KR20160078670A - HOT DIP Zn ALLOY PLATED STEEL WIRE HAVING EXCELLENT ANTI-CORROSION AND METHOD FOR MANUFACTURING THE STEEL WIRE USING THE SAME - Google Patents

HOT DIP Zn ALLOY PLATED STEEL WIRE HAVING EXCELLENT ANTI-CORROSION AND METHOD FOR MANUFACTURING THE STEEL WIRE USING THE SAME Download PDF

Info

Publication number
KR20160078670A
KR20160078670A KR1020140188467A KR20140188467A KR20160078670A KR 20160078670 A KR20160078670 A KR 20160078670A KR 1020140188467 A KR1020140188467 A KR 1020140188467A KR 20140188467 A KR20140188467 A KR 20140188467A KR 20160078670 A KR20160078670 A KR 20160078670A
Authority
KR
South Korea
Prior art keywords
steel wire
mgzn
zinc alloy
molten zinc
alloy plating
Prior art date
Application number
KR1020140188467A
Other languages
Korean (ko)
Other versions
KR101647229B1 (en
Inventor
오민석
김종상
김상헌
김태철
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020140188467A priority Critical patent/KR101647229B1/en
Publication of KR20160078670A publication Critical patent/KR20160078670A/en
Application granted granted Critical
Publication of KR101647229B1 publication Critical patent/KR101647229B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • C23C2/16Removing excess of molten coatings; Controlling or regulating the coating thickness using fluids under pressure, e.g. air knives
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/38Wires; Tubes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Thermal Sciences (AREA)
  • Coating With Molten Metal (AREA)

Abstract

A hot dip zinc alloy plated steel wire having excellent corrosion resistance according to an embodiment of the present invention includes a matrix steel wire and a hot dip zinc alloy plated layer. A composition of the hot dip zinc alloy plated layer includes aluminum (Al): 0.5-15 wt%, magnesium (Mg): 0.5-3 wt%, the remaining zinc (Zn) and inevitable impurities. The hot dip zinc alloy plated layer has a metal structure wherein a Zn single phase structure, a Zn/MgZn_2 binary process structure, an MgZn_2 single phase structure and a Zn/Al/MgZn_2 triple process structure are mixed. An area ratio of the Zn/MgZn_2 binary process structure and the MgZn_2 single phase structure observed at a cross section in a linear particle size direction of the hot dip zinc alloy plated layer may be 50% or more.

Description

내식성이 우수한 용융아연합금 도금강선 및 그 제조방법 {HOT DIP Zn ALLOY PLATED STEEL WIRE HAVING EXCELLENT ANTI-CORROSION AND METHOD FOR MANUFACTURING THE STEEL WIRE USING THE SAME}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hot dip galvanized steel wire having excellent corrosion resistance,

본 개시는 내식성이 우수한 용융아연합금 도금강선 및 그 제조방법에 관한 것이다.
The present disclosure relates to a hot-dip galvanized steel wire having excellent corrosion resistance and a method of manufacturing the same.

일반적으로 내식성을 요구하는 강선의 경우 Zn 도금을 수행한다. 하지만 강선의 사용환경이 가혹해짐에 따라 고내식성의 강선개발이 요구되고 있다. 또한 강선의 고강도화에 따른 내식성 보완 및 사용수명 향상을 위한 고내식 강선의 필요성이 꾸준히 증가하고 있다.In general, Zn plating is performed for a steel wire requiring corrosion resistance. However, as the use environment of the steel wire becomes severe, development of a wire having high corrosion resistance is required. Also, the necessity of high corrosion resistant steel wire for the improvement of the corrosion resistance and the service life according to the high strength of the steel wire is steadily increasing.

강선의 도금은 Zn-Al 도금기법을 활용하여 Zn 도금재 대비 내식성 향상을 확보하였으나, 고내식성을 요구하는 고객이 많아짐에 따라 더 높은 내식성의 도금강선의 개발이 요구되고 있다.Although plating of steel wire has improved corrosion resistance compared to Zn plating material by using Zn-Al plating method, it is required to develop a plating wire of higher corrosion resistance as the number of customers demanding high corrosion resistance is increased.

최근 아연합금계 도금재로서 Zn 도금욕에 Al 및 Mg을 첨가하여 도금강판의 내식성을 향상시키는 도금 강판의 제조기술을 확보하고 있다.In recent years, Al and Mg have been added to a Zn plating bath as a zinc alloy plating material to secure a manufacturing technique of a coated steel sheet for improving the corrosion resistance of a coated steel sheet.

하지만 Zn-Al Mg계 용융아연합금기술은 강선도금에서 적용되지 않았다.However, the Zn-Al Mg based hot-dip galvanizing technique was not applied to steel wire plating.

소재의 부피가 강판에 비해 강선의 부피가 매우 작기 때문에, 강선도금은 강판도금에 비하여 도금전 전처리, 도금욕의 조성 및 냉각속도에 의해 상이한 도금 조직구성을 가진다.Since the volume of the steel wire is very small as compared with the steel sheet, the steel wire plating has a different plating structure depending on the pre-plating pretreatment, the composition of the plating bath, and the cooling rate.

특히, 도금욕 조성과 냉각조건은 강선 상에 도금되는 도금층의 금속간화합물의 성분비 및 Mg 합금 상의 면적분율에 큰 영향을 미친다. 상기 도금층의 금속조직 및 면적분율는 도금강선의 특성에 큰 영향을 미친다.
In particular, the composition of the plating bath and the cooling condition have a great influence on the composition ratio of the intermetallic compound and the area fraction of the Mg alloy in the plated layer plated on the steel wire. The metal structure and the area fraction of the plating layer greatly affect the characteristics of the plated steel wire.

따라서, Zn-Al Mg계 용융아연도금층의 원소 함량을 조절하여, 도금강선의 고내식성을 확보하는 기술이 필요한 실정이다.
Therefore, there is a need for a technique for securing high corrosion resistance of a plated steel wire by controlling the element content of the Zn-Al Mg based hot dip galvanized layer.

하기 특허문헌 1은 용융아연합금 강선 및 그 제조방법에 관한 것이다.
The following Patent Document 1 relates to a hot-dip galvanized steel wire and a manufacturing method thereof.

일본공개특허번호 제2001-107213호Japanese Laid-Open Patent No. 2001-107213

본 개시의 일 실시 형태는 내식성이 우수한 용융아연합금 도금강선 및 그 제조방법을 제공하는 것이다.
An embodiment of the present disclosure is to provide a hot-dip galvanized steel wire having excellent corrosion resistance and a method of manufacturing the same.

본 개시의 일 실시 형태에 따른 내식성이 우수한 용융아연합금 도금강선은 소지강선 및 용융아연합금 도금층을 포함하고, 상기 용융아연합금 도금층의 조성은 알루미늄(Al): 0.5~15 중량%, 마그네슘(Mg): 0.5~3 중량%, 잔부 아연(Zn) 및 기타 불가피한 불순물을 포함하고, 상기 용융아연합금 도금층은 Zn단상, Zn/MgZn2 2원공정조직, MgZn2 단상조직 및 Zn/Al/MgZn2 3원공정조직이 혼재된 금속조직을 가지며, 상기 용융아연합금 도금층의 선 입경 방향 단면에서 관찰되는 Zn/MgZn2 2원공정조직 및 MgZn2 단상조직의 면적분율이 50 % 이상일 수 있다.
A hot dip galvanized steel wire having excellent corrosion resistance according to an embodiment of the present disclosure includes a base steel wire and a hot-dip galvanizing layer, and the composition of the hot-dip galvanized layer is 0.5 to 15% by weight of aluminum (Al) ): 0.5 to 3% by weight, the balance zinc (Zn) and other including unavoidable impurities, and the molten zinc alloy plating layer is Zn phase, Zn / MgZn 2 2 won process organization, MgZn 2 phase organization and Zn / Al / MgZn 2 3 won process organization having the mixed metal structure, the molten zinc alloy plating layer has an area fraction of the line diameter Zn / MgZn 2 2 won process organization and MgZn 2 phase tissue observed in the cross section of the number is more than 50%.

본 개시의 일 실시 형태에 따른 내식성이 우수한 용융아연합금 도금강선의 제조방법은 알루미늄(Al): 0.5~15 중량%, 마그네슘(Mg): 0.5~3 중량%, 잔부 아연(Zn) 및 기타 불가피한 불순물을 포함하는 용융아연합금 도금욕을 준비하는 단계; 상기 용융아연합금 도금욕에 소지강선을 침지하고, 도금을 행하여 도금강선을 제조하는 단계; 및 상기 도금강선을 가스 와이핑 및 냉각하는 단계를 포함하고, 상기 냉각은 3~10℃/sec의 속도로 냉각하는 것을 특징으로 할 수 있다.
A method of manufacturing a hot dip galvanized steel wire having excellent corrosion resistance according to an embodiment of the present disclosure includes the steps of: 0.5 to 15% by weight of aluminum (Al), 0.5 to 3% by weight of magnesium (Mg) Preparing a molten zinc alloy plating bath containing impurities; Immersing the ground steel wire in the molten zinc alloy plating bath and performing plating to produce a plated steel wire; And gas wiping and cooling the plated steel wire, wherein the cooling is performed at a cooling rate of 3 to 10 DEG C / sec.

본 개시의 일 실시 형태에 따르면, 성분 함량의 범위 조절을 통하여 금속조직의 함량을 제어할 수 있어, 내식성이 우수한 용융아연합금 도금강선 및 그 제조방법을 제공할 수 있다.
According to one embodiment of the present disclosure, it is possible to control the content of the metal structure through adjustment of the range of the component content, and to provide a hot-dip galvanized coated steel wire excellent in corrosion resistance and a method of manufacturing the same.

도 1은 본 개시의 일 실시 형태에 따른 도금층의 금속조직을 나타낸 전자 현미경 사진이다.BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is an electron microscope photograph showing a metal structure of a plating layer according to an embodiment of the present disclosure; FIG.

이하, 첨부된 도면을 참조하여 본 개시의 바람직한 실시 형태들을 설명한다.Preferred embodiments of the present disclosure will now be described with reference to the accompanying drawings.

그러나, 본 개시의 실시 형태는 당해 기술 분야에서 평균적인 지식을 가진 자에게 본 개시를 더욱 완전하게 설명하기 위해서 제공되는 것이다.However, the embodiments of the present disclosure are provided to more fully describe the present disclosure to those skilled in the art.

또한, 본 개시의 실시 형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 개시의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다.The embodiments of the present disclosure can be modified into various other forms, and the scope of the present disclosure is not limited to the embodiments described below.

덧붙여, 명세서 전체에서 어떤 구성요소를 '포함'한다는 것은 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있다는 것을 의미한다.
In addition, to include an element throughout the specification does not exclude other elements unless specifically stated otherwise, but may include other elements.

이하, 본 개시에 의한 내식성이 우수한 용융아연합금 도금강선에 대하여 상세히 설명한다.
Hereinafter, the molten zinc alloy plated steel wire excellent in corrosion resistance according to the present disclosure will be described in detail.

본 개시의 일 실시 형태의 내식성이 우수한 용융아연합금 도금강선은 소지강선 및 용융아연합금 도금층을 포함하고, 상기 용융아연합금 도금층의 조성은 알루미늄(Al): 0.5~15 중량%, 마그네슘(Mg): 0.5~3 중량%, 잔부 아연(Zn) 및 기타 불가피한 불순물을 포함하고, 상기 용융아연합금 도금층은 Zn단상, Zn/MgZn2 2원공정조직, MgZn2 단상조직 및 Zn/Al/MgZn2 3원공정조직이 혼재된 금속조직을 가지며, 상기 용융아연합금 도금층의 선 입경 방향 단면에서 관찰되는 Zn/MgZn2 2원공정조직 및 MgZn2 단상조직의 면적분율이 50 % 이상인 것을 특징으로 한다.
A hot dip galvanized steel wire having excellent corrosion resistance in one embodiment of the present disclosure includes a base steel wire and a hot-dip galvanizing layer, and the composition of the hot-dip galvanizing layer is 0.5 to 15% by weight of aluminum (Al) Wherein the molten zinc alloy plating layer comprises a Zn single phase, a Zn / MgZn 2 binary raw structure, a MgZn 2 single phase structure, and a Zn / Al / MgZn 2 3: 0.5 to 3 wt.%, The balance zinc and other inevitable impurities. having a source process tissue are mixed with the metal structure, and the Zn / MgZn 2, MgZn 2 circle process organization and area fraction of the second phase observed in the tissue-ray particle diameter of cross section of the molten zinc alloy plating characterized in that 50% or more.

이하, 본 개시의 도금층의 합금 원소에 대하여 설명한다.
Hereinafter, an alloy element of the plating layer of the present disclosure will be described.

마그네슘(magnesium( MgMg ): 0.5~3 중량%): 0.5 to 3 wt%

상기 Mg은 도금층의 내식성 향상에 매주 주요한 역할을 하는 원소이다. The Mg is an element that plays a major role every week to improve the corrosion resistance of the plating layer.

상기 Mg은 도금층 내부에 함유되어 가혹한 부식 환경에서 내식성 향상 효과가 적은 아연산화물계 부식생성물의 성장을 억제할 수 있으며, 치밀하며 내식성 향상 효과가 큰 아연수산화물계 부식생성물을 도금층 표면에서 안정화시킬 수 있다.The Mg can be inhibited from growing zinc oxide-based corrosion products which are contained in the plating layer and which are less effective in improving the corrosion resistance in a severe corrosive environment, and can be stabilized on the surface of the plating layer with a zinc hydroxide- .

상기 Mg의 함량은 0.5 중량% 내지 3 중량% 일 수 있다.The content of Mg may be 0.5 wt% to 3 wt%.

상기 Mg의 함량이 0.5 중량% 미만이면, Zn-Mg계 화합물 생성량이 적어 내식성 향상 효과가 매우 적을 수 있다.If the content of Mg is less than 0.5% by weight, the amount of the Zn-Mg-based compound to be formed is small and the effect of improving the corrosion resistance may be very small.

상기 Mg의 함량이 3 중량%를 초과하면, 내식성 향상 효과가 포화되고, Mg의 산화성 드로스(dross)가 도금욕의 욕면에 급격히 증가하여 도금 작업성이 매우 감소할 수 있다.
If the content of Mg exceeds 3 wt%, the effect of improving the corrosion resistance is saturated and the oxidative dross of Mg rapidly increases on the bath surface of the plating bath, so that the plating workability can be greatly reduced.

알루미늄(aluminum( AlAl ): 0.5~15 중량%): 0.5 to 15 wt%

상기 Al은 상기 Mg을 첨가한 용융아연합금 도금욕 내에서 Mg의 산화반응에 의해 발생되는 드로스를 감소시키기 위하여 첨가되는 원소이다.The Al is an element added to reduce the dross generated by the oxidation reaction of Mg in the molten zinc alloy plating bath to which Mg is added.

상기 Al은 아연(Zn) 및 마그네슘(Mg)와 조합하여 도금강선의 내식성을 향상시킬 수 있다.The Al can be combined with zinc (Zn) and magnesium (Mg) to improve the corrosion resistance of the coated steel wire.

상기 Al의 함량은 0.5 중량% 내지 15 중량% 일 수 있다.The content of Al may be 0.5 wt% to 15 wt%.

상기 Al의 함량이 0.5 중량% 미만이면, Mg 첨가에 의한 도금욕 표층부의 산화를 방지하는 효과가 미비할 수 있으며, 내식성 향상 효과 또한 미비할 수 있다.If the content of Al is less than 0.5% by weight, the effect of preventing the oxidation of the surface layer of the plating bath by Mg addition may be insufficient and the effect of improving the corrosion resistance may be insufficient.

상기 Al의 함량이 15 중량%를 초과하면, 도금욕에 침지된 강선의 Fe 용출량이 급격히 증가하게 되어, Fe 합금계 드로스가 형성될 수 있으며, 도금층 내에 Zn/Al 2원 공석상이 형성되어, 단면부 및 도장부에 대한 Mg의 내식성 향상 효과를 감소시킬 수 있다.
If the content of Al exceeds 15 wt%, the amount of Fe elution of the steel wire immersed in the plating bath sharply increases, so that Fe alloy type dross can be formed, and a Zn / Al binary vacancy phase is formed in the plating layer, It is possible to reduce the effect of improving the corrosion resistance of Mg to the part and the coated part.

본 개시의 일 실시 형태의 내식성이 우수한 용융아연합금 도금강선의 도금층은 Ru, Rh 및 Pd으로 이루어진 군으로부터 선택되는 1종 이상의 원소를 합계 0.0001~1 중량% 더 포함할 수 있다. The plating layer of the hot-dip galvanized steel wire having excellent corrosion resistance in one embodiment of the present disclosure may further contain 0.0001 to 1% by weight in total of at least one element selected from the group consisting of Ru, Rh and Pd.

상기 Ru, Rh 및 Pd의 원소는 녹는점(Tm)이 각각 2334℃, 1985℃ 및 1554.9℃로 매우 높아, 냉각시 Zn, Al 및 Mg보다 먼저 응고하여 Zn-MgZn2 2원 공정조직의 석출 및 조대화를 유도하는 역할을 할 수 있다.
Element of the Ru, Rh, and Pd is the melting point (Tm) of each of 2334 ℃, 1985 ℃ and very high as 1554.9 ℃, the first coagulation than cooling when Zn, Al and Mg Zn-MgZn 2 2 precipitation of the original process organization and It can play a role of inducing coarse conversation.

본 개시의 강선은 잔부 아연(Zn) 및 기타 불가피한 불순물을 포함한다.The steel wire of the present disclosure includes the remainder zinc (Zn) and other unavoidable impurities.

통상의 철강 제조과정에서 원료 또는 주위 환경으로부터 의도되지 않은 불순물들이 불가피하게 혼입될 수 있어, 이를 배제할 수는 없다. Impurities that are not intended from the raw material or the surrounding environment can be inevitably incorporated in the ordinary steel manufacturing process and can not be excluded.

이들 불순물은 통상의 철강제조과정의 기술자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 특별히 본 개시에서는 언급하지는 않는다.
All of these impurities are not specifically mentioned in the present disclosure, as they are known to anyone skilled in the art of steel making.

상기 용융아연합금 도금층은 Zn단상조직, Zn/MgZn2 2원공정조직, MgZn2 단상조직 및 Zn/Al/MgZn2 3원공정조직이 혼재된 금속조직을 가진다.
The molten zinc alloy plating layer has a metal structure in which a Zn single phase structure, a Zn / MgZn 2 binary source structure, a MgZn 2 single phase structure and a Zn / Al / MgZn 2 3 source process structure are mixed.

도금재의 단면부가 부식환경에 노출되는 경우, 도금층 단면부의 조대 Zn/MgZn2 2원 공정조직 또는 MgZn2 단상조직으로부터 Mg2 + 양이온이 용출된다.When the end face of the plating material is exposed to the corrosive environment, Mg 2 + cations are eluted from the coarse Zn / MgZn 2 binary structure or the MgZn 2 single phase structure at the end face of the plating layer.

상기 용출된 Mg2 + 양이온은 캐소드(Cathode) 영역인 도금층 단면부로 이동하여, 치밀하고 안정된 부식 생성물을 형성시켜 도금강선의 단면부 내식성을 향상시킨다. The eluted Mg 2 + cations and mobile parts of the cathode (Cathode) region of the plating layer cross-section, to form a dense and stable corrosion product and improves the corrosion resistance of the plated steel wire cross-section portion.

본 개시에 따르면, 상기 용융아연합금 도금층의 선 입경 방향 단면에서 관찰되는 Zn/MgZn2 2원 공정조직 및 MgZn2 단상조직의 면적분율을 50 % 이상 확보하는 것이 바람직하다.According to this disclosure, it is preferable that the Zn / MgZn 2, MgZn 2 won process organization and area fraction of the second phase observed in the tissue-ray particle diameter of cross section of the molten zinc alloy plating layer to secure 50% or more.

상기 Zn/MgZn2 2원 공정조직 및 MgZn2 단상조직의 면적분율이 50% 미만이면, Mg2+ 양이온 용출량이 충분하지 않아, 안정된 부식 생성물의 형성에 의한 효과가 감소할 수 있으며, 이로 인해 도금강선의 내식성 향상의 효과가 미비할 수 있다.
If the area fraction of the Zn / MgZn 2 binary structure and the MgZn 2 single phase structure is less than 50%, the Mg 2+ cation elution amount is not sufficient and the effect due to the formation of a stable corrosion product may be reduced, The effect of improving the corrosion resistance of the steel wire may be insufficient.

도금층 내에서 상기와 같은 금속조직의 형성 여부는 도금욕의 조성뿐만 아니라, 도금강선의 냉각단계에서 냉각속도의 영향을 크게 받을 수 있다.
The formation of such a metal structure in the plating layer can be greatly affected not only by the composition of the plating bath but also by the cooling rate in the cooling step of the coated steel wire.

상기 용융아연합금 도금층은 도금량이 10~600g/m2 일 수 있다.The molten zinc alloy plating layer may have a plating amount of 10 to 600 g / m 2 .

상기 도금층의 도금량이 10g/m2 미만이면, 내식성 특성을 기대하기 어려울 수 있다.If the plating amount of the plating layer is less than 10 g / m < 2 >, it may be difficult to expect a corrosion resistance characteristic.

상기 도금층의 도금량이 600g/m2을 초과하면, 도금강선의 경제성이 감소할 수 있다.
If the plating amount of the plating layer exceeds 600 g / m 2 , the economical efficiency of the plated steel wire can be reduced.

이하, 본 개시에 의한 내식성이 우수한 용융아연합금 도금강선의 제조방법에 대하여 상세히 설명한다.
Hereinafter, a method for manufacturing a hot-dip galvanized steel wire having excellent corrosion resistance according to the present disclosure will be described in detail.

본 개시의 일 실시 형태에 따른 내식성이 우수한 용융아연합금 도금강선의 제조방법은 알루미늄(Al): 0.5~15 중량%, 마그네슘(Mg): 0.5~3 중량%, 잔부 아연(Zn) 및 기타 불가피한 불순물을 포함하는 용융아연합금 도금욕을 준비하는 단계; 상기 용융아연합금 도금욕에 소지강선을 침지하고, 도금을 행하여 도금강선을 제조하는 단계; 및 상기 도금강선을 가스 와이핑 및 냉각하는 단계를 포함하고, 상기 냉각은 3~10℃/sec의 속도로 냉각하는 것을 특징으로 한다.
A method of manufacturing a hot dip galvanized steel wire having excellent corrosion resistance according to an embodiment of the present disclosure includes the steps of: 0.5 to 15% by weight of aluminum (Al), 0.5 to 3% by weight of magnesium (Mg) Preparing a molten zinc alloy plating bath containing impurities; Immersing the ground steel wire in the molten zinc alloy plating bath and performing plating to produce a plated steel wire; And gas wiping and cooling the plated steel wire, wherein the cooling is characterized by cooling at a rate of 3 to 10 DEG C / sec.

용융아연합금 도금욕에 소지강선을 침지하여 도금을 행할 때, 통상의 용융아연합금 도금시의 도금욕 온도를 적용할 수 있으며, 바람직하게는 융점 이상~450℃ 이하의 범위의 도금욕 온도에서 도금을 수행할 수 있다. When plating is carried out by immersing the base steel wire in a molten zinc alloy plating bath, the plating bath temperature at the time of the ordinary hot-dip galvanizing can be applied, preferably at a plating bath temperature ranging from a melting point to 450 ° C Can be performed.

일반적으로, 도금욕의 성분 중 Al의 함량이 높아지면, 도금욕의 융점이 높아져 도금욕의 온도를 증가시켜야 한다.Generally, if the content of Al in the components of the plating bath is increased, the melting point of the plating bath must be increased to increase the temperature of the plating bath.

그러나, 도금욕의 온도가 높아지면, 모재 강선 및 도금욕의 내부 설비가 침식될 수 있으며, 장비의 수명단축을 초래할 뿐만 아니라, 도금욕 내 Fe 합금 드로스가 증가할 수 있어, 도금재의 표면 불량이 발생할 수 있다.
However, if the temperature of the plating bath is increased, the internal equipment of the base material steel wire and the plating bath may be eroded, shortening the life of the equipment, increasing the Fe alloy dross in the plating bath, Lt; / RTI >

본 발명에서는 Al의 함량을 0.5~15 중량%로 비교적 낮게 제어하므로, 도금욕의 온도를 높게 설정할 필요가 없으며, 통상의 도금욕 온도를 적용함이 바람직하다.
In the present invention, since the content of Al is controlled to be relatively low as 0.5 to 15 wt%, it is not necessary to set the temperature of the plating bath to be high, and it is preferable to apply the ordinary plating bath temperature.

상기 도금을 완료한 후, 도금층이 형성된 강선을 가스와이핑 처리하여 도금 부착량을 조절할 수 있다.After completion of the plating, the plating line can be controlled by applying a gas wipe to the steel wire having the plating layer formed thereon.

상기 가스와이핑은 도금 부착량을 조정하기 위한 것으로, 그 방법에 대해서는 특별히 한정되는 것은 아니다.The gas wiping is for adjusting the plating adhesion amount, and the method is not particularly limited.

이때, 사용되는 가스로는 공기 또는 질소(N2)를 이용할 수 있으며, 질소를 이용함이 바람직할 수 있다.At this time, air or nitrogen (N 2 ) may be used as the gas to be used, and it may be preferable to use nitrogen.

상기 공기를 사용할 경우, 도금층 표면에서 Mg 산화가 우선적으로 발생할 수 있어, 도금층의 표면결함을 유발할 수 있다.
When air is used, Mg oxidation may occur preferentially on the surface of the plating layer, which may cause surface defects of the plating layer.

상기 가스와이핑의 처리로 도금층의 도금 부착량을 조정한 후, 320~400℃의 온도범위에서 3~10℃/sec의 속도로 냉각한다. After the plating adhesion amount of the plating layer is adjusted by the treatment of the gas wiping, the coating is cooled at a temperature of 320 to 400 ° C at a rate of 3 to 10 ° C / sec.

420℃에서 응고반응이 종료되는 통상적인 용융아연 도금층과는 달리, Zn-Al-Mg 3원계 합금도금층은 400℃ 이하의 낮은 온도에서 응고가 시작되어 320℃에서 응고가 종료된다.Unlike a conventional hot-dip galvanizing layer in which the solidification reaction is terminated at 420 ° C, solidification of Zn-Al-Mg ternary alloy plating layer starts at a low temperature of 400 ° C or lower and solidification is terminated at 320 ° C.

따라서, 도금층의 응고가 시작되는 400℃부터 응고가 종료되는 320℃의 온도범위에서의 냉각속도가 상이할 경우, 동일한 조성 및 성분비를 가지는 도금강선이라고 하더라도 서로 상이한 금속조직이 얻어지게 된다.Therefore, when the cooling rate in the temperature range from 400 deg. C at which solidification of the plating layer starts to 320 deg. C at which solidification ends is different, a different metal structure can be obtained even with a plated steel wire having the same composition and composition ratio.

상기 냉각속도가 3℃/sec 미만이면, Zn 단상조직의 면적분율이 커져 내식성이 저하될 수 있다. If the cooling rate is less than 3 占 폚 / sec, the area fraction of the Zn single phase structure becomes large and corrosion resistance may be deteriorated.

상기 냉각속도가 10 ℃/sec를 초과하면, Zn 단상조직이 조대화됨과 동시에 표면부 노출량이 급격히 증가하여 표면부 내식성이 저하될 수 있다. If the cooling rate exceeds 10 ° C / sec, the Zn single phase structure is coarsened, and the exposure amount on the surface portion is drastically increased, and the surface portion corrosion resistance may be lowered.

상기 냉각시 냉각방법으로는 도금층을 냉각시킬 수 있는 통상의 냉각방법을 이용할 수 있으며, 예를 들어 에어 제트 쿨러(air jet cooler)를 이용하거나 N2 와이핑 또는 워터 포그(water fog) 등을 분무함으로써 냉각을 수행할 수 있다.
As the cooling method during cooling, a conventional cooling method that can cool the plating layer can be used. For example, an air jet cooler, N 2 wiping, water fog, Cooling can be performed.

상기 도금층은 Zn단상조직, Zn/MgZn2 2원공정조직, MgZn2 단상조직 및 Zn/Al/MgZn2 3원공정조직이 혼재된 금속조직을 확보하기 위해서는 본 단계에서 냉각속도를 상기의 범위로 제어하는 것이 매우 중요하다.
In order to secure a metal structure containing Zn single phase structure, Zn / MgZn 2 binary structure, MgZn 2 single phase structure and Zn / Al / MgZn 2 three-element process structure in the plating layer, Control is very important.

이하, 실시예를 통하여 본 개시를 보다 구체적으로 설명한다. 그러나, 하기 실시예는 본 개시를 상세하게 설명하기 위한 예시일 뿐, 본 개시의 권리범위를 한정하지 않는다.
Hereinafter, the present disclosure will be described in more detail by way of examples. However, the following embodiments are only examples for explaining the present disclosure in detail, and do not limit the scope of the present disclosure.

(실시예 1)(Example 1)

도금욕 성분에 따른 도금층의 미세조직을 관찰하기 위하여, 도금욕 시험편으로 4mm의 직경의 강선을 소지강선으로 준비한 후, 상기 소지강선을 아세톤에 침지하고 초음파 세척하여 표면에 존재하는 압연유 등의 이물질을 제거하였다.In order to observe the microstructure of the plating layer according to the plating bath component, a steel wire having a diameter of 4 mm was prepared as a base steel wire with a plating bath test piece, the base steel wire was immersed in acetone and ultrasonically cleaned to remove foreign substances such as rolling oil Respectively.

도금을 수행하기 전 모든 시편은 일반 용융도금 현장에서 강선의 기계적 특성 확보를 위하여 실행하는 750℃에서 환원 분위기 열처리 과정을 거쳤다.Before plating, all specimens were subjected to a reducing atmosphere heat treatment at 750 ° C to ensure the mechanical properties of the steel wire at the general hot dip galvanizing site.

열처리 이후에 행해지는 도금 조건은 도금욕 온도를 제외하고는 모든 도금욕에 있어서 동일하게 처리하였으며, 상기 도금욕 온도는 Al 함량에 따른 융점 상승을 고려하여 450℃로 조절하였다.The plating conditions after the heat treatment were the same in all plating baths except for the plating bath temperature, and the plating bath temperature was adjusted to 450 ° C in consideration of the increase of the melting point according to the Al content.

도금 완료 후, N2 가스와이핑을 이용하여 도금 부착량이 250g/m2이 되도록 조절하고, 320~400℃의 온도 범위에서 8℃/sec의 동일한 속도로 냉각하였다.
After completion of the plating, the plating adhesion amount was adjusted to 250 g / m 2 using N 2 gas wiping, and the coating was cooled at the same rate of 8 ° C / sec in the temperature range of 320 to 400 ° C.

이후, 도금층의 미세조직을 관찰 및 분석하여, 그 결과를 하기 표 1에 나타내었다. 도금층의 미세조직은 FE-SEM (SUPRA-55VP, ZEISS) 과 FE-TEM (JEM-2100F, JEOL)에 의해 관찰하였으며, 도금층 내 금속간 화합물의 합금상 분율은 분석시스템(analySIS)을 활용하여 분석하였다.
Thereafter, the microstructure of the plated layer was observed and analyzed, and the results are shown in Table 1 below. The microstructure of the plated layer was observed by FE-SEM (SUPRA-55VP, ZEISS) and FE-TEM (JEM-2100F, JEOL) and the alloy phase fraction of the intermetallic compound in the plated layer was analyzed using analySIS Respectively.

구분division 도금층의 조성
(중량%)
Composition of plating layer
(weight%)
도금층의 미세조직의 면적분율(%)Area fraction (%) of microstructure of plating layer
AlAl MgMg ZnZn Zn/
MgZn2
Zn /
MgZn 2
Zn/Al/MgZn2 Zn / Al / MgZn 2 MgZn2 MgZn 2 Zn/
25%Al
Zn /
25% Al
Zn/
45%Al
Zn /
45% Al
Zn/
MgZn2
+MgZn2
Zn /
MgZn 2
+ MgZn 2
비교예 1Comparative Example 1 0.20.2 00 100100 00 00 00 00 00 00 비교예 2Comparative Example 2 22 1One 7373 1111 1313 00 33 00 1111 비교예 3Comparative Example 3 3.23.2 3.53.5 1212 3232 5656 00 00 00 3232 비교예 4Comparative Example 4 1515 3.23.2 66 00 99 1515 4848 2222 1515 비교예 5Comparative Example 5 1717 00 00 00 00 00 1212 8888 00 실시예 1Example 1 1.51.5 2.72.7 2020 3737 2828 1515 00 00 5252 실시예 2Example 2 22 2.32.3 3232 2828 1515 2525 00 00 5353 실시예 3Example 3 33 1.51.5 3737 2222 22 3636 33 00 5858 실시예 4Example 4 55 2.82.8 1111 4646 2525 1212 66 00 5858 실시예 5Example 5 1212 2.92.9 88 5353 1818 1616 55 00 6969 실시예 6Example 6 1414 2.82.8 77 2929 1010 2323 2121 1010 5252

표 1에 나타난 바와 같이, 본 개시의 Al 및 Mg의 조성범위 및 조성비를 만족하는 실시예 1 내지 6은 모두 도금층의 선 입경 방향 단면에서 관찰되는 Zn/MgZn2 2원공정조직 및 MgZn2 단상조직의 면적분율이 50 % 이상임을 확인할 수 있었다.
As shown in Table 1, Examples 1 to 6 all Zn / MgZn observed in the line diameter cross section of the plating layer 22 won process organization and MgZn 2 phase organization which satisfies the composition range and the composition ratio of Al and Mg in the disclosure Was 50% or more.

도 1은 실시예 1의 도금층의 전자 현미경 사진을 나타낸다.1 is an electron micrograph of a plated layer of Example 1. Fig.

도 1은 참조하면, 실시예 1은 조대화된 Zn/MgZn2 2원공정조직을 가지는 것을 확인할 수 있었다.
When Fig. 1, see Example 1 was confirmed to have a roughness of Zn / MgZn 2 2 won process organization.

본 개시의 Al 및 Mg의 조성범위 또는 조성비를 만족하지 않는 비교예 1 내지 5는 모두 도금층의 선 입경 방향 단면에서 관찰되는 Zn/MgZn2 2원공정조직 및 MgZn2 단상조직의 면적분율이 50%에 미치지 못하였다.
In Comparative Examples 1 to 5, which do not satisfy the composition ranges or the composition ratios of Al and Mg of the present disclosure, all of the Zn / MgZn 2 binary structure and the MgZn 2 single phase structure in the cross section of the plating layer in the line- .

(실시예 2)(Example 2)

도금강선의 제조에 있어서, 도금강선의 냉각 단계에서 냉각속도에 따른 도금층의 미세조직을 관찰하기 위해, 3 mm 입경의 냉연강선을 아세톤에 침지시킨 상태로 초음파로 세척하여 표면의 이물질과 기름을 제거하여 시편을 준비하였다.
In order to observe the microstructure of the plating layer according to the cooling rate in the cooling step of the coated steel wire in the production of the coated steel wire, the cold-rolled steel wire of 3 mm diameter was immersed in acetone and ultrasonically cleaned to remove foreign substances and oil And the sample was prepared.

본 실시예를 위한 용융도금 실험은 용융도금 시뮬레이터를 이용하여 소둔 및 도금하였다. The hot dip test for this example was annealed and plated using a hot dip simulator.

소둔조건에서 소둔 분위기 가스는 수소 10% 및 질소 90%로 구성된 환원분위기이고, 소둔 열처리 사이클은 요구되는 기계적 성질에 적합하게 700~820℃로 열처리 하였다.
The annealing atmosphere gas in the annealing condition was a reducing atmosphere composed of 10% of hydrogen and 90% of nitrogen, and the annealing heat treatment cycle was heat-treated at 700 to 820 캜 in accordance with required mechanical properties.

환원분위기에서 열처리된 시편을 본 발명의 Al 및 Mg의 조성범위 및 조성비를 만족하는 2.3중량%의 Al 및 3중량%의 Mg를 함유하는 합금용융도금 용탕에 약 5초간 침적 후 끌어올려 가스 와이핑하여 합금도금층의 부착량을 250 g/m2으로 조절하였다. The specimens heat-treated in the reducing atmosphere were immersed for about 5 seconds in a molten alloy containing 2.3 wt% of Al and 3 wt% of Mg, satisfying the composition and composition ratios of Al and Mg of the present invention, And the adhesion amount of the alloy plating layer was adjusted to 250 g / m 2 .

강선의 냉각속도 및 온도변화를 관찰하기 위하여 열전대(Thermocouple)를 강선에 접촉하여 냉각과정 중 강선의 미세온도변화를 모니터링 하였다. To observe the cooling rate and temperature change of the steel wire, a thermocouple was contacted to the steel wire to monitor the micro temperature change of the steel wire during the cooling process.

시험편의 냉각속도에 따른 도금층 특성 변화를 관찰하기 위하여 동일한 냉각가스 유량 하에서 강선의 이동속도를 100~500 mm/s로 조절하였다. The moving speed of the steel wire was controlled at 100 to 500 mm / s under the same cooling gas flow rate in order to observe the variation of the coating layer characteristics according to the cooling rate of the test piece.

상기 Al 및 Mg 첨가에 의해 형성되는 조직 중 응고 완료온도가 가장 높은 Zn 단상조직의 형성을 제어하기 위하여 도금층 온도 400℃에서부터 응고 종료시점 320℃까지의 냉각속도를 미세 모니터링하였다.
In order to control the formation of Zn single phase structure having the highest solidification completion temperature among the tissues formed by the addition of Al and Mg, the cooling rate from the plating layer temperature of 400 ° C to the solidification end point of 320 ° C was finely monitored.

이후, 도금층의 미세조직을 관찰 및 분석하여, 그 결과를 하기 표 2에 나타내었다.
Thereafter, the microstructure of the plated layer was observed and analyzed, and the results are shown in Table 2 below.

구분division 냉각속도(℃/sec)Cooling rate (° C / sec) Zn/MgZn2+MgZn2
단면부 면적분율(%)
Zn / MgZn 2 + MgZn 2
Cross-sectional area fraction (%)
비교예 1Comparative Example 1 2.52.5 29.329.3 비교예 2Comparative Example 2 12.512.5 40.740.7 실시예 1Example 1 3.73.7 80.280.2 실시예 2Example 2 9.49.4 69.869.8

본 개시의 냉각속도 범위를 만족하는 실시예 1 및 2는 도금층의 선 입경 방향 단면에서 관찰되는 Zn/MgZn2 2원공정조직 및 MgZn2 단상조직의 면적분율이 50% 이상임을 확인할 수 있었다.
Embodiment satisfying the cooling rate range of the disclosure Examples 1 and 2 were found to be Zn / MgZn 2, MgZn 2 won process organization and area fraction of the second phase tissue it is 50% or more is observed in the particle size of the line cross section of the plating layer.

냉각속도가 3℃/sec 미만인 비교예 1은 Zn 단상조직이 도금층 대비 온도가 낮은 소지강선으로부터 응고되어 조대화되는 현상이 인하여, Zn/MgZn2 2원공정조직 및 MgZn2 단상조직의 면적분율이 50% 미만인 것을 확인하였다.
In Comparative Example 1 in which the cooling rate was less than 3 ° C / sec, the area fraction of the Zn / MgZn 2 binary structure and the MgZn 2 single phase structure was decreased due to the coagulation of Zn single phase structure from the low- And less than 50%.

또한, 냉각속도가 10℃/sec를 초과하는 비교예 2 는 Zn/Al/MgZn2 3원 공정조직의 부피증가 및 미세화와 함께, Zn 단상조직이 도금층 표면부에서부터 응고되어 조대화되는 현상이 인하여, Zn/MgZn2 2원공정조직 및 MgZn2 단상조직의 면적분율이 50% 미만인 것을 확인할 수 있었다..
In Comparative Example 2 in which the cooling rate exceeds 10 ° C / sec, the Zn single phase structure coagulates and coarsens from the surface portion of the plating layer together with the volume increase and miniaturization of the Zn / Al / MgZn 2 three- , Zn / MgZn 2 2 original structure and MgZn 2 single phase structure were less than 50%.

(실시예 3)(Example 3)

융융아연합금 도금층의 선 입경 방향 단면에서 관찰되는 Zn/MgZn2 2원공정조직 및 MgZn2 단상조직의 면적분율에 따른 강선의 내식성을 평가하기 위해, 표 1의 조성 및 미세조직을 가지는 시편을 대상으로 염수분무시험을 진행하였으며, 그 결과를 하기 표 2에 나타내었다. 구체적인 시험방법 및 평가기준은 하기와 같다.In order to evaluate the corrosion resistance of the steel wire according to the area fraction of the Zn / MgZn 2 binary structure and the MgZn 2 single phase structure observed in the cross-section of the line width of the zinc-zinc alloy plating layer, the specimen having the composition and microstructure shown in Table 1 , And the results are shown in Table 2 below. Specific test methods and evaluation criteria are as follows.

강선의 내식성은 각각의 도금재를 도금량 10~600 g/m2으로 하여 염수분무시험(KS-C-0223에 준하는 염수분무 규격시험)으로 부식촉진시험을 수행한 후 도금층 표면에 적청 발생면적이 5%가 될 때까지 경과된 시간을 측정하였다.Corrosion resistance of the steel wire was evaluated by performing a corrosion promotion test with a salt spray test (salt spray standard test according to KS-C-0223) at a plating amount of 10 to 600 g / m 2 for each plating material, The elapsed time was measured until it reached 5%.

◎: 1500 시간 초과한 경우◎: When exceeding 1500 hours

○: 500~1500 시간인 경우.○: 500 to 1500 hours.

△: 200~500 시간인 경우.?: 200 to 500 hours.

×: 200 시간 미만인 경우.
X: less than 200 hours.

구분
division
도금층의 조성Composition of plating layer Zn/MgZn2+ MgZn2의 면적분율(%)
Area fraction of Zn / MgZn 2 + MgZn 2 (%)
도금강선의
내식성
Plated
Corrosion resistance
AlAl MgMg 비교예 1Comparative Example 1 0.20.2 00 00 ×× 비교예 2Comparative Example 2 22 1One 1111 비교예 3Comparative Example 3 3.23.2 3.53.5 3232 비교예 4Comparative Example 4 1515 3.23.2 1515 비교예 5Comparative Example 5 1717 00 00 실시예 1Example 1 1.51.5 2.72.7 5252 실시예 2Example 2 22 2.32.3 5353 실시예 3Example 3 33 1.51.5 5858 실시예 4Example 4 55 2.82.8 5858 실시예 5Example 5 1212 2.92.9 6969 실시예 6Example 6 1414 2.82.8 5252

표 3에 나타난 바와 같이, 도금강선의 내식성과 관련하여, Mg 및 Al을 함유하는 모든 도금재(실시예 1 내지 6 및 비교예 2 내지 5)는 Al만 0.2중량% 함유하고 있는 비교예 1에 비하여 약 4~10배 높은 내식성을 나타내었다.
As shown in Table 3, all of the plating materials containing Mg and Al (Examples 1 to 6 and Comparative Examples 2 to 5), in relation to the corrosion resistance of the coated steel wire, Which is about 4 ~ 10 times higher than that of the conventional one.

상기 실시예 1 내지 6은 본 개시의 Al 및 Mg의 함량 범위를 만족하는 것으로, Zn/MgZn2 2원 공정조직 및 MgZn2 단상조직의 면적분율이 50 % 이상을 만족함으로써, 비교예 1 내지 5에 비해 내식성이 우수한 것을 확인할 수 있었다.
The above Examples 1 to 6 satisfy the content ranges of Al and Mg of the present disclosure and satisfy the requirements that the area fraction of the Zn / MgZn 2 binary structure and the MgZn 2 single phase structure satisfy 50% or more, It was confirmed that the corrosion resistance was excellent.

이상 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 자에게 있어서는 본 개시의 기본적인 사상의 범주 내에서 본 개시를 다양하게 수정 및 변경이 가능하며, 또한, 본 개시의 권리범위는 특허청구 범위에 기초하여 해석되어야 함을 명시한다. It will be understood by those of ordinary skill in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present disclosure, Should be interpreted on the basis of.

Claims (8)

소지강선 및 용융아연합금 도금층을 포함하고,
상기 용융아연합금 도금층의 조성은 알루미늄(Al): 0.5~15 중량%, 마그네슘(Mg): 0.5~3 중량%, 잔부 아연(Zn) 및 기타 불가피한 불순물을 포함하고,
상기 용융아연합금 도금층은 Zn단상, Zn/MgZn2 2원공정조직, MgZn2 단상조직 및 Zn/Al/MgZn2 3원공정조직이 혼재된 금속조직을 가지며,
상기 용융아연합금 도금층의 선 입경 방향 단면에서 관찰되는 Zn/MgZn2 2원공정조직 및 MgZn2 단상조직의 면적분율이 50 % 이상인 내식성이 우수한 용융아연합금 도금강선.
A base steel wire, and a hot-dip zinc alloy plating layer,
The composition of the molten zinc alloy plating layer includes 0.5 to 15 wt% of aluminum (Al), 0.5 to 3 wt% of magnesium (Mg), zinc (Zn) and other unavoidable impurities,
The molten zinc alloy plating layer has a metal structure in which a Zn single phase, a Zn / MgZn 2 binary process structure, a MgZn 2 single phase structure, and a Zn / Al / MgZn 2 three-
A hot-dip zinc-plated galvanized steel wire having excellent corrosion resistance with an area fraction of Zn / MgZn 2 binary structure and MgZn 2 single phase structure observed in the cross-section of the molten zinc alloy plating layer in the line diameter direction of 50% or more.
제1항에 있어서,
상기 용융아연합금 도금층은 Ru, Rh 및 Pd으로 이루어진 군으로부터 선택되는 1종 이상의 원소를 합계 0.0001~1 중량% 더 포함하는 것을 특징으로 하는 내식성이 우수한 용융아연합금 도금강선.
The method according to claim 1,
Wherein the molten zinc alloy plating layer further comprises 0.0001 to 1 wt% of at least one element selected from the group consisting of Ru, Rh and Pd in total.
제1항에 있어서,
상기 용융아연합금 도금층은 도금량이 10~600g/m2인 내식성이 우수한 용융아연합금 도금강선.
The method according to claim 1,
Wherein the hot-dip galvanized steel sheet has a plating amount of 10 to 600 g / m 2 and is excellent in corrosion resistance.
알루미늄(Al): 0.5~15 중량%, 마그네슘(Mg): 0.5~3 중량%, 잔부 아연(Zn) 및 기타 불가피한 불순물을 포함하는 용융아연합금 도금욕을 준비하는 단계;
상기 용융아연합금 도금욕에 소지강선을 침지하고, 도금을 행하여 도금강선을 제조하는 단계; 및
상기 도금강선을 가스 와이핑 및 냉각하는 단계를 포함하고,
상기 냉각은 3~10℃/sec의 속도로 냉각하는 것을 특징으로 하는 내식성이 우수한 용융아연합금 도금강선의 제조방법.
Preparing a molten zinc alloy plating bath comprising 0.5 to 15 wt% of aluminum (Al), 0.5 to 3 wt% of magnesium (Mg), zinc (Zn) and other inevitable impurities;
Immersing the ground steel wire in the molten zinc alloy plating bath and performing plating to produce a plated steel wire; And
Gas wiping and cooling the plated steel wire,
Wherein the cooling is performed at a rate of 3 to 10 占 폚 / sec.
제4항에 있어서,
상기 용융아연합금 도금욕의 조성은 중량%로, 알루미늄(Al): 2.0~3.0% 포함하는 것을 특징으로 하는 내식성이 우수한 용융아연합금 도금강선의 제조방법.
5. The method of claim 4,
Wherein the composition of the molten zinc alloy plating bath comprises 2.0 to 3.0% by weight of aluminum (Al), in terms of% by weight, of the molten zinc alloy plated steel wire.
제4항에 있어서,
상기 도금욕은 Ru, Rh 및 Pd으로 이루어진 군으로부터 선택되는 1종 이상의 원소를 합계 0.0001~1 중량% 더 포함하는 것을 특징으로 하는 내식성이 우수한 용융아연합금 도금강선의 제조방법.
5. The method of claim 4,
Wherein the plating bath further comprises 0.0001 to 1% by weight of at least one element selected from the group consisting of Ru, Rh and Pd in total.
제4항에 있어서,
상기 용융아연합금 도금욕의 욕온도는 융점 이상 450℃ 이하인 내식성이 우수한 용융아연합금 도금강선의 제조방법.
5. The method of claim 4,
Wherein the bath temperature of the molten zinc alloy plating bath is higher than or equal to the melting point of 450 占 폚 or less.
제4항에 있어서,
상기 가스 와이핑 시 사용하는 가스는 질소(N2)인 내식성이 우수한 용융아연합금 도금강선의 제조방법.
5. The method of claim 4,
Wherein the gas used in the gas wiping is nitrogen (N 2 ).
KR1020140188467A 2014-12-24 2014-12-24 HOT DIP Zn ALLOY PLATED STEEL WIRE HAVING EXCELLENT ANTI-CORROSION AND METHOD FOR MANUFACTURING THE STEEL WIRE USING THE SAME KR101647229B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140188467A KR101647229B1 (en) 2014-12-24 2014-12-24 HOT DIP Zn ALLOY PLATED STEEL WIRE HAVING EXCELLENT ANTI-CORROSION AND METHOD FOR MANUFACTURING THE STEEL WIRE USING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140188467A KR101647229B1 (en) 2014-12-24 2014-12-24 HOT DIP Zn ALLOY PLATED STEEL WIRE HAVING EXCELLENT ANTI-CORROSION AND METHOD FOR MANUFACTURING THE STEEL WIRE USING THE SAME

Publications (2)

Publication Number Publication Date
KR20160078670A true KR20160078670A (en) 2016-07-05
KR101647229B1 KR101647229B1 (en) 2016-08-10

Family

ID=56501844

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140188467A KR101647229B1 (en) 2014-12-24 2014-12-24 HOT DIP Zn ALLOY PLATED STEEL WIRE HAVING EXCELLENT ANTI-CORROSION AND METHOD FOR MANUFACTURING THE STEEL WIRE USING THE SAME

Country Status (1)

Country Link
KR (1) KR101647229B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190078330A (en) 2017-12-26 2019-07-04 주식회사 포스코 Plated steel wire and manufacturing method for the same
CN110923600A (en) * 2019-12-09 2020-03-27 晋江安能建材制造有限公司 Steel plate with zinc-manganese-magnesium-silicon alloy hot-dip coating and production method thereof
KR20200095537A (en) * 2017-12-20 2020-08-10 닛폰세이테츠 가부시키가이샤 Hot-dip galvanized steel wire and its manufacturing method
WO2020262730A1 (en) 2019-06-26 2020-12-30 주식회사 포스코 Plated steel wire and manufacturing method for the same
KR20220007239A (en) 2020-07-10 2022-01-18 한국선재(주) Manufacturing method of galvanized steel wire using anti-white-blue agent
US11505858B2 (en) 2016-12-22 2022-11-22 Posco Alloy-plated steel material having excellent crack resistance, and method for manufacturing same
CN115461487A (en) * 2020-02-27 2022-12-09 日本制铁株式会社 Hot-stamped molded body

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001107213A (en) 1999-08-03 2001-04-17 Nippon Steel Corp HOT-DIP Zn-Mg-Al BASE ALLOY COATED STEEL WIRE AND ITS PRODUCTION METHOD
JP2002332555A (en) * 2001-05-14 2002-11-22 Nisshin Steel Co Ltd HOT DIP Zn-Al-Mg BASED ALLOY PLATED STEEL HAVING EXCELLENT CORROSION RESISTANCE
JP2011144429A (en) * 2010-01-15 2011-07-28 Nippon Steel Corp Highly corrosion-resistant hot-dip galvanized steel sheet
KR20120075235A (en) * 2010-12-28 2012-07-06 주식회사 포스코 Hot dip zn alloy plated steel sheet having excellent anti-corrosion and method for manufacturing the steel sheet using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001107213A (en) 1999-08-03 2001-04-17 Nippon Steel Corp HOT-DIP Zn-Mg-Al BASE ALLOY COATED STEEL WIRE AND ITS PRODUCTION METHOD
JP2002332555A (en) * 2001-05-14 2002-11-22 Nisshin Steel Co Ltd HOT DIP Zn-Al-Mg BASED ALLOY PLATED STEEL HAVING EXCELLENT CORROSION RESISTANCE
JP2011144429A (en) * 2010-01-15 2011-07-28 Nippon Steel Corp Highly corrosion-resistant hot-dip galvanized steel sheet
KR20120075235A (en) * 2010-12-28 2012-07-06 주식회사 포스코 Hot dip zn alloy plated steel sheet having excellent anti-corrosion and method for manufacturing the steel sheet using the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11505858B2 (en) 2016-12-22 2022-11-22 Posco Alloy-plated steel material having excellent crack resistance, and method for manufacturing same
KR20200095537A (en) * 2017-12-20 2020-08-10 닛폰세이테츠 가부시키가이샤 Hot-dip galvanized steel wire and its manufacturing method
KR20190078330A (en) 2017-12-26 2019-07-04 주식회사 포스코 Plated steel wire and manufacturing method for the same
WO2020262730A1 (en) 2019-06-26 2020-12-30 주식회사 포스코 Plated steel wire and manufacturing method for the same
US11834747B2 (en) 2019-06-26 2023-12-05 Posco Co., Ltd Plated steel wire and manufacturing method for the same
CN110923600A (en) * 2019-12-09 2020-03-27 晋江安能建材制造有限公司 Steel plate with zinc-manganese-magnesium-silicon alloy hot-dip coating and production method thereof
CN115461487A (en) * 2020-02-27 2022-12-09 日本制铁株式会社 Hot-stamped molded body
CN115461487B (en) * 2020-02-27 2024-04-16 日本制铁株式会社 Hot-stamping forming body
KR20220007239A (en) 2020-07-10 2022-01-18 한국선재(주) Manufacturing method of galvanized steel wire using anti-white-blue agent

Also Published As

Publication number Publication date
KR101647229B1 (en) 2016-08-10

Similar Documents

Publication Publication Date Title
KR101647229B1 (en) HOT DIP Zn ALLOY PLATED STEEL WIRE HAVING EXCELLENT ANTI-CORROSION AND METHOD FOR MANUFACTURING THE STEEL WIRE USING THE SAME
JP7359894B2 (en) Zinc alloy plated steel material with excellent weldability and corrosion resistance of processed parts and method for manufacturing the same
KR101758529B1 (en) Zn ALLOY PLATED STEEL SHEET HAVING EXCELLENT PHOSPHATABILITY AND SPOT WELDABILITY AND METHOD FOR MANUFACTURING SAME
KR101714935B1 (en) Zn ALLOY PLATED STEEL SHEET HAVING EXCELLENT WELDABILITY AND PROCESSED PART CORROSION RESISTANCE AND METHOD FOR MANUFACTURING SAME
KR101417304B1 (en) HOT DIP Zn ALLOY PLATED STEEL SHEET HAVING EXCELLENT ANTI-CORROSION AND SURFACE APPEARANCE AND METHOD FOR MANUFACTURING THE STEEL SHEET USING THE SAME
KR101819393B1 (en) Hot dip zinc alloy plated steel material having excellent weldability and press formability and method for manufacturing same
KR101786377B1 (en) Hot-rolled galvanizing steel sheet and method for manufacturing the hot-rolled galvanizing steel sheet having excellent galling resistance, formability and sealer-adhesion property
KR20120041544A (en) Galvanized steel sheet having excellent coatability, coating adhesion and spot weldability and method for manufacturing the same
KR20070112874A (en) Galvannealed sheet steel and process for production thereof
KR20150052376A (en) HOT DIP Zn ALLOY PLATED STEEL SHEET HAVING EXCELLENT ANTI-CORROSION AND METHOD FOR MANUFACTURING THE STEEL SHEET USING THE SAME
KR101568474B1 (en) HOT DIP Zn ALLOY PLATED STEEL SHEET HAVING EXCELLENT BLACKENING-RESISTANCE AND SURFACE APPEARANCE AND METHOD FOR MANUFACTURING THE SAME
KR102276742B1 (en) Galvanized steel sheet excellent coating adhesion and corrosion resistance properties and method for manufacturing thereof
JPS6055591B2 (en) Manufacturing method of hot-dip zinc alloy plated steel sheet with excellent peeling resistance over time
KR101665912B1 (en) HOT DIP Zn ALLOY PLATED STEEL SHEET HAVING EXCELLENT ANTI-CORROSION AND METHOD FOR MANUFACTURING THE STEEL SHEET USING THE SAME
KR20120076111A (en) Hot-dip zinc plating bath providing excellent corrosion resistance, high formability and appearance, and steel plate plated with the same
KR101657843B1 (en) Zn ALLOY PLATED STEEL SHEET HAVING EXCELLENT WELDABILITY AND PROCESSED PART CORROSION RESISTANCE AND METHOD FOR MANUFACTURING THE SAME
KR102250323B1 (en) Plated steel sheet and method of manufacturing the same
KR102305748B1 (en) Hot dip alloy coated steel material having excellent anti-corrosion properties and method of manufacturing the same
KR101613354B1 (en) Coated steel plate and mehtod for manufacturing the same
KR102311503B1 (en) Aluminium alloy plate steel sheet having excellent formability and corrosion resistance and method for manufacturing the same
KR102305753B1 (en) Zn-Al-Mg BASED HOT DIP ALLOY COATED STEEL MATERIAL HAVING EXCELLENT CORROSION RESISTANCE OF PROCESSED PARTS AND METHOD OF MANUFACTURING THE SAME
KR102031308B1 (en) Plated steel wire and manufacturing method for the same
JP7290757B2 (en) Plated steel wire and its manufacturing method
EP3845681A1 (en) Hot dip plated steel sheet having excellent corrosion resistance and workability, and manufacturing method therefor
KR20220133600A (en) Zinc plated steel sheet and method of manufacturing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant