JP3692682B2 - Manufacturing method of ceramic molded body - Google Patents

Manufacturing method of ceramic molded body Download PDF

Info

Publication number
JP3692682B2
JP3692682B2 JP02487097A JP2487097A JP3692682B2 JP 3692682 B2 JP3692682 B2 JP 3692682B2 JP 02487097 A JP02487097 A JP 02487097A JP 2487097 A JP2487097 A JP 2487097A JP 3692682 B2 JP3692682 B2 JP 3692682B2
Authority
JP
Japan
Prior art keywords
molded body
ceramic
water
producing
ceramic molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02487097A
Other languages
Japanese (ja)
Other versions
JPH10217212A (en
Inventor
知彦 尾形
文男 吉田
勝成 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP02487097A priority Critical patent/JP3692682B2/en
Publication of JPH10217212A publication Critical patent/JPH10217212A/en
Application granted granted Critical
Publication of JP3692682B2 publication Critical patent/JP3692682B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Epoxy Resins (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、セラミックス成形体の製造方法に関する。
【0002】
本発明の鋳込み成形は、複雑形状または厚肉形状の製品に好適に用いられ、ネットシェイプが可能で、従来の鋳込み成形に比較して極めて短時間で成形体が得られる方法に関する。
【0003】
【従来の技術】
近年、耐熱性、耐久性を要する機械構造用部品、装飾用部品および電子部品などに複雑形状のセラミックス部品が要求されるようになっている。
【0004】
そして、これら部品は要求される高い機能に応じて、複雑な形状をしていることが多い。セラミックスは耐熱性、耐久性、耐食性、耐摩耗性に優れているが、複雑な形状に成形したり、加工することが極めて難しいという問題があった。
【0005】
このため、種々の成形方法が検討され、鋳込み成形、射出成形、押出し成形、シート成形など、金型プレスやラバープレス成形では作製できなかった複雑形状がニアネットシェイプで簡単にできるようになっている。
【0006】
これらのうち、従来の鋳込み成形は泥漿を吸水性の鋳型に流し込み、着肉層を形成させることによって成形体を得る方法であった。この方法はプレス成形や塑性成形に比較して生産性に劣るものの、大型で複雑な形状を成形することができ、成形のための設備費が安価で少量生産に適した方法である。しかしながら、従来の鋳込み成形法では、鋳型を繰り返し使用することによって摩滅したり、目詰まりが生じたりして、結果的に寸法精度の低下や成形体の乾燥時にクラックを生じるなどの欠点があった。そこで、セラミックス粉末に混合する有機バインダーとして不飽和重合体とビニル基またはアクリル基を含む架橋結合体を主成分とするバインダーを用い、反応硬化させる鋳込み成形方法が特開平8−133844号公報に提案されている。
【0007】
【発明が解決しようとする課題】
しかしながら、これらの有機バインダーは水溶性ではなく、有機溶剤にしか可溶でないため、飛散する有機溶剤の排気設備、人体への影響が懸念され実用的課題があった。
【0008】
【課題を解決するための手段】
本発明の目的は、基本的には、下記の構成により達成できる。即ち、「アルミナ、ジルコニア、またはこれらの複合セラミックスの鋳込み成形をするに際し、水溶性のエポキシ系樹脂からなる架橋性成分とアミン系化合物を含む架橋結合体からなる架橋剤の混合物を主成分とする架橋性水溶性バインダーと、アルミナ、ジルコニア、またはこれらの複合セラミックス粉末との混合物を成形型中に充填し、反応硬化させて成形体を形成するセラミックス成形体の製造方法であって、前記架橋性水溶性バインダーに対する硬化剤の配合量を、前記架橋性水溶性バインダー10重量部に対して硬化剤が1〜4重量部となるように添加し、反応硬化した成形体を脱型後に加湿または調湿した雰囲気でセラミックス成形体を乾燥することを特徴とするセラミックス成形体の製造方法。」である。
【0009】
【発明の実施の形態】
以下、本発明の内容を詳述する。
【0010】
本発明における架橋性水溶性バインダーとしては、架橋性成分と架橋剤の混合物であることが必要である。架橋性成分としては、水溶性のエポキシ系樹脂が必要であり、架橋剤としてはアミン系化合物が必要である。即ち、水溶性のエポキシ系樹脂とアミン系化合物を含む架橋結合体を主成分とするバインダーであり、このバインダーとセラミックス粉末との混合物を成形型中に充填し、反応硬化させて成形体を形成することが必要である。
【0011】
本発明の水溶性エポキシ樹脂は、最も一般的なグリシジルエーテル、グリシジルエステル、メチルグリシジルエーテル、シクロヘキセンオキサイド、エポキシ化ポリブタジエンなどの型があるが、グリシジルエーテル型が室温でも円滑に硬化が起こるので、反応硬化型樹脂として適している。
【0012】
これに分散剤として、市販のポリカルボン酸系またはポリアクリル酸系の分散剤を用いるのが好ましい。
【0013】
エポキシ樹脂の硬化剤としては、アミノ基、カルボキシル基乃至はヒドロキシル基を有する化合物などがあり、とりわけアミン化合物がきわめて有効である。アミン化合物には、アンモニアのHが炭化水素に1、2、3個置き換わった第1、第2、第3アミンがある。また、1分子中のアミンの数によってモノアミン、ジアミン、トリアミン、ポリアミンと称され、さらに炭化水素の種類により、脂肪族、脂環族、芳香族アミンに分類される。本発明ではいずれのアミン系化合物を用いることも可能である。
【0014】
アミン系硬化剤によるエポキシ樹脂の硬化は、第1アミンの活性水素とエポキシ基が反応して第2アミンが生成し、この第2アミンがエポキシ基と反応して硬化する。さらに生成した第3アミンがエポキシ基を重合する。
【0015】
一般に硬化物が架橋高分子になるためには、硬化剤は1分子内に活性水素が3個以上必要で、アミノ基が2個以上必要である。そして、エポキシ樹脂に対する硬化剤の配合量はエポキシ基と活性水素が当モルのとき最適となり、実際には脂肪族、芳香族ポリアミンともに当モル配合の時に硬化物はガラス転移温度、耐熱性などが最良となる。
アミンによる硬化速度は、アミンの種類、配合量、エポキシ樹脂の種類によって異なる。
【0016】
グリシジルエーテル型の樹脂であるエピクロルヒドリン縮合物では、脂肪族アミンにより室温でほぼ硬化するが、芳香族アミンでは室温での硬化が遅く、加熱硬化が必要である。また、配合量が化学当量よりも極端に増減しないときは、アミン量が多いほど見かけの硬化が速く、配合量が少なくなると遅くなる。実用上はこれを利用して硬化速度の調整を行うことができる。
【0017】
粉末は、これまで鋳込み成形が難しいとされた、アルミナ、ジルコニア、およびこれらの複合セラミックスすべてに適用できる。ただし、あらかじめ原料粉末はよく粉砕、分散されていることが望ましい。
【0018】
セラミックス粉末100重量部に対し、純水を15〜70重量部用いる。15重量部未満では溶媒が不足するためスラリー粘度が高くなり、鋳型の細部まで泥漿が行き渡らず、成形性が低下する。70重量部では含水率が高くなりすぎて硬化後の離型が困難であり、また乾燥時間も長くなる。純水は、より好ましくは25〜50重量部用いると良好なスラリーが得られる。また、セラミックス粉末100重量部に対し、バインダー量2〜10重量部、分散剤0.1〜5重量部を用いることが好ましい。
【0019】
このように調製したスラリーをアトリションミル、ビーズミル、ボールミルなど一般的な粉砕機にて十分粉砕混合する。好ましくは、これに以下の硬化剤をバインダー10重量部に対して、硬化剤1〜4重量部となるように添加し、さらに数分から数十分間混合する。
【0020】
粉砕機の容器から別の容器にスラリーを取り出し、鋳型に流し込みを行う前に、10torr以下の減圧下で5分〜60分真空にて脱泡すると好ましい。鋳込みの方式は従来の鋳込み成形と同じく減圧、加圧、常圧のいずれかで行う。
【0021】
本発明の鋳込み成形において、成形体はかなりの水分量を保水したまま固化させるので、従来の鋳型のような石膏を用いると、スラリーから吸水されて成形体の形が歪んだり、クラックが生じたりするので、吸水性のない鋳込み型を用いることがきわめて重要な点である。吸水性のない鋳型材には、各種プラスチックスまたは金属を用いることが好ましい。
【0022】
あらかじめ、型の内面でスラリーと接触する面には、シリコン系またはフッ素系などの離型剤を塗布しておくと、型抜きがきわめて容易であり好ましい。
【0023】
反応硬化は、硬化剤を注入してから、常温にて2〜20時間で固化するので、ある程度の保型性を持ったところで型抜きを行う。目安としては、型を逆さまにしてもスラリーが垂れなくなったら型抜きが可能である。
【0024】
型から取り出したセラミックス成形体を、相対湿度40%乃至75%となるように加湿または調湿しながら乾燥するのが好ましい。急激に脱水して、クラックを発生させず、成形体の変形を防ぎ、効率よく乾燥を行うためである。成形体内部は特に乾燥しにくいので、ある程度乾燥したら恒温器内で50〜200℃で乾燥、または真空乾燥するか、電子レンジなどを用いてマイクロ波で保水している成形体の中心部を加熱し、保水量0.5重量%以下にすることが望ましい。
【0025】
乾燥後のセラミックスの鋳込み成形体は、セラミックスの種類によって1200〜2200℃で、大気中、不活性または還元雰囲気中、または減圧下で焼成する。必要に応じては加圧焼結することも必要となる場合がある。
【0026】
【実施例】
以下に、本発明について、下記実施例を用いて、具体的に説明する。ただし、本発明はこれに限定されない。
【0027】
実施例1
(セラミックスラリーの組成)
(1) 無機粉末
23が2.75モル%ZrO2ニ添加されたイットリア部分安定化ジルコニアを平均粒径0.12μmに調製し、これを原料粉末として用いた。上記粉末に焼結助剤として、Al23を0.375重量%添加した。
【0028】
(2) バインダー
ポリプロピレングリコールジグリシジルエーテルを用い、粉末100gに対し、5重量%用いた。
【0029】
(3) 分散剤
ポリアクリル酸界面活性剤を用い、粉末100gに対し1重量%用いた。
【0030】
(4) 溶媒
純水を用い、粉末100gに対し40重量%用いた。
【0031】
上記(1)〜(4)の原料をボールミルにて、80回転/分、24時間混合した。
【0032】
(鋳込み成形体の作製方法)
上記スラリーに硬化剤として、1−(2−アミノエチル)ピペラジンをバインダーに対し、重量比で5:1の割合となるように添加し、さらにボールミルにて5分間混合攪拌した。
【0033】
攪拌したスラリーをガラス容器に移し、減圧下で充分脱泡した後、型に流し込んで乾燥した。
【0034】
型材はポリプロピレン樹脂にて作製した非吸水性の材料であり、乾燥は常温にて湿度70%となるように調湿しながら行った。
【0035】
(乾燥、焼結方法)
ある程度硬化したところで成形体を型から取り出し乾燥した。乾燥は湿度75%となるように調湿された雰囲気で常温にて行った。この乾燥によって、ケーク状の固まりは強固な成形体となった。
【0036】
成形体を電気炉にて大気中で焼成した。焼成温度は1400℃、2時間とした。
【0037】
(焼結体の評価)
焼結体は走査型電子顕微鏡によって組織観察し、結晶粒径は0.3μmであることを確認した。また、X線回折により実質的に立方晶を含まない正方晶系ジルコニアであり、アルキメデス法による焼結体密度は6.06グラム/立方センチメートルであった。
【0038】
【発明の効果】
本発明により、調製時にゲル化せず、常温でも流動性がきわめて良好で、鋳込み成形のみならず、射出成形、シート成形、押出し成形などにも適用できる技術が提供される。成形型に充填して、反応硬化した後は、フローマークや収縮によるクラックなどの発生が見られず、離型性も良好で、焼成後の焼結体にクラックや変形が発生しない量産効果の優れたセラミックス成形方法である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a ceramic molded body.
[0002]
The cast molding of the present invention relates to a method that can be suitably used for products having a complicated shape or a thick shape, can be net-shaped, and can obtain a molded body in an extremely short time compared to conventional cast molding.
[0003]
[Prior art]
In recent years, ceramic parts having complicated shapes have been required for mechanical structural parts, decorative parts, electronic parts and the like that require heat resistance and durability.
[0004]
In many cases, these parts have complicated shapes in accordance with required high functions. Ceramics are excellent in heat resistance, durability, corrosion resistance, and wear resistance, but have a problem that it is extremely difficult to form or process into a complicated shape.
[0005]
For this reason, various molding methods have been studied, and complex shapes that could not be produced by mold press or rubber press molding, such as cast molding, injection molding, extrusion molding, and sheet molding, can be easily performed with a near net shape. Yes.
[0006]
Of these, conventional casting is a method of obtaining a molded body by pouring slurry into a water-absorbing mold and forming a walled layer. Although this method is inferior in productivity as compared with press molding or plastic molding, it is possible to form a large and complicated shape, and the equipment cost for molding is low, and it is a method suitable for small-scale production. However, the conventional cast molding method has the disadvantages that it is worn out or clogged by repeated use of the mold, resulting in a decrease in dimensional accuracy and cracking when the molded product is dried. . In view of this, a casting molding method is proposed in Japanese Patent Application Laid-Open No. 8-133844, in which a binder mainly composed of an unsaturated polymer and a cross-linked body containing a vinyl group or an acrylic group is used as an organic binder to be mixed with the ceramic powder and is cured. Has been.
[0007]
[Problems to be solved by the invention]
However, since these organic binders are not water-soluble and are soluble only in organic solvents, there are concerns about the impact of the scattered organic solvents on the exhaust equipment and the human body, which poses practical problems.
[0008]
[Means for Solving the Problems]
The object of the present invention can basically be achieved by the following constitution. That is, “in the casting of alumina, zirconia, or a composite ceramic thereof, the main component is a mixture of a crosslinkable component comprising a water-soluble epoxy resin and a crosslinker comprising an amine compound. A method for producing a ceramic molded body in which a mixture of a crosslinkable water-soluble binder and alumina, zirconia, or a composite ceramic powder thereof is filled in a mold and reaction-cured to form a molded body. The compounding amount of the curing agent with respect to the water-soluble binder is added so that the curing agent is 1 to 4 parts by weight with respect to 10 parts by weight of the crosslinkable water-soluble binder, and the reaction- cured molded body is humidified or adjusted after demolding. “A method for producing a ceramic molded body, comprising drying the ceramic molded body in a wet atmosphere.”
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the contents of the present invention will be described in detail.
[0010]
The crosslinkable water-soluble binder in the present invention, it is necessary that a mixture of cross-linking component and the crosslinking agent. As the crosslinkable component , a water-soluble epoxy resin is required, and as the crosslinker, an amine compound is required . In other words, it is a binder mainly composed of a cross-linked body containing a water-soluble epoxy resin and an amine compound, and a mixture of this binder and ceramic powder is filled in a mold and reacted and cured to form a molded body. It is necessary to.
[0011]
The water-soluble epoxy resin of the present invention has the most common types such as glycidyl ether, glycidyl ester, methyl glycidyl ether, cyclohexene oxide, and epoxidized polybutadiene, but the glycidyl ether type cures smoothly even at room temperature. Suitable as curable resin.
[0012]
For this, it is preferable to use a commercially available polycarboxylic acid-based or polyacrylic acid-based dispersant.
[0013]
Examples of epoxy resin curing agents include compounds having amino groups, carboxyl groups or hydroxyl groups, and amine compounds are particularly effective. Amine compounds include primary, secondary, and tertiary amines in which 1, 2 or 3 of ammonia is replaced with hydrocarbons. Moreover, it is called monoamine, diamine, triamine, or polyamine depending on the number of amines in one molecule, and further classified into aliphatic, alicyclic, and aromatic amines depending on the type of hydrocarbon. In the present invention, any amine compound can be used.
[0014]
Curing of the epoxy resin with an amine-based curing agent causes the active hydrogen of the primary amine to react with the epoxy group to form a secondary amine, and the secondary amine reacts with the epoxy group to cure. Further, the generated tertiary amine polymerizes the epoxy group.
[0015]
In general, in order for the cured product to be a crosslinked polymer, the curing agent needs 3 or more active hydrogens in one molecule and 2 or more amino groups. The compounding amount of the curing agent with respect to the epoxy resin is optimal when the epoxy group and the active hydrogen are equimolar, and actually the cured product has a glass transition temperature, heat resistance, etc. when both the aliphatic and aromatic polyamines are equimolar. Be the best.
The curing rate by the amine varies depending on the type of amine, the blending amount, and the type of epoxy resin.
[0016]
The epichlorohydrin condensate, which is a glycidyl ether type resin, is almost cured at room temperature by an aliphatic amine, but an aromatic amine is slow to cure at room temperature and requires heat curing. In addition, when the blending amount does not extremely increase or decrease more than the chemical equivalent, the apparent curing is faster as the amine amount is larger, and it is slower when the blending amount is smaller. In practice, the curing rate can be adjusted using this.
[0017]
Powder, casting Until now molding is difficult, alumina, zirconia, Contact and applicable to all of these composite ceramic. However, it is desirable that the raw material powder is well pulverized and dispersed in advance.
[0018]
Pure water is used in an amount of 15 to 70 parts by weight with respect to 100 parts by weight of the ceramic powder. If it is less than 15 parts by weight, the solvent is insufficient and the viscosity of the slurry becomes high, so that the slurry does not reach the details of the mold and the moldability is lowered. If it is 70 parts by weight, the water content becomes too high, making it difficult to release after curing, and the drying time also becomes longer. A more preferable slurry is obtained when the pure water is more preferably used in an amount of 25 to 50 parts by weight. Further, it is preferable to use 2 to 10 parts by weight of a binder and 0.1 to 5 parts by weight of a dispersant with respect to 100 parts by weight of the ceramic powder.
[0019]
The slurry thus prepared is sufficiently pulverized and mixed with a general pulverizer such as an attrition mill, a bead mill, or a ball mill. Preferably, the following curing agent is added to the binder so as to be 1 to 4 parts by weight with respect to 10 parts by weight of the binder, and further mixed for several minutes to several tens of minutes.
[0020]
The slurry is taken out from the container of the pulverizer to another container, and before pouring into the mold, it is preferable to defoam in vacuum for 5 to 60 minutes under a reduced pressure of 10 torr or less. The casting method is performed under reduced pressure, increased pressure, or normal pressure as in conventional casting.
[0021]
In the cast molding of the present invention, the molded body is solidified while retaining a considerable amount of water. Therefore, when gypsum like a conventional mold is used, water is absorbed from the slurry and the shape of the molded body is distorted or cracks are generated. Therefore, it is very important to use a casting mold that does not absorb water. It is preferable to use various plastics or metals for the mold material that does not absorb water.
[0022]
It is preferable that a mold release agent such as silicon or fluorine is applied to the surface of the mold that contacts the slurry in advance because it is very easy to remove the mold.
[0023]
In the reaction curing, since the curing agent is injected and then solidified in 2 to 20 hours at room temperature, the mold is removed at a certain degree of shape retention. As a guideline, if the slurry does not drip even if the mold is turned upside down, the mold can be removed.
[0024]
It is preferable to dry the ceramic molded body taken out from the mold while humidifying or adjusting the humidity so that the relative humidity is 40% to 75% . This is because the water is rapidly dehydrated, cracks are not generated, deformation of the molded body is prevented, and drying is performed efficiently. Since the inside of the molded body is particularly difficult to dry, if it is dried to some extent, it is dried at 50 to 200 ° C. in a thermostat or vacuum dried, or the center of the molded body that is retained by microwaves using a microwave oven is heated. In addition, the water retention amount is desirably 0.5% by weight or less.
[0025]
The ceramic cast-molded body after drying is fired at 1200 to 2200 ° C. in the air, in an inert or reducing atmosphere, or under reduced pressure, depending on the type of ceramic. If necessary, pressure sintering may be necessary.
[0026]
【Example】
Hereinafter, the present invention will be specifically described with reference to the following examples. However, the present invention is not limited to this.
[0027]
Example 1
(Composition of ceramic slurry)
(1) Yttria partially stabilized zirconia added with 2.75 mol% ZrO 2 of inorganic powder Y 2 O 3 was prepared to have an average particle size of 0.12 μm, and this was used as a raw material powder. To the above powder, 0.375% by weight of Al 2 O 3 was added as a sintering aid.
[0028]
(2) Binder Polypropylene glycol diglycidyl ether was used at 5% by weight based on 100 g of powder.
[0029]
(3) Dispersant A polyacrylic acid surfactant was used and 1% by weight based on 100 g of the powder.
[0030]
(4) Solvent pure water was used and 40 wt% was used with respect to 100 g of the powder.
[0031]
The raw materials (1) to (4) were mixed with a ball mill at 80 rpm for 24 hours.
[0032]
(Production method of cast molding)
As a curing agent, 1- (2-aminoethyl) piperazine was added to the slurry so as to have a weight ratio of 5: 1 with respect to the binder, and further mixed and stirred in a ball mill for 5 minutes.
[0033]
The stirred slurry was transferred to a glass container, sufficiently defoamed under reduced pressure, poured into a mold and dried.
[0034]
The mold material was a non-water-absorbing material made of polypropylene resin, and drying was performed while adjusting the humidity so that the humidity was 70% at room temperature.
[0035]
(Drying and sintering method)
When it was cured to some extent, the molded body was removed from the mold and dried. Drying was performed at room temperature in an atmosphere adjusted to a humidity of 75%. By this drying, the cake-like lump became a strong molded body.
[0036]
The molded body was fired in the air in an electric furnace. The firing temperature was 1400 ° C. for 2 hours.
[0037]
(Evaluation of sintered body)
The structure of the sintered body was observed with a scanning electron microscope, and it was confirmed that the crystal grain size was 0.3 μm. Further, it was tetragonal zirconia substantially free of cubic crystals by X-ray diffraction, and the sintered body density by the Archimedes method was 6.06 grams / cubic centimeter.
[0038]
【The invention's effect】
The present invention provides a technique that does not gel at the time of preparation and has extremely good fluidity even at room temperature, and can be applied not only to casting molding but also to injection molding, sheet molding, extrusion molding, and the like. After filling into the mold and reaction hardening, there is no generation of cracks due to flow marks or shrinkage, good releasability, and no mass cracking or deformation occurs in the sintered body after firing. It is an excellent ceramic forming method.

Claims (4)

アルミナ、ジルコニア、またはこれらの複合セラミックスの鋳込み成形をするに際し、水溶性のエポキシ系樹脂からなる架橋性成分とアミン系化合物を含む架橋結合体からなる架橋剤の混合物を主成分とする架橋性水溶性バインダーと、アルミナ、ジルコニア、またはこれらの複合セラミックス粉末との混合物を成形型中に充填し、反応硬化させて成形体を形成するセラミックス成形体の製造方法であって、前記架橋性水溶性バインダーに対する硬化剤の配合量を、前記架橋性水溶性バインダー10重量部に対して硬化剤が1〜4重量部となるように添加し、反応硬化した成形体を脱型後に加湿または調湿した雰囲気でセラミックス成形体を乾燥することを特徴とするセラミックス成形体の製造方法。 In casting of alumina, zirconia, or a composite ceramic thereof, a crosslinkable water solution mainly composed of a mixture of a crosslinkable component comprising a water soluble epoxy resin and a crosslinker comprising an amine compound. A method for producing a ceramic molded body comprising forming a molded body by filling a mold with a mixture of a functional binder and alumina, zirconia, or a composite ceramic powder thereof, and curing the reaction mold, the crosslinkable water-soluble binder Addition amount of curing agent with respect to 10 parts by weight of the crosslinkable water-soluble binder so that the curing agent is 1 to 4 parts by weight, and the reaction- cured molded body is dehumidified or humidified or conditioned A method for producing a ceramic molded body characterized in that the ceramic molded body is dried by the method. セラミックスとしてジルコニアを用いることを特徴とする請求項1に記載のセラミックス成形体の製造方法。The method for producing a ceramic molded body according to claim 1, wherein zirconia is used as the ceramic. 前記架橋剤が1分子内に活性水素が3個以上で、アミノ基が2個以上のアミン系化合物を含む架橋結合体を主成分とする請求項1または2に記載のセラミックス成形体の製造方法。 In the crosslinking agent active hydrogen 3 or more in one molecule, method of producing a ceramic molded body according to claim 1 or 2 amino groups as a main component a crosslinked conjugate comprising two or more amine compounds . 前記水溶性のエポキシ樹脂が、グリシジルエーテル型であることを特徴とする請求項1〜3のいずれかに記載のセラミックス成形体の製造方法。 The method for producing a ceramic molded body according to any one of claims 1 to 3, wherein the water-soluble epoxy resin is of a glycidyl ether type.
JP02487097A 1997-02-07 1997-02-07 Manufacturing method of ceramic molded body Expired - Fee Related JP3692682B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02487097A JP3692682B2 (en) 1997-02-07 1997-02-07 Manufacturing method of ceramic molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02487097A JP3692682B2 (en) 1997-02-07 1997-02-07 Manufacturing method of ceramic molded body

Publications (2)

Publication Number Publication Date
JPH10217212A JPH10217212A (en) 1998-08-18
JP3692682B2 true JP3692682B2 (en) 2005-09-07

Family

ID=12150252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02487097A Expired - Fee Related JP3692682B2 (en) 1997-02-07 1997-02-07 Manufacturing method of ceramic molded body

Country Status (1)

Country Link
JP (1) JP3692682B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011157222A (en) * 2010-01-29 2011-08-18 Toray Ind Inc Method for producing ceramic molding

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4008230B2 (en) * 2001-11-14 2007-11-14 住友大阪セメント株式会社 Manufacturing method of electrostatic chuck
JP4946014B2 (en) * 2005-11-21 2012-06-06 東レ株式会社 Method for producing ceramic molded body and method for producing ceramic sintered body using the same
JP2007261925A (en) * 2006-03-30 2007-10-11 Toray Ind Inc Method for producing ceramic molding and method for producing ceramic sintered compact using the molding
JP5103346B2 (en) * 2008-10-01 2012-12-19 日本碍子株式会社 Method for producing ceramic molded body and method for producing ceramic member
CN116283244B (en) * 2023-05-17 2023-07-21 湖南大学 Method for preparing alumina ceramic flake by casting

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011157222A (en) * 2010-01-29 2011-08-18 Toray Ind Inc Method for producing ceramic molding

Also Published As

Publication number Publication date
JPH10217212A (en) 1998-08-18

Similar Documents

Publication Publication Date Title
US20050070651A1 (en) Silicone binders for investment casting
CN1649186A (en) Solid oxide fuel cell sealant comprising glass matrix and ceramic fiber and method of manufacturing the same
JP4395626B2 (en) Non-heat-curable binder and method for producing molded body using the same
WO2018038031A1 (en) Method for molding ceramic material, method for producing ceramic article, and ceramic article
CN105645967A (en) Preparation method of porous silicon nitride ceramic material with highly oriented through holes
JP2011506257A (en) Formulations and refractories with high hydration resistance produced therefrom
CN110483008A (en) A kind of slurry and its ceramic product preparation method for photocuring 3D printing ceramics
JP3692682B2 (en) Manufacturing method of ceramic molded body
CN1041178C (en) Method of preparing a durable air-permeable mold
JPH02172852A (en) Production of ceramics
CN101348376A (en) Double-component monomer system for ceramic material gel pouring moulding and use method thereof
JP2007261925A (en) Method for producing ceramic molding and method for producing ceramic sintered compact using the molding
JPH05254913A (en) Production of ceramic sintered body
JP4946014B2 (en) Method for producing ceramic molded body and method for producing ceramic sintered body using the same
JP4735586B2 (en) Manufacturing method of ceramic sintered body
JP4470407B2 (en) Manufacturing method of ceramic molded body
JP4047956B2 (en) Method for forming silicon carbide powder
JP2011157222A (en) Method for producing ceramic molding
JPH11268961A (en) Forming of ceramic sheet
JPH0663684A (en) Production of ceramic core for casting
JPH06227854A (en) Production of formed ceramic article
JPH08276410A (en) Cast molding method for ceramics
JPH07113103A (en) Production of gas permeable compact
CN108101534A (en) The method of gel casting forming yttrium oxide partial stabilization zirconium oxide ceramic crucible
JPH1112043A (en) Casting of ceramic powder

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050613

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090701

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100701

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110701

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120701

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130701

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees