхность (2), на которой расположена карбоангидраза (3), обеспечения воздействия потока газа на поверхность (2) стенки (1) и применения карбоангидразы (3) для удаления диоксида углерода из потока газа; и применения полученного таким способом диоксида углерода для получения метанола в химической реакции, в которой для превращения воды и диоксида углерода в метанол применяют электроэнергию.1. A method for the production of methanol, comprising the steps of providing a wall (1) formed by a rotor blade (5) of a wind power plant rotor (6), the wall (1) having a surface (2) on which carbonic anhydrase (3) is located, to ensure the effect of gas flow on the surface (2) of the wall (1) and the use of carbonic anhydrase (3) to remove carbon dioxide from the gas stream; and using carbon dioxide obtained in this way to produce methanol in a chemical reaction in which electricity is used to convert water and carbon dioxide to methanol. 2. Способ по п.1, где электроэнергию, вырабатываемую ветровой электростанцией (6), применяют для превращения воды и диоксида углерода в метанол.2. The method according to claim 1, where the electricity generated by the wind farm (6) is used to convert water and carbon dioxide to methanol. 3. Способ по п.1, где газ представляет собой воздух.3. The method according to claim 1, where the gas is air. 4. Способ по п.3, где электроэнергию, вырабатываемую ветровой электростанцией, применяют для превращения воды и диоксида углерода в метанол.4. The method according to claim 3, where the electric power generated by the wind farm is used to convert water and carbon dioxide to methanol. 5. Способ по п.1, где лопасть (5) ротора разделена на множество ячеек (8), отделенных друг от друга в радиальном направлении лопасти (5) ротора; каждая ячейка (8) включает стенку (1), на которой расположена карбоангидраза с возможностью извлечения диоксида углерода в каждой ячейке (8).5. The method according to claim 1, where the rotor blade (5) is divided into many cells (8), separated from each other in the radial direction of the rotor blade (5); each cell (8) includes a wall (1) on which carbonic anhydrase is located with the possibility of extracting carbon dioxide in each cell (8). 6. Способ по любому из пп.1-5, где полученный метанол впоследствии применяют для выработки электроэнергии в топливном элементе.6. The method according to any one of claims 1 to 5, where the obtained methanol is subsequently used to generate electricity in the fuel cell. 7. Устройство для производства метанола, которое включает стенку (1), образованную лопастью (5) ротора ветровой электростанции (6), причем стенка (1) имеет поверхность (2), на которой расположена карбоангидраза (3 с возможностью извлечения диоксида углерода, например, из воздуха; топливный элемент (9), в котором диоксид углерода превращают в метанол, причем данный топливный элемент соединен со стенкой (1) с возможностью транспортировки извлекаемого диоксида углерода в топливный элемент (9), и источник электроэнергии, присоединенный к топливному элементу (9).7. A device for the production of methanol, which includes a wall (1) formed by the blade (5) of the rotor of a wind power station (6), and the wall (1) has a surface (2) on which carbonic anhydrase (3 can be removed carbon dioxide, for example from air; a fuel cell (9) in which carbon dioxide is converted to methanol, the fuel cell being connected to the wall (1) to transport the recoverable carbon dioxide to the fuel cell (9), and an electric power source connected to the fuel ele cop (9). 8. Устройство по п.7, где лопасть (5) ротора разделена на множество ячеек (8), отделенных друг от друга в радиальном направлении лопасти (5) ротора; каждая ячейка (8) включает стенку (1), на которой расположена карбоангидраза (3) с возможностью извлечения диоксид углерода в каждой ячейке (8). 8. The device according to claim 7, where the rotor blade (5) is divided into many cells (8), separated from each other in the radial direction of the rotor blade (5); each cell (8) includes a wall (1) on which carbonic anhydrase (3) is located with the possibility of extracting carbon dioxide in each cell (8).
RU2009111106/04A 2006-10-06 2007-09-11 METHOD AND METHOD FOR PRODUCING METHOD RU2009111106A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE0602125A SE531159C2 (en) 2006-10-06 2006-10-06 Method and arrangement for producing methanol
SE0602125-7 2006-10-06

Publications (1)

Publication Number Publication Date
RU2009111106A true RU2009111106A (en) 2010-11-20

Family

ID=39268695

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2009111106/04A RU2009111106A (en) 2006-10-06 2007-09-11 METHOD AND METHOD FOR PRODUCING METHOD

Country Status (10)

Country Link
EP (1) EP2069275A1 (en)
JP (1) JP2010506043A (en)
AU (1) AU2007302853A1 (en)
BR (1) BRPI0718035A2 (en)
CA (1) CA2664596A1 (en)
MX (1) MX2009003519A (en)
RU (1) RU2009111106A (en)
SE (1) SE531159C2 (en)
TW (1) TW200934756A (en)
WO (1) WO2008041921A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2461723B (en) * 2008-07-10 2013-03-27 Christopher Denham Wall The economic conversion of waste carbon dioxide gas such as that produced by fossil fuel burning power stations, to bulk liquid fuels suitable for automobiles
EP2310673B1 (en) * 2008-07-18 2016-03-30 Allen Jones Wind powered energy amplification system and method
US20110223650A1 (en) * 2008-07-31 2011-09-15 Novozymes A/S Modular Membrane Reactor and Process for Carbon Dioxide Extraction
GB2464691A (en) * 2008-10-22 2010-04-28 Christopher Denham Wall Manufacture of methanol from agricultural by-product cellulosic/lignitic material
AU2011272825A1 (en) 2010-06-30 2013-01-10 Codexis, Inc. Chemically modified carbonic anhydrases useful in carbon capture systems
CA2803952C (en) 2010-06-30 2020-03-24 Codexis, Inc. Highly stable beta-class carbonic anhydrases useful in carbon capture systems
US8354261B2 (en) 2010-06-30 2013-01-15 Codexis, Inc. Highly stable β-class carbonic anhydrases useful in carbon capture systems
US9694317B2 (en) 2012-05-03 2017-07-04 Altira Technology Fund V L.P. Multi-pollutant abatement device and method
CN111425351B (en) * 2020-03-27 2021-06-08 杭州祥博传热科技股份有限公司 Offshore liquid cooling system based on wind driven generator and hydrogen-oxygen fuel cell

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4332789A1 (en) * 1993-09-27 1995-03-30 Abb Research Ltd Process for storing energy
AU6104596A (en) * 1995-06-07 1996-12-30 Michael C. Trachtenberg Enzyme systems for gas processing
JP4413334B2 (en) * 1999-10-20 2010-02-10 アルストム株式会社 Regenerative carbon dioxide separator and carbon dioxide separation system
CA2352626A1 (en) * 2001-07-12 2003-01-12 Co2 Solution Inc. Coupling for linking a hydrogen fuel cell to an enzyme bioreactor for processing and sequestering co2
US6946288B2 (en) * 2002-05-31 2005-09-20 Co2 Solution, Inc. Ventilation system for an enclosure in which people live and a method thereof

Also Published As

Publication number Publication date
TW200934756A (en) 2009-08-16
EP2069275A1 (en) 2009-06-17
CA2664596A1 (en) 2008-04-10
AU2007302853A1 (en) 2008-04-10
SE0602125L (en) 2008-04-07
BRPI0718035A2 (en) 2014-06-24
SE531159C2 (en) 2009-01-07
JP2010506043A (en) 2010-02-25
WO2008041921A1 (en) 2008-04-10
MX2009003519A (en) 2009-04-16

Similar Documents

Publication Publication Date Title
RU2009111106A (en) METHOD AND METHOD FOR PRODUCING METHOD
CN106025313A (en) Integrated gasification fuel cell power generation system capable of realizing CO2 trapping before combustion
WO2011034677A3 (en) Energy conversion assemblies and associated methods of use and manufacture
US20070148084A1 (en) Concentrating catalytic hydrogen production system
GB2489138A (en) Enhanced efficiency turbine
SE0502295L (en) Method and system for production, conversion and storage of energy
CN109301283A (en) A kind of band CO2The integral coal gasification fuel cell system of trapping
JP2007185096A (en) Device for reducing carbon dioxide utilizing artificial diamond and artificial sun
CN104193584A (en) Manufacturing process of methanol
CN109659590A (en) A kind of integral coal gasification solid oxide fuel cell power generating system and method
WO2008138735A3 (en) Method for producing motor energy from fossil fuels while dissipating pure carbon dioxide
DE602005015683D1 (en) HUMIDIFICATION APPARATUS AND METHOD FOR PROTON EXCHANGE MEMBRANES OF FUEL CELLS
CN204289608U (en) There is the hydrogen gas generating system of air humidity regulatory function
JP4500105B2 (en) Geothermal power generation and hydrogen production system
CN105240189B (en) Water conservancy diversion energy gathering type wave, tide, ocean current and wind-force four-in-one electricity generation system
JP6573385B2 (en) Energy utilization device
SE0301267D0 (en) Wind turbines and ways of obtaining electrical energy from such
CN108011119A (en) The method and system of hydrogeneous exhaust gas coupling fuel cells clean electric power generation recycling
WO2010059220A3 (en) Large scale green manufacturing of methane using plasma
SE0602124L (en) Method and arrangement for extracting carbon dioxide from air
CN204289606U (en) A kind of low platinum carrying capacity fuel cell membrane electrode stream plate
CN215711818U (en) System for high-efficient clean synthetic ammonia/urea of thermal power factory relies on
CN102748225A (en) Taper cylinder type wind power generating device
JP2001172001A (en) Method and apparatus for producing hydrogen
CN117942745A (en) Device and method for integrating carbon capture and methanol preparation

Legal Events

Date Code Title Description
FA93 Acknowledgement of application withdrawn (no request for examination)

Effective date: 20110301