KR20180025719A - Method For Preparing Fused Silica Sintered Material Using Gel-Casting Process - Google Patents

Method For Preparing Fused Silica Sintered Material Using Gel-Casting Process Download PDF

Info

Publication number
KR20180025719A
KR20180025719A KR1020160112770A KR20160112770A KR20180025719A KR 20180025719 A KR20180025719 A KR 20180025719A KR 1020160112770 A KR1020160112770 A KR 1020160112770A KR 20160112770 A KR20160112770 A KR 20160112770A KR 20180025719 A KR20180025719 A KR 20180025719A
Authority
KR
South Korea
Prior art keywords
molded body
slurry
mold
organic solvent
present
Prior art date
Application number
KR1020160112770A
Other languages
Korean (ko)
Other versions
KR101904874B1 (en
Inventor
최두현
백승수
최세영
송준영
강을손
백용기
Original Assignee
국방과학연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 국방과학연구소 filed Critical 국방과학연구소
Priority to KR1020160112770A priority Critical patent/KR101904874B1/en
Publication of KR20180025719A publication Critical patent/KR20180025719A/en
Application granted granted Critical
Publication of KR101904874B1 publication Critical patent/KR101904874B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives

Abstract

The present invention relates to a method of manufacturing a fused silica sintered material by using a gel-casting method. The present invention includes: a step of making a mixed solution by dissolving acrylamide, which is a monomer, and N,N′-Methylenebis (acrylamide), which is a polymer, in a predetermined solvent; a step of making slurry by adding fused silica powder to the mixed solution and milling the mixture for 20-30 hours; a step of making a molded body by mixing a catalyst and an initiator with the slurry and injecting the mixture into a predetermined mold; a step of soaking the molded body in a predetermined organic solvent to substitute moisture of the body with the organic solvent; and a step of separating the molded body from the mold, and sintering the molded body.

Description

겔캐스팅법을 이용한 퓨즈드실리카 소결체 제조 방법{Method For Preparing Fused Silica Sintered Material Using Gel-Casting Process}FIELD OF THE INVENTION [0001] The present invention relates to a method for producing a fused silicate sintered body using a gel casting method,

본 발명은 겔캐스팅(Gel-Casting)공법을 이용한 퓨즈드실리카 소결체 제조 방법에 관한 것이다. 보다 구체적으로, 본 발명은 몰드 내에서 겔화된 성형체의 탈형을 용이하게 하는 방법에 관한 것이다.The present invention relates to a method for producing a fused silica crucible by using a gel-casting method. More specifically, the present invention relates to a method for facilitating demoulding of a gelled body in a mold.

현재까지 알려진 복잡형상 제작기술은 사출성형, 슬립캐스팅, 가공 등의 기술이 있는데, 사출성형은 성형체 내에 결합제가 20 wt% 이상 함유되어 있어서 결합제 제거시 성형체가 허물어지거나, 균열발생의 문제가 있다. Known complex shaping techniques to date include techniques such as injection molding, slip casting, and processing. Injection molding involves a problem that the molded body is broken or cracked when the binder is removed because the binder contains 20 wt% or more of binder.

또한, 슬립캐스팅은 성형체 내부에 밀도구배가 발생하여 소결 시 뒤틀림의 원인이 되며, 성형체의 강도가 낮다는 단점이 있다. 그리고 가공에 의한 성형체 제작은 경제성이 없다(비특허문헌 0001).In addition, slip casting has a disadvantage in that a density gradient occurs in the inside of the formed body, which causes distortion during sintering and the strength of the formed body is low. The production of a molded body by machining is not economical (Non-Patent Document 0001).

이러한 기존의 복잡형상 제작기술의 단점을 극복하기 위해 개발된 것이 겔캐스팅법이다(특허문헌 0001 내지 0003 및 비특허문헌 0002 내지 0005). 이 방법은 세라믹 공정과 중합체(polymer) 제조기술을 혼합한 기술로서, 유기단량체(monomer)와 망목형성제인 이량체(dimer)를 녹인 용액에 세라믹 분말을 혼합하여 슬러리를 제조하고, 원하는 성형체의 몰드에 슬러리를 주입한 후 겔화반응을 통한 단량체들을 중합시키고, 세라믹 성형체 구조를 형성하여 소결하는 방법이다.The gel casting method developed to overcome the disadvantages of the conventional complicated shape producing technique is disclosed in Patent Documents 0001 to 0003 and Non-Patent Documents 0002 to 0005. This method is a combination of a ceramic process and a polymer manufacturing technique. A ceramic powder is mixed with a solution of an organic monomer and a dimer, which is a network forming agent, to prepare a slurry. And the monomers through the gelling reaction are polymerized to form a ceramic compact structure and sintered.

그러나, 몰드로부터 성형체의 탈형이 용이하지 못하고, 건조과정이나 유기물 제거과정에서 균열이 발생할 가능성이 크며, 균열 혹은 변형을 방지하기 위해 건조 시간이 길고, 건조조건이 까다롭다. 그리고 성형밀도가 낮고, 첨가되는 유기물들의 독성에 유의해야 한다(비특허문헌 0001).However, it is difficult to demold the molded article from the mold, and cracks are likely to occur during the drying process and organic matter removal process. The drying time is long and the drying condition is difficult to prevent cracking or deformation. And the molding density is low, and it is necessary to pay attention to the toxicity of organic substances to be added (Non-Patent Document 0001).

종래 탈형 방법으로, 슬러리를 금형 내로 붇기 전에 금형 표면에 탈형제(release agent)로 실리콘을 함유하지 않는 레진을 도포하는 방법이 있으며(비특허문헌 0006), 사염화탄소(CCl4)를 몰드에 도포하는 방법이 있다(특허문헌 0004).There is a method of applying a resin that does not contain silicon as a release agent to the surface of a mold before the slurry is put into a mold by a conventional demolding method (Non-Patent Document 0006), a method of applying carbon tetrachloride (CCl4) (Patent Document 0004).

레진 탈형제를 사용하는 경우, 레진의 접착력으로 인하여 효과적인 탈형이 되지 않고 성형체의 표면에 흠을 남기는 문제가 있다. 사염화탄소 탈형제를 도포한 경우 용이하게 탈형할 수 있지만, 탈형제로 사용된 사염화탄소는 인체에 치명적인 독성물질이다. 특히 호흡기와 피부접촉을 통해 건강을 해치는 물질로 알려져 있다.When a resin decarboxylator is used, there is a problem that the resin is not effectively demoulded due to the adhesive force, and the surface of the molded article is scratched. When carbon tetrachloride demolding agent is applied, carbon tetrachloride can be easily demoulded, but carbon tetrachloride used as a demolding agent is a toxic substance that is fatal to the human body. It is known as a substance that damages health through respiratory and skin contact.

U.S. Patent No. 4894194, Jan 16, 1990U.S.A. Patent No. 4894194, Jan 16, 1990 U.S. Patent No. 5028362, Jul 2, 1991U.S.A. Patent No. 5028362, Jul 2, 1991 U.S. Patent No. 5145908, Sep 8, 1992U.S.A. Patent No. 5145908, Sep 8, 1992 KR 10-1999-016261 AKR 10-1999-016261 A

Journal of American Ceramic Society, Vol.81, No.3, 581-591, 1998 Journal of American Ceramic Society, Vol. 81, No. 3, 581-591, 1998 Journal of the American Ceramic Society Journal of the American Ceramic Society Ceramic Bulletin, Vol.70, No.10, 1641-1649, 1991 Ceramic Bulletin, Vol. 70, No. 10, 1641-1649, 1991 Journal of the American Ceramic Society, Vol.74, No.3, 612-618, 1991 Journal of the American Ceramic Society, Vol. 74, No. 3, 612-618, 1991 Journal of the European Ceramics Society, Vol.17, No.2-3, 407-413, 1997 Journal of the European Ceramics Society, Vol. 17, No.2-3, 407-413, 1997 Journal of American Ceramic Society, Vol.74, No.3, 612-618, 1991Journal of American Ceramic Society, Vol. 74, No. 3, 612-618, 1991

본 발명은 성형체의 손상을 방지하고 인체에 무해한 방식으로 성형체를 탈형시켜 소결체를 제조하는 제조 방법을 제공하는 것을 그 목적으로 한다.An object of the present invention is to provide a manufacturing method for manufacturing a sintered body by preventing the molded body from being damaged and demolding the molded body in a manner harmless to the human body.

본 발명은 겔캐스팅(Gel-Casting)법을 이용한 소결체 제조방법을 제공하며, 상기 제조방법은 소정 용매에 단량체인 아크릴아마이드(acrylamide) 및 이량체인 메틸렌비스아크릴아마이드(N,N′-Methylenebis(acrylamide))를 용해시켜 혼합용액을 제조하는 단계, 상기 혼합용액에 퓨즈드실리카 분말을 첨가하고 20 내지 30 시간 동안 볼 밀링하여 슬러리를 제조하는 단계, 상기 슬러리에 촉매제 및 개시제를 혼합하고 소정 몰드에 주입하여 성형체를 제조하는 단계, 상기 성형체를 소정 유기용매에 침지시켜, 상기 성형체 내부의 수분을 상기 유기용매로 치환시키는 단계 및 상기 성형체를 상기 몰드로부터 탈형시키고, 상기 성형체를 소결하는 단계를 포함한다.The present invention provides a method for producing a sintered body using a gel-casting method, which comprises the steps of adding to a predetermined solvent an acrylamide monomer and an acrylonitrile monomer such as N, N'-Methylenebis (acrylamide ) To prepare a mixed solution, adding a fused silica powder to the mixed solution and ball milling for 20 to 30 hours to prepare a slurry, mixing a catalyst and an initiator into the slurry, A step of immersing the molded body in a predetermined organic solvent to replace the water inside the molded body with the organic solvent, and demolding the molded body from the mold, and sintering the molded body.

일 실시 예에 있어서, 상기 유기용매는 아세톤 및 에탄올 중 어느 하나일 수 있다.In one embodiment, the organic solvent may be any one of acetone and ethanol.

일 실시 예에 있어서, 상기 성형체를 상기 몰드로부터 탈형시킨 후, 상온 및 상습 조건에서 소정 시간동안 건조시키는 단계를 더 포함할 수 있다.In one embodiment, the method may further include the step of demolding the molded body from the mold, and then drying the molded body at a normal temperature and a normal humidity for a predetermined period of time.

일 실시 예에 있어서, 상기 촉매제는 테트라메틸에틸렌디아민(N,N,N'N'-Tetramethylethylenediamin)이고, 상기 개시제는 암모늄퍼설페이트(Ammonium Persulfate)일 수 있다.In one embodiment, the catalyst is N, N, N'N'-Tetramethylethylenediamine and the initiator may be Ammonium Persulfate.

일 실시 예에 있어서, 상기 슬러리를 제조하는 단계는, 상기 슬러리의 기포가 제거되도록 상온에서 진공 탈포하는 단계를 더 포함할 수 있다.In one embodiment, the step of preparing the slurry may further include a step of vacuum defoaming at room temperature to remove the bubbles of the slurry.

일 실시 예에 있어서, 상기 혼합용액은, 증류수에 4 내지 5 wt%의 아크릴아마이드 및 0.1 내지 0.2 wt%의 메틸렌비스아크릴아마이드가 혼합되어 이루어질 수 있다.In one embodiment, the mixed solution may be prepared by mixing 4 to 5 wt% of acrylamide and 0.1 to 0.2 wt% of methylene bisacrylamide in distilled water.

본 발명에 따르면, 탈형제 없이도 겔화된 성형체가 몰드로부터 용이하게 탈형시킬 수 있고, 이에 따라, 성형체의 표면에 결함 등이 생기지 않는다.INDUSTRIAL APPLICABILITY According to the present invention, a gelled molded article can be easily demoulded from a mold without a demolding agent, whereby no defects are formed on the surface of the molded article.

또한 본 발명에 따르면, 인체에 유해한 탈형제를 사용하지 않기 때문에, 성형체가 인체에 미치는 영향이 미약하다.Further, according to the present invention, since a mold-breaking agent harmful to the human body is not used, the effect of the molded body on the human body is weak.

도 1은 본 발명의 일 실시 예에 따른 소결체 제조방법을 나타내는 순서도이다.
도 2 내지 7은 본 발명에 따른 성형체의 수분 치환방법을 나타내는 개념도이다.
1 is a flowchart showing a method of manufacturing a sintered body according to an embodiment of the present invention.
2 to 7 are conceptual diagrams showing a method of replacing water of a molded article according to the present invention.

이하, 첨부된 도면을 참조하여 본 명세서에 개시된 실시 예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. 본 명세서에 개시된 실시 예를 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 명세서에 개시된 실시 예의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 명세서에 개시된 실시 예를 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 명세서에 개시된 기술적 사상이 제한되지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings, wherein like reference numerals are used to designate identical or similar elements, and redundant description thereof will be omitted. In the following description of the embodiments of the present invention, a detailed description of related arts will be omitted when it is determined that the gist of the embodiments disclosed herein may be obscured. It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory and are intended to provide further explanation of the invention as claimed. , ≪ / RTI > equivalents, and alternatives.

이하 본 발명에 따른 소결체 제조방법에 대하여 설명한다.Hereinafter, a method for producing a sintered body according to the present invention will be described.

도 1은 본 발명의 일 실시 예에 따른 소결체 제조방법을 나타내는 순서도이다. 이하에서는, 도 1을 참조하여 본 발명에 따른 소결체 제조방법에 대하여 설명한다.1 is a flowchart showing a method of manufacturing a sintered body according to an embodiment of the present invention. Hereinafter, a method for manufacturing a sintered body according to the present invention will be described with reference to FIG.

먼저, 본 발명에 따른 제조 방법에서는 소정 용매에 단량체인 아크릴아마이드(acrylamide) 및 이량체인 메틸렌비스아크릴아마이드(N,N′-Methylenebis(acrylamide))를 용해시켜 혼합용액을 제조하는 단계가 진행된다.First, in the production process according to the present invention, a step of preparing a mixed solution by dissolving acrylamide, which is a monomer, and N, N'-methylenebis (acrylamide), which is a monomer, in a predetermined solvent is performed.

여기서, 상기 혼합용액은 증류수에 4 내지 5 wt%의 아크릴아마이드 및 0.1 내지 0.2 wt%의 메틸렌비스아크릴아마이드가 혼합되어 이루어 질 수 있다.Here, the mixed solution may be prepared by mixing 4 to 5 wt% of acrylamide and 0.1 to 0.2 wt% of methylene bisacrylamide in distilled water.

다음으로, 상기 혼합용액에 퓨즈드실리카 분말을 첨가하고 20 내지 30 시간 동안 볼 밀링하여 슬러리를 제조하는 단계가 진행된다.Next, fused silica powder is added to the mixed solution and ball milled for 20 to 30 hours to prepare a slurry.

여기서, 상기 퓨즈드실키카 분말은 40 내지 75 vol%로 상기 혼합용액에 혼합될 수 있다. 추가적으로, 소결체의 강도를 높이기 위해, 상기 혼합용액에는 상기 질화규소는 0.25 내지 5 wt%가 첨가될 수 있다.Here, the fused silicate powder may be mixed with the mixed solution at 40 to 75 vol%. In addition, in order to increase the strength of the sintered body, the silicon nitride may be added to the mixed solution in an amount of 0.25 to 5 wt%.

이때, 슬러리의 유동성을 확보하고 슬러리내 퓨즈드실리카분말의 분산이 잘 이루어지게 하기 위해 음이온계 분산제인 폴리카르본산암모늄을 0.1~0.8 wt% 첨가한 후 볼 밀링을 할 수 있다.At this time, in order to secure the fluidity of the slurry and to ensure that the fused silica powder in the slurry is well dispersed, the ball milling can be performed after 0.1 to 0.8 wt% of ammonium polycarboxylate, which is an anionic dispersant, is added.

한편, 겔캐스팅을 위한 슬러리는 전단속도 변화에 대한 전단응력의 변화가 선형적으로 변화하는 뉴토니안플로우(newtonian flow) 거동을 함으로써, 슬러리 내 세라믹 분말들은 균일한 상태로 분산되어 있음을 확인할 수 있다. 하지만, 100cps 이상의 점도를 갖는 슬러리는 탈포과정에서 기포가 완전히 제거되지 않아 성형 후 결함으로 존재하고, 캐스팅 시 몰드표면과의 마찰에 의해 응력을 발생시켜 건조과정에서 균열을 야기시킨다.On the other hand, it is confirmed that the slurry for gel casting has a newtonian flow behavior in which the change of shear stress with respect to shear rate change linearly changes, so that the ceramic powders in the slurry are uniformly dispersed . However, a slurry having a viscosity of 100 cps or more is not completely removed from the bubbles during the defoaming process and is present as a defect after molding, causing stress due to friction with the mold surface during casting, causing cracking in the drying process.

퓨즈드실리카 분말만을 이용하여 슬러리를 제조과정에서는 분산제를 이용하여 슬러리가 뉴토니안 플로우 거동을 할 수 있도록 제어가 가능하지만, 기계적 강도의 향상을 위해 질화규소를 첨가하여 슬러리를 제조할 경우, 퓨즈드실리카와 질화규소 분말 간의 밀도차이로 인하여 슬러리가 고르게 분산되지 못한다.It is possible to control the behavior of the slurry using a dispersant in the process of manufacturing the slurry using only the fused silica powder. However, when the slurry is prepared by adding silicon nitride for improving the mechanical strength, the fused silicate And silicon nitride powders, the slurry is not uniformly dispersed.

상술한 문제를 해결하기 위해, 본 발명은 질화규소를 첨가량을 0.25~5.0 wt%로 제어하고, 염기를 이용하여 슬러리의 pH를 10~11로 조절함으로써, 슬러리가 균일하게 분산될 수 있도록 할 수 있다.In order to solve the above-described problems, the present invention can control the addition amount of silicon nitride to 0.25 to 5.0 wt% and adjust the pH of the slurry to 10 to 11 using a base so that the slurry can be uniformly dispersed .

여기서, 상기 염기는 수산화나트륨일 수 있다.Here, the base may be sodium hydroxide.

다음으로, 상기 슬러리에 촉매제 및 개시제를 혼합하고 소정 몰드에 주입하여 성형체를 제조하는 단계가 진행된다. Next, the slurry is mixed with a catalyst and an initiator, and the mixture is injected into a predetermined mold to produce a molded body.

여기서, 상기 촉매제는 테트라메틸에틸렌디아민(N,N,N'N'-Tetramethylethylenediamin)일 수 있고, 상기 개시제는 암모늄퍼설페이트(Ammonium Persulfate)일 수 있다. 상기 촉매체 및 개시제 각각은 단량체의 0.001~0.2 mol% 로 첨가될 수 있다.Here, the catalyst may be N, N, N'N'-Tetramethylethylenediamine, and the initiator may be Ammonium Persulfate. Each of the catalyst and the initiator may be added in an amount of 0.001 to 0.2 mol% of the monomer.

마지막으로, 상기 성형체를 상기 몰드로부터 탈형시키고, 상기 성형체를 소결하는 단계가 진행된다.Finally, the step of demolding the molded body from the mold and sintering the molded body is proceeded.

상기 성형체를 상기 몰드로부터 탈형시킬 때, 상기 성형체 표면의 균열이나 파손될 가능성이 높다. 종래 탈형제는 증류수의 젖음성을 낮추고, 중합체와의 반응성을 낮춤으로써, 성형체의 결함을 막고 탈형을 용이하게 하였다.There is a high possibility that the surface of the molded body is cracked or broken when the molded body is demolded from the mold. Conventional demolding agents lowered the wettability of distilled water and lowered the reactivity with the polymer, thereby preventing defects in the molded body and facilitating demoulding.

하지만, 종래 방법으로 성형체를 탈형시키는 경우, 성형체의 크기가 커지면 수분을 포함하는 성형체는 자체 중량에 의해 성형체의 하단부 변형이 발생한다.However, when the molded body is demolded by the conventional method, when the size of the molded body is increased, the molded body containing water has a lower end deformation of the molded body due to its own weight.

특히, 종래 탈형제로 레진 또는 사염화탄소가 사용되었다. 레진을 사용할 경우, 젖음성에 대한 문제로 탈형이 불만족스럽고, 사염화탄소의 도포방법은 인체 유해한 물질로 사용하기 어렵다. In particular, resin or carbon tetrachloride has been used as a conventional demolding agent. When resin is used, the problem of wettability is unsatisfactory, and the method of applying carbon tetrachloride is difficult to use as a harmful substance to human body.

한편, 성형체의 건조과정에서 건조속도가 빨라지면 수분의 높은 표면장력과 수축으로 성형체에 균열이 발생한다. 이 때문에, 종래에는 성형체를 저온다습한 분위기 하에서 오랜시간 동안 건조해야 했다.On the other hand, if the drying speed is increased during the drying process of the molded body, cracks are generated in the molded body due to high surface tension and shrinkage of water. For this reason, conventionally, the molded article must be dried for a long time under a low temperature and high humidity atmosphere.

본 발명은 인체에 유해한 탈형제 대신 표면장력이 낮고 휘발성이 좋은 유기용매를 이용한다. The present invention uses an organic solvent having a low surface tension and good volatility, instead of a demolding agent harmful to human body.

구체적으로, 도 1 내지 6에 도시된 바와 같이, 성형체(220)를 몰드(210)로부터 탈형시키기 전 성형체 내부에 포함된 수분을 농도구배의 원리로 휘발성이 좋은 유기용매와 치환시킴으로써, 성형체에 포함된 수분이 제거하고, 성형체 강도를 높일 수 있다.Specifically, as shown in FIGS. 1 to 6, by replacing moisture contained in the molded body with an organic solvent having a good volatility as a concentration gradient principle before releasing the molded body 220 from the mold 210, And the strength of the formed body can be increased.

또한, 유기용매의 표면장력이 낮고 휘발성이 좋기 때문에 상온 상습 분위기에서도 성형체를 균열없이 빠르게 건조시킬 수 있게 된다. Further, since the surface tension of the organic solvent is low and volatility is good, the molded article can be dried quickly without cracking even in a room temperature and normal atmosphere.

여기서, 상기 유기용매는 아세톤, 알코올일 수 있으며, 겔화된 성형체와 몰드를 함께 상기 유기용매가 담긴 수조에 담그어 성형체 내부의 수분을 제거함으로써 탈형 및 건조공정이 용이하고, 표면 흠집이나 변형이 발생하지 않는다. Here, the organic solvent may be acetone or alcohol. The gelled molded body and the mold are immersed in a water tank containing the organic solvent to remove moisture inside the molded body, thereby facilitating the demoulding and drying process, causing surface scratches and deformation Do not.

상기와 같이, 본 발명에 따른 탈형 방법은 성형체의 강도를 높이고, 쉽게 탈형시킬 수 있도록 한다. 또한, 본 발명에 따른 탈형 방법은 성형체를 상온 상습 분위기하에서 빠르게 건조시킬 수 있도록 한다.As described above, the demoulding method according to the present invention enhances the strength of a molded body and enables easy demoulding. In addition, the demoulding method according to the present invention makes it possible to quickly dry a molded article under a normal-temperature and normal-humidity atmosphere.

한편, 본 발명에 따른 탈형 방법에서 사용되는 몰드 및 수조는 유기용매에 안정성을 갖는 모든 재료일 수 있다.Meanwhile, the mold and the water tank used in the demoulding method according to the present invention may be all materials having stability to the organic solvent.

이후, 1150~1400 ℃ 온도범위에서 소결하여 비정질 상태의 소결체를 제조할 수 있다.Thereafter, the sintered body in an amorphous state can be manufactured by sintering at a temperature range of 1150 to 1400 ° C.

상기 소결단계에서 산화방지를 위해 질소분위기하에서 결정질이 생성되지 않도록 열처리를 이행함으로써 Si-O 결합 일부분을 Si-N 결합이 생성되도록 하여 기계적 강도를 증가시킬 수 있다. In order to prevent oxidation in the sintering step, heat treatment is performed so as not to generate a crystal in a nitrogen atmosphere, so that Si-N bond is formed in a part of the Si-O bond to increase the mechanical strength.

슬러리 제조시 첨가된 유기첨가제 즉, 단량체, 이량체, 촉매, 개시제, 분산제가 완전히 제거되지 않을 경우, 소결이 진행되지 않고 아주 낮은 기계적 강도를 나타낼 수 있다.When the organic additives added to the slurry, that is, the monomer, the dimer, the catalyst, the initiator, and the dispersant are not completely removed, the sintering does not proceed and the mechanical strength can be very low.

한편, 일반적인 공기분위기하에서 소결시 질화규소는 산화되어 안정한 상태의 실리카로 변하게 되는데 이를 방지하기 위하여 소결 시 분위기 제어가 필수적이다.On the other hand, in the general air atmosphere, silicon nitride is oxidized and converted into stable silica during sintering. In order to prevent this, atmosphere control in sintering is indispensable.

소결체에 Si-N 결합이 생성되도록 하고, 상술한 유기첨가제를 제거하기 위해, 상기 성형체를 소결하는 단계는 상기 성형체를 산소분위기에서 가열하여 상기 성형체에 포함된 유기물을 제거하는 단계 및 유기물이 제거된 상기 성형체를 질소분위기에서 가열하는 단계를 포함하여 이루어질 수 있다.The step of sintering the molded body to generate Si-N bonds in the sintered body and to remove the organic additive described above includes heating the molded body in an oxygen atmosphere to remove the organic substances contained in the molded body, And heating the shaped body in a nitrogen atmosphere.

상술한 유기첨가제를 제거하기 위해, 상기 성형체를 소결하는 단계는 공기 분위기 하에서 상온에서 600 내지 900 ℃의 온도까지 1℃/min의 속도로 승온시키고 1시간 유지하여 유기물을 완전히 제거하는 단계, 유기물을 제거한 후 공기 분위기 하에서 5℃/min 속도로 각 소결온도까지 열처리하는 단계를 포함하여 이루어질 수 있다.In order to remove the organic additive described above, the step of sintering the formed body may include a step of raising the temperature to 600 to 900 ° C at a rate of 1 ° C / min at room temperature under an air atmosphere, And then heat-treated at a rate of 5 ° C / min in an air atmosphere to each sintering temperature.

여기서, 건조된 상기 성형체를 분쇄하여 열중량/시차열분석(TG/DTA)을 통해 겔캐스팅에 사용된 유기물들은 720℃에서 완전히 산화됨을 확인하였다. 이에, 산소분위기 하에서 가열온도는 800 ℃인 것이 바람직하다.Here, it was confirmed that the organic materials used for gel casting were completely oxidized at 720 ° C by pulverizing the dried molded body and performing thermogravimetric / differential thermal analysis (TG / DTA). Thus, the heating temperature in an oxygen atmosphere is preferably 800 ° C.

이하에서는, 실시 예 및 실험 예들을 통해 본 발명을 더욱 상세히 설명하고자 하며, 다만, 후술할 실시 예 및 실험 예들에 의해 본 발명의 범위와 내용이 축소되거나 제한되어 해석되지 않는다.Hereinafter, the present invention will be described in more detail with reference to Examples and Experimental Examples. However, the scope and contents of the present invention are not construed to be limited or limited by the following Examples and Experimental Examples.

[ 실시 예 1][Example 1]

증류수 45㎖에 단량체인 아크릴아마이드 4.1wt%, 이량체인 메칠렌비스아크릴아마이드 0.1wt%를 첨가하여 혼합용액을 만들고, 레이돔의 주원료인 퓨즈드실리카 세라믹 분말을 120g(55㎖)혼합하여 55vol%의 퓨즈드실리카 슬러리를 제조하였다.To 45 ml of distilled water, 4.1 wt% of acrylamide monomer and 0.1 wt% of methylene bisacrylamide were added to prepare a mixed solution. 120 g (55 ml) of fused silicate ceramic powder as a main ingredient of the radome was mixed to obtain 55 vol% To prepare a fused silicate slurry.

상기와 같은 방법으로 제조된 슬러리에 음이온 분산제인 폴리카르본산암모늄을 0.4wt% 첨가하고 24시간 동안 볼밀링하여 혼합하고, 기포가 보이지 않을 때까지 상온에서 진공탈포하였다.0.4% by weight of ammonium polycarboxylate, an anionic dispersant, was added to the slurry prepared as described above, mixed by ball milling for 24 hours, and vacuum degassed at room temperature until no bubbles were observed.

이후, 촉매 테트라메틸에틸렌디아민 0.005 mol%와, 개시제 암모늄퍼설페이트 0.01 mol%를 첨가한 후 테프론 재질로 된 몰드에 주입하고 겔화시켰다. Then, 0.005 mol% of tetramethylethylenediamine and 0.01 mol% of initiator ammonium persulfate were added to the catalyst, and the mixture was injected into a mold made of Teflon and gelled.

겔화반응은 5~10분 정도 소요되며 겔화가 종료되면 겔화된 성형체와 몰드를 치환용매(아세톤, 에탄올) 수조에 담그고 용매를 계속적으로 교반하고, 2시간 간격으로 용매를 교환하면서 2회 반복하였다. 이때의 용매와 성형체의 부피비는 100:1이였다.The gelling reaction takes about 5 to 10 minutes. When the gelling is completed, the gelated molded body and the mold are immersed in a substitution solvent (acetone, ethanol) water bath, the solvent is continuously stirred, and the solvent is repeated twice. At this time, the volume ratio of the solvent to the molded body was 100: 1.

하기 표 1과 같이 겔화된 성형체를 탈형한 후, 성형체 표면을 관찰하고 그 결과를 나타내었다.As shown in Table 1, the gelled molded body was demolded and the surface of the molded body was observed and the results are shown.

비교예Comparative Example 발명예Honor 탈형제Decolorizer 미사용unused 레진
(resin)
Resin
(resin)
사염화탄소 (CCl4)Carbon tetrachloride (CCl 4 ) 미사용unused 미사용unused
수분치환
용 매
Water substitution
Solvent
없음none 없음none 없음none 아세톤Acetone 에탄올ethanol
탈형의
용이도
Demolding
Ease
극히 불량Very bad 불량Bad 매우양호Very good 매우양호Very good 양호Good
표면상태Surface condition 파손damage 표면 흠Surface defect 양호Good 양호Good 양호Good 적용크기Applicable size 소형small type 소형small type 소형small type 대형large 대형large 몰드재질Mold material 다양various 다양various 내부식성
재료(금속)
Corrosion resistance
Material (metal)
내화학성
재료
Chemical resistance
material
다양various
인체
유해성
anatomy
Hazard
없음none 없음none 치명적Fatal 영향effect 미약weak
건조조건Drying conditions 까다로움Hardness 까다로움Hardness 까다로움Hardness 용이함ease 용이함ease

상기 표 1와 같이, 비교예의 경우 탈형이 극히 불량할 뿐만 아니라 성형체가 파손되었다. 또한, 레진 탈형제를 사용한 비교 예의 경우, 몰드와 성형체의 부착력이 남아있어 표면 흠이 발생하였다. As shown in Table 1, in the comparative example, not only the demoulding was extremely bad, but also the molded body was broken. Also, in the case of the comparative example using the resin decarburant, the adhesion between the mold and the molded article remained, resulting in surface scratches.

또한, 사염화탄소 탈형제를 도포한 경우, 탈형 상태와 성형체의 결함여부가 극히 양호하였으나, 인체의 호흡기계통과 피부계통에 치명적으로 유해하고, 몰드의 선택에 있어서도 내부식성 재료로 한정이 되어있다.In addition, when the carbon tetrachloride demolding agent is applied, the demoulding state and the defect of the molded body are extremely good, but it is harmful to the respiratory system and the skin system of the human body and is limited to the corrosion resistant material in the selection of the mold.

또한, 수분을 다량 함유한 성형체는 무르기 때문에 대형 기물의 경우 탈형 후에 자체 중량에 의한 하단부 변형을 초래한다.In addition, since a molded article containing a large amount of water is infinitesimal, a large deformation causes a deformation at the lower end due to its own weight after demoulding.

한편, 본 발명에 따르면, 아세톤, 에탄올 모두 수분의 농도를 낮추고 일정한 강도를 부여함으로써, 균열 및 파손없이 용이하게 탈형할 수 있었다. 또한, 유해성은 사염화탄소에 비해 미약하다. 특히, 아세톤 용매 치환의 경우, 내화학성 재질로 된 몰드를 사용해야 하고, 인해에 영향을 주지만 탈형이 매우 양호한 특징이 있다.On the other hand, according to the present invention, both acetone and ethanol can be easily demoulded without cracking and breakage by lowering the concentration of water and giving a certain strength. In addition, the hazard is weak compared to carbon tetrachloride. Particularly, in the case of acetone solvent substitution, it is necessary to use a mold made of an chemical resistant material, and it has a characteristic that the demoulding is very good although it affects to.

본 발명의 실시 예에서 세라믹 분말로 퓨즈드실리카 분말을 사용하였으나, 본 발명은 이에 한정되는 것이 아니다.Although the fused silicate powder is used as the ceramic powder in the embodiment of the present invention, the present invention is not limited thereto.

본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. It will be apparent to those skilled in the art that the present invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof.

또한, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.In addition, the above detailed description should not be construed in all aspects as limiting and should be considered illustrative. The scope of the present invention should be determined by rational interpretation of the appended claims, and all changes within the scope of equivalents of the present invention are included in the scope of the present invention.

Claims (6)

겔캐스팅(Gel-Casting)법을 이용한 소결체 제조방법에 있어서,
소정 용매에 단량체인 아크릴아마이드(acrylamide) 및 이량체인 메틸렌비스아크릴아마이드(N,N′-Methylenebis(acrylamide))를 용해시켜 혼합용액을 제조하는 단계;
상기 혼합용액에 퓨즈드실리카 분말을 첨가하고 20 내지 30 시간 동안 볼 밀링하여 슬러리를 제조하는 단계;
상기 슬러리에 촉매제 및 개시제를 혼합하고 소정 몰드에 주입하여 성형체를 제조하는 단계;
상기 성형체를 소정 유기용매에 침지시켜, 상기 성형체 내부의 수분을 상기 유기용매로 치환시키는 단계; 및
상기 성형체를 상기 몰드로부터 탈형시키고, 상기 성형체를 소결하는 단계를 포함하는 퓨즈드실리카 소결체의 제조 방법.
In a method of manufacturing a sintered body using a gel-casting method,
Preparing a mixed solution by dissolving acrylamide and N, N'-methylenebis (acrylamide), which are monomers, in a predetermined solvent;
Adding a fused silica powder to the mixed solution and ball milling for 20 to 30 hours to prepare a slurry;
Mixing the slurry with a catalyst and an initiator, and injecting the slurry into a predetermined mold to produce a molded body;
Immersing the molded body in a predetermined organic solvent to replace water inside the molded body with the organic solvent; And
Removing the molded body from the mold, and sintering the molded body.
제1항에 있어서,
상기 유기용매는 아세톤 및 에탄올 중 어느 하나인 것을 특징으로 하는 퓨즈드실리카 소결체의 제조 방법.
The method according to claim 1,
Wherein the organic solvent is any one of acetone and ethanol.
제2항에 있어서,
상기 성형체를 상기 몰드로부터 탈형시킨 후, 상온 및 상습 조건에서 소정 시간동안 건조시키는 단계를 더 포함하는 것을 특징으로 하는 퓨즈드실리카 소결체의 제조 방법.
3. The method of claim 2,
Further comprising the step of removing the molded body from the mold and drying the molded body at a normal temperature and a normal humidity for a predetermined period of time.
제3항에 있어서,
상기 촉매제는 테트라메틸에틸렌디아민(N,N,N'N'-Tetramethylethylenediamin)이고,
상기 개시제는 암모늄퍼설페이트(Ammonium Persulfate)인 것을 특징으로 하는 퓨즈드실리카 소결체의 제조 방법.
The method of claim 3,
The catalyst is tetramethylethylenediamine (N, N'N'-Tetramethylethylenediamine)
Wherein the initiator is ammonium persulfate. ≪ RTI ID = 0.0 > 21. < / RTI >
제4항에 있어서, 상기 슬러리를 제조하는 단계는,
상기 슬러리의 기포가 제거되도록 상온에서 진공 탈포하는 단계를 더 포함하는 것을 특징으로 하는 퓨즈드실리카 소결체의 제조 방법.
5. The method of claim 4,
Further comprising the step of vacuum degassing at room temperature to remove the bubbles of the slurry.
제5항에 있어서, 상기 혼합용액은,
증류수에 4 내지 5 wt%의 아크릴아마이드 및 0.1 내지 0.2 wt%의 메틸렌비스아크릴아마이드가 혼합되어 이루어지는 것을 특징으로 하는 퓨즈드실리카 소결체의 제조 방법.
6. The method according to claim 5,
Characterized in that distilled water is mixed with 4 to 5 wt% of acrylamide and 0.1 to 0.2 wt% of methylene bisacrylamide.
KR1020160112770A 2016-09-01 2016-09-01 Method For Preparing Fused Silica Sintered Material Using Gel-Casting Process KR101904874B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160112770A KR101904874B1 (en) 2016-09-01 2016-09-01 Method For Preparing Fused Silica Sintered Material Using Gel-Casting Process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160112770A KR101904874B1 (en) 2016-09-01 2016-09-01 Method For Preparing Fused Silica Sintered Material Using Gel-Casting Process

Publications (2)

Publication Number Publication Date
KR20180025719A true KR20180025719A (en) 2018-03-09
KR101904874B1 KR101904874B1 (en) 2018-11-28

Family

ID=61728219

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160112770A KR101904874B1 (en) 2016-09-01 2016-09-01 Method For Preparing Fused Silica Sintered Material Using Gel-Casting Process

Country Status (1)

Country Link
KR (1) KR101904874B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107721424A (en) * 2017-09-30 2018-02-23 江苏师范大学 A kind of method that gel casting forming prepares YAG crystalline ceramics
CN109133891A (en) * 2018-09-30 2019-01-04 湖南工业大学 A kind of high density, the in-situ preparation method without complex phase high purity quartz ceramics
CN109251020A (en) * 2018-09-30 2019-01-22 湖南工业大学 A kind of high density, without complex phase high purity quartz ceramics

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102048310B1 (en) 2019-04-26 2020-01-08 오창용 Method and Device For Preparing Ceramic Plate Using Gel-Casting Process

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000001361A (en) * 1998-06-10 2000-01-07 Toto Ltd Method for drying ceramics

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107721424A (en) * 2017-09-30 2018-02-23 江苏师范大学 A kind of method that gel casting forming prepares YAG crystalline ceramics
CN107721424B (en) * 2017-09-30 2020-07-28 江苏师范大学 Method for preparing YAG transparent ceramic by gel casting
CN109133891A (en) * 2018-09-30 2019-01-04 湖南工业大学 A kind of high density, the in-situ preparation method without complex phase high purity quartz ceramics
CN109251020A (en) * 2018-09-30 2019-01-22 湖南工业大学 A kind of high density, without complex phase high purity quartz ceramics
CN109251020B (en) * 2018-09-30 2021-08-10 湖南工业大学 High-density, non-complex phase and high-purity quartz ceramic
CN109133891B (en) * 2018-09-30 2021-08-10 湖南工业大学 In-situ preparation method of high-density and non-complex-phase high-purity quartz ceramic

Also Published As

Publication number Publication date
KR101904874B1 (en) 2018-11-28

Similar Documents

Publication Publication Date Title
KR101904874B1 (en) Method For Preparing Fused Silica Sintered Material Using Gel-Casting Process
KR101904873B1 (en) Method For Preparing Fused Silica Sintered Material Containing Silicon Nitride Using Gel-Casting Process
JP2009202451A (en) Manufacturing method of ceramic molded article and manufacturing method of ceramic sintered article using it
JP2008036712A (en) Molding material or molding part and process of producing the same
JP2007261925A (en) Method for producing ceramic molding and method for producing ceramic sintered compact using the molding
WO2021135897A1 (en) Ceramic-plastic composite, preparation method for same, and applications thereof
JPS61227930A (en) Manufacture and apparatus for glass body
EP3169640B1 (en) Production of a slip and component composed of the slip
JP4946014B2 (en) Method for producing ceramic molded body and method for producing ceramic sintered body using the same
CN108178659B (en) Molding material for 3D printing
Sun et al. Improved strength of alumina ceramic gel and green body based on addition‐esterification reaction
CN107352781B (en) Preparation method for silicon nitride porous ceramic material through rapid curing molding
JP2009234852A (en) Method of manufacturing ceramic molded boy and method of manufacturing ceramic sintered compact
Jaafar et al. Effects of PVA-PEG binders system on microstructure and properties of sintered alumina
JP2008254427A (en) Manufacturing method of component by pim or micro pim
JP2014201504A5 (en)
JPS63268536A (en) Core molding composition
JP2010228424A (en) Method for manufacturing ceramic molding, and method for manufacturing ceramic sintered body using the same
KR19990016261A (en) Demoulding Method of Ceramic Molded Body Prepared by Gel Casting Method
JP6386291B2 (en) Manufacturing method of ceramic molded body
JPH06287055A (en) Production of sintered article of ceramic
KR100869131B1 (en) Sanitary chinaware slip modified with complex plasticizer and sanitary chinaware body using the same
JP2009263147A (en) Method for producing boron nitride formed article
KR100492637B1 (en) Method for forming the alumina powders via sol-gel process
JP2003081682A (en) Method of producing silicon-impregnated silicon carbide ceramic

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right