JP6386291B2 - Manufacturing method of ceramic molded body - Google Patents

Manufacturing method of ceramic molded body Download PDF

Info

Publication number
JP6386291B2
JP6386291B2 JP2014164857A JP2014164857A JP6386291B2 JP 6386291 B2 JP6386291 B2 JP 6386291B2 JP 2014164857 A JP2014164857 A JP 2014164857A JP 2014164857 A JP2014164857 A JP 2014164857A JP 6386291 B2 JP6386291 B2 JP 6386291B2
Authority
JP
Japan
Prior art keywords
ceramic
viscosity
less
slurry
molded body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014164857A
Other languages
Japanese (ja)
Other versions
JP2016040215A (en
Inventor
秀明 平光
秀明 平光
鈴木 敦
敦 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2014164857A priority Critical patent/JP6386291B2/en
Publication of JP2016040215A publication Critical patent/JP2016040215A/en
Application granted granted Critical
Publication of JP6386291B2 publication Critical patent/JP6386291B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

本発明は、例えば、プラグ、メタルハライドランプ、静電チャック、ドームなどに用いられるセラミック焼結体を製造する際に適用できるセラミック成形体の製造方法に関する。   The present invention relates to a method of manufacturing a ceramic molded body that can be applied when manufacturing a ceramic sintered body used for, for example, a plug, a metal halide lamp, an electrostatic chuck, and a dome.

従来、例えば耐熱性や耐久性などの高い性能を有するセラミック焼結体からなるセラミック部品が開発されている。これらのセラミック部品は、セラミックスラリーを硬化・乾燥させたセラミック成形体を焼結することによって製造することができる。   Conventionally, ceramic parts made of a ceramic sintered body having high performance such as heat resistance and durability have been developed. These ceramic parts can be manufactured by sintering a ceramic molded body obtained by curing and drying a ceramic slurry.

この種のセラミック成形体を製造する方法として、例えば特許文献1には、セラミック粉末にエポキシ樹脂とアミン系硬化剤とを加えるとともに、そのエポキシ樹脂とアミン系硬化剤とを硬化させて硬化湿潤体とし、更に、この硬化湿潤体を適度な湿度で乾燥させて加湿乾燥体とすることにより、セラミック製の成形体(未焼結のセラミック成形体)を形成する製造方法が開示されている。   As a method for producing this type of ceramic molded body, for example, in Patent Document 1, an epoxy resin and an amine-based curing agent are added to a ceramic powder, and the epoxy resin and the amine-based curing agent are cured to obtain a cured wet body. Furthermore, a manufacturing method is disclosed in which a cured product (unsintered ceramic product) is formed by drying the cured wet product at an appropriate humidity to obtain a humidified dry product.

特開第3692682号公報Japanese Patent No. 3692682

また、近年では、微細な型、特に幅10mm以下の凹部等がある型(成形型)へのスラリーの注型性、ニアネット成形性(無加工で製品形状となる成形性)、脱型性に優れたセラミック成形体の製造方法が求められている。   Moreover, in recent years, the castability of slurry into a fine die, particularly a die having a recess of 10 mm or less (molding die), a near-net moldability (moldability to form a product shape without processing), and demolding property. Therefore, there is a demand for a method for producing a ceramic molded body excellent in the above.

しかしながら、上述した従来技術では、成形型の形状や、成形型に入れるために必要なスラリーの特性については、流動性が良好との記載があるのみで、具体的な成形型の形状と粘度特性、およびこれらの関係などについては十分検討されていない。   However, in the above-described prior art, the shape of the mold and the characteristics of the slurry necessary for putting into the mold are only described as good fluidity, and the specific shape and viscosity characteristics of the mold are described. , And their relationship has not been fully studied.

また、硬化後の硬化湿潤体の脱型性やそれと密接なつながりのある硬化湿潤体の硬度、さらには、ニアネット成形性やそれと密接なつながりのある加湿乾燥体の反りに関する記載もない。   Moreover, there is no description regarding the demoldability of the cured wet body after curing, the hardness of the cured wet body closely related thereto, and the near-net moldability and the warpage of the humidified dry body closely related thereto.

つまり、上述した従来技術では、セラミック製品を製造する際に用いられるセラミック成形体を作製する方法等については、十分に検討されていない。
本発明は、上述した課題を解決するためになされたものであり、その目的は、優れたセラミック製品を容易に製造することができるセラミック成形体の製造方法を提供することにある。
That is, in the above-described conventional technology, a method for producing a ceramic molded body used when producing a ceramic product has not been sufficiently studied.
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a method for producing a ceramic molded body that can easily produce an excellent ceramic product.

(1)本発明は、第1態様として、少なくともセラミック粉末とエポキシ樹脂と硬化剤とを分散、混合したスラリーを、成形型に流し込み、前記スラリーを加湿しながら加熱することで硬化させて硬化湿潤体を作製し、前記成形型から前記硬化湿潤体を取り出し、その後、該硬化湿潤体を所定の湿度で乾燥させて加湿乾燥体を作製するセラミック成形体の製造方法であって、前記セラミック粉末に加えて前記エポキシ樹脂と前記硬化剤とを化学量論的組成で混合して混合物とした30秒後に、前記混合物をずり速度10s−1にて測定した時の常温での第1粘度が5Pa・s以下で、さらに10分経過した後に、前記混合物をずり速度10s−1にて測定した時の常温での第2粘度と前記第1粘度との比(第2粘度(10分後)/第1粘度(30秒後))が1.3以下であることを特徴とする。 (1) In the present invention, as a first aspect, a slurry in which at least ceramic powder, an epoxy resin, and a curing agent are dispersed and mixed is poured into a mold, and the slurry is cured by heating and humidifying to be cured and wet. to prepare a body, the removed said curing a wetting material from the mold, then, a method of manufacturing the ceramic formed structure of the cured wet body is dried at a predetermined humidity to produce a humidifying dried body, the ceramic powder In addition, after 30 seconds after mixing the epoxy resin and the curing agent in a stoichiometric composition to make a mixture, the first viscosity at room temperature when the mixture was measured at a shear rate of 10 s −1 was 5 Pa · The ratio of the second viscosity at normal temperature to the first viscosity (second viscosity (after 10 minutes) / second) when the mixture was measured at a shear rate of 10 s −1 after 10 minutes had passed after s. 1 viscosity After 30 seconds)) is equal to or more than 1.3.

本第態様では、前記材料を混合物とした30秒後に、その混合物をずり速度10s −1 にて測定した時の第1粘度が5Pa・s以下である。よって、スラリーの粘度が低く、微細な型(例えば幅10mm以下の凹部のある成形型)への注入が容易であるので、スラリーが流れ込まない欠陥が生じにくい。なお、ずり速度10s −1 は、型の幅が10mm以下の場所に注型するときにかかるずり速度に相当する。
また、本第1態様では、更に10分経過した後に、その混合物をずり速度10s −1 にて測定した時の常温での第2粘度と第1粘度の比(第2粘度(10分後)/第1粘度(30秒後))が1.3以下である。よって、スラリーの可使用時間、即ち注型できる時間が長く、生産効率が向上する。
つまり、本第1態様では、微細な型への注入が容易であるので、スラリーが流れ込まない欠陥が生じにくく、しかも、スラリーを注型できる時間が長く、生産効率が向上するという顕著な効果を奏する。
ここで、常温とは、25℃を示している(以下同様)。
なお、これとは別に、スラリーに溶剤を添加することによって、粘度を変化させ、上述した粘度特性としてもよい。しかし、溶剤が多いほどセラミック成形体から、乾燥、脱脂、焼成の工程を経てセラミック部品を作製する際の収縮が大きくなり、クラックの原因となるので、溶剤は少ない方が好ましく、理想的には無溶剤である。
なお、第1粘度の下限値としては、例えば1Pa・sが挙げられ、粘度の比の下限値としては、例えば1が挙げられる(以下同様)。
第1粘度が1Pa・sより小さい場合には、セラミック粉末が沈降し易いため、成形体の上下で密度差が生じ、成形性が低下する。粘度の比が1より小さい場合には、時間が経過することで粘度が低下するので、硬化反応が遅くなり成形性が低下する。
In the first aspect, the first viscosity is 5 Pa · s or less when the mixture is measured at a shear rate of 10 s −1 after 30 seconds using the material as a mixture . Accordingly, since the slurry has a low viscosity and can be easily injected into a fine mold (for example, a mold having a recess having a width of 10 mm or less), defects in which the slurry does not flow are less likely to occur. The shear rate 10 s −1 corresponds to the shear rate applied when casting is performed in a place where the mold width is 10 mm or less.
Moreover, in this 1st aspect, after 10 minutes passed , the ratio of the 2nd viscosity to the 1st viscosity at the normal temperature when the mixture was measured at a shear rate of 10 s −1 (second viscosity (after 10 minutes)) / The first viscosity (after 30 seconds) is 1.3 or less. Therefore, the usable time of the slurry, that is, the casting time is long, and the production efficiency is improved.
That is, in the first aspect, since the injection into the fine mold is easy, the defect that the slurry does not flow is less likely to occur, and the time during which the slurry can be cast is long and the production efficiency is improved. Play.
Here, room temperature indicates 25 ° C. (the same applies hereinafter).
Alternatively, the viscosity may be changed by adding a solvent to the slurry to change the viscosity. However, the more the solvent, the greater the shrinkage when producing ceramic parts from the ceramic molded body through the steps of drying, degreasing, and firing, causing cracks. Solvent-free.
The lower limit of the first viscosity is, for example, 1 Pa · s, and the lower limit of the viscosity ratio is, for example, 1 (the same applies hereinafter).
When the first viscosity is less than 1 Pa · s, the ceramic powder tends to settle, so that a density difference occurs between the upper and lower parts of the molded body, and the moldability is lowered. When the viscosity ratio is less than 1, the viscosity decreases with the passage of time, so that the curing reaction is delayed and the moldability is decreased.

(2)本発明は、第2態様として、前記硬化剤のアミン価が100以上、200以下であることを特徴とする。
本第2態様では、硬化剤のアミン価が100以上、200以下であるので、容易に、加湿乾燥体の反りを2.0mm以下、硬化湿潤体のゴム硬度を50°以上とすることができる。これにより、高いニアネット成形性と脱型性とを両立することができる。
なお、硬化剤のアミン価が100を下回る場合には、硬化収縮が大きくなるため、加湿乾燥体の反りが大きくなり、ニアネット成形性が低下する。一方、硬化剤のアミン価が200を上回ると、硬化剤をエポキシ樹脂に対して化学量論的組成で添加するためには添加量が多くなり、スラリーの粘度が上昇して微細な型への注入が困難になる。
なお、ゴム硬度については、「JIS K6301 スプリング式硬さ試験A形」により規定される。
)本発明は、第態様として、前記セラミック粉末のセラミック材料として、アルミナを用いることを特徴とする。
アルミナは、ファインセラミックスの代表として、最も広く利用されている材料であり、機械的強度、電気絶縁性、(低い)高周波損失性、(高い)熱伝導率、耐熱性、耐摩耗性、耐食性が良好である。従って、アルミナを用いることにより、適用可能な産業分野が広がるという利点がある。
(2) As a second aspect of the present invention, the amine value of the curing agent is 100 or more and 200 or less.
In the second aspect, since the amine value of the curing agent is 100 or more and 200 or less, the warpage of the humidified dry body can be easily made 2.0 mm or less, and the rubber hardness of the cured wet body can be made 50 ° or more. . Thereby, it is possible to achieve both high near-net moldability and demoldability.
In addition, when the amine value of a hardening | curing agent is less than 100, since cure shrinkage becomes large, the curvature of a humidified dry body will become large and near net moldability will fall. On the other hand, when the amine value of the curing agent exceeds 200, the addition amount increases in order to add the curing agent to the epoxy resin in a stoichiometric composition, and the viscosity of the slurry increases, resulting in a fine mold. Injection becomes difficult.
The rubber hardness is defined by “JIS K6301 spring type hardness test A type”.
( 3 ) As a third aspect, the present invention is characterized in that alumina is used as the ceramic material of the ceramic powder.
Alumina is the most widely used material as a representative of fine ceramics and has mechanical strength, electrical insulation, (low) high-frequency loss, (high) thermal conductivity, heat resistance, wear resistance, and corrosion resistance. It is good. Therefore, by using alumina, there is an advantage that applicable industrial fields are expanded.

(4)本発明は、第4態様として、前記セラミック粉末の平均粒子径が1μm以下であることを特徴とする。
本第4態様のように、微細な粉末を使用することにより、緻密な組織が得られる。なお、このことは、例えば「ゲルキャスティング成形法における任意形状付与に関する研究:平成22年度 名古屋工業大学 未来材料創成工学専攻 吉野浩一 博士論文」等により開示されている。
(5)本発明は、第5態様として、前記成形型に、幅10mm以下のところが存在することを特徴とする。
(6)本発明は、第6態様として、前記スラリーは、少なくともアルミナ粉末および分散剤に溶剤を添加し、混合および分散を行ったアルミナ分散液にエポキシ樹脂を混合し、さらに硬化剤を加え、混合したスラリーであることを特徴とする。
(4) As a fourth aspect of the present invention, the ceramic powder has an average particle size of 1 μm or less.
A dense structure can be obtained by using a fine powder as in the fourth embodiment. This is disclosed, for example, in “Research on imparting arbitrary shape in gel casting molding method: Dr. Koichi Yoshino, Ph.D.
(5) The present invention, as a fifth aspect, is characterized in that the mold has a width of 10 mm or less.
(6) In the present invention, as a sixth aspect, the slurry is added at least to an alumina powder and a dispersant, mixed with an alumina dispersion liquid that has been mixed and dispersed, and further added with a curing agent, It is a mixed slurry.

スラリーを注型に流し込んで硬化させる状態を示す説明図である。It is explanatory drawing which shows the state which pours a slurry into a casting mold and makes it harden | cure. 実験例1〜5のアミン価と硬化湿潤体のゴム硬度との関係を示すグラフである。It is a graph which shows the relationship between the amine value of Experimental Examples 1-5, and the rubber hardness of a hardening wet body. 実験例1〜5のアミン価と加湿乾燥体の反りとの関係を示すグラフである。It is a graph which shows the relationship between the amine number of Experimental Examples 1-5, and the curvature of a humidified dry body.

以下、本発明の実施形態について説明する。
[実施形態]
a)まず、本実施形態のセラミック成形体の製造方法を説明する。
Hereinafter, embodiments of the present invention will be described.
[Embodiment]
a) First, the manufacturing method of the ceramic molded body of this embodiment is demonstrated.

本実施形態では、以下の工程で、セラミック成形体を作製し、その後、このセラミック成形体からセラミック焼結体を作製した。
<分散混合工程>
まず、アルミナ粉末660g(AES−12 住友化学製 平均粒径:0.57μm BET比表面積:6.4m/g)に対し、分散剤:G−700(共栄社化学製)を3.3g(0.5重量%:外重量%)添加した。
In the present embodiment, a ceramic molded body was manufactured in the following steps, and then a ceramic sintered body was manufactured from the ceramic molded body.
<Dispersion mixing process>
First, 3.3 g (0 of dispersant): G-700 (manufactured by Kyoeisha Chemical Co., Ltd.) with respect to 660 g of alumina powder (AES-12, Sumitomo Chemical average particle size: 0.57 μm, BET specific surface area: 6.4 m 2 / g) 0.5 wt%: outer wt%).

なお、平均粒径1.0μm以下のアルミナ粉末を用いることができる。
そして、イオン交換水を最終的な水分量が(全体の)36.6体積%となるように添加し、玉石とともにポットに入れ、回転し混合と分散を行った。
An alumina powder having an average particle size of 1.0 μm or less can be used.
Then, ion-exchanged water was added so that the final water content was 36.6% by volume (total), put into a pot together with boulders, and rotated to mix and disperse.

<樹脂混合工程>
次に、前記分散混合工程で分散混合したアルミナ分散液に、エポキシ樹脂(ナガセケムテックス製EX−313 エポキシ当量:141、粘度0.15Pa・s)を47.3g投入し、10分間混合した。
<Resin mixing process>
Next, 47.3 g of an epoxy resin (EX-313 epoxy equivalent: 141, viscosity: 0.15 Pa · s) manufactured by Nagase ChemteX was added to the alumina dispersion liquid that was dispersed and mixed in the dispersion mixing step, and mixed for 10 minutes.

さらに、各種の硬化剤(T&K TOKA株式会社製)を化学量論的に必要な添加量を加え、さらに2分間混合を行い、その後2分間真空脱泡を行った。これでスラリーが完成した。   Further, various kinds of curing agents (manufactured by T & K TOKA Co., Ltd.) were added in a stoichiometrically necessary amount, further mixed for 2 minutes, and then vacuum degassed for 2 minutes. This completes the slurry.

<注型、硬化工程>
次に、図1に示すように、前記スラリー(S)を、成形型1に流し込み、即ち平面視で長方形(幅5mm×長さ60mm)のフッ素樹脂でコートした金属製の注型に流し込み、上型2(ポリカーボネイト製)で封止した。
<Casting and curing process>
Next, as shown in FIG. 1, the slurry (S) is poured into the mold 1, that is, into a metal casting coated with a rectangular (width 5 mm × length 60 mm) fluororesin in plan view, Sealed with an upper mold 2 (manufactured by polycarbonate).

その後、前記スラリーを、下記の条件で加熱して硬化を行った後、上型2を外して、成形型1から硬化湿潤体を取り出した。なお、この加熱による硬化によって、硬化湿潤体が形成される。   Thereafter, the slurry was heated and cured under the following conditions, the upper mold 2 was removed, and the cured wet body was taken out from the mold 1. A cured wet body is formed by this curing by heating.

加熱硬化条件:80℃×100%RH×5h
昇降温速度:5℃/h
なお、RHは、相対湿度である。
Heat curing conditions: 80 ° C. × 100% RH × 5 h
Temperature increase / decrease rate: 5 ° C / h
Note that RH is relative humidity.

<乾燥工程>
次に、前記硬化湿潤体を、下記の条件で乾燥して加湿乾燥体を作製した。
つまり、下記の加湿乾燥条件にて、硬化湿潤体の湿度を徐々に下げて乾燥した。
<Drying process>
Next, the cured wet body was dried under the following conditions to prepare a humidified dry body.
That is, the humidity of the cured wet body was gradually lowered and dried under the following humidifying and drying conditions.

加湿乾燥条件:80℃×80%RH×12h→80℃×60%RH×12h→80℃×40%RH×12h
昇降温速度:5℃/h
降湿速度:5%RH/h
<脱脂工程>
次に、前記加湿乾燥体を、下記の脱脂条件にて脱脂し、脱脂体を作製した。
Humidification and drying conditions: 80 ° C. × 80% RH × 12 h → 80 ° C. × 60% RH × 12 h → 80 ° C. × 40% RH × 12 h
Temperature increase / decrease rate: 5 ° C / h
Humidity rate: 5% RH / h
<Degreasing process>
Next, the humidified dried body was degreased under the following degreasing conditions to produce a degreased body.

脱脂条件:400℃×2h
昇温速度:2.5℃/h
<焼成工程>
次に、前記脱脂体を、下記の焼成条件にて焼成して焼結させて、セラミック焼結体を作製した。
Degreasing conditions: 400 ° C x 2h
Temperature increase rate: 2.5 ° C / h
<Baking process>
Next, the degreased body was fired and sintered under the following firing conditions to produce a ceramic sintered body.

焼成条件:1600℃×6h
昇温速度:25℃/h
上述した製造方法は、下記の実験例に示すように、優れたセラミック製品を容易に製造することができるセラミック成形体の製造方法である。
Firing conditions: 1600 ° C x 6h
Temperature increase rate: 25 ° C / h
The manufacturing method described above is a method for manufacturing a ceramic molded body capable of easily manufacturing an excellent ceramic product, as shown in the following experimental examples.

例えば、ニアネット成形性と脱型性に優れ、さらには微細な型、特に幅10mm以下の場所がある成形型への充填性に優れるという顕著な効果を奏する。
b)次に、本実施形態のセラミック成形体の製造方法の効果を確認するために行った実験例について説明する。
For example, it has excellent effects such as excellent near-net moldability and demoldability, and further excellent fillability into a fine mold, particularly a mold having a place having a width of 10 mm or less.
b) Next, an experimental example performed to confirm the effect of the method for producing a ceramic molded body of the present embodiment will be described.

この実験例では、下記表1に示す硬化剤を用い、上述した実施態様の製造方法によって、下記表2に示すように、本発明の試料(実験例1〜5)を作製し、同表2に示す特性を調べた。   In this experimental example, using the curing agent shown in the following Table 1, samples of the present invention (Experimental Examples 1 to 5) were prepared as shown in the following Table 2 by the manufacturing method of the embodiment described above. The characteristics shown in FIG.

具体的には、下記のようにして、各試料の「粘度」、「粘度比」、「加湿乾燥体の反り」、「ニアネット成形性」、「硬化湿潤体のゴム硬度」、「(硬化湿潤体の)脱型性」、「(スラリーの)充填性」を調べた。また、それらの結果から総合評価を行った。その結果を、同表2に記す。   Specifically, the “viscosity”, “viscosity ratio”, “warping of the humidified dry body”, “near net formability”, “rubber hardness of the cured wet body”, “(cured) The “demoldability” and “fillability of (slurry)” were investigated. Moreover, comprehensive evaluation was performed from those results. The results are shown in Table 2.

<粘度の測定方法>
粘度は、常温(25℃)において、ずり速度10s−1にて測定した。なお、このずり速度は、注型する時のずり速度に相当する。
<Measurement method of viscosity>
The viscosity was measured at normal temperature (25 ° C.) at a shear rate of 10 s −1 . This shearing speed corresponds to the shearing speed when casting.

粘度の測定装置:レオメーター(レオメトリック・サイエンティフィック社)
粘度の評価方法:クエット方式
治具寸法 :ボブ(φ25mm)/カップ(φ27mm)
スラリー投入量:8ml
<加湿乾燥体の反りの測定方法>
下記のサンプル形状の加湿乾燥体のサンプルを作製した。そして、下記の測定装置を用いて、その反りを求めた。
Viscosity measuring device: Rheometer (Rheometric Scientific)
Viscosity evaluation method: Couette method Jig dimensions: Bob (φ25mm) / Cup (φ27mm)
Slurry input amount: 8ml
<Measurement method of warpage of humidified dry body>
A sample of the humidified dried body having the following sample shape was prepared. And the curvature was calculated | required using the following measuring apparatus.

サンプル形状:φ80mm×T(厚み)5mm
DEGIMICRO STAND(Nikon製 MS−1C)で、加湿乾燥体の厚み寸法を5点測定し、その最大値と最小値の差を反りとした。
Sample shape: φ80mm x T (thickness) 5mm
Using DEGIMICRO STAND (MS-1C, manufactured by Nikon), the thickness of the humidified dried body was measured at five points, and the difference between the maximum value and the minimum value was defined as a warp.

<ニアネット成形性>
下記のサンプル形状の硬化湿潤体のサンプルを作製し、そのサンプルを焼成してセラミック焼結体を作製した。そして、硬化湿潤体とセラミック焼結体との形状を測定して、ニアネット成形性を判定した。
<Near net formability>
A sample of a cured wet body having the following sample shape was produced, and the sample was fired to produce a ceramic sintered body. And the shape of a hardening wet body and a ceramic sintered compact was measured, and the near net moldability was determined.

サンプル形状:φ80mm×T(厚み)5mm
具体的には、硬化湿潤体とセラミック焼結体の形状を測定し、セラミック焼結体が硬化湿潤体から相似形で収縮していた場合を○、変形し相似形でなかった場合を×とした。
Sample shape: φ80mm x T (thickness) 5mm
Specifically, the shapes of the cured wet body and the ceramic sintered body were measured, and when the ceramic sintered body was contracted in a similar shape from the cured wet body, ○, and when the deformed and not similar shape was × did.

なお、相似形で収縮したか否かは、直交する2箇所の直径(ある直径とその直径の直交する直径の2箇所)と、厚さをノギスで測定することによって判定した。すなわち、セラミック焼結体の直交する2箇所の直径が等しく、且つ、硬化湿潤体の直径と比較し、厚さの変化と同じ割合で直径が収縮していた場合を、相似形で収縮したと判定した。一方、セラミック焼結体の直交する2箇所の直径が等しくない場合、もしくは、硬化湿潤体の直径と比較し、厚さの変化と同じ割合で直径が収縮していなかった場合を、変形し相似形でなかったと判定した。   In addition, whether it shrunk in a similar shape was determined by measuring two orthogonal diameters (a certain diameter and two diameters perpendicular to the diameter) and thickness with a caliper. That is, when the diameters of two places perpendicular to the ceramic sintered body are equal and the diameter contracts at the same rate as the thickness of the cured wet body, it shrinks in a similar shape. Judged. On the other hand, if the diameters of two orthogonal parts of the ceramic sintered body are not equal, or if the diameter does not shrink at the same rate as the thickness change compared to the diameter of the cured wet body, it will be deformed and similar Judged that it was not in shape.

<ゴム硬度の測定方法>
下記のゴム硬度計を用い、前記ニアネット成形性の判定で用いた硬化湿潤体のサンプルを厚み方向に加圧して、ゴム硬度を測定した。
<Measurement method of rubber hardness>
Using the following rubber hardness meter, a sample of the cured wet body used in the determination of the near net moldability was pressed in the thickness direction, and the rubber hardness was measured.

ゴム硬度計 [テクロック製 形式:GS−706(JIS K6301 スプリング式硬さ試験A形)、測定範囲:0〜100°、目盛:1°、スプリングの精度:±8gf(±1°)]
<脱型性>
下記のサンプル形状の型を用いて、同寸法の硬化湿潤体を作製した。そして、硬化後に変形することなく型から取出すことができた場合を○、できなかった場合を×とした。
Rubber hardness tester [Type of TECLOCK: GS-706 (JIS K6301 spring type hardness test A type), measuring range: 0-100 °, scale: 1 °, spring accuracy: ± 8gf (± 1 °)]
<Demoldability>
A cured wet body having the same dimensions was produced using a mold having the following sample shape. And when it was able to take out from a type | mold, without deform | transforming after hardening, it set as (circle) and the case where it was unable to do.

サンプルの形状:φ50mm×T(厚み)10mm
<充填性>
幅5mm×長さ60mm×深さ5mmの型に、スラリーを深さ5mmまで充填した。そして、硬化させ、脱型し、充填性を評価した。
Sample shape: φ50mm x T (thickness) 10mm
<Fillability>
The slurry was filled to a depth of 5 mm in a mold having a width of 5 mm, a length of 60 mm, and a depth of 5 mm. Then, it was cured, demolded, and the filling property was evaluated.

隙間なく充填された場合を○、充填が不十分であった場合を×とした。
<総合評価>
ニアネット成形性、脱型性、充填性が全て○を◎とし、それらのうち×が1つのものを○とし、×が2つのものを×とした。
The case where it was filled without a gap was marked as ◯, and the case where the filling was insufficient was marked as x.
<Comprehensive evaluation>
The near-net moldability, demoldability, and filling properties were all marked with ◎, among them, x was one, and x was two.

なお、硬化剤の品番は、実験例1〜4は、T&K TOKA株式会社製の品番を示しており、実験例5は、化学物名を示している。   In addition, as for the product number of a hardening | curing agent, Experiment Examples 1-4 has shown the product number by T & K TOKA Corporation, and Experiment Example 5 has shown the chemical name.

上述した実験例から明らかなように、本発明の実験例1〜5では、優れた効果を奏することは明らかである。
(1)具体的には、実験例1〜5において、加湿乾燥体の反りを評価した結果、実験例1〜4は、反りが1.5mm以下と小さく、ニアネット成形性が良好であった。一方、実験例5は、加湿乾燥体の反りが3.3mm大きく、ニアネット成形性が不良であった。
As is clear from the experimental examples described above, it is obvious that the experimental examples 1 to 5 of the present invention have excellent effects.
(1) Specifically, in Experimental Examples 1 to 5, as a result of evaluating the warpage of the humidified dried body, in Experimental Examples 1 to 4, the warpage was as small as 1.5 mm or less, and the near net formability was good. . On the other hand, in Experimental Example 5, the warp of the humidified dried body was 3.3 mm larger, and the near net moldability was poor.

つまり、反りが2mm以下の場合には、ニアネット成形性に優れていることが分かる。
(2)また、硬化湿潤体のゴム硬度と脱型性とを評価した結果、実験例1〜3、5は、ゴム硬度が59°以上で脱型性が良好であった。一方、実験例4は脱型性が良くなかった。これは、実験例4は、硬化湿潤体のゴム硬度も46°と小さく、柔らかすぎて、脱型する際に崩れたためである。
That is, when the warp is 2 mm or less, it is understood that the near net formability is excellent.
(2) Further, as a result of evaluating the rubber hardness and demoldability of the cured wet body, Experimental Examples 1 to 3 and 5 had good demoldability when the rubber hardness was 59 ° or more. On the other hand, Experimental Example 4 did not have good demoldability. This is because in Example 4, the rubber hardness of the cured wet body was as small as 46 ° and was too soft and collapsed when demolding.

つまり、ゴム硬度が50°以上の場合には、脱型性に優れていることが分かる。
従って、ニアネット成形性と脱型性を両立できるのは、加湿乾燥体の反りが2mm以下で、硬化湿潤体のゴム硬度が50°以上の場合である。
That is, it can be seen that when the rubber hardness is 50 ° or more, the mold release property is excellent.
Therefore, both the near net moldability and the demoldability can be achieved when the humidified dry body has a warp of 2 mm or less and the cured wet body has a rubber hardness of 50 ° or more.

(3)図2及び図3は、それぞれ実験例1〜5のアミン価に対する硬化湿潤体のゴム硬度と加湿乾燥体の反りとの関係を示したものである。
この図2から、アミン価が高い(実験例4)と、硬化湿潤体のゴム硬度が低い傾向にあることが分かる。これは、アミン価が高いと、架橋密度が低くなるためと考えられる。逆に、図3に示すように、アミン価が低い(実験例5)と、架橋密度が高くなりすぎるため、硬化収縮が大きくなることが分かる。よって、アミン価が低いと、加湿乾燥体の反りが大きくなりニアネット成形性が低下する。
(3) FIG. 2 and FIG. 3 show the relationship between the rubber hardness of the cured wet body and the warpage of the humidified dried body with respect to the amine values of Experimental Examples 1 to 5, respectively.
FIG. 2 shows that when the amine value is high (Experimental Example 4), the rubber hardness of the cured wet body tends to be low. This is presumably because the crosslinking density is lowered when the amine value is high. On the contrary, as shown in FIG. 3, when the amine value is low (Experimental Example 5), it is found that the crosslinking shrinkage becomes too high, so that the curing shrinkage increases. Therefore, when the amine value is low, warpage of the humidified dried body is increased and the near net moldability is lowered.

これらの結果から、ニアネット成形性と脱型性の両方に優れる範囲は、アミン価で100〜200であることがわかる。
(4)また、実験例1〜3の間でも優劣があり、充填性において、特に実験例1が好適であった。実験例2、3は、初期の第1粘度が5Pa・s以上と高いと共に、第2粘度(10分後)/第1粘度(30秒後)>1.3であり、硬化剤添加後の粘度上昇が大きかったため、実験例1に比べて充填性が低いと考えられる。
From these results, it can be seen that the range excellent in both near-net moldability and demoldability is 100 to 200 in terms of amine value.
(4) In addition, the experimental examples 1 to 3 were superior and inferior, and the experimental example 1 was particularly suitable in terms of filling properties. In Experimental Examples 2 and 3, the initial first viscosity is as high as 5 Pa · s or more, and the second viscosity (after 10 minutes) / first viscosity (after 30 seconds)> 1.3. Since the increase in viscosity was large, it is considered that the filling property is lower than that of Experimental Example 1.

尚、本発明は前記実施形態や実験例になんら限定されるものではなく、本発明を逸脱しない範囲において種々の態様で実施しうることはいうまでもない。
(1)例えば使用するセラミック粉末の平均粒子径としては、1μm以下の範囲のものを適宜用いることができる。
In addition, this invention is not limited to the said embodiment and experiment example at all, and it cannot be overemphasized that it can implement with a various aspect in the range which does not deviate from this invention.
(1) For example, as the average particle diameter of the ceramic powder to be used, those having a range of 1 μm or less can be appropriately used.

(2)セラミック粉末としては、アルミナ以外に、例えばジルコニア等を採用できる。
(3)エポキシ樹脂としては、硬化剤と反応して硬化する各種の樹脂を採用できる。例えば、グリシジルエーテル型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、脂肪族エポキシ樹脂、脂環式エポキシ樹脂などを採用できる。
(2) As the ceramic powder, for example, zirconia can be adopted in addition to alumina.
(3) As the epoxy resin, various resins that can be cured by reacting with a curing agent can be employed. For example, a glycidyl ether type epoxy resin, a glycidyl ester type epoxy resin, a glycidyl amine type epoxy resin, an aliphatic epoxy resin, an alicyclic epoxy resin, or the like can be employed.

(4)硬化剤としては、エポキシ樹脂と反応して硬化する各種の硬化剤を採用できる。例えば、一級、二級、三級アミン化合物、ポリアミド樹脂、イミダゾール類、ポリメルカプタン硬化剤、酸無水物類、ジシアンジアミドなどの潜在性硬化剤などを採用できる。   (4) As the curing agent, various curing agents that react and cure with an epoxy resin can be employed. For example, latent curing agents such as primary, secondary, and tertiary amine compounds, polyamide resins, imidazoles, polymercaptan curing agents, acid anhydrides, and dicyandiamide can be employed.

1…成形型
2…上型
S…スラリー
1 ... Mold 2 ... Upper mold S ... Slurry

Claims (6)

少なくともセラミック粉末とエポキシ樹脂と硬化剤とを分散、混合したスラリーを、成形型に流し込み、前記スラリーを加湿しながら加熱することで硬化させて硬化湿潤体を作製し、前記成形型から前記硬化湿潤体を取り出し、その後、該硬化湿潤体を所定の湿度で乾燥させて加湿乾燥体を作製するセラミック成形体の製造方法であって
前記セラミック粉末に加えて前記エポキシ樹脂と前記硬化剤とを化学量論的組成で混合して混合物とした30秒後に、前記混合物をずり速度10s−1にて測定した時の常温での第1粘度が5Pa・s以下で、さらに10分経過した後に、前記混合物をずり速度10s−1にて測定した時の常温での第2粘度と前記第1粘度との比(第2粘度(10分後)/第1粘度(30秒後))が1.3以下であることを特徴とするセラミック成形体の製造方法。
A slurry in which at least ceramic powder, an epoxy resin, and a curing agent are dispersed and mixed is poured into a mold, and the slurry is cured by heating while humidifying to produce a cured wet body, and the cured wet body is produced from the mold. taking out the body, then, a method of manufacturing the ceramic formed structure of the cured wet body is dried at a predetermined humidity to produce a humidifying dried body,
30 seconds after mixing the epoxy resin and the curing agent in a stoichiometric composition in addition to the ceramic powder to make a mixture, the mixture was measured at a shear rate of 10 s −1 at room temperature. The viscosity is 5 Pa · s or less, and after 10 minutes have passed, the ratio of the second viscosity at normal temperature to the first viscosity (second viscosity (10 minutes) when the mixture is measured at a shear rate of 10 s-1 (After) / first viscosity (after 30 seconds)) is 1.3 or less.
前記硬化剤のアミン価が100以上、200以下であることを特徴とする請求項1に記載のセラミック成形体の製造方法。   The method for producing a ceramic molded body according to claim 1, wherein the curing agent has an amine value of 100 or more and 200 or less. 前記セラミック粉末のセラミック材料として、アルミナを用いることを特徴とする請求項1又は2に記載のセラミック成形体の製造方法。   The method for producing a ceramic molded body according to claim 1 or 2, wherein alumina is used as the ceramic material of the ceramic powder. 前記セラミック粉末の平均粒子径が1μm以下であることを特徴とする請求項1〜3のいずれか1項に記載のセラミック成形体の製造方法。   The average particle diameter of the said ceramic powder is 1 micrometer or less, The manufacturing method of the ceramic molded body of any one of Claims 1-3 characterized by the above-mentioned. 前記成形型に、幅10mm以下のところが存在することを特徴とする請求項1〜4のいずれか1項に記載のセラミック成形体の製造方法。The method for producing a ceramic molded body according to any one of claims 1 to 4, wherein the mold has a width of 10 mm or less. 前記スラリーは、少なくともアルミナ粉末および分散剤に溶剤を添加し、混合および分散を行ったアルミナ分散液にエポキシ樹脂を混合し、さらに硬化剤を加え、混合したスラリーであることを特徴とする請求項1〜5のいずれか1項に記載のセラミック成形体の製造方法。The slurry is a slurry obtained by adding a solvent to at least an alumina powder and a dispersing agent, mixing an epoxy resin in an alumina dispersion liquid that has been mixed and dispersed, and further adding a curing agent and mixing. The manufacturing method of the ceramic molded body of any one of 1-5.
JP2014164857A 2014-08-13 2014-08-13 Manufacturing method of ceramic molded body Active JP6386291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014164857A JP6386291B2 (en) 2014-08-13 2014-08-13 Manufacturing method of ceramic molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014164857A JP6386291B2 (en) 2014-08-13 2014-08-13 Manufacturing method of ceramic molded body

Publications (2)

Publication Number Publication Date
JP2016040215A JP2016040215A (en) 2016-03-24
JP6386291B2 true JP6386291B2 (en) 2018-09-05

Family

ID=55540744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014164857A Active JP6386291B2 (en) 2014-08-13 2014-08-13 Manufacturing method of ceramic molded body

Country Status (1)

Country Link
JP (1) JP6386291B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109291206A (en) * 2018-09-25 2019-02-01 王永强 A kind of ceramic printing cylinder lamppost and its moulding process

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06287055A (en) * 1993-03-31 1994-10-11 Toshiba Corp Production of sintered article of ceramic
JP2006083014A (en) * 2004-09-16 2006-03-30 Toray Ind Inc Ceramic sintered compact and ceramic multilayer substrate using the same
JP2009102563A (en) * 2007-10-25 2009-05-14 Toray Ind Inc Epoxy resin composition and fiber-reinforced composite material by using the same
JP2010126381A (en) * 2008-11-26 2010-06-10 Nippon Electric Glass Co Ltd Green sheet
JP2010228424A (en) * 2009-03-30 2010-10-14 Toray Ind Inc Method for manufacturing ceramic molding, and method for manufacturing ceramic sintered body using the same
JP2011157222A (en) * 2010-01-29 2011-08-18 Toray Ind Inc Method for producing ceramic molding
WO2012033226A1 (en) * 2010-09-08 2012-03-15 関西ペイント株式会社 Kit for aqueous epoxy resin coating compositions, aqueous epoxy resin coating composition, method for forming coated products, and coated product

Also Published As

Publication number Publication date
JP2016040215A (en) 2016-03-24

Similar Documents

Publication Publication Date Title
JP5146010B2 (en) Method for producing ceramic molded body and method for producing ceramic sintered body using the same
TWI664223B (en) Resin composition for electrode formation, wafer-type electronic component, and manufacturing method thereof
JP5398676B2 (en) Coil buried type inductor and manufacturing method thereof
JP6386291B2 (en) Manufacturing method of ceramic molded body
JP2014187152A (en) Epoxy resin molding material, method for producing molded coil and molded coil
Reddy et al. Optimization of investment shell mould using colloidal silica binder
JP4098094B2 (en) Molding composition for manufacturing bipolar plates
JP6177940B2 (en) Resin composition, casting product for sensor and temperature sensor
JP5200789B2 (en) Resin composition
JP2007261925A (en) Method for producing ceramic molding and method for producing ceramic sintered compact using the molding
JP2010208937A (en) Process for manufacturing high-voltage electrical insulator
JP6359916B2 (en) Manufacturing method of ceramic molded body
JP2011157222A (en) Method for producing ceramic molding
JP5323368B2 (en) Low dielectric insulating material and manufacturing method thereof
TWI752350B (en) Electrode-forming resin composition, wafer-type electronic component, and method for producing the same
JP6478759B2 (en) Cement composition
JP6206769B2 (en) Core manufacturing method
JP2010202472A (en) Ceramic fired body and method of manufacturing the same
JP6831017B2 (en) Composition, film and method for producing the film
JP2007136912A (en) Manufacturing method of ceramic molding, and manufacturing method of ceramic sintered article using the molding
JPH06227854A (en) Production of formed ceramic article
JP2012177461A (en) Heat-resistant heat insulation material, heat insulating plate for electromagnetic cooker, and heat insulating structure for electromagnetic cooker
JP6565258B2 (en) Liquid epoxy resin composition and liquid epoxy resin molding material
JP2010228424A (en) Method for manufacturing ceramic molding, and method for manufacturing ceramic sintered body using the same
JP2010234748A (en) Method of manufacturing ceramic molded body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180316

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180809

R150 Certificate of patent or registration of utility model

Ref document number: 6386291

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250