KR102250323B1 - Plated steel sheet and method of manufacturing the same - Google Patents

Plated steel sheet and method of manufacturing the same Download PDF

Info

Publication number
KR102250323B1
KR102250323B1 KR1020190061595A KR20190061595A KR102250323B1 KR 102250323 B1 KR102250323 B1 KR 102250323B1 KR 1020190061595 A KR1020190061595 A KR 1020190061595A KR 20190061595 A KR20190061595 A KR 20190061595A KR 102250323 B1 KR102250323 B1 KR 102250323B1
Authority
KR
South Korea
Prior art keywords
steel sheet
plating
weight
magnesium
plated steel
Prior art date
Application number
KR1020190061595A
Other languages
Korean (ko)
Other versions
KR20200136066A (en
Inventor
이재민
Original Assignee
현대제철 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대제철 주식회사 filed Critical 현대제철 주식회사
Priority to KR1020190061595A priority Critical patent/KR102250323B1/en
Publication of KR20200136066A publication Critical patent/KR20200136066A/en
Application granted granted Critical
Publication of KR102250323B1 publication Critical patent/KR102250323B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/14Removing excess of molten coatings; Controlling or regulating the coating thickness
    • C23C2/16Removing excess of molten coatings; Controlling or regulating the coating thickness using fluids under pressure, e.g. air knives
    • C23C2/18Removing excess of molten coatings from elongated material
    • C23C2/20Strips; Plates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Coating With Molten Metal (AREA)

Abstract

본 발명은 냉연강판; 및 상기 냉연강판 상에 형성된, 알루미늄(Al): 0.5 ~ 10중량%, 마그네슘(Mg): 0.5 ~ 4중량% 및 잔부가 아연(Zn)과 기타 불가피한 불순물로 이루어진 도금층;을 포함하며, 상기 도금층은 Zn단상, MgZn2상과 Mg, Zn 및 Al을 포함하는 삼원 공정상을 포함하는 도금강판을 제공한다. The present invention is a cold rolled steel sheet; And a plating layer formed on the cold-rolled steel sheet, aluminum (Al): 0.5 to 10% by weight, magnesium (Mg): 0.5 to 4% by weight, and the balance being zinc (Zn) and other unavoidable impurities, and the plating layer. Silver Zn single phase, MgZn 2 phase and Mg, Zn and It provides a plated steel sheet including a three-way process containing Al.

Description

도금강판 및 그 제조방법{PLATED STEEL SHEET AND METHOD OF MANUFACTURING THE SAME} Plated steel sheet and its manufacturing method {PLATED STEEL SHEET AND METHOD OF MANUFACTURING THE SAME}

본 발명은 도금강판 및 그 제조방법 관한 것으로서, 보다 상세하게는 후처리 내식성이 우수한 아연도금강판 및 그 제조방법에 관한 것이다. The present invention relates to a plated steel sheet and a method for manufacturing the same, and more particularly, to a galvanized steel sheet having excellent post-treatment corrosion resistance and a method for manufacturing the same.

기존 용융아연 도금강판은 자기 희생성이 우수하여 건자재와 가전재 등에 많이 적용되고 있다. 용융아연 도금강판은 부식환경 노출 시, 철이 노출된 부분에 대하여 아연(Zn)이 희생양극으로 작용하여 도금층에서 아연의 소실이 발생하게 된다. 아연의 희생양극 작용은 부식환경에서 소지철의 녹 발생에 억제에 탁월한 역할을 하지만 양극 효율이 다소 떨어진다. 이러한 문제점을 해결하기 위해서 근래 일본과 유럽에서 Zn에 Mg을 첨가하여 부식환경에서 치밀한 부식 생성물을 생성시켜 양극 효율을 향상시켜 우수한 내식성을 발현하는 고내식 도금제품이 생산되고 있다. Zn에 Mg이 첨가됨에 따라 내식성을 증가시키는 작용을 하기도 하지만 Mg 첨가됨에 따른 부식환경에서 초기 표면활성도가 급격히 올라가게 되어 표면의 알칼리도가 상승하는 현상이 발생하게 된다. 이러한 현상은 후처리 시 내식성을 저해하는 역할로 작용한다. 후처리 후 부식환경에 노출되게 되면 도금층 표면의 알칼리도가 상승하게 되고 그로 인해 후처리 코팅이 온전한 배리어 역할을 하지 못하게 된다. 이러한 현상을 제어하기 위해서는 표면의 조직의 제어하는 것이 매우 중요하다.Existing hot-dip galvanized steel sheets have excellent self-sacrificing properties and are widely applied to construction materials and home appliances. When the hot-dip galvanized steel sheet is exposed to a corrosive environment, zinc (Zn) acts as a sacrificial anode to a portion exposed to iron, resulting in loss of zinc in the plating layer. The sacrificial anode action of zinc plays an excellent role in suppressing the rust generation of base iron in a corrosive environment, but the anode efficiency is somewhat lowered. In order to solve this problem, recently, in Japan and Europe, high corrosion-resistant plating products have been produced in Japan and Europe that show excellent corrosion resistance by increasing the anode efficiency by adding Mg to Zn to generate a dense corrosion product in a corrosive environment. As Mg is added to Zn, it also acts to increase corrosion resistance, but the initial surface activity increases rapidly in a corrosive environment due to the addition of Mg, resulting in a phenomenon in which the alkalinity of the surface increases. This phenomenon acts as a role of inhibiting corrosion resistance during post-treatment. When exposed to a corrosive environment after post-treatment, the alkalinity of the surface of the plating layer rises, and as a result, the post-treatment coating does not act as a complete barrier. In order to control this phenomenon, it is very important to control the texture of the surface.

관련 선행기술로는 대한민국 공개특허공보 제10-20130053500호가 있다. Related prior art is the Republic of Korea Patent Publication No. 10-20130053500 No.

상기와 같은 문제를 해결하기 위하여, 본 발명이 이루고자 하는 기술적 과제는 도금 표면 알칼리도 활성화를 감소시킬 수 있는 도금강판 및 그 제조방법을 제공하는 것이다.In order to solve the above problems, the technical problem to be achieved by the present invention is to provide a plated steel sheet capable of reducing the alkalinity activation of a plated surface and a method of manufacturing the same.

상기 목적을 달성하기 위한 본 발명의 일 실시예에 따른 도금강판은 냉연강판; 및 상기 냉연강판 상에 형성된, 알루미늄(Al): 0.5 ~ 10중량%, 마그네슘(Mg): 0.5 ~ 4중량% 및 잔부가 아연(Zn)과 기타 불가피한 불순물로 이루어진 도금층; 을 포함하며, 상기 도금층은 Zn단상, MgZn2상과 Mg, Zn 및 Al을 포함하는 삼원 공정상을 포함할 수 있다. The plated steel sheet according to an embodiment of the present invention for achieving the above object is a cold rolled steel sheet; And a plating layer formed on the cold-rolled steel sheet, aluminum (Al): 0.5 to 10% by weight, magnesium (Mg): 0.5 to 4% by weight, and the balance being zinc (Zn) and other unavoidable impurities. Including, the plating layer is a Zn single phase, MgZn 2 phase and Mg, Zn and A three-way process phase containing Al may be included.

상기 도금강판에서, 상기 도금층의 표면 알칼리도를 저감하기 위하여, 상기 MgZn2상의 상분율과 상기 Mg, Zn 및 Al을 포함하는 삼원 공정상의 상분율의 합이 80% 이하이며, 상기 Zn단상의 상분율이 20% 이상일 수 있다. In the plated steel sheet, in order to reduce the surface alkalinity of the plated layer, the phase fraction of the MgZn 2 phase and the Mg, Zn and The sum of the phase fractions of the three-way process including Al may be 80% or less, and the phase fraction of the Zn single phase may be 20% or more.

상기 도금강판에서, 상기 도금층은 알루미늄(Al): 1.0 ~ 6.0중량%, 마그네슘(Mg): 1.0 ~ 3.0중량% 및 잔부가 아연(Zn)과 기타 불가피한 불순물로 이루어질 수 있다. In the plated steel sheet, the plating layer may be made of aluminum (Al): 1.0 to 6.0% by weight, magnesium (Mg): 1.0 to 3.0% by weight, and the remainder of zinc (Zn) and other unavoidable impurities.

상기 목적을 달성하기 위한 본 발명의 일 실시예에 따른 도금강판의 제조방법은 (a) 냉연강판을 제공하는 단계; (b) 상기 냉연강판을 소둔처리하는 단계; (c) 상기 소둔처리된 강판을 알루미늄(Al), 마그네슘(Mg) 및 아연(Zn)을 함유하는 도금욕에 통과시켜, 상기 강판 상에 알루미늄(Al): 0.5 ~ 10중량%, 마그네슘(Mg): 0.5 ~ 4중량% 및 잔부가 아연(Zn)과 기타 불가피한 불순물로 이루어진 도금층을 형성하는 단계; 및 (d) 상기 도금층이 형성된 상기 강판을 5 ~ 30℃/sec의 냉각속도로 상온까지 급랭하는 단계;를 포함한다. A method of manufacturing a plated steel sheet according to an embodiment of the present invention for achieving the above object comprises the steps of: (a) providing a cold rolled steel sheet; (b) annealing the cold-rolled steel sheet; (c) The annealed steel sheet was passed through a plating bath containing aluminum (Al), magnesium (Mg) and zinc (Zn), and aluminum (Al) on the steel sheet: 0.5 to 10% by weight, magnesium (Mg) ): forming a plating layer made of 0.5 to 4% by weight and the balance of zinc (Zn) and other inevitable impurities; And (d) quenching the steel sheet on which the plating layer is formed to room temperature at a cooling rate of 5 to 30° C./sec.

상기 도금강판의 제조방법의 상기 (b) 단계에서 상기 소둔 처리는 700 ~ 850℃의 온도에서 수행하고, 상기 (c) 단계에서 상기 도금욕의 온도는 400 ~ 520℃일 수 있다. In the step (b) of the method for manufacturing the plated steel sheet, the annealing treatment may be performed at a temperature of 700 to 850°C, and in step (c), the temperature of the plating bath may be 400 to 520°C.

상기 도금강판의 제조방법의 상기 (d) 단계에서 상기 급랭하는 단계는 상기 도금층이 형성된 강판을 60 ~ 100℃의 물에 5 ~ 60초 동안 침지하여 워터 켄칭(water quenching)하는 단계를 포함할 수 있다. In the step (d) of the manufacturing method of the plated steel sheet, the rapid cooling may include water quenching by immersing the plated steel sheet in water at 60 to 100°C for 5 to 60 seconds. have.

상기 도금강판의 제조방법의 상기 (d) 단계는 상기 도금층의 표면에 수산화물이 생성되는 단계를 포함할 수 있다. The step (d) of the method of manufacturing the plated steel sheet may include a step of generating a hydroxide on the surface of the plated layer.

본 발명의 실시예에 따르면, 도금 표면 알칼리도 활성화를 감소시킬 수 있는 도금강판 및 그 제조방법을 구현할 수 있다. 물론 이러한 효과에 의해 본 발명의 범위가 한정되는 것은 아니다.According to an embodiment of the present invention, it is possible to implement a plated steel sheet capable of reducing the alkalinity activation of a plated surface and a method of manufacturing the same. Of course, the scope of the present invention is not limited by these effects.

도 1은 본 발명의 일 실시예에 따르는 도금강판의 제조방법을 개략적으로 나타내는 순서도이다.
도 2는 본 발명의 비교예에 따른 도금강판의 표면을 촬영한 사진이다.
도 3은 본 발명의 실시예에 따른 도금강판의 표면을 촬영한 사진이다.
1 is a flow chart schematically showing a method of manufacturing a plated steel sheet according to an embodiment of the present invention.
2 is a photograph of the surface of a plated steel sheet according to a comparative example of the present invention.
3 is a photograph of the surface of a plated steel sheet according to an embodiment of the present invention.

본 발명의 일 실시예에 따른 도금강판 및 그 제조방법을 상세하게 설명한다. 후술되는 용어들은 본 발명에서의 기능을 고려하여 적절하게 선택된 용어들로서, 이러한 용어들에 대한 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. 이하에서는 도금 표면 알칼리도 활성화를 감소시킬 수 있는 도금강판 및 그 제조방법을 설명하고자 한다. A plated steel sheet and a manufacturing method thereof according to an embodiment of the present invention will be described in detail. Terms to be described later are terms appropriately selected in consideration of functions in the present invention, and definitions of these terms should be made based on the contents throughout the present specification. Hereinafter, a plated steel sheet capable of reducing the alkalinity activation on a plated surface and a method of manufacturing the same will be described.

도금강판Plated steel sheet

본 발명의 일 실시예에 따르는 도금강판은 냉연강판; 및 상기 냉연강판 상에 형성된, 알루미늄(Al): 0.5 ~ 10중량%, 마그네슘(Mg): 0.5 ~ 4중량% 및 잔부가 아연(Zn)과 기타 불가피한 불순물로 이루어진 도금층; 을 포함하며, 상기 도금층은 Zn단상, MgZn2상과 Mg, Zn 및 Al을 포함하는 삼원 공정상을 포함할 수 있다. 엄격하게는, 상기 도금층은 알루미늄(Al): 1.0 ~ 6.0중량%, 마그네슘(Mg): 1.0 ~ 3.0중량% 및 잔부가 아연(Zn)과 기타 불가피한 불순물로 이루어질 수 있다. A plated steel sheet according to an embodiment of the present invention includes a cold rolled steel sheet; And a plating layer formed on the cold-rolled steel sheet, aluminum (Al): 0.5 to 10% by weight, magnesium (Mg): 0.5 to 4% by weight, and the balance being zinc (Zn) and other unavoidable impurities. Including, the plating layer is a Zn single phase, MgZn 2 phase and Mg, Zn and A three-way process phase containing Al may be included. Strictly, the plating layer may be made of aluminum (Al): 1.0 to 6.0% by weight, magnesium (Mg): 1.0 to 3.0% by weight, and the balance is zinc (Zn) and other unavoidable impurities.

상기 도금강판에서, 상기 도금층의 표면 알칼리도를 저감하기 위하여, 상기 MgZn2상의 상분율과 상기 Mg, Zn 및 Al을 포함하는 삼원 공정상의 상분율의 합이 80% 이하이며, 상기 Zn단상의 상분율이 20% 이상일 수 있다. In the plated steel sheet, in order to reduce the surface alkalinity of the plated layer, the phase fraction of the MgZn 2 phase and the Mg, Zn and The sum of the phase fractions of the three-way process including Al may be 80% or less, and the phase fraction of the Zn single phase may be 20% or more.

아연(Zn)에 내식성을 향상시키기 위해 첨가된 마그네슘(Mg)은 부식환경에서 도금층 표면의 알칼리도를 증가시켜 도금 후에 후처리 코팅시 코팅층의 물성 열위 현상이 발생시키는 원인으로 작용한다. 상기 후처리 코팅은 무기 피막 유기 피막 및 유무기 복합 피막, 인산염 피막을 포함하는 후처리 코팅일 수 있다. 이러한 도금층 표면의 알칼리도 상승 현상은 도금 표층의 조직과 밀접한 관계를 가지고 있으며 일부 미세조직의 제어를 통하여 조절할 수 있다. Magnesium (Mg) added to improve corrosion resistance to zinc (Zn) increases the alkalinity of the surface of the plating layer in a corrosive environment, and acts as a cause of the occurrence of physical property inferiority of the coating layer during post-treatment coating after plating. The post-treatment coating may be a post-treatment coating including an inorganic film organic film, an organic-inorganic composite film, and a phosphate film. The increase in alkalinity of the surface of the plating layer has a close relationship with the structure of the surface layer of plating, and can be controlled through the control of some microstructures.

아연(Zn)에 마그네슘(Mg)이 첨가된 도금욕으로 도금한 도금층의 조직은 Zn단상, MgZn2상, Mg, Zn 및 Al을 포함하는 삼원 공정상으로 구성된다. 용융아연도금욕에서 알루미늄(Al)은 삼원 공정상을 형성하여 조직을 미세화 시키는 역할을 한다. 삼원 공정상은 Mg, Zn 및 Al을 포함하고 있는 공정상을 의미하며, 예를 들어, Al+MgZn2로 이루어진 삼원 공정상일 수 있다. 이들 중에 표면의 표면 활성화를 높이는 상은 마그네슘(Mg)이 포함되어 있는 MgZn2상과 Mg, Zn 및 Al을 포함하는 삼원 공정상이다. 표면 알칼리도를 낮추기 위해서는 MgZn2상과 삼원 공정상의 표면 상분율이 80% 이하로 형성되어야 하며 Zn단상은 20% 이상으로 형성함으로써 도금층 표면의 알칼리도의 상승을 막을 수 있다. 이러한 상분율을 제어하기 위해서는 알루미늄(Al)과 마그네슘(Mg) 함량 조절을 통하여 제어할 수 있으나 알루미늄(Al), 마그네슘(Mg) 함량이 제한적인 투입범위 내에서 가능하기 때문에 우수한 내식성을 발현하기 어렵다. The structure of the plating layer plated with a plating bath in which magnesium (Mg) is added to zinc (Zn) is composed of a single phase of Zn, a phase of MgZn 2 , and a three-way process including Mg, Zn and Al. In the hot-dip galvanizing bath, aluminum (Al) forms a three-way process to refine the structure. The ternary process phase refers to a process phase including Mg, Zn, and Al, and may be, for example, a ternary process phase consisting of Al+MgZn 2. Among them, the phases that increase the surface activation of the surface are the MgZn 2 phase containing magnesium (Mg) and the three-way process phase containing Mg, Zn, and Al. In order to lower the surface alkalinity, the surface phase fraction of the MgZn 2 phase and the ternary process should be formed to be 80% or less, and the Zn single phase to be formed to be 20% or more, thereby preventing an increase in alkalinity of the surface of the plating layer. In order to control this phase fraction, it can be controlled by adjusting the content of aluminum (Al) and magnesium (Mg), but it is difficult to express excellent corrosion resistance because the content of aluminum (Al) and magnesium (Mg) is possible within a limited input range. .

한편 내식성을 발현할 수 있는 도금 조성물 총 중량에 대하여 알루미늄(Al): 0.5 ~ 10중량%, 마그네슘(Mg): 0.5 ~ 4중량% 및 잔부가 아연(Zn)인 도금 표면이 우수하며 내식성이 우수한 도금강판을 얻을 수 있다. 알루미늄(Al) 함량이 0.5중량%이상 첨가되어야 내식성을 향상시키는 삼원 공정상을 형성시킬 수 있으며, 알루미늄(Al) 함량이 10중량%를 초과하면 표면에 알루미늄(Al) 단상이 증가하여 도금 표면 외관이 감소하게 된다. 더욱 바람직하게는, 도금 조성물의 총 중량을 기준으로 알루미늄(Al): 1.0 ~ 6.0중량%인 것이 바람직하다. 알루미늄(Al) 최소 첨가량이 1중량% 이상 첨가되어야 용탕중의 마그네슘(Mg) 산화에 의한 산화 드로스(Dross)를 감소시킬 수 있으며 알루미늄(Al) 함량은 마그네슘(Mg) 함량보다 높게 설계되어야 용탕 중에 마그네슘(Mg) 산화 억제가 용이하다. 또한 도금 시 강판으로부터 용해되는 철(Fe)로 인한 철 드로스(Fe Dross)를 최소화하기 위해서는 알루미늄(Al) 함량을 6중량% 이하로 제어하는 것이 바람직하다. 또한, 도금층에 내식성을 향상시키는 마그네슘(Mg)의 함량은 1.0 ~ 3.0중량%인 것이 바람직한데, 내식성에 기여하는 공정상 생성을 위해서는 마그네슘(Mg)이 1중량% 이상 첨가되어야 하며, 마그네슘(Mg) 함량이 3중량%를 초과하면 MgZn2상과 Mg, Zn 및 Al을 포함하는 삼원 공정상의 분율이 급격히 증가하여 도금 표면 알칼리도 활성화를 제어할 수 없게 된다. 제한적인 알루미늄(Al), 마그네슘(Mg) 함량 범위에서 보다 효과적으로 도금 표면 알칼리도를 감소시키기 위해서 원천적으로 부식환경에서 반응에 기여하는 마그네슘(Mg) 함량을 줄이는 것이 가장 효과적인 방법이라 볼 수 있다. 이러한 기술적 한계를 극복하기 위해서 본 발명에서는 도금층 표층에 존재하는 마그네슘(Mg)에 대하여 연속 도금공정 중 워터 켄칭(water quenching) 공정을 통하여 활성화된 마그네슘(Mg) 함량을 감소시킴으로써 도금 표면 알칼리도 활성화 감소를 구현하고자 한다. On the other hand, with respect to the total weight of the plating composition capable of expressing corrosion resistance, aluminum (Al): 0.5 to 10% by weight, magnesium (Mg): 0.5 to 4% by weight, and the balance of zinc (Zn) has excellent plating surface and excellent corrosion resistance. A plated steel sheet can be obtained. When the aluminum (Al) content is added at least 0.5% by weight, a three-way process phase that improves corrosion resistance can be formed, and when the aluminum (Al) content exceeds 10% by weight, the aluminum (Al) single phase increases on the surface, resulting in the appearance of the plating surface. Will decrease. More preferably, based on the total weight of the plating composition, aluminum (Al): It is preferably 1.0 to 6.0% by weight. When the minimum amount of aluminum (Al) is added at least 1% by weight, it is possible to reduce the oxide dross due to the oxidation of magnesium (Mg) in the molten metal, and the aluminum (Al) content must be designed to be higher than the magnesium (Mg) content. It is easy to suppress the oxidation of magnesium (Mg). In addition, in order to minimize iron dross due to iron (Fe) dissolved from the steel sheet during plating, it is preferable to control the aluminum (Al) content to 6% by weight or less. In addition, the content of magnesium (Mg) that improves corrosion resistance in the plating layer is preferably 1.0 to 3.0% by weight.In order to generate a process contributing to corrosion resistance, magnesium (Mg) must be added at least 1% by weight, and magnesium (Mg ) If the content exceeds 3% by weight, the fraction of the MgZn 2 phase and the ternary process phase including Mg, Zn, and Al increases rapidly, making it impossible to control the activation of alkalinity on the plating surface. In order to more effectively reduce the alkalinity of the plating surface in a limited range of aluminum (Al) and magnesium (Mg) content, reducing the amount of magnesium (Mg) that contributes to the reaction in a corrosive environment is the most effective method. In order to overcome these technical limitations, the present invention reduces the activated magnesium (Mg) content through a water quenching process during the continuous plating process for magnesium (Mg) present in the surface layer of the plating layer, thereby reducing the alkalinity activation of the plating surface. I want to implement it.

도금강판의 제조방법Manufacturing method of plated steel sheet

도 1은 본 발명의 일 실시예에 따르는 도금강판의 제조방법을 나타내는 순서도이다. 1 is a flow chart showing a method of manufacturing a plated steel sheet according to an embodiment of the present invention.

도 1을 참조하면, (a) 냉연강판을 제공하는 단계(S100); (b) 상기 냉연강판을 소둔처리하는 단계(S200); (c) 상기 소둔처리된 강판을 알루미늄(Al), 마그네슘(Mg) 및 아연(Zn)을 함유하는 도금욕에 통과시켜, 상기 강판 상에 알루미늄(Al): 0.5 ~ 10중량%, 마그네슘(Mg): 0.5 ~ 4중량% 및 잔부가 아연(Zn)과 기타 불가피한 불순물로 이루어진 도금층을 형성하는 단계(S300); 및 (d) 상기 도금층이 형성된 상기 강판을 5 ~ 30℃/sec의 냉각속도로 상온까지 급랭하는 단계(S400);를 포함한다. Referring to Figure 1, (a) providing a cold-rolled steel sheet (S100); (b) annealing the cold-rolled steel sheet (S200); (c) The annealed steel sheet was passed through a plating bath containing aluminum (Al), magnesium (Mg) and zinc (Zn), and aluminum (Al) on the steel sheet: 0.5 to 10% by weight, magnesium (Mg) ): forming a plating layer made of 0.5 to 4% by weight and the balance of zinc (Zn) and other inevitable impurities (S300); And (d) rapidly cooling the steel sheet on which the plating layer is formed to room temperature at a cooling rate of 5 to 30° C./sec (S400).

상기 도금강판의 제조방법의 상기 (b) 단계(S200)에서 상기 소둔 처리는 700 ~ 850℃의 온도에서 수행하고, 상기 (c) 단계(S300)에서 상기 도금욕의 온도는 400 ~ 520℃일 수 있다. In the (b) step (S200) of the plated steel sheet manufacturing method, the annealing treatment is performed at a temperature of 700 to 850 °C, and in the (c) step (S300), the temperature of the plating bath is 400 to 520 °C. I can.

상기 도금강판의 제조방법의 상기 (d) 단계(S400)에서 상기 급랭하는 단계는 상기 도금층이 형성된 강판을 60 ~ 100℃의 물에 5 ~ 60초 동안 침지하여 워터 켄칭(water quenching)하는 단계를 포함할 수 있다. In the (d) step (S400) of the manufacturing method of the plated steel sheet, the quenching step includes water quenching by immersing the steel sheet on which the plating layer is formed in water at 60 to 100° C. for 5 to 60 seconds. Can include.

상기 도금강판의 제조방법의 상기 (d) 단계(S400)는 상기 도금층의 표면에 수산화물이 생성되는 단계를 포함할 수 있다. The (d) step (S400) of the method for manufacturing the plated steel sheet may include a step of generating a hydroxide on the surface of the plated layer.

본 발명의 일 실시예에 따르는 도금강판의 제조방법은 연속아연도금라인에서 도금 후 강판의 온도를 급강하시키는 워터 켄칭 탱크(water quenching tank)의 설비 개선 및 고정조건 변경을 통하여 구현할 수 있다. 구체적으로 워터 켄칭 탱크의 물온도를 60℃ 이상을 유지하여 Zn-Al-Mg으로 구성된 도금강판을 5 ~ 60초를 침지하여 도금표층의 활성도를 낮출 수 있다. 워터 켄칭 탱크의 물온도는 60℃ 미만으로 설정할 시에는 도금층 표면의 수산화물을 생성하는데 장시간이 소요되어 라인에 적용하는 데 한계가 있을 수 있다. 또한 앞서 기술한 물온도 60℃에서 도금층 표면에 수산화물을 생성하기 위해서는 적어도 침지 시간이 5초 이상이 되어야 도금 표면 활성도를 감소시킬 수 있는 수산화물이 생성된다. 반면에 침지시간이 60초를 초과하게 되면 도금 표면에 과도하게 수산화물이 생성되어 도금층 표면이 흑색으로 변하여 외관을 저해하게 된다.The manufacturing method of a plated steel sheet according to an embodiment of the present invention can be implemented by improving the equipment and changing the fixing conditions of a water quenching tank that rapidly lowers the temperature of the steel sheet after plating in a continuous zinc plating line. Specifically, the water temperature of the water quenching tank is maintained at 60° C. or higher, and the plated steel sheet composed of Zn-Al-Mg is immersed for 5 to 60 seconds to lower the activity of the plated surface layer. When the water temperature of the water quenching tank is set to less than 60°C, it may take a long time to generate the hydroxide on the surface of the plating layer, so there may be a limit to application to the line. In addition, in order to generate a hydroxide on the surface of the plating layer at a water temperature of 60°C, the immersion time must be at least 5 seconds to generate a hydroxide capable of reducing plating surface activity. On the other hand, when the immersion time exceeds 60 seconds, excessive hydroxide is generated on the plating surface, and the surface of the plating layer turns black, thereby impairing the appearance.

실험예Experimental example

이하 본 발명의 이해를 돕기 위해 바람직한 실험예를 제시한다. 다만, 하기의 실험예는 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명이 하기의 실험예에 의해 한정되는 것은 아니다. Hereinafter, a preferred experimental example is presented to aid the understanding of the present invention. However, the following experimental examples are only intended to aid understanding of the present invention, and the present invention is not limited by the following experimental examples.

1. 시편의 제조1. Preparation of specimen

두께 0.7mm의 냉연강판을 준비한다. 상기 냉연강판은 탄소(C):0.07중량%, 망간(Mn):0.3중량%, 인(P):0.05중량%, 황(S):0.005중량%, 크롬(Cr):0.2중량%, 몰리브덴(Mo):0.05중량% 및 잔부가 철(Fe)인 조성을 가진다. 다만, 이러한 냉연강판의 조성은 예시적인 것이며, 본 발명의 기술적 사상을 구현함에 있어서 반드시 필요한 것은 아니다. 상기 냉연강판을 50℃ 알칼리 용액에 30분 동안 침지시킨 후, 물로 세척하여 표면의 이물질과 기름을 제거한 시편을 준비한다. Prepare a cold rolled steel sheet with a thickness of 0.7mm. The cold rolled steel sheet is carbon (C):0.07% by weight, manganese (Mn):0.3% by weight, phosphorus (P):0.05% by weight, sulfur (S):0.005% by weight, chromium (Cr):0.2% by weight, molybdenum (Mo): 0.05% by weight and the balance has a composition of iron (Fe). However, the composition of the cold-rolled steel sheet is exemplary, and is not necessarily required to implement the technical idea of the present invention. The cold-rolled steel sheet is immersed in an alkaline solution at 50° C. for 30 minutes, and then washed with water to prepare a specimen from which foreign substances and oil are removed from the surface.

계속하여 상기 시편을 소둔처리한 후 도금한다. 소둔은 수소: 10 ~ 30%, 질소: 70 ~ 90%로 구성된 환원 분위기에서 실시하며, 소둔 열처리 온도는 700 ~ 850℃이다. 도금은 소둔 열처리한 시편을 도금욕 온도(400 ~ 520℃)로 냉각한 후, 도금욕에 2초 동안 침적시킨 후 끌어올려 질소 와이핑으로 도금 두께를 10㎛ 내외로 조절하였다. 도금 부착량은 편면 도금 20 ~ 300g/m2 수준으로 조절하였다. 계속하여, 도금 공정 후에 5℃/sec ~ 30℃/sec의 냉각속도로 상온까지 워터 켄칭(water quenching) 공정으로 냉각하여 응고시킨다. 상기 도금욕은 알루미늄(Al): 0.5 ~ 10중량%, 마그네슘(Mg): 0.5 ~ 4중량%를 함유하는 아연(Zn) 도금욕이다. Subsequently, the specimen is annealed and then plated. Annealing is carried out in a reducing atmosphere consisting of hydrogen: 10 ~ 30%, nitrogen: 70 ~ 90%, annealing heat treatment temperature is 700 ~ 850 ℃. For plating, the annealing heat-treated specimen was cooled to a plating bath temperature (400 to 520°C), immersed in the plating bath for 2 seconds, and then pulled up to adjust the plating thickness to around 10 μm by nitrogen wiping. The amount of plating was adjusted to a level of 20 to 300 g/m 2 of plating on one side. Subsequently, after the plating process, it is cooled and solidified by a water quenching process to room temperature at a cooling rate of 5° C./sec to 30° C./sec. The plating bath is a zinc (Zn) plating bath containing 0.5 to 10% by weight of aluminum (Al) and 0.5 to 4% by weight of magnesium (Mg).

2. 도금 표면 알칼리 활성도 측정 및 후처리 내식성 평가2. Measurement of plating surface alkali activity and evaluation of post-treatment corrosion resistance

이상의 조건으로 도금강판을 제조하고, 워터 켄칭(water quenching) 조건별 도금 표면 알칼리 활성도 측정 및 후처리 내식성을 평가하여 표 1에 나타내었다.A plated steel sheet was manufactured under the above conditions, and the alkali activity of the plating surface by water quenching condition was measured and the post-treatment corrosion resistance was evaluated, and the results are shown in Table 1.

구분 division ZnZn AlAl MgMg Water quenching 온도(℃)Water quenching temperature (℃) Water quenching 시간(초) Water quenching time (sec) 후처리 전 도금표면
알칼리도(pH)
Plating surface before post-treatment
Alkalinity (pH)
외관 Exterior 후처리 내식성 Corrosion resistance after treatment
비교예1Comparative Example 1 Bal.Bal. 1One 1One 30 30 1010 1111 XX 비교예2Comparative Example 2 Bal.Bal. 1.71.7 1.51.5 5050 2020 1010 비교예3Comparative Example 3 Bal.Bal. 22 1.51.5 8080 2 2 1010 비교예4Comparative Example 4 Bal.Bal. 55 33 100 100 70 70 88 실시예1Example 1 Bal.Bal. 1One 1One 8080 55 88 실시예2Example 2 Bal Bal 1.71.7 1.51.5 9090 2020 88 실시예3Example 3 Bal.Bal. 22 1.51.5 80 80 1010 88 실시예4Example 4 Bal.Bal. 55 33 100100 20 20 88

비교예1과 실시예1에 따른 도금강판에 형성된 도금층은 알루미늄(Al): 1중량%, 마그네슘(Mg): 1중량% 및 잔부가 아연(Zn)으로 이루어지며, 비교예2와 실시예2에 따른 도금강판에 형성된 도금층은 알루미늄(Al): 1.7중량%, 마그네슘(Mg): 1.5중량% 및 잔부가 아연(Zn)으로 이루어지며, 비교예3과 실시예3에 따른 도금강판에 형성된 도금층은 알루미늄(Al): 2중량%, 마그네슘(Mg): 1.5중량% 및 잔부가 아연(Zn)으로 이루어지며, 비교예4와 실시예4에 따른 도금강판에 형성된 도금층은 알루미늄(Al): 5중량%, 마그네슘(Mg): 3중량% 및 잔부가 아연(Zn)으로 이루어진다. 한편, 도금층이 형성된 강판을 워터 켄칭(water quenching) 공정으로 냉각함에 있어서, 비교예1은 30℃의 물에 10초 동안 침지하는 조건을 적용하였고, 비교예2는 50℃의 물에 20초 동안 침지하는 조건을 적용하였고, 비교예3은 80℃의 물에 2초 동안 침지하는 조건을 적용하였고, 비교예4는 100℃의 물에 70초 동안 침지하는 조건을 적용하였는바, 비교예1 내지 비교예4는 도금층이 형성된 강판을 60 ~ 100℃의 물에 5 ~ 60초 동안 침지하여 워터 켄칭(water quenching)하는 조건을 적용하지 않았다. The plating layer formed on the plated steel sheets according to Comparative Examples 1 and 1 consisted of aluminum (Al): 1% by weight, magnesium (Mg): 1% by weight, and the balance zinc (Zn), and Comparative Examples 2 and 2 The plating layer formed on the plated steel sheet according to the above is made of aluminum (Al): 1.7% by weight, magnesium (Mg): 1.5% by weight, and the balance is zinc (Zn), and the plating layer formed on the plated steel sheet according to Comparative Examples 3 and 3 Silver aluminum (Al): 2% by weight, magnesium (Mg): 1.5% by weight, and the balance consists of zinc (Zn), and the plating layer formed on the plated steel sheets according to Comparative Examples 4 and 4 is aluminum (Al): 5 % By weight, magnesium (Mg): 3% by weight and the balance consists of zinc (Zn). On the other hand, in cooling the steel sheet on which the plated layer was formed by a water quenching process, Comparative Example 1 applied the condition of immersion in water at 30°C for 10 seconds, and Comparative Example 2 was applied in water at 50°C for 20 seconds. The conditions of immersion were applied, and in Comparative Example 3, the conditions of immersion in water at 80°C for 2 seconds were applied, and in Comparative Example 4, the conditions of immersion in water at 100°C for 70 seconds were applied. Comparative Example 4 did not apply the condition of water quenching by immersing the steel sheet on which the plated layer was formed in water at 60 to 100° C. for 5 to 60 seconds.

이와 달리, 실시예1은 80℃의 물에 5초 동안 침지하는 조건을 적용하였고, 실시예2는 90℃의 물에 20초 동안 침지하는 조건을 적용하였고, 실시예3은 80℃의 물에 10초 동안 침지하는 조건을 적용하였고, 실시예4는 100℃의 물에 20초 동안 침지하는 조건을 적용하였는바, 실시예1 내지 실시예4는 도금층이 형성된 강판을 60 ~ 100℃의 물에 5 ~ 60초 동안 침지하여 워터 켄칭(water quenching)하는 조건을 적용하였다. In contrast, in Example 1, the condition of immersion in water at 80°C for 5 seconds was applied, in Example 2, the condition of immersion in water at 90°C for 20 seconds was applied, and in Example 3, in water at 80°C. The condition of immersion for 10 seconds was applied, and in Example 4, the condition of immersion in water at 100° C. for 20 seconds was applied. In Examples 1 to 4, the steel sheet on which the plated layer was formed was applied in water at 60 to 100°C. The condition of water quenching was applied by immersion for 5 to 60 seconds.

도금표면 알칼리 활성도 측정은 워터 켄칭(water quenching) 조건별 준비된 도금강판에 위에 pH 페이퍼를 올려놓고 1mg을 물을 pH 페이퍼 상에 드랍시켜 pH 페이퍼에서 변하는 색을 시간별로 관찰하여 알칼리 활성도를 관찰하였다. To measure the alkalinity of the plating surface, the pH paper was placed on the plated steel sheet prepared for each water quenching condition, and 1 mg of water was dropped on the pH paper to observe the color changing in the pH paper over time to observe the alkali activity.

표 1의 외관 항목은 육안 관찰을 통한 도금표면색 관찰 결과를 나타낸 것으로서, '◎' 항목은 전후 도금표면 색차가 없다는 것을 나타내며, '○'항목은 전후 도금 표면색이 미세하게 변하는 것을 나타내며, '△'항목은 전후 도금 표면 색차가 심하다는 것을 나타낸다. The appearance items in Table 1 represent the results of observation of the plating surface color through visual observation, and the'◎' item indicates that there is no difference in color of the plating surface before and after, and the'○' item indicates that the surface color before and after the plating changes slightly, and'△' The item indicates that the color difference of the surface of the plating before and after is severe.

또한, 표 1의 후처리 내식성 항목은 JIS Z 2371에 의거하여 염수 분무 시험을 72시간 행하여, 시험편의 전 면적에 대한 백청 발생 면적으로부터 내식성을 평가한 것으로서, '◎'항목은 백청 발생면적이 0%인 것을 나타내며, '○'항목은 백청 발생면적이 5% 이하임을 나타내며, '△'항목은 백청 발생면적이 10% 이하임을 나타내며, 'X'항목은 백청 발생면적이 10% 이상임을 나타낸다. In addition, the post-treatment corrosion resistance item in Table 1 is that the salt spray test was conducted for 72 hours in accordance with JIS Z 2371, and the corrosion resistance was evaluated from the white rust generation area over the entire area of the test piece. %, the'○' item indicates that the white rust generation area is less than 5%, the'△' item indicates that the white rust generation area is less than 10%, and the'X' item indicates that the white rust generation area is more than 10%.

표 1의 결과를 살펴보면, 비교예4에서는 전후 도금 표면 색차가 심한 외관이 나타났으며, 비교예1에서는 백청 발생면적이 10% 이상으로 내식성이 불량하게 나타났으며, 비교예2 및 비교예3에서는 전후 도금 표면색이 미세하게 변하는 외관이 나타났으며, 백청 발생면적이 5 ~ 10%로 내식성이 양호하지 않음을 확인할 수 있다. 이에 반하여, 실시예1 내지 실시예4에서는 후처리 전 도금표면 알칼리도가 상대적으로 낮으며, 외관이 양호하고 후처리 내식성도 우수함을 확인할 수 있다. Looking at the results of Table 1, in Comparative Example 4, the appearance of the front and rear plating surface color difference was severe, and in Comparative Example 1, the white rust generation area was 10% or more, indicating poor corrosion resistance, and Comparative Examples 2 and 3 In, it can be seen that the appearance of finely changing the surface color of the plating before and after, and the white rust generation area is 5 to 10%, indicating that the corrosion resistance is not good. On the other hand, in Examples 1 to 4, it can be confirmed that the alkalinity of the plating surface before the post-treatment is relatively low, the appearance is good, and the post-treatment corrosion resistance is also excellent.

도 2는 본 발명의 비교예1에 따른 도금강판의 표면을 촬영한 사진이고, 도 3은 본 발명의 실시예1에 따른 도금강판의 표면을 촬영한 사진이다. FIG. 2 is a photograph of the surface of the plated steel sheet according to Comparative Example 1 of the present invention, and FIG. 3 is a photograph of the surface of the plated steel sheet according to Example 1 of the present invention.

도 2를 참조하면, 마그네슘(Mg) 수산화물을 포함한 삼원 공정상(A)의 비율이 상대적으로 낮음에 반하여, 도 3을 참조하면, 마그네슘(Mg) 수산화물을 포함한 삼원 공정상(B)의 비율이 상대적으로 높음을 이해할 수 있다. 마그네슘(Mg) 수산화물을 포함한 삼원 공정상은 도금표면의 알칼리도를 낮추며, 도금층 내부의 마그네슘이 표면으로 확산되는 것을 방지하여 내식성을 개선시킬 수 있다. 2, while the ratio of the ternary process phase (A) including magnesium (Mg) hydroxide is relatively low, referring to FIG. 3, the ratio of the ternary process phase (B) including magnesium (Mg) hydroxide is It can be understood that it is relatively high. In the three-way process including magnesium (Mg) hydroxide, the alkalinity of the plating surface is lowered and the diffusion of magnesium inside the plating layer to the surface can be prevented, thereby improving corrosion resistance.

기존에 고내식 도금강판의 시장에 적용에 있어서 건자재 시장에서는 내식성이 우수하여 넓게 사용되고 있으나, 도금층에 존재하는 마그네슘(Mg)으로 인해서 부식환경에서 표면 알칼리도가 상승하게 되어 후처리 시 후처리 성능이 저하되는 문제점을 가지고 있다. 본 발명에서는 이러한 기술적 한계를 극복하기 위해서 도금층 표층에 존재하는 마그네슘(Mg)에 대하여 도금 공정 중 워터 켄칭 탱크(water quenching tank)의 물의 온도를 60 ~ 100℃로 유지하여 강판을 통과시킴으로써 도금 표면의 활성화된 마그네슘(Mg) 함량을 감소시킴으로써 도금 표면 알칼리 활성화도를 감소시킬 수 있다. 그에 따라 후처리 후 부식환경에서 후처리코팅이 도금표면 알칼리 활성화도 상승에 의해 열위되는 현상을 개선할 수 있다. In the existing application to the high corrosion resistance plated steel sheet market, it is widely used because of its excellent corrosion resistance in the construction material market, but the surface alkalinity in the corrosive environment increases due to magnesium (Mg) present in the plating layer, and the post-treatment performance decreases during post-treatment. It has a problem. In the present invention, in order to overcome these technical limitations, the surface of the plated surface is passed through the steel plate by maintaining the water temperature of the water quenching tank at 60 to 100°C during the plating process for magnesium (Mg) present in the surface layer of the plating layer. By reducing the activated magnesium (Mg) content, it is possible to reduce the alkalinity of the plating surface. Accordingly, it is possible to improve a phenomenon in which the post-treatment coating is inferior due to the increase in alkali activation of the plating surface in a corrosive environment after post-treatment.

이상에서는 본 발명의 실시예를 중심으로 설명하였지만, 당업자의 수준에서 다양한 변경이나 변형을 가할 수 있다. 이러한 변경과 변형이 본 발명의 범위를 벗어나지 않는 한 본 발명에 속한다고 할 수 있다. 따라서 본 발명의 권리범위는 이하에 기재되는 청구범위에 의해 판단되어야 할 것이다.In the above, the embodiments of the present invention have been mainly described, but various changes or modifications may be made at the level of those skilled in the art. These changes and modifications can be said to belong to the present invention as long as they do not depart from the scope of the present invention. Therefore, the scope of the present invention should be determined by the claims set forth below.

Claims (7)

삭제delete 삭제delete 삭제delete (a) 냉연강판을 제공하는 단계;
(b) 상기 냉연강판을 소둔처리하는 단계;
(c) 상기 소둔처리된 강판을 알루미늄(Al), 마그네슘(Mg) 및 아연(Zn)을 함유하는 도금욕에 통과시켜, 상기 강판 상에 알루미늄(Al): 1 ~ 2중량%, 마그네슘(Mg): 1 ~ 1.5중량% 및 잔부가 아연(Zn)과 기타 불가피한 불순물로 이루어진 도금층을 형성하는 단계; 및
(d) 상기 도금층이 형성된 상기 강판을 5 ~ 30℃/sec의 냉각속도로 상온까지 급랭하는 단계;를 포함하고,
상기 (c) 단계에서 도금욕에 통과시킨 후 냉연강판을 질소 와이핑으로 도금 두께를 10 ㎛ 로 조절하고,
상기 (d) 단계에서 상기 급랭하는 단계는 상기 도금층이 형성된 강판을 80 ~ 90℃의 물에 5 ~ 20초 동안 침지하여 워터 켄칭(water quenching)하는 단계를 포함하여 도금표면의 알칼리도가 pH 8인 것을 특징으로 하는,
도금강판의 제조방법.
(a) providing a cold rolled steel sheet;
(b) annealing the cold-rolled steel sheet;
(c) The annealed steel sheet is passed through a plating bath containing aluminum (Al), magnesium (Mg) and zinc (Zn), and aluminum (Al) on the steel sheet: 1 to 2% by weight, magnesium (Mg) ): forming a plating layer made of 1 to 1.5% by weight and the balance of zinc (Zn) and other unavoidable impurities; And
(d) quenching the steel sheet on which the plating layer is formed to room temperature at a cooling rate of 5 to 30° C./sec; including,
After passing through the plating bath in step (c), the cold-rolled steel sheet was subjected to nitrogen wiping to adjust the plating thickness to 10 µm,
In the step of (d), the quenching of the plating layer includes the step of water quenching by immersing the steel sheet on which the plating layer is formed in water at 80 to 90° C. for 5 to 20 seconds, and the alkalinity of the plating surface is 8. Characterized in that,
Manufacturing method of plated steel sheet.
제 4 항에 있어서,
상기 (b) 단계에서 상기 소둔 처리는 700 ~ 850℃의 온도에서 수행하고,
상기 (c) 단계에서 상기 도금욕의 온도는 400 ~ 520℃인 것을 특징으로 하는,
도금강판의 제조방법.
The method of claim 4,
In the step (b), the annealing treatment is performed at a temperature of 700 to 850°C,
In the step (c), characterized in that the temperature of the plating bath is 400 ~ 520 ℃,
Manufacturing method of plated steel sheet.
삭제delete 제 4 항에 있어서,
상기 (d) 단계는 상기 도금층의 표면에 수산화물이 생성되는 단계를 포함하는,
도금강판의 제조방법.
The method of claim 4,
The step (d) comprises the step of generating a hydroxide on the surface of the plating layer,
Manufacturing method of plated steel sheet.
KR1020190061595A 2019-05-27 2019-05-27 Plated steel sheet and method of manufacturing the same KR102250323B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190061595A KR102250323B1 (en) 2019-05-27 2019-05-27 Plated steel sheet and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190061595A KR102250323B1 (en) 2019-05-27 2019-05-27 Plated steel sheet and method of manufacturing the same

Publications (2)

Publication Number Publication Date
KR20200136066A KR20200136066A (en) 2020-12-07
KR102250323B1 true KR102250323B1 (en) 2021-05-10

Family

ID=73791363

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190061595A KR102250323B1 (en) 2019-05-27 2019-05-27 Plated steel sheet and method of manufacturing the same

Country Status (1)

Country Link
KR (1) KR102250323B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220052108A (en) 2020-10-20 2022-04-27 주식회사 엘지에너지솔루션 A connector with built-in a cooling fan
KR102529201B1 (en) * 2021-03-25 2023-05-08 현대제철 주식회사 Zinc plated steel sheet and method of manufacturing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100817735B1 (en) * 2003-09-16 2008-03-31 닛신 세이코 가부시키가이샤 Method of producing hot-dip ?? plated steel sheet excellent in luster-retaining property

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150070841A (en) * 2013-12-17 2015-06-25 동부제철 주식회사 High-anticorosive coated steel sheet and method for manufacturing the same
KR101613354B1 (en) * 2014-05-22 2016-04-19 동부제철 주식회사 Coated steel plate and mehtod for manufacturing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100817735B1 (en) * 2003-09-16 2008-03-31 닛신 세이코 가부시키가이샤 Method of producing hot-dip ?? plated steel sheet excellent in luster-retaining property

Also Published As

Publication number Publication date
KR20200136066A (en) 2020-12-07

Similar Documents

Publication Publication Date Title
AU2012377741B2 (en) Steel sheet provided with a coating offering sacrificial cathodic protection, method for the production of a part using such a sheet, and resulting part
JP5830541B2 (en) Hot-dip galvanized steel sheet excellent in plating property, plating adhesion and spot weldability, and its production method
KR101819393B1 (en) Hot dip zinc alloy plated steel material having excellent weldability and press formability and method for manufacturing same
JPWO2015029404A1 (en) High-strength hot-dip galvanized steel sheet and manufacturing method thereof
KR20130022866A (en) High manganese steel having good adhesiveness of coating layer and method for manufacturing galvanized steel therefrom
KR20150052376A (en) HOT DIP Zn ALLOY PLATED STEEL SHEET HAVING EXCELLENT ANTI-CORROSION AND METHOD FOR MANUFACTURING THE STEEL SHEET USING THE SAME
KR102250323B1 (en) Plated steel sheet and method of manufacturing the same
JP2008214681A (en) Galvannealed steel sheet superior in image clarity of coating and press formability, and manufacturing method therefor
CN103261466A (en) Aluminum coated steel sheet having excellent oxidation resistance and heat resistance
KR102305753B1 (en) Zn-Al-Mg BASED HOT DIP ALLOY COATED STEEL MATERIAL HAVING EXCELLENT CORROSION RESISTANCE OF PROCESSED PARTS AND METHOD OF MANUFACTURING THE SAME
KR101613354B1 (en) Coated steel plate and mehtod for manufacturing the same
KR101500282B1 (en) Method for manufacturing high strength galvanized steel sheet having excellent surface property and coating adhesion
KR102031308B1 (en) Plated steel wire and manufacturing method for the same
JP3135818B2 (en) Manufacturing method of zinc-tin alloy plated steel sheet
JP5625442B2 (en) High-strength steel sheet with a tensile strength of 1180 MPa or more with excellent delayed fracture resistance
KR101143180B1 (en) HOT DIP Zn-BASED ALLOY COATING BATH, HOT DIP Zn-BASED ALLOY COATED STEEL AND METHOD FOR MANUFACTURING THE SAME
KR101188065B1 (en) Galvanized steel sheet having excellent coating adhesion and spot weldability and method for manufacturing the same
KR102529201B1 (en) Zinc plated steel sheet and method of manufacturing the same
KR20150073035A (en) High corrosion resistant galvannealed steel sheet with excellent surface property, method for manufacturing the steel sheet and zinc plating solution for maunfacturing the steel sheet
KR102110657B1 (en) Plating composition and method of manufacturing zinc plated steel sheet
KR102323645B1 (en) Plated steel sheet and method of manufacturing the same
KR101629260B1 (en) Composition for hot dipping bath
KR102672418B1 (en) Plated steel sheet and method of manufacturing the same
JP7290757B2 (en) Plated steel wire and its manufacturing method
JPS61179861A (en) Zn alloy hot dipped steel plate having high corrosion resistance

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant