JP2011157222A - Method for producing ceramic molding - Google Patents

Method for producing ceramic molding Download PDF

Info

Publication number
JP2011157222A
JP2011157222A JP2010018292A JP2010018292A JP2011157222A JP 2011157222 A JP2011157222 A JP 2011157222A JP 2010018292 A JP2010018292 A JP 2010018292A JP 2010018292 A JP2010018292 A JP 2010018292A JP 2011157222 A JP2011157222 A JP 2011157222A
Authority
JP
Japan
Prior art keywords
slurry
solvent
powder
composite
curable resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010018292A
Other languages
Japanese (ja)
Inventor
Takeshi Nishiyama
剛司 西山
Masaki Yoshino
正樹 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2010018292A priority Critical patent/JP2011157222A/en
Publication of JP2011157222A publication Critical patent/JP2011157222A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing an alumina-zirconia composite ceramic molding in a wet molding method. <P>SOLUTION: The method for producing the ceramic molding includes: a mixing step of preparing composite slurry containing zirconia powder, alumina powder, a hardening resin, a solvent and a dispersant; a molding step of mixing a curing agent with the composite slurry, performing curing and molding in a mold and performing releasing from the mold to form a solvent-containing ceramic molding; and a drying step of drying the solvent-containing ceramic molding. The method further includes a step of previously preparing first slurry containing the zirconia powder, the hardening resin, the solvent and the dispersant and second slurry containing the alumina powder, the hardening resin, the solvent and the dispersant when the composite slurry is prepared in the mixing step and mixing the first slurry and the second slurry with each other. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、特に複雑形状の成形体を製造するためのセラミックス成形体の製造方法に関するものである。   The present invention relates to a method for manufacturing a ceramic molded body, particularly for manufacturing a molded body having a complicated shape.

セラミックスは優れた機械的性質や耐食性などの理由から様々な構造用部品に用いられている。近年では、複雑形状の部品を要求されるようになり、押出し成形、鋳込み成形、射出成形等で検討がなされ、様々な提案がなされている。中でも複雑で大物形状の成形に適している鋳込み成形方法は、それに適する樹脂バインダーや添加剤の検討がなされ、様々な提案がされている(特許文献1、2、3、4、5)。   Ceramics are used in various structural parts for reasons such as excellent mechanical properties and corrosion resistance. In recent years, parts with complex shapes have been required, and studies have been made on extrusion molding, casting molding, injection molding, and the like, and various proposals have been made. Among them, as for the cast molding method suitable for complex and large-size molding, investigations on resin binders and additives suitable for it have been made, and various proposals have been made (Patent Documents 1, 2, 3, 4, 5).

またアルミナ−ジルコニア複合スラリーを調製する方法が提案されている(特許文献6)。   A method for preparing an alumina-zirconia composite slurry has been proposed (Patent Document 6).

しかしこれらの方法は高濃度のスラリーを調整すると粘度が高くなってしまい複雑形状の成形型に上手く鋳込めない問題や、得られたセラミックス成形体を焼結した焼結体の強度が低下する問題があった。   However, these methods are problematic in that when a high concentration slurry is prepared, the viscosity becomes high and it cannot be successfully cast into a mold having a complicated shape, and the strength of the sintered body obtained by sintering the obtained ceramic compact is reduced. was there.

特公平7−22931号公報Japanese Patent Publication No. 7-22931 特公平10−217212号公報Japanese Patent Publication No. 10-217212 特許第3692682号公報Japanese Patent No. 3692682 特開2005−53716号公報JP 2005-53716 A 特開2007−136912号公報JP 2007-136912 A 特昭63−103859号公報Japanese Patent Publication No. 63-103859

本発明の目的は、かかる従来技術の問題点に鑑み、スラリーの粘度を低減し、焼結体とした場合に偏析を低減可能なセラミックス成形体を製造する方法を提供することにある。   An object of the present invention is to provide a method for producing a ceramic molded body capable of reducing segregation when the viscosity of a slurry is reduced and a sintered body is obtained in view of the problems of the prior art.

上記目的を達成するために、本発明は以下の構成からなる。すなわち、ジルコニア粉末、アルミナ粉末、硬化性樹脂、溶媒および分散剤を含む複合スラリーを調製する混合工程、該複合スラリーに硬化剤を混合し、型内に硬化させて成形し、脱型して含溶媒セラミックス成形体とする成形工程、含溶媒セラミックス成形体を乾燥させる乾燥工程を有するセラミックス成形体の製造方法であって、該混合工程において前記複合スラリーを調製する際にあらかじめジルコニア粉末、硬化性樹脂、溶媒および分散剤を含む第1のスラリーならびにアルミナ粉末、硬化性樹脂、溶媒および分散剤を含む第2のスラリーを調製し、前記第1のスラリーおよび第2のスラリーを混合する工程を含むことを特徴とするセラミックス成形体の製造方法である。   In order to achieve the above object, the present invention comprises the following arrangement. That is, a mixing step of preparing a composite slurry containing zirconia powder, alumina powder, curable resin, solvent and dispersant, a curing agent is mixed with the composite slurry, cured in a mold, molded, demolded and contained. A method for producing a ceramic formed body comprising a forming step of forming a solvent ceramic formed body, and a drying step of drying the solvent-containing ceramic formed body, wherein the composite slurry is prepared in advance in the mixing step in the zirconia powder, curable resin Preparing a first slurry containing a solvent and a dispersant and a second slurry containing alumina powder, a curable resin, a solvent and a dispersant, and mixing the first slurry and the second slurry. Is a method for producing a ceramic molded body.

本発明によれば、アルミナ−ジルコニアセラミックス成形体を製造することができ、また、焼結体としたときの物性に優れたセラミックス成形体の製造方法を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the alumina-zirconia ceramic molded object can be manufactured, and the manufacturing method of the ceramic molded object excellent in the physical property when it is set as a sintered compact can be provided.

上記目的を達成するために、本発明は以下の構成からなる。すなわち、ジルコニア粉末、アルミナ粉末、硬化性樹脂、溶媒および分散剤を含む複合スラリーを調製する混合工程、該複合スラリーに硬化剤を混合し、型内に硬化させて成形し、脱型して含溶媒セラミックス成形体とする成形工程、含溶媒セラミックス成形体を乾燥させる乾燥工程を有するセラミックス成形体の製造方法であって、該混合工程において前記複合スラリーを調製する際にあらかじめジルコニア粉末、硬化性樹脂、溶媒および分散剤を含む第1のスラリーならびにアルミナ粉末、硬化性樹脂、溶媒および分散剤を含む第2のスラリーを調製し、前記第1のスラリーおよび第2のスラリーを混合する工程を含むことを特徴とするセラミックス成形体の製造方法である。   In order to achieve the above object, the present invention comprises the following arrangement. That is, a mixing step of preparing a composite slurry containing zirconia powder, alumina powder, curable resin, solvent and dispersant, a curing agent is mixed with the composite slurry, cured in a mold, molded, demolded and contained. A method for producing a ceramic formed body comprising a forming step of forming a solvent ceramic formed body, and a drying step of drying the solvent-containing ceramic formed body, wherein the composite slurry is prepared in advance in the mixing step when the zirconia powder and the curable resin are prepared. Preparing a first slurry containing a solvent and a dispersant and a second slurry containing alumina powder, a curable resin, a solvent and a dispersant, and mixing the first slurry and the second slurry. Is a method for producing a ceramic molded body.

本発明において用いるジルコニア粉末は、マグネシア、カルシア、イットリア、セリア等の安定化剤を含む正方晶系の部分安定化ジルコニア粉末を用いることができる。これらの安定化剤は2〜25モル%含むものが好ましく用いられ、マグネシアであれば8〜10モル%、カルシアであれば6〜12モル%、イットリアであれば2〜4モル%、セリアであれば12〜20モル%含まれることがより好ましい。特に好ましくは安定化剤としてイットリアを2〜4モル%の範囲内で含む部分安定化ジルコニア粉末である。   As the zirconia powder used in the present invention, tetragonal partially stabilized zirconia powder containing a stabilizer such as magnesia, calcia, yttria, and ceria can be used. These stabilizers are preferably used in an amount of 2 to 25 mol%, 8 to 10 mol% for magnesia, 6 to 12 mol% for calcia, 2 to 4 mol% for yttria, and ceria. If it exists, it is more preferable that 12-20 mol% is contained. Particularly preferred is a partially stabilized zirconia powder containing yttria in the range of 2 to 4 mol% as a stabilizer.

本発明において用いる硬化性樹脂は重合反応により3次元網目構造を形成するものであればよいが、スラリーの流動性を高め、成形型への注入を良好にするという点から液状であることが望ましい。硬化性樹脂と溶媒の親和性についても、親和性が悪いと分離してセラミックス成形体内部で偏析し、焼結時にポアなどの欠陥の原因となる恐れがあるので、溶媒との親和性のよい硬化性樹脂を選択することが望ましい。かかる硬化性樹脂としては、例えば、メラミン樹脂、フェノール樹脂、エポキシ樹脂、アクリル酸樹脂、ウレタン樹脂等を挙げることができる。中でもエポキシ樹脂はセラミックス成形体の保形性を高めるために、好適に用いられる。エポキシ樹脂としては、例えばビスフェノールA型、ビスフェノールF型等のビスフェノール類のジグリシジルエーテル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、脂肪族エポキシ樹脂等のグリシジルエーテル型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、メチルグリシジルエーテル型エポキシ樹脂、シクロヘキセンオキサイド型エポキシ樹脂、ゴム変性エポキシ樹脂などが挙げられる。環境への影響から溶媒は水系が好ましく、そのため硬化性樹脂も水溶性エポキシ樹脂が好ましく、グリシジルエーテル型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、メチルグリシジルエーテル型エポキシ樹脂、シクロヘキセンオキサイド型エポキシ樹脂が好ましく、中でもグリシジルエーテル型エポキシ樹脂が室温でも円滑に硬化が起こるのでより好ましい。   The curable resin used in the present invention is not particularly limited as long as it forms a three-dimensional network structure by a polymerization reaction. . As for the affinity between the curable resin and the solvent, if the affinity is poor, it will separate and segregate inside the ceramic molded body, which may cause defects such as pores during sintering. It is desirable to select a curable resin. Examples of such curable resins include melamine resins, phenol resins, epoxy resins, acrylic resins, urethane resins, and the like. Among these, an epoxy resin is preferably used in order to improve the shape retention of the ceramic molded body. Examples of the epoxy resin include glycidyl such as diglycidyl ether type epoxy resins of bisphenols such as bisphenol A type and bisphenol F type, phenol novolac type epoxy resins, cresol novolac type epoxy resins, glycidyl amine type epoxy resins, aliphatic epoxy resins, and the like. Examples include ether type epoxy resins, glycidyl ester type epoxy resins, methyl glycidyl ether type epoxy resins, cyclohexene oxide type epoxy resins, and rubber-modified epoxy resins. The solvent is preferably an aqueous solvent because of its influence on the environment. Therefore, the curable resin is also preferably a water-soluble epoxy resin. Of these, a glycidyl ether type epoxy resin is more preferable because it cures smoothly even at room temperature.

エポキシ樹脂を用いる場合、重量平均分子量は20〜30000が好ましく、重量平均分子量50〜3000が粉体との混合が容易であり、かつ一定の機械強度が得られることから、より好ましい。さらに好ましくは50〜2500である。かかるエポキシ樹脂は単独で、または複数を組み合わせて用いることもできる。   When using an epoxy resin, the weight average molecular weight is preferably 20 to 30000, and the weight average molecular weight 50 to 3000 is more preferable because it can be easily mixed with the powder and a certain mechanical strength can be obtained. More preferably, it is 50-2500. Such epoxy resins can be used alone or in combination.

ここで、複合スラリーに含まれる硬化性樹脂は、前記複合スラリー中5〜15体積%が好ましい。硬化性樹脂の含有量が前記複合スラリー中、5体積%未満であると含溶媒セラミックス成形体および乾燥後のセラミックス成形体の強度が不十分な場合があり、15体積%を超えると乾燥工程中に含溶媒セラミックス成形体に割れが発生したり、セラミックス成形体を焼結体とするための脱脂工程や焼結工程など、硬化性樹脂を除去する工程において、割れ等の問題が発生したりするという場合があり好ましくない。   Here, the curable resin contained in the composite slurry is preferably 5 to 15% by volume in the composite slurry. When the content of the curable resin is less than 5% by volume in the composite slurry, the strength of the solvent-containing ceramic formed body and the dried ceramic formed body may be insufficient. When the content exceeds 15% by volume, the drying process is in progress. Cracks may occur in the solvent-containing ceramic molded body, or problems such as cracking may occur in the process of removing the curable resin, such as a degreasing process or a sintering process for making the ceramic molded body into a sintered body. This is not preferable.

本発明において用いる溶媒としては、その種類を限定されるものではないが、例えば、水、アルコール類、有機溶媒などを用いることができ、焼結後焼結体に残存しないものであれば良い。中でも水は、環境への影響や取り扱い性が良いという点から好ましい。アルコール類としては、例えば、メチルアルコール、エチルアルコールなどを使用できる。また、有機溶媒としては、例えばベンゼン、トルエン、キシレンなどを使用できる。これらのスラリー中の溶媒は単独で使用しても良いし、適宜混合しても良い。   The type of the solvent used in the present invention is not limited. For example, water, alcohols, organic solvents, and the like can be used as long as they do not remain in the sintered body after sintering. Among these, water is preferable from the viewpoints of environmental impact and good handleability. Examples of alcohols that can be used include methyl alcohol and ethyl alcohol. Moreover, as an organic solvent, benzene, toluene, xylene, etc. can be used, for example. The solvents in these slurries may be used alone or may be mixed as appropriate.

本発明において用いる分散剤とはその種類を限定されるものではなく、硬化性樹脂の硬化を妨げるものでなければその種類を限定されるものではないが、例えば、ポリカルボン酸型高分子等の高分子型分散剤、ヘキサメタリン酸ナトリウム等のリン酸塩等の無機型分散剤や、アニオン系、カチオン系、ノニオン系の有機の界面活性剤型分散剤等を用いることができる。中でもポリカルボン酸型は広範囲の粉体を分散できるという点で好ましい。   The type of the dispersant used in the present invention is not limited, and the type of the dispersant is not limited as long as it does not hinder the curing of the curable resin. Polymeric dispersants, inorganic dispersants such as phosphates such as sodium hexametaphosphate, and anionic, cationic, and nonionic organic surfactant dispersants can be used. Of these, the polycarboxylic acid type is preferable in that a wide range of powders can be dispersed.

本発明において、硬化剤の添加量は硬化性樹脂との組合せにより適宜決めることができる。すなわち硬化性樹脂の官能基当量と硬化剤の活性基当量により、好ましい配合比は異なるが、例えば、硬化性樹脂としてエポキシ樹脂を、硬化剤としてポリアミン系硬化剤を用いる場合には、エポキシ当量に対するアミン系硬化剤の活性水素当量の比が0.8〜1.5程度とすることが硬化性の点から好ましい。   In this invention, the addition amount of a hardening | curing agent can be suitably determined with the combination with curable resin. That is, the preferred compounding ratio differs depending on the functional group equivalent of the curable resin and the active group equivalent of the curing agent. For example, when using an epoxy resin as the curable resin and a polyamine curing agent as the curing agent, The active hydrogen equivalent ratio of the amine curing agent is preferably about 0.8 to 1.5 from the viewpoint of curability.

本発明の製造方法において、ジルコニア粉末、アルミナ粉末、硬化性樹脂、溶媒および分散剤を含む複合スラリーを調製する混合工程ではあらかじめジルコニア粉末、硬化性樹脂、溶媒および分散剤を含む第1のスラリーならびにアルミナ粉末、硬化性樹脂、溶媒および分散剤を含む第2のスラリーを調製し、前記第1のスラリーおよび第2のスラリーを混合することが必要である。スラリーを調製する際に、アルミナ粉末とジルコニア粉末をスプレードライヤー等によって混合造粒したアルミナ−ジルコニア複合粉末を用いてスラリーを調製すると、スラリーが高分散状態にならずスラリーの流動性が劣るため望ましくない。   In the production method of the present invention, in the mixing step of preparing a composite slurry containing zirconia powder, alumina powder, curable resin, solvent and dispersant, a first slurry containing zirconia powder, curable resin, solvent and dispersant in advance It is necessary to prepare a second slurry containing alumina powder, a curable resin, a solvent and a dispersant, and to mix the first slurry and the second slurry. When preparing a slurry, it is desirable to prepare a slurry using an alumina-zirconia composite powder obtained by mixing and granulating alumina powder and zirconia powder with a spray dryer or the like, because the slurry is not highly dispersed and the fluidity of the slurry is poor. Absent.

まず、かかる第1のスラリーを調製する。ここで、ジルコニア粉末の含有量は40〜45体積%の範囲内が好ましい。ジルコニア粉末が40体積%未満の場合では、複合スラリーの流動性が高く鋳込みやすいが、該複合スラリー中の溶媒成分が多くなり、乾燥中に割れが生じることがあるため好ましくない。また45体積%を超える場合では、複合スラリーの流動性が劣るため好ましくない。ジルコニア粉末の平均粒子径は0.1〜0.3μmであることが好ましい。   First, such a first slurry is prepared. Here, the content of the zirconia powder is preferably in the range of 40 to 45% by volume. When the zirconia powder is less than 40% by volume, the fluidity of the composite slurry is high and easy to cast, but it is not preferable because the solvent component in the composite slurry increases and cracks may occur during drying. Moreover, when exceeding 45 volume%, since the fluidity | liquidity of a composite slurry is inferior, it is unpreferable. The average particle size of the zirconia powder is preferably 0.1 to 0.3 μm.

次に、かかる第2のスラリーを調製する。ここで、アルミナ粉末の量は50〜60体積%の範囲内が好ましい。アルミナ粉末が50体積%未満の場合では、複合スラリーの流動性が高く鋳込みやすいが、該スラリー中の溶媒成分が多くなり、乾燥中に割れが生じることがあるため好ましくない。また60体積%を超える場合では、複合スラリーの流動性が劣り、またスラリー中にダマが残り、焼結体を作製した場合に残存したダマによる偏析を生じて強度低下をもたらすため好ましくない。アルミナ粉末の平均粒子径は0.4〜0.6μmであることが好ましい。   Next, such a second slurry is prepared. Here, the amount of the alumina powder is preferably in the range of 50 to 60% by volume. When the alumina powder is less than 50% by volume, the fluidity of the composite slurry is high and easy to cast, but this is not preferable because the solvent component in the slurry increases and cracking may occur during drying. On the other hand, when the volume exceeds 60% by volume, the fluidity of the composite slurry is inferior, and lumps remain in the slurry, causing segregation due to the lumps remaining when the sintered body is produced, resulting in a decrease in strength. The average particle diameter of the alumina powder is preferably 0.4 to 0.6 μm.

第1のスラリーの調製及び第2のスラリーの調製、得られた第1のスラリーおよび第2のスラリーの混合にはボールミルやアトライターミル等を用いることができる。   A ball mill, an attritor mill, or the like can be used to prepare the first slurry and the second slurry, and to mix the obtained first slurry and second slurry.

複合スラリーは粘度が5Pa・s以下であるとよい。粘度は粘度計で測定することができる。複合スラリーは非ニュートン流体であり、剪断速度により粘度は変化するため、本発明ではせん断速度1.9(1/s)のときの値とする。5Pa・sを超えると流動性が悪く、複雑形状の成形型に上手く鋳込めなかったり、また複合スラリーに大きな泡がかみこみ、欠陥となることがある。好ましくは3Pa・s以下、より好ましくは1Pa・s以下が望ましい。   The composite slurry may have a viscosity of 5 Pa · s or less. The viscosity can be measured with a viscometer. Since the composite slurry is a non-Newtonian fluid and the viscosity changes depending on the shear rate, in the present invention, the value is set at a shear rate of 1.9 (1 / s). If it exceeds 5 Pa · s, the fluidity is poor, and it may not be cast well into a mold having a complicated shape, or large bubbles may be entrained in the composite slurry, resulting in defects. It is preferably 3 Pa · s or less, more preferably 1 Pa · s or less.

上述の複合スラリーに硬化剤を混合し、成形型内に注入した後、混合した複合スラリーを硬化させて成形し、含溶媒セラミックス成形体を得る。得られた含溶媒セラミックス成形体の乾燥には、大気中や熱風乾燥機中、恒温恒湿乾燥機中により乾燥することができる。   A curing agent is mixed with the above composite slurry and injected into a mold, and then the mixed composite slurry is cured and molded to obtain a solvent-containing ceramic molded body. The obtained solvent-containing ceramic molded body can be dried in the air, in a hot air dryer, or in a constant temperature and humidity dryer.

乾燥した含溶媒セラミックス成形体は、焼結体にするために脱脂、焼結を行い焼結体とされる。脱脂条件は硬化性樹脂の種類、量、成形体の形状などにより適宜決定すると良い。特に大型成形体や肉厚成形体は脱脂による割れが発生しないように600℃まで30℃/時間以下の速度で昇温してバインダーを取り除くと良い。焼結条件、すなわち、焼結温度や焼結時間は、得られる焼結体の強度が低下して使用時に破損等の不都合が起こらないよう、密度が理論密度の少なくとも90%になるように選定する。好ましくは、少なくとも95%である。本発明の場合、焼結条件は大気雰囲気下で1500〜1600℃で2〜3時間保持すると良い。   The dried solvent-containing ceramic molded body is degreased and sintered to form a sintered body. The degreasing conditions may be appropriately determined depending on the type and amount of the curable resin, the shape of the molded body and the like. In particular, a large molded body or a thick molded body is preferably heated to 600 ° C. at a rate of 30 ° C./hour or less to remove the binder so that cracking due to degreasing does not occur. Sintering conditions, i.e., sintering temperature and sintering time, are selected so that the density is at least 90% of the theoretical density so that the strength of the resulting sintered body is reduced and inconveniences such as breakage do not occur during use. To do. Preferably, it is at least 95%. In the case of this invention, sintering conditions are good to hold | maintain for 2 to 3 hours at 1500-1600 degreeC by an atmospheric condition.

また、本発明によれば、焼結体にした場合に偏析の少ない焼結体が得られるため、焼結体の平均曲げ強度が高いものとなる。平均曲げ強度は焼結体中のアルミナとジルコニアの比率によって異なるが、例えばアルミナを70重量%、ジルコニアを30重量%の比率とすると、600MPa以上、より好ましくは700MPa以上である。   In addition, according to the present invention, when a sintered body is obtained, a sintered body with little segregation is obtained, so that the average bending strength of the sintered body is high. The average bending strength varies depending on the ratio of alumina and zirconia in the sintered body. For example, when the ratio of alumina is 70% by weight and zirconia is 30% by weight, it is 600 MPa or more, more preferably 700 MPa or more.

以下、実施例により、本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to examples.

実施例の物性の測定、評価は以下のように行った。   The physical properties of the examples were measured and evaluated as follows.

(1)粉末の平均粒子径
JISR1626(1996)ファインセラミックス粉体の気体吸着BET法による比表面積の測定法により比表面積sを算出し、平均粒子径をdとして次式に適用して求めた。
d=6/(ρ・s)
ここでρはセラミックス粉体の理論密度で以下の値を用いた。
ジルコニア:6.08g/cm
アルミナ:3.98g/cm
(2)複合スラリーの粘度
作製した硬化剤添加前の複合スラリーの粘度を粘度計によって測定した。粘度計は株式会社トキメック製E型粘度計DVU−EII型を用いた。測定条件は、ローターは標準1°34′R24を用い、温度20℃、回転数0.5rpm(せん断速度1.9(1/s))とした。
(1) Average particle diameter of powder The specific surface area s was calculated by the measurement method of the specific surface area by the gas adsorption BET method of JIS R1626 (1996) fine ceramic powder, and the average particle diameter was determined by applying the average particle diameter to the following equation.
d = 6 / (ρ · s)
Here, ρ is the theoretical density of the ceramic powder, and the following value was used.
Zirconia: 6.08 g / cm 3
Alumina: 3.98 g / cm 3
(2) Viscosity of composite slurry The viscosity of the prepared composite slurry before addition of the curing agent was measured with a viscometer. As the viscometer, an E-type viscometer DVU-EII type manufactured by Tokimec Co., Ltd. was used. The measurement conditions were such that the rotor was standard 1 ° 34′R24, the temperature was 20 ° C., and the rotation speed was 0.5 rpm (shear rate 1.9 (1 / s)).

(3)乾燥時の割れ
作製した100mm×70mm、厚さ20mmの含溶媒セラミックス成形体サンプルを恒温恒湿乾燥機を用いて温度30℃、相対湿度90%で48時間キープした後、温度30℃、相対湿度70%で48時間保持した後のサンプル表面を観察して割れの発生したサンプルの個数を確認した。サンプル数は10個とし、10個中割れたサンプルがないときは「優秀」、10個中8個以上割れがないときは「良好」とした。10個中3個以上割れがあったときは、「可」として評価した。
(3) Cracking at the time of drying The produced 100 mm × 70 mm, 20 mm thick solvent-containing ceramic molded sample was kept at a temperature of 30 ° C. and a relative humidity of 90% for 48 hours using a constant temperature and humidity dryer, and then a temperature of 30 ° C. The number of samples with cracks was confirmed by observing the sample surface after being held at a relative humidity of 70% for 48 hours. The number of samples was 10, and was “excellent” when there was no sample that was cracked in 10 samples, and “good” when there were no more than 8 samples in 10 samples. When there were 3 or more cracks in 10 pieces, it was evaluated as “OK”.

(4)焼結体の強度
作製した焼結体サンプルの強度を3点曲げ強度によって測定した。3点曲げ強度はJISR1601(2008)に規定する方法で測定した。装置は米倉製作所製万能試験機CATY2000を用いた。測定条件は以下の通りである。セラミックス焼結体中のアルミナとジルコニアの比率はアルミナ70重量%、ジルコニア30重量%とし、サンプル数を10個として平均強度を求めた。
測定雰囲気:20±5℃、相対湿度40±10%RH
支点間距離:30mm
上部圧子の曲率半径:5mm
下部圧子の曲率半径:5mm
クロスヘッド速度:0.5mm/秒
試験片寸法:3mm×4mm×40mm
(5)焼結体の相対密度
焼結体の実測密度を理論密度で除して、それを百分率で表した値を相対密度とした。ここで複合セラミックス焼結体の実測密度はアルキメデス法により測定した。また複合セラミックス焼結体の理論密度は、ジルコニア、アルミナの単成分の密度として以下の値を用い、それぞれの含有率から求めた。
ジルコニア:6.08g/cm
アルミナ:3.98g/cm
実施例1
以下の原材料でスラリーを作製した。ボールミルで24時間混合し、第1のスラリーおよび第2のスラリーを得た。処方を表1の実施例1に示す。
第1のスラリー
粉末:ジルコニア粉末(2.5モル酸化イットリウム含有)(平均粒子径0.2μm)
硬化性樹脂:水溶性エポキシ樹脂(ナガセケムテックス製EX−313)
溶媒:イオン交換水
分散剤:ポリカルボン酸塩(花王製ポイズ530)
第2のスラリー
粉末:アルミナ粉末(純度99.8%)(平均粒子径0.5μm)
硬化性樹脂:水溶性エポキシ樹脂(ナガセケムテックス製EX−313)
溶媒:イオン交換水
分散剤:ポリカルボン酸塩(中京油脂製セルナD305)
複合スラリー
硬化剤:1−(2−アミノエチル)ピペラジン
次に、第1のスラリーおよび第2のスラリーを表1の体積比率となるようにボールミルで4時間混合し、複合スラリーを作製して粘度を測定した。ボールミルから複合スラリーを取り出し、ロータリーエバポレーターで硬化剤を混合し、成形型(100mm×70mm、高さ20mmのポリエチレン製)に流し込み、20℃で24時間放置して硬化させ含溶媒セラミックス成形体を得た。脱型後、イオン交換水に浸漬し、含溶媒セラミックス成形体は温度30℃相対湿度90%で48時間キープした後、30℃、相対湿度70%で48時間キープし乾燥割れの有無を確認した。その後、100℃で24時間熱風乾燥し、セラミックス成形体を得、さらに電気炉で600℃まで25℃/時間で昇温後、さらに昇温し1550℃で3時間焼結し焼結体を得た。得られた焼結体は密度測定後、強度を測定した。結果は表1に示す通り、複合スラリーの粘度は低く、また乾燥割れは発生せず「優秀」であった。焼結体の相対密度は95.3%で強度は720MPaであった。
(4) Strength of sintered body The strength of the prepared sintered body sample was measured by three-point bending strength. The three-point bending strength was measured by the method specified in JIS R1601 (2008). A universal testing machine CATY2000 manufactured by Yonekura Seisakusho was used as the apparatus. The measurement conditions are as follows. The ratio of alumina and zirconia in the ceramic sintered body was 70% by weight of alumina and 30% by weight of zirconia, and the number of samples was 10 to obtain the average strength.
Measurement atmosphere: 20 ± 5 ° C., relative humidity 40 ± 10% RH
Distance between fulcrums: 30mm
Upper indenter radius of curvature: 5mm
Lower indenter radius of curvature: 5mm
Crosshead speed: 0.5 mm / second Test piece dimensions: 3 mm × 4 mm × 40 mm
(5) Relative density of sintered body The measured density of the sintered body was divided by the theoretical density, and the value expressed as a percentage was taken as the relative density. Here, the measured density of the composite ceramic sintered body was measured by the Archimedes method. The theoretical density of the composite ceramic sintered body was determined from the respective contents using the following values as the density of the single component of zirconia and alumina.
Zirconia: 6.08 g / cm 3
Alumina: 3.98 g / cm 3
Example 1
A slurry was prepared with the following raw materials. The first slurry and the second slurry were obtained by mixing with a ball mill for 24 hours. The formulation is shown in Example 1 of Table 1.
First slurry powder: zirconia powder (containing 2.5 mol yttrium oxide) (average particle size 0.2 μm)
Curable resin: Water-soluble epoxy resin (EX-313 manufactured by Nagase ChemteX)
Solvent: Ion-exchange water dispersant: Polycarboxylate (Pois 530 manufactured by Kao)
Second slurry powder: Alumina powder (purity 99.8%) (average particle size 0.5 μm)
Curable resin: Water-soluble epoxy resin (EX-313 manufactured by Nagase ChemteX)
Solvent: ion-exchange water dispersant: polycarboxylate (Seruna D305 manufactured by Chukyo Yushi)
Composite slurry curing agent: 1- (2-aminoethyl) piperazine Next, the first slurry and the second slurry were mixed with a ball mill for 4 hours so as to have the volume ratio shown in Table 1, and a composite slurry was prepared to obtain a viscosity. Was measured. Take out the composite slurry from the ball mill, mix the curing agent with a rotary evaporator, pour it into a mold (100 mm x 70 mm, polyethylene 20 mm in height), let it stand at 20 ° C for 24 hours to cure, and obtain a solvent-containing ceramic molded body It was. After demolding, it was immersed in ion-exchanged water, and the solvent-containing ceramic compact was kept for 48 hours at a temperature of 30 ° C. and a relative humidity of 90%, and then kept for 48 hours at 30 ° C. and a relative humidity of 70%. . Thereafter, it was dried with hot air at 100 ° C. for 24 hours to obtain a ceramic molded body, further heated to 600 ° C. at 25 ° C./hour in an electric furnace, further heated and sintered at 1550 ° C. for 3 hours to obtain a sintered body. It was. The obtained sintered body was measured for strength after density measurement. As a result, as shown in Table 1, the viscosity of the composite slurry was low, and dry cracking did not occur. The relative density of the sintered body was 95.3% and the strength was 720 MPa.

実施例2
表1の実施例2に示す処方とした以外は実施例1と同様にして作製、評価した。結果は表1に示す通り、複合スラリーの粘度は低く、10個中8個のサンプルにおいて乾燥割れは無く「良好」であった。焼結体の相対密度は95.1%で強度は710MPaであった。
Example 2
It was produced and evaluated in the same manner as in Example 1 except that the formulation shown in Example 2 of Table 1 was used. As a result, as shown in Table 1, the viscosity of the composite slurry was low, and 8 out of 10 samples were “good” with no dry cracking. The relative density of the sintered body was 95.1% and the strength was 710 MPa.

実施例3
表1の実施例3に示す処方とした以外は実施例1と同様にして作製、評価した。結果は表1に示す通り、複合スラリーの粘度はやや高く、乾燥割れは発生せず「優秀」であった。焼結体の相対密度は95.2%で強度は710MPaであった。
Example 3
It was produced and evaluated in the same manner as in Example 1 except that the formulation shown in Example 3 in Table 1 was used. As a result, as shown in Table 1, the viscosity of the composite slurry was slightly high, and dry cracking did not occur and was “excellent”. The relative density of the sintered body was 95.2% and the strength was 710 MPa.

実施例4
表1の実施例4に示す処方とした以外は実施例1と同様にして作製、評価した。結果は表1に示す通り、複合スラリーの粘度はやや高く、乾燥割れは発生せず「優秀」であった。焼結体の相対密度は95.1%で強度は710MPaであった。
Example 4
It was produced and evaluated in the same manner as in Example 1 except that the formulation shown in Example 4 in Table 1 was used. As a result, as shown in Table 1, the viscosity of the composite slurry was slightly high, and dry cracking did not occur and was “excellent”. The relative density of the sintered body was 95.1% and the strength was 710 MPa.

実施例5
表1の実施例5に示す処方とした以外は実施例1と同様にして作製、評価した。結果は表1に示す通り、複合スラリーの粘度は低く、10個中8個のサンプルにおいて乾燥割れは無く「良好」であった。焼結体の相対密度は95.2%で強度は680MPaであった。
Example 5
It was produced and evaluated in the same manner as in Example 1 except that the formulation shown in Example 5 in Table 1 was used. As a result, as shown in Table 1, the viscosity of the composite slurry was low, and 8 out of 10 samples were “good” with no dry cracking. The relative density of the sintered body was 95.2% and the strength was 680 MPa.

実施例6
表1の実施例6に示す処方とした以外は実施例1と同様にして作製、評価した。結果は表1に示す通り、複合スラリーの粘度は低く、10個中8個のサンプルにおいて乾燥割れは無く「良好」であった。焼結体の相対密度は95.2%で強度は620MPaであった。
Example 6
It was produced and evaluated in the same manner as in Example 1 except that the formulation shown in Example 6 in Table 1 was used. As a result, as shown in Table 1, the viscosity of the composite slurry was low, and 8 out of 10 samples were “good” with no dry cracking. The relative density of the sintered body was 95.2% and the strength was 620 MPa.

実施例7
表1の実施例7に示す処方とした以外は実施例1と同様にして作製、評価した。結果は表1に示す通り、複合スラリーの粘度は低く、10個中9個のサンプルにおいて乾燥割れは無く「良好」であった。焼結体の相対密度は95.2%で強度は700MPaであった。
Example 7
It was produced and evaluated in the same manner as in Example 1 except that the formulation shown in Example 7 in Table 1 was used. As shown in Table 1, the viscosity of the composite slurry was low and 9 out of 10 samples were “good” with no dry cracking. The relative density of the sintered body was 95.2% and the strength was 700 MPa.

実施例8
以下の原材料でスラリーを作製し、表1の実施例8に示す処方とした以外は実施例1と同様にして作製、評価した。
第1のスラリー
粉末:ジルコニア粉末(2.5モル酸化イットリウム含有)
硬化性樹脂:ウレタン樹脂(住友バイエルウレタン製バイヒドロールA145)
溶媒:イオン交換水
分散剤:ポリカルボン酸塩(花王製ポイズ530)
第2のスラリー
粉末:アルミナ粉末(純度99.8%)
硬化性樹脂:ウレタン樹脂(住友バイエルウレタン製バイヒドロールA145)
溶媒:イオン交換水
分散剤:ポリカルボン酸塩(中京油脂製セルナD305)
複合スラリー
硬化剤:住友バイエルウレタン製バイヒジュール3100
結果は表1に示す通り、複合スラリーの粘度はやや高く、乾燥割れは発生せず「優秀」であった。焼結体の焼結体の相対密度は95.2%で強度は710MPaであった。
Example 8
A slurry was prepared with the following raw materials and prepared and evaluated in the same manner as in Example 1 except that the formulation shown in Example 8 in Table 1 was used.
First slurry powder: zirconia powder (containing 2.5 mol yttrium oxide)
Curable resin: Urethane resin (Baihydrol A145 made by Sumitomo Bayer Urethane)
Solvent: Ion-exchange water dispersant: Polycarboxylate (Pois 530 manufactured by Kao)
Second slurry powder: Alumina powder (purity 99.8%)
Curable resin: Urethane resin (Baihydrol A145 made by Sumitomo Bayer Urethane)
Solvent: ion-exchange water dispersant: polycarboxylate (Seruna D305 manufactured by Chukyo Yushi)
Composite slurry curing agent: Sumitomo Bayer Urethane Bihijoule 3100
As a result, as shown in Table 1, the viscosity of the composite slurry was slightly high, and dry cracking did not occur and was “excellent”. The relative density of the sintered compact was 95.2% and the strength was 710 MPa.

実施例9
表1の実施例9に示す処方とした以外は実施例8と同様にして作製、評価した。結果は表1に示す通り、複合スラリーの粘度はやや高く、10個中8個のサンプルにおいて乾燥割れは無く「良好」であった。焼結体の相対密度は95.1%で強度は700MPaであった。
Example 9
It was produced and evaluated in the same manner as in Example 8 except that the formulation shown in Example 9 in Table 1 was used. As a result, as shown in Table 1, the viscosity of the composite slurry was slightly high, and 8 samples out of 10 were “good” with no dry cracking. The relative density of the sintered body was 95.1% and the strength was 700 MPa.

Figure 2011157222
Figure 2011157222

比較例1
スプレードライヤーで混合造粒を行ったアルミナ−ジルコニア複合粉末を用いて、ボールミルで24時間混合し複合スラリーを作製し、粘度を測定した。結果は表2に示す通りである。しかし複合スラリーの粘度が高く成形型に鋳込むことが出来なかったため、乾燥時の割れを観察できず、焼結体の密度測定、強度測定を行うことが出来なかった。
Comparative Example 1
Using the alumina-zirconia composite powder mixed and granulated with a spray dryer, it was mixed for 24 hours with a ball mill to prepare a composite slurry, and the viscosity was measured. The results are as shown in Table 2. However, since the composite slurry had a high viscosity and could not be cast into a mold, cracks during drying could not be observed, and the density and strength of the sintered body could not be measured.

Figure 2011157222
Figure 2011157222

表1の実施例1〜9の欄に示す通り、本発明のセラミックス成形体の製造方法によると、複合スラリーの粘度が低く、また乾燥割れがなく、焼結体とした場合の特性に優れた成形体を得ることができる。   As shown in the columns of Examples 1 to 9 in Table 1, according to the method for producing a ceramic molded body of the present invention, the viscosity of the composite slurry is low, there is no dry cracking, and the characteristics when the sintered body is obtained are excellent. A molded body can be obtained.

本発明による成形体の製造方法は、複雑形状物、大型複雑形状物等を好適に提供できるため、大型構造用部品、半導体部品、各種精密部品などに応用することができるが、その応用範囲がこれらに限られるものではない。   The method for producing a molded body according to the present invention can be suitably applied to large-sized structural parts, semiconductor parts, various precision parts, etc., because it can suitably provide complicated shaped objects, large-sized complicated shaped objects, etc. However, it is not limited to these.

Claims (3)

ジルコニア粉末、アルミナ粉末、硬化性樹脂、溶媒および分散剤を含む複合スラリーを調製する混合工程、該複合スラリーに硬化剤を混合し、型内に硬化させて成形し、脱型して含溶媒セラミックス成形体とする成形工程、含溶媒セラミックス成形体を乾燥させる乾燥工程を有するセラミックス成形体の製造方法であって、該混合工程において前記複合スラリーを調製する際にあらかじめジルコニア粉末、硬化性樹脂、溶媒および分散剤を含む第1のスラリーならびにアルミナ粉末、硬化性樹脂、溶媒および分散剤を含む第2のスラリーを調製し、前記第1のスラリーおよび第2のスラリーを混合する工程を含むことを特徴とするセラミックス成形体の製造方法。   Mixing step of preparing a composite slurry containing zirconia powder, alumina powder, curable resin, solvent and dispersant, mixing a curing agent with the composite slurry, curing in a mold, molding, demolding, and solvent-containing ceramics A method for producing a ceramic formed body comprising a forming step for forming a formed body, and a drying step for drying the solvent-containing ceramic formed body, wherein the composite slurry is prepared in advance in the mixing step, zirconia powder, curable resin, solvent And a first slurry containing a dispersing agent and a second slurry containing alumina powder, a curable resin, a solvent and a dispersing agent, and a step of mixing the first slurry and the second slurry. A method for producing a ceramic molded body. 前記第1のスラリーがジルコニア粉末を40〜45体積%含み、かつ前記第2のスラリーがアルミナ粉末を50〜60体積%含むことを特徴とする請求項1に記載のセラミックス成形体の製造方法。   2. The method for producing a ceramic molded body according to claim 1, wherein the first slurry contains 40 to 45% by volume of zirconia powder, and the second slurry contains 50 to 60% by volume of alumina powder. 前記硬化性樹脂が水溶性エポキシ樹脂である請求項1に記載のセラミックス成形体の製造方法。   The method for producing a ceramic molded body according to claim 1, wherein the curable resin is a water-soluble epoxy resin.
JP2010018292A 2010-01-29 2010-01-29 Method for producing ceramic molding Pending JP2011157222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010018292A JP2011157222A (en) 2010-01-29 2010-01-29 Method for producing ceramic molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010018292A JP2011157222A (en) 2010-01-29 2010-01-29 Method for producing ceramic molding

Publications (1)

Publication Number Publication Date
JP2011157222A true JP2011157222A (en) 2011-08-18

Family

ID=44589528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010018292A Pending JP2011157222A (en) 2010-01-29 2010-01-29 Method for producing ceramic molding

Country Status (1)

Country Link
JP (1) JP2011157222A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016040215A (en) * 2014-08-13 2016-03-24 日本特殊陶業株式会社 Method for producing ceramic molding
WO2018038031A1 (en) * 2016-08-24 2018-03-01 旭硝子株式会社 Method for molding ceramic material, method for producing ceramic article, and ceramic article
CN109077620A (en) * 2017-06-14 2018-12-25 佛山市顺德区美的电热电器制造有限公司 Non-sticking lining and preparation method thereof and cookware or baking tray panel and equipment of cooking

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63103859A (en) * 1986-10-22 1988-05-09 岩尾磁器工業株式会社 Manufacture of alumina-zirconia sintered body
JP3692682B2 (en) * 1997-02-07 2005-09-07 東レ株式会社 Manufacturing method of ceramic molded body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63103859A (en) * 1986-10-22 1988-05-09 岩尾磁器工業株式会社 Manufacture of alumina-zirconia sintered body
JP3692682B2 (en) * 1997-02-07 2005-09-07 東レ株式会社 Manufacturing method of ceramic molded body

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016040215A (en) * 2014-08-13 2016-03-24 日本特殊陶業株式会社 Method for producing ceramic molding
WO2018038031A1 (en) * 2016-08-24 2018-03-01 旭硝子株式会社 Method for molding ceramic material, method for producing ceramic article, and ceramic article
CN109641807A (en) * 2016-08-24 2019-04-16 Agc株式会社 The forming method of ceramic material, the manufacturing method of ceramic articles and ceramic articles
JPWO2018038031A1 (en) * 2016-08-24 2019-06-20 Agc株式会社 Method of forming ceramic material, method of manufacturing ceramic article, and ceramic article
US20190185380A1 (en) * 2016-08-24 2019-06-20 AGC Inc. Method for molding ceramic material, method for producing ceramic article, and ceramic article
JP7092030B2 (en) 2016-08-24 2022-06-28 Agc株式会社 How to mold ceramic materials and how to manufacture ceramic articles
US11572316B2 (en) 2016-08-24 2023-02-07 AGC Inc. Method for molding ceramic material, method for producing ceramic article, and ceramic article
CN109077620A (en) * 2017-06-14 2018-12-25 佛山市顺德区美的电热电器制造有限公司 Non-sticking lining and preparation method thereof and cookware or baking tray panel and equipment of cooking

Similar Documents

Publication Publication Date Title
JP5146010B2 (en) Method for producing ceramic molded body and method for producing ceramic sintered body using the same
Huang et al. Novel colloidal forming of ceramics
CN104326766B (en) A kind of preparation method of the porous silicon-nitride ceramic material with spherical pore structure
Adolfsson Gelcasting of zirconia using agarose
Mao et al. Gelcasting of alumina using epoxy resin as a gelling agent
Liu et al. Aqueous gel casting of water-soluble calcia-based ceramic core for investment casting using epoxy resin as a binder
Xue et al. Gelcasting of aluminum nitride ceramics
CN107986777B (en) Zirconia ceramic matrix composite and preparation method thereof
US20230250025A1 (en) Performance of technical ceramics
CN115551818A (en) Method for producing ceramic sintered body and ceramic sintered body
US20200014052A1 (en) Performance of technical ceramics
JP2011157222A (en) Method for producing ceramic molding
Lombardi et al. Gelcasting of dense and porous ceramics by using a natural gelatine
Manivannan et al. Aqueous gelcasting of fused silica using colloidal silica binder
Grigoriev et al. Granulation of silicon nitride powders by spray drying: a review
Mao et al. Investigation of new epoxy resins for the gel casting of ceramics
JP2007261925A (en) Method for producing ceramic molding and method for producing ceramic sintered compact using the molding
Bernardo et al. Feedstock development for powder injection moulding of zirconium silicate
JP2009234852A (en) Method of manufacturing ceramic molded boy and method of manufacturing ceramic sintered compact
JP4946014B2 (en) Method for producing ceramic molded body and method for producing ceramic sintered body using the same
Yin et al. Dispersion and gelcasting of zirconium diboride through aqueous route
JP3692682B2 (en) Manufacturing method of ceramic molded body
Park et al. Enhancing fracture strength of ceramic core using sodium silicate as the binder
JP4735586B2 (en) Manufacturing method of ceramic sintered body
JP4470407B2 (en) Manufacturing method of ceramic molded body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130521

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131015