KR20150054832A - Processes and systems for the production of fermentation products - Google Patents

Processes and systems for the production of fermentation products Download PDF

Info

Publication number
KR20150054832A
KR20150054832A KR1020157006300A KR20157006300A KR20150054832A KR 20150054832 A KR20150054832 A KR 20150054832A KR 1020157006300 A KR1020157006300 A KR 1020157006300A KR 20157006300 A KR20157006300 A KR 20157006300A KR 20150054832 A KR20150054832 A KR 20150054832A
Authority
KR
South Korea
Prior art keywords
extractant
fermentation
fermentation broth
extractor
acid
Prior art date
Application number
KR1020157006300A
Other languages
Korean (ko)
Inventor
스테판느 프랑수와 바자나
아담 브렌펠드
케이트 에이치. 버류
제임스 티모시 크로닌
마이클 찰스 그라디
브라이언 마이클 로슈
조셉 제이. 자허
레이몬드 리차드 졸란즈
Original Assignee
부타맥스 어드밴스드 바이오퓨얼스 엘엘씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/828,353 external-priority patent/US9605281B2/en
Priority claimed from US13/836,115 external-priority patent/US20140024064A1/en
Application filed by 부타맥스 어드밴스드 바이오퓨얼스 엘엘씨 filed Critical 부타맥스 어드밴스드 바이오퓨얼스 엘엘씨
Publication of KR20150054832A publication Critical patent/KR20150054832A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/16Butanols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/26Separation of sediment aided by centrifugal force or centripetal force
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B1/00Production of fats or fatty oils from raw materials
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B1/00Production of fats or fatty oils from raw materials
    • C11B1/02Pretreatment
    • C11B1/025Pretreatment by enzymes or microorganisms, living or dead
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B1/00Production of fats or fatty oils from raw materials
    • C11B1/10Production of fats or fatty oils from raw materials by extracting
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/003Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fatty acids with alcohols
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/12Bioreactors or fermenters specially adapted for specific uses for producing fuels or solvents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/26Means for regulation, monitoring, measurement or control, e.g. flow regulation of pH
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/32Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of substances in solution
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/06Hydrolysis; Cell lysis; Extraction of intracellular or cell wall material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/10Separation or concentration of fermentation products
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/08Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate
    • C12P7/10Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate substrate containing cellulosic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/14Multiple stages of fermentation; Multiple types of microorganisms or re-use of microorganisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/02Settling tanks with single outlets for the separated liquid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Cell Biology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

본 발명은, 에탄올 및 부탄올을 포함하는 알코올과 같은 발효 생성물의 생성, 및 추출제가 발효 브로쓰에 첨가되는 원위치 생성물 제거 방법을 이용하는 공정에 관한 것이다.The present invention relates to the production of fermentation products such as alcohols comprising ethanol and butanol, and processes utilizing in situ product removal methods in which the extracting agent is added to the fermentation broth.

Description

발효 생성물의 생성을 위한 공정 및 시스템{PROCESSES AND SYSTEMS FOR THE PRODUCTION OF FERMENTATION PRODUCTS}TECHNICAL FIELD [0001] The present invention relates to a process for producing a fermentation product,

본 출원은 2012년 9월 12일자로 출원된 미국 가출원 제61/699,976호; 2012년 10월 11일자로 출원된 미국 가출원 제61/712,385호; 2013년 3월 14일자로 출원된 미국 가출원 제13/828,353호; 및 2013년 3월 15일자로 출원된 미국 가출원 제13/836,115호의 이득을 주장하며, 각각의 전체 내용이 본 명세서에 참고로 포함된다.This application is related to U.S. Provisional Application No. 61 / 699,976, filed September 12, 2012; U.S. Provisional Application No. 61 / 712,385, filed October 11, 2012; U.S. Provisional Application No. 13 / 828,353, filed March 14, 2013; And U.S. Provisional Application No. 13 / 836,115, filed March 15, 2013, the entire contents of each of which are incorporated herein by reference.

본 출원과 관련된 서열 목록은 EFS-웹을 통해 전자적 형태로 제출되며 본 명세서에 전체적으로 참고로 포함된다.The sequence listing associated with this application is submitted in electronic form via the EFS-Web and is incorporated herein by reference in its entirety.

본 발명은 에탄올 및 부탄올을 포함하는 알코올과 같은 발효 생성물의 생성, 및 원위치 생성물 제거(in situ product removal) 방법을 이용하는 공정에 관한 것이다.The present invention relates to the production of fermentation products such as alcohols comprising ethanol and butanol, and processes utilizing in situ product removal methods.

다수의 화학 물질 및 소비자 제품이 발효를 제조 공정으로서 이용하여 생성될 수 있다. 예를 들어, 에탄올 및 부탄올과 같은 알코올은 연료, 시약, 및 용매와 같은 다양한 산업적 응용 및 과학적 응용을 갖는다. 부탄올은 연료 첨가제로서, 플라스틱 산업에서의 공급원료 화학 물질로서, 그리고 식품 및 향미료 산업에서 식품 등급 추출제로서의 사용을 포함하는 다양한 응용을 갖는 중요한 산업용 화학 물질이다. 식물-유래 물질과 같은 물질로부터 부탄올 또는 부탄올 이성체를 생성하는 것은 석유화학제품의 사용을 최소화할 수 있으며 본 기술 분야의 진보를 나타낼 것이다. 게다가, 식물-유래 물질 또는 다른 바이오매스(biomass) 공급원을 사용하여 화학 물질 및 연료를 생성하는 것은 석유화학 공정에 대한 환경 친화적이고 지속가능한 대안을 제공할 것이다.Many chemicals and consumer products can be produced using fermentation as a manufacturing process. For example, alcohols such as ethanol and butanol have a variety of industrial and scientific applications such as fuels, reagents, and solvents. Butanol is an important industrial chemical having a variety of applications, including as a fuel additive, as a feedstock chemical in the plastics industry, and as a food grade extractant in the food and spice industries. The production of butanol or butanol isomers from materials such as plant-derived materials can minimize the use of petrochemical products and will represent an advance in the art. In addition, the production of chemicals and fuels using plant-derived or other biomass sources will provide an environmentally friendly and sustainable alternative to petrochemical processes.

유전공학 및 대사공학과 같은 기술을 이용하여, 식물-유래 물질 또는 다른 바이오매스 공급원으로부터 소정의 생성물을 생성하도록 미생물을 변형시킬 수 있다. 그러나, 부탄올의 생성에 있어서, 예를 들어, 부탄올을 고수율로 생성하는 미생물은 부탄올 독성 역치가 또한 낮다. 이러한 낮은 부탄올 독성 역치를 관리하기 위한 수단은, 부탄올이 생성될 때 발효부로부터 부탄올을 제거하는 것이다. 따라서, 부탄올-생성 미생물의 낮은 부탄올 독성 역치에도 불구하고 부탄올을 고수율로 생성하기 위한 효율적인 방법 및 시스템을 개발하는 것이 계속 요구되고 있다.Using techniques such as genetic engineering and metabolic engineering, microorganisms can be modified to produce a desired product from a plant-derived material or other biomass source. However, in the production of butanol, for example, a microorganism producing a high yield of butanol has a low butanol toxicity threshold. The means for managing this low butanol toxicity threshold is to remove butanol from the fermentation section when butanol is produced. Thus, despite the low butanol toxicity threshold of butanol-producing microorganisms, there is a continuing need to develop efficient methods and systems for producing butanol at high yields.

원위치 생성물 제거 (ISPR) (추출 발효로도 지칭됨)를 사용하여, 부탄올 또는 다른 발효 생성물이 생성될 때 그를 발효부로부터 제거할 수 있으며, 그에 의해 미생물이 부탄올을 고수율로 생성하게 할 수 있다. 본 기술 분야에 기술되어 있는, 발효 알코올을 제거하기 위한 한 가지 ISPR 방법은 액체-액체 추출이다 (예를 들어, 미국 특허 출원 공개 제2009/0305370호 참조). 일반적으로, 부탄올 발효와 관련하여, 미생물을 포함하는 발효 브로쓰(fermentation broth)는 부탄올 농도가, 예를 들어, 독성 수준에 도달하기 전의 시점에 추출제와 접촉된다. 부탄올은 추출제 내로 분배되어, 미생물을 함유하는 발효 브로쓰 내의 부탄올의 농도가 감소되고, 그에 의해 억제성 부탄올에 대한 미생물의 노출이 제한된다. Using in situ product removal (ISPR) (also referred to as extraction fermentation), it is possible to remove it from the fermentation section when butanol or other fermentation products are produced, thereby allowing the microorganism to produce butanol in high yield . One ISPR method for removing fermentation alcohol, described in the art, is liquid-liquid extraction (see, for example, U.S. Patent Application Publication No. 2009/0305370). Generally, in connection with butanol fermentation, the fermentation broth containing microorganisms is contacted with the extractant at a point in time before the butanol concentration reaches, for example, the toxic level. Butanol is dispensed into the extractant to reduce the concentration of butanol in the fermentation broth containing the microorganism thereby limiting the exposure of the microorganism to the inhibitory butanol.

기술적으로 그리고 경제적으로 실행가능하기 위해서, 액체-액체 추출은, 추출제 내로의 알코올의 효율적인 물질 이동을 위한 추출제와 발효 브로쓰 사이의 접촉; 발효 브로쓰로부터의 추출제의 상분리 (발효 동안 및/또는 발효 후); 추출제의 효율적인 회수 및 재순환; 및 장기간 작동에 걸친 추출제의 분배 계수의 최소한의 감소를 필요로 한다. 추출제는, 예를 들어, 발효를 위한 공급원료로서 사용되는 바이오매스에 존재하는 지질의 축적에 의해, 각각의 재순환과 함께 시간 경과에 따라 오염될 수 있으며, 이러한 오염은 추출제의 분배 계수의 수반되는 감소를 가져올 수 있다.To be technically and economically feasible, liquid-liquid extraction involves contact between the extractant and the fermentation broth for efficient mass transfer of the alcohol into the extractant; Phase separation of the extractant from the fermentation broth (during fermentation and / or after fermentation); Efficient recovery and recycling of the extractant; And a minimal reduction in the partition coefficient of the extractant over long term operation. The extraction agent can be contaminated over time with the respective recirculation, for example by the accumulation of lipids present in the biomass used as feedstock for fermentation, and this contamination can be caused by the distribution coefficient of the extractant Resulting in a corresponding reduction.

또한, 추출 발효 동안의 용해되지 않은 고형물의 존재는 알코올 생성의 효율에 악영향을 줄 수 있다. 예를 들어, 용해되지 않은 고형물의 존재는, 물질 이동 계수를 감소시킬 수 있고, 상분리를 방해할 수 있고, 추출제 중의 용해되지 않은 고형물로부터의 오일의 축적을 야기하여 시간 경과에 따라 추출 효율을 감소시킬 수 있고, 발효 브로쓰로부터의 추출제 방울의 이탈을 늦출 수 있고, 더 적은 발효 용기 부피 효율을 야기할 수 있고, 고형물 내에 추출제가 포획되어 궁극적으로 DDGS (Dried Distillers' Grains with Solubles; 가용성 물질 첨가 건조 주정박)로서 제거되기 때문에 추출제의 손실을 증가시킬 수 있다.In addition, the presence of undissolved solids during extraction fermentation can adversely affect the efficiency of alcohol production. For example, the presence of undissolved solids can reduce the mass transfer coefficient, interfere with phase separation, cause the accumulation of oil from undissolved solids in the extractant, and decrease extraction efficiency over time , Slowing the release of the extractant droplets from the fermentation broth, resulting in less fermentation vessel volume efficiency, and entrapping the extractant in the solids, ultimately leading to the formation of Dried Distillers' Grains with Solubles Lt; RTI ID = 0.0 > addition-drying < / RTI > anchoring).

따라서, 미생물에 대한 부탄올과 같은 발효 알코올의 독성 영향을 감소시키고 또한 추출제의 분배 계수의 저하를 감소시킬 수 있는 대안적인 추출 발효 공정이 계속 요구되고 있다. 본 발명은 본 명세서에 기재된 요구를 충족시키며, 에탄올 및 부탄올과 같은 알코올의 발효 생성을 위한 방법, 공정, 및 시스템을 제공한다.Therefore, there is a continuing need for alternative extraction fermentation processes that can reduce the toxic effects of fermentation alcohols, such as butanol, on microorganisms and reduce the degradation of the partition coefficient of the extractant. The present invention meets the needs described herein and provides methods, processes and systems for the fermentation of alcohols such as ethanol and butanol.

본 발명은, 미생물을 포함하는 발효 브로쓰를 제공하는 단계 - 여기서, 미생물은 발효기에서 발효 생성물을 생성함 -; 발효 브로쓰를 적어도 하나의 추출제와 접촉시키는 단계; 발효 생성물을 회수하는 단계를 포함하는, 발효 브로쓰로부터 발효 생성물을 회수하는 방법에 관한 것이다. 일부 실시 형태에서, 발효 브로쓰를 적어도 하나의 추출제와 접촉시키는 단계는 발효기, 외부 유닛, 또는 둘 모두에서 일어난다. 일부 실시 형태에서, 외부 유닛은 추출기이다. 일부 실시 형태에서, 추출기는 사이펀(siphon), 디캔터(decanter), 원심분리기, 중력 침강기(gravity settler), 상분리기(phase splitter), 혼합-침강기(mixer-settler), 컬럼 추출기, 원심 추출기, 교반 추출기, 하이드로사이클론(hydrocyclone), 분무탑(spray tower), 및 이들의 조합으로부터 선택된다. 일부 실시 형태에서, 추출제는 C7 내지 C22 지방 알코올, C7 내지 C22 지방산, C7 내지 C22 지방산의 에스테르, C7 내지 C22 지방 알데하이드, C7 내지 C22 지방 아미드, 및 이들의 혼합물로부터 선택된다. 일부 실시 형태에서, 추출제는 올레일 알코올, 베헤닐 알코올, 세틸 알코올, 라우릴 알코올, 미리스틸 알코올, 스테아릴 알코올, 올레산, 라우르산, 리놀레산, 리놀렌산, 미리스트산, 스테아르산, 옥탄산, 데칸산, 운데칸산, 메틸 미리스테이트, 메틸 올레에이트, 1-노난올, 1-데칸올, 2-운데칸올, 1-노난알, 1-운데칸올, 운데칸알, 라우릭 알데하이드, 2-메틸운데칸알, 올레아미드, 리놀레아미드, 팔미트아미드, 스테아릴아미드, 2-에틸-1-헥산올, 2-헥실-1-데칸올, 2-옥틸-1-도데칸올, 및 이들의 혼합물로부터 선택된다. 일부 실시 형태에서, 친수성 용질이 발효 브로쓰에 첨가된다. 일부 실시 형태에서, 친수성 용질은 폴리하이드록실화 화합물, 폴리카르복실산, 폴리올 화합물, 이온성 염, 및 이들의 혼합물로부터 선택된다. 일부 실시 형태에서, 발효 브로쓰를 적어도 하나의 추출제와 접촉시키는 단계는 둘 이상의 외부 유닛에서 일어난다. 일부 실시 형태에서, 발효 브로쓰를 적어도 하나의 추출제와 접촉시키는 단계는 둘 이상의 발효기에서 일어난다. 일부 실시 형태에서, 발효기는 상분리를 개선하기 위한 내부구조물(internal) 또는 장치를 포함한다. 일부 실시 형태에서, 내부구조물 또는 장치는 코어레서(coalescer), 배플(baffle), 천공판, 웰(well), 라멜라 분리기, 콘(cone), 및 이들의 조합으로부터 선택된다. 일부 실시 형태에서, 실시간 측정이 발효 생성물의 추출을 감시하는 데 사용된다. 일부 실시 형태에서, 발효 생성물의 추출은 상분리의 실시간 측정에 의해 감시된다. 일부 실시 형태에서, 상분리는 상분리 속도, 추출제 소적 크기, 및/또는 발효 브로쓰의 조성을 측정함으로써 감시된다. 일부 실시 형태에서, 상분리는 전도율 측정, 유전율 측정(dielectric measurement), 점탄성 측정, 및/또는 초음파 측정에 의해 감시된다. 일부 실시 형태에서, 미생물을 포함하는 발효 브로쓰를 제공하는 단계는 둘 이상의 발효기에서 일어난다. 일부 실시 형태에서, 발효 생성물은 생성물 알코올일 수 있다. 일부 실시 형태에서, 생성물 알코올은 에탄올, 프로판올, 부탄올, 펜탄올, 헥산올, 및 퓨젤 알코올로부터 선택된다. 일부 실시 형태에서, 미생물은 부탄올 생합성 경로를 포함한다. 일부 실시 형태에서, 부탄올 생합성 경로는 1-부탄올 생합성 경로, 2-부탄올 생합성 경로, 아이소부탄올 생합성 경로, 또는 2-부탄온 경로이다. 일부 실시 형태에서, 미생물은 재조합 미생물이다. 일부 실시 형태에서, 본 방법은 발효가능한 탄소원, 용해되지 않은 고형물, 오일, 및 물을 포함하는 공급원료 슬러리(feedstock slurry)를 제공하는 단계; 공급원료 슬러리를 분리하여, 3개의 스트림: (i) 발효가능한 탄소원을 포함하는 수용액, (ii) 고형물을 포함하는 습윤 케이크(wet cake), 및 (iii) 오일을 형성하는 단계; 및 수용액을 발효 브로쓰에 첨가하는 단계를 추가로 포함한다. 일부 실시 형태에서, 오일은 가수분해되어 지방산을 형성한다. 일부 실시 형태에서, 발효 브로쓰는 지방산과 접촉된다. 일부 실시 형태에서, 오일은 효소에 의해 가수분해된다. 일부 실시 형태에서, 효소는 하나 이상의 리파아제 또는 포스포리파아제이다. 일부 실시 형태에서, 공급원료 슬러리는 공급원료의 가수분해에 의해 생성된다. 일부 실시 형태에서, 공급원료는 호밀, 밀, 옥수수, 사탕수수, 보리, 셀룰로오스계 또는 리그노셀룰로오스계 물질, 또는 이들의 조합으로부터 선택된다. 일부 실시 형태에서, 공급원료 슬러리는 디캔터 보울(decanter bowl) 원심분리, 3상 원심분리, 디스크 스택(disk stack) 원심분리, 여과 원심분리, 디캔터 원심분리, 여과, 막 여과, 미세여과, 진공 여과, 벨트필터(beltfilter), 가압 여과, 스크린을 사용한 여과, 스크린 분리, 그레이팅(grating), 다공성 그레이팅(porous grating), 부유선별(flotation), 하이드로사이클론, 필터 프레스(filter press), 스크류프레스(screwpress), 중력 침강기, 와류형 분리기(vortex separator), 또는 이들의 조합에 의해 분리된다. 일부 실시 형태에서, 공급원료를 분리하는 단계는 단일 단계 공정이다. 일부 실시 형태에서, 습윤 케이크는 수용액과 배합된다. 일부 실시 형태에서, 본 방법은 수용액을 촉매와 접촉시켜 수용액 중의 오일을 지방산으로 변환하는 단계를 추가로 포함한다. 일부 실시 형태에서, 수용액 및 지방산은 발효 브로쓰에 첨가된다. 일부 실시 형태에서, 촉매는 비활성화된다.The present invention provides a method for producing fermented broth comprising: providing a fermentation broth comprising a microorganism, wherein the microorganism produces a fermentation product in a fermenter; Contacting the fermentation broth with at least one extraction agent; And recovering the fermentation product. The present invention also relates to a method for recovering a fermentation product from a fermentation broth. In some embodiments, the step of contacting the fermentation broth with at least one extraction agent occurs in a fermentor, an external unit, or both. In some embodiments, the outer unit is an extractor. In some embodiments, the extractor includes a siphon, a decanter, a centrifuge, a gravity settler, a phase splitter, a mixer-settler, a column extractor, a centrifugal extractor , A stirred extractor, a hydrocyclone, a spray tower, and combinations thereof. In some embodiments, the extraction agent is a C 7 to C 22 fatty alcohols, C 7 to C 22 fatty acid, C 7 to C 22 fatty acid ester, C 7 to C 22 fat aldehyde, C 7 to C 22 fatty amides, and mixtures thereof ≪ / RTI > In some embodiments, the extractant is selected from the group consisting of oleic alcohol, behenyl alcohol, cetyl alcohol, lauryl alcohol, myristyl alcohol, stearyl alcohol, oleic acid, lauric acid, linoleic acid, linolenic acid, myristic acid, , Decanoic acid, undecanoic acid, undecanoic acid, lauric aldehyde, 2-methyl-1-octanol, 1-decanol, 2-octyl-1-dodecanol, and mixtures thereof, in the presence of a base, such as, but not limited to, ethylenediamine, undecane, oleamide, linoleamide, palmitamide, stearylamide, Is selected. In some embodiments, a hydrophilic solute is added to the fermentation broth. In some embodiments, the hydrophilic solute is selected from a polyhydroxylated compound, a polycarboxylic acid, a polyol compound, an ionic salt, and mixtures thereof. In some embodiments, the step of contacting the fermentation broth with at least one extraction agent occurs in two or more external units. In some embodiments, contacting the fermentation broth with at least one extraction agent occurs in two or more fermentors. In some embodiments, the fermenter includes an internal structure or device for improving phase separation. In some embodiments, the internal structure or device is selected from a coalescer, a baffle, a perforated plate, a well, a lamella separator, a cone, and combinations thereof. In some embodiments, real-time measurements are used to monitor the extraction of fermentation products. In some embodiments, the extraction of the fermentation product is monitored by real-time measurement of phase separation. In some embodiments, phase separation is monitored by measuring the phase separation rate, the extraction gas droplet size, and / or the composition of the fermentation broth. In some embodiments, the phase separation is monitored by conductivity measurement, dielectric measurement, viscoelastic measurement, and / or ultrasonic measurement. In some embodiments, the step of providing a fermentation broth comprising microorganisms occurs in two or more fermenters. In some embodiments, the fermentation product may be a product alcohol. In some embodiments, the product alcohol is selected from ethanol, propanol, butanol, pentanol, hexanol, and fucel alcohol. In some embodiments, the microorganism comprises a butanol biosynthetic pathway. In some embodiments, the butanol biosynthetic pathway is a 1-butanol biosynthetic pathway, a 2-butanol biosynthetic pathway, an isobutanol biosynthetic pathway, or a 2-butanone pathway. In some embodiments, the microorganism is a recombinant microorganism. In some embodiments, the method comprises the steps of: providing a feedstock slurry comprising a fermentable carbon source, undissolved solids, oil, and water; Separating the feedstock slurry to form three streams: (i) an aqueous solution containing a fermentable carbon source, (ii) a wet cake comprising the solids, and (iii) an oil; And adding an aqueous solution to the fermentation broth. In some embodiments, the oil hydrolyzes to form fatty acids. In some embodiments, the fermentation broth is contacted with fatty acids. In some embodiments, the oil is hydrolyzed by the enzyme. In some embodiments, the enzyme is one or more lipases or phospholipases. In some embodiments, the feedstock slurry is produced by hydrolysis of the feedstock. In some embodiments, the feedstock is selected from rye, wheat, corn, sugarcane, barley, cellulose based or lignocellulosic based materials, or combinations thereof. In some embodiments, the feedstock slurry may be recovered by decanter bowl centrifugation, three-phase centrifugation, disk stack centrifugation, filtration centrifugation, decanter centrifugation, filtration, membrane filtration, microfiltration, A belt filter, a pressure filtration, a screen filtration, a screen separation, a grating, a porous grating, a flotation, a hydrocyclone, a filter press, a screw press ), A gravitational settler, a vortex separator, or a combination thereof. In some embodiments, separating the feedstock is a single step process. In some embodiments, the wet cake is combined with an aqueous solution. In some embodiments, the method further comprises contacting the aqueous solution with a catalyst to convert the oil in the aqueous solution to a fatty acid. In some embodiments, aqueous solutions and fatty acids are added to the fermentation broth. In some embodiments, the catalyst is deactivated.

본 발명은 또한, 공급원료 슬러리를 수용하기 위한 입구, 및 발효 생성물을 포함하는 발효 브로쓰를 배출하기 위한 출구를 포함하는 하나 이상의 발효기; 및 발효 브로쓰를 수용하기 위한 제1 입구, 추출제를 수용하기 위한 제2 입구, 희박(lean) 발효 브로쓰를 배출하기 위한 제1 출구, 및 풍부(rich) 추출제를 배출하기 위한 제2 출구를 포함하는 하나 이상의 추출기를 포함하는, 시스템에 관한 것이다. 일부 실시 형태에서, 시스템은 하나 이상의 액화 유닛; 하나 이상의 분리 수단; 및 선택적으로 하나 이상의 세척 시스템을 추가로 포함한다. 일부 실시 형태에서, 분리 수단은 디캔터 보울 원심분리, 3상 원심분리, 디스크 스택 원심분리, 여과 원심분리, 디캔터 원심분리, 여과, 진공 여과, 벨트필터, 가압 여과, 막 여과, 미세여과, 스크린을 사용한 여과, 스크린 분리, 그레이팅, 다공성 그레이팅, 부유선별, 하이드로사이클론, 필터 프레스, 스크류프레스, 중력 침강기, 와류형 분리기 및 이들의 조합으로부터 선택된다. 일부 실시 형태에서, 시스템은 온라인(on-line) 측정 장치를 또한 포함한다. 일부 실시 형태에서, 온라인 측정 장치는 입자 크기 분석기, 푸리에 변환 적외선 분광기, 근적외선 분광기, 라만 분광기(Raman spectroscope), 고압 액체 크로마토그래피, 점도계, 농도계, 장력계, 소적 크기 분석기, pH 측정기, 용존 산소 탐침, 및 이들의 조합으로부터 선택된다.The invention also relates to a fermenter comprising at least one fermenter comprising an inlet for receiving a feedstock slurry and an outlet for discharging a fermentation broth comprising the fermentation product; And a second inlet for receiving the fermentation broth, a second inlet for receiving the extractant, a first outlet for discharging the lean fermentation broth, and a second outlet for discharging the rich extractant, An outlet, and an outlet. In some embodiments, the system includes one or more liquefaction units; At least one separating means; And optionally one or more cleaning systems. In some embodiments, the separating means can be separated by a variety of means including, but not limited to, decanter bowl centrifugation, three-phase centrifugation, disk stack centrifugation, filtration centrifugation, decanter centrifugation, filtration, vacuum filtration, belt filtration, pressure filtration, membrane filtration, Hydrocycles, filter presses, screw presses, gravity settlers, eddy-current separators, and combinations thereof, as is well known in the art. In some embodiments, the system also includes an on-line measurement device. In some embodiments, the on-line measurement device includes a particle size analyzer, a Fourier transform infrared spectroscope, a near infrared ray spectroscope, a Raman spectroscope, a high pressure liquid chromatography, a viscometer, a densitometer, a tensometer, a droplet size analyzer, , And combinations thereof.

본 명세서에 포함되어 본 명세서의 일부를 형성하는 첨부 도면은 본 발명을 예시하며, 또한 상세한 설명과 함께 본 발명의 원리를 설명하고 당업자가 본 발명을 행하여 사용할 수 있게 하는 역할을 한다.
도 1은, 액화 후에 그리고 발효 전에 분리를 통해, 용해되지 않은 고형물이 제거되는, 본 발명의 예시적인 공정 및 시스템을 개략적으로 나타낸 도면.
도 2는, ISPR이 발효부의 하류에서 수행되는, 본 발명의 예시적인 공정 및 시스템을 개략적으로 나타낸 도면.
도 3은, 오일 스트림이 배출되는, 본 발명의 다른 예시적인 대안적인 공정 및 시스템을 개략적으로 나타낸 도면.
도 4는, 습윤 케이크가 세척 사이클을 거치는, 본 발명의 다른 예시적인 대안적인 공정 및 시스템을 개략적으로 나타낸 도면.
도 5는, 오일 스트림이 배출되고 습윤 케이크가 세척 사이클을 거치는, 본 발명의 다른 예시적인 대안적인 공정 및 시스템을 개략적으로 나타낸 도면.
도 6a 및 도 6b는, 수용액 및 습윤 케이크가 배합되고 발효부로 안내되는 (도 6a), 그리고 수용액, 오일, 및 습윤 케이크가 배합되고 발효부로 안내되는 (도 6b), 본 발명의 다른 예시적인 대안적인 공정 및 시스템을 개략적으로 나타낸 도면.
도 7a 내지 도 7d는, 수용액이 변환 (예를 들어, 가수분해, 에스테르교환) 및/또는 비활성화를 거치는, 본 발명의 예시적인 대안적인 공정 및 시스템을 개략적으로 나타낸 도면.
도 8은, 하류 처리를 포함하는, 본 발명의 예시적인 발효 공정을 개략적으로 나타낸 도면.
도 9는, 하류 처리를 포함하는, 본 발명의 예시적인 발효 공정을 개략적으로 나타낸 도면.
도 10a 내지 도 10m은, 본 명세서에 기재된 공정에 사용될 수 있는 다양한 시스템을 나타낸 도면.
도 11a 및 도 11b는, 다중 통과 추출제 유동 시스템(multiple pass extractant flow system)을 개략적으로 나타낸 도면.
도 12는 발효 공정을 감시하기 위해 온라인, 인라인(in-line), 엣라인(at-line), 및/또는 실시간 측정을 이용하는, 본 발명의 예시적인 발효 공정을 개략적으로 나타낸 도면.
도 13a 및 도 13b는, 래그(rag) 층의 형성을 경감시키기 위한, 본 발명의 예시적인 공정을 개략적으로 나타낸 도면.
도 14는, 발효, 추출, 및 증류 공정을 포함하는, 본 발명의 예시적인 공정을 개략적으로 나타낸 도면.
도 15는 추출 컬럼 효율에 대한 발효 브로쓰 대 추출제 비 (수성/유기)의 영향을 나타낸 도면.
도 16a 및 도 16b는, 아이소부탄올 농도 및 글루코스 프로파일에 대한, 외부 추출 컬럼을 사용하는 ISPR의 영향을 나타낸 도면.
도 17은, 아이소부탄올 제거 속도에 대한, 혼합-침강기를 사용하는 ISPR의 영향을 나타낸 도면.
도 18은 인라인 측정을 사용한 다양한 전분 농도의 FTIR 스펙트럼을 나타낸 도면.
도 19는 옥수수 매시(mash)의 처리 동안 습윤 케이크의 전분 농도의 FTIR 스펙트럼을 나타낸 도면.
도 20은 옥수수 매시의 처리동안 옥수수유의 FTIR 스펙트럼을 나타낸 도면.
도 21은 COFA 중 아이소부탄올의 실시간 측정을 나타낸 도면.
The accompanying drawings, which are incorporated in and form a part of this specification, illustrate the present invention and, together with the description, serve to explain the principles of the invention and to enable those skilled in the art to make and use the invention.
BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 schematically depicts an exemplary process and system of the present invention in which undissolved solids are removed after liquefaction and prior to fermentation through separation.
Figure 2 schematically illustrates an exemplary process and system of the present invention wherein the ISPR is performed downstream of the fermentation section;
Figure 3 schematically illustrates another exemplary alternative process and system of the present invention in which an oil stream is discharged.
Figure 4 schematically depicts another exemplary alternative process and system of the present invention wherein the wet cake undergoes a wash cycle.
5 schematically illustrates another exemplary alternative process and system of the present invention in which the oil stream is discharged and the wet cake undergoes a wash cycle.
6A and 6B illustrate another exemplary alternative of the present invention in which the aqueous solution and the wet cake are compounded and guided to the fermentation section (Fig. 6A) and the aqueous solution, oil, and wet cake are compounded and guided to the fermentation section ≪ RTI ID = 0.0 > schematically < / RTI >
Figures 7A-7D schematically illustrate exemplary alternative processes and systems of the present invention where the aqueous solution undergoes conversion (e.g., hydrolysis, transesterification) and / or deactivation.
Figure 8 schematically illustrates an exemplary fermentation process of the present invention, including downstream processing.
Figure 9 schematically illustrates an exemplary fermentation process of the present invention, including downstream processing.
Figures 10A-10M illustrate various systems that may be used in the processes described herein.
Figures 11A and 11B schematically illustrate a multiple pass extractant flow system.
Figure 12 schematically illustrates an exemplary fermentation process of the present invention using on-line, in-line, at-line, and / or real-time measurements to monitor the fermentation process.
Figures 13A and 13B schematically illustrate an exemplary process of the present invention for alleviating the formation of a rag layer.
Figure 14 schematically illustrates an exemplary process of the present invention, including fermentation, extraction, and distillation processes.
Figure 15 shows the effect of fermentation broth to extractor ratio (aqueous / organic) on extraction column efficiency.
Figures 16a and 16b illustrate the effect of ISPR using an external extraction column on isobutanol concentration and glucose profile.
Figure 17 shows the effect of ISPR using a mix-settler on isobutanol removal rate.
18 shows FTIR spectra of various starch concentrations using in-line measurements.
Figure 19 shows the FTIR spectrum of the starch concentration of the wet cake during the processing of maize mash.
Figure 20 shows the FTIR spectrum of corn oil during the processing of corn mash.
Figure 21 shows real time measurement of isobutanol in COFA.

달리 정의되지 않으면, 본 명세서에서 사용된 모든 기술 및 과학 용어는 본 발명이 속하는 기술 분야의 숙련자가 일반적으로 이해하는 것과 동일한 의미를 갖는다. 상충될 경우, 정의를 비롯한 본 명세서가 좌우할 것이다. 또한, 문맥에 의해 다르게 필요로 하지 않는 한, 단수의 용어는 복수를 포함할 것이며, 복수의 용어는 단수를 포함할 것이다. 본 명세서에 언급된 모든 간행물, 특허 및 기타 참조문헌은 본 명세서에 전체적으로 참고로 포함된다.Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In case of conflict, the present specification, including definitions, will control. Also, unless the context requires otherwise, the singular terms will include the plural, and the plural terms will include the singular. All publications, patents, and other references mentioned herein are incorporated by reference in their entirety.

본 발명을 추가로 정의하기 위하여, 하기의 용어 및 정의가 본 명세서에 제공된다.In order to further define the present invention, the following terms and definitions are provided herein.

본 명세서에서 사용되는 용어 "구성하다", "구성하는", "포함하다", "포함하는", "갖다", "갖는", "함유하다" 또는, "함유하는" 또는 그들의 임의의 다른 변이형은 임의의 다른 정수 또는 정수의 그룹의 배제가 아닌, 언급된 정수 또는 정수의 그룹의 포함을 암시하는 것으로 이해될 것이다. 예를 들어, 요소들의 목록을 포함하는 조성물, 혼합물, 공정, 방법, 물품, 또는 장치는 반드시 그러한 요소만으로 제한되지 않으며, 명확하게 열거되지 않거나 그러한 조성물, 혼합물, 공정, 방법, 물품, 또는 장치에 내재적인 다른 요소를 포함할 수 있다. 더욱이, 명백히 반대로 기술되지 않는다면, "또는"은 포괄적인 '또는'을 말하며 배타적인 '또는'을 말하는 것은 아니다. 예를 들어, 조건 A 또는 B는 하기 중 어느 하나에 의해 만족된다: A는 참 (또는 존재함)이고 B는 거짓 (또는 존재하지 않음), A는 거짓 (또는 존재하지 않음)이고 B는 참 (또는 존재함), A 및 B가 모두가 참 (또는 존재함)이다.As used herein, the terms "comprise," "comprise," "include," "include," "have," "having," " It will be understood that the type does not imply the inclusion of any other integer or group of integers, but rather the inclusion of a group of integers or integers mentioned. For example, a composition, mixture, process, method, article, or apparatus that comprises a list of elements is not necessarily limited to such elements, and may be applied to other compositions, mixtures, processes, Other elements may be implicit. Moreover, unless expressly stated to the contrary, "or" does not mean " comprehensive " or " exclusive " For example, the condition A or B is satisfied by either: A is true (or exists), B is false (or not present), A is false (or nonexistent) (Or present), A and B are both true (or present).

또한, 본 발명의 요소 또는 성분 앞의 부정 관사 ("a" 및 "an")는 요소 또는 성분의 경우, 즉, 출현의 수에 관해서는 비제한적인 것으로 의도된다. 따라서, 부정 관사 ("a" 또는 "an")는 하나 또는 적어도 하나를 포함하는 것으로 파악되어야 하며, 당해 요소 또는 성분의 단수형은 그 수가 명백하게 단수임을 의미하는 것이 아니라면 복수도 포함한다.It is also intended that the abbreviations ("a" and "an") preceding the elements or components of the invention are non-limiting in the case of an element or component, ie, the number of occurrences. Accordingly, it is to be understood that "a" or "an" includes one or at least one, and the singular form of the element or component includes plural unless the number clearly signifies a singular.

본 명세서에 사용되는 바와 같이 용어 "발명" 또는 "본 발명"은 비제한적인 용어이며, 본 발명의 임의의 단일의 실시 형태를 언급하는 것으로 의도되지 않고, 출원서에 기재된 바와 같은 모든 가능한 실시 형태들을 포함한다.As used herein, the term " invention "or" invention "is a non-limiting term and is not intended to refer to any single embodiment of the present invention and includes all possible embodiments .

본 명세서에 사용되는 바와 같이, 이용된 발명의 성분 또는 반응물의 양을 수식하는 용어 "약"은, 예를 들어, 실제에서 농축물 또는 용액을 제조하는데 사용되는 전형적인 측정 및 액체 취급 절차; 이들 절차에서의 우발적인 오차; 조성물을 제조하거나 방법을 실행하기 위해 이용된 성분의 제조, 공급원 또는 순도의 차이 등을 통해 일어날 수 있는 수치적 양의 변화를 지칭한다. 용어 "약"은 또한 특정 초기 혼합물로부터 유발되는 조성물에 대한 상이한 평형 조건으로 인해 달라지는 양을 포함한다. 용어 "약"에 의한 수식 여부를 불문하고, 특허청구범위는 분량의 균등물을 포함한다. 일 실시형태에서, 용어 "약"은 기재된 수치적 값의 10% 이내, 또는 기재된 수치적 값의 5% 이내를 의미한다.As used herein, the term "about" for modifying the ingredients of the invention or the amount of reactants used includes, for example, typical measurement and liquid handling procedures used to prepare concentrates or solutions in practice; Accidental errors in these procedures; Quot; refers to a change in the numerical amount that can occur through, for example, the manufacture of the ingredients used to make the composition or perform the method, the source or the difference in purity, and the like. The term " about "also includes amounts that vary due to different equilibrium conditions for the composition resulting from a particular initial mixture. Whether or not the term is defined by the term " about, " the claims include equivalents of the amount. In one embodiment, the term " about "means within 10% of the stated numerical value or within 5% of the stated numerical value.

본 명세서에 사용되는 바와 같이 "바이오매스"는, 옥수수, 사탕수수, 밀, 셀룰로오스계 또는 리그노셀룰로오스계 물질과 같은 천연 자원으로부터 유래되는 임의의 당 및 전분을 포함하는 발효가능한 당 및/또는 전분을 제공하는 가수분해성 다당류, 및 셀룰로오스, 헤미셀룰로오스, 리그닌, 전분, 올리고당류, 이당류 및/또는 단당류를 포함하는 물질, 및 이들의 혼합물을 함유하는 천연물을 지칭한다. 바이오매스는 또한 단백질 및/또는 지질과 같은 추가적인 성분을 포함할 수 있다. 바이오매스는 단일의 공급원으로부터 유래될 수 있거나, 바이오매스는 하나를 초과하는 공급원으로부터 유래되는 혼합물을 포함할 수 있다. 예를 들어, 바이오매스는 옥수수 속대(corn cob)와 옥수수 대(corn stover)의 혼합물, 또는 풀과 잎의 혼합물을 포함할 수 있다. 바이오매스는 바이오에너지 작물, 농업 잔사(agricultural residue), 도시 고형 폐기물 (municipal solid waste), 산업 고형 폐기물, 종이 제조로부터의 슬러지, 정원 폐기물 (yard waste), 목재 및 삼림 폐기물 (예를 들어, 삼림 간벌)을 포함하지만 이에 한정되지 않는다. 바이오매스의 예에는, 옥수수, 옥수수 속대, 작물 잔사, 예를 들어, 옥수수 껍질(corn husk), 옥수수 대, 풀, 밀, 호밀, 밀짚, 스펠트(spelt), 라이밀(triticale), 보리, 보리짚, 귀리, 건초, 벼, 볏짚, 스위치그래스(switchgrass), 감자, 고구마, 카사바, 뚱딴지(Jerusalem artichoke), 사탕수수 버개스(sugar cane bagasse), 수수, 사탕수수, 사탕무, 사료용 비트(fodder beet), 대두, 팜, 코코넛, 평지씨, 잇꽃, 해바라기, 기장, 유칼립투스, 억새(miscanthus), 곡물을 제분하여 얻어지는 성분, 나무 (예를 들어, 가지, 뿌리, 잎), 목재칩, 톱밥, 관목 및 덤불, 채소, 과일, 꽃, 거름, 및 이들의 혼합물이 포함되지만 이로 한정되지 않는다. 예를 들어, 발효를 목적으로 바이오매스를 처리하기 위한 본 기술 분야에 공지된 임의의 처리, 예를 들어, 밀링 및 액화에 의해 바이오매스로부터 매시, 즙, 당밀, 또는 가수분해물이 형성될 수 있다. 예를 들어, 본 명세서에 참고로 포함되는 미국 특허 출원 공개 제2007/0031918호에 개시된 저 암모니아 전처리와 같은, 당업자에게 공지된 임의의 방법에 의해 셀룰로오스계 및/또는 리그노셀룰로오스계 바이오매스를 처리하여, 발효가능한 당을 함유하는 가수분해물을 얻을 수 있다. 셀룰로오스계 및/또는 리그노셀룰로오스계 바이오매스의 효소적 당화는 전형적으로 셀룰로오스 및 헤미셀룰로오스를 분해하기 위한 효소 컨소시엄 (예를 들어, 셀룰라아제, 자일라나아제, 글루코시다아제, 글루카나아제, 리아제)을 사용하여, 글루코스, 자일로스, 및 아라비노스를 포함하는 당을 함유하는 가수분해물을 생성한다. 셀룰로오스계 및/또는 리그노셀룰로오스계 바이오매스에 적합한 당화 효소는 문헌[Lynd, et al. (Microbiol. Mol. Biol. Rev. 66:506-577, 2002)에서 검토된다.As used herein, "biomass" refers to a fermentable sugar and / or starch comprising any sugars and starches derived from natural sources such as corn, sugar cane, wheat, cellulosic or lignocellulosic materials Hydrolysable polysaccharides which provide a hydrophilic nature, and substances comprising cellulose, hemicellulose, lignin, starch, oligosaccharides, disaccharides and / or monosaccharides, and mixtures thereof. The biomass may also contain additional components such as proteins and / or lipids. The biomass may be derived from a single source, or the biomass may comprise a mixture derived from more than one source. For example, the biomass may comprise a mixture of corn cob and corn stover, or a mixture of grass and leaves. Biomass can be used to produce bioenergy crops, agricultural residues, municipal solid waste, industrial solid waste, sludge from paper manufacturing, yard waste, wood and forest wastes (for example, forests ≪ / RTI > thinning). Examples of biomass include corn, corncobs, crop residues such as corn husks, cornstalks, grasses, wheat, rye, straw, spelt, triticale, barley, Sugar cane bagasse, sorghum, sugar beet, beet fodder (fodder), barley straw, oats, hay, rice, rice straw, switchgrass, potatoes, sweet potatoes, cassava, Jerusalem artichoke, sugar cane bagasse, beet), soybean, palm, coconut, flat seed, safflower, sunflower, millet, eucalyptus, miscanthus, components obtained by milling grain, wood (eg, branches, roots, leaves) Shrubs and bushes, vegetables, fruits, flowers, manure, and mixtures thereof. For example, mash, juice, molasses, or hydrolyzate may be formed from the biomass by any process known in the art for processing biomass for fermentation purposes, for example, milling and liquefaction . For example, cellulosic and / or lignocellulosic biomass may be treated by any method known to those skilled in the art, such as low ammonia pretreatment as disclosed in U.S. Patent Application Publication No. 2007/0031918, which is incorporated herein by reference. Whereby a hydrolyzate containing fermentable sugar can be obtained. Enzymatic saccharification of cellulosic and / or lignocellulosic biomass typically involves the use of an enzyme consortium (e.g., cellulase, xylanase, glucosidase, glucanase, lyase) to degrade cellulose and hemicellulose To produce a hydrolyzate containing sugars, including glucose, xylose, and arabinose. Suitable saccharogenic enzymes for cellulosic and / or lignocellulosic biomass are described in Lynd, et al. (Microbiol. Mol. Biol. Rev. 66: 506-577, 2002).

본 명세서에 사용되는 바와 같이 "발효가능한 탄소원" 또는 "발효가능한 탄소 기질"은 미생물에 의해 대사될 수 있는 탄소원을 지칭한다. 적합한 발효가능한 탄소원에는 단당류, 예를 들어, 글루코스 또는 프럭토스; 이당류, 예를 들어, 락토스 또는 수크로스; 올리고당류; 다당류, 예를 들어, 전분 또는 셀룰로오스; 일원자 탄소 기질(one carbon substrate); 및 이들의 혼합물이 포함되지만 이에 한정되지 않는다.As used herein, "fermentable carbon source" or "fermentable carbon substrate" refers to a carbon source that can be metabolized by a microorganism. Suitable fermentable carbon sources include monosaccharides, such as glucose or fructose; Disaccharides, for example, lactose or sucrose; Oligosaccharides; Polysaccharides, such as starch or cellulose; One carbon substrate; And mixtures thereof.

본 명세서에 사용되는 바와 같이 "발효가능한 당"은 발효 생성물의 생성을 위해 본 명세서에 개시된 미생물에 의해 대사될 수 있는 하나 이상의 당을 지칭한다.As used herein, "fermentable sugar" refers to one or more sugars that can be metabolized by the microorganisms described herein for the production of fermentation products.

본 명세서에 사용되는 바와 같이 "공급원료"는 발효 공정에서의 공급물을 지칭하는데, 상기 공급물은 용해되지 않은 고형물 및 오일과 함께 또는 없이 발효가능한 탄소원을 함유하고, 적용가능한 경우에, 상기 공급물은 발효가능한 탄소원이 추가의 처리에 의해, 예를 들어, 액화, 당화, 또는 다른 공정에 의해 전분으로부터 제거되거나 또는 복합당의 분해로부터 얻어지기 전 또는 후에 발효가능한 탄소원을 함유한다. 공급원료는 바이오매스를 포함하거나 바이오매스로부터 유래될 수 있다. 적합한 공급원료에는 호밀, 밀, 옥수수, 옥수수 매시, 사탕수수, 사탕수수 매시, 보리, 셀룰로오스계 물질, 리그노셀룰로오스계 물질, 또는 이들의 혼합물이 포함되지만 이에 한정되지 않는다. "공급원료 오일"을 언급하는 경우, 이 용어는 주어진 공급원료로부터 생성되는 오일을 포함하는 것으로 인식될 것이다.As used herein, "feedstock" refers to a feedstock in a fermentation process that contains a carbon source that is fermentable with or without undissolved solids and oil, and where applicable, Water contains a carbon source that can ferment before or after the fermentable carbon source is removed from the starch by further treatment, for example, liquefaction, saccharification, or other processes, or from the degradation of the conjugated saccharide. The feedstock may include biomass or may be derived from biomass. Suitable feedstocks include, but are not limited to, rye, wheat, corn, maize, sugarcane, sorghum, barley, cellulosic materials, lignocellulosic materials, or mixtures thereof. When reference is made to "feedstock oil ", it will be appreciated that the term encompasses oils resulting from a given feedstock.

본 명세서에 사용되는 바와 같이 "발효 브로쓰"는 물, 발효가능한 탄소원 (예를 들어, 당), 용해된 고형물, 선택적으로 발효 생성물 (예를 들어, 생성물 알코올)을 생성하는 미생물, 선택적으로 발효 생성물 (예를 들어, 생성물 알코올), 및 기타 성분들의 혼합물을 지칭한다. 일부 실시 형태에서, 발효 브로쓰는 발효기 내에 수용된 물질을 지칭하는데, 발효기에서는 미생물에 의한 발효가능한 탄소원의 대사에 의해 발효 생성물 (예를 들어, 생성물 알코올)이 제조된다. 때때로, 본 명세서에 사용되는 바와 같이, 용어 "발효 브로쓰"는 "발효 배지" 또는 "발효 혼합물"과 동의어로 사용될 수 있다. 일부 실시 형태에서, 생성물 알코올을 포함하는 발효 브로쓰는 발효 비어(fermentation beer) 또는 비어로 지칭될 수 있다.As used herein, "fermentation broth" includes water, fermentable carbon sources (e.g., sugars), dissolved solids, optionally microorganisms that produce fermentation products (e. G., Product alcohols) Products (e. G., Product alcohols), and mixtures of other ingredients. In some embodiments, the fermentation broth refers to a material contained in a fermenter wherein fermentation products (e.g., product alcohols) are produced by metabolism of fermentable carbon sources by microorganisms. Sometimes, as used herein, the term "fermentation broth" may be used synonymously with "fermentation medium" or "fermentation mixture ". In some embodiments, a fermentation broth comprising the product alcohol may be referred to as a fermentation beer or a via.

본 명세서에 사용되는 바와 같이 "발효기" 또는 "발효 용기"는 발효 반응이 수행되어 발효가능한 탄소원으로부터 발효 생성물 (예를 들어, 에탄올 또는 부탄올과 같은 생성물 알코올)이 생성되는 유닛을 지칭한다. 용어 "발효기"는 본 명세서에서 "발효 용기"와 동의어로 사용될 수 있다.As used herein, a "fermenter" or "fermentation vessel" refers to a unit in which a fermentation reaction is performed to produce fermentation products (e.g., product alcohols such as ethanol or butanol) from fermentable carbon sources. The term "fermenter" may be used herein synonymously with "fermentation vessel ".

본 명세서에 사용되는 바와 같이 "액화 유닛"은 액화가 수행되는 유닛을 지칭한다. 액화는 공급원료로부터 올리고당류가 방출되는 공정이다. 공급원료가 옥수수인 일부 실시 형태에서, 액화 동안 옥수수 전분 내용물로부터 올리고당류가 방출된다.As used herein, a "liquefying unit" refers to a unit on which liquefaction is performed. Liquefaction is the process by which oligosaccharides are released from the feedstock. In some embodiments where the feedstock is corn, oligosaccharides are released from the corn starch content during liquefaction.

본 명세서에 사용되는 바와 같이 "당화 유닛"은 당화 (즉, 올리고당류의 단당류로의 분해)가 수행되는 유닛을 지칭한다. 발효와 당화가 동시에 일어나는 경우, 당화 유닛과 발효기는 동일 유닛일 수 있다.As used herein, the term "glycation unit" refers to a unit in which saccharification (i.e., decomposition of oligosaccharides into monosaccharides) is performed. When fermentation and saccharification occur at the same time, the saccharification unit and the fermentation unit may be the same unit.

본 명세서에 사용되는 바와 같이 "당"은 올리고당류, 이당류, 단당류 및/또는 이들의 혼합물을 지칭한다. 또한, 용어 "당류"는 전분, 덱스트란, 글리코겐, 셀룰로오스, 펜토산뿐만 아니라 당을 포함하는 탄수화물을 포함한다.As used herein, "sugar" refers to oligosaccharides, disaccharides, monosaccharides, and / or mixtures thereof. In addition, the term "saccharide" includes starch, dextran, glycogen, cellulose, pentanoic acid as well as carbohydrates including sugars.

본 명세서에 사용되는 바와 같이, "당화 효소"는 다당류 및/또는 올리고당류, 예를 들어, 전분 또는 글리코겐의 알파-1,4-글루코사이드 결합을 가수분해할 수 있는 하나 이상의 효소를 지칭한다. 당화 효소는 셀룰로오스계 또는 리그노셀룰로오스계 물질을 가수분해할 수 있는 효소를 또한 포함할 수 있다.As used herein, "glycosylation enzyme" refers to one or more enzymes capable of hydrolysing an alpha-1,4-glucoside bond of polysaccharides and / or oligosaccharides, such as starch or glycogen. The saccharifying enzyme may also include enzymes capable of hydrolyzing cellulose-based or lignocellulosic-based materials.

본 명세서에 사용되는 바와 같이 "용해되지 않은 고형물"은 공급원료의 발효가능하지 않은 부분, 예를 들어, 배아(germ), 섬유, 글루텐, 및 수성 매질에서 용해되지 않는 임의의 추가적인 성분을 지칭한다. 예를 들어, 공급원료의 발효가능하지 않은 부분에는, 고형물로서 잔류하여 발효 브로쓰로부터 액체를 흡수할 수 있는 공급원료의 부분이 포함된다.As used herein, "undissolved solids" refers to any non-fermentable portion of the feedstock, for example, germs, fibers, gluten, and any additional ingredients that are not soluble in the aqueous medium . For example, in the non-fermentable portion of the feedstock, a portion of the feedstock that remains as a solids and is capable of absorbing liquid from the fermentation broth is included.

본 명세서에 사용되는 바와 같이 "오일"은 식물 (예를 들어, 바이오매스) 또는 동물로부터 얻어지는 지질을 지칭한다. 오일의 예에는, 탤로우(tallow), 옥수수유, 카놀라유, 카프릭/카프릴릭 트라이글리세라이드, 피마자유, 코코넛유, 면실유, 어유, 호호바유, 라드유, 아마인유, 우족유(neetsfoot), 오이티시카유, 팜유, 땅콩유, 평지씨유, 미강유, 잇꽃유, 대두유, 해바라기유, 동유, 자트로파유, 및 식물유 블렌드가 포함되지만 이로 한정되지 않는다.As used herein, "oil" refers to a lipid obtained from a plant (e.g., biomass) or an animal. Examples of oils are tallow, corn oil, canola oil, capric / caprylic triglyceride, castor oil, coconut oil, cottonseed oil, fish oil, jojoba oil, rad oil, linseed oil, neetsfoot, , Palm oil, peanut oil, rapeseed oil, rice bran oil, safflower oil, soybean oil, sunflower oil, tung oil, jatropha oil, and vegetable oil blend.

본 명세서에 사용되는 바와 같이 "생성물 알코올"은 발효가능한 탄소 기질의 공급원으로서 바이오매스를 이용하는 발효 공정에서 미생물에 의해 생성될 수 있는 임의의 알코올을 지칭한다. 생성물 알코올에는, C1 내지 C8 알킬 알코올이 포함되지만 이에 한정되지 않는다. 일부 실시 형태에서, 생성물 알코올은 C2 내지 C8 알킬 알코올이다. 다른 실시 형태에서, 생성물 알코올은 C2 내지 C5 알킬 알코올이다. C1 내지 C8 알킬 알코올에는, 메탄올, 에탄올, 프로판올, 부탄올, 펜탄올, 및 헥산올이 포함되지만 이에 한정되지 않는 것으로 인식될 것이다. 마찬가지로, C2 내지 C8 알킬 알코올에는, 에탄올, 프로판올, 부탄올, 펜탄올, 및 헥산올이 포함되지만 이에 한정되지 않는다. 일부 실시 형태에서, 생성물 알코올에는 또한 퓨젤 알코올 (또는 퓨젤유) 및 글리세롤이 포함될 수 있다. 생성물 알코올과 관련하여 "알코올"이 또한 본 명세서에서 사용된다.As used herein, "product alcohol" refers to any alcohol that can be produced by a microorganism in a fermentation process that utilizes biomass as a source of fermentable carbon substrate. The product alcohols include, but are not limited to, C 1 to C 8 alkyl alcohols. In some embodiments, the product alcohol is a C 2 to C 8 alkyl alcohol. In another embodiment, the product alcohol is a C 2 to C 5 alkyl alcohol. C 1 to C 8 alkyl alcohols will be understood to include, but are not limited to, methanol, ethanol, propanol, butanol, pentanol, and hexanol. Likewise, C 2 to C 8 alkyl alcohols include, but are not limited to, ethanol, propanol, butanol, pentanol, and hexanol. In some embodiments, the product alcohol may also include fucel alcohol (or fusel oil) and glycerol. "Alcohols ", in relation to product alcohols, are also used herein.

본 명세서에 사용되는 바와 같이 "부탄올"은, 부탄올 이성체인 1-부탄올 (1-BuOH), 2-부탄올 (2-BuOH), tert-부탄올 (t-BuOH), 및/또는 아이소부탄올 (iBuOH, i-BuOH, I-BUOH, iB, 2-메틸-1-프로판올로도 알려져 있음)을 개별적으로 또는 이들의 혼합물로서 지칭한다. 때때로, 부탄올의 에스테르를 지칭할 때, 용어 "부틸 에스테르" 및 "부탄올 에스테르"는 상호 교환가능하게 사용될 수 있다.As used herein, "butanol" refers to butanol isomers such as 1-butanol (1-BuOH), 2-butanol (2-BuOH), tert -butanol ( t -BuOH), and / or isobutanol i- BuOH, I-BUOH, iB, also known as 2-methyl-1-propanol) are individually or as mixtures thereof. Sometimes, when referring to esters of butanol, the terms "butyl ester" and "butanol ester" may be used interchangeably.

본 명세서에 사용되는 바와 같이 "프로판올"은 프로판올 이성체인 아이소프로판올 또는 1-프로판올을 지칭한다.As used herein, "propanol" refers to the propanol isomer, isopropanol or 1-propanol.

본 명세서에 사용되는 바와 같이 "펜탄올"은 펜탄올 이성체인 1-펜탄올, 3-메틸-1-부탄올, 2-메틸-1-부탄올, 2,2-다이메틸-1-프로판올, 3-펜탄올, 2-펜탄올, 3-메틸-2-부탄올, 또는 2-메틸-2-부탄올을 지칭한다.As used herein, "pentanol" refers to pentanol isomers such as 1-pentanol, 3-methyl-1-butanol, 2-methyl-1-butanol, 2,2- Pentanol, 2-pentanol, 3-methyl-2-butanol, or 2-methyl-2-butanol.

본 명세서에 사용되는 바와 같이 "원위치 생성물 제거 (ISPR)"는, 생성물이 생성될 때, 발효와 같은 생물학적 공정으로부터 특정 생성물을 선별적으로 제거하여 생물학적 공정에서의 그 생성물의 농도를 제어하는 것을 지칭한다.As used herein, "in situ product removal (ISPR)" refers to the selective removal of a particular product from a biological process, such as fermentation, when the product is produced, to control the concentration of that product in a biological process do.

본 명세서에 사용되는 바와 같이 "추출제"는 발효 생성물 (예를 들어, 생성물 알코올)을 추출하는 데 사용되는 용매를 지칭한다. 때때로, 본 명세서에 사용되는 바와 같이, 용어 "추출제"는 "용매"와 동의어로 사용될 수 있다.""Extractant" as used herein refers to a solvent used to extract a fermentation product (e.g., product alcohol). Sometimes, as used herein, the term "extractant" may be used synonymously with "solvent."

본 명세서에 사용되는 바와 같이 "수-비혼화성(Water-immiscible)"은, 하나의 액체상을 형성하는 것과 같은 방식으로, 발효 브로쓰와 같은 수용액과 혼합할 수 없는, 추출제 또는 용매와 같은 화학 성분을 지칭한다.&Quot; Water-immiscible ", as used herein, refers to a chemical entity, such as an extractant or solvent, that can not be mixed with an aqueous solution, such as a fermentation broth, ≪ / RTI >

본 명세서에 사용되는 바와 같이 "카르복실산"은 일반 화학식 ―COOH를 갖는 임의의 유기 화합물을 지칭하는데, 여기서, 탄소 원자는 이중 결합에 의해 산소 원자에 결합되어 카르보닐 기 (―C=O)를 이루고 단일 결합에 의해 하이드록실 기 (―OH)에 결합된다. 카르복실산은 양성자화 카르복실산의 형태, 카르복실산의 염 (예를 들어, 암모늄, 나트륨 또는 칼륨 염)의 형태 또는 양성자화 카르복실산과 카르복실산의 염의 혼합물로 존재할 수 있다. 용어 카르복실산은, 예를 들어, 바이오매스-유래 지방산 에스테르 또는 트라이글리세라이드, 다이글리세라이드, 모노글리세라이드 및 인지질의 가수분해에 의해 생성될 수 있는 바와 같은, 단일의 화학종 (예를 들어, 올레산) 또는 카르복실산들의 혼합물을 기술할 수 있다.&Quot; Carboxylic acid "as used herein refers to any organic compound having the general formula -COOH, wherein the carbon atom is bonded to the oxygen atom by a double bond to form a carbonyl group (-C = O) And is bonded to the hydroxyl group (-OH) by a single bond. The carboxylic acid may be in the form of a protonated carboxylic acid, in the form of a salt of a carboxylic acid (e.g., ammonium, sodium or potassium salt) or a mixture of a protonated carboxylic acid and a salt of a carboxylic acid. The term carboxylic acid is intended to encompass a single species (e. G., ≪ RTI ID = 0.0 > e. G., ≪ / RTI & Oleic acid) or mixtures of carboxylic acids.

본 명세서에 사용되는 바와 같이 "지방산"은, 포화되거나 불포화된, C4 내지 C28 탄소 원자 (가장 일반적으로는 C12 내지 C24 탄소 원자)를 갖는 카르복실산 (예를 들어, 지방족 모노카르복실산)을 지칭한다. 지방산은 또한 분지형 또는 비분지형일 수 있다. 지방산은 동물 또는 식물 지방, 오일 또는 왁스로부터 유래될 수 있거나, 그 내에 에스테르화된 형태로 함유되어 있을 수 있다. 지방산은 천연적으로 지방 및 지방유에서 글리세라이드의 형태로 발생할 수 있거나, 지방의 가수분해에 의해 또는 합성에 의해 얻어질 수 있다. 용어 지방산은 단일의 화학 종 또는 지방산들의 혼합물을 기술할 수 있다. 또한, 용어 지방산은 유리 지방산을 또한 포함한다."Fatty acid" as used herein refers to a saturated or unsaturated, carboxylic acid having a C 4 to C 28 carbon atom (most commonly a C 12 to C 24 carbon atom) (e.g., Gt; acid). ≪ / RTI > Fatty acids may also be branched or unbranched. Fatty acids may be derived from animal or vegetable fats, oils or waxes, or may be contained therein in esterified form. Fatty acids may occur naturally in the form of glycerides in fats and fatty oils, or may be obtained by hydrolysis of fats or by synthesis. The term fatty acid may describe a single chemical species or a mixture of fatty acids. In addition, the term fatty acid also includes free fatty acids.

본 명세서에 사용되는 바와 같이 "지방 알코올"은, 포화되거나 불포화된, C4 내지 C22 탄소 원자의 지방족 사슬을 갖는 알코올을 지칭한다.As used herein, "fatty alcohols " refers to saturated or unsaturated alcohols having an aliphatic chain of C 4 to C 22 carbon atoms.

본 명세서에 사용되는 바와 같이 "지방 알데하이드"는, 포화되거나 불포화된, C4 내지 C22 탄소 원자의 지방족 사슬을 갖는 알데하이드를 지칭한다.As used herein, "fatty aldehyde" refers to an aldehyde having a saturated or unsaturated, aliphatic chain of C 4 to C 22 carbon atoms.

본 명세서에 사용되는 바와 같이 "지방 아미드"는, 포화되거나 불포화된, C4 내지 C22 탄소 원자의 지방족 사슬을 갖는 아미드를 지칭한다.As used herein, "fatty amide" refers to an amide having a saturated or unsaturated aliphatic chain of C 4 to C 22 carbon atoms.

본 명세서에 사용되는 바와 같이 "지방 에스테르"는, 포화되거나 불포화된, C4 내지 C22 탄소 원자의 지방족 사슬을 갖는 에스테르를 지칭한다.As used herein, "fatty esters" refers to esters having a saturated or unsaturated, aliphatic chain of C 4 to C 22 carbon atoms.

본 명세서에 사용되는 바와 같이 "수성상"은, 예를 들어, 액체상 및 증기상을 함유하는, 예를 들어, 2상 혼합물의 수성상, 2개의 액체상 (예를 들어, 유기상과 수성상) 및 증기상을 함유하는 3상 혼합물의 수성상, 수성상이 다소의 양의 부유 고형물을 함유하는 2상 또는 3상 혼합물의 수성상, 또는 증기상, 유기상, 수성상 및 고체상을 포함하는 4상 혼합물의 수성상을 지칭한다. 일부 실시 형태에서, 3상 혼합물은 증기상, 액체상, 및 고체상을 포함할 수 있다. 일부 실시 형태에서, 수성상은 발효 브로쓰를 수-비혼화성 유기 추출제를 접촉시켜 얻어질 수 있다. 발효 추출을 포함하는 본 명세서에 기재된 공정의 실시 형태에서, 용어 "발효 브로쓰"는 2상 발효 추출에서의 수성상을 지칭할 수 있다.As used herein, the term "aqueous phase" refers to an aqueous phase comprising, for example, a liquid phase and a vapor phase, eg, an aqueous phase of a two phase mixture, two liquid phases (eg, an organic phase and an aqueous phase) The aqueous phase of the three phase mixture containing the vapor phase, the aqueous phase of the biphasic or ternary mixture containing the aqueous phase in an amount of suspended solids in an amount or the quaternary phase mixture comprising the vapor phase, the organic phase, the aqueous phase and the solid phase ≪ / RTI > In some embodiments, the three phase mixture may comprise a vapor phase, a liquid phase, and a solid phase. In some embodiments, the aqueous phase can be obtained by contacting the fermentation broth with a water-incompatible organic extractant. In embodiments of the processes described herein that involve fermentation extraction, the term "fermentation broth" may refer to an aqueous phase in two phase fermentation extraction.

본 명세서에 사용되는 바와 같이 "유기상"은 발효 브로쓰를 수-비혼화성 유기 추출제와 접촉시켜 얻어지는 혼합물 (예를 들어, 2상 혼합물, 3상 혼합물, 4상 혼합물)의 비수성상을 지칭한다. 때때로, 본 명세서에 사용되는 바와 같이, 용어 "유기상"은 "추출제 상"과 동의어로 사용될 수 있다.As used herein, the term "organic phase" refers to the non-aqueous phase of a mixture obtained by contacting a fermentation broth with a water-incompatible organic extractant (eg, a two-phase mixture, a three-phase mixture, a four-phase mixture) . Occasionally, as used herein, the term "organic phase" may be used synonymously with "extractant phase ".

본 명세서에 사용되는 바와 같이 "유효 역가(effective titer)"는, 발효 브로쓰 1 리터당 발효에 의해 생성되는 특정 발효 생성물 (예를 들어, 생성물 알코올)의 총량을 지칭한다.As used herein, "effective titer" refers to the total amount of a particular fermentation product (e.g., product alcohol) produced by fermentation per liter of fermented broth.

공정 스트림과 관련하여 본 명세서에 사용되는 바와 같이 "부분"은, 전체 스트림을 포함하는, 스트림의 조성을 유지하는 스트림의 임의의 단편적인 부분뿐만 아니라 스트림의 모든 성분들을 포함하는, 스트림의 임의의 성분 또는 성분들을 지칭한다.As used herein in connection with a process stream, a "portion" refers to any component of a stream, including all components of the stream, as well as any fractional portion of the stream that holds the composition of the stream, Or components.

본 발명은 발효를 사용하여 생성물 알코올과 같은 발효 생성물을 생성하는 공정 및 방법을 제공한다. 본 명세서에 기재된 공정 및 방법을 사용하여 생성될 수 있는 다른 발효 생성물에는 프로판다이올, 부탄다이올, 아세톤, 산, 예를 들어, 락트산, 아세트산, 부티르산, 및 프로피온산; 가스, 예를 들어, 수소, 메탄, 및 이산화탄소; 아미노산; 비타민, 예를 들어, 비오틴, 비타민 B2 (리보플라빈), 비타민 B12 (예를 들어, 코발아민), 아스코르브산 (예를 들어, 비타민 C), 비타민 E (예를 들어, a-토코페롤), 및 비타민 K (예를 들어, 메나퀴논); 항생물질, 예를 들어, 에리트로마이신, 페니실린, 스트렙토마이신, 및 테트라사이클린; 및 기타 생성물, 예를 들어, 시트르산, 인베르타아제, 소르비톨, 펙티나아제, 및 자일리톨이 포함된다.The present invention provides processes and methods for producing fermentation products, such as product alcohols, using fermentation. Other fermentation products that may be produced using the processes and methods described herein include propanediol, butanediol, acetone, acids such as lactic acid, acetic acid, butyric acid, and propionic acid; Gases such as, for example, hydrogen, methane, and carbon dioxide; amino acid; Vitamins such as biotin, vitamin B 2 (riboflavin), vitamin B 12 (e.g. cobalamines), ascorbic acid (e.g. vitamin C), vitamin E (e.g. a-tocopherol) And vitamin K (e.g., menaquinone); Antibiotics such as erythromycin, penicillin, streptomycin, and tetracycline; And other products such as citric acid, invertase, sorbitol, pectinase, and xylitol.

본 발명은 발효 공정에 의해 생성물 알코올을 생성하고 발효 공정에 의해 생성된 생성물 알코올을 회수하는 공정 및 시스템을 제공한다. 본 명세서에 기재된 공정의 실시 형태의 예로서, 발효기에 직접 공급원료를 도입함으로써 발효를 개시할 수 있다. 일부 실시 형태에서, 하나 이상의 발효기가 본 명세서에 기재된 공정에서 사용될 수 있다. 적합한 공급원료에는 호밀, 밀, 옥수수, 옥수수 매시, 사탕수수, 사탕수수 매시, 보리, 셀룰로오스계 물질, 리그노셀룰로오스계 물질, 또는 이들의 혼합물이 포함되지만 이에 한정되지 않는다. 이들 공급원료는 건식 밀링 또는 습식 밀링과 같은 방법을 사용하여 처리될 수 있다. 일부 실시 형태에서, 발효기로 도입하기 전에, 공급원료를 액화시켜, 용해되지 않은 고형물, 발효가능한 탄소원 (예를 들어, 당), 및 오일을 포함할 수 있는 공급원료 슬러리를 생성할 수 있다. 공급원료의 액화는, 산 공정, 효소 공정 (예를 들어, 알파-아밀라아제), 산-효소 공정, 또는 이들의 조합을 포함하지만 이에 한정되지 않는 임의의 공지된 액화 공정에 의해 달성될 수 있다. 일부 실시 형태에서, 액화는 액화 유닛에서 일어날 수 있다.The present invention provides processes and systems for producing product alcohols by fermentation processes and recovering product alcohols produced by fermentation processes. As an example of an embodiment of the process described herein, fermentation can be initiated by introducing the feedstock directly into the fermenter. In some embodiments, one or more fermenters may be used in the process described herein. Suitable feedstocks include, but are not limited to, rye, wheat, corn, maize, sugarcane, sorghum, barley, cellulosic materials, lignocellulosic materials, or mixtures thereof. These feedstocks can be processed using methods such as dry milling or wet milling. In some embodiments, prior to introduction into the fermenter, the feedstock may be liquefied to produce a feedstock slurry that may include undissolved solids, a fermentable carbon source (e.g., sugar), and an oil. Liquefaction of the feedstock can be accomplished by any known liquefaction process, including, but not limited to, an acid process, an enzymatic process (e.g., alpha-amylase), an acid-enzyme process, or a combination thereof. In some embodiments, liquefaction can occur in the liquefaction unit.

공급원료 슬러리가 발효기에 직접 공급되는 경우, 용해되지 않은 고형물 및/또는 오일이 생성물 알코올의 효율적인 제거 및 회수를 방해할 수 있다. 특히, 액체-액체 추출을 이용하여 발효 브로쓰로부터 생성물 알코올을 추출하는 경우, 용해되지 않은 고형물 (예를 들어, 미립자)의 존재는, 추출제와 발효 브로쓰 사이의 접촉을 방해하여 추출제로의 생성물 알코올의 물질 이동 속도를 감소시키고; 발효기 내에서 에멀젼을 생성하거나 증대시켜 추출제와 발효 브로쓰의 상분리를 방해하고; 추출제 및 생성물 알코올의 적어도 일부가 고형물 내에 "포획"되어 DDGS (Distillers' Dried Grains with Solubles)로서 제거될 수 있기 때문에 추출제의 회수 및 재순환의 효율을 감소시키고; 고형물이 발효기 내에서 부피를 차지하기 때문에 그리고 발효 브로쓰로부터 추출제가 더 느리게 이탈하기 때문에 발효기 부피 효율을 감소시키고; 오일에 의한 오염에 의해 추출제의 수명 주기를 단축시키는 것을 포함하지만 이로 한정되지 않는 시스템 비효율성을 야기할 수 있다. 이들 영향은 더 많은 자본 및 운영 비용을 야기할 수 있다. 또한, DDGS 내에 "포획된" 추출제는 동물 사료로서 판매하기 위한 DDGS의 가치 및 자질을 떨어뜨릴 수 있다. 따라서, 이들 문제를 피하고/거나 최소화하기 위하여, 공급원료 슬러리를 발효기에 첨가하기 전에, 용해되지 않은 고형물의 적어도 일부를 공급원료 슬러리로부터 제거할 수 있다. 용해되지 않은 고형물이 제거된 발효 브로쓰에 대해 추출이 수행될 때 추출 활성 및 생성물 알코올 생성 효율이 증가될 수 있다.When the feedstock slurry is fed directly to the fermenter, undissolved solids and / or oil may interfere with efficient removal and recovery of the product alcohol. In particular, in the case of extracting product alcohols from fermentation broth using liquid-liquid extraction, the presence of undissolved solids (e.g., microparticles) prevents the contact between the extractant and the fermentation broth, Reduce the mass transfer rate of the product alcohol; Generating or augmenting an emulsion in the fermenter to interfere with the phase separation of the extractant and the fermentation broth; Reduce the efficiency of recovery and recycling of the extractant because at least a portion of the extractant and product alcohol can be "trapped" within the solids and removed as DDGS (Distiller's Dried Grains with Solubles); Reduce the volume efficiency of the fermenter because the solids take up volume in the fermenter and because the extract is more slowly removed from the fermentation broth; Which can lead to system inefficiencies including, but not limited to, shortening the lifetime of the extractant by contamination with oil. These impacts can result in more capital and operating costs. In addition, extractives "trapped" within DDGS can degrade the value and quality of DDGS for sale as animal feed. Thus, prior to adding the feedstock slurry to the fermenter, at least a portion of the undissolved solids can be removed from the feedstock slurry to avoid and / or minimize these problems. Extraction activity and product alcohol production efficiency can be increased when extraction is carried out on fermented broth from which undissolved solids have been removed.

공급원료를 처리하여 공급원료 슬러리를 생성하고 공급원료 슬러리를 분리하여 발효가능한 탄소원을 포함하는 수성상과 고체상 (예를 들어, 습윤 케이크)을 생성하는 공정 및 시스템이 도면을 참고하여 본 명세서에 기재된다. 도 1에 나타낸 바와 같이, 일부 실시 형태에서, 시스템은 공급원료를 액화시켜 공급원료 슬러리를 생성하도록 구성된 액화부(10)를 포함한다. 예를 들어, 공급원료(12)는 (예를 들어, 액화 유닛의 입구를 통해) 액화부(10)로 도입될 수 있다. 공급원료(12)는, 당 및/또는 전분과 같은 발효가능한 탄소원을 함유하는 보리, 귀리, 호밀, 수수, 밀, 라이밀, 스펠트, 기장, 사탕수수, 옥수수, 또는 이들의 조합을 포함하지만 이에 한정되지 않는, 업계에 공지된 임의의 적합한 바이오매스 재료일 수 있다. 물이 또한 액화부(10)로 도입될 수 있다.A process and system for treating a feedstock to produce a feedstock slurry and separating the feedstock slurry to produce an aqueous phase comprising a fermentable carbon source and a solid phase (e.g., a wet cake) are described in detail herein do. As shown in Figure 1, in some embodiments, the system includes a liquefier 10 configured to liquefy a feedstock to produce a feedstock slurry. For example, the feedstock 12 may be introduced into the liquefier 10 (for example, through the inlet of the liquefier unit). Feedstock 12 includes barley, oats, rye, sorghum, wheat, lime, spelled, millet, sorghum, corn, or combinations thereof containing fermentable carbon sources such as sugars and / But not limited to, any suitable biomass material known in the art. Water may also be introduced into the liquefier 10.

공급원료(12)를 액화시키는 공정은 공급원료(12) 내의 전분을 수용성 당으로 가수분해하는 것을 포함한다. 산 공정, 효소 공정, 또는 산-효소 공정을 포함하지만 이에 한정되지 않는, 업계에서 이용되는 임의의 공지된 액화 공정뿐만 아니라 액화 유닛이 사용될 수 있다. 그러한 공정은 단독으로 또는 조합하여 사용될 수 있다. 일부 실시 형태에서, 효소 공정이 이용될 수 있으며, 적절한 효소(14), 예를 들어, 알파-아밀라아제가 액화부(10)로 도입된다. 본 발명의 시스템 및 공정에 사용될 수 있는 알파-아밀라아제의 예는 미국 특허 제7,541,026호; 미국 특허 출원 공개 제2009/0209026호; 미국 특허 출원 공개 제2009/0238923호; 미국 특허 출원 공개 제2009/0252828호; 미국 특허 출원 공개 제2009/0314286호; 미국 특허 출원 공개 제2010/02278970호; 미국 특허 출원 공개 제2010/0048446호; 미국 특허 출원 공개 제2010/0021587호에 기재되어 있으며, 각각의 전체 내용이 본 명세서에 참고로 포함된다.The process of liquefying the feedstock 12 comprises hydrolyzing the starch in the feedstock 12 to a soluble sugar. Any known liquefaction process used in the industry, including but not limited to an acid process, an enzymatic process, or an acid-enzyme process, as well as a liquefaction unit may be used. Such processes may be used alone or in combination. In some embodiments, an enzymatic process may be used and an appropriate enzyme 14, e.g., alpha-amylase, is introduced into the liquefying portion 10. Examples of alpha-amylases that can be used in the systems and processes of the present invention are described in U.S. Patent Nos. 7,541,026; U.S. Patent Application Publication No. 2009/0209026; U.S. Patent Application Publication No. 2009/0238923; U.S. Patent Application Publication No. 2009/0252828; U.S. Patent Application Publication No. 2009/0314286; U.S. Patent Application Publication No. 2010/02278970; U.S. Patent Application Publication No. 2010/0048446; U.S. Patent Application Publication No. 2010/0021587, the entire contents of each of which are incorporated herein by reference.

일부 실시 형태에서, 액화 및/또는 당화를 위한 효소는 미생물에 의해 생성될 수 있다. 그러한 효소를 생성하는 미생물의 예는 미국 특허 제7,498,159호; 미국 특허 출원 공개 제2012/0003701호; 미국 특허 출원 공개 제2012/0129229호; 국제특허 공개 WO 2010/096562호; 및 국제특허 공개 WO 2011/153516호에 기재되어 있으며, 각각의 전체 내용이 본 명세서에 참고로 포함된다. 일부 실시 형태에서, 액화 및/또는 당화를 위한 효소는 생성물 알코올을 또한 생성하는 미생물에 의해 발현될 수 있다. 일부 실시 형태에서, 액화 및/또는 당화를 위한 효소는 부탄올 생합성 경로를 또한 발현하는 미생물에 의해 발현될 수 있다. 일부 실시 형태에서, 부탄올 생합성 경로는 1-부탄올 생합성 경로, 2-부탄올 생합성 경로, 아이소부탄올 생합성 경로, 또는 2-부탄온 생합성 경로일 수 있다.In some embodiments, enzymes for liquefaction and / or glycation may be produced by microorganisms. Examples of microorganisms that produce such enzymes are described in U.S. Patent Nos. 7,498,159; U.S. Patent Application Publication No. 2012/0003701; U.S. Patent Application Publication No. 2012/0129229; International Patent Publication No. WO 2010/096562; And International Patent Publication No. WO 2011/153516, the entire contents of each of which are incorporated herein by reference. In some embodiments, the enzyme for liquefaction and / or glycation may be expressed by a microorganism that also produces a product alcohol. In some embodiments, the enzyme for liquefaction and / or glycation may be expressed by a microorganism that also expresses a butanol biosynthetic pathway. In some embodiments, the butanol biosynthetic pathway may be a 1-butanol biosynthetic pathway, a 2-butanol biosynthetic pathway, an isobutanol biosynthetic pathway, or a 2-butanone biosynthetic pathway.

공급원료(12)를 액화시키는 공정은, 발효가능한 탄소원 (예를 들어, 당) 및 용해되지 않은 고형물을 포함하는 공급원료 슬러리(16) (매시 또는 농후 매시(thick mash)로도 지칭됨)를 생성한다. 일부 실시 형태에서, 공급원료 슬러리(16)는 발효가능한 탄소원 (예를 들어, 당), 오일, 및 용해되지 않은 고형물을 포함할 수 있다. 용해되지 않은 고형물은 공급원료(12)의 발효가능하지 않은 부분일 수 있다. 일부 실시 형태에서, 공급원료(12)는 옥수수, 예를 들어, 건식 밀링된, 분획화되지 않은(unfractionated) 옥수수 낟알(kernel)일 수 있으며, 공급원료 슬러리(16)는 옥수수 매시 슬러리이다. 공급원료 슬러리(16)는 액화부(10)의 출구로부터 배출될 수 있으며, 분리부(20)로 안내될 수 있다.The process of liquefying feedstock 12 produces a feedstock slurry 16 (also referred to as a mash or thick mash) comprising a fermentable carbon source (e.g., sugar) and undissolved solids do. In some embodiments, the feedstock slurry 16 may comprise a fermentable carbon source (e. G., Sugar), oil, and undissolved solids. The undissolved solids can be a non-fermentable portion of the feedstock 12. In some embodiments, the feedstock 12 may be corn, e.g., dry milled, unfractionated corn kernel and the feedstock slurry 16 is a cornmeal slurry. The feed slurry 16 can be discharged from the outlet of the liquefier 10 and can be guided to the separator 20.

분리부(20)는 공급원료 슬러리(16)를 수용하기 위한 입구를 가지며, 공급원료 슬러리(16)로부터 용해되지 않은 고형물을 제거하도록 구성될 수 있다. 분리부(20)는 또한 오일, 및/또는 오일과 용해되지 않은 고형물을 제거하도록 구성될 수 있다. 분리부(20)는 공급원료 슬러리(16)를 교반하거나 회전시켜 액체상 또는 수용액(22)과 고체상 또는 습윤 케이크(24)를 생성할 수 있다.The separator 20 has an inlet for receiving the feedstock slurry 16 and can be configured to remove undissolved solids from the feedstock slurry 16. [ The separator 20 may also be configured to remove oil, and / or oil and undissolved solids. The separator 20 may stir or rotate the feedstock slurry 16 to produce a liquid or aqueous solution 22 and a solid or wet cake 24.

수용액(22)은, 예를 들어, 올리고당류 형태의, 당 및 물을 포함할 수 있다. 수용액(22)은 약 10 중량% 이상의 올리고당류, 약 20 중량% 이상의 올리고당류, 또는 약 30 중량% 이상의 올리고당류를 포함할 수 있다. 수용액(22)은 분리부(20)로부터 출구를 통해 배출될 수 있다. 일부 실시 형태에서, 출구는 분리부(20)의 상부 근처에 위치될 수 있다.The aqueous solution 22 may include sugars and water, for example, in the form of oligosaccharides. The aqueous solution 22 may comprise at least about 10 weight percent oligosaccharides, at least about 20 weight percent oligosaccharides, or at least about 30 weight percent oligosaccharides. The aqueous solution 22 may be discharged from the separator 20 through the outlet. In some embodiments, the outlet may be located near the top of the separator 20.

습윤 케이크(24)는 용해되지 않은 고형물을 포함할 수 있다. 습윤 케이크(24)는 분리부(20)로부터 출구를 통해 배출될 수 있다. 일부 실시 형태에서, 출구는 분리부(20)의 하부 근처에 위치될 수 있다. 습윤 케이크(24)는 또한 당 및 물의 부분을 포함할 수 있다. 수용액(22)이 분리부(20)로부터 배출된 후에, 습윤 케이크(24)는 분리부(20)에서 추가의 물로 세척될 수 있다. 대안적으로, 습윤 케이크(24)는 추가적인 분리 장치에 의해 추가의 물로 세척될 수 있다. 습윤 케이크(24)를 세척함으로써 습윤 케이크에 존재하는 당 (예를 들어, 올리고당류)이 회수될 것이며, 회수된 당 및 물은 액화부(10)로 재순환될 수 있다. 세척 후에, 습윤 케이크(24)는 임의의 적합한 공지의 공정을 통해 추가로 처리되어 DDGS (Distillers' Dried Grains with Solubles)를 형성할 수 있다. 분리부(20)에서 형성되는 습윤 케이크(24)로부터의 DDGS의 형성은 몇몇 이점을 갖는다. 용해되지 않은 고형물이 발효기로 가지 않기 때문에, DDGS는 발효기의 조건을 겪지 않는다. 예를 들어, DDGS는 발효기에 존재하는 미생물 또는 발효기에 존재할 수 있는 임의의 다른 물질 (예를 들어, 추출제 및/또는 생성물 알코올)과 접촉하지 않고, 따라서, 미생물 및/또는 다른 물질이 DDGS 내에 포획되지 않는다. 이러한 효과는 후속 처리 및 예를 들어, 동물 사료로서의 DDGS의 판매에 이득을 제공한다.The wet cake 24 may comprise undissolved solids. The wet cake 24 may be discharged from the separating portion 20 through the outlet. In some embodiments, the outlet may be located near the bottom of the separator 20. The wet cake 24 may also include sugar and portions of water. After the aqueous solution 22 is discharged from the separating section 20, the wet cake 24 can be washed with additional water in the separating section 20. Alternatively, the wet cake 24 may be washed with additional water by additional separation equipment. The sugar (e.g., oligosaccharides) present in the wet cake will be recovered by washing the wet cake 24, and the recovered sugar and water can be recycled to the liquefier 10. After washing, the wet cake 24 may be further processed through any suitable known process to form Distiller's Dried Grains with Solubles (DDGS). The formation of DDGS from the wet cake 24 formed in the separator 20 has several advantages. Since undissolved solids do not go to the fermenter, DDGS does not suffer from the conditions of the fermenter. For example, DDGS does not contact the microorganisms present in the fermenter or any other substance (e.g., extractant and / or product alcohol) that may be present in the fermenter, and therefore microorganisms and / It is not captured. This effect provides benefits for subsequent treatment and, for example, the sale of DDGS as an animal feed.

분리부(20)는, 예를 들어, 디캔터 보울 원심분리, 3상 원심분리, 디스크 스택 원심분리, 여과 원심분리, 또는 디캔터 원심분리와 같은 원심분리를 포함하는, 업계에서 이용되는 임의의 종래의 분리 장치일 수 있다. 일부 실시 형태에서, 공급원료 슬러리(16)로부터의 용해되지 않은 고형물의 제거는 여과, 진공 여과, 벨트필터, 가압 여과, 막 여과, 미세여과, 스크린을 사용한 여과, 스크린 분리, 그레이트(grate) 또는 그레이팅, 다공성 그레이팅, 부유선별, 하이드로사이클론, 필터 프레스, 스크류프레스, 중력 침강기, 와류형 분리기, 또는 액체로부터 고형물을 분리하는 데 사용될 수 있는 임의의 방법 또는 장치에 의해 달성될 수 있다. 일부 실시 형태에서, 분리부(20)는 단일 단계 공정이다. 일 실시 형태에서, 용해되지 않은 고형물을 공급원료 슬러리(16)로부터 제거하여 2개의 생성물 스트림, 예를 들어, 공급원료 슬러리(16)와 비교하여 더 낮은 농도의 고형물을 함유하는 올리고당류의 수용액 및 공급원료 슬러리(16)와 비교하여 더 높은 농도의 고형물을 함유하는 습윤 케이크를 형성할 수 있다. 또한, 예를 들어, 공급원료 슬러리(16)로부터의 고형물 제거를 위해 3상 원심분리가 이용되는 경우, 오일을 함유하는 제3 스트림이 생성될 수 있다. 이와 같이, 상이한 분리 기술들 또는 이들의 조합을 사용함으로써 다수의 생성물 스트림이 생성될 수 있다.The separation section 20 may be any conventional centrifuge such as, for example, centrifugation such as decanter bowl centrifugation, three-phase centrifugation, disk stack centrifugation, filtration centrifugation, or decanter centrifugation. Separating device. In some embodiments, the removal of undissolved solids from the feedstock slurry 16 may be accomplished by any suitable means, such as filtration, vacuum filtration, belt filtration, pressure filtration, membrane filtration, microfiltration, screen filtration, screen separation, Or by any method or apparatus that can be used to separate solids from a liquid, such as, for example, gratings, porous gratings, flotation screens, hydrocyclones, filter presses, screw presses, gravity precipitators, vortex separators, or the like. In some embodiments, the separation portion 20 is a single step process. In one embodiment, the undissolved solids are removed from the feedstock slurry 16 to form two product streams, for example, an aqueous solution of oligosaccharides containing a lower concentration of solids compared to the feedstock slurry 16, and A wet cake containing a higher concentration of solids as compared to the feedstock slurry 16 can be formed. Also, for example, if three phase centrifugation is used to remove solids from the feedstock slurry 16, a third stream containing oil may be produced. As such, multiple product streams can be generated by using different separation techniques or combinations thereof.

공급원료 슬러리의 3상 분리를 위해, 예를 들어, 공급원료 슬러리를 분리하여 2개의 액체상 (예를 들어, 수성 스트림과 오일 스트림)과 하나의 고체상 (예를 들어, 고형물 또는 습윤 케이크)을 생성하기 위해 3상 원심분리기 (예를 들어, 독일 빌시비부르크 소재의 플로트베그 아게(Flottweg AG)로부터의 플로트베그 트리칸터(Flottweg Tricanter)(등록상표) 참조)가 사용될 수 있다. 2개의 액체상을 분리하고, 예를 들어, 교차 오염을 방지하도록 2개의 배출 시스템을 통해 원심분리기의 보울로부터 디캔팅할 수 있으며, 고체상은 개별적인 배출 시스템을 통해 제거할 수 있다.For three-phase separation of the feedstock slurry, for example, the feedstock slurry is separated to produce two solid phases (e. G., An aqueous stream and an oil stream) and one solid phase (e. G., A solid or wet cake) (See, for example, Flottweg Tricanter (R) from Flottweg AG, Wiltshire, Germany) may be used to make the final product. The two liquid phases can be separated and decanted from the bowl of the centrifuge through two discharge systems, for example, to prevent cross-contamination, and the solid phase can be removed through a separate discharge system.

옥수수를 공급원료로서 사용하는 일부 실시 형태에서, 3상 원심분리기를 사용하여, 액화된 옥수수 매시로부터 고형물과 옥수수유를 동시에 제거할 수 있다. 고형물은, 액화 동안 전분이 용해성 올리고당류로 가수분해된 후에 남아 있는, 용해되지 않은 고형물일 수 있다. 옥수수유는 분쇄 및/또는 액화 동안 옥수수 낟알의 배아로부터 방출될 수 있다. 일부 실시 형태에서, 3상 원심분리기는 하나의 공급 스트림 및 3개의 출구 스트림을 가질 수 있다. 공급 스트림은, 액화 동안 생성된, 액화된 옥수수 매시로 이루어질 수 있다. 매시는 올리고당류의 수용액 (예를 들어, 액화 전분); 옥수수로부터의 불용성, 비-전분 성분으로 이루어진 용해되지 않은 고형물; 및 글리세라이드 및 유리 지방산으로 이루어진 옥수수유로 이루어질 수 있다. 3상 원심분리기로부터의 3개의 출구 스트림은, 매시로부터의 대부분의 용해되지 않은 고형물을 함유하는 습윤 케이크; 매시로부터의 대부분의 액화 전분을 함유하는 중질 원심분리액(heavy centrate) 스트림; 및 매시로부터의 대부분의 옥수수유를 함유하는 경질 원심분리액(light centrate) 스트림일 수 있다. 중질 원심분리액 스트림은 발효부로 공급될 수 있다. 습윤 케이크를 공정 재순환수(process recycle water), 예를 들어, 본 명세서에 기재된 바와 같은 증발기 응축액 및/또는 백세트(backset)로 세척하여 습윤 케이크로부터 용해성 전분을 회수할 수 있다. 경질 원심분리액 스트림은 공동-생성물(co-product)로서 판매될 수 있거나, 다른 공동-생성물로 변환될 수 있거나, 또는 옥수수유를 옥수수유 지방산 (COFA)으로 변환하는 것과 같은 처리에 사용될 수 있다. 일부 실시 형태에서, COFA는 추출제로서 사용될 수 있다.In some embodiments where corn is used as feedstock, solids and corn oil may be simultaneously removed from the liquefied corn mash using a three phase centrifuge. The solids may be undissolved solids, which remain after the starch is hydrolyzed to soluble oligosaccharides during liquefaction. The corn oil may be released from the embryo of the corn kernel during milling and / or liquefaction. In some embodiments, the three phase centrifuge may have one feed stream and three exit streams. The feed stream may consist of a liquefied corn silicate produced during liquefaction. Hourly aqueous solution of oligosaccharides (e. G., Liquefied starch); Insoluble solids consisting of insoluble, non-starch components from corn; And a corn flour consisting of glyceride and free fatty acid. The three outlet streams from the three-phase centrifuge comprise a wet cake containing most of the undissolved solids from the hour; A heavy centrate stream containing most of the liquefied starch from the hour; And a light centrate stream containing most of the corn oil from the mash. The heavy centrifuge broth stream may be fed to the fermentation section. The wet cake may be washed with process recycle water, for example, an evaporator condensate and / or a backset as described herein to recover soluble starch from the wet cake. The hard centrifuge solution stream may be sold as a co-product, converted to another co-product, or used in a process such as converting corn oil to corn oil fatty acid (COFA) . In some embodiments, COFA can be used as an extractant.

도 1을 참조하면, 수용액(22)을 발효시켜 생성물 알코올을 생성하도록 구성된 발효부(30) (또는 발효기(30))는 수용액(22)을 수용하기 위한 입구를 갖는다. 발효부(30)는 본 기술 분야에 공지된 임의의 적합한 발효기일 수 있다. 발효부(30)는 발효 브로쓰를 포함할 수 있다. 일부 실시 형태에서, 동시 당화 및 발효 (SSF)가 발효부(30) 내에서 일어날 수 있다. 산 공정, 효소 공정, 또는 산-효소 공정을 포함하지만 이로 한정되지 않는, 업계에서 이용되는 임의의 공지된 당화 공정이 사용될 수 있다. 일부 실시 형태에서, 수용액(22) 내의 올리고당류를 가수분해하여 단당류를 형성하기 위해, (예를 들어, 글루코아밀라아제와 같은) 효소(38)를 발효부(30)의 입구로 도입할 수 있다. 본 발명의 시스템 및 공정에 사용될 수 있는 글루코아밀라아제의 예는 미국 특허 제7,413,887호; 미국 특허 제7,723,079호 미국 특허 출원 공개 제2009/0275080호; 미국 특허 출원 공개 제2010/0267114호; 미국 특허 출원 공개 제2011/0014681호; 및 미국 특허 출원 공개 제2011/0020899호에 기재되어 있으며, 각각의 전체 내용이 본 명세서에 참고로 포함된다. 일부 실시 형태에서, 글루코아밀라아제는 미생물에 의해 발현될 수 있다. 일부 실시 형태에서, 글루코아밀라아제는, 생성물 알코올을 또한 생성하는 미생물에 의해 발현될 수 있다. 일부 실시 형태에서, 글루코아밀라아제는, 부탄올 생합성 경로를 또한 발현하는 미생물에 의해 발현될 수 있다. 일부 실시 형태에서, 부탄올 생합성 경로는 1-부탄올 생합성 경로, 2-부탄올 생합성 경로, 아이소부탄올 생합성 경로, 또는 2-부탄온 생합성 경로일 수 있다.1, a fermentation section 30 (or a fermenter 30) configured to ferment an aqueous solution 22 to produce a product alcohol has an inlet for receiving an aqueous solution 22. The fermentation section 30 may be any suitable fermenter known in the art. The fermentation section 30 may include a fermentation broth. In some embodiments, simultaneous saccharification and fermentation (SSF) may occur in the fermentation section 30. [ Any known saccharification process used in the art may be used, including, but not limited to, acid processing, enzymatic processing, or acid-enzyme processing. In some embodiments, an enzyme 38 (such as, for example, glucoamylase) can be introduced into the inlet of fermentation section 30 to hydrolyze oligosaccharides in aqueous solution 22 to form a monosaccharide. Examples of glucoamylases that can be used in the systems and processes of the present invention are described in U.S. Patent No. 7,413,887; U.S. Patent No. 7,723,079, U.S. Patent Application Publication No. 2009/0275080; U.S. Patent Application Publication No. 2010/0267114; U.S. Patent Application Publication No. 2011/0014681; And U.S. Patent Application Publication No. 2011/0020899, the entire contents of each of which are incorporated herein by reference. In some embodiments, the glucoamylase can be expressed by a microorganism. In some embodiments, the glucoamylase can be expressed by a microorganism that also produces a product alcohol. In some embodiments, the glucoamylase can be expressed by a microorganism that also expresses a butanol biosynthetic pathway. In some embodiments, the butanol biosynthetic pathway may be a 1-butanol biosynthetic pathway, a 2-butanol biosynthetic pathway, an isobutanol biosynthetic pathway, or a 2-butanone biosynthetic pathway.

일부 실시 형태에서, 글루코아밀라아제와 같은 효소가 액화부에 첨가될 수 있다. 액화부에 대한 글루코아밀라아제와 같은 효소의 첨가는 공급원료 슬러리 또는 액화된 매시의 점도를 감소시킬 수 있으며 분리 효율을 개선할 수 있다. 일부 실시 형태에서, 공급원료 슬러리의 점도를 감소시킬 수 있는 임의의 효소가 사용될 수 있다 (예를 들어, 미국 미주리주 세인트루이스 소재의 시그마-알드리치(Sigma-Aldrich)로부터의 비스코자임(Viscozyme)(등록상표)). 공급원료의 점도는 본 기술 분야에 공지된 임의의 방법 (예를 들어, 점도계, 레오미터)에 의해 측정될 수 있다.In some embodiments, an enzyme such as glucoamylase may be added to the liquefied portion. The addition of enzymes such as glucoamylase to the liquefied part can reduce the viscosity of the feedstock slurry or liquefied hourly and improve the separation efficiency. In some embodiments, any enzyme capable of reducing the viscosity of the feedstock slurry can be used (see, for example, Viscozyme from Sigma-Aldrich, St. Louis, Mo., brand)). The viscosity of the feedstock can be measured by any method known in the art (e.g., viscometer, rheometer).

미생물(32)이 발효부(30)에 도입될 수 있다. 일부 실시 형태에서, 미생물(32)은 발효 브로쓰 내에 포함될 수 있다. 일부 실시 형태에서, 미생물(32)은 개별적인 용기 또는 탱크 (예를 들어, 증식 탱크)에서 증식될 수 있다. 일부 실시 형태에서, 증식 탱크로부터의 미생물을 사용하여 하나 이상의 발효기를 접종할 수 있다. 일부 실시 형태에서, 본 명세서에 기재된 공정 및 시스템에서 하나 이상의 증식 탱크가 사용될 수 있다. 일부 실시 형태에서, 증식 탱크는 발효기의 약 2% 내지 약 5% 크기일 수 있다. 일부 실시 형태에서, 증식 탱크는 하기 매시, 물, 효소, 영양분, 추출제, 및 미생물 중 하나 이상을 포함할 수 있다. 일부 실시 형태에서, 생성물 알코올이 증식 탱크에서 생성될 수 있다.The microorganism 32 can be introduced into the fermentation section 30. [ In some embodiments, microbes 32 may be included in the fermentation broth. In some embodiments, the microorganisms 32 may be grown in separate containers or tanks (e.g., a proliferation tank). In some embodiments, microorganisms from the breeding tank can be used to inoculate one or more fermenters. In some embodiments, one or more propagation tanks may be used in the processes and systems described herein. In some embodiments, the growth tank may be about 2% to about 5% of the size of the fermenter. In some embodiments, the propagation tank may comprise one or more of the following masses, water, enzymes, nutrients, extractants, and microorganisms. In some embodiments, the product alcohol may be produced in the growth tank.

일부 실시 형태에서, 미생물(32)은 박테리아, 시아노박테리아, 사상균(filamentous fungi), 또는 효모일 수 있다. 일부 실시 형태에서, 미생물(32)은 수용액(22) 중의 당을 대사시켜 생성물 알코올을 생성한다. 일부 실시 형태에서, 미생물(32)은 재조합 미생물일 수 있다. 일부 실시 형태에서, 미생물(32)은, 예를 들어, 흡착, 공유 결합, 가교결합, 포괄(entrapment), 및 캡슐화에 의해 고정화될 수 있다. 세포를 캡슐화하는 방법은, 예를 들어, 본 명세서에 참고로 포함된 미국 특허 출원 공개 제2011/0306116호에 기재된 바와 같이 본 기술분야에 공지되어 있다.In some embodiments, the microorganism 32 may be bacteria, cyanobacteria, filamentous fungi, or yeast. In some embodiments, microbes 32 metabolize sugars in aqueous solution 22 to produce product alcohols. In some embodiments, the microbe 32 may be a recombinant microorganism. In some embodiments, the microorganisms 32 can be immobilized by, for example, adsorption, covalent bonding, cross-linking, entrapment, and encapsulation. Methods of encapsulating cells are known in the art, for example, as described in U.S. Patent Application Publication No. 2011/0306116, which is incorporated herein by reference.

일부 실시 형태에서, 미생물(32)에 의해 생성물 알코올이 생성될 때 원위치 생성물 제거 (ISPR)를 이용하여 발효부(30)로부터 생성물 알코올을 제거할 수 있다. 일부 실시 형태에서, 액체-액체 추출이 ISPR을 위해 이용될 수 있다. 일부 실시 형태에서, 발효부(30)는 추출제(34)를 수용하기 위한 입구를 가질 수 있다. 일부 실시 형태에서, 추출제(34)는 발효부(30)의 하류에서 발효 브로쓰에 첨가될 수 있다. 발효부(30) 또는 발효부(30)의 하류에 추출제(34)를 첨가하는 대안적인 수단이 점선으로 나타나 있다. 일부 실시 형태에서, ISPR은 증식 탱크에서 수행될 수 있다. 일부 실시 형태에서, ISPR은 발효기 및 증식 탱크에서 수행될 수 있다. 일부 실시 형태에서, ISPR은 발효 및/또는 증식의 개시 시에 (예를 들어, 0 시간에) 수행될 수 있다. 발효 및/또는 증식을 시작할 때에 ISPR을 개시함으로써, 발효기 및 증식 탱크 내의 생성물 알코올의 농도를 낮은 수준으로 유지할 수 있으며, 그에 의해, 미생물에 대한 생성물 알코올의 영향을 최소화하고 미생물이 증가된 세포괴(cell mass)를 달성하게 할 수 있다. 일부 실시 형태에서, 추출제가 증식 탱크에 첨가될 수 있다. 일부 실시 형태에서, 추출제는 증식 탱크의 접종 전에 첨가될 수 있다. 일부 실시 형태에서, 추출제는 증식 탱크의 접종 후에 첨가될 수 있다. 일부 실시 형태에서, 추출제는 증식 탱크의 접종 후 다양한 시점에 첨가될 수 있다. 일부 실시 형태에서, 추출제가 발효기에 첨가될 수 있다. 일부 실시 형태에서, 추출제는 발효기의 접종 전에 첨가될 수 있다. 일부 실시 형태에서, 추출제는 발효기의 접종 후에 첨가될 수 있다. 일부 실시 형태에서, 추출제는 발효기의 접종 후 다양한 시점에 첨가될 수 있다. 일부 실시 형태에서, 추출제는 발효기 및 증식 탱크에 첨가될 수 있다. 액체-액체 추출의 예가 본 명세서에 기재되어 있다. 추출 발효를 사용하여 발효 브로쓰로부터 알코올을 생성하고 회수하는 공정이 미국 특허 출원 공개 제2009/0305370호; 미국 특허 출원 공개 제2010/0221802호; 미국 특허 출원 공개 제2011/0097773호; 미국 특허 출원 공개 제2011/0312044호; 미국 특허 출원 공개 제2011/0312043호; 및 국제특허 공개 WO 2011/159998호에 기재되어 있으며; 각각의 전체 내용이 본 명세서에 참고로 포함된다.In some embodiments, the product alcohol may be removed from the fermentation section 30 using in situ product removal (ISPR) when the product alcohol is produced by the microorganism 32. In some embodiments, liquid-liquid extraction may be used for ISPR. In some embodiments, the fermentation section 30 may have an inlet for receiving the extractant 34. In some embodiments, the extractant 34 may be added to the fermentation broth downstream of the fermentation section 30. An alternative means of adding the extractant 34 downstream of the fermentation section 30 or the fermentation section 30 is shown in dashed lines. In some embodiments, the ISPR can be performed in a proliferation tank. In some embodiments, the ISPR can be performed in a fermenter and a propagation tank. In some embodiments, ISPR can be performed at the start of fermentation and / or proliferation (e.g., at time zero). By initiating ISPR at the start of fermentation and / or proliferation, the concentration of product alcohol in the fermenter and the growth tank can be kept at a low level, thereby minimizing the effect of the product alcohol on the microorganism, mass can be achieved. In some embodiments, an extractant may be added to the growth tank. In some embodiments, the extractant may be added prior to inoculation of the growth tank. In some embodiments, the extractant may be added after the inoculation of the growth tank. In some embodiments, the extractant may be added at various points after inoculation of the growth tank. In some embodiments, an extractant may be added to the fermenter. In some embodiments, the extractant may be added prior to inoculation of the fermenter. In some embodiments, the extractant may be added after inoculation of the fermenter. In some embodiments, the extractant may be added at various points after inoculation of the fermenter. In some embodiments, the extractant may be added to the fermenter and the growth tank. Examples of liquid-liquid extraction are described herein. Processes for producing and recovering alcohol from fermentation broth using extractive fermentation are disclosed in U.S. Patent Application Publication Nos. 2009/0305370; U.S. Patent Application Publication No. 2010/0221802; U.S. Patent Application Publication No. 2011/0097773; U.S. Patent Application Publication No. 2011/0312044; U.S. Patent Application Publication No. 2011/0312043; And International Patent Publication No. WO 2011/159998; The entire contents of each being incorporated herein by reference.

추출제(34)는 발효 브로쓰와 접촉하여, 예를 들어, 2상 혼합물 (예를 들어, 생성물 알코올을 갖는 추출제-풍부상 및 생성물 알코올이 결핍된 수성상)을 포함하는 스트림(36)을 형성한다. 일부 실시 형태에서, 스트림(36)은, 예를 들어, 증기상, 유기상, 수성상, 및 고체상을 포함하는 4상 혼합물일 수 있다. 발효 브로쓰 내의 생성물 알코올, 또는 이의 일부가 추출제(34)로 이동된다. 일부 실시 형태에서, 스트림(36)은 발효부(30)의 출구를 통해 배출될 수 있다. 종래의 기술을 사용하여 스트림(36) 내의 추출제로부터 생성물 알코올을 분리할 수 있다.Extractant 34 is contacted with the fermentation broth and is fed to a stream 36 containing a biphasic mixture, e. G., An extractant-rich phase with product alcohol and an aqueous phase lacking product alcohol) . In some embodiments, stream 36 may be a four phase mixture, including, for example, a vapor phase, an organic phase, an aqueous phase, and a solid phase. The product alcohol, or a portion thereof, in the fermentation broth is transferred to the extractant 34. In some embodiments, the stream 36 may be discharged through the outlet of the fermentation section 30. The product alcohol can be separated from the extractant in stream 36 using conventional techniques.

일부 실시 형태에서, 발효기 내부구조물 또는 장치를 사용하여 발효 브로쓰와 추출제 사이의 상분리를 개선할 수 있다. 예를 들어, 내부구조물 또는 장치는 코어레서의 역할을 하여 발효 브로쓰와 추출제 사이의 상분리를 촉진할 수 있고/있거나 물리적 장벽으로서 작용하여 상분리를 개선할 수 있다. 이들 발효기 내부구조물 또는 장치는 또한 고형물이 추출제 상 (또는 층) 내에 침강하는 것을 방지하고, 추출제 층에 비말동반될 수 있는 수성 소적들의 합체(coalescence)를 촉진하고, 오프-가스(off-gas) (예를 들어, CO2, 공기)의 제거를 촉진할 수 있으며, 그에 의해 추출제 상 및/또는 액체-액체 계면의 외란(disturbance)을 최소화시킬 수 있다. 본 명세서에 기재된 공정 및 시스템에 사용될 수 있는 내부구조물 또는 장치의 예에는 배플, 천공판, 딥 웰(deep well), 라멜라 분리기, 콘 등이 포함되지만 이에 한정되지 않는다. 일부 실시 형태에서, 천공판은 편평한 수평 천공판일 수 있다. 일부 실시 형태에서, 콘은 도립형 콘(inverted cone) 또는 동심형 콘(들)일 수 있다. 일부 실시 형태에서, 내부구조물은 회전될 수 있다. 일부 실시 형태에서, 내부구조물 또는 장치는 발효 브로쓰와 추출제의 액체-액체 계면의 수위에 또는 그 근처에 위치될 수 있다. 일부 실시 형태에서, 코어레싱 패드(coalescing pad)를 부가할 수 있고/있거나, 수성상의 합체 및 회수를 개선하도록 출구 포트를 재위치시킬 수 있다.In some embodiments, a fermenter inner structure or device can be used to improve the phase separation between the fermentation broth and the extractant. For example, the internal structure or device can serve as a core liner to facilitate phase separation between the fermentation broth and the extractant and / or to act as a physical barrier to improve phase separation. These fermentor inner structures or devices also prevent sedimentation of the solids in the extractant phase (or layer), facilitate coalescence of aqueous droplets that can entrain entrainment in the extractant layer, and provide off- gas (e.g., CO 2 , air), thereby minimizing disturbance of the extractant phase and / or the liquid-liquid interface. Examples of internal structures or devices that can be used in the processes and systems described herein include, but are not limited to, baffles, apertured plates, deep wells, lamella separators, cones, and the like. In some embodiments, the apertured plate may be a flat horizontal apertured plate. In some embodiments, the cone may be an inverted cone or a concentric cone (s). In some embodiments, the internal structure may be rotated. In some embodiments, the internal structure or device may be located at or near the level of the liquid-liquid interface of the fermentation broth and extractant. In some embodiments, a coalescing pad may be added and / or the outlet port may be repositioned to improve the coalescence and recovery of the aqueous phase.

일부 실시 형태에서, 발효의 완료 및/또는 ISPR 전에, 스트림(35)이 발효부(30)의 출구로부터 배출될 수 있다. 배출된 스트림(35)은 미생물(32)을 포함할 수 있다. 미생물(32)은, 예를 들어, 원심분리 또는 막 여과에 의해 스트림(35)으로부터 분리될 수 있다. 일부 실시 형태에서, 발효 브로쓰에 추출제를 첨가하기 전에 미생물을 제거함으로써, 미생물은 추출제에 노출되지 않으며, 따라서 추출제가 미생물에 미칠 수 있는 임의의 악영향에 노출되지 않는다. 또한, 추출 공정의 상류에서 미생물을 제거함으로써, (예를 들어, 더 높은 KD 및/또는 더 높은 선택성의 추출제, 또는 개선된 특성을 갖지만 생체적합성이 더 낮은 추출제를 사용하고, 분리를 향상시키도록 혼합물을 가열 또는 냉각하는) 더욱 공격적인 추출 공정을 이용하여 생성물 알코올을 회수할 수 있다. 일부 실시 형태에서, 미생물(32)은 발효부(30)로 재순환될 수 있는데, 이는 생성물 알코올의 생성 속도를 증가시킬 수 있으며, 그에 의해 생성물 알코올 생성 효율의 증가를 가져올 수 있다.In some embodiments, stream 35 may be discharged from the outlet of fermentation section 30 prior to completion of fermentation and / or before ISPR. The discharged stream 35 may contain microorganisms 32. The microorganisms 32 can be separated from the stream 35 by, for example, centrifugation or membrane filtration. In some embodiments, by removing the microorganism prior to adding the extractant to the fermentation broth, the microorganism is not exposed to the extractant and thus is not exposed to any adverse effects that the extractant may have on the microorganism. Also, by removing microorganisms upstream of the extraction process (e.g., using a higher K D and / or a higher selectivity of extractant, or an extractor with improved properties, but with lower biocompatibility, A more aggressive extraction process (e.g., heating or cooling the mixture to improve it) can be used to recover the product alcohol. In some embodiments, the microorganisms 32 can be recycled to the fermentation section 30, which can increase the rate of production of the product alcohol, thereby resulting in an increase in product alcohol production efficiency.

도 2를 참조하면, 일부 실시 형태에서, ISPR은 발효부(30)의 하류에서 수행될 수 있다. 일부 실시 형태에서, 생성물 알코올 및 미생물(32)을 포함하는 스트림(33)은 발효부(30)의 출구로부터 배출될 수 있으며 하류로, 예를 들어, 생성물 알코올의 회수를 위한 추출 컬럼으로 안내될 수 있다. 일부 실시 형태에서, 스트림(33)은 ISPR 전에 미생물(32)을 분리함으로써 처리될 수 있다. 예를 들어, 스트림(33)으로부터의 미생물(32)의 제거는 원심분리, 여과, 진공 여과, 벨트필터, 가압 여과, 막 여과, 미세여과, 스크린을 사용한 여과, 스크린 분리, 그레이트 또는 그레이팅, 다공성 그레이팅, 부유선별, 하이드로사이클론, 필터 프레스, 스크류프레스, 중력 침강기, 와류형 분리기, 또는 액체로부터 고형물 (예를 들어, 미생물)을 분리하는 데 사용될 수 있는 임의의 방법 또는 분리 장치에 의해 달성될 수 있다. 미생물(32)의 제거 후에, 스트림(33)은 생성물 알코올의 회수를 위한 추출 컬럼으로 안내될 수 있다.Referring to FIG. 2, in some embodiments, the ISPR may be performed downstream of the fermentation section 30. In some embodiments, the stream 33 comprising the product alcohol and microorganisms 32 may be discharged from the outlet of the fermentation section 30 and directed downstream, for example, to an extraction column for recovery of the product alcohol . In some embodiments, stream 33 may be treated by isolating microorganisms 32 before ISPR. For example, removal of the microorganisms 32 from the stream 33 may be accomplished by centrifugation, filtration, vacuum filtration, belt filtration, pressure filtration, membrane filtration, microfiltration, screen filtration, screen separation, (E. G., Microorganisms) that can be used to separate solids (e. G., Microorganisms) from a liquid, such as, for example, water, salting, grinding, flotation, hydrocyclones, filter presses, screw presses, gravity precipitators, vortex separators, . After removal of the microorganisms 32, the stream 33 can be directed to an extraction column for recovery of the product alcohol.

본 명세서에 기재된 공정 및 시스템의 추가의 실시 형태가 도 3 내지 도6에 나타나 있다. 발효기에 추출제를 첨가하는 옵션 (예를 들어, 스트림(36)을 생성함) 또는 발효기의 하류에서 추출을 수행하는 옵션 (예를 들어, 스트림(33)을 생성함)을 포함하는, 도 3 내지 도 6은 각각 도 1 및 도 2와 유사하며, 따라서 다시 상세하게 기재하지는 않을 것이다.Additional embodiments of the processes and systems described herein are shown in Figures 3-6. (E. G., To produce stream 36), or an option to perform an extraction downstream of the fermenter (e. G., To produce stream 33) 6 are similar to FIGS. 1 and 2, respectively, and will not be described again in detail.

도 3을 참고하면, 본 발명의 시스템 및 공정은 분리부(20)의 출구로부터 오일(26)을 배출하는 것을 포함할 수 있다. 공급원료 슬러리(16)는, 발효가능한 당을 포함하는 제1 액체상 또는 수용액(22), 용해되지 않은 고형물을 포함하는 고체상 또는 습윤 케이크(24), 및 분리부(20)에서 빠져나갈 수 있는 오일(26)을 포함하는 제2 액체상으로 분리될 수 있다. 일부 실시 형태에서, 공급원료 슬러리(16)를 제1 액체상, 제2 액체상, 및 고체상으로 분리하는 것은 단일 단계로 일어날 수 있다. 일부 실시형태에서, 공급원료 (12)는 옥수수이며, 오일 (26)은 옥수수유이다. 일부 실시 형태에서, 오일(26)은 오일 저장을 위해 적합한 저장 탱크 또는 임의의 유닛으로 안내될 수 있다. 임의의 적합한 분리 장치, 예를 들어, 3상 원심분리기를 사용하여 수용액(22), 습윤 케이크(24), 및 오일(26)을 배출할 수 있다. 일부 실시 형태에서, 공급원료(12)로부터의 오일, 예를 들어, 공급원료가 옥수수인 경우 옥수수유의 일부가 습윤 케이크(24) 내에 남아 있다. 일부 실시 형태에서, 오일(26)이 분리부(20)를 통해 공급원료(12) (예를 들어, 옥수수)로부터 제거되는 경우, 발효부(30) 내의 발효 브로쓰는 감소된 양의 옥수수유를 포함한다.Referring to FIG. 3, the system and process of the present invention may include draining the oil 26 from the outlet of the separator 20. The feedstock slurry 16 comprises a first liquid or aqueous solution 22 comprising fermentable sugars, a solid or wet cake 24 comprising undissolved solids, and an oil that can escape from the separator 20 Lt; RTI ID = 0.0 > 26 < / RTI > In some embodiments, separating the feedstock slurry 16 into a first liquid phase, a second liquid phase, and a solid phase can occur in a single step. In some embodiments, the feedstock 12 is corn and the oil 26 is corn oil. In some embodiments, the oil 26 may be directed to a storage tank or any unit suitable for oil storage. The aqueous solution 22, the wet cake 24, and the oil 26 may be discharged using any suitable separation device, for example, a three phase centrifuge. In some embodiments, the oil from the feedstock 12, e.g., part of the corn oil if the feedstock is corn, remains in the wet cake 24. In some embodiments, when the oil 26 is removed from the feedstock 12 (e.g., corn) through the separating section 20, the fermentation broth in the fermentation section 30 will produce a reduced amount of corn oil .

본 명세서에 기재된 바와 같이, 일부 실시 형태에서, 오일이 공급원료 또는 공급원료 슬러리로부터 분리될 수 있으며 오일 저장 유닛에 저장될 수 있다. 예를 들어, 오일은, 3상 원심분리기 또는 기계적 추출을 포함하는 분리를 위한 임의의 적합한 수단을 사용하여, 공급원료 또는 공급원료 슬러리로부터 분리될 수 있다. 공급원료 또는 공급원료 슬러리로부터의 오일의 제거를 개선하기 위해, 오일 추출 보조제, 예를 들어, 계면활성제, 유화방지제(anti-emulsifier), 또는 응결제(flocculent)뿐만 아니라 효소가 이용될 수 있다. 오일 추출 보조제의 예에는 비-중합체성, 액체 계면활성제; 탤컴 파우더(talcum powder); 마이크로탤컴 파우더; 염 (NaOH); 탄산칼슘; 및 효소, 예를 들어, 펙티넥스(Pectinex)(등록상표) 울트라(Ultra) SP-L, 셀루클라스트(Celluclast)(등록상표), 및 비스코자임(등록상표) L (미국 미주리주 세인트루이스 소재의 시그마-알드리치), 및 NZ 33095 (미국 노스캐롤라이나주 플랭클린턴 소재의 노보자임스(Novozymes))가 포함되지만 이에 한정되지 않는다.As described herein, in some embodiments, the oil can be separated from the feedstock or feedstock slurry and stored in the oil storage unit. For example, the oil may be separated from the feedstock or feedstock slurry using any suitable means for separation, including a three-phase centrifuge or mechanical extraction. In order to improve the removal of the oil from the feedstock or feedstock slurry, an oil extraction aid, for example a surfactant, an anti-emulsifier, or a flocculent, as well as an enzyme may be used. Examples of oil extraction adjuvants include non-polymeric, liquid surfactants; Talcum powder; Micro Talcum Powder; Salt (NaOH); Calcium carbonate; And enzymes such as Pectinex TM Ultra SP-L, Celluclast TM, and Viscozyme TM L (commercially available from St. Louis, Missouri, USA) Sigma-Aldrich), and NZ 33095 (Novozymes, Flanagan, North Carolina).

도 4에 나타난 바와 같이, 오일이 개별적으로 배출되지 않는 경우, 오일은 습윤 케이크(24)와 함께 제거될 수 있다. 습윤 케이크(24)가 분리부(20)를 통해 제거될 때, 일부 실시 형태에서, 공급원료(12)로부터의 오일, 예를 들어, 공급원료가 옥수수인 경우 옥수수유의 일부가, 습윤 케이크(24) 내에 남아 있다. 습윤 케이크(24)는 혼합부(60)로 안내될 수 있으며 물 또는 다른 용매와 배합되어 습윤 케이크 혼합물(65)을 형성할 수 있다. 일부 실시 형태에서, 물은 담수, 백세트, 증자수(cook water), 공정수(process water), 루터 워터(lutter water), 증발수, 또는 발효 처리 설비에 이용가능한 임의의 물 공급원, 또는 이들의 임의의 조합일 수 있다. 습윤 케이크 혼합물(65)은 분리부(70)로 안내되어, 습윤 케이크(24)로부터 회수되는 발효가능한 당을 포함하는 세척 원심분리액(75), 및 습윤 케이크(74)를 생성한다. 세척 원심분리액(75)은 액화부(10)로 재순환될 수 있다.As shown in FIG. 4, if the oil is not discharged individually, the oil may be removed with the wet cake 24. In some embodiments, when the wet cake 24 is removed through the separator 20, the oil from the feedstock 12, for example, a portion of the corn oil if the feedstock is corn, ). The wet cake 24 may be guided to the mixing portion 60 and may be combined with water or other solvent to form a wet cake mixture 65. In some embodiments, the water may be any water source available for fresh water, back set, cook water, process water, lutter water, evaporative water, or fermentation treatment plants, Or any combination thereof. The wet cake mixture 65 is directed to the separating section 70 to produce a wash centrifuge liquid 75 containing the fermentable sugar recovered from the wet cake 24 and a wet cake 74. The washing centrifugal liquid 75 may be recycled to the liquefier 10.

일부 실시 형태에서, 분리부(70)는, 예를 들어, 디캔터 보울 원심분리, 3상 원심분리, 디스크 스택 원심분리, 여과 원심분리, 디캔터 원심분리, 여과, 진공 여과, 벨트필터, 가압 여과, 막 여과, 스크린을 사용한 여과, 스크린 분리, 그레이팅, 다공성 그레이팅, 부유선별, 하이드로사이클론, 필터 프레스, 스크류프레스, 중력 침강기, 와류형 분리기, 또는 이들의 조합을 포함하는, 고형물과 액체를 분리할 수 있는 임의의 분리 장치일 수 있다.In some embodiments, the separator 70 may be fabricated by any suitable method, such as, for example, decanter bowl centrifugation, three-phase centrifugation, disk stack centrifugation, filtration centrifugation, decanter centrifugation, filtration, vacuum filtration, belt filtration, Separating solids and liquids, including membrane filtration, screen filtration, screen separation, gratings, porous gratings, floating sorting, hydrocyclones, filter presses, screw presses, gravity settlers, vortex separators, Or any other suitable device.

일부 실시 형태에서, 습윤 케이크는 하나 이상의 세척 사이클 또는 세척 시스템을 거칠 수 있다. 예를 들어, 습윤 케이크(74)를 제2 세척 시스템으로 안내함으로써, 습윤 케이크(74)를 추가로 처리할 수 있다. 일부 실시 형태에서, 습윤 케이크(74)는 제2 혼합부(60')로 안내되어 습윤 케이크 혼합물(65')을 형성할 수 있다. 습윤 케이크 혼합물(65')은 제2 분리부(70')로 안내되어 세척 원심분리액(75') 및 습윤 케이크(74')를 생성할 수 있다. 세척 원심분리액(75')은 액화부(10)로 재순환될 수 있다. 일부 실시 형태에서, 세척 원심분리액(75')은 세척 원심분리액(75)과 배합될 수 있으며, 액화부(10)로 재순환될 수 있다. 일부 실시 형태에서, 습윤 케이크(74')는 본 명세서에 기재된 바와 같은 추가의 처리를 위해 습윤 케이크(74)와 배합될 수 있다. 일부 실시 형태에서, 분리부(70')는, 예를 들어, 디캔터 보울 원심분리, 3상 원심분리, 디스크 스택 원심분리, 여과 원심분리, 디캔터 원심분리, 여과, 진공 여과, 벨트필터, 가압 여과, 막 여과, 미세여과, 스크린을 사용한 여과, 스크린 분리, 그레이팅, 다공성 그레이팅, 부유선별, 하이드로사이클론, 필터 프레스, 스크류프레스, 중력 침강기, 와류형 분리기, 또는 이들의 조합을 포함하는, 고형물과 액체를 분리할 수 있는 임의의 분리 장치일 수 있다. 일부 실시 형태에서, 습윤 케이크는 1, 2, 3, 4, 5, 또는 그 초과의 세척 사이클 또는 세척 시스템을 거칠 수 있다.In some embodiments, the wet cake may be subjected to one or more cleaning cycles or cleaning systems. For example, by directing the wet cake 74 to the second cleaning system, the wet cake 74 can be further treated. In some embodiments, the wet cake 74 can be guided to the second mixing portion 60 'to form a wet cake mixture 65'. The wet cake mixture 65 'may be guided to the second separation portion 70' to produce a cleaning centrifuge liquid 75 'and a wet cake 74'. The cleaning centrifuge solution 75 'may be recycled to the liquefier 10. In some embodiments, the wash centrifuge solution 75 'may be combined with the wash centrifuge solution 75 and recycled to the liquefier 10. In some embodiments, the wet cake 74 'may be blended with the wet cake 74 for further processing as described herein. In some embodiments, the separating portion 70 'may be fabricated by any suitable method, including, for example, decanter bowl centrifugation, three-phase centrifugation, disk stack centrifugation, filtration centrifugation, decanter centrifugation, filtration, vacuum filtration, Wherein the solids comprise at least one of a solids and a solids mixture, the solids comprising at least one of a solids and a solids, the solids comprising at least one of the following: It may be any separating device capable of separating the liquid. In some embodiments, the wet cake may go through 1, 2, 3, 4, 5, or more wash cycles or wash systems.

임의의 적합한 공지의 방법을 통해 습윤 케이크(74)를 시럽과 배합하고 이어서 건조하여 DDGS를 형성할 수 있다. 습윤 케이크(74)로부터의 DDGS의 형성은 몇몇 이점을 갖는다. 용해되지 않은 고형물이 발효기로 가지 않기 때문에, DDGS는 포획된 추출제 및/또는 생성물 알코올을 갖지 않으며, 발효기의 조건을 겪지 않고, 발효기에 존재하는 미생물과 접촉하지 않는다. 이러한 이점은 DDGS를, 예를 들어, 동물 사료로 가공하는 것을 더 용이하게 만든다.The wet cake 74 can be combined with the syrup via any suitable known method and then dried to form DDGS. The formation of DDGS from the wet cake 74 has several advantages. Since the undissolved solids do not go to the fermenter, DDGS does not have the trapped extractant and / or product alcohol, does not undergo the conditions of the fermenter, and does not contact the microorganisms present in the fermenter. This advantage makes it easier to process DDGS, for example, into animal feed.

일부 실시 형태에서, 용해되지 않은 고형물의 일부가 발효부(30)로 안내될 수 있다. 일부 실시 형태에서, 용해되지 않은 고형물의 이러한 부분은 더 작은 입자 크기를 가질 수 있다 (예를 들어, 미분). 일부 실시 형태에서, 용해되지 않은 고형물의 이러한 부분은 전증류폐액(whole stillage)을 형성할 수 있다. 일부 실시 형태에서, 이러한 전증류폐액을 처리하여 묽은 증류폐액(thin stillage) 및 습윤 케이크를 형성할 수 있다. 일부 실시 형태에서, 전증류폐액으로부터 형성되는 습윤 케이크 및 습윤 케이크(74 및/또는 74')를 배합하고 추가로 처리하여 DDGS를 생성할 수 있다.In some embodiments, a portion of the undissolved solids may be directed to the fermentation section 30. In some embodiments, this portion of undissolved solids may have a smaller particle size (e. G., Differential). In some embodiments, this portion of undissolved solids can form a whole distillery waste. In some embodiments, such pre-distillation waste liquid may be treated to form a thin stillage and a wet cake. In some embodiments, wet cake and wet cake 74 and / or 74 'formed from pre-distillation waste liquid may be combined and further processed to produce DDGS.

도 4에 나타난 바와 같이, 오일이 습윤 케이크로부터 개별적으로 배출되지 않고 오히려 오일이 습윤 케이크의 일부로서 포함되며 궁극적으로 DDGS에 존재한다. 옥수수가 공급원료로서 이용되는 경우, 옥수수유는 트라이글리세라이드, 다이글리세라이드, 모노글리세라이드, 지방산, 및 인지질을 함유하며, 이는 동물에게 대사가능한 에너지원을 제공한다. 습윤 케이크 및 궁극적으로 DDGS 내의 오일 (예를 들어, 옥수수유)의 존재는 바람직한 동물 사료, 예를 들어, 고지방 함량 동물 사료를 제공할 수 있다.As shown in FIG. 4, the oil is not discharged individually from the wet cake, but rather oil is included as part of the wet cake and ultimately in DDGS. When corn is used as feedstock, the corn oil contains triglycerides, diglycerides, monoglycerides, fatty acids, and phospholipids, which provide an energy source that is metabolizable to the animal. The presence of a wet cake and ultimately an oil (e.g., corn oil) in DDGS can provide desirable animal feed, for example, high fat content animal feed.

일부 실시 형태에서, 오일이 습윤 케이크 및 DDGS로부터 분리될 수 있으며, 동일하거나 상이한 알코올 발효 공정에서의 후속 사용을 위한 ISPR 추출제로 변환될 수 있다. 바이오매스로부터 추출제를 얻는 방법이 미국 특허 출원 공개 제2011/0312044호; 미국 특허 출원 공개 제2011/0312043호; 및 미국 특허 출원 공개 제2012/0156738호에 기재되어 있으며, 각각의 전체 내용은 본 명세서에 참고로 포함된다. 오일은, 예를 들어, 용매 추출 공정을 포함하는 임의의 적합한 공정을 사용하여, 습윤 케이크 및 DDGS로부터 분리될 수 있다. 본 발명의 일 실시 형태에서, 습윤 케이크 또는 DDGS를 추출 유닛에 첨가하고 헥산과 같은 용매로 세척하여 오일을 제거할 수 있다. 이용될 수 있는 다른 용매에는, 예를 들어, 부탄올, 아이소헥산, 에탄올, 석유 증류물, 예를 들어, 석유 에테르, 또는 이들의 혼합물이 포함된다. 오일 추출 후에, 습윤 케이크 또는 DDGS를 처리하여 임의의 잔류 용매를 제거할 수 있다. 예를 들어, 본 기술 분야에 공지된 임의의 방법을 사용하여 습윤 케이크 또는 DDGS를 가열하여 임의의 잔류 용매를 증발시킬 수 있다. 용매 제거 후에, 습윤 케이크 또는 DDGS를 건조 공정으로 처리하여 임의의 잔류의 물을 제거할 수 있다. 처리된 습윤 케이크를 사용하여 DDGS를 생성할 수 있다. 처리된 DDGS는, 젖소 및 육우, 가금류, 돼지, 가축, 말, 양식 어류(aquaculture), 및 애완동물과 같은 동물을 위한 사료 보충제로서 사용될 수 있다.In some embodiments, the oil may be separated from the wet cake and DDGS and converted to an ISPR extractant for subsequent use in the same or a different alcohol fermentation process. A method for obtaining an extractant from biomass is disclosed in U.S. Patent Application Publication No. 2011/0312044; U.S. Patent Application Publication No. 2011/0312043; And U.S. Patent Application Publication No. 2012/0156738, each of which is incorporated herein by reference in its entirety. The oil may be separated from the wet cake and DDGS, using any suitable process, including, for example, a solvent extraction process. In one embodiment of the invention, the wet cake or DDGS can be added to the extraction unit and washed with a solvent such as hexane to remove the oil. Other solvents that may be used include, for example, butanol, isohexane, ethanol, petroleum distillates such as petroleum ether, or mixtures thereof. After oil extraction, the wet cake or DDGS can be treated to remove any residual solvent. For example, any of the methods known in the art can be used to heat wet cake or DDGS to evaporate any residual solvent. After removal of the solvent, the wet cake or DDGS can be treated by a drying process to remove any residual water. The treated wet cake can be used to generate DDGS. Treated DDGS can be used as feed supplements for animals such as cows and cattle, poultry, pigs, livestock, horses, aquacultures, and pets.

일부 실시 형태에서, 추출제는 습윤 케이크의 색을 변경하는 수단으로서 사용될 수 있다. 예를 들어, 옥수수와 같은 공급원료는, 동물 사료 (예를 들어, 가금류 사료)를 포함하는 식품 제품에서 착색제로서 사용될 수 있는 색소 (예를 들어, 잔토필)를 함유한다. 추출제에 대한 노출은 이러한 색소를 변형시켜, 예를 들어, 색이 더 밝은 습윤 케이크가 얻어질 수 있다. 더 밝은 색의 습윤 케이크는 더 밝은 색을 갖는 DDGS를 생성할 수 있으며, 이는 소정 동물 사료를 위해 바람직한 품질일 수 있다.In some embodiments, the extractant may be used as a means of changing the color of the wet cake. For example, a feedstock such as corn contains a pigment (e. G., Xanthophyll) that can be used as a colorant in a food product that includes animal feed (e. G., Poultry feed). Exposure to the extractant can modify these pigments, for example, a wet cake with a lighter color can be obtained. Wetter cakes of lighter colors may produce DDGS with a lighter color, which may be of desirable quality for certain animal feeds.

일부 실시 형태에서, 옥수수가 공급원료로서 사용되는 경우, 잔토필은 옥수수 및/또는 용해되지 않은 고형물로부터 단리될 수 있으며, DDGS 또는 동물 사료에서 색소 성분으로서, 또는 약학 및 기능식품 응용을 위한 보충제로서 사용될 수 있다. 잔토필을 단리하는 방법에는, 크기 배제 크로마토그래피와 같은 크로마토그래피, 에탄올 추출과 같은 용매 추출, 및 알칼라아제(alcalase) 가수분해와 같은 효소 처리가 포함되지만 이에 한정되지 않는다 (예를 들어, 문헌[Tsui, et al., J. Food Eng. 83:590-595, 2007]; 문헌[Li, et al., Food Science 31: 72-77, 2010]; 미국 특허 제5,648,564호; 미국 특허 제6,169,217호; 미국 특허 제6,329,557호; 미국 특허 제8,236,929호를 참조하며, 각각의 전체 내용은 본 명세서에 참고로 포함된다). 일부 실시 형태에서, 잔토필은 옥수수 및/또는 용해되지 않은 고형물로부터 단리될 수 있으며 COFA에 첨가될 수 있다. 일부 실시 형태에서, COFA 및/또는 잔토필은 식품, 약학, 및 기능식품 응용을 위해 사용될 수 있다.In some embodiments, when corn is used as the feedstock, it may be isolated from corn and / or undissolved solids and may be used as a coloring component in DDGS or animal feed, or as a supplement for pharmaceutical and functional food applications Can be used. Methods for isolating xanthophyll include, but are not limited to, chromatography such as size exclusion chromatography, solvent extraction such as ethanol extraction, and enzyme treatment such as alcalase hydrolysis (see, for example, Li, et al., Food Science 31: 72-77, 2010; U.S. Patent No. 5,648,564; U.S. Patent No. 6,169,217 U.S. Patent No. 6,329,557; U.S. Patent No. 8,236,929, the entire contents of each of which are incorporated herein by reference). In some embodiments, xanthophyll may be isolated from corn and / or undissolved solids and added to COFA. In some embodiments, COFA and / or Zantopil may be used for food, pharmaceutical, and functional food applications.

습윤 케이크 또는 DDGS로부터의 추출 후에, 얻어지는 오일 및 용매 혼합물은 오일 및 용매의 분리를 위해 수집될 수 있다. 일 실시 형태에서, 오일/용매 혼합물을 증발에 의해 처리하여 용매를 증발시킬 수 있으며, 수집하고 재순환시킬 수 있다. 회수된 오일은, 동일하거나 상이한 알코올 발효 공정에서의 후속 사용을 위한 ISPR 추출제로 변환될 수 있다.After extraction from the wet cake or DDGS, the resulting oil and solvent mixture can be collected for separation of oil and solvent. In one embodiment, the oil / solvent mixture can be treated by evaporation to evaporate the solvent, which can be collected and recycled. The recovered oil may be converted to an ISPR extractant for subsequent use in the same or different alcohol fermentation process.

발효기에 존재하는 오일은 지방산 및 글리세린으로 분해될 수 있기 때문에, 공급원료의 오일 성분을 제거하는 것이 생성물 알코올 생성에 유리하다. 글리세린은 물 중에 축적될 수 있어서, 시스템 전반에서 재순환에 이용가능한 물의 양을 감소시킬 수 있다. 따라서, 공급원료의 오일 성분의 제거는, 시스템 전반에서 재순환될 수 있는 물의 양을 증가시킴으로써, 생성물 알코올 생성의 효율을 증가시킬 수 있다.Since the oil present in the fermenter can be decomposed into fatty acids and glycerin, the removal of the oil component of the feedstock is beneficial for product alcohol production. Glycerin can accumulate in water, reducing the amount of water available for recirculation throughout the system. Thus, removal of the oil component of the feedstock can increase the efficiency of product alcohol production by increasing the amount of water that can be recirculated throughout the system.

도 5를 참조하면, 오일은 본 명세서에 기재된 공정 동안 다양한 지점에서 제거될 수 있다. 예를 들어, 3상 원심분리기를 사용하여, 공급원료 슬러리(16)를 제1 액체상 또는 수용액(22), 오일(26)을 포함하는 제2 액체상, 및 고체상 또는 습윤 케이크(24)로 분리할 수 있다. 습윤 케이크(24)를 추가로 처리하여 발효가능한 당 및 오일을 회수할 수 있다. 습윤 케이크(24)는 혼합부(60)로 안내될 수 있으며, 물 또는 다른 용매와 배합되어 습윤 케이크 혼합물(65)을 형성할 수 있다. 일부 실시 형태에서, 물은 백세트, 증자수, 공정수, 루터 워터, 증발로부터 수집된 물, 또는 발효 처리 설비에 이용가능한 임의의 물 공급원, 또는 이들의 임의의 조합일 수 있다. 습윤 케이크 혼합물(65)은 분리부(70) (예를 들어, 3상 원심분리기)로 안내되어, 발효가능한 당을 포함하는 세척 원심분리액(75), 오일 스트림(76), 및 습윤 케이크(74)를 생성할 수 있다. 세척 원심분리액(75)은 액화부(10)로 재순환될 수 있다.Referring to Figure 5, the oil may be removed at various points during the process described herein. For example, a three-phase centrifuge may be used to separate the feedstock slurry 16 into a first liquid phase or aqueous solution 22, a second liquid phase comprising oil 26, and a solid or wet cake 24 . The wet cake 24 may be further treated to recover fermentable sugars and oils. The wet cake 24 may be guided to the mixing portion 60 and may be combined with water or other solvent to form a wet cake mixture 65. In some embodiments, the water may be a bag set, a potable water, a process water, a lute water, water collected from evaporation, or any water source available for a fermentation treatment facility, or any combination thereof. The wet cake mixture 65 is directed to a separator 70 (e.g., a three phase centrifuge) to remove the wash centrifuge liquid 75, the oil stream 76, and the wet cake 74 < / RTI > The washing centrifugal liquid 75 may be recycled to the liquefier 10.

본 명세서에 기재된 바와 같이, 습윤 케이크는 하나 이상의 세척 사이클 또는 세척 시스템을 거칠 수 있다. 일부 실시 형태에서, 습윤 케이크(74)는 제2 혼합부(60')로 안내되어 습윤 케이크 혼합물(65')을 형성할 수 있다. 습윤 케이크 혼합물(65')은 제2 분리부(70')로 안내되어 세척 원심분리액(75'), 오일 스트림(76') 및 습윤 케이크(74')를 생성할 수 있다. 세척 원심분리액(75')은 액화부(10)로 재순환될 수 있다. 일부 실시 형태에서, 세척 원심분리액(75')은 세척 원심분리액(75)과 배합되어, 액화부(10)로 재순환될 수 있다. 일부 실시 형태에서, 습윤 케이크(74')는 하기에 기재된 바와 같은 추가의 처리를 위해 습윤 케이크(74)와 배합될 수 있다. 일부 실시 형태에서, 발효 공정에서 사용될 수 있는 추출제의 생성을 위해 오일 스트림(76') 및 오일(26)을 배합하고 추가로 처리할 수 있거나, 또는 소비자 제품의 제조를 위해 오일 스트림(76') 및 오일(26)을 배합하고 추가로 처리할 수 있다.As described herein, a wet cake may be passed through one or more wash cycles or a wash system. In some embodiments, the wet cake 74 can be guided to the second mixing portion 60 'to form a wet cake mixture 65'. The wet cake mixture 65'can be guided to the second separation portion 70'to generate the cleaning centrifuge liquid 75 ', the oil stream 76' and the wet cake 74 '. The cleaning centrifuge solution 75 'may be recycled to the liquefier 10. In some embodiments, the cleaning centrifuge solution 75 'may be combined with the cleaning centrifuge solution 75 and recycled to the liquefier 10. In some embodiments, the wet cake 74 'may be blended with the wet cake 74 for further processing as described below. In some embodiments, an oil stream 76 'and oil 26 may be formulated and further processed for the production of an extractant that may be used in a fermentation process, or an oil stream 76' ) And oil 26 may be combined and further processed.

임의의 적합한 공정을 이용하여 습윤 케이크(74)를 시럽과 배합하고 이어서 건조하여 DDGS를 형성할 수 있다. 습윤 케이크(74)로부터의 DDGS의 형성은 몇몇 이점을 갖는다. 용해되지 않은 고형물이 발효기로 가지 않기 때문에, DDGS는 추출제 및/또는 생성물 알코올을 함유하지 않으며, 발효기의 조건을 겪지 않고, 발효기에 존재하는 미생물과 접촉하지 않는다. 이러한 이점은 DDGS를, 예를 들어, 동물 사료로 가공하는 것을 더 용이하게 만든다. 본 명세서에 기재된 바와 같이, 일부 실시 형태에서, 습윤 케이크(74, 74'), 및 전증류폐액으로부터 형성되는 습윤 케이크를 배합하고 추가로 처리하여 DDGS를 생성할 수 있다.The wet cake 74 can be combined with the syrup using any suitable process and then dried to form DDGS. The formation of DDGS from the wet cake 74 has several advantages. Since the undissolved solids do not go to the fermenter, DDGS does not contain the extractant and / or product alcohol, does not undergo the conditions of the fermenter, and does not contact the microorganisms present in the fermenter. This advantage makes it easier to process DDGS, for example, into animal feed. As described herein, in some embodiments, the wet cake 74, 74 ', and the wet cake formed from the pre-distillation waste liquid may be combined and further processed to produce DDGS.

도 6a에 나타난 바와 같이, 수용액(22) 및 습윤 케이크(24)를 배합하고, 냉각하고, 발효부(30)로 안내할 수 있다. 예를 들어, 3상 원심분리기를 사용하여, 공급원료 슬러리(16)를 제1 액체상 또는 수용액(22), 오일(26)을 포함하는 제2 액체상, 및 고체상 또는 습윤 케이크(24)로 분리할 수 있다. 일부 실시 형태에서, 오일(26)은 저장 탱크 또는 오일 저장에 적합한 임의의 유닛으로 안내될 수 있다. 수용액(22) 및 습윤 케이크(24)는 혼합부(80)로 안내되고 재슬러리화되어 수용액/습윤 케이크 혼합물(82)을 형성할 수 있다. 혼합물(82)은 냉각기(90)로 안내되어 냉각된 혼합물(92)을 생성할 수 있고, 이는 발효부(30)로 안내될 수 있다. 일부 실시 형태에서, 오일(26)이 분리부(20)를 통해 공급원료 슬러리(16)로부터 제거되는 경우, 혼합물(82, 92)은 감소된 양의 오일을 포함한다.As shown in Fig. 6A, the aqueous solution 22 and the wet cake 24 may be blended, cooled, and guided to the fermentation section 30. Fig. For example, a three-phase centrifuge may be used to separate the feedstock slurry 16 into a first liquid phase or aqueous solution 22, a second liquid phase comprising oil 26, and a solid or wet cake 24 . In some embodiments, the oil 26 may be directed to a storage tank or any unit suitable for oil storage. The aqueous solution 22 and the wet cake 24 can be guided to the mixing portion 80 and re-slurried to form the aqueous / wet cake mixture 82. The mixture 82 may be directed to a cooler 90 to produce a cooled mixture 92 which may be directed to the fermentation section 30. In some embodiments, when the oil 26 is removed from the feedstock slurry 16 through the separator 20, the mixture 82, 92 contains a reduced amount of oil.

다른 실시 형태에서, 도 6b에 나타난 바와 같이, 분리 장치 (예를 들어, 3상 원심분리기)를 사용하여 공급원료 슬러리(16)를 분리하여 제1 액체상 또는 수용액(22), 오일(26)을 포함하는 제2 액체상, 및 고체상 또는 습윤 케이크(24)를 생성할 수 있다. 수용액(22), 습윤 케이크(24), 및 오일(26), 또는 그의 일부가 발효부(30)로 안내될 수 있다. 일부 실시 형태에서, 예를 들어, 혼합에 의해, 수용액(22), 습윤 케이크(24), 및 오일(26), 또는 그의 일부를 배합하여, 수용액, 습윤 케이크, 및 오일 혼합물을 형성할 수 있고, 혼합물은 발효부(30)로 안내될 수 있다. 일부 실시 형태에서, 수용액(22) 및 습윤 케이크(24)를 배합하여 수용액 및 습윤 케이크 혼합물을 형성할 수 있으며, 이어서 오일(26)을 혼합물에 첨가하여 수용액, 습윤 케이크, 및 오일 혼합물을 형성할 수 있고, 이러한 혼합물은 발효부(30)로 안내될 수 있다. 일부 실시 형태에서, 수용액(22) 및 습윤 케이크(24)를 배합하여 수용액 및 습윤 케이크 혼합물을 형성할 수 있고, 이러한 혼합물 및 오일(26), 또는 그의 일부가 개별적인 스트림으로서 발효부(30)로 안내될 수 있다.In another embodiment, a feedstock slurry 16 is separated using a separation device (e.g., a three phase centrifuge) to produce a first liquid or aqueous solution 22, oil 26, , And a solid or wet cake (24). The aqueous solution 22, the wet cake 24, and the oil 26, or a portion thereof, may be directed to the fermentation section 30. In some embodiments, the aqueous solution 22, the wet cake 24, and the oil 26, or a portion thereof, may be blended to form an aqueous solution, a wet cake, and an oil mixture, for example, by mixing , The mixture can be led to the fermentation section (30). In some embodiments, the aqueous solution 22 and the wet cake 24 may be combined to form an aqueous solution and a wet cake mixture, followed by addition of the oil 26 to the mixture to form an aqueous solution, a wet cake, and an oil mixture And such a mixture can be led to the fermentation section 30. [ In some embodiments, the aqueous solution 22 and the wet cake 24 may be combined to form an aqueous solution and a wet cake mixture, and such mixture and oil 26, or a portion thereof, may be fed to the fermentation section 30 as a separate stream Can be informed.

본 명세서에 기재된 공정 및 시스템의 추가적인 실시 형태에서, 당화는 개별적인 당화 시스템에서 일어날 수 있다. 일부 실시 형태에서, 당화 시스템은 액화부(10)와 분리부(20) 사이에 또는 분리부(20)와 발효부(30) 사이에 위치될 수 있다. 일부 실시 형태에서, 액화 및/또는 당화는 생전분 효소 또는 저온 가수분해 효소, 예를 들어, 스타겐(Stargen)™ (미국 캘리포니아주 팔로알토 소재의 제넨코어 인터내셔널(Genencor International)) 및 BPX™ (미국 노스캐롤라이나주 플랭클린턴 소재의 노보자임스)를 이용하여 수행될 수 있다. 일부 실시 형태에서, 공급원료 슬러리는 생전분 가수분해 (저온 증자(cold cooking) 또는 저온 가수분해로도 알려져 있음)를 거칠 수 있다.In further embodiments of the processes and systems described herein, the saccharification may occur in a separate saccharification system. In some embodiments, the saccharification system may be located between the liquefying portion 10 and the separating portion 20, or between the separating portion 20 and the fermenting portion 30. In some embodiments, the liquefaction and / or glycation is carried out using a biotransferase or a low temperature hydrolytic enzyme, such as Stargen (Genencor International, Palo Alto, CA) and BPX (TM) USA), < RTI ID = 0.0 > Flanagan < / RTI > of North Carolina, USA. In some embodiments, the feedstock slurry may go through raw meal hydrolysis (also known as cold cooking or low temperature hydrolysis).

일부 실시 형태에서, 본 발명의 시스템 및 공정은, 용해되지 않은 고형물 및/또는 오일의 제거를 위한, 일련의 둘 이상의 분리 장치 (예를 들어, 원심분리기)를 포함할 수 있다. 예를 들어, 제1 분리 유닛으로부터 배출된 수용액은 제2 분리 유닛의 입구로 안내될 수 있다. 제1 분리 유닛 및 제2 분리 유닛은 동일할 수 있거나 (예를 들어, 2개의 3상 원심분리기) 또는 상이할 수 있다 (예를 들어, 3상 원심분리기 및 디캔터 원심분리기). 분리는, 디캔터 보울 원심분리, 3상 원심분리, 디스크 스택 원심분리, 여과 원심분리, 디캔터 원심분리, 여과, 진공 여과, 벨트필터, 가압 여과, 막 여과, 스크린을 사용한 여과, 스크린 분리, 그레이팅, 다공성 그레이팅, 부유선별, 하이드로사이클론, 필터 프레스, 스크류프레스, 중력 침강기, 와류형 분리기 또는 이들의 조합을 포함하지만 이에 한정되지 않는 다수의 수단에 의해 달성될 수 있다.In some embodiments, the systems and processes of the present invention may include a series of two or more separation devices (e. G., Centrifuges) for removal of undissolved solids and / or oils. For example, the aqueous solution discharged from the first separation unit can be guided to the inlet of the second separation unit. The first and second separation units may be the same (e.g., two three phase centrifuges) or different (e.g., three phase centrifuge and decanter centrifuge). Separation can be carried out by a variety of methods including decanter bowl centrifugation, three-phase centrifugation, disk stack centrifugation, filtration centrifugation, decanter centrifugation, filtration, vacuum filtration, belt filtration, pressure filtration, membrane filtration, But are not limited to, a variety of means including, but not limited to, porous gratings, flotation screens, hydrocyclones, filter presses, screw presses, gravity settlers, vortex separators or combinations thereof.

발효 브로쓰 내의 용해되지 않은 고형물의 부재 또는 최소화는 몇몇 이점을 갖는다. 예를 들어, 하류 처리에서의 작동 유닛에 대한 필요성이 없어질 수 있으며, 그에 의해 생성물 알코올 생성에 대한 효율이 증가될 수 있다. 또한, 발효기를 빠져나오는 발효 브로쓰 내에 용해되지 않은 고형물이 더 적기 때문에, 전증류폐액을 처리하는 데 사용되는 원심분리기들 중 일부 또는 전부를 없앨 수 있다. 공급원료 슬러리로부터의 용해되지 않은 고형물의 제거는 바이오매스의 처리 생산성 및 비용 효율성을 개선할 수 있다. 생산성 개선에는, 용해되지 않은 고형물을 발효 전에 제거하지 않는 공정 및 시스템에 비해, 생성물 알코올의 생성 효율 증가 및/또는 추출 활성 증가가 포함된다. 공급원료 슬러리로부터 용해되지 않은 고형물을 분리하기 위한 공정 및 시스템의 추가적인 설명에 대해서는, 예를 들어, 미국 특허 출원 공개 제2012/0164302호 및 국제특허 출원 PCT/US2013/51571호를 참조하며, 각각의 전체 내용은 본 명세서에 참고로 포함된다.The absence or minimization of undissolved solids in the fermentation broth has several advantages. For example, the need for an operating unit in downstream processing can be eliminated, thereby increasing the efficiency for product alcohol production. In addition, since fewer solids are not dissolved in the fermentation broth exiting the fermenter, some or all of the centrifuges used to treat the pre-distillation wastewater can be eliminated. Removal of undissolved solids from the feedstock slurry can improve the process productivity and cost effectiveness of the biomass. Improved productivity includes increased production efficiency of product alcohol and / or increased extraction activity compared to processes and systems that do not remove undissolved solids prior to fermentation. For a further description of the process and system for separating undissolved solids from the feedstock slurry, see, for example, U.S. Patent Application Publication No. 2012/0164302 and International Patent Application No. PCT / US2013 / 51571, The entire contents of which are incorporated herein by reference.

본 명세서에 기재된 바와 같이, 액체-액체 추출을 포함하는 다수의 방법을 사용하여 발효 브로쓰로부터 생성물 알코올을 회수할 수 있다. 본 명세서에 기재된 공정 및 시스템의 일부 실시 형태에서, 추출제를 사용하여 발효 브로쓰로부터 생성물 알코올을 회수할 수 있다. 본 명세서에 사용된 추출제는, 예를 들어, 하기 특성 및/또는 특징 중 하나 이상을 가질 수 있다: (i) 미생물과의 생체적합성, (ii) 발효 브로쓰와의 비혼화성, (iii) 생성물 알코올의 추출에 대한 높은 분배 계수 (Kp), (iv) 영양분 및/또는 물의 추출에 대한 낮은 분배 계수, (v) 낮은 점도 (μ), (vi) 예를 들어, 물과 비교하여 생성물 알코올에 대한 높은 선택성, (vii) 발효 브로쓰에 비해 낮은 밀도 (ρ), 또는 발효 브로쓰의 밀도와 비교하여 상이한 밀도, (viii) 추출제 및 생성물 알코올의 하류 처리에 적합한 비점, (ix) 주위 온도보다 낮은 융점, (x) 고형물에서의 최소한의 흡수성, (xi) 발효 브로쓰와 함께 에멀젼을 형성하는 경향이 낮음, (xii) 발효 공정 전반에서의 안정성, (xiii) 낮은 비용, 및 (xiv) 비유해성.As described herein, a number of methods including liquid-liquid extraction can be used to recover the product alcohol from the fermentation broth. In some embodiments of the processes and systems described herein, an extractant may be used to recover the product alcohol from the fermentation broth. The extractant used herein may have, for example, one or more of the following characteristics and / or characteristics: (i) biocompatibility with the microorganism, (ii) immiscibility with the fermentation broth, (iii) the product high partition coefficient for the extraction of alcohol (K p), (iv) nutrients and / or lower partition coefficients for the extraction of water, (v) low viscosity (μ), (vi), for example, the product compared to the water (Viii) a boiling point suitable for downstream treatment of the extractant and the product alcohol, (ix) a high density of the fermentation broth, (vii) a high density of the fermentation broth, (Xi) a low tendency to form an emulsion with the fermentation broth, (xii) stability throughout the fermentation process, (xiii) low cost, and xiv) Non-hazardous.

일부 실시 형태에서, 추출제는 본 명세서에 기재된 바와 같은 소정 특성 및/또는 특징에 기초하여 선택될 수 있다. 예를 들어, 추출제의 점도는 시스템의 물질 이동 특성, 즉, 생성물 알코올이 수성상으로부터 추출제 상 (즉, 유기상)으로 추출될 수 있는 효율에 영향을 줄 수 있다. 추출제의 밀도는 상분리에 영향을 줄 수 있다. 일부 실시 형태에서, 선택성은, 추출제에 의해 흡수되는 물에 대한 생성물 알코올의 상대적인 양을 지칭한다. 비점은 생성물 알코올 회수의 비용 및 방법에 영향을 줄 수 있다. 예를 들어, 증류에 의해 추출제 상으로부터 부탄올이 회수되는 경우에, 추출제의 비점은, 추출제의 임의의 열분해 또는 부반응, 또는 증류 공정에서의 고진공의 필요성을 최소화하면서, 부탄올의 분리를 가능하게 할 만큼 충분히 낮아야 한다.In some embodiments, the extractant may be selected based on certain characteristics and / or characteristics as described herein. For example, the viscosity of the extractant can affect the mass transfer properties of the system, i.e., the efficiency with which the product alcohol can be extracted from the aqueous phase to the extractant phase (i.e., the organic phase). The density of the extractant can affect phase separation. In some embodiments, selectivity refers to the relative amount of product alcohol to water that is absorbed by the extractant. The boiling point can affect the cost and method of recovery of the product alcohol. For example, when butanol is recovered from the extractant phase by distillation, the boiling point of the extractant can be separated from any of the thermal decomposition or side reactions of the extractant, or the need for high vacuum in the distillation process, Should be low enough to

추출제는 미생물과 생체적합성일 수 있으며, 즉, 미생물에 대해 비독성일 수 있거나, 또는 미생물이 허용가능한 수준으로 손상될 정도로만 독성일 수 있다. 일부 실시 형태에서, 생체적합성은 추출제의 존재하에 미생물이 발효가능한 탄소원을 이용하는 능력의 척도를 지칭한다. 추출제의 생체적합성의 정도는, 예를 들어, 추출제 및 생성물 알코올의 존재하에서의 미생물의 글루코스 이용률에 의해 결정될 수 있다. 일부 실시 형태에서, 비-생체적합성 추출제는 미생물이 발효가능한 탄소원을 이용하는 능력을 방해하는 추출제를 지칭한다. 예를 들어, 비-생체적합성 추출제는, 추출제가 존재하지 않는 경우의 비율의 약 25% 초과, 약 30% 초과, 약 35% 초과, 약 40% 초과, 약 45% 초과, 또는 약 50% 초과의 비율로 미생물이 글루코스를 이용하는 것을 허용하지 않는다.The extractant may be biocompatible with the microorganism, i. E. It may be non-toxic to the microorganism, or it may only be so toxic that the microorganism is impaired to an acceptable level. In some embodiments, biocompatibility refers to a measure of the ability of a microorganism to utilize a fermentable carbon source in the presence of an extractant. The degree of biocompatibility of the extractant can be determined by, for example, the glucose utilization of the microorganism in the presence of the extractant and the product alcohol. In some embodiments, the non-biocompatible extractant refers to an extractant that inhibits the ability of the microorganism to utilize a fermentable carbon source. For example, the non-biocompatible extractant may comprise greater than about 25%, greater than about 30%, greater than about 35%, greater than about 40%, greater than about 45%, or about 50% Does not allow the microorganism to use glucose at a rate of excess.

당업자는 본 명세서에 기재된 바와 같은 원하는 특성 및/또는 특징을 최대화하고 생성물 알코올의 회수를 최적화하도록 추출제를 선택할 수 있다. 당업자는 또한 추출제들의 혼합물을 사용하는 것이 유리할 수 있음을 인식할 수 있다. 예를 들어, 추출제 혼합물을 사용하여 생성물 알코올에 대한 분배 계수를 증가시킬 수 있다. 추가로, 추출제 혼합물을 사용하여 추출제의 물리적 특징, 예를 들어, 밀도, 비점, 및 점도를 조정하고 최적화할 수 있다. 예를 들어, 적절한 배합은 생성물 알코올에 대한 충분한 분배 계수 및 충분한 생체적합성을 갖는 추출제를 제공하여 발효 브로쓰로부터 생성물 알코올을 제거하기 위한 그의 경제적 사용을 가능하게 할 수 있다.One skilled in the art can select an extraction agent to maximize the desired properties and / or characteristics as described herein and to optimize the recovery of the product alcohol. Those skilled in the art will also appreciate that it may be advantageous to use mixtures of extracting agents. For example, an extractant mixture can be used to increase the partition coefficient for the product alcohol. In addition, the extractant mixture can be used to adjust and optimize the physical characteristics of the extractant, such as density, boiling point, and viscosity. For example, suitable formulations can provide an extractant with a sufficient partition coefficient for the product alcohol and sufficient biocompatibility to enable its economic use to remove product alcohol from the fermentation broth.

일부 실시 형태에서, 본 명세서에 기재된 공정 및 시스템에서 유용한 추출제는 유기 용매일 수 있다. 일부 실시 형태에서, 본 명세서에 기재된 공정 및 시스템에서 유용한 추출제는 수-비혼화성 유기 용매일 수 있다. 일부 실시 형태에서, 추출제는 포화, 모노-불포화, 폴리-불포화 C12 내지 C22 지방 알코올, C12 내지 C22 지방산, C12 내지 C22 지방산의 에스테르, C12 내지 C22 지방 알데하이드, C12 내지 C22 지방 아미드, 및 이들의 혼합물로 이루어진 군으로부터 선택되는 유기 추출제일 수 있다. 일부 실시 형태에서, 추출제는 또한 포화, 모노-불포화, 폴리-불포화 C4 내지 C22 지방 알코올, C4 내지 C28 지방산, C4 내지 C28 지방산의 에스테르, C4 내지 C22 지방 알데하이드, C4 내지 C22 지방 아미드, 및 이들의 혼합물로 이루어진 군으로부터 선택되는 유기 추출제일 수 있다. 일부 실시 형태에서, 지방산은 C4 내지 C24 지방산일 수 있고/있거나 에스테르는 C4 내지 C24 지방산의 에스테르일 수 있다. 일부 실시 형태에서, 추출제는 포화, 모노-불포화, 폴리-불포화 C12 내지 C18 지방 알코올, C12 내지 C18 지방산, C12 내지 C18 지방산의 에스테르, C12 내지 C18 지방 알데하이드, C12 내지 C18 지방 아미드, 및 이들의 혼합물로 이루어진 군으로부터 선택되는 유기 추출제일 수 있다. 일부 실시 형태에서, 추출제는 포화, 모노-불포화, 폴리-불포화 C14 내지 C18 지방 알코올, C14 내지 C18 지방산, C14 내지 C18 지방산의 에스테르, C14 내지 C18 지방 알데하이드, C14 내지 C18 지방 아미드, 및 이들의 혼합물로 이루어진 군으로부터 선택되는 유기 추출제일 수 있다. 일부 실시 형태에서, 추출제는 포화, 모노-불포화, 폴리-불포화 C16 내지 C18 지방 알코올, C16 내지 C18 지방산, C16 내지 C18 지방산의 에스테르, C16 내지 C18 지방 알데하이드, C16 내지 C18 지방 아미드, 및 이들의 혼합물로 이루어진 군으로부터 선택되는 유기 추출제일 수 있다. 일부 실시 형태에서, 추출제는 카르복실산을 포함할 수 있다. 일부 실시 형태에서, 지방산의 에스테르는 지방산과 알코올의 조합 (예를 들어, 지방 에스테르)일 수 있다. 일부 실시 형태에서, 알코올은 생성물 알코올일 수 있다. 일부 실시 형태에서, 에스테르는 메틸 에스테르, 에틸 에스테르, 프로필 에스테르, 부틸 에스테르, 펜틸 에스테르, 헥실 에스테르, 또는 글리세라이드일 수 있다.In some embodiments, the extractants useful in the processes and systems described herein can be organic daily. In some embodiments, the extractants useful in the processes and systems described herein can be water-immiscible organic solvents. In some embodiments, the extraction agent is a saturated, mono-unsaturated and poly-unsaturated C 12 to C 22 fatty alcohols, C 12 to C 22 fatty acids, C 12 to ester, C of C 22 fatty acid of 12 to C 22 fat aldehydes, C 12 to C 22 fatty amides, and mixtures thereof. In some embodiments, the extractant may also be selected from saturated, mono-unsaturated, polyunsaturated C 4 to C 22 fatty alcohols, C 4 to C 28 fatty acids, esters of C 4 to C 28 fatty acids, C 4 to C 22 fatty aldehydes, C 4 to C 22 fatty amides, and mixtures thereof. In some embodiments, the fatty acid may be a C 4 to C 24 fatty acid and / or the ester may be an ester of a C 4 to C 24 fatty acid. In some embodiments, the extraction agent is a saturated, mono-unsaturated and poly-unsaturated C 12 to C 18 fatty alcohols, C 12 to C 18 fatty acid, C acid ester, of 12 to C 18 fatty acids, C 12 to C 18 fat aldehydes, C 12 to C 18 fatty amides, and mixtures thereof. In some embodiments, the extraction agent is a saturated, mono-unsaturated and poly-unsaturated C 14 to C 18 fatty alcohols, C 14 to C 18 fatty acids, C 14 to esters of the C 18 fatty acid C 14 to C 18 fat aldehydes, C 14 to C 18 fatty amides, and mixtures thereof. In some embodiments, the extraction agent is a saturated, mono-unsaturated and poly-unsaturated C 16 to C 18 fatty alcohols, C 16 to C 18 fatty acids, C 16 to C 18 fatty acid esters, C 16 to C 18 fat aldehydes, C 16 to C 18 fatty amides, and mixtures thereof. In some embodiments, the extractant may comprise a carboxylic acid. In some embodiments, the ester of a fatty acid may be a combination of a fatty acid and an alcohol (e. G., A fatty ester). In some embodiments, the alcohol may be a product alcohol. In some embodiments, the ester can be a methyl ester, an ethyl ester, a propyl ester, a butyl ester, a pentyl ester, a hexyl ester, or a glyceride.

일부 실시 형태에서, 추출제는, C12 내지 C22 지방 알코올, C12 내지 C22 지방산, C12 내지 C22 지방산의 에스테르, C12 내지 C22 지방 알데하이드, C12 내지 C22 지방 아미드, 및 이들의 혼합물로부터 선택되는 제1 추출제; 및 C12 내지 C22 지방 알코올, C12 내지 C22 지방산, C12 내지 C22 지방산의 에스테르, C12 내지 C22 지방 알데하이드, C12 내지 C22 지방 아미드, 및 이들의 혼합물로부터 선택되는 제2 추출제를 포함할 수 있다. 일부 실시 형태에서, 추출제는, C12 내지 C22 지방 알코올, C12 내지 C22 지방산, C12 내지 C22 지방산의 에스테르, 및 이들의 혼합물로부터 선택되는 제1 추출제; 및 C12 내지 C22 지방 알코올, C12 내지 C22 지방산, C12 내지 C22 지방산의 에스테르, 및 이들의 혼합물로부터 선택되는 제2 추출제를 포함할 수 있다. 일부 실시 형태에서, 추출제는, C12 내지 C18 지방 알코올, C12 내지 C18 지방산, C12 내지 C18 지방산의 에스테르, 및 이들의 혼합물로부터 선택되는 제1 추출제; 및 C12 내지 C18 지방 알코올, C12 내지 C18 지방산, C12 내지 C18 지방산의 에스테르, 및 이들의 혼합물로부터 선택되는 제2 추출제를 포함할 수 있다. 일부 실시 형태에서, 추출제는, C14 내지 C18 지방 알코올, C14 내지 C18 지방산, C14 내지 C18 지방산의 에스테르, 및 이들의 혼합물로부터 선택되는 제1 추출제; 및 C14 내지 C18 지방 알코올, C14 내지 C18 지방산, C14 내지 C18 지방산의 에스테르, 및 이들의 혼합물로부터 선택되는 제2 추출제를 포함할 수 있다. 일부 실시 형태에서, 추출제는, C12 내지 C22 지방 알코올, C12 내지 C22 지방산, C12 내지 C22 지방산의 에스테르, C12 내지 C22 지방 알데하이드, C12 내지 C22 지방 아미드, 및 이들의 혼합물로부터 선택되는 제1 추출제; 및 C7 내지 C11 지방 알코올, C7 내지 C11 지방산, C7 내지 C11 지방산의 에스테르, C7 내지 C11 지방 알데하이드, 및 이들의 혼합물로부터 선택되는 제2 추출제를 포함할 수 있다.In some embodiments, the extraction agent is, C 12 to C 22 fatty alcohols, C 12 to C 22 fatty acids, C 12 to C 22 fatty acid esters, C 12 to C 22 fat aldehydes, C 12 to C 22 fatty amides, and A first extractant selected from a mixture thereof; And C 12 to C 22 fatty alcohols, C 12 to C 22 fatty acids, C 12 to C 22 fatty acid esters, C 12 to C 22 fat aldehydes, C 12 to C 22 fatty amides, and a second selected from a mixture thereof And an extracting agent. In some embodiments, the extraction agent is, C 12 to C 22 fatty alcohols, C 12 to C 22 fatty acids, C 12 to C 22 fatty acid esters, and the first extract is selected from mixtures of these agents; And C 12 to C 22 may include fatty alcohols, C 12 to C 22 fatty acid, the second extractant is selected from a mixture of esters, and their C 12 to C 22 fatty acid. In some embodiments, the extraction agent is, C 12 to C 18 fatty alcohols, C 12 to C 18 fatty acids, C 12 to C 18 fatty acid esters, and the first extract is selected from mixtures of these agents; And C 12 to C 18 may include fatty alcohols, C 12 to C 18 fatty acid, the second extractant is selected from a mixture of esters, and their C 12 to C 18 fatty acid. In some embodiments, the extraction agent is, C 14 to C 18 fatty alcohols, C 14 to C 18 fatty acids, C 14 to C 18 fatty acid esters, and the first extract is selected from mixtures of these agents; And C 14 to C 18 may include fatty alcohols, C 14 to C 18 fatty acid, the second extractant is selected from a mixture of esters, and their C 14 to C 18 fatty acid. In some embodiments, the extraction agent is, C 12 to C 22 fatty alcohols, C 12 to C 22 fatty acids, C 12 to C 22 fatty acid esters, C 12 to C 22 fat aldehydes, C 12 to C 22 fatty amides, and A first extractant selected from a mixture thereof; And may include a second extraction agent being C 7 to C 11 fatty alcohols, C 7 to C 11 fatty acid, C 7 to C 11 fatty acid ester, C 7 to C 11 fat aldehyde, and mixtures thereof.

일부 실시 형태에서, 추출제는 유기 추출제, 예를 들어, 올레일 알코올, 베헤닐 알코올, 세틸 알코올, 라우릴 알코올 (1-도데칸올로도 지칭됨), 미리스틸 알코올, 스테아릴 알코올, 올레산, 라우르산, 리놀레산, 리놀렌산, 미리스트산, 팔미트산, 스테아르산, 옥탄산, 데칸산, 운데칸산, 메틸 미리스테이트, 메틸 올레에이트, 1-노난올, 1-데칸올, 2-운데칸올, 1-노난알, 1-운데칸올, 운데칸알, 라우릭 알데하이드, 2-메틸운데칸알, 올레아미드, 리놀레아미드, 팔미트아미드, 스테아릴아미드, 2-에틸-1-헥산올, 2-헥실-1-데칸올, 2-옥틸-1-도데칸올, 및 이들의 혼합물일 수 있다. 일부 실시 형태에서, 추출제는 하기 중 하나 이상을 포함할 수 있다: 올레산, 라우르산, 리놀레산, 리놀렌산, 미리스트산, 팔미트산, 스테아르산, 옥탄산, 데칸산, 및 운데칸산. 일부 실시 형태에서, 추출제는 하기 중 하나 이상을 포함할 수 있다: 올레산, 리놀레산, 리놀렌산, 미리스트산, 팔미트산, 및 스테아르산. 일부 실시 형태에서, 추출제는 하기 중 하나 이상을 포함할 수 있다: 올레산, 리놀레산, 팔미트산, 및 스테아르산. 일부 실시 형태에서, 추출제는 하기 중 하나 이상을 포함할 수 있다: 올레산, 라우르산, 리놀레산, 리놀렌산, 미리스트산, 팔미트산, 스테아르산, 옥탄산, 데칸산, 및 운데칸산, 및 올레산, 라우르산, 리놀레산, 리놀렌산, 미리스트산, 팔미트산, 스테아르산, 옥탄산, 데칸산, 및 운데칸산의 하나 이상의 에스테르. 일부 실시 형태에서, 추출제는 하기 중 하나 이상을 포함할 수 있다: 올레산, 리놀레산, 리놀렌산, 미리스트산, 팔미트산, 및 스테아르산, 및 올레산, 리놀레산, 리놀렌산, 미리스트산, 팔미트산, 및 스테아르산의 하나 이상의 에스테르. 일부 실시 형태에서, 추출제는 하기 중 하나 이상을 포함할 수 있다: 올레산, 리놀레산, 팔미트산, 및 스테아르산, 및 올레산, 리놀레산, 팔미트산, 및 스테아르산의 하나 이상의 에스테르. 일부 실시 형태에서, 추출제는 하기 중 하나 이상을 포함할 수 있다: 올레일 알코올, 베헤닐 알코올, 세틸 알코올, 라우릴 알코올, 미리스틸 알코올, 스테아릴 알코올. 일부 실시 형태에서, 추출제는 하기 중 하나 이상을 포함할 수 있다: 1-노난올, 1-데칸올, 2-운데칸올, 1-노난알, 1-운데칸올, 운데칸알, 2-에틸-1-헥산올, 2-헥실-1-데칸올, 2-옥틸-1-도데칸올.In some embodiments, the extractant is an organic extractant, such as oleyl alcohol, behenyl alcohol, cetyl alcohol, lauryl alcohol (also referred to as 1-dodecanol), myristyl alcohol, stearyl alcohol, oleic acid , Lauric acid, linoleic acid, linolenic acid, myristic acid, palmitic acid, stearic acid, octanoic acid, decanoic acid, undecanoic acid, methyl myristate, methyl oleate, 2-ethyl-1-hexanol, 2-ethyl-1-hexanol, 2-ethyl-1-pentanol, 2-ethylhexanol, 2-ethylhexanol, Hexyl-1-decanol, 2-octyl-1-dodecanol, and mixtures thereof. In some embodiments, the extractant may include one or more of the following: oleic acid, lauric acid, linoleic acid, linolenic acid, myristic acid, palmitic acid, stearic acid, octanoic acid, decanoic acid, and undecanoic acid. In some embodiments, the extractant may include one or more of the following: oleic acid, linoleic acid, linolenic acid, myristic acid, palmitic acid, and stearic acid. In some embodiments, the extractant may include one or more of the following: oleic acid, linoleic acid, palmitic acid, and stearic acid. In some embodiments, the extractant may include one or more of oleic acid, lauric acid, linoleic acid, linolenic acid, myristic acid, palmitic acid, stearic acid, octanoic acid, decanoic acid, and undecanoic acid, and At least one ester of oleic acid, lauric acid, linoleic acid, linolenic acid, myristic acid, palmitic acid, stearic acid, octanoic acid, decanoic acid, and undecanoic acid. In some embodiments, the extractant may include one or more of the following: oleic acid, linoleic acid, linolenic acid, myristic acid, palmitic acid, and stearic acid, and oleic acid, linoleic acid, linolenic acid, myristic acid, palmitic acid , And one or more esters of stearic acid. In some embodiments, the extractant may include one or more of the following: oleic acid, linoleic acid, palmitic acid, and stearic acid, and one or more esters of oleic acid, linoleic acid, palmitic acid, and stearic acid. In some embodiments, the extractant may include one or more of the following: oleyl alcohol, behenyl alcohol, cetyl alcohol, lauryl alcohol, myristyl alcohol, stearyl alcohol. In some embodiments, the extractant may include one or more of the following: 1-nonanol, 1-decanol, 2-undecanol, 1-nonanal, 1-undecanol, 1-hexanol, 2-hexyl-1-decanol, 2-octyl-1-dodecanol.

일부 실시 형태에서, 추출제는 생체적합성 추출제와 비-생체적합성 추출제의 혼합물일 수 있다. 생체적합성 추출제와 비-생체적합성 추출제의 혼합물의 예에는, 올레일 알코올과 노난올의 혼합물, 올레일 알코올과 1-운데칸올의 혼합물, 올레일 알코올과 2-운데칸올의 혼합물, 올레일 알코올과 1-노난알의 혼합물, 올레일 알코올과 데칸올의 혼합물, 및 올레일 알코올과 도데칸올의 혼합물이 포함되지만 이에 한정되지 않는다. 생체적합성 추출제 및 비-생체적합성 추출제의 추가적인 예는 미국 특허 출원 공개 제2009/0305370호 및 미국 특허 출원 공개 제2011/0097773호에 기재되어 있으며; 각각의 전체 내용은 본 명세서에 참고로 포함된다. 일부 실시 형태에서, 생체적합성 추출제는 높은 대기압 비점을 가질 수 있다. 예를 들어, 생체적합성 추출제는 물의 대기압 비점보다 큰 대기압 비점을 가질 수 있다.In some embodiments, the extractant may be a mixture of a biocompatible extractant and a non-biocompatible extractant. Examples of mixtures of biocompatible extractants and non-biocompatible extractants include mixtures of oleyl alcohol and nonanol, mixtures of oleyl alcohol and 1-undecanol, mixtures of oleyl alcohol and 2-undecanol, oleyl But are not limited to, a mixture of alcohol and 1-nonane, a mixture of oleyl alcohol and decanol, and a mixture of oleyl alcohol and dodecanol. Additional examples of biocompatible and non-biocompatible extractants are described in U.S. Patent Application Publication No. 2009/0305370 and U.S. Patent Application Publication No. 2011/0097773; The entire contents of each being incorporated herein by reference. In some embodiments, the biocompatible extractant may have a high atmospheric pressure boiling point. For example, a biocompatible extractant may have an atmospheric pressure boiling point that is greater than the atmospheric pressure boiling point of water.

일부 실시 형태에서, 친수성 용질이, 추출제와 접촉되는 발효 브로쓰에 첨가될 수 있다. 수성상 내의 친수성 용질의 존재는 상분리를 개선할 수 있으며 유기상 내로 분배되는 생성물 알코올의 분율을 증가시킬 수 있다. 친수성 용질의 예에는 폴리하이드록실화 화합물, 폴리카르복실산 화합물, 폴리올 화합물, 및 해리 이온성 염이 포함될 수 있지만 이에 한정되지 않는다. 당, 예를 들어, 글루코스, 프럭토스, 수크로스, 말토스, 및 올리고당류가 친수성 용질로서의 역할을 할 수 있다. 다른 폴리하이드록실화 화합물에는 글리세롤, 에틸렌 글리콜, 프로판다이올, 폴리글리세롤, 및 하이드록실화 풀러렌이 포함될 수 있다. 폴리카르복실산 화합물에는 시트르산, 타르타르산, 말레산, 석신산, 폴리아크릴산, 및 이들의 나트륨, 칼륨, 또는 암모늄 염이 포함될 수 있다. 발효 브로쓰에서 친수성 용질로서 사용될 수 있는 이온성 염은, 나트륨, 칼륨, 암모늄, 마그네슘, 칼슘, 및 아연을 포함하는 양이온; 및 설페이트, 포스페이트, 클로라이드, 및 니트레이트를 포함하는 음이온을 포함한다. 발효 브로쓰 중 친수성 용질의 양은, 생성물 알코올-생성 미생물의 성장 및/또는 생산성에 대해 악영향을 주지 않으면서 수성상 (예를 들어, 발효 브로쓰)으로부터 유기상 (예를 들어, 추출제)으로의 생성물 알코올의 이동을 최대화하도록 당업자에 의해 선택될 수 있다. 높은 수준의 친수성 용질은 미생물에 삼투 스트레스 및/또는 독성을 부여할 수 있다. 당업자는 다수의 공지의 방법을 사용하여 미생물에 대한 삼투 스트레스 및/또는 독성의 영향을 최소화하도록 친수성 용질의 최적량을 결정할 수 있다.In some embodiments, a hydrophilic solute may be added to the fermentation broth in contact with the extractant. The presence of a hydrophilic solute in the aqueous phase can improve phase separation and increase the fraction of product alcohol that is dispensed into the organic phase. Examples of hydrophilic solutes can include, but are not limited to, polyhydroxylated compounds, polycarboxylic acid compounds, polyol compounds, and dissociative ionic salts. Sugars, such as glucose, fructose, sucrose, maltose, and oligosaccharides, can serve as hydrophilic solutes. Other polyhydroxylated compounds may include glycerol, ethylene glycol, propanediol, polyglycerol, and hydroxylated fullerenes. The polycarboxylic acid compound may include citric acid, tartaric acid, maleic acid, succinic acid, polyacrylic acid, and sodium, potassium, or ammonium salts thereof. The ionic salts that can be used as the hydrophilic solute in the fermentation broth include cations including sodium, potassium, ammonium, magnesium, calcium, and zinc; And anions including sulfates, phosphates, chlorides, and nitrates. The amount of the hydrophilic solute in the fermentation broth can vary from an aqueous phase (e. G., Fermentation broth) to an organic phase (e. G., An extractant) without adversely affecting the growth and / or productivity of the product alcohol- May be selected by those skilled in the art to maximize the transfer of the product alcohol. High levels of hydrophilic solutes can confer osmotic stress and / or toxicity to microorganisms. One skilled in the art can determine the optimal amount of hydrophilic solute to minimize the effects of osmotic stress and / or toxicity on the microorganism using a number of known methods.

생성물 알코올이 부탄올인 일부 실시 형태에서는, 부탄올의 알킬 부분을 끌어당기고 물에 대한 친화성을 거의 또는 전혀 제공하기 않는 추출제가 선택될 수 있다. 예를 들어, 물에 대해, 수소 결합을 제공하지 않는 추출제는 선별적으로 알코올을 흡수할 것이다. 일부 실시 형태에서, 추출제는 방향족 화합물을 포함할 수 있다. 일부 실시 형태에서, 추출제는, 쿠멘, 파라-시멘 (1-메틸-4-(1-메틸에틸)벤젠으로도 알려져 있음), 메타-시멘 (1-메틸-3-(1-메틸에틸)벤젠으로도 알려져 있음), 메타-다이아이소프로필벤젠, 파라-다이아이소프로필벤젠, 트라이에틸벤젠, 에틸 부틸 벤젠, 및 tert-부틸스티렌을 포함하지만 이에 한정되지 않는 알킬 치환된 벤젠을 포함할 수 있다. 알킬-치환된 벤젠을 사용하는 것의 이점은 다른 탄화수소에 비해 상대적으로 더 높은 부탄올 친화성이다. 또한, 아이소프로필-치환된 또는 아이소부틸-치환된 벤젠은 부탄올 친화성에 있어서 다른 치환된 벤젠에 비해 특별한 이점을 제공할 수 있다. 다른 이점은 상분리성 및 장기간 재사용에 도움을 주는 더 낮은 점도, 더 낮은 표면 장력, 더 낮은 밀도, 더 높은 열안정성, 및 더 높은 화학 안정성이다. 일부 실시 형태에서, 부탄올의 알킬 부분을 끌어당기는 추출제는, 예를 들어, 부탄올의 하이드록실 부분에 대해, 수소 결합 형태의 친화성을 제공하는 다른 추출제와 배합될 수 있어서, 이러한 혼합물은 물과 비교한 선택성과 분배 사이의 최적의 균형을 제공할 수 있다. 일부 실시 형태에서, 부탄올을 함유하는 추출제를 발효 브로쓰로부터 상분리하고, 진공하에서 작동하는 컬럼에서 증류할 수 있다. 이러한 증류는, 매우 적은 추출제를 함유하는 고순도 부탄올의 증류물을 유지하도록 환류와 함께 작동할 수 있다. 탑저 생성물(bottom)은 증류 공급물에 함유된 부탄올의 일부를 포함할 수 있어서, 진공하에서의 리보일링(reboiling) 온도는 이용가능한 스팀으로부터 간접적으로 열을 전달하기에 적합하다. 증류는, 오직 환류 액체만이 응축되는 부분 응축기를 사용하여 수행될 수 있고, 실질적 부탄올 조성물의 증기 증류물은 정류 컬럼의 하부 내로 지향될 수 있으며, 이는 응축된 비어 컬럼 오버헤드 증기로부터 디캔팅되는 부탄올 스트림에 동시에 공급된다. 이러한 유형의 증류의 이점은, 추출제로부터 부탄올을 스트리핑하여 생성되는 증기를 열 통합(heat integrating)시킴으로써, 디캔팅된 부탄올 스트림을 정제하기 위한 리보일러에 대한 필요성이 제거된다는 점이다.In some embodiments where the product alcohol is butanol, an extractant that draws the alkyl portion of butanol and provides little or no affinity for water can be selected. For example, for water, an extractant that does not provide hydrogen bonding will selectively adsorb alcohol. In some embodiments, the extractant may comprise an aromatic compound. In some embodiments, the extractant is selected from the group consisting of cumene, para-cymene (also known as 1-methyl-4- (1-methylethyl) benzene), meta- Benzene), alkyl-substituted benzenes including but not limited to meta-diisopropylbenzene, para-diisopropylbenzene, triethylbenzene, ethylbutylbenzene, and tert-butylstyrene . The advantage of using alkyl-substituted benzene is a relatively higher butanol affinity than other hydrocarbons. In addition, isopropyl-substituted or isobutyl-substituted benzenes can offer particular advantages over other substituted benzenes in butanol affinity. Other advantages are lower viscosity, lower surface tension, lower density, higher thermal stability, and higher chemical stability to aid phase separation and prolonged reuse. In some embodiments, the extractant that draws the alkyl portion of the butanol can be combined with another extractant that provides affinity for the hydroxyl portion of the butanol, for example, in the form of hydrogen bonds, Lt; RTI ID = 0.0 > and / or < / RTI > In some embodiments, the extractant containing butanol can be phase separated from the fermentation broth and distilled in a column operating under vacuum. This distillation can work with reflux to maintain a distillate of high purity butanol containing very little extractant. The bottom product may comprise a portion of the butanol contained in the distillation feed so that the reboiling temperature under vacuum is suitable for indirectly transferring heat from the available steam. The distillation can be carried out using a partial condenser where only the reflux liquid is condensed and the steam distillate of the substantial butanol composition can be directed into the bottom of the rectification column, Stream simultaneously. The advantage of this type of distillation is that by heat-integrating the steam produced by stripping butanol from the extractant, the need for a reboiler to purify the decanted butanol stream is eliminated.

일부 실시 형태에서, 추출제는 공급원료로부터 생성될 수 있다. 예를 들어, 공급원료에 존재하는 옥수수유와 같은 오일이 추출 발효를 위한 추출제의 생성을 위해 사용될 수 있다. 오일 내의 글리세라이드는 화학적으로 또는 효소적으로 지방산 및/또는 지방 에스테르 (예를 들어, 에틸 에스테르, 부틸 에스테르, 퓨젤 에스테르)와 같은 반응 생성물로 변환될 수 있으며, 이는 생성물 알코올의 회수를 위한 추출제로서 사용될 수 있다. 예로서 옥수수유를 사용하여, 옥수수유 트라이글리세라이드를 암모니아 하이드록사이드와 같은 염기와 반응시켜 지방 아미드 및 글리세롤을 얻을 수 있다. 일부 실시 형태에서, 공급원료 내의 오일을 촉매에 의해 가수분해하여 지방산을 생성할 수 있다. 일부 실시 형태에서, 오일을 촉매와 접촉시킴으로써 오일 내의 아실 글리세라이드의 적어도 일부를 카르복실산으로 가수분해할 수 있다. 일부 실시 형태에서, 생성된 산/오일 조성물은 오일 내의 아실 글리세라이드의 부분 가수분해에 의한 모노글리세라이드 및/또는 다이글리세라이드를 포함한다. 일부 실시 형태에서, 생성된 산/오일 조성물은 아실 글리세라이드 가수분해의 부산물인 글리세롤을 포함한다. 일부 실시 형태에서, 생성된 산/오일 조성물은 오일 내의 인지질의 부분 가수분해에 의한 리소인지질을 포함한다. 바이오매스로부터 추출제를 얻는 방법은 미국 특허 출원 공개 제2011/0312044호; 미국 특허 출원 공개 제2011/0312043호; 및 미국 특허 출원 공개 제2012/0156738호에 기재되어 있으며, 각각의 전체 내용은 본 명세서에 참고로 포함된다.In some embodiments, an extractant may be generated from the feedstock. For example, an oil such as corn oil present in the feedstock can be used for the production of an extractant for extraction fermentation. The glycerides in the oil may be converted chemically or enzymatically into reaction products such as fatty acids and / or fatty esters (e.g., ethyl esters, butyl esters, fugel esters) Lt; / RTI > For example, using corn oil, the fatty amide and glycerol can be obtained by reacting corn oil triglyceride with a base such as ammonia hydroxide. In some embodiments, the oil in the feedstock can be hydrolyzed by a catalyst to produce fatty acids. In some embodiments, at least a portion of the acyl glyceride in the oil can be hydrolyzed to the carboxylic acid by contacting the oil with a catalyst. In some embodiments, the resulting acid / oil composition comprises monoglycerides and / or diglycerides by partial hydrolysis of the acyl glycerides in the oil. In some embodiments, the resulting acid / oil composition comprises glycerol, which is a by-product of acylglyceride hydrolysis. In some embodiments, the resulting acid / oil composition comprises lysophospholipids by partial hydrolysis of the phospholipids in the oil. Methods for obtaining extractants from biomass are described in U.S. Patent Application Publication No. 2011/0312044; U.S. Patent Application Publication No. 2011/0312043; And U.S. Patent Application Publication No. 2012/0156738, each of which is incorporated herein by reference in its entirety.

일부 실시 형태에서, 공급원료 또는 공급원료 슬러리 내의 오일의 변환 (예를 들어, 가수분해, 에스테르교환)은, 발효기에 촉매를 첨가함으로써, 발효기에서 일어날 수 있다. 예를 들어, 리파아제와 같은 촉매를 발효기에 첨가하여, 공급원료 또는 공급원료 슬러리에 존재하는 오일을 지방산 및/또는 지방 에스테르로 변환할 수 있다. 일부 실시 형태에서, 공급원료 또는 공급원료 슬러리 내의 오일의 변환은 개별적인 유닛에서 일어날 수 있다. 예를 들어, 공급원료 또는 공급원료 슬러리는 유닛으로 안내될 수 있으며, 리파아제와 같은 촉매를 유닛에 첨가하여, 공급원료 또는 공급원료 슬러리에 존재하는 오일을 지방산으로 변환할 수 있다. 다른 예로서, 공급원료 또는 공급원료 슬러리는 유닛으로 안내될 수 있으며, 리파아제와 같은 촉매 및 알코올 (예를 들어, 에탄올, 부탄올, 퓨젤 알코올)을 유닛에 첨가하여, 공급원료 또는 공급원료 슬러리에 존재하는 오일을 지방 에스테르로 변환할 수 있다. 일부 실시 형태에서, 지방산 및/또는 지방 에스테르는 발효기에 첨가되어, 생성물 알코올의 회수를 위한 추출제로서 사용될 수 있다. 일부 실시 형태에서, 지방산 및/또는 지방 에스테르는 외부 추출기 또는 추출제 컬럼에 첨가되어, 생성물 알코올의 회수를 위한 추출제로서 사용될 수 있다.In some embodiments, the conversion (e.g., hydrolysis, transesterification) of the oil in the feedstock or feedstock slurry can occur in a fermenter by adding a catalyst to the fermenter. For example, a catalyst such as a lipase may be added to the fermenter to convert the oil present in the feedstock or feedstock slurry to fatty acids and / or fatty esters. In some embodiments, conversion of the oil in the feedstock or feedstock slurry may occur in an individual unit. For example, the feedstock or feedstock slurry can be directed to the unit and a catalyst such as a lipase can be added to the unit to convert the oil present in the feedstock or feedstock slurry to fatty acids. As another example, the feedstock or feedstock slurry may be directed to the unit and a catalyst such as a lipase and an alcohol (e. G., Ethanol, butanol, fucel alcohol) may be added to the unit to be present in the feedstock or feedstock slurry Can be converted to fatty esters. In some embodiments, fatty acids and / or fatty esters may be added to the fermenter and used as an extractant for recovery of the product alcohol. In some embodiments, fatty acids and / or fatty esters may be added to an external extractor or extractant column to be used as an extractant for the recovery of the product alcohol.

일부 실시 형태에서, 공급원료 슬러리로부터 오일을 분리할 수 있으며, 오일은 유닛으로 안내될 수 있고, 리파아제와 같은 촉매를 유닛에 첨가하여, 지방산 스트림을 생성할 수 있다. 지방산 스트림을 가열하여 리파아제를 비활성화시킬 수 있으며 이어서 지방산 스트림은 외부 추출기 또는 저장 탱크로 안내될 수 있다. 저장 탱크로부터의 지방산은, 발효 브로쓰로부터 생성물 알코올을 추출하기 위한 외부 추출기로 안내될 수 있다. 일부 실시 형태에서, 공급원료 슬러리로부터 분리된 오일은 저장 탱크에 저장될 수 있다. 리파아제와 같은 촉매를 저장 탱크에 첨가하여 지방산 스트림을 생성할 수 있다. 지방산 스트림은, 리파아제를 비활성화시키도록 가열되고, 냉각되고, 이어서 발효 브로쓰로부터 생성물 알코올을 추출하기 위한 외부 추출기로 안내될 수 있다. 일부 실시 형태에서, 공급원료 슬러리로부터 분리된 오일은 유닛으로 안내될 수 있으며, 리파아제와 같은 촉매를 유닛에 첨가하여 지방산 스트림을 생성할 수 있다. 지방산 스트림은, 리파아제를 비활성화시키도록 가열되고, 냉각될 수 있으며, 이어서 지방산 스트림은 발효기로 안내될 수 있다.In some embodiments, the oil may be separated from the feedstock slurry, the oil may be directed to the unit, and a catalyst such as a lipase may be added to the unit to produce a fatty acid stream. The fatty acid stream may be heated to deactivate the lipase and the fatty acid stream may then be directed to an external extractor or storage tank. The fatty acids from the storage tank may be directed to an external extractor for extracting the product alcohol from the fermentation broth. In some embodiments, the oil separated from the feedstock slurry may be stored in a storage tank. A catalyst such as lipase can be added to the storage tank to produce a fatty acid stream. The fatty acid stream may be heated to inactivate the lipase, cooled, and then directed to an external extractor for extracting the product alcohol from the fermentation broth. In some embodiments, the oil separated from the feedstock slurry may be directed to the unit, and a catalyst such as lipase may be added to the unit to produce a fatty acid stream. The fatty acid stream may be heated and cooled to deactivate the lipase, and then the fatty acid stream may be directed to a fermenter.

일부 실시 형태에서, 하나 이상의 촉매는 하나 이상의 효소, 예를 들어, 하이드롤라아제 효소일 수 있다. 일부 실시 형태에서, 하나 이상의 촉매는 하나 이상의 효소, 예를 들어, 리파아제 효소일 수 있다. 리파아제 효소는, 예를 들어, 압시디아 (Absidia), 아크로모박터 (Achromobacter), 에어로모나스(Aeromonas), 알칼리게네스 (Alcaligenes), 알터나리아 (Alternaria), 아스페르길루스(Aspergillus), 아크로모박터, 아우레오바시디움 (Aureobasidium), 바실러스(Bacillus), 브베리아 (Beauveria), 브로초스릭스(Brochothrix), 칸디다(Candida), 크로모박터 (Chromobacter), 코프리누스 (Coprinus), 푸사리움 (Fusarium), 지오트리쿰(Geotricum), 한세뉼라(Hansenula), 후미콜라 (Humicola), 하이포자이마 (Hyphozyma), 락토바실러스(Lactobacillus), 메타리지움(Metarhizium), 무코르 (Mucor), 넥트리아 (Nectria), 뉴로스포라 (Neurospora), 패실로마이세스(Paecilomyces), 페니실륨 (Penicillium), 슈도모나스(Pseudomonas), 리족토니아 (Rhizoctonia), 리조무코르 (Rhizomucor), 리조푸스(Rhizopus), 로도스포리디움(Rhodosporidium), 로도토룰라(Rhodotorula), 사카로마이세스(Saccharomyces), 서스(Sus), 스포로볼로마이세스(Sporobolomyces), 서모마이세스(Thermomyces), 티아로스포렐라(Thiarosporella), 트리코데르마(Trichoderma), 버티실리움(Verticillium), 및/또는 야로위아(Yarrowia)를 포함하는 임의의 공급원으로부터 유래될 수 있다. 일부 실시 형태에서, 리파아제의 공급원은 압시디아 블라케슬리나(Absidia blakesleena), 압시디아 코림비페라(Absidia corymbifera), 아크로모박터 아이오파구스(Achromobacter iophagus), 알칼리게네스 종(Alcaligenes sp.), 알터나리아 브라시키올라(Alternaria brassiciola), 아스페르길루스 플라부스(Aspergillus flavus), 아스페르길루스 니제르(Aspergillus niger), 아스페르길루스 투빈제네시스(Aspergillus tubingensis), 아우레오바시디움 풀룰란스(Aureobasidium pullulans), 바실러스 코아굴란스(Bacillus coagulans), 바실러스 푸미루스(Bacillus pumilus), 바실러스 스테아로테르모필루스(Bacillus strearothermophilus), 바실러스 서브틸리스(Bacillus subtilis), 브로초스릭스 테르모소하타(Brochothrix thermosohata), 버크홀데리아 세파시아 (Burkholderia cepacia), 칸디다 실린드라세아(Candida cylindracea)(칸디다 루고사 (Candida rugosa)), 칸디다 파라리폴리티카 (Candida paralipolytica), 칸디다 안타르크티카(Candida antarctica) 리파아제 A, 칸디다 안타르크티카 리파아제 B, 칸디다 에르노비이(Candida ernobii), 칸디다 데포르만스(Candida deformans), 칸디다 루고사(Candida rugosa), 칸디다 파라프실로시스(Candida parapsilosis), 크로모박터 비스코숨(Chromobacter viscosum), 코프리누스 시네리우스(Coprinus cinerius), 푸사리움 헤테로스포룸(Fusarium heterosporum), 푸사리움 옥시스포룸(Fusarium oxysporum), 푸사리움 솔라니(Fusarium solani), 푸사리움 솔라니 피시(Fusarium solani pisi), 푸사리움 로세움 쿨모룸(Fusarium roseum culmorum), 지오트리쿰 칸디둠(Geotrichum candidum), 지오트리쿰 페니실라툼(Geotricum penicillatum), 한세뉼라 아노말라(Hansenula anomala), 후미콜라 브레비스포라(Humicola brevispora), 후미콜라 브레비스 배리언트 테르모이데아(Humicola brevis var. thermoidea), 후미콜라 인솔렌스(Humicola insolens), 락토바실러스 쿠르바투스(Lactobacillus curvatus), 리조푸스 오리재(Rhizopus oryzae), 무코르 자바니쿠스(Mucor javanicus), 뉴로스포라 크라사(Neurospora crassa), 넥트리아 하에마토코카(Nectria haematococca), 페니실륨 사이클로피움(Penicillium cyclopium), 페니실륨 크루스토숨(Penicillium crustosum), 페니실륨 엑스판숨(Penicillium expansum), 페니실륨 로케포르티 (Penicillium roqueforti), 페니실륨 카멤베르티(Penicillium camembertii), 페니실륨(Penicillium) 종 I, 페니실륨 종 II, 슈도모나스 에루지노사(Pseudomonas aeruginosa), 슈도모나스 알칼리게네스(Pseudomonas alcaligenes), 슈도모나스 세파시아(Pseudomonas cepacia) (동의어: 버크홀데리아 세파시아(Burkholderia cepacia)), 슈도모나스 플루오레센스(Pseudomonas fluorescens), 슈도모나스 프라기(Pseudomonas fragi), 슈도모나스 말토필리아(Pseudomonas maltophilia), 슈도모나스 멘도시나(Pseudomonas mendocina), 슈도모나스 메피티카 리폴리티카(Pseudomonas mephitica lipolytica), 슈도모나스 알칼리게네스, 슈도모나스 플란타리(Pseudomonas plantari), 슈도모나스 슈도알칼리게네스(Pseudomonas pseudoalcaligenes), 슈도모나스 푸티다(Pseudomonas putida), 슈도모나스 스투체리(Pseudomonas stutzeri) 및 슈도모나스 위스콘시넨시스(Pseudomonas wisconsinensis), 리족토니아 솔라니(Rhizoctonia solani), 리조무코르 미에헤이(Rhizomucor miehei), 리조푸스 아르히주스(Rhizopus arrhizus), 리조푸스 델레마(Rhizopus delemar), 리조푸스 자포니쿠스(Rhizopus japonicus), 리조푸스 마이크로스포루스(Rhizopus microsporus), 리조푸스 노도수스(Rhizopus nodosus), 리조푸스 오리재, 로도스포리디움 토룰로이데스(Rhodosporidium toruloides), 로도토룰라 글루티니스(Rhodotorula glutinis), 사카로마이세스 세레비시아(Saccharomyces cerevisiae), 스포로볼로마이세스 시바타누스(Sporobolomyces shibatanus), 서스 스크로파(Sus scrofa), 서모마이세스 라누기노서스(Thermomyces lanuginosus) (이전에, 후미콜라 라누기노세(Humicola lanuginose)), 티아로스포렐라 파세올리나(Thiarosporella phaseolina), 트리코데르마 하르지아눔(Trichoderma harzianum), 트리코데르마 리세이(Trichoderma reesei), 및 야로위아 리폴리티카(Yarrowia lipolytica)로 이루어진 군으로부터 선택될 수 있다.In some embodiments, the at least one catalyst may be at least one enzyme, for example, a hydrolase enzyme. In some embodiments, the at least one catalyst may be one or more enzymes, such as a lipase enzyme. Lipase enzymes include, for example, enzymes such as Absidia , Achromobacter , Aeromonas , Alcaligenes , Alternaria , Aspergillus , our bakteo, Aureobasidium (Aureobasidium), Bacillus (Bacillus), Rove Beria (Beauveria), bromo choseu Riggs (Brochothrix), Candida (Candida), chromotherapy bakteo (Chromobacter), Corp. Linus (Coprinus), Fusarium ( Fusarium , Geotricum , Hansenula , Humicola , Hyphozyma , Lactobacillus , Metarhizium , Mucor , Neptria , (Nectria), Neuro spokes La (Neurospora), my process (Paecilomyces) indeed L, Penny silryum (Penicillium), Pseudomonas (Pseudomonas), Li Estonian (Rhizoctonia), Li jomu cor (Rhizomucor), Rhizopus crispus (Rhizopus), Rhodes Rhodosporid ium , Rhodotorula , Saccharomyces , Sus , Sporobolomyces, Thermomyces , Thiarosporella , Trichoderma ( Rhodotorula ), Saccharomyces , Trichoderma , Verticillium , and / or Yarrowia . ≪ / RTI > In some embodiments, the source of lipase is selected from the group consisting of Absidia blakesleena , Absidia corymbifera , Achromobacter iophagus , Alcaligenes sp. up to Alterna Ria Bra (Alternaria brassiciola), Aspergillus Playa booth (Aspergillus flavus , Aspergillus niger , Aspergillus tubingensis , Aureobasidium pullulans , Bacillus coagulans , Bacillus pumilus, Bacillus pumilus, ), Bacillus strearothermophilus , Bacillus subtilis , Brochothrix thermosohata , Burkholderia cepacia , Candida cylindracea ( Candida cylindracea ), Candida cylindracea ( Candida rugosa ), Candida paralipolytica , Candida antarctica lipase A, Candida antarctica lipase B, Candida ernobii , Candida spp . Candida deformans , Candida rugosa , Candida parapsilos, is), chromotherapy bakteo Visco breathe (Chromobacter viscosum), Coffs Linus Cine Aquarius (Coprinus cinerius), Fusarium hetero Spokane Room (Fusarium heterosporum), Fusarium oxy Spokane Room (Fusarium oxysporum), Fusarium solani (Fusarium solani) Fusarium solani pisi , Fusarium roseum culmorum , Geotrichum candidum , Geotricum penicillatum , Hansenula anomala ( Fusarium solani pisi ), Fusarium solani pisi , Hansenula anomala , Humicola brevispora , Humicola brevis var. for example, thermoidea, Humicola insolens , Lactobacillus curvatus , Rhizopus oryzae , Mucor javanicus , Neurospora crassa , Mato coca under-neck triazole (Nectria haematococca), Penny silryum cycloalkyl europium (Penicillium cyclopium), Penny silryum crew testosterone breath (Penicillium crustosum), Penny silryum X pansum (Penicillium expansum), Penny silryum location formate Ti (Penicillium roqueforti), Penny silryum kamem Berti (Penicillium camembertii), Penny silryum (Penicillium) servant I, Penny kind silryum II, a Pseudomonas Rouge labor (Pseudomonas aeruginosa), Alcaligenes Pseudomonas (Pseudomonas alcaligenes), Pseudomonas Sepharose cyano (Pseudomonas cepacia) (synonyms: Burke holde Ria Sepharose cyano (Burkholderia cepacia)), Pseudomonas fluorescein sense (Pseudomonas fluorescens), Pseudomonas PRA group (Pseudomonas fragi), Pseudomonas malto pilriah (Pseudomonas maltophilia), Pseudomonas Mentioned city or (Pseudomonas mendocina), Pseudomonas mepi urticae Li poly urticae (Pseudomonas mephitica lipolytica), Pseudomonas Alcaligenes, Pseudomonas flange Tari (Pseudomonas plantari), Pseudomonas Pseudomonas Alcaligenes (Pseudomonas pseudoalcaligenes), the Pseudomonas footage (Pseudomonas putida) , Pseudomonas stutzeri and Pseudomonas wisconsinensis , Rhizoctonia solani , Rhizomucor miehei , Rhizopus arrhizus , Rhizopus spp ., Rhizopus spp . del Sliema (Rhizopus delemar), Rhizopus crispus Zaporozhye Kusu (Rhizopus japonicus), Rhizopus crispus micro sports Ruth (Rhizopus microsporus), Rhizopus crispus paddle Versus (Rhizopus nodosus), Rhizopus crispus duck material, Rhodes Pori Stadium torul Roy des (Rhodosporidium toruloides), torulra article Ruti varnish (Rhodotorula glutinis) also , Saccharomyces cerevisiae , Sporobolomyces ( Sporobolomyces < RTI ID = 0.0 > shibatanus , Sus scrofa , Thermomyces, lanuginosus (formerly Humicola lanuginose ), Thiarosporella phaseolina , Trichoderma harzianum , Trichoderma reesei , and Yaro ≪ RTI ID = 0.0 > Yarrowia lipolytica . ≪ / RTI >

일부 실시 형태에서, 하이드롤라아제 및/또는 리파아제는 미생물에 의해 발현될 수 있다. 일부 실시 형태에서, 미생물은 동종 또는 이종 하이드롤라아제 및/또는 리파아제를 발현하도록 조작(engineered)될 수 있다. 일부 실시 형태에서, 하이드롤라아제 및/또는 리파아제는, 생성물 알코올을 또한 생성하는 미생물에 의해 발현될 수 있다. 일부 실시 형태에서, 하이드롤라아제 및/또는 리파아제는, 부탄올 생합성 경로를 또한 발현하는 미생물에 의해 발현될 수 있다. 일부 실시 형태에서, 부탄올 생합성 경로는 1-부탄올 생합성 경로, 2-부탄올 생합성 경로, 아이소부탄올 생합성 경로, 또는 2-부탄온 생합성 경로일 수 있다.In some embodiments, the hydrolase and / or lipase can be expressed by a microorganism. In some embodiments, the microorganism can be engineered to express homologous or heterologous hydrolases and / or lipases. In some embodiments, the hydrolase and / or lipase can be expressed by a microorganism that also produces a product alcohol. In some embodiments, the hydrolase and / or lipase can be expressed by a microorganism that also expresses a butanol biosynthetic pathway. In some embodiments, the butanol biosynthetic pathway may be a 1-butanol biosynthetic pathway, a 2-butanol biosynthetic pathway, an isobutanol biosynthetic pathway, or a 2-butanone biosynthetic pathway.

촉매로서 적합한 시판 리파아제 제제에는, 노보자임스(미국 노스캐롤라이나주 플랭클린턴 소재)로부터 입수가능한, 리폴라아제(Lipolase)(등록상표) 100 L, 리펙스(Lipex)(등록상표) 100L, 리포클린(Lipoclean)(등록상표) 2000T, 리포자임(Lipozyme)(등록상표) CALB L, 노보자임(Novozyme)(등록상표) CALA L, 및 팔라타아제(Palatase) 20000L, 또는 시그마-알드리치(미국 미주리주 세인트루이스 소재)로부터 입수가능한 슈도모나스 플루오레센스, 슈도모나스 세파시아, 무코르 미에헤이(Mucor miehei), 호그 판크레아스(hog pancreas), 칸디다 실린드라세아, 칸디다 루고사, 리조푸스 니베우스(Rhizopus niveus), 칸디다 안타르크티카, 리조푸스 아르히주스 또는 아스페르길루스로부터의 리파아제가 포함되지만 이에 한정되지 않는다. 일부 실시 형태에서, 리파아제는 열안정하고/하거나 열내성(thermotolerant)이고/이거나 용매 내성(solvent tolerant)일 수 있다.Suitable commercially available lipase preparations as catalysts include Lipolase (R) 100 L, Lipex (R) 100 L, Lipoclein (R) Lipozyme® CALB L, Novozyme® CALA L, and Palatase 20000 L, or Sigma-Aldrich® (available from St. Louis, Mo., USA), Lipoclean® 2000T, Lipozyme® CALB L, Novozyme® CALA L, Pseudomonas cepacia , Mucor miehei , hog pancreas , Candida cilindracesa, Candida lucosa, Rhizopus niveus , Pseudomonas spp . Candida albicans, Candida antarctica, Rizophus arhi juice, or Aspergillus. In some embodiments, the lipase can be thermostable and / or thermotolerant and / or solvent tolerant.

일부 실시 형태에서, 하나 이상의 촉매는 포스포리파아제일 수 있다. 본 발명에 유용한 포스포리파아제는 다양한 생물학적 공급원, 예를 들어, 푸사리움(Fusarium) 속에 속하는 사상균 종, 예를 들어, 푸사리움 쿨모룸(Fusarium culmorum), 푸사리움 헤테로스포룸, 푸사리움 솔라니, 또는 푸사리움 옥시스포룸의 균주; 또는 아스페르길루스 속에 속하는 사상균 종, 예를 들어, 아스페르길루스 아와모리(Aspergillus awamori), 아스페르길루스 포에티두스(Aspergillus foetidus), 아스페르길루스 자포니쿠스(Aspergillus japonicus), 아스페르길루스 니제르 또는 아스페르길루스 오리재(Aspergillus oryzae)의 균주로부터 얻어질 수 있지만 이에 한정되지 않는다. 서모 마이세스 라누기노서스 포스포리파아제 변이체, 예를 들어, 시판 제품 레시타아제(Lecitase)(등록상표) 울트라(Ultra) (덴마크 소재의 노보자임스 에이에스(Novozymes A'S))가 본 발명에서 또한 유용하다. 하나 이상의 포스포리파아제가 동결건조 분말로서 적용될 수 있거나, 고정화될 수 있거나, 또는 수용액 상태일 수 있다.In some embodiments, the at least one catalyst may be a phospholipase. Phospholipases useful in the present invention include a variety of biological sources such as fungi belonging to the genus Fusarium , such as Fusarium culmorum , fusarium heterosporum, fusarium solani, Or a strain of fusarium oxysporum; Or fungi species belonging to the genus Aspergillus way Ruth, for example, Aspergillus awamori (Aspergillus awamori), Aspergillus Four T Douce (Aspergillus in foetidus), Aspergillus chair pony kusu (Aspergillus japonicus), Aspergillus niger or Aspergillus road can be obtained from strains of ducks loose material (Aspergillus oryzae), but is not limited to this. Thermo My process called leakage No suspension Phospholipase variants, for example, a commercially available rail Theta dehydratase (Lecitase) (R) Ultra (Ultra) (See furnace Danish material Eames eyieseu (Novozymes A'S)) In addition, in the present invention useful. More than one phospholipase may be applied as a lyophilized powder, be immobilized, or be in an aqueous solution state.

일부 실시 형태에서, 포스포리파아제는 미생물에 의해 발현될 수 있다. 일부 실시 형태에서, 미생물은 동종 또는 이종 포스포리파아제를 발현하도록 조작될 수 있다. 일부 실시 형태에서, 포스포리파아제는, 생성물 알코올을 또한 생성하는 미생물에 의해 발현될 수 있다. 일부 실시 형태에서, 포스포리파아제는, 부탄올 생합성 경로를 또한 발현하는 미생물에 의해 발현될 수 있다. 일부 실시 형태에서, 부탄올 생합성 경로는 1-부탄올 생합성 경로, 2-부탄올 생합성 경로, 아이소부탄올 생합성 경로, 또는 2-부탄온 생합성 경로일 수 있다.In some embodiments, the phospholipase can be expressed by a microorganism. In some embodiments, the microorganism can be engineered to express a homologous or heterologous phospholipase. In some embodiments, the phospholipase can be expressed by a microorganism that also produces a product alcohol. In some embodiments, the phospholipase can be expressed by a microorganism that also expresses a butanol biosynthetic pathway. In some embodiments, the butanol biosynthetic pathway may be a 1-butanol biosynthetic pathway, a 2-butanol biosynthetic pathway, an isobutanol biosynthetic pathway, or a 2-butanone biosynthetic pathway.

아이소부티르산, 페닐에탄올, 3-메틸-1-부탄올, 2-메틸-1-부탄올, 아이소부티르알데하이드, 아세트산, 케토아이소발레르산, 피루브산, 및 다이하이드록시아이소발레르산과 같은 발효 부산물이 미생물에 대해 억제 효과를 가질 수 있다. 일부 실시 형태에서, 이들 부산물은 에스테르화에 의해 변형될 수 있다. 예를 들어, 부산물은 카르복실산, 알코올, 지방산, 또는 다른 부산물에 의해 에스테르화될 수 있다. 일부 실시 형태에서, 이러한 에스테르화 반응은 리파아제 또는 포스포리파아제에 의해 촉매될 수 있다. 예로서, 발효 브로쓰에 존재하는 리파아제가, 발효 동안 생성되는 부산물의 에스테르화를 촉매할 수 있다. 이러한 부산물의 에스테르화는 미생물에 대한 그의 억제 효과를 최소화시킬 수 있다.Fermentation by-products such as isobutyric acid, phenylethanol, 3-methyl-1-butanol, 2-methyl-1-butanol, isobutyraldehyde, acetic acid, ketoisovaleric acid, pyruvic acid, and dihydroxyisovaleric acid It can have an inhibitory effect. In some embodiments, these by-products can be modified by esterification. For example, byproducts can be esterified by carboxylic acids, alcohols, fatty acids, or other by-products. In some embodiments, such an esterification reaction can be catalyzed by lipase or phospholipase. As an example, the lipase present in the fermentation broth can catalyze the esterification of byproducts produced during fermentation. Esterification of such by-products can minimize its inhibitory effect on microorganisms.

도 7a를 참고하면, 공급원료(12)는 도 1 내지 도 6에 기재된 바와 같이 처리될 수 있으며, 따라서 상세하게 기재되지는 않을 것이다. 이어서, 수용액(22)을 추가로 처리하여 임의의 잔류 오일을 제거할 수 있다. 일부 실시 형태에서, 수용액(22)은 원심분리, 디캔테이션(decantation), 또는 오일 제거에 사용될 수 있는 임의의 다른 방법으로 처리될 수 있다. 일부 실시 형태에서, 수용액(22)은 유닛(25) (또는 용기)으로 안내될 수 있으며, 촉매(23) (예를 들어, 리파아제)를 유닛(25)에 첨가하여, 수용액(22)에 존재하는 오일을 지방산으로 변환하여, 스트림(27)을 생성할 수 있다. 이어서, 스트림(27)은 발효부(30)로 안내될 수 있으며, 생성물 알코올의 생성을 위해 미생물(32)을 또한 발효부(30)에 첨가할 수 있다. 발효부(30) 후에, 생성물 알코올 및 지방산을 포함하는 스트림(31)은 생성물 알코올의 회수를 위한 외부 유닛, 예를 들어, 외부 추출기 또는 외부 추출 루프(loop)로 안내될 수 있다.Referring to Figure 7a, the feedstock 12 may be treated as described in Figures 1 to 6 and therefore will not be described in detail. The aqueous solution 22 may then be further treated to remove any residual oil. In some embodiments, the aqueous solution 22 can be treated by any other method that can be used for centrifugation, decantation, or oil removal. In some embodiments, the aqueous solution 22 may be directed to a unit 25 (or vessel), and a catalyst 23 (e.g., lipase) may be added to the unit 25 to be present in the aqueous solution 22 Can be converted to a fatty acid to produce stream 27. [ Stream 27 may then be directed to fermentation section 30 and microorganism 32 may also be added to fermentation section 30 for the production of product alcohol. After the fermentation section 30, the stream 31 comprising the product alcohol and the fatty acid may be led to an external unit for recovery of the product alcohol, for example an external extractor or an external extraction loop.

도 7b를 참조하면, 일부 실시 형태에서, 촉매(23)는, 예를 들어, 가열에 의해 비활성화될 수 있다. 일부 실시 형태에서, 발효부(30)에 첨가하기 전에, 촉매(23)를 포함하는 스트림(27)을 가열(q)하여 촉매(23)를 비활성화시킬 수 있다. 도 7c를 참조하면, 일부 실시 형태에서, 비활성화는 개별적인 유닛, 예를 들어, 비활성화 유닛에서 수행될 수 있다. 일부 실시 형태에서, 스트림(27)은 비활성화부(28)로 안내될 수 있다. 비활성화 후에, 스트림(27')은 발효부(30)로 안내될 수 있으며, 생성물 알코올의 생성을 위해 미생물(32)을 또한 발효부(30)에 첨가할 수 있다.7B, in some embodiments, the catalyst 23 may be deactivated, for example, by heating. In some embodiments, before adding to the fermentation section 30, the stream 27 containing the catalyst 23 may be heated (q) to deactivate the catalyst 23. [ Referring to Figure 7c, in some embodiments, deactivation may be performed in an individual unit, e.g., an inactivation unit. In some embodiments, stream 27 may be routed to deactivation section 28. In some embodiments, After deactivation, stream 27 'may be directed to fermentation section 30 and microorganism 32 may also be added to fermentation section 30 for the production of product alcohol.

오일을 지방산으로 변환하여 수용액(22)으로부터 오일을 제거하는 것은, 더욱 효율적인 발효로 인한 생산 공장에서의 에너지 절감, 오일의 제거로 인한 장비의 더 적은 오손(fouling), 에너지 필요량, 예를 들어, 주정박(distillers grains)을 건조하는 데 필요한 에너지 감소, 및 증발기 또는 증발 트레인(evaporation train)의 작동 개선을 가져올 수 있다. 또한, 발효기에 존재하는 오일이 지방산 및 글리세린으로 분해될 수 있기 때문에, 공급원료의 오일 성분의 제거는 생성물 알코올 생성에 유리하다. 글리세린은 물 중에 축적될 수 있어서, 시스템 전반에서 재순환에 이용가능한 물의 양을 감소시킬 수 있다. 따라서, 공급원료의 오일 성분의 제거는, 시스템 전반에서 재순환될 수 있는 물의 양을 증가시킴으로써 생성물 알코올 생성의 효율을 증가시킨다. 또한, 오일의 제거에 의해서, 안정한 에멀젼이 생길 가능성이 적어진다. 본 발명의 일부 실시 형태에서, 에멀젼 형태의 경우에, 에멀젼은 기계적 처리, 양성자성 용매의 첨가, 또는 다른 종래의 방법에 의해 용이하게 파괴될 수 있다.Removing the oil from the aqueous solution 22 by converting the oil to a fatty acid may reduce energy in the production plant due to more efficient fermentation, less fouling of the equipment due to removal of the oil, Reduce the energy required to dry the distillers grains, and improve the operation of the evaporator or evaporation train. In addition, since the oil present in the fermenter can be decomposed into fatty acids and glycerin, the removal of the oil component of the feedstock is advantageous for product alcohol production. Glycerin can accumulate in water, reducing the amount of water available for recirculation throughout the system. Thus, removal of the oil component of the feedstock increases the efficiency of product alcohol production by increasing the amount of water that can be recirculated throughout the system. In addition, the possibility that a stable emulsion is generated by the removal of the oil is reduced. In some embodiments of the invention, in the case of an emulsion form, the emulsion can be easily destroyed by mechanical treatment, addition of a protonic solvent, or other conventional methods.

다른 실시 형태에서, 도 7d를 참조하면, 수용액(22)은 발효부(30)로 안내될 수 있으며, 촉매(23) (예를 들어, 리파아제)를 발효부(30)에 첨가하여, 수용액(22)에 존재하는 오일을 지방산 및/또는 지방 에스테르로 변환할 수 있다. 일부 실시 형태에서, 지방 에스테르는 지방산과 알코올의 조합으로부터 유도될 수 있다. 일부 실시 형태에서, 알코올은, 생성물 알코올을 포함하는 발효부(30) 내의 임의의 알코올일 수 있다. 일부 실시 형태에서, 지방산 및/또는 지방 에스테르로 변환되는, 수용액(22) 중 오일의 양은 약 50% 이상, 약 60% 이상, 약 70% 이상, 약 80% 이상, 약 90% 이상, 또는 약 95%일 수 있다. 일부 실시 형태에서, 오일의 변환에 의해 생성되는 지방 에스테르 및 지방산의 비는 약 75:25일 수 있다. 일부 실시 형태에서, 지방 에스테르 및 지방산의 비는 약 80:20일 수 있다. 일부 실시 형태에서, 소정 오일 변환 속도를 유지하도록 하는 양으로 촉매(23)를 발효부(30)에 첨가할 수 있다.7D, the aqueous solution 22 may be directed to the fermentation section 30 and the catalyst 23 (e.g., lipase) may be added to the fermentation section 30 to form an aqueous solution 22 can be converted to fatty acids and / or fatty esters. In some embodiments, the fatty ester can be derived from a combination of a fatty acid and an alcohol. In some embodiments, the alcohol may be any alcohol in the fermentation section 30, including the product alcohol. In some embodiments, the amount of oil in aqueous solution 22 that is converted to fatty acids and / or fatty esters is greater than about 50%, greater than about 60%, greater than about 70%, greater than about 80%, greater than about 90% 95%. ≪ / RTI > In some embodiments, the ratio of fatty esters and fatty acids produced by conversion of the oil may be about 75:25. In some embodiments, the ratio of fatty esters and fatty acids may be about 80:20. In some embodiments, the catalyst 23 may be added to the fermentation section 30 in an amount to maintain a predetermined oil conversion rate.

발효부(30) 후에, 생성물 알코올, 지방산, 및 지방 에스테르를 포함하는 스트림(31)을, 생성물 알코올의 회수를 위해 추가로 처리할 수 있다. 예를 들어, 스트림(31)은 생성물 알코올의 회수를 위한 외부 유닛, 예를 들어, 외부 추출기 또는 외부 추출 루프로 안내될 수 있다. 일부 실시 형태에서, 스트림(31) 내의 지방산 및 지방 에스테르가 추출제로서 사용될 수 있다. 일부 실시 형태에서, 외부 유닛은 추출제를 포함할 수 있다. 일부 실시 형태에서, 추출제는 지방산 및/또는 지방산의 에스테르를 포함할 수 있다.After fermentation 30, a stream 31 comprising product alcohol, fatty acid, and fatty esters can be further processed for recovery of the product alcohol. For example, stream 31 may be directed to an external unit for recovery of product alcohol, e.g., an external extractor or an external extraction loop. In some embodiments, fatty acid and fatty esters in stream 31 may be used as the extractant. In some embodiments, the outer unit may comprise an extractant. In some embodiments, the extractant may comprise esters of fatty acids and / or fatty acids.

본 발명은 또한 발효 공정에 의해 생성되는 생성물 알코올을 회수하기 위한 공정 및 시스템을 제공한다. 생성물 알코올 회수를 위한 한 가지 그러한 공정은 액체-액체 추출이다. 액체-액체 추출을 ISPR 기술로서 사용하는 것은, 이러한 기술을 실행하는 데 필요한 자본 투자의 순현재가치(net present value)를 최대화하는 액체-액체 추출 공정에 의해 가장 잘 제공된다. 액체-액체 추출 공정의 순현재가치를 최대화하는 측면은, 발효 브로쓰로부터 추출제를 분리하는 것과 관련된 대규모 자본 및 운영 비용 지출을 피하는 것이다.The present invention also provides a process and system for recovering product alcohol produced by a fermentation process. One such process for product alcohol recovery is liquid-liquid extraction. The use of liquid-liquid extraction as ISPR technology is best provided by a liquid-liquid extraction process that maximizes the net present value of the capital investment needed to implement these technologies. One aspect that maximizes the net present value of the liquid-liquid extraction process is to avoid large capital and operating expenditures associated with separating the extractant from the fermentation broth.

액체-액체 추출 공정의 일 실시 형태에서, 추출제를 발효기에 직접 첨가할 수 있으며, 물질 이동 (예를 들어, 발효 브로쓰로부터 추출제로의 생성물 알코올의 이동)을 초래하고 높은 유효 생성물 알코올 역가로 발효가 진행되게 하는 방식으로 발효 브로쓰와 추출제를 함께 혼합할 수 있다. 그러한 공정에서, 혼합이 너무 강하거나 격렬한 경우, 발효 브로쓰 및 추출제는 원심분리기와 같은 분리 장치를 사용하여 분리해야만 할 수 있다. 혼합이 그다지 강하지 않은 경우, 상분리는 추출제와 발효 브로쓰 사이의 밀도 차이에 의해 일어나는 중력 침강에 의해 달성될 수 있다. 어느 경우든지, 발효기에 첨가된 추출제가 차지하는 발효기 부피의 손실을 극복하기 위해, 추가적인 발효기가 필요할 수 있다. 추출제를 발효기에 직접 첨가하는 것은, 발효기 내에서의 상분리와 관계없이, 배치(batch) 방식, 세미-배치(semi-batch) 방식, 또는 연속 방식으로 수행될 수 있다. 연속 방식이 이용되고 발효 브로쓰와 추출제의 중력 분리가 가능하지 않은 경우에는, 추출제로부터 생성물 알코올을 분리하기 위해 원심분리기와 같은 분리 장치가 필요할 수 있다. 추출제로부터 생성물 알코올을 제거하는 데 이용되는 분리 공정이, 발효 브로쓰에 존재하는 미생물이 분리 공정에서 살아있도록 하는 것인 경우, 생성물 알코올/추출제로부터 발효 브로쓰를 분리할 필요가 없을 수 있다.In one embodiment of the liquid-liquid extraction process, the extractant can be added directly to the fermenter, resulting in mass transfer (e.g., transfer of the product alcohol from the fermentation broth to the extractant) The fermentation broth and the extractant can be mixed together in such a way that the fermentation proceeds. In such a process, if the mixing is too strong or intense, the fermentation broth and extractant may have to be separated using a separation device such as a centrifuge. If the mixing is not so strong, phase separation can be achieved by gravity settling caused by the difference in density between the extractant and the fermentation broth. In either case, an additional fermenter may be needed to overcome the loss of fermenter volume that the extractant added to the fermenter. The direct addition of the extractant to the fermenter can be performed in a batch, semi-batch, or continuous manner, regardless of the phase separation in the fermenter. If continuous mode is used and gravity separation of the fermentation broth and extractant is not possible, a separation device such as a centrifuge may be required to separate the product alcohol from the extractant. It may not be necessary to separate the fermentation broth from the product alcohol / extractant if the separation process used to remove the product alcohol from the extractant is to allow the microorganism present in the fermentation broth to survive the separation process .

액체-액체 추출 공정의 다른 실시 형태는 외부 추출기 또는 추출 컬럼을 포함할 수 있다. 예를 들어, 발효기로부터의 발효 브로쓰는 외부 추출기로 안내될 수 있으며, 외부 추출기에서 발효 브로쓰는 추출제와 혼합된다. 이어서, 발효 브로쓰와 추출제의 혼합물을 분리하여, 생성물 알코올이 더 희박한 발효 브로쓰 스트림 및 생성물 알코올이 더 풍부한 추출제 스트림을 생성할 수 있다. 더 희박한 발효 브로쓰 스트림은 발효기로 되돌려 보낼 수 있다. 더 풍부한 추출제 스트림은 추가로 처리하여, 생성물 알코올 회수를 위해 추출제로부터 생성물 알코올의 적어도 일부를 분리할 수 있다. 일부 실시 형태에서, 추출제 스트림으로부터의 생성물 알코올 회수율을 일정 비율로 설정하여 공장 생산을 유지할 수 있다. 일부 실시 형태에서, 액체-액체 추출 공정은 하나 이상의 외부 액체-액체 추출기를 포함할 수 있다.Other embodiments of the liquid-liquid extraction process may include an external extractor or extraction column. For example, a fermentation broth from a fermenter can be directed to an external extractor and mixed with an extractant from a fermenter broth in an external extractor. The mixture of the fermentation broth and the extractant can then be separated to produce an extractant stream richer in fermentation broth stream and product alcohol with less product alcohol. The leaner fermentation broth stream can be returned to the fermenter. The richer extractant stream may be further treated to separate at least a portion of the product alcohol from the extractant for product alcohol recovery. In some embodiments, the yield of product alcohol from the extractant stream can be set at a constant rate to maintain plant production. In some embodiments, the liquid-liquid extraction process may include one or more external liquid-liquid extractors.

일부 실시 형태에서, 발효는 발효기 및 외부 추출기에서 일어날 수 있다. 외부 추출기에 존재하는 발효 브로쓰의 추가적인 부피는 전체 발효기 부피를 증가시키는 역할을 할 수 있으며, 따라서 생성물 알코올의 전반적인 생성을 증가시킬 수 있다.In some embodiments, fermentation can occur in a fermenter and an external extractor. The additional volume of fermentation broth present in the external extractor can serve to increase the overall fermenter volume and thus increase the overall production of the product alcohol.

생성물 알코올을 제거하는 것과 관련된 외부 추출기의 성능은 계면 접촉을 위해 이용가능한 표면적, 발효 브로쓰 및 추출제의 물리적 속성, 외부 추출기에 존재하는 2개의 상 (예를 들어, 발효 브로쓰 상 및 추출제 상)의 상대적인 양, 및 발효 브로쓰 상과 추출제 상 사이의 농도 구동력(concentration driving force) 차이에 따라 좌우될 수 있다. 주어진 생성물 알코올 농도 구동력에 대한 외부 추출기의 효율을 최대화하는 것은, 예를 들어, 노즐 설계, 내부구조물 설계, 및/또는 교반을 통해, 외부 추출기 내의 분산상의 소적 크기를 감소시킴으로써 달성될 수 있다. 일부 실시 형태에서, 외부 추출기의 설계 및 작동은, 생성물 알코올 생산성 요건을 유지하도록 발효 브로쓰 상과 추출제 상 사이의 적절한 생성물 알코올 이동을 초래하기에 충분한 혼합을 제공할 수 있다.The performance of the external extractor in relation to removing the product alcohol depends on the surface area available for interfacial contact, the physical properties of the fermentation broth and extractant, the two phases present in the external extractor (e.g., fermentation broth phase and extractant Phase) and the difference in concentration driving force between the fermentation broth phase and the extractant phase. Maximizing the efficiency of the external extractor for a given product alcohol concentration driving force can be achieved by reducing the droplet size of the dispersed phase in the external extractor, for example, through nozzle design, internal structure design, and / or agitation. In some embodiments, the design and operation of the external extractor can provide sufficient mixing to result in proper product alcohol transfer between the fermentation broth phase and the extractant phase to maintain product alcohol productivity requirements.

일부 경우에, 외부 추출기 내에서 발효로부터 CO2가 발생되어, 상분리를 방해할 수 있는 소적의 형성을 야기할 수 있다. 예를 들어, 발효 브로쓰의 소적들이 CO2에 부착하여 추출제 상 전반에서 떠오를 수 있다. 일부 실시 형태에서, 추출제 상을 연속상으로서 유지하여 소적들의 합체를 개선할 수 있다. 일부 실시 형태에서, 외부 추출기는 CO2를 위한 내부구조물 또는 출구 포트를 포함할 수 있다. 예를 들어, 외부 추출기에 코어레싱 패드를 부가할 수 있고/있거나, 발효 브로쓰 상의 합체 및 회수를 개선하도록 출구 포트를 위치시킬 수 있다.In some cases, CO 2 may be generated from the fermentation in the external extractor, resulting in the formation of droplets that can interfere with phase separation. For example, droplets of a fermentation broth may adhere to CO 2 and float across the extractant phase. In some embodiments, the extraction agent phase can be maintained as a continuous phase to improve incorporation of droplets. In some embodiments, the external extractor may include an internal structure or outlet port for CO 2 . For example, the outlet port can be positioned to add a coring pad to the external extractor and / or to improve the coalescence and recovery of the fermentation broth.

발효 브로쓰로부터 생성물 알코올을 분리하는 조건은 발효 브로쓰에 존재하는 미생물에 유해할 수 있다. 일부 실시 형태에서, 발효 브로쓰를 추출제와 접촉시키기 전에, 미생물을 발효 브로쓰로부터 분리할 수 있다. 일부 실시 형태에서, 발효 브로쓰와 추출제의 혼합물의 분리 (또는 처리) 전에, 이러한 혼합물로부터 미생물을 분리할 수 있다. 예를 들어, 원심분리를 포함하는, 발효 브로쓰, 또는 발효 브로쓰와 추출제의 혼합물로부터 미생물을 분리할 수 있는 임의의 분리 방법이 사용될 수 있다. 발효 브로쓰와 추출제를 접촉시키기 전에 미생물을 분리함으로써, 더 높은 온도 및/또는 비-생체적합성 추출제와 같은 더 가혹한 추출 조건을 사용하는 것이 가능할 수 있다. 미생물에 유해하지 않은 분리 방법이 사용되는 경우에는, 생성물 알코올 제거 전에 발효 브로쓰 및 추출제를 분리하는 것이 필요하지 않을 수 있다.The conditions for separating the product alcohol from the fermentation broth may be detrimental to the microorganisms present in the fermentation broth. In some embodiments, the microorganism may be separated from the fermentation broth prior to contacting the fermentation broth with the extractant. In some embodiments, prior to separation (or treatment) of a mixture of fermentation broth and extractant, microorganisms may be separated from such a mixture. Any separation method capable of separating microorganisms from a mixture of fermentation broth or fermentation broth and extractant, including, for example, centrifugation, can be used. By separating the microorganisms prior to contacting the fermentation broth with the extractant, it may be possible to use more severe extraction conditions such as higher temperature and / or non-biocompatible extractants. If a separation method which is not harmful to the microorganism is used, it may not be necessary to separate the fermentation broth and the extractant prior to removal of the product alcohol.

추출제 및 발효 브로쓰를 분리하지 않는 경우, 추출제는 증발기 트레인 공급물에 포함될 수 있으며, 따라서, 증발 동안 형성되는 시럽의 성분이 될 수 있고, 아마도 동물 사료에 포함될 수 있다. 일부 실시 형태에서, 예를 들어, 원심분리를 포함하는 임의의 분리 수단을 사용하여 시럽으로부터 추출제를 분리할 수 있다. (예를 들어, 물과 비교하여) 저비점의 생체적합성 추출제는 그러한 분리를 필요로 하지 않을 수 있는데, 추출제 및 물이 생산 공정에서의 사용을 위해 재순환될 수 있기 때문이다.If the extractant and the fermentation broth are not separated, the extractant may be included in the vaporizer train feed, and thus may be a component of the syrup formed during evaporation and possibly included in animal feed. In some embodiments, the extraction agent can be separated from the syrup using any separation means including, for example, centrifugation. A low boiling biocompatible extractant (e. G., Compared to water) may not require such separation because the extractant and water may be recycled for use in the production process.

전형적인 옥수수-대-생성물 알코올 생산 공장에서는, 생산 공장의 물을 재순환시킴으로써 전반적인 생산 공정의 물 밸런스를 유지할 수 있는데, 재순환되는 물은 비어의 염 및 기타 용해된 고형물을 제거하도록 증발기 트레인에서 증류된다. 증발기 트레인으로부터 생성되는 시럽은 용해되지 않은 고형물과 혼합할 수 있으며, 혼합물을 건조하여 동물 사료로 판매할 수 있다. 용해되지 않은 고형물을 동물 사료용으로 처리하는 공정 및 시스템은, 예를 들어, 미국 특허 출원 공개 제2012/0164302호; 미국 특허 출원 공개 제2011/0315541호; 미국 특허 출원 공개 제2013/0164795호; 및 국제특허 출원 PCT/US2013/51571호에 기재되어 있으며, 각각의 전체 내용은 본 명세서에 참고로 포함된다.In a typical corn-to-product alcohol production plant, the water in the production plant can be recycled to maintain the water balance of the overall production process, where recirculated water is distilled in the evaporator train to remove salts and other dissolved solids in the vials. The syrup produced from the evaporator train can be mixed with undissolved solids, and the mixture can be dried and sold as animal feed. Processes and systems for treating undissolved solids for animal feed are described, for example, in U.S. Patent Application Publication Nos. 2012/0164302; U.S. Patent Application Publication No. 2011/0315541; U.S. Patent Application Publication No. 2013/0164795; And International Patent Application No. PCT / US2013 / 51571, the entire contents of each of which are incorporated herein by reference.

본 명세서에 기재된 바와 같이, 공급원료를 발효부에 첨가하기 전에, 용해되지 않은 고형물을 공급원료 (또는 공급원료 슬러리)로부터 제거할 수 있다. 용해되지 않은 고형물이 발효부의 상류에서 제거되지 않은 경우, 증발기의 오손을 피하기 위해, 비어를 원심분리하여 용해되지 않은 고형물을 제거하는 것이 필요할 수 있다. 예를 들어, 상업적인 옥수수-대-생성물 알코올 건식-분쇄 생산 공장에서는, 증발기 트레인 공급물 중 용해되지 않은 고형물 함량이 약 3%의 총 부유 고형물(total suspended solid)에서 작동할 수 있으며, 3.5 내지 4%만큼 높은 총 부유 고형물일 수 있다. 총 부유 고형물의 백분율을 이러한 백분율 값 이하로 유지하기에 충분한 고형물을 제거하는 상류 공정은, 예를 들어, 비어를 증발기 (또는 증발 트레인)로 안내하기 전의, 원심분리의 필요성을 없앨 수 있다. 이러한 원심분리의 배제는 건식-분쇄 옥수수-대-생성물 알코올 생산 공장을 개량하는 데 필요한 자본의 절감을 가져올 것이다.As described herein, the undissolved solids can be removed from the feedstock (or feedstock slurry) prior to adding the feedstock to the fermentation zone. If the undissolved solids are not removed upstream of the fermentation section, it may be necessary to centrifuge the vials to remove undissolved solids to avoid evaporator fouling. For example, in a commercial corn-to-product alcohol dry-mill production plant, the undissolved solids content in the vaporizer train feed can operate in a total suspended solids of about 3% % Of total suspended solids. An upstream process that removes sufficient solids to maintain a percentage of total suspended solids below this percentage value may eliminate the need for centrifugation, for example, before introducing the vial to an evaporator (or evaporation train). The exclusion of such centrifugation will result in the capital savings needed to improve the dry-milled corn-to-product alcohol production plant.

발효 전에 공급원료 슬러리에 존재하는 용해되지 않은 고형물의 적어도 일부를 제거함으로써, 외부 추출기 내의 발효 브로쓰와 추출제 상 사이의 계면에서의 용해되지 않은 고형물의 양을 감소시키고, 발효 브로쓰와 추출제 사이의 생성물 알코올 이동을 향상시키고, 발효 브로쓰와 추출제 사이의 완전한 상분리를 제공하여, 계면 표면적을 증가시킬 수 있다. 완전한 상분리는 또한 추가적인 분리 단계 (예를 들어, 원심분리)에 대한 필요성을 없앨 수 있으며, 따라서, 자본 지출을 절감한다.Reducing the amount of undissolved solids at the interface between the fermentation broth and the extractant phase in the external extractor by removing at least a portion of the undissolved solids present in the feedstock slurry prior to fermentation, To improve the product alcohol transfer between the fermentation broth and the extractant and to provide complete phase separation between the fermentation broth and the extractant, thereby increasing the interfacial surface area. Complete phase separation can also eliminate the need for additional separation steps (e. G., Centrifugation) and thus reduce capital expenditure.

외부 추출기에서 나오는 발효 브로쓰 및 추출제의 분리는, 발효 브로쓰 내의 고형물 함량 및 고형물의 입자 크기 분포, 발효 브로쓰 내의 가스 함량 및 가스 버블 크기 분포, 점도, 밀도, 및 표면장력을 포함하지만 이에 한정되지 않는 발효 브로쓰 및 추출제의 물리적 특성뿐만 아니라 외부 추출기의 설계 및 작동, 및 발효기의 설계 및 작동에 의해 영향을 받을 수 있다. 이들 특성은 외부 추출기 또는 발효기에서 나오는 발효 브로쓰 및 추출제를 분리하는 데에 분리 장치 (예를 들어, 원심분리기)가 필요한지를 결정할 수 있다. 분리 장치가 필요 없는 조건하에서의 작동은 액체-액체 추출 ISPR을 실행하는 데 대한 자본 지출을 최소화할 수 있다. 또한, 주어진 세트의 발효 브로쓰 및 추출제 물리적 특성들을 위해 발효 브로쓰 상과 추출제 상 사이의 계면 면적을 최대화함으로써 추출기의 크기를 최소화하여, 발효 브로쓰와 추출제를 저가로 상분리하는 능력을 유지할 수 있다. 원심분리기와 같은 분리 장치의 자본 및 운영 비용을 없앰으로써, 액체-액체 추출 ISPR 공정을 이용하는 건식 분쇄 옥수수-대-생성물 알코올 생산 공장의 순현재가치를 개선할 수 있다.Separation of the fermentation broth and extractant from the external extractor includes the solids content and solids particle size distribution in the fermentation broth, the gas content and gas bubble size distribution in the fermentation broth, viscosity, density, and surface tension, The physical properties of the fermentation broth and extractant, which are not limited, as well as the design and operation of the external extractor, and the design and operation of the fermenter. These properties can determine whether a separation device (e.g., a centrifuge) is needed to separate the fermentation broth and extractant from the external extractor or fermenter. Operation under conditions that do not require a separation device can minimize capital expenditures for running a liquid-liquid extraction ISPR. It also minimizes the size of the extractor by maximizing the interfacial area between the fermentation broth phase and the extractant phase for a given set of fermentation broth and extractant physical properties, thereby lowering the cost of phase separation of the fermentation broth and extractant . By eliminating the capital and operating costs of a separator such as a centrifuge, the net present value of a dry milled corn-to-product alcohol production plant using a liquid-liquid extraction ISPR process can be improved.

본 명세서에 기재된 공정 및 시스템의 다른 실시 형태에서, 상분리 용량을 포함하는 추출기 설계는 발효 브로쓰 및 추출제의 물리적 특성에 맞도록 맞춤화될 수 있다. 용해되지 않은 고형물이 공급원료 슬러리로부터 제거되지 않거나 발효 브로쓰 중 생성물 알코올의 농도가 너무 낮은 경우, 상분리 장비를 포함하지 않는 추출기를 이용해서는, 공장 생산성을 유지하기에 충분한 생성물 알코올을 제거하는 것이 불가능할 수 있다. 따라서, 본 발명은 외부 추출기를 이용한 생성물 알코올의 회수뿐만 아니라 고형물의 제거를 포함하는 공정 및 시스템을 제공하는데, 이러한 추출기는 최대 생성물 알코올 회수를 위해 상분리 용량을 개선하도록 설계되어 있다.In other embodiments of the processes and systems described herein, the extractor design, including phase separation capacity, can be customized to match the physical properties of the fermentation broth and extractant. If the undissolved solids are not removed from the feedstock slurry or the concentration of product alcohol in the fermentation broth is too low, it is not possible to remove enough product alcohol to maintain plant productivity using an extractor that does not include phase separation equipment . Accordingly, the present invention provides processes and systems that include recovery of product alcohols using an external extractor as well as removal of solids, which are designed to improve the phase separation capacity for maximum product alcohol recovery.

본 발명의 예시적인 공정이 도 8에 기술되어 있다. 도 8의 일부 공정 및 스트림은 도 1 내지 도 7에 사용된 것과 동일한 명칭 및 부호를 사용하여 식별되어 있으며 도 1 내지 도 7에 기재된 것과 동일하거나 유사한 공정 및 스트림을 나타낸다.An exemplary process of the present invention is illustrated in FIG. Some of the processes and streams in FIG. 8 are identified using the same names and symbols as those used in FIGS. 1-7 and represent processes and streams similar or similar to those described in FIGS. 1-7.

공급원료(12)는 도 1 내지 도 7에 대해 본 명세서에 기재된 바와 같이 처리되고 고형물 분리될 수 있다(100). 간단히 말해, 공급원료(12)를 액화시켜, 용해되지 않은 고형물, 발효가능한 당 (또는 발효가능한 탄소원), 및 공급원료에 따라, 오일을 포함하는 공급원료 슬러리를 생성할 수 있다. 이어서, 공급원료 슬러리를 분리 방법으로 처리하여 부유 고형물을 제거하여, 습윤 케이크, 용해된 발효가능한 당을 포함하는 수용액(22) (또는 원심분리액), 및 선택적으로 오일 스트림을 생성할 수 있다. 고형물 분리는, 디캔터 보울 원심분리, 3상 원심분리, 디스크 스택 원심분리, 여과 원심분리, 디캔터 원심분리, 여과, 진공 여과, 벨트필터, 가압 여과, 막 여과, 미세여과, 스크린을 사용한 여과, 스크린 분리, 그레이팅, 다공성 그레이팅, 부유선별, 하이드로사이클론, 필터 프레스, 스크류프레스, 중력 침강기, 와류형 분리기, 또는 이들의 조합을 포함하지만 이에 한정되지 않는 다수의 수단에 의해 달성될 수 있다.Feedstock 12 may be treated and solids separated as described herein with respect to Figures 1-7 (100). Briefly, the feedstock 12 can be liquefied to produce a feedstock slurry comprising the oil, depending on the undissolved solids, the fermentable sugar (or fermentable carbon source), and the feedstock. The feedstock slurry can then be treated by a separation process to remove suspended solids to produce an aqueous solution 22 (or centrifuge), optionally including a wet cake, a molten fermentable sugar, and optionally an oil stream. The solids separation can be carried out in the following manner: decanter bowl centrifugation, three-phase centrifugation, disk stack centrifugation, filtration centrifugation, decanter centrifugation, filtration, vacuum filtration, belt filtration, pressure filtration, membrane filtration, microfiltration, Such as, but not limited to, separation, grating, porous grating, floating sorting, hydrocyclone, filter press, screw press, gravity settler, eddy separator, or combinations thereof.

수용액(22) 및 미생물(32)이 발효부(30)에 첨가될 수 있는데, 발효부에서는 발효가능한 당이 미생물(32)에 의해 발효되어 생성물 알코올을 포함하는 스트림(105)을 생성한다. 일부 실시 형태에서, 발효 동안, 스트림(105)의 일부가 추출기(120) (또는 추출부(120))로 이동될 수 있으며, 여기에서 스트림(105)은 추출제(124)와 접촉한다. 일부 실시 형태에서, 추출제는 추출제 저장 탱크 또는 유닛에 저장될 수 있다. 일부 실시 형태에서, 생성물 알코올 및/또는 기타 대사 생성물의 농도가 미리 결정된 농도에 도달할 때, 스트림(105)을 발효부(30)로부터 제거할 수 있다. 일부 실시 형태에서, 미리 결정된 농도는, 미생물의 대사에 악영향을 주는, 생성물 알코올 및/또는 기타 대사 생성물의 농도일 수 있다. 일부 실시 형태에서, 발효가 개시될 때 스트림(105)을 발효부(30)로부터 제거할 수 있다. 일부 실시 형태에서, 스트림(105)을 발효부(30)로부터 제거하여 미생물(32)에 대한 생성물 알코올의 영향을 최소화할 수 있다. 일부 실시 형태에서, 발효부(30)는 1개, 2개, 3개, 4개, 5개, 6개, 7개, 8개, 또는 그 초과의 발효기를 포함할 수 있다.An aqueous solution 22 and a microorganism 32 may be added to the fermentation section 30 where the fermentable sugar is fermented by the microorganism 32 to produce a stream 105 comprising the product alcohol. In some embodiments, during fermentation, a portion of the stream 105 may be transferred to the extractor 120 (or the extractor 120) where the stream 105 contacts the extractant 124. In some embodiments, the extractant may be stored in an extractant storage tank or unit. In some embodiments, stream 105 can be removed from fermentation section 30 when the concentration of product alcohol and / or other metabolite products reaches a predetermined concentration. In some embodiments, the predetermined concentration may be the concentration of the product alcohol and / or other metabolite products, which adversely affects the metabolism of the microorganism. In some embodiments, stream 105 may be removed from fermentation section 30 when fermentation is initiated. In some embodiments, the stream 105 may be removed from the fermentation section 30 to minimize the effect of the product alcohol on the microorganism 32. In some embodiments, the fermentation section 30 may comprise one, two, three, four, five, six, seven, eight, or more fermentors.

일부 실시 형태에서, 추출제가 발효부(30)에 첨가될 수 있다. 일부 실시 형태에서, 추출제를 포함하는 발효 브로쓰의 일부가 추출기(120)로 이동될 수 있으며, 일부 실시 형태에서, 추출제를 포함하는 발효 브로쓰로부터 추출제가 회수될 수 있다. 추출제를 발효부(30)에 첨가함으로써, 발효부(30)에서 ISPR이 개시될 수 있다.In some embodiments, the extracting agent may be added to the fermentation section 30. In some embodiments, a portion of the fermentation broth comprising the extractant may be transferred to the extractor 120, and in some embodiments, the extractant may be recovered from the fermentation broth comprising the extractant. By adding the extracting agent to the fermentation section 30, ISPR can be initiated in the fermentation section 30.

생성물 알코올, 또는 그의 일부는 스트림(105)으로부터 추출제(124)로 이동하며, 생성물 알코올이 더 풍부한 추출제를 포함하는 스트림(122)은 분리부(130)로 안내될 수 있다. 생성물 알코올이 더 희박한 발효 브로쓰를 포함하는 스트림(127)은 발효부(30)로 되돌려 보내질 수 있다. 분리부(130)는 스트림(122)으로부터 생성물 알코올의 일부를 제거하며, 더 희박한 추출제를 포함하는 스트림(125)은 추출기(120)로 되돌려 보내질 수 있다. 일부 실시 형태에서, 추출기(120)는 발효부(30)의 외부에 있을 수 있다. 일부 실시 형태에서, 발효부(30)는 추출기를 포함할 수 있다. 일부 실시 형태에서, 추출제, 발효 브로쓰, 또는 둘 모두는 적어도 부분적으로 비혼화성일 수 있다. 스트림(135)은, 생성물 알코올의 회수를 포함하는 추가의 처리 (예를 들어, 증류)를 위해 하류로 안내될 수 있다.The product alcohol, or a portion thereof, is transferred from the stream 105 to the extractant 124, and the stream 122 containing the product alcohol richer in the product alcohol may be directed to the separator 130. The stream 127 containing the fermentation broth in which the product alcohol is leaner may be sent back to the fermentation section 30. Separator 130 may remove a portion of the product alcohol from stream 122 and stream 125 containing leaner extractant may be sent back to extractor 120. In some embodiments, the extractor 120 may be external to the fermentation section 30. In some embodiments, the fermentation section 30 may comprise an extractor. In some embodiments, the extractant, fermentation broth, or both may be at least partially immiscible. Stream 135 can be directed downstream for further processing (e.g., distillation), including recovery of the product alcohol.

추출 과정에 걸쳐, 추출제 또는 추출제의 일부의 손실이 있을 수 있다. 일부 실시 형태에서, 추출제(124)는, 추출기(120) 또는 추출제 저장 유닛에 추출제를 첨가함으로써 보충될 수 있다. 일부 실시 형태에서, 예를 들어, 추출제가 공급원료 또는 공급원료 슬러리로부터 유래될 수 있는 경우, 추출제(124)는, 공급원료 또는 공급원료 슬러리 내의 오일을 추출제로 변환함으로써 보충될 수 있다. 예를 들어, 촉매를 발효부(30)에 첨가하여, 수용액(22) 내의 오일을 지방산 및/또는 지방 에스테르로 변환하고 (예를 들어, 도 7d 참조), 생성물 알코올, 지방산, 및/또는 지방 에스테르를 포함하는 스트림(105)의 일부를 추출기(120)로 이동시킬 수 있으며, 추출기에서 스트림(105)은 추출제(124)와 접촉할 수 있다. 생성물 알코올-풍부 추출제, 지방산, 및/또는 지방 에스테르를 포함하는 스트림(122)은 분리부(130)로 안내되어 더 희박한 추출제, 지방산, 및/또는 지방 에스테르를 포함하는 스트림(125)을 생성할 수 있다. 일부 실시 형태에서, 스트림(125)은, 그를 추출기(120)로 되돌려 보내기 전에, 추가로 처리될 수 있다. 예를 들어, 스트림(125)에 존재하는 지방 에스테르는 가수분해를 거쳐, 생성물 알코올 및 지방산을 포함하는 스트림을 생성할 수 있다. 생성물 알코올 및 지방산을 포함하는 이러한 스트림은 추출기(120)로 안내될 수 있거나, 또는 이러한 스트림은 스트림(122)과 배합될 수 있고, 배합된 스트림은 분리부(130)로 안내될 수 있다. 다른 실시 형태에서, 생성물 알코올 및 지방산을 포함하는 이러한 스트림은 분리부(130)로 안내될 수 있거나, 또는 이러한 스트림은 다른 분리 유닛으로 안내되어 생성물 알코올 스트림 및 지방산 스트림을 생성할 수 있다. 지방산 스트림은 추출기(120)로 안내될 수 있고, 생성물 알코올 스트림은 스트림(135)과 배합되어 생성물 알코올 회수를 위해 추가로 처리될 수 있다.Over the extraction process, there may be a loss of the extractant or a portion of the extractant. In some embodiments, the extractant 124 may be supplemented by adding an extractant to the extractor 120 or the extractant storage unit. In some embodiments, for example, the extractant 124 can be supplemented by converting the oil in the feedstock or feedstock slurry to an extractant, if the extractant can be derived from a feedstock or feedstock slurry. For example, a catalyst may be added to the fermentation section 30 to convert the oil in the aqueous solution 22 to a fatty acid and / or a fatty ester (see, e.g., Figure 7d), and the product alcohol, fatty acid, and / A portion of the stream 105 containing the ester may be transferred to the extractor 120 where the stream 105 may be contacted with the extractant 124. The stream 122 comprising the product alcohol-rich extractant, fatty acid, and / or fatty ester is directed to the separator 130 to produce a stream 125 containing leaner extractant, fatty acid, and / Can be generated. In some embodiments, the stream 125 may be further processed before sending it back to the extractor 120. For example, the fatty esters present in stream 125 may undergo hydrolysis to produce a stream comprising product alcohols and fatty acids. This stream, including the product alcohol and fatty acid, may be directed to the extractor 120, or such a stream may be combined with the stream 122 and the combined stream may be directed to the separator 130. In another embodiment, this stream comprising product alcohol and fatty acid may be directed to separator 130, or such stream may be directed to another separation unit to produce a product alcohol stream and a fatty acid stream. The fatty acid stream may be directed to the extractor 120 and the product alcohol stream may be combined with the stream 135 to be further processed for product alcohol recovery.

일부 실시 형태에서, 추출기를 통과한 후의 발효 브로쓰 및 추출제의 상분리는 불충분하여, 발효기로 복귀하는 발효 브로쓰에 허용불가능한 수준의 분산된 추출제가 잔류하고/하거나 증류부로 진행하는 추출제에 허용불가능한 수준의 발효 브로쓰 소적들이 잔류할 수 있다. 일부 실시 형태에서, 발효 브로쓰 및 추출제의 상분리는, 하나 이상의 하이드로사이클론 또는 유사한 와류형 장치에 의해, 추출기의 상부 또는 하부에서 빠져나가는 불균질한 혼합물을 처리함으로서 향상될 수 있다. 일부 실시 형태에서, 추출기 대신에 정적 혼합기를 사용하여 발효 브로쓰와 추출제를 서로 접촉시킬 수 있으며, 형성되는 불균질한 혼합물을, 하나 이상의 하이드로사이클론 또는 유사한 와류형 장치를 통해 펌핑하여 수성상 (예를 들어, 발효 브로쓰 상) 및 유기상 (예를 들어, 추출제 상)의 분리를 초래할 수 있다. 일부 실시 형태에서, 하나 이상의 하이드로사이클론 또는 유사한 와류형 장치를 사용하여 가스 스트림으로부터 액체 또는 액체 소적들을 제거할 수 있다. 일부 실시 형태에서, 가스 스트림은 발효기로부터의 것일 수 있다. 일부 실시 형태에서, 가스 스트림은 탈기 장치(degassing device)로부터의 것일 수 있다.In some embodiments, the phase separation of the fermentation broth and the extractant after passing through the extractor is insufficient to allow the fermentation broth returning to the fermenter to allow an unacceptable level of dispersed extractant to remain and / or to proceed to the distiller Impermissible levels of fermentation broth may remain. In some embodiments, the phase separation of the fermentation broth and the extractant may be improved by treating the heterogeneous mixture exiting from the top or bottom of the extractor, by one or more hydrocyclones or similar vortex devices. In some embodiments, a static mixer can be used instead of an extractor to bring the fermentation broth and extractant into contact with one another, and the heterogeneous mixture formed can be pumped through one or more hydrocyclones or similar vortex generators to form an aqueous phase E. G., A fermentation broth phase) and an organic phase (e. G., An extractant phase). In some embodiments, one or more hydrocyclones or similar eddy-current devices may be used to remove liquid or liquid droplets from the gas stream. In some embodiments, the gas stream may be from a fermenter. In some embodiments, the gas stream may be from a degassing device.

배치 또는 세미-배치 발효 공정에서, 발효가능한 당의 일부가 미생물(32)에 의해 대사되었을 때, 비어를 포함하는 스트림(103)은 하류로 분리부(140)로 안내되어 비어로부터 생성물 알코올을 분리할 수 있다. 생성물 알코올을 포함하는 스트림(145)은, 생성물 알코올의 회수를 포함하는 추가의 처리 (예를 들어, 증류)를 위해 하류로 안내될 수 있다. 연속 발효 공정에서, 비어를 포함하는 스트림(103)은 하류로 분리부(140)로 안내되어 비어로부터 생성물 알코올을 분리할 수 있다. 전증류폐액을 포함하는 스트림(142)은 고형물 제거 및 묽은 증류폐액의 생성을 포함하는 추가의 공정을 위해 하류로 전달될 수 있다.In a batch or semi-batch fermentation process, when a portion of the fermentable sugars is metabolized by the microorganisms 32, the stream 103 comprising the vials is directed downstream to the separator 140 to separate the product alcohol from the via . Stream 145 containing product alcohol may be directed downstream for further processing (e.g., distillation), including recovery of the product alcohol. In a continuous fermentation process, the stream 103 containing vias may be directed downstream to the separation section 140 to separate the product alcohol from the vials. Stream 142 containing pre-distillation effluent can be delivered downstream for further processing, including removal of solids and formation of dilute distillation effluent.

일부 실시 형태에서, 발효부(30)는 둘 이상의 발효기를 포함할 수 있으며, 스트림(105)은 둘 이상의 발효기로부터의 배합된 다수의 스트림을 포함할 수 있다. 일부 실시 형태에서, 배합된 다수의 스트림은 추출기(120)로 안내될 수 있다. 일부 실시 형태에서, 스트림(127)은 분할될 수 있으며, 스트림(127)의 부분들이 다수의 발효기로 되돌려 보내질 수 있다. 일부 실시 형태에서, 추출기(120)는 직렬 또는 병렬로 함께 연결된 일련의 유닛일 수 있다.In some embodiments, the fermentation section 30 may include two or more fermentors, and the stream 105 may comprise a plurality of streams combined from two or more fermentors. In some embodiments, the combined plurality of streams may be routed to the extractor 120. In some embodiments, stream 127 may be split and portions of stream 127 may be sent back to a number of fermentors. In some embodiments, the extractor 120 may be a series of units connected together in series or in parallel.

일부 실시 형태에서, 추출은 소정 기간 동안 수행될 수 있다. 추출은, 예를 들어, 발효부(30) 내의 생성물 알코올의 농도가 충분히 낮아서 분리부(140)가 필요하지 않을 때까지 수행된다. 일부 실시 형태에서, 추출은 장기간 동안 수행될 수 있다.In some embodiments, extraction may be performed for a predetermined period of time. The extraction is performed, for example, until the concentration of the product alcohol in the fermentation section 30 is sufficiently low so that the separation section 140 is not needed. In some embodiments, the extraction may be performed over a long period of time.

본 명세서에 기재된 공정 및 시스템의 일부 실시 형태에서, 상분리를 위해 디캔터가 사용될 수 있다. 일부 실시 형태에서, 디캔터는 추출기와 조합하여 사용될 수 있다. 일부 실시 형태에서, 디캔터의 표면을 개질하여 상분리를 개선할 수 있다. 예를 들어, 친수성 및/또는 소수성 표면의 부가에 의해 디캔터의 표면을 개질할 수 있다.In some embodiments of the processes and systems described herein, a decanter may be used for phase separation. In some embodiments, the decanter may be used in combination with an extractor. In some embodiments, the surface of the decanter can be modified to improve phase separation. For example, the surface of the decanter can be modified by the addition of hydrophilic and / or hydrophobic surfaces.

일부 실시 형태에서, 산소, 공기, 및/또는 영양분이 스트림(125) 및/또는 스트림(127)에 첨가될 수 있다. 일부 실시 형태에서, 영양분은 추출제에 용해성일 수 있다. 일부 실시 형태에서, 산소의 농도는 다양한 스트림에서 측정될 수 있으며, 제어 루프(control loop)의 일부로서 사용되어 공정 내로의 산소의 유동을 변화시킬 수 있다. 일부 실시 형태에서, 매시를 추출기(120)에 첨가하여 더 높은 유효 역가를 가능하게 할 수 있다. 일부 실시 형태에서, 분리부(130, 140)는 추출기일 수 있다. 일부 실시 형태에서, 이러한 추출기는 물을 사용하여 추출제로부터 생성물 알코올을 추출할 수 있으며, 생성물 알코올은 후속적으로 수성상으로부터 분리될 수 있다. 일부 실시 형태에서, 추출제에는 용질이 주입될 수 있으며, 이는 발효 브로쓰로부터 생성물 알코올을 추출하는 추출제의 능력을 향상시킨다. 일부 실시 형태에서, 분리 (예를 들어, 증류) 전의 추출제 중 생성물 알코올의 농도를 평형화하는 수단으로서 서지 탱크가 추출기(120)와 분리부(130) 사이에 위치될 수 있다.In some embodiments, oxygen, air, and / or nutrients may be added to stream 125 and / or stream 127. In some embodiments, the nutrients may be soluble in the extractant. In some embodiments, the concentration of oxygen can be measured in various streams and used as part of a control loop to change the flow of oxygen into the process. In some embodiments, mash can be added to the extractor 120 to enable a higher effective titer. In some embodiments, the separator 130, 140 may be an extractor. In some embodiments, such an extractor can extract the product alcohol from the extractant using water, and the product alcohol can subsequently be separated from the aqueous phase. In some embodiments, the extractant may be injected with a solute, which improves the ability of the extractant to extract the product alcohol from the fermentation broth. In some embodiments, a surge tank may be positioned between the extractor 120 and the separator 130 as a means of equilibrating the concentration of product alcohol in the extractant prior to separation (e.g., distillation).

일부 실시 형태에서, 추출기(120)는, 발효 브로쓰와 추출제를 혼합하기 위해, 발효 동안 생성된 CO2를 이용하도록 설계될 수 있다. 일부 실시 형태에서, 추출기(120)는 발효 브로쓰 내의 CO2의 즉각적인 이탈을 가능하게 하도록 설계될 수 있다. 이러한 설계는 추출기(120)를 통해 떠오르는 CO2 버블에 의한 혼합의 수준의 제어를 용이하게 할 것이다. 일부 실시 형태에서, 발효부(30)로부터 발효 브로쓰를 제거하여 스트림(105) 중 CO2의 농도를 최소화할 수 있다. 일부 실시 형태에서, 추출기 이탈 구역의 설계는 발효 브로쓰와 추출제 사이의 상분리를 촉진하는 표면을 포함할 수 있다. 일부 실시 형태에서, 친수성 및/또는 소수성 표면을 이탈 구역에 설치하여 상분리를 개선할 수 있다. 일부 실시 형태에서, 외부 추출기는 CO2를 위한 내부구조물 또는 출구 포트를 포함할 수 있다. 예를 들어, 외부 추출기에 코어레싱 패드를 부가할 수 있다.In some embodiments, the extractor 120 may be designed to utilize CO 2 produced during fermentation to mix the fermentation broth with the extractant. In some embodiments, the extractor 120 may be designed to allow immediate release of CO 2 in the fermentation broth. This design will facilitate control of the level of mixing by CO 2 bubbles floating through the extractor 120. In some embodiments, the concentration of CO 2 in the stream 105 can be minimized by removing the fermentation broth from the fermentation section 30. In some embodiments, the design of the extractor removal zone may include a surface that promotes phase separation between the fermentation broth and the extractant. In some embodiments, a hydrophilic and / or hydrophobic surface can be provided in the removal zone to improve phase separation. In some embodiments, the external extractor may include an internal structure or outlet port for CO 2 . For example, a core-lessing pad may be added to an external extractor.

CO2 혼합을 최소화하기 위한 일부 실시 형태에서, 추출기는 추출기의 하부에서는 직경이 작고, 추출기의 상부로 갈수록 점차 직경이 커지도록 설계될 수 있다 (예를 들어, 원추 형상). 일부 실시 형태에서, 추출기는 직경의 단계적 증가를 갖도록 설계될 수 있다. 예를 들어, 추출기는 일정한 직경의 제2 영역으로의 직경의 단계적 증가가 뒤따르는 일정한 직경의 제1 영역을 포함할 수 있다. 일부 실시 형태에서, 추출기는 일정한 직경의 제3 영역으로의 직경의 제2 단계적 증가를 추가로 포함할 수 있다. 일부 실시 형태에서, 추출기는 직경의 하나 이상의 단계적 증가를 포함할 수 있다. 일부 실시 형태에서, 추출기는 일정한 직경의 하나 이상의 영역을 포함할 수 있다.In some embodiments for minimizing CO 2 mixing, the extractor may be designed to have a small diameter at the bottom of the extractor and a gradually larger diameter towards the top of the extractor (e.g., conical). In some embodiments, the extractor may be designed to have a step-wise increase in diameter. For example, the extractor may comprise a first region of constant diameter followed by a stepwise increase in diameter to a second region of constant diameter. In some embodiments, the extractor may additionally include a second step increase in diameter to a third region of constant diameter. In some embodiments, the extractor may include one or more stepped increases in diameter. In some embodiments, the extractor may comprise one or more regions of constant diameter.

발효 과정에 걸쳐, 발효 브로쓰의 가스 함량 (예를 들어, CO2)이 변화하며, 가스 스트리퍼(gas stripper)를 이용하여 이러한 가스를 발효 브로쓰로부터 제거할 수 있다. 발효 브로쓰로부터 스트리핑되는 가스의 양은 가스 스트리퍼를 통과하는 유동 및/또는 가스 스트리퍼의 압력을 변화시킴으로써 조정할 수 있다. 일부 실시 형태에서, 발효 브로쓰를 추출기로 이동시키기 전에, 발효 브로쓰 중 CO2의 양을 감소시킬 수 있다. 예를 들어, 가스 스트리퍼 또는 당업자에게 공지된 임의의 수단을 사용하여 CO2를 발효 브로쓰로부터 스트리핑할 수 있다. 일부 실시 형태에서, CO2의 제거는 주위 압력 이하에서 수행될 수 있다. 일부 실시 형태에서, 추출기 내에서 발효가 계속될 수 있으며, 미생물에 의해 CO2가 생성될 수 있다. 일부 실시 형태에서, 추출기에서의 CO2 혼합을 최소화하기 위해, 추출기에서의 발효 브로쓰의 체류 시간을 감소시킬 수 있다. 일부 실시 형태에서, 추출기의 높이를 변경함으로써 체류 시간을 감소시킬 수 있다. 일부 실시 형태에서, 추출기의 높이를 감소시킬 수 있다. 추출기의 높이를 감소시키는 것은 이론적 추출 스테이지(theoretical extraction stage)의 수를 감소시킬 수 있다. 일부 실시 형태에서는, 이론적 추출 스테이지의 수를 유지하기 위해서, 추출기를 감소된 높이의 둘 이상의 추출기로 대체할 수 있다. 일부 실시 형태에서, 둘 이상의 추출기는 직렬일 수 있다. 일부 실시 형태에서, 둘 이상의 추출기는 연결될 수 있다. 일부 실시 형태에서, 둘 이상의 추출기는 역류 유동을 유지하는 방식으로 연결될 수 있다. 일부 실시 형태에서, 하나 이상의 추출 스테이지에 탈기 스테이지(degassing stage)가 추가될 수 있다.Throughout the fermentation process, the gas content (e.g., CO 2 ) of the fermentation broth changes and a gas stripper can be used to remove this gas from the fermentation broth. The amount of gas stripped from the fermentation broth can be adjusted by varying the flow through the gas stripper and / or the pressure of the gas stripper. In some embodiments, the amount of CO 2 in the fermentation broth can be reduced prior to transferring the fermentation broth to the extractor. For example, CO 2 can be stripped from the fermentation broth using a gas stripper or any means known to those skilled in the art. In some embodiments, removal of CO 2 may be performed at ambient pressure or below. In some embodiments, fermentation may continue in the extractor and CO 2 may be produced by the microorganism. In some embodiments, the residence time of the fermentation broth at the extractor can be reduced to minimize CO 2 mixing at the extractor. In some embodiments, the residence time can be reduced by changing the height of the extractor. In some embodiments, the height of the extractor can be reduced. Reducing the height of the extractor can reduce the number of theoretical extraction stages. In some embodiments, the extractor can be replaced with two or more extractors of reduced height to maintain the number of theoretical extraction stages. In some embodiments, the two or more extractors may be in series. In some embodiments, more than one extractor may be connected. In some embodiments, two or more extractors may be connected in a manner that maintains a countercurrent flow. In some embodiments, a degassing stage may be added to one or more extraction stages.

도 8을 참조하면, 일부 실시 형태에서, 추출기(120) 내의 분산상 소적의 크기가 측정될 수 있으며, 다양한 수단을 통해 물질 이동 속도를 향상시키도록 조정될 수 있다. 예를 들어, 소적 크기는, 입자 크기 분석, 예를 들어, 집속 빔 반사율 측정(focused beam reflectance measurement) (FBRM(등록상표)) 또는 입자 비전 및 측정(particle vision and measurement) (PVM(등록상표)) 기술 (미국 오하이오주 콜럼버스 소재의 메틀러-톨레도, 엘엘씨(Mettler-Toledo, LLC))을 사용하여 측정될 수 있다. 일부 실시 형태에서, 발효 브로쓰는 분산상일 수 있고 추출제는 연속상일 수 있으며, 이러한 조건하에서, 발효 브로쓰에 존재하는 고형물은 더 적은 정도로 추출제와 상호작용할 수 있다. 일부 실시 형태에서, 분리부(130)의 조건은 추출제에 대한 산화적 영향 및 열불안정성 영향을 최소화하도록 제어될 수 있다.Referring to Figure 8, in some embodiments, the size of the dispersed droplets in the extractor 120 can be measured and adjusted to improve the mass transfer rate through various means. For example, the droplet size can be determined by particle size analysis, for example focused beam reflectance measurement (FBRM TM) or particle vision and measurement (PVM TM) ) Technology (Mettler-Toledo, LLC, Columbus, Ohio, USA). In some embodiments, the fermentation broth can be a dispersed phase and the extractant can be a continuous phase, and under these conditions, the solids present in the fermentation broth can interact with the extractant to a lesser extent. In some embodiments, the conditions of the separator 130 can be controlled to minimize the oxidative and thermal instability effects on the extractant.

일부 실시 형태에서, 추출제의 품질이 감시될 수 있으며, 추출제는 생성물 알코올의 성공적인 생성에 필요한 빈도로 보충될 수 있다. 일부 실시 형태에서, 추출제는 전증류폐액 고형물에 의해 흡수될 수 있다. 전증류폐액을 액체 (예를 들어, 묽은 증류폐액) 스트림 및 고형물 스트림으로 분리할 수 있으며, 고형물을 세척하여 추출제를 회수할 수 있다. 일부 실시 형태에서, 추출기(120)의 온도를 조정하여 전체 공정의 효율을 개선할 수 있다. 일부 실시 형태에서, 추출기(120)로의 발효 브로쓰 및 추출제의 유동은 병류(co-current) 또는 역류일 수 있다. 일부 실시 형태에서, 막을 사용하여 발효 브로쓰와 추출제의 혼합을 최소화할 수 있다. 일부 실시 형태에서, 추출제는 생성물 알코올을 흡수하는 중합체 비드 또는 무기 비드일 수 있다. 일부 실시 형태에서, 중합체 비드 또는 무기 비드는 생성물 알코올을 우선적으로 흡수할 수 있다.In some embodiments, the quality of the extractant may be monitored and the extractant may be supplemented with the frequency necessary for successful production of the product alcohol. In some embodiments, the extractant may be absorbed by the pre-distillation waste solids. The pre-distillation effluent can be separated into a liquid (e. G., Dilute distillate waste) stream and a solids stream, and the extract can be recovered by washing the solids. In some embodiments, the temperature of the extractor 120 may be adjusted to improve the efficiency of the overall process. In some embodiments, the flow of the fermentation broth and extractant to the extractor 120 can be co-current or counter current. In some embodiments, the membrane can be used to minimize mixing of the fermentation broth with the extractant. In some embodiments, the extractant may be a polymeric bead or an inorganic bead that absorbs the product alcohol. In some embodiments, polymeric beads or inorganic beads may preferentially absorb product alcohol.

일부 실시 형태에서, 인라인, 온라인, 엣라인, 또는 실시간 측정과 같은 측정을 사용하여, 다양한 스트림 중의 생성물 알코올 및/또는 대사 부산물의 농도를 측정할 수 있다. 이러한 측정은 제어 루프의 일부로서 사용되어, 다양한 유닛들 또는 용기들 (예를 들어, 발효부(30), 추출기(120), 분리부(130, 140) 등) 사이의 유동을 변화시킬 수 있으며 전체 공정을 개선할 수 있다.In some embodiments, measurements such as in-line, on-line, at-line, or real-time measurements may be used to measure the concentration of product alcohol and / or metabolic by-products in the various streams. Such measurements can be used as part of a control loop to change the flow between various units or vessels (e.g., fermentation section 30, extractor 120, separator sections 130, 140, etc.) The entire process can be improved.

본 발명의 다른 예시적인 공정이 도 9에 기술되어 있다. 도 9의 일부 공정 및 스트림은 도 1 내지 도 8에 사용된 것과 동일한 명칭 및 부호를 사용하여 식별되어 있으며 도 1 내지 도 8에 기재된 것과 동일하거나 유사한 공정 및 스트림을 나타낸다.Another exemplary process of the present invention is illustrated in FIG. Some of the processes and streams in FIG. 9 are identified using the same names and symbols as those used in FIGS. 1-8 and represent processes and streams similar or similar to those described in FIGS. 1-8.

공급원료(12)는 도 1 내지 도 7에 대해 본 명세서에 기재된 바와 같이 처리되고 고형물 분리될 수 있다(100). 일부 실시 형태에서, 공급원료(12)는 증발부(160)에 의해 생성된 재순환되는 물 (예를 들어, 스트림(162))과 혼합될 수 있다. 본 명세서에 기재된 바와 같이, 공급원료 슬러리를 분리 방법으로 처리하여 부유 고형물을 제거하여, 습윤 케이크(24), 용해된 발효가능한 당을 포함하는 수용액(22) (또는 원심분리액), 및 공급원료에 따라, 오일을 생성할 수 있다. 습윤 케이크(24)를 건조기(170)에서 건조할 수 있으며 DDGS를 생성하는 데 사용할 수 있다. 일부 실시 형태에서, 습윤 케이크(24)를 물 (예를 들어, 재순환되는 물/스트림(162))로 재슬러리화하고 분리하여 추가의 발효가능한 당을 제거하여, 세척된 습윤 케이크 (예를 들어, 도 4 및 도 5에 기재된 바와 같은 74, 74')를 생성할 수 있다. 일부 실시 형태에서, 습윤 케이크 스트림(24, 74, 74')을 배합할 수 있으며, 배합된 습윤 케이크 스트림을 건조기(170)에서 건조하고 DDGS를 생성하는 데 사용할 수 있다.Feedstock 12 may be treated and solids separated as described herein with respect to Figures 1-7 (100). In some embodiments, the feedstock 12 may be mixed with recycled water (e.g., stream 162) produced by the evaporation portion 160. As described herein, the feedstock slurry is treated by a separation method to remove suspended solids to form a wet cake 24, an aqueous solution 22 (or centrifuge) containing dissolved fermentable sugar, and a feedstock , Oil can be produced. The wet cake 24 can be dried in the dryer 170 and used to generate DDGS. In some embodiments, the wet cake 24 is re-slurried and separated into water (e.g., recycled water / stream 162) to remove additional fermentable sugars to remove the washed wet cake , 74, 74 'as described in Figures 4 and 5. In some embodiments, the wet cake stream 24, 74, 74 ' may be compounded and the combined wet cake stream dried in the dryer 170 and used to produce DDGS.

수용액(22) 및 미생물(32)이 발효부(30)에 첨가될 수 있는데, 발효부에서는 발효가능한 당이 미생물(32)에 의해 대사되어 생성물 알코올을 포함하는 스트림(105)을 생성한다. 일부 실시 형태에서, 효소가 발효부(30)에 첨가될 수 있다. 스트림(105)은 추출기(120)로 안내될 수 있으며, 추출제(124)와 접촉할 수 있다. 생성물 알코올이 더 희박한 발효 브로쓰를 포함하는 스트림(127)은 발효부(30)로 되돌려 보내질 수 있고 생성물 알코올이 더 풍부한 추출제를 포함하는 스트림(122)은 분리부(130)로 안내될 수 있다. 일부 실시 형태에서, 추출기(120)는, 스트림(122)이 최소한의 세포괴 및 최소한의 기질을 함유하도록 하는 방식으로 작동될 수 있다. 분리부(130)는 미생물(32) 또는 기질을 손상시켜 발효 속도의 감소를 가져올 수 있다. 최소한의 세포괴 및 기질로 추출기(120)를 작동시키는 것은 분리부(130)에 의한 임의의 잠적인 손상을 최소화시킬 수 있다. 더 희박한 추출제를 포함하는 스트림(125)은 추출기(120)로 되돌려 보내질 수 있다. 분리부(130)로부터의 스트림(135)은, 생성물 알코올의 회수를 포함하는 추가의 처리를 위해 정제부(150)로 안내될 수 있다. 일부 실시 형태에서, 추출제가 발효부(30)에 첨가될 수 있다. 일부 실시 형태에서, 추출제를 포함하는 발효 브로쓰의 일부가 추출기(120)로 이동될 수 있으며, 일부 실시 형태에서, 추출제를 포함하는 발효 브로쓰로부터 추출제가 회수될 수 있다. 일부 실시 형태에서, 추출기로의 발효 브로쓰 및 추출제의 유량을 변경하여 상분리를 개선할 수 있다. 예를 들어, 발효의 초기 또는 나중 스테이지에서 추출기로 들어가는 전체 유량이 낮을수록 발효 브로쓰 및 추출제의 상분리를 개선할 수 있다.An aqueous solution 22 and a microorganism 32 may be added to the fermentation section 30 where the fermentable sugar is metabolized by the microorganism 32 to produce a stream 105 comprising the product alcohol. In some embodiments, an enzyme may be added to the fermentation section 30. Stream 105 can be directed to extractor 120 and contact extraction agent 124. A stream 127 containing the fermentation broth in which the product alcohol is leaner may be sent back to the fermentation section 30 and a stream 122 containing the extractant rich in product alcohol may be directed to the separation section 130 have. In some embodiments, the extractor 120 may be operated in a manner such that the stream 122 contains minimal cell mass and minimal substrate. The separation unit 130 may damage the microorganism 32 or the substrate and may cause a decrease in the fermentation rate. Operating the extractor 120 with minimal cell mass and substrate can minimize any potential damage to the separator 130. The stream 125 containing the leaner extractant may be sent back to the extractor 120. Stream 135 from separator 130 may be directed to purifier 150 for further processing, including recovery of product alcohol. In some embodiments, the extracting agent may be added to the fermentation section 30. In some embodiments, a portion of the fermentation broth comprising the extractant may be transferred to the extractor 120, and in some embodiments, the extractant may be recovered from the fermentation broth comprising the extractant. In some embodiments, the flow rate of the fermentation broth and extractant to the extractor can be varied to improve phase separation. For example, the lower the total flow into the extractor at the early or later stages of fermentation, the better the phase separation of the fermentation broth and extractant.

본 명세서에 기재된 바와 같이, 배치 발효 공정 후에 또는 연속 발효 공정의 일정한 유출물 스트림(steady effluent stream)으로서, 비어를 포함하는 스트림(103)이 하류로 분리부(140)로 안내되어 전증류폐액(142)으로부터 생성물 알코올이 분리될 수 있다. 상류 고형물 제거 공정을 사용하는 것은, 묽은 매시 중의 용해되지 않은 고형물의 함량을 낮출 수 있으며, 따라서, 전증류폐액(142)을 원심분리하여 고형물을 제거할 필요가 없을 수 있다. 따라서, 전증류폐액(142)은 증발부(160)로 직접 안내될 수 있다. 증발부(160)에 의해 생성된 시럽(165)을 건조기(170)에서 습윤 케이크(24, 74, 74')와 혼합하여 DDGS를 형성할 수 있다.As described herein, after a batch fermentation process, or as a steady effluent stream in a continuous fermentation process, a stream 103 containing beer is directed downstream to the separation section 140 to form a pre- 142). ≪ / RTI > Using an upstream solids removal process may reduce the content of undissolved solids in the dilute solvent and thus may not require centrifugation of the pre-distillation effluent 142 to remove solids. Therefore, the pre-distillation waste liquid 142 can be directly guided to the evaporator 160. [ The syrup 165 produced by the evaporator 160 may be mixed with the wet cake 24, 74, 74 'in the dryer 170 to form DDGS.

일부 실시 형태에서, 전증류폐액으로부터의 총 부유 고형물(TSS)을 포함하는 백세트가 공급원료 슬러리 제조를 위해 사용될 수 있다 (재순환될 수 있다). 일부 실시 형태에서, 전증류폐액 또는 전증류폐액의 일부를, 증발 전에 터보 여과 또는 초원심분리를 포함하지만 이에 한정되지 않는 고형물 분리 시스템을 통해 처리할 수 있거나, 또는 전증류폐액 또는 전증류폐액의 일부를 자가-세정식 정수(self-cleaning water purification)를 위해 처리할 수 있다.In some embodiments, a backing set comprising total suspended solids (TSS) from pre-distillation waste liquid can be used (recycled) for the feedstock slurry production. In some embodiments, the entire distillation waste liquid or a portion of the pre-distillation waste liquid may be treated through a solids separation system including, but not limited to, turbo-filtration or ultracentrifugation prior to evaporation, or the entire distillation effluent or pre- Some can be processed for self-cleaning water purification.

액화된 매시로부터 조립(coarse grain) 고형물을 제거하는 일부 실시 형태에서, 생성되는 전증류폐액은 미세한 고형물 및 불용성 미생물 단편을 함유할 수 있으며, 이러한 분산된 고형물은 터보 여과를 사용하여 제거할 수 있다. 터보 여과는 미세한 고형물을 보유할 수 있는 스트레이너(strainer)를 통해 공급물 현탁액이 원심분리 운동을 겪게 하는 것을 포함할 수 있다. 이러한 미세한 고형물은, 습윤 케이크로 형성될 때, 세립 입자의 표면 상 및 기공 내 둘 모두에 흡수된 약간의 추출제를 함유할 수 있다. 일부 경우에, 습윤 케이크를 물로 세척하는 것은 습윤 케이크로부터 추출제를 회수하기에 불충분하다. 일부 실시 형태에서, 농축된 생성물 알코올 스트림, 예를 들어, 유기상을 사용하여 전증류폐액 습윤 케이크로부터 추출제를 회수할 수 있다. 일부 실시 형태에서, 이러한 유기상은 디캔터에서 형성될 수 있다. 일부 실시 형태에서, 생성물 알코올로 세척된 습윤 케이크를 후속적으로 물로 세척하여, 습윤 케이크로부터 생성물 알코올을 회수할 수 있다.In some embodiments, where the coarse grain solids are removed from the liquefied mass, the resulting pre-distillation waste liquid may contain fine solids and insoluble microbial fractions, and such dispersed solids may be removed using turbo-filtration . Turbo filtration may involve causing the feed suspension to undergo centrifugal motion through a strainer capable of retaining fine solids. Such fine solids, when formed into a wet cake, may contain some sorbent absorbed on both the surface of the fine particle and in the pores. In some cases, washing the wet cake with water is insufficient to recover the extractant from the wet cake. In some embodiments, a concentrated product alcohol stream, for example, an organic phase, may be used to recover the extractant from the pre-distillation waste liquid wet cake. In some embodiments, such an organic phase may be formed in a decanter. In some embodiments, the wet cake washed with the product alcohol may subsequently be washed with water to recover the product alcohol from the wet cake.

일부 실시 형태에서, 본 명세서에 기재된 공정 및 시스템은 추출제 저장조 (또는 탱크 또는 용기)를 포함할 수 있다. 추출제가 추출제 저장조에 첨가될 수 있으며, 이러한 추출제는 추출기로 순환될 수 있다. 일부 실시 형태에서, 추출제는 추출기로 안내될 수 있으며, 추출기로부터의 스트림은 추출제 저장조로 되돌려 보내질 수 있다. 일부 실시 형태에서, 추출제 저장조로부터의 추출제는 추출기 및/또는 발효기로 순환될 수 있다. 일부 실시 형태에서, 추출제 스트림은 추출제 저장조, 추출기, 발효기 사이에서 순환될 수 있다. 일부 실시 형태에서, 발효의 완료 시에, 추출제 저장조, 추출기, 및/또는 발효기의 내용물을 추가로 처리하여 생성물 알코올을 회수할 수 있다.In some embodiments, the processes and systems described herein may include an extractant reservoir (or tank or vessel). An extractant may be added to the extractant reservoir, and this extractant may be recycled to the extractor. In some embodiments, the extractant may be directed to an extractor, and the stream from the extractor may be sent back to the extractor reservoir. In some embodiments, the extractant from the extractant reservoir may be circulated to the extractor and / or the fermenter. In some embodiments, the extractant stream may be circulated between the extractor reservoir, the extractor, and the fermenter. In some embodiments, upon completion of fermentation, the contents of the extractor reservoir, extractor, and / or fermenter may be further treated to recover the product alcohol.

추출제로부터의 생성물 알코올의 분리 및 추출은, 사이포닝(siphoning), 디캔테이션, 원심분리, 중력 침강, 막-보조 상분리 등을 포함하지만 이에 한정되지 않는 본 기술 분야에 공지된 방법을 사용하여 달성될 수 있다. 일부 실시 형태에서, 추출은, 예를 들어, 혼합-침강기를 사용하여 수행될 수 있다. 혼합-침강기는 스테이지식 추출기이며, 펌프, 교반기, 정적 혼합기, 혼합 티(mixing tee), 충돌 장치(impingement device), 순환 스크린(circulating screen), 또는 레이닝 버킷(raining bucket)과 같은, 혼합을 위한 다양한 요소와 함께 이용가능하다. 혼합-침강기의 예가 도 10a 내지 도 10h에 나타나 있다. 예를 들어, 도 10a는 혼합의 공급원으로서 펌프를 사용하는 혼합-침강기를 나타낸다. 도 10b는 혼합의 공급원으로서 혼합기를 사용하는 혼합-침강기를 나타낸다. 도 10c는 혼합의 공급원으로서 정적 혼합기를 사용하는 혼합-침강기를 나타낸다. 도 10d는 혼합의 공급원으로서 혼합 티를 사용하는 혼합-침강기를 나타낸다. 도 10e는 혼합의 공급원으로서 충돌 혼합기를 사용하는 혼합-침강기를 나타낸다. 도 10f는 혼합의 공급원으로서 레이닝 버킷 또는 메시형 스크린(meshed screen)을 사용하는 혼합-침강기를 나타낸다. 도 10g는 침강기로서 원심분리기를 사용하는 혼합-침강기를 나타낸다. 도 10h는 침강기로서 하이드로사이클론 또는 와류형 분리기를 사용하는 혼합-침강기를 나타낸다. 일부 실시 형태에서, 하나 이상의 혼합 장치가 본 명세서에 기재된 바와 같은 공정 및 시스템에 사용될 수 있다.The separation and extraction of the product alcohol from the extractant can be accomplished using methods known in the art including, but not limited to, siphoning, decantation, centrifugation, gravity settling, membrane-assisted phase separation, . In some embodiments, extraction may be performed using, for example, a mix-settler. The mixer-settler is a stay-information extractor and is used to mix a mixture, such as a pump, a stirrer, a static mixer, a mixing tee, an impingement device, a circulating screen, or a raining bucket ≪ / RTI > Examples of mixing-settlers are shown in Figures 10a to 10h. For example, FIG. 10a shows a mix-and-settler using a pump as a source of mixing. Figure 10b shows a mixing-settler using a mixer as a source of mixing. Figure 10c shows a mixing-settler using a static mixer as a source of mixing. Figure 10d shows a mixing-settler using mixed tees as a source of mixing. Figure 10E shows a mixer-settler using an impingement mixer as a source of mixing. Figure 10f shows a mixing-settler using a lasing bucket or meshed screen as a source of mixing. Figure 10g shows a mixer-settler using a centrifuge as a settler. Figure 10h shows a mixing-settler using a hydrocyclone or eddy-current separator as the settler. In some embodiments, one or more mixing devices may be used in the processes and systems as described herein.

일부 실시 형태에서, 혼합기는, 예를 들어, 플랫 블레이드(flat blade), 피치형 블레이드 터빈(pitched blade turbine), 또는 곡선 프로펠러(curved propeller)와 같은 교반기를 포함할 수 있다. 교반형 혼합기에 의해 생성되는 소적 크기는 교반기 설계, 탱크 설계, 교반기 속도, 및 작동 모드에 의해 제어될 수 있다. 정적 혼합기의 경우, 소적 크기는 혼합기의 직경 및 유량에 의해 제어될 수 있다. 예를 들어, 소적 크기는 발효 과정에 걸쳐 혼합기를 통과하는 유동을 변화시킴으로써 제어될 수 있다. 일부 실시 형태에서, 가스 및 혼합기가 혼합 목적을 위해 사용될 수 있다.In some embodiments, the mixer may include a stirrer, such as, for example, a flat blade, a pitched blade turbine, or a curved propeller. The droplet size produced by the stirred mixer can be controlled by the stirrer design, the tank design, the stirrer speed, and the operating mode. For static mixers, droplet size can be controlled by the diameter and flow rate of the mixer. For example, droplet size can be controlled by varying the flow through the mixer over the fermentation process. In some embodiments, gases and mixers may be used for mixing purposes.

일부 실시 형태에서, 하나 이상의 혼합-침강기가 본 명세서에 기재된 바와 같은 공정 및 시스템에 사용될 수 있다. 일부 실시 형태에서, 하나 이상의 혼합-침강기는 직렬로, 또는 도 10i 및 도 10j에 나타낸 바와 같이 역류 모드로 배열될 수 있다. 일부 실시 형태에서, 혼합-침강기들을 컬럼 배열로 쌓아 올려서, 다중 혼합 및 침강 구역을 제공할 수 있다. 일부 실시 형태에서, 침강기는 상분리를 촉진하도록 친수성 또는 소수성 표면을 포함할 수 있다.In some embodiments, one or more mixed-settlers may be used in the processes and systems as described herein. In some embodiments, the one or more mixed-settlers may be arranged in series, or in countercurrent mode as shown in Figures 10i and 10j. In some embodiments, the mixer-settlers may be stacked in a columnar arrangement to provide multiple mixing and settling zones. In some embodiments, the settler may include a hydrophilic or hydrophobic surface to promote phase separation.

다른 실시 형태에서, 컬럼 추출기 또는 원심분리 추출기가 본 명세서에 기재된 바와 같은 공정 및 시스템에 사용될 수 있다. 컬럼 추출기는 꾸준히 변화하는 농도 프로파일로 그의 길이에 걸쳐 물질 이동을 위한 조건을 제공하는 차동 추출기이다. 다양한 유형의 차동 추출기는 비-기계식, 펄스-교반식, 및 회전-교반식으로 나누어질 수 있다. 원심분리 추출기는 개별적인 부류의 차동 추출기이며, 포드바이엘니악(Podbielniak)(등록상표) 원심분리 접촉기가 그러한 유형의 것이다.In other embodiments, column extractors or centrifugal extractors may be used in processes and systems as described herein. A column extractor is a differential extractor that provides conditions for mass transfer over its length with a steady varying concentration profile. Different types of differential extractors can be divided into non-mechanical, pulse-agitated, and rotary-agitated. The centrifugal extractor is a separate class of differential extractors, and the Podbielniak (R) centrifugal contactor is of that type.

일부 실시 형태에서, 비-기계식 분무탑이 본 명세서에 기재된 바와 같은 공정 및 시스템에 사용될 수 있다. 비-기계식 분무탑의 일례에는 컬럼 내부구조물이 없는 비-기계식 분무탑이 포함된다. 노즐의 수 및 노즐 직경을 사용하여 소적 크기를 결정할 수 있다. 일부 실시 형태에서, 분무탑은 내부구조물을 가질 수 있다. 일부 실시 형태에서, 분무탑은 나선형 파이핑을 포함할 수 있다. 나선형 파이핑은 소적 상승 및 발효 브로쓰 및 추출제의 추가적인 혼합을 가능하게 할 수 있다. 일부 실시 형태에서, 비-기계식 추출기, 예를 들어, 충전탑(packed tower), 체 트레이(sieve tray), 및 배플 트레이가 본 명세서에 기재된 바와 같은 공정 및 시스템에 사용될 수 있다. 이들 추출기의 예가 도 10k에 나타나 있다. 일부 실시 형태에서, 그러한 추출기의 패킹(packing)은 랜덤일 수 있거나 구조화될 수 있다.In some embodiments, a non-mechanical spray tower may be used in the processes and systems as described herein. One example of a non-mechanical spray tower includes a non-mechanical spray tower without an internal column structure. The number of nozzles and the nozzle diameter can be used to determine the droplet size. In some embodiments, the spray tower may have an internal structure. In some embodiments, the spray tower may include helical piping. Spiral piping can allow for additional mixing of droplet rise and fermentation broth and extractant. In some embodiments, non-mechanical extractors, such as packed towers, sieve trays, and baffle trays, may be used in processes and systems as described herein. An example of these extractors is shown in Figure 10k. In some embodiments, the packing of such extractors may be random or may be structured.

일부 실시 형태에서, 펄스-교반형 추출기가 본 명세서에 기재된 바와 같은 공정 및 시스템에 사용될 수 있다. 펄스-교반형 추출기는, 트레이가 수직으로 이동하는 왕복 트레이(reciprocating tray) 또는 진동판을 또한 포함하는 상이한 설계를 가질 수 있다. 전체 패킹형 및/또는 체 트레이 컬럼이 또한 수직으로 진동하여 더 작은 분산상 소적 및 더 많은 물질 이동을 촉진할 수 있다. 이들 추출기의 예가 도 10l에 나타나 있다. 일부 실시 형태에서, 회전-교반형 또는 회전 디스크 접촉기가 본 명세서에 기재된 바와 같은 공정 및 시스템에 사용될 수 있다. 이들 추출기의 예가 도 10m에 나타나 있다.In some embodiments, pulse-agitated extractors may be used in processes and systems as described herein. The pulse-agitated extractor may have a different design that also includes a reciprocating tray or diaphragm where the tray moves vertically. The entire packed and / or bistray column may also vibrate vertically to facilitate smaller dispersed droplets and more mass transfer. An example of these extractors is shown in FIG. In some embodiments, rotational-agitated or rotating disk contactors may be used in processes and systems as described herein. An example of these extractors is shown in Figure 10m.

일부 실시 형태에서, 교반형 추출기가 본 명세서에 기재된 바와 같은 공정 및 시스템에 사용될 수 있다. 예를 들어, 원심분리기를 갖는 교반형 추출기는 높은 물질 이동 속도 및 완전한 상분리를 제공할 수 있다. 일부 실시 형태에서, 교반형 컬럼이 본 명세서에 기재된 바와 같은 공정 및 시스템에 사용될 수 있다. 예를 들어, 내부구조물을 갖는 교반형 컬럼은 높은 물질 이동 속도를 제공할 수 있다.In some embodiments, agitated extractors may be used in processes and systems as described herein. For example, a stirred extractor with a centrifuge can provide a high mass transfer rate and complete phase separation. In some embodiments, agitated columns may be used in processes and systems as described herein. For example, an agitated column having an internal structure can provide a high mass transfer rate.

액체-액체 추출 공정의 일 태양은 끊임없이 변화하는 발효 과정에 걸쳐 추출기를 위한 성공적인 작동 조건을 결정하는 것이다. 예를 들어, 전형적인 옥수수-대-생성물 알코올 배치 발효는, 발효기 내의 소정 부피의 발효 브로쓰에 미생물 (또는 세포괴)의 초기 접종물을 첨가한 후에, 발효기를 명시된 부피까지 추가로 충전하는 것을 이용한다. 미리 결정된 양의 발효가능한 탄소원 (예를 들어, 당)이 소모될 때까지 발효가 진행되게 할 수 있다. 배치 발효의 과정에 걸쳐, 세포괴, 반응 중간 생성물, 반응 부산물, 및 기질 성분의 농도가 시간에 따라 변화하며, 점도, 밀도, 및 표면 장력을 포함하는 발효 브로쓰의 물리적 특성도 마찬가지이다. 발효의 성능 파라미터, 예를 들어, 생산의 속도, 역가, 및 수율 파라미터, 및 공장 경제성, 예를 들어, 판매고, 투자수익률, 및 이윤을 개선하기 위하여, 변화하는 발효 브로쓰를 보상하도록 가변 방식으로 추출기를 작동시킬 수 있다. 또한, 동적 발효의 특성은 추출기의 크기 제한에 영향을 줄 수 있다. 공정의 수학적 모델을 사용하여 추출기와 발효기의 작동을 적절히 통합하는 것이 유리할 수 있다 (예를 들어, 문헌[Daugulis and Kollerup, Biotechnology and Bioengineering 27:1345-1356, 1985] 참조). 수학적 모델을 확대하는 것, 예를 들어, 중요 모델 파라미터를 실험적 데이터를 이용하여 설정하는 것이 또한 유익하다. 발효 공정의 개선된 속도, 역가, 및 수율에 대해 고려한 차동 추출기의 설계 파라미터는, 추출기 컬럼의 단면 면적당 추출기로의 최대 총 유동뿐만 아니라, 주어진 발효 브로쓰 대 추출제 비에서 충분한 생성물 알코올을 제거하는 데 필요한 추출기의 높이를 포함한다. 배치 발효 동안에 단위 면적당 최대 유동 및 추출기 높이를 변화시키는 것이 필요할 수 있다. 차동 추출기의 다른 고려사항은 분산상의 소적 크기이다. 적절한 소적 크기는, 충분한 물질 이동을 제공하기에 충분히 작은 크기와 추출기를 빠져나갈 때에는 완전한 상분리를 가능하게 하기에 충분히 큰 크기 사이에서 균형을 이룰 수 있다. 스테이지식 추출기에서는, 효율적인 물질 이동을 위해 필요한 혼합 강도, 침강에 필요한 상응하는 시간, 및/또는 상을 분리하는 데 필요한 에너지가 추가적인 고려 요소이다. 스테이지식 추출기 또는 차동 추출기, 어느 유형의 추출기에서든, 추출기로 공급되는 발효 브로쓰 대 추출제의 비는 추출기의 크기를 결정하는 역할을 한다.One aspect of a liquid-liquid extraction process is to determine successful operating conditions for the extractor over an ever-changing fermentation process. For example, a typical corn-to-product alcohol batch fermentation utilizes the addition of an initial inoculum of microorganism (or cell mass) to a given volume of fermentation broth in a fermenter followed by an additional filling of the fermentor to the specified volume. Fermentation can be allowed to proceed until a predetermined amount of fermentable carbon source (e.g., sugar) is consumed. Over the course of batch fermentation, the concentration of the cell mass, reaction intermediates, reaction byproducts, and substrate components varies over time, as are the physical properties of the fermentation broth including viscosity, density, and surface tension. In order to improve the performance parameters of the fermentation, for example, the rate of production, potency and yield parameters, and the plant economy, e.g., sales, return on investment, and profits, The extractor can be operated. In addition, the characteristics of dynamic fermentation can affect the size limit of the extractor. It may be advantageous to properly integrate the operation of the extractor and the fermenter using a mathematical model of the process (see, for example, Daugulis and Kollerup, Biotechnology and Bioengineering 27: 1345-1356, 1985). It is also beneficial to extend the mathematical model, for example, to set important model parameters using experimental data. The design parameters of the differential extractor for the improved rate, potency, and yield of the fermentation process include the maximum total flow to the extractor per section area of the extractor column, as well as the removal of sufficient product alcohol from the given fermentation broth- And the height of the extractor needed to make it. It may be necessary to vary the maximum flow per unit area and the extractor height during batch fermentation. Another consideration of the differential extractor is the droplet size of the dispersed phase. A suitable droplet size can be balanced between a size small enough to provide sufficient mass transfer and a size large enough to allow complete phase separation when exiting the extractor. In the stay extractor, the mixing strength required for efficient mass transfer, the corresponding time required for settling, and / or the energy required to separate the phases are additional considerations. The ratio of the fermentation broth to the extractant fed to the extractor, whether in a stator extractor or a differential extractor, in any type of extractor, serves to determine the size of the extractor.

일부 실시 형태에서, 고정된 크기의 추출기를 이용하고, 추출기로의 범람을 막는 최대 허용가능한 유동이, 발효 브로쓰의 물리적 특성 및 농도의 변화로 인해, 발효 과정에 걸쳐 낮은 값으로부터 높은 값으로 (예를 들어, 주어진 추출기 설계에 대한 최대치의 1/3로부터 2/3로) 변화한 경우에, 여전히 합리적인 시간 내에 발효를 완료하면서, 최대 유동을 초과하지 않고, 추출기로의 유동을 변화시킬 수 있다. 일부 실시 형태에서, 추출기가 교반되는 경우, 교반 속도를 발효 과정에 걸쳐 변화시켜 발효 브로쓰의 변화를 상쇄시킬 수 있다. 추출기 내에서 소적 크기를 측정할 수 있으며, 고정된 소적 크기를 유지하도록 속도를 발효 전반에서 제어하여 발효 브로쓰의 변화를 상쇄시킬 수 있다. 입구 및 출구 스트림에서 생성물 알코올의 농도를 측정하여 임의의 시점에 일어나는 물질 이동의 양을 평가하고 조건 (예를 들어, 유동, 유동비, 교반)을 조정하여 발효 과정에 걸쳐 물질 이동을 제어할 수 있다.In some embodiments, a fixed-size extractor is used and the maximum allowable flow that prevents flooding to the extractor is reduced from a low value to a high value throughout the fermentation process due to changes in the physical properties and concentration of the fermentation broth For example, 1/3 to 2/3 of the maximum value for a given extractor design), the flow to the extractor can be changed without exceeding the maximum flow while still completing the fermentation within a reasonable time . In some embodiments, when the extractor is agitated, the stirring rate can be varied throughout the fermentation process to counteract changes in the fermentation broth. The droplet size can be measured in the extractor, and the speed can be controlled throughout the fermentation to maintain the fixed droplet size to offset the change in the fermentation broth. The concentration of the product alcohol in the inlet and outlet streams can be measured to assess the amount of mass transfer that occurs at any point in time and to control conditions (e.g., flow, flow ratio, agitation) to control mass transfer throughout the fermentation process have.

일부 실시 형태에서, 상이한 크기의 다수의 추출기가 이용될 수 있으며, 각각의 추출기에서의 조건 (예를 들어, 유동, 유동비, 교반)을 조정하여 발효 공정의 개선된 제어를 제공할 수 있다. 일부 실시 형태에서, 발효 브로쓰 대 추출제의 비를 변경하여 추출 효율을 개선하고, 추출제 중 생성물 알코올의 농도를 증가시키고 (효율 증가에 해당함), 추출기 통과에 필요한 유동을 감소시킬 수 있다.In some embodiments, multiple extractors of different sizes may be used and the conditions (e.g., flow, flow ratio, agitation) at each extractor may be adjusted to provide improved control of the fermentation process. In some embodiments, the ratio of the fermentation broth to the extractant may be modified to improve extraction efficiency, increase the concentration of product alcohol in the extractant (corresponding to increased efficiency), and reduce the flow required to pass the extractor.

본 명세서에 기재된 공정 및 시스템의 추가적인 실시 형태에서, 둘 이상의 발효 브로쓰 또는 수성 스트림이 존재할 수 있다. 제1 수성 스트림으로부터 흡수된 생성물 알코올을 갖는 추출제 상은, 제1 수성 스트림 또는 발효 브로쓰보다 더 적은 생성물 알코올을 함유하는 제2 수성 스트림과 접촉하게 되어, 풍부 추출제 상으로부터 제2 수성상으로의 생성물 알코올의 이동을 가능하게 할 수 있다. 일부 실시 형태에서, 풍부 추출제와 묽은 수성 스트림을 접촉시키는 것은 다중-스테이지 접촉 장치에서 또는 정적 혼합기에 이어지는 침강기에서 일어날 수 있다. 일부 실시 형태에서, 풍부 추출제와 묽은 수성 스트림을 접촉시키는 것은, 희박 추출제가 발효 브로쓰와 접촉하는 동일한 장치에서 일어날 수 있다. 천공 배플을 갖는 추출기는 개별적인 구획에서 발효 브로쓰 및 묽은 수성 스트림 둘 모두의 하강 유동을 가능하게 할 것인 반면, 생성물 알코올이 희박한 추출제는 전체 구획 전반에서 연속상을 형성할 수 있다. 이러한 구성의 이점은, 추출제가 추출기의 폐쇄된 부피에 갇혀 있는 채로 남아 있다면, 생산 공장에서는 감소된 양의 추출제가 필요할 것이라는 점이다. 이러한 구성의 다른 이점은, 추출제가 증류 동안 잠재적인 분해를 겪지 않으며, 따라서 더 긴 서비스 수명을 나타낼 수 있다는 점이다. 생성물 알코올을 균질한 수성 스트림으로 이동시킴으로써, 컬럼 용량 및 열 집적(heat integration)을 고려하여, 생성물 알코올은 묽은 수성 스트림의 분배를 통해 하나를 초과하는 스트리핑 컬럼으로 안내될 수 있다. 생성물 알코올이 발효 브로쓰로부터 추출되는 동안에 또는 그 직후에 생성물 알코올이 수성 매질 내로 추출되는 경우, 추출제에 노출되는 깨끗한 장비에 대한 필요성이 감소될 수 있다.In a further embodiment of the processes and systems described herein, there may be more than one fermentation broth or aqueous stream. The extractant phase having the product alcohol absorbed from the first aqueous stream is contacted with a second aqueous stream containing less product alcohol than the first aqueous stream or fermentation broth and is passed from the rich extractant phase to the second aqueous phase Lt; RTI ID = 0.0 > alcohol. ≪ / RTI > In some embodiments, contacting the rich extractant with the dilute aqueous stream may occur in a multi-stage contactor or in a settler followed by a static mixer. In some embodiments, contacting the rich extractant with the dilute aqueous stream may occur in the same apparatus where the lean extractant contacts the fermentation broth. The extractor with a perforated baffle will enable the downflow of both the fermentation broth and the dilute aqueous stream in the individual compartments while the extractant with the product alcohol lean can form a continuous phase across the entire compartment. An advantage of this configuration is that if the extract remains trapped in the closed volume of the extractor, a reduced amount of extractant will be needed in the production plant. Another advantage of this configuration is that the extractant does not undergo any potential degradation during distillation and, therefore, can exhibit a longer service life. By moving the product alcohol to a homogeneous aqueous stream, the product alcohol can be directed to more than one stripping column through distribution of the dilute aqueous stream, taking into account the column capacity and heat integration. If the product alcohol is extracted into the aqueous medium during or immediately after the product alcohol is extracted from the fermentation broth, the need for clean equipment to be exposed to the extractant may be reduced.

일부 실시 형태에서, 생성물 알코올은, 생성물 알코올 수송에 대해 선별적인 배리어를 가로질러, 발효 브로쓰로부터 제2 수성 스트림 또는 추출제로 이동할 수 있다. 일부 실시 형태에서, 이러한 배리어는 막 물질에 의해 제공될 수 있다. 막 물질은 유기 물질 또는 무기 물질 중 어느 하나일 수 있다. 막 물질의 예에는 중합체 및 세라믹이 포함된다. 일부 실시 형태에서, 생성물 알코올은 하이드로젤을 이용하여 발효 브로쓰로부터 분리될 수 있다. 일부 실시 형태에서, 하이드로젤은 생성물 알코올과의 상호작용을 촉진하는 기능성 요소, 예를 들어, 하이드록실 작용성, 탄화수소 특성, 네트워크 크기 등을 포함할 수 있지만 이에 한정되지 않는다. 일부 실시 형태에서, 하이드로젤은 중합체 네트워크 구조체 또는 중합체 제형을 포함할 수 있다. 중합체 제형의 예에는 하기 중 하나 이상이 포함되지만 이로 한정되지 않는다: 아크릴산, 소듐 아크릴레이트, 하이드록시에틸 아크릴레이트, 메타크릴레이트, 하이드록시부틸 아크릴레이트, 부틸아크릴레이트, 비닐화 폴리에틸렌 옥사이드, 비닐화 폴리프로필렌 옥사이드, 비닐화 폴리테트라메틸렌 옥사이드, 폴리글리콜의 아크릴레이트 및 다이아크릴레이트, 폴리비닐 알코올 및 탄화수소 유도된 폴리비닐 알코올, 및 스티렌 및 스티렌 유도체. 일부 실시 형태에서, 하이드로젤은 하이드록시에틸 아크릴레이트 및 메타크릴레이트, 하이드록시부틸 아크릴레이트 및 메타크릴레이트, 또는 부틸 아크릴레이트 및 메타크릴레이트를 포함할 수 있다.In some embodiments, the product alcohol may travel from the fermentation broth to a second aqueous stream or extractant, across a selective barrier for product alcohol transport. In some embodiments, such a barrier may be provided by a film material. The membrane material may be either an organic material or an inorganic material. Examples of membrane materials include polymers and ceramics. In some embodiments, the product alcohol may be separated from the fermentation broth using a hydrogel. In some embodiments, the hydrogel may include, but is not limited to, functional elements that promote interaction with the product alcohol, such as hydroxyl functionality, hydrocarbon properties, network size, and the like. In some embodiments, the hydrogel may comprise a polymer network structure or a polymer formulation. Examples of polymeric formulations include, but are not limited to, one or more of the following: acrylic acid, sodium acrylate, hydroxyethyl acrylate, methacrylate, hydroxybutyl acrylate, butyl acrylate, vinylated polyethylene oxide, vinylated polypropylene Oxides, vinylated polytetramethylene oxides, acrylates and diacrylates of polyglycols, polyvinyl alcohols and hydrocarbon derived polyvinyl alcohols, and styrene and styrene derivatives. In some embodiments, the hydrogel may include hydroxyethyl acrylate and methacrylate, hydroxybutyl acrylate and methacrylate, or butyl acrylate and methacrylate.

본 명세서에 기재된 공정 및 시스템의 다른 실시 형태에서, 대기압 초과에서 발효기의 하부로부터 발효 브로쓰를 제거하고, 대기압에서 작동하는 제1 플래시 탱크에 통과시켜, CO2와 같은 용해된 가스를 방출시킬 수 있다. 이러한 제1 플래시 탱크는 탈기 사이클론(degassing cyclone)일 수 있으며 이러한 제1 플래시 탱크로부터의 증기는 발효기로부터의 증기와 배합되어 스크러버(scrubber)로 지향될 수 있다. 일부 실시 형태에서, 제1 플래시 탱크로부터의 발효 브로쓰를 대기압 미만에서 작동하는 제2 플래시 탱크에 통과시켜 더 많은 용해된 가스, 예를 들어, CO2를 방출시킬 수 있다. 이러한 제2 플래시 탱크는 탈기 사이클론일 수 있으며, 이러한 제2 플래시 탱크로부터의 증기는 대기압으로 재압축되고, 냉각되고, 부분적으로 응축된 후에, 발효기로부터의 증기와 배합되고 스크러버로 지향될 수 있다. 임의의 잔류 또는 새로 형성된 용해된 가스가 추출 컬럼에서 증기상의 형성을 야기하지 않도록, 이러한 제2 플래시 탱크를 빠져나온 발효 브로쓰를 대기압 초과에서 작동하는 추출 컬럼으로 펌핑할 수 있다.In another embodiment of the process and system described herein, the fermentation broth is removed from the bottom of the fermenter at atmospheric pressure and passed through a first flash tank operating at atmospheric pressure to release dissolved gas such as CO 2 have. This first flash tank may be a degassing cyclone and the vapor from this first flash tank may be combined with the vapor from the fermenter and directed to a scrubber. In some embodiments, the fermentation broth from the first flash tank may be passed through a second flash tank operating below atmospheric pressure to release more dissolved gas, e.g., CO 2 . This second flash tank may be a degassing cyclone and the vapor from this second flash tank may be recompressed to atmospheric pressure, cooled, partially condensed and then combined with the vapor from the fermenter and directed into the scrubber. The fermentation broth exiting this second flash tank may be pumped to an extraction column operating above atmospheric pressure such that any residual or newly formed dissolved gas does not cause formation of a vapor phase in the extraction column.

본 명세서에 기재된 공정 및 시스템의 다른 실시 형태에서, 발효 브로쓰는 추출기로 안내될 수 있으며, 추출제와 접촉하여 수성 스트림과, 추출제 및 생성물 알코올을 포함하는 유기 스트림을 생성할 수 있다. 이러한 유기 스트림은 추출제로부터의 생성물 알코올의 분리를 위해 플래시 탱크 (예를 들어, 진공 플래시)로 안내될 수 있다. 일부 실시 형태에서, 플래시 탱크로부터의 추출제 스트림은 추출기 및/또는 발효기로 재순환될 수 있다. 일부 실시 형태에서, 유기 스트림은 플래시 탱크 전에 제2 추출기로 안내될 수 있다. 이러한 제2 추출기는, 예를 들어, 유기 스트림 중의 임의의 잔류의 물을 제거하는 데 사용될 수 있다. 추출기는 사이폰(siphon), 디캔터, 원심분리기, 중력 침강기, 혼합-침강기, 또는 이들의 조합일 수 있다. 일부 실시 형태에서, 추출제는 오일, 예를 들어(그러나 하기의 것으로 한정되지 않음), 탤로우, 옥수수유, 카놀라유, 카프릭/카프릴릭 트라이글리세라이드, 피마자유, 코코넛유, 면실유, 어유, 호호바유, 라드유, 아마인유, 우족유, 오이티시카유, 팜유, 땅콩유, 평지씨유, 미강유, 잇꽃유, 대두유, 해바라기유, 동유, 자트로파유, 및 식물유 블렌드, 또는 그로부터 유도되는 지방산일 수 있다.In another embodiment of the processes and systems described herein, the fermentation broth can be directed to an extractor and can be contacted with an extractant to produce an organic stream comprising an aqueous stream, an extractant, and a product alcohol. This organic stream can be directed to a flash tank (e.g., a vacuum flash) for separation of the product alcohol from the extractant. In some embodiments, the extractant stream from the flash tank may be recycled to the extractor and / or the fermenter. In some embodiments, the organic stream may be directed to the second extractor before the flash tank. This second extractor can be used, for example, to remove any residual water in the organic stream. The extractor may be a siphon, decanter, centrifuge, gravity settler, mix-settler, or a combination thereof. In some embodiments, the extractant is selected from the group consisting of oils, such as, but not limited to, tallow, corn oil, canola oil, capric / caprylic triglyceride, castor oil, coconut oil, cottonseed oil, , Or a mixture thereof, which is derived from or derived from a food or drink, such as corn oil, jojoba oil, lard oil, linseed oil, oyster oil, oatissikake oil, palm oil, peanut oil, rapeseed oil, rice bran oil, safflower oil, soybean oil, sunflower oil, Fatty acids.

본 명세서에 기재된 공정 및 시스템의 일부 실시 형태에서, 자동 자가-세정 여과(automatic self-cleaning filtration)가 이러한 공정 및 시스템에 사용될 수 있다. 발효 브로쓰는 발효기로부터 제거되고, 냉각기 (예를 들어, 발효 생산 설비에서의 현존의 냉각기)를 사용하여 냉각된 후에, 자동 자가-세정 필터로 들어갈 수 있다. 정화된(clarified) 매시가 필터를 통과할 때, 일부 미립자가 필터의 스크린 매체 상에 남아 있을 수 있다. 추가적인 필터들이 백플러시(backflush)를 동시에 겪고 있을 수 있는데, 여기서 정화된 매시의 일부가 미립자를 보유하는 스크린을 통해 역류하여, 농축된 고형물 스트림을 배출한다. 일부 실시 형태에서, 정화된 매시의 일부는 추출기의 상부로 들어갈 수 있는 한편, 추출제는 추출기의 하부로 공급된다. 정화된 매시와 추출제는, 밀도 차이에 의해 수동적으로, 또는 본 기술 분야에서 보통 사용되는 수단에 의한 기계적 운동의 도움으로(예를 들어, 카르(Karr)(등록상표) 컬럼), 접촉할 수 있다. 일부 실시 형태에서, 생성물 알코올을 함유하는 추출제의 유기 액체 스트림은 추출기의 상부로부터 빠져나오고, 정화된 매시에 비해 생성물 알코올이 적어도 부분적으로 결핍된 발효 브로쓰의 수성 액체 스트림은 추출기의 하부로부터 빠져나온다. 수성 액체 스트림 및 농축된 고형물 스트림이 배합되어 발효기로 되돌려 보내질 수 있다. 생성물 알코올이 희박하며 추출기의 하부로부터 나오는 추출제 스트림으로부터 열을 전달하는 열교환기에서, 생성물 알코올이 풍부한 추출제 스트림이 가열될 수 있다. 약간의 열을 방출한 후에, 희박 추출제는 열교환기 내의 물에 의해 추가로 냉각되어 발효에 적합한 온도에 도달할 수 있다. 발효 브로쓰의 순환은 열 전달 장치 및 물질 이동 장치를 통한 경로를 포함하여, 외부 냉각 루프를 통한 통과에 의해 열 및 생성물 알코올의 제거를 가능하게 할 수 있다. 더욱이, 일부 실시 형태에서, 외부 냉각 루프를 통한 순환 유동을 조정하고/하거나, 열교환기 내의 냉각 유체의 유동을 조정하고/하거나, 추출제의 유동을 조정함으로써, 발효 동안 열 및 생성물 알코올의 제거 속도가 열 및 생성물 알코올의 생성 속도와 균형을 이루게 할 수 있다.In some embodiments of the processes and systems described herein, automatic self-cleaning filtration can be used in such processes and systems. The fermentation broth can be removed from the fermenter, and after it has been cooled using a chiller (e.g., an existing chiller in a fermentation production facility), it can enter an automatic self-cleaning filter. When the clarified mesh passes through the filter, some particulate may remain on the screen medium of the filter. Additional filters may be undergoing a backflush at the same time where a portion of the cleaned mass flows back through the screen holding the particulate to discharge the concentrated solids stream. In some embodiments, a portion of the cleaned mass may enter the top of the extractor while the extractant is fed to the bottom of the extractor. The cleansed hourly and extractant can be contacted manually by density difference or with the aid of mechanical movement by means commonly used in the art (e.g., a Karr (R) column) have. In some embodiments, the organic liquid stream of extractant containing product alcohol escapes from the top of the extractor, and the aqueous liquid stream of fermented broth at least partially deficient in product alcohol compared to the purified mash is withdrawn from the bottom of the extractor It comes out. The aqueous liquid stream and the concentrated solids stream may be combined and returned to the fermenter. In a heat exchanger where the product alcohol is lean and conveys heat from the extractant stream coming from the bottom of the extractor, the product alcohol rich extractant stream can be heated. After releasing some heat, the lean extractant may be further cooled by water in the heat exchanger to reach a temperature suitable for fermentation. The circulation of the fermentation broth can include removal of heat and product alcohol by passage through an external cooling loop, including through a heat transfer device and a mass transfer device. Moreover, in some embodiments, the removal rate of heat and product alcohol during fermentation may be controlled during fermentation by adjusting the circulating flow through the external cooling loop and / or adjusting the flow of cooling fluid in the heat exchanger and / Can be balanced with the rate of production of heat and product alcohols.

본 명세서에 기재된 공정 및 시스템의 일부 실시 형태에서, 발효 브로쓰로부터의 추출제의 상분리는 공정의 온도 및/또는 pH를 변경함으로써 향상될 수 있다. 예를 들어, 공정은 발효기의 온도 및/또는 pH와 상이한 온도 및/또는 pH에서 작동될 수 있다. 일부 실시 형태에서, 공정은 발효기와 비교하여 감소된 pH에서 작동될 수 있다. 일부 실시 형태에서, 공정은 발효기와 비교하여 더 높은 온도에서 작동될 수 있다. 일부 실시 형태에서, 공정은 발효기와 비교하여 감소된 pH 및 더 높은 온도에서 작동될 수 있다. 더 높은 온도는 수성상과 유기상 사이의 생성물 알코올의 물질 이동의 동역학을 증가시킬 수 있고, 수성상 중에 분산된 추출제 소적들 및 유기상 중에 분산된 수성 소적들에 대한 합체의 동역학을 증가시킬 수 있다. 일부 실시 형태에서, 발효 브로쓰 및 추출제를 수용하는 추출기 내부의 온도는, 추출기로 들어가는 발효 브로쓰 및/또는 추출제를 가열함으로서 증가시킬 수 있다. 발효 브로쓰는 수증기 또는 스팀의 주입에 의해 직접적으로 또는 열교환기를 통해 간접적으로 가열될 수 있다. 일부 실시 형태에서, 추출기로 공급되는 추출제는 증류부로부터 나올 수 있는데, 증류부에서 추출제의 온도가 이미 증가되었을 수 있다. 일부 실시 형태에서, 추출제는 발효 온도보다 높은 온도로 냉각될 수 있다.In some embodiments of the processes and systems described herein, the phase separation of the extractant from the fermentation broth can be improved by changing the temperature and / or pH of the process. For example, the process may be operated at a temperature and / or pH different from the temperature and / or pH of the fermenter. In some embodiments, the process may be operated at a reduced pH compared to a fermenter. In some embodiments, the process may be operated at a higher temperature compared to a fermenter. In some embodiments, the process can be operated at a reduced pH and higher temperature compared to a fermenter. Higher temperatures can increase the kinetics of mass transfer of the product alcohol between the aqueous phase and the organic phase and increase the kinetics of coalescence of the aqueous droplets dispersed in the aqueous phase and the extractant droplets dispersed in the aqueous phase . In some embodiments, the temperature inside the extractor housing the fermentation broth and the extractant may be increased by heating the fermentation broth and / or extractant entering the extractor. The fermentation broth can be heated either directly by injection of steam or steam or indirectly through a heat exchanger. In some embodiments, the extractant fed to the extractor may come from the distillation section, where the temperature of the extractant in the distillation section may have already been increased. In some embodiments, the extractant may be cooled to a temperature above the fermentation temperature.

일부 실시 형태에서, 감소된 pH는 수성 브로쓰 상에서의 추출제의 용해성 및 분산성을 최소화시킬 수 있다. 일부 실시 형태에서, 추출제는 공지의 관련 pKa 값을 갖는 지방산일 수 있다. 일부 실시 형태에서, 발효 브로쓰의 pH를 추출제의 pKa 미만으로 감소시켜, 지방산의 카르복실산 기를 실질적으로 양성자화시킬 수 있다. 일부 실시 형태에서, CO2 가스를 발효 브로쓰 내로 도입함으로써, 또는 소량의 액체 산, 예를 들어 황산 또는 임의의 다른 유기산 또는 무기산을 발효 브로쓰 내로 주입함으로써 pH를 감소시킬 수 있다. 일부 실시 형태에서, 추출제로부터 분리한 후의 발효 브로쓰의 pH는 발효 pH로 조정될 수 있다.In some embodiments, the reduced pH can minimize the solubility and dispersibility of the extractant on the aqueous broth. In some embodiments, the extractant may be a fatty acid having a known associated pKa value. In some embodiments, the pH of the fermentation broth can be reduced below the pKa of the extractant to substantially protonate the carboxylic acid group of the fatty acid. In some embodiments, the pH can be reduced by introducing CO 2 gas into the fermentation broth, or by injecting a small amount of liquid acid, such as sulfuric acid, or any other organic or inorganic acid, into the fermentation broth. In some embodiments, the pH of the fermentation broth after separation from the extractant can be adjusted to the fermentation pH.

추출제 상이 연속상인 일부 실시 형태에서, 수성상은 추출제 상 중에 분포될 수 있거나 또는 분산될 수 있다. 예를 들어, 생성물 알코올을 포함하는 발효 브로쓰는, 분포기(distributor) 또는 분산 장치를 거쳐 추출기 (예를 들어, 외부 추출기)로 안내될 수 있다. 일부 실시 형태에서, 분포기 또는 분산 장치는 분무 노즐과 같은 노즐일 수 있다. 일부 실시 형태에서, 분포기 또는 분산 장치는 분무탑일 수 있다. 예로서, 발효 브로쓰의 소적을 추출제에 통과시킬 수 있으며, 생성물 알코올이 추출제로 이동된다. 발효 브로쓰의 소적들이 추출기의 하부에서 합체하며, 발효기로 되돌려 보내질 수 있다. 생성물 알코올을 포함하는 추출제는 본 명세서에 기재된 바와 같이 생성물 알코올의 회수를 위해 추가로 처리될 수 있다. 또한, 발효의 완료 시에, 발효기 내의 잔류 생성물 알코올이 또한 생성물 알코올의 회수를 위해 추가로 처리될 수 있다. 일부 실시 형태에서, 추출제 상은 역류일 수 있다.In some embodiments in which the extraction agent phase is a continuous phase, the aqueous phase may be distributed or dispersed in the extractant phase. For example, a fermentation broth containing product alcohol may be directed to an extractor (e.g., an external extractor) via a distributor or disperser. In some embodiments, the distributor or dispenser may be a nozzle, such as a spray nozzle. In some embodiments, the distributor or distributor may be a spray tower. As an example, droplets of the fermentation broth can be passed through the extractant, and the product alcohol is transferred to the extractant. The droplets of the fermentation broth are combined at the bottom of the extractor and can be sent back to the fermenter. The extractant containing the product alcohol may be further treated for recovery of the product alcohol as described herein. In addition, upon completion of the fermentation, the residual product alcohol in the fermenter can also be further treated for recovery of the product alcohol. In some embodiments, the extraction agent phase may be countercurrent.

추출제 상이 연속상이고 수성상이 분산상인 일부 실시 형태에서, 정전기 분무를 사용하여 추출제 상 중에 수성상을 분산시킴으로써 물질 이동 속도를 개선할 수 있다. 일부 실시 형태에서, 하나 이상의 분무 노즐이 정전기 분무에 이용될 수 있다. 일부 실시 형태에서, 하나 이상의 분무 노즐은 애노드일 수 있다. 일부 실시 형태에서, 하나 이상의 분무 노즐은 캐소드일 수 있다.In some embodiments in which the extraction agent phase is a continuous phase and the aqueous phase is a dispersed phase, the rate of mass transfer can be improved by dispersing the aqueous phase in the extractant phase using electrostatic atomization. In some embodiments, one or more spray nozzles may be used for electrostatic spraying. In some embodiments, the at least one atomizing nozzle may be an anode. In some embodiments, the at least one atomizing nozzle may be a cathode.

일부 실시 형태에서, 추출기 유출물을 사용하여 상분리를 향상시킬 수 있다. 예를 들어, 추출기의 상부로부터의 풍부 추출제 (즉, 생성물 알코올이 풍부한 추출제)의 일부를 환류로서 추출기의 상부로 되돌려 보낼 수 있으며, 나머지 풍부 추출제는 생성물 알코올의 회수를 위해 추가로 처리할 수 있다. 또한, 추출기 하부로부터의 희박 발효 브로쓰의 일부를 환류로서 추출기의 하부로 되돌려 보낼 수 있으며, 나머지 희박 발효 브로쓰는 발효기로 되돌려 보낼 수 있다. 다른 실시 형태에서, 풍부 추출제는 추출기의 상부로부터 빠져나와 디캔터 내로 들어가서 중질상 및 경질상으로 분리될 수 있다. 디캔터로부터의 중질상은, 상분리를 향상시키기 위해, 추출기의 상부로 안내될 수 있다. 디캔터로부터의 경질상은 생성물 알코올의 회수를 위해 추가로 처리될 수 있다.In some embodiments, an extractor effluent can be used to improve phase separation. For example, a portion of the rich extractant from the top of the extractor (i.e., the extractant rich in product alcohol) may be sent back to the top of the extractor as reflux, and the remaining rich extractant may be further processed to recover the product alcohol can do. In addition, a portion of the lean fermentation broth from the bottom of the extractor can be returned to the bottom of the extractor as reflux, and returned to the fermenter for the remaining lean fermentation broth. In another embodiment, the enrichment agent may escape from the top of the extractor and enter the decanter and separate into heavy and light phases. The heavy phase from the decanter can be directed to the top of the extractor to improve phase separation. The hard phase from the decanter can be further processed for the recovery of the product alcohol.

본 명세서에 기재된 공정 및 시스템의 일부 실시 형태에서, 생성물 알코올 회수를 위해 다중 통과 추출제 유동을 이용할 수 있다. 예를 들어, 다수의 발효기 및 추출기를 이용할 수 있는데, 여기서, 각각의 발효기의 발효 사이클은 상이한 시점에 이루어진다. 예로서 도 11a를 참조하면, 발효기(300)는 발효기(400)와 비교하여 더 앞선 시점에 있는데, 발효기(400)는 발효기(500)와 비교하여 더 앞선 시점에 있다 발효기(300)로부터의 생성물 알코올(302)을 포함하는 발효 브로쓰는 추출기(305)에서 추출제(307)와 접촉할 수 있고, 생성물 알코올은 추출제로 이동하여 생성물 알코올-풍부 추출제(309)를 생성할 수 있다. 추출기(305)로부터의 생성물 알코올-풍부 추출제(309)는 추출기(405)로 안내될 수 있다. 발효기(400)로부터의 생성물 알코올(402)을 포함하는 발효 브로쓰는 추출기(405)로 안내되어, 생성물 알코올-풍부 추출제(409)를 생성할 수 있다. 생성물 알코올-풍부 추출제(409)는 추출기(505)로 안내될 수 있다. 발효기(500)로부터의 생성물 알코올(502)을 포함하는 발효 브로쓰는 추출기(505)로 안내될 수 있다. 추출기(505)로부터의 생성물 알코올-풍부 추출제(509)는 생성물 알코올의 회수를 위해 처리될 수 있다. 생성물 알코올-희박 발효 브로쓰 (304, 404, 504)는 각각 발효기(300, 400, 500)로 되돌려 보내질 수 있다. 발효기 및 추출기의 수는 가동 설비에 따라 달라질 수 있다. 이러한 공정의 이점은, 예를 들어, 총 추출제 처리의 감소 및 추출기 크기의 감소이다.In some embodiments of the processes and systems described herein, a multi-pass extractor flow may be used for product alcohol recovery. For example, a number of fermenters and extractors may be used, wherein the fermentation cycle of each fermenter is at different times. Referring to FIG. 11A, the fermenter 300 is at a more advanced stage than the fermenter 400, and the fermenter 400 is at a higher point in time than the fermenter 500. The product from the fermenter 300 The fermentation broth containing the alcohol 302 may contact the extractant 307 in the extractor 305 and the product alcohol may move to the extractant to produce the product alcohol-rich extractant 309. The product alcohol-rich extractant 309 from the extractor 305 may be directed to the extractor 405. [ The fermentation broth containing the product alcohol 402 from the fermentor 400 can be directed to the extractor 405 to produce the product alcohol-rich extractant 409. The product alcohol-rich extractant 409 may be directed to an extractor 505. The fermentation broth containing the product alcohol 502 from the fermenter 500 may be directed to the extractor 505. The product alcohol-rich extractant 509 from the extractor 505 can be processed for recovery of the product alcohol. The product alcohol-lean fermentation broth 304, 404, 504 may be sent back to the fermentors 300, 400, 500, respectively. The number of fermentors and extractors may vary depending on the operating equipment. The advantages of this process are, for example, reduced total extractant processing and reduced extractor size.

이러한 예의 다른 실시 형태에서, 추가적인 발효기(F') 및 추가적인 추출기(E')가 존재할 수 있다 (도 11b). 이러한 실시 형태에서, 발효기(500) (발효기(300, 400)와 비교하여 더 나중의 시점에 있음)가 발효를 완료하였을 때, 발효기(500)는 오프라인(off-line)으로 될 수 있으며, 일부 실시 형태에서, 발효기(500)는 정치 세척(clean-in-place; CIP) 및 정치 살균(sterilization-in-place; SIP) 절차와 같은 위생 및/또는 살균 절차를 거칠 수 있다. 발효기(500)가 오프라인으로 될 때, 발효기(F')는 온라인으로 될 수 있다. 이러한 실시 형태에서, 발효기(F')는 발효기(300)와 비교하여 앞선 시점에 있는데, 발효기(300)는 발효기(400)와 비교하여 앞선 시점에 있다. 도 11a에 대한 설명과 유사하게, 발효기(F')로부터의 생성물 알코올(F'-02)을 포함하는 발효 브로쓰는 추출기(E') 내의 추출제와 접촉할 수 있으며, 생성물 알코올은 추출제로 이동하여 생성물 알코올-풍부 추출제(E'-09)를 생성할 수 있다. 추출기(E')로부터의 생성물 알코올-풍부 추출제(E'-09)는 추출기(305)로 안내될 수 있다. 발효기(300)로부터의 생성물 알코올(302)을 포함하는 발효 브로쓰는 추출기(305)로 안내되어, 생성물 알코올-풍부 추출제(309)를 생성할 수 있다. 생성물 알코올-풍부 추출제(309)는 추출기(405)로 안내될 수 있다. 발효기(400)로부터의 생성물 알코올(402)을 포함하는 발효 브로쓰는 추출기(405)로 안내될 수 있다. 추출기(405)로부터의 생성물 알코올-풍부 추출제(409)는 생성물 알코올의 회수를 위해 처리될 수 있다. 생성물 알코올-희박 발효 브로쓰 (F'-04, 304, 404)는 각각 발효기(F', 300, 400)로 되돌려 보내질 수 있다. 일부 실시 형태에서, 이러한 공정은 다수의 사이클, 예를 들어, 1회 이상, 2회 이상, 3회 이상, 4회 이상, 5회 이상, 10회 이상, 15회 이상, 20회 이상, 또는 그 초과의 사이클 동안 반복될 수 있다. 일부 실시 형태에서, 발효기를 오프라인으로 하고 추가적인 발효기를 온라인에 두는 공정은 수동 또는 자동일 수 있다. 이러한 공정의 이점은 생성물 회수(예를 들어, 증류)로의 추출기 유동의 감소이다.In another embodiment of this example, an additional fermenter (F ') and an additional extractor (E') may be present (FIG. 11b). In this embodiment, when the fermenter 500 (at a later point in time compared to the ferruses 300 and 400) has completed fermentation, the fermentor 500 may be off-line, In an embodiment, the fermentor 500 may be subjected to sanitary and / or sanitizing procedures such as clean-in-place (CIP) and sterilization-in-place (SIP) procedures. When the fermenter 500 goes offline, the fermenter F 'can be brought online. In this embodiment, the fermenter (F ') is at a point ahead of the fermenter (300), and the fermenter (300) is at a point ahead of the fermenter (400). 11A, the fermentation broth containing the product alcohol (F'-02) from the fermentor F 'can be contacted with the extractant in the extractor E', the product alcohol being transferred to the extractant To produce a product alcohol-rich extractant (E'-09). The product alcohol-rich extractant (E'-09) from the extractor (E ') can be directed to the extractor (305). The fermentation broth containing the product alcohol 302 from the fermentor 300 can be directed to the extractor 305 to produce the product alcohol-rich extractant 309. The product alcohol-rich extractant 309 may be directed to an extractor 405. The fermentation broth containing the product alcohol 402 from the fermentor 400 may be directed to the extractor 405. The product alcohol-rich extractant 409 from the extractor 405 may be processed for recovery of the product alcohol. The product alcohol-lean fermentation broth (F'-04, 304, 404) may be sent back to the fermenter (F ', 300, 400), respectively. In some embodiments, the process may be performed in any number of cycles, such as one or more, one or more, two or more, three or more, four or more, five or more, ten or more, fifteen or more, Over cycles. ≪ / RTI > In some embodiments, the process of placing the fermenter offline and bringing the additional fermenter online may be manual or automatic. An advantage of this process is the reduction of the extractor flow to product recovery (e.g., distillation).

일부 실시 형태에서, 추출제는 생성물 알코올의 인화점 (즉, 인화성)을 감소시킬 수 있다. 인화점은 액체의 표면을 가로질러 화염 전파가 일어나는 최저 온도를 지칭한다. 인화점은, 예를 들어, ASTM D93-02 방법 ("펜스키-마르텐스 폐쇄 시험기에 의한 인화점의 표준 시험 방법"(Standard Test Methods for Flash Point by Pensky-Martens Closed Tester))을 사용하여 측정될 수 있다. 생성물 알코올의 인화점의 감소는, 예를 들어, 잠재적으로 인화성인 생성물 알코올의 화재 위험성을 최소화함으로써, 알코올 생산 공장의 안전 상태를 개선할 수 있다. 안전 상태를 개선함으로써, 상해 위험뿐만 아니라 재산 피해 및 수익 손실의 위험이 최소화된다. 미생물의 불활성화가 필요한 일부 실시 형태에서, 추출제는 미생물의 불활성화를 개선할 수 있다.In some embodiments, the extractant may reduce the flash point (i.e., flammability) of the product alcohol. The flash point refers to the lowest temperature at which flame propagation occurs across the surface of the liquid. The flash point can be measured, for example, using the ASTM D93-02 method ("Standard Test Methods for Flash Point by Pensky-Martens Closed Tester") have. Reduction of the flash point of the product alcohol can improve the safety state of the alcohol production plant, for example, by minimizing the fire hazard of the potentially flammable product alcohol. By improving the safety status, the risk of injury as well as property damage and profit loss is minimized. In some embodiments where microbial deactivation is required, the extractant may improve microbial deactivation.

일부 실시 형태에서, 본 명세서에 기재된 공정은, 예를 들어, 발효 브로쓰 및 추출제의 농도 및 다른 물리적 특성의 온라인, 인라인, 엣라인, 및/또는 실시간 측정을 사용하는 통합 추출 발효 공정일 수 있다. 이러한 측정을, 예를 들어, 피드백 루프(feed-back loop)에서 사용하여, 발효부의 조건 및/또는 추출기의 조건을 조정 및 제어할 수 있다. 일부 실시 형태에서, 온라인, 인라인, 엣라인, 및/또는 실시간 측정을 위한 임의의 적합한 측정 장치를 사용하여 발효 브로쓰 내의 생성물 알코올 및/또는 다른 대사산물 및 기질의 농도를 측정할 수 있다. 일부 실시 형태에서, 측정 장치는 하기 중 하나 이상일 수 있다: 푸리에 변환 적외선 분광기 (FTIR), 근적외선 분광기 (NIR), 라만 분광기, 고압 액체 크로마토그래피 (HPLC), 점도계, 농도계, 장력계, 소적 크기 분석기, pH 측정기, 용존 산소 (DO) 탐침 등. 일부 실시 형태에서, 발효기로부터 배기되는 오프-가스는, 예를 들어, 인라인 질량 분석기에 의해 분석할 수 있다. 발효기로부터 배기되는 오프-가스의 측정은 발효 반응에 존재하는 화학종을 확인하기 위한 수단으로서 사용될 수 있다. 본 명세서에 기재된 기술 및 장치를 사용하여, 추출제에 용해된 생성물 알코올 및 다른 대사산물 및 기질의 농도를 또한 측정할 수 있다.In some embodiments, the process described herein may be an integrated extraction fermentation process using, for example, online, in-line, at-line, and / or real-time measurements of concentration and other physical properties of the fermentation broth and extractant have. Such measurements can be used, for example, in a feed-back loop to adjust and control the conditions of the fermentation section and / or conditions of the extractor. In some embodiments, any suitable measuring device for on-line, in-line, at-line, and / or real-time measurement may be used to measure the concentration of product alcohol and / or other metabolites and substrates in the fermentation broth. In some embodiments, the measuring device can be one or more of the following: Fourier Transform Infrared Spectroscopy (FTIR), Near Infrared Spectroscope (NIR), Raman Spectroscopy, High Pressure Liquid Chromatography (HPLC), Viscometer, Densitometer, Tensiometer, , pH meter, dissolved oxygen (DO) probe and so on. In some embodiments, the off-gas evacuated from the fermenter can be analyzed, for example, by an in-line mass spectrometer. Measurement of the off-gas evacuated from the fermenter can be used as a means to identify species present in the fermentation reaction. Using the techniques and apparatus described herein, the concentration of product alcohol and other metabolites and substrate dissolved in the extractant can also be measured.

일부 실시 형태에서, 측정된 입력치는 제어기 및/또는 제어 시스템으로 보내질 수 있으며, 발효기 내의 조건 (온도, pH, 영양분, 효소 및/또는 기질 농도)을 변화시켜 추출기 내의 농도, 농도 프로파일, 및/또는 조건 (발효 브로쓰 유동, 발효 브로쓰 대 추출제 유동, 교반 속도, 소적 크기, 온도, pH, DO 함량)을 유지할 수 있다. 유사하게, 추출기 내의 조건을 변화시켜 발효기 내의 농도 및/또는 농도 프로파일을 유지할 수 있다. 그러한 제어 시스템을 이용하여, 전반적인 공장 생산성 및 경제적 목표를 개선하는 방식으로 공정 파라미터를 유지할 수 있다. 일부 실시 형태에서, 발효의 실시간 제어는 발효기 내 성분들 (예를 들어, 당, 효소, 영양분 등)의 농도의 변화, 추출기 내의 조건의 변화, 또는 둘 모두에 의해 성취될 수 있다.In some embodiments, the measured input value may be sent to the controller and / or the control system to change the conditions in the fermenter (temperature, pH, nutrients, enzymes and / or substrate concentration) Conditions (fermentation broth flow, fermentation broth vs. extractant flow, stirring speed, droplet size, temperature, pH, DO content) can be maintained. Similarly, the conditions in the extractor can be varied to maintain the concentration and / or concentration profile in the fermenter. With such a control system, process parameters can be maintained in a manner that improves overall plant productivity and economic goals. In some embodiments, the real-time control of fermentation can be accomplished by varying the concentration of components in the fermenter (e.g., sugars, enzymes, nutrients, etc.), changing conditions within the extractor, or both.

아이소부탄올 발효 공정의 예로서, 카르(등록상표) 컬럼에서의 아이소부탄올 추출의 효율은, 발효 브로쓰 중의 전분, 당 및 아이소부탄올의 농도가 변화함에 따라 연속적으로 변화한다. 추출기의 효율을 최대화하기 위해서는, 발효 브로쓰로부터 아이소부탄올이 제거되는 속도를 아이소부탄올 발효의 생성 프로파일에 맞추어 변경하는 것이 유리할 수 있다. 추출제 중 아이소부탄올의 농도를 최대화할 수 있으며, 이는 더욱 에너지 효율적인 증류 작업을 야기한다.As an example of an isobutanol fermentation process, the efficiency of isobutanol extraction in a KARR (TM) column varies continuously as the concentration of starch, sugar and isobutanol in the fermentation broth varies. To maximize the efficiency of the extractor, it may be advantageous to modify the rate at which isobutanol is removed from the fermentation broth to match the production profile of isobutanol fermentation. The concentration of isobutanol in the extractant can be maximized, which results in a more energy efficient distillation operation.

공정 제어 전략의 일부로서, 발효 브로쓰 (예를 들어, 컬럼 공급물) 중 아이소부탄올의 실시간 측정을 추출제 및 희박 발효 브로쓰 중 아이소부탄올의 실시간 측정과 결합할 수 있다. 이러한 측정을 사용하여 추출기로의 발효 브로쓰 대 추출제 비 (유동)를 조정할 수 있다. 아이소부탄올 추출 속도를 아이소부탄올 생성 속도에 맞추는 융통성은 추출 전반에서 추출기가 효율적으로 작동하게 할 수 있다. 또한, 추출제 중에서 아이소부탄올의 높은 농도를 유지함으로써, 증류 컬럼으로의 부피 유량을 최소화할 수 있으며, 이는 증류 작업에 대한 에너지 절감을 가져온다. 실시간 측정을 사용하여, 예를 들어, 상분리 속도, 추출제 소적 크기, 및/또는 발효 브로쓰의 조성을 감시함으로써 상분리를 또한 감시할 수 있다. 일부 실시 형태에서, 상분리는 전도율 측정, 유전율 측정, 점탄성 측정, 또는 초음파 측정에 의해 감시될 수 있다. 일부 실시 형태에서, 자동화 상분리 검출 시스템을 사용하여 상분리를 감시할 수 있다. 이러한 자동화 시스템을 사용하여, 추출기로의 또는 추출기로부터의 발효 브로쓰 및 추출제의 유량을 조정하고/하거나, 예를 들어, 발효 브로쓰 및 추출제의 혼합 후에, 추출제의 소적 크기를 조정할 수 있다. 이러한 실시간 감시 시스템을 사용하여, 수성상과 유기상의 완전한 상분리를 달성할 수 있다.As part of the process control strategy, real-time measurement of isobutanol in fermentation broth (e.g., column feed) can be combined with real-time measurement of isobutanol in the extractant and lean fermentation broth. These measurements can be used to adjust the fermentation broth to extractor ratio (flow) to the extractor. The flexibility to match the iso-butanol extraction rate to the iso-butanol production rate allows the extractor to operate efficiently throughout the extraction. In addition, by maintaining a high concentration of isobutanol in the extractant, the volumetric flow to the distillation column can be minimized, resulting in energy savings for the distillation operation. Real-time measurements can also be used to monitor phase separation, for example, by monitoring the phase separation rate, the extraction droplet size, and / or the composition of the fermentation broth. In some embodiments, phase separation can be monitored by conductivity measurement, dielectric constant measurement, viscoelastic measurement, or ultrasonic measurement. In some embodiments, an automated phase separation detection system can be used to monitor phase separation. This automated system can be used to adjust the flow rate of the fermentation broth and extractant to / from the extractor and / or to adjust the droplet size of the extractant, for example, after mixing the fermentation broth and extractant have. Using such a real-time monitoring system, complete phase separation of the aqueous phase and the organic phase can be achieved.

공정 제어 전략의 다른 예로서, 공정 입자 분석기 (미국 뉴욕주 버팔로 소재의 제이엠 캔티, 인크.(JM Canty, Inc.)), 집속 빔 반사율 측정 (FBRM(등록상표)), 또는 입자 비전 및 측정 (PVM(등록상표)) 기술 (미국 오하이오주 콜럼버스 소재의 메틀러-톨레도, 엘엘씨)과 같은 입자 크기 분석을 사용하여 소적 크기를 측정할 수 있다. 일부 실시 형태에서, 이러한 측정은 실시간 원위치 입자 시스템 특성화일 수 있다. 소적 크기를 실시간으로 감시함으로써, 소적 형상 및 치수의 변화를 검출할 수 있으며 공정 단계를 조정하여 소적 크기를 변경하고 물질 이동 속도를 향상시킬 수 있다. 예를 들어, 소적 크기를 사용하여 발효 브로쓰 내의 추출제의 양을 감시할 수 있다. 상분리 후에, 약간의 추출제가 발효 브로쓰에 존재할 수 있으며, 발효 브로쓰가 발효기로 재순환되는 일부 실시 형태에서, 소적 크기를 감시하는 것은 발효기로 복귀하는 발효 브로쓰 내의 추출제의 양을 최소화하는 수단을 제공할 것이다. 발효 브로쓰 내의 추출제의 양이 너무 많은 경우에는, 예를 들어, 추출기 내의 추출제의 소적 크기를 조정하고/하거나 추출기로의 발효 브로쓰 및 추출제의 유량을 조정함으로써, 상분리를 개선할 수 있다. 공정 단계의 이러한 조정은 발효 브로쓰 내의 추출제의 양을 최소화시킬 수 있을 뿐만 아니라, 묽은 증류폐액 및 DDGS 내의 추출제의 양을 최소화시킬 수 있다.Other examples of process control strategies include, but are not limited to, process particle analyzers (JM Canty, Inc., Buffalo, NY), focused beam reflectance measurements (FBRM TM) The particle size can be measured using a particle size analysis such as PVM (registered trademark) technology (METTLER-TOLEDO, ELL, Columbus, Ohio, USA). In some embodiments, such measurements may be real-time in situ particle system characterization. By monitoring the droplet size in real time, changes in droplet shape and dimensions can be detected and the process steps can be adjusted to change the droplet size and improve the mass transfer rate. For example, the droplet size can be used to monitor the amount of extractant in the fermentation broth. In some embodiments, after phase separation, some extractant may be present in the fermentation broth, and in some embodiments in which the fermentation broth is recycled to the fermenter, monitoring the droplet size may be accomplished by means of minimizing the amount of extractant in the fermentation broth returning to the fermenter . If the amount of the extractant in the fermentation broth is too large, the phase separation can be improved, for example, by adjusting the droplet size of the extractant in the extractor and / or by adjusting the flow rate of the fermentation broth and extractant to the extractor have. This adjustment of the process steps not only minimizes the amount of extractant in the fermentation broth but also minimizes the amount of dilute distillate waste and the extractant in DDGS.

이러한 제어 전략의 일 실시 형태에서, 발효 브로쓰 내의 아이소부탄올은, 아이소부탄올의 농도가 미생물에 해롭게 되는 농도 또는 설정점을 초과하지 않을 것이다. 아이소부탄올 발효 브로쓰 설정점은 발효가 진행됨에 따라 발효의 궤적에 기초하여 더 높거나 더 낮게 조정될 수 있다. 예를 들어, 아이소부탄올의 설정점 농도에 대한 발효 브로쓰 중 아이소부탄올의 농도의 연속적인 비교를 이용하여 발효 브로쓰 대 추출제 비 또는 추출기로의 발효 브로쓰 및 추출제의 유량을 변경할 수 있다. 발효 브로쓰 중 아이소부탄올 농도를 감시하기 위하여, 푸리에 변환 적외선 분광법 (FTIR), 근적외선 분광법 (NIR), 및/또는 라만 분광법을 사용하여 발효 브로쓰의 원위치 측정을 수행할 수 있다. 또한, FTIR, 라만 분광법, 및/또는 질량 분석법을 사용하여, 발효기 헤드스페이스(headspace)의 측정을 수행할 수 있다.In one embodiment of this control strategy, isobutanol in the fermentation broth will not exceed the concentration or set point at which the concentration of isobutanol is detrimental to the microorganism. The isobutanol fermentation broth set point can be adjusted higher or lower based on the trajectory of fermentation as the fermentation progresses. For example, a continuous comparison of the concentration of isobutanol in the fermentation broth to the set point concentration of isobutanol can be used to change the flow rate of the fermentation broth to the extractant ratio or the fermentation broth to the extractor and the extractant . In situ measurement of the fermentation broth can be performed using Fourier Transform Infrared Spectroscopy (FTIR), Near Infrared Spectroscopy (NIR), and / or Raman spectroscopy to monitor the isobutanol concentration in the fermentation broth. In addition, measurements of the fermenter headspace can be performed using FTIR, Raman spectroscopy, and / or mass spectrometry.

일부 실시 형태에서, 효율적인 추출기 작동은 추출기 범람 지점에 근접하여 일어날 수 있다. 입구 및 출구 스트림으로부터의 농도 데이터를 이용하는 실시간 공정 제어의 사용은 추출기가 범람 지점 근처에서 신뢰할 수 있게 작동되게 할 수 있다. 일부 실시 형태에서, 실시간 추출제 감시를 사용하여, 발효 브로쓰로부터의 부산물 또는 오염물의 추출제 내로의 분배를 검출할 수 있다. 알코올, 지질, 오일, 및 기타 발효 성분과 같은 부산물은 추출제의 추출 효율을 감소시킬 수 있다. 푸리에 변환 적외선 분광법 (FTIR), 근적외선 분광법 (NIR), 고압 액체 크로마토그래피 (HPLC), 및 핵자기공명 (NMR)을 포함하지만 이에 한정되지 않는 다수의 공정 감시 기술이 이러한 측정에 적용될 수 있다. 부산물 또는 오염물의 존재에 대해 추출제를 감시하기 위해 선택되는 분석 기술은 실시간 알코올 측정을 위해 이용되는 것과 상이한 기술일 수 있다. 실시간 데이터를 사용하여, 오염된 추출제의 정화(remediation) 또는 오염된 추출제의 공정으로부터의 제거(purge)를 유발할 수 있다. 이러한 기술뿐만 아니라 가스 크로마토그래피 (GC) 및 초임계 유체 크로마토그래피 (SFC)를 또한 이용하여 추출제의 열분해를 감시할 수 있다.In some embodiments, efficient extractor operation can occur near the extractor overflow point. The use of real-time process control using concentration data from the inlet and outlet streams can enable the extractor to operate reliably near the flood point. In some embodiments, real-time extractant monitoring can be used to detect the distribution of byproducts or contaminants from the fermentation broth into the extractant. By-products such as alcohols, lipids, oils, and other fermenting ingredients can reduce the extraction efficiency of the extractant. A number of process monitoring techniques including, but not limited to, Fourier Transform Infrared Spectroscopy (FTIR), Near Infrared Spectroscopy (NIR), High Pressure Liquid Chromatography (HPLC), and Nuclear Magnetic Resonance (NMR) can be applied to such measurements. The analytical technique chosen to monitor the extractant for the presence of byproducts or contaminants may be a different technique than that used for real-time alcohol determination. Real-time data can be used to cause remediation of contaminated extractants or purge of contaminated extractants from the process. In addition to these techniques, gas chromatography (GC) and supercritical fluid chromatography (SFC) can also be used to monitor pyrolysis of the extractant.

도 12를 참조하면, 본 발명의 시스템 및 공정은 온라인, 인라인, 엣라인, 및/또는 실시간 측정을 위한 수단을 포함할 수 있다 (원은 측정 장치를 나타내고 점선은 피드백 루프를 나타냄). 도 12는, 온라인, 인라인, 엣라인, 및/또는 실시간 측정을 위한 측정 장치의 부가를 제외하고는 도 9와 유사하며, 따라서 다시 상세하게 기재하지는 않을 것이다.Referring to FIG. 12, the system and process of the present invention may include means for on-line, in-line, at-line, and / or real-time measurement (circle represents the measurement device and dotted line represents the feedback loop). Figure 12 is similar to Figure 9 except for the addition of a measuring device for on-line, in-line, at-line, and / or real-time measurement and will therefore not be described in detail again.

예로서, 수성 스트림(22)의 온라인 측정을 이용하여 발효가능한 탄소원 (예를 들어, 다당류), 오일, 및/또는 용존 산소의 농도를 감시할 수 있다. 예를 들어, FTIR을 사용하여 수성 스트림(22) 중 오일의 분산을 감시할 수 있으며, 공정 이미징(process imaging)을 사용하여 수성 스트림(22) 중 오일 소적의 농도 및 크기를 감시할 수 있다. 일부 실시 형태에서, 발효부(30)의 온라인 측정을 이용하여 생성물 알코올의 제거 속도를 감시할 수 있다. 발효가능한 탄소원, 용존 산소, 생성물 알코올, 및 부산물의 측정을 사용하여, 발효부(30) 내의 생성물 알코올의 농도를 미생물이 견뎌낼 수 있는 농도로 유지하도록, 생성물 알코올의 제거 속도를 조정할 수 있다. 설정점 생성물 알코올 농도를 유지함으로써, 생성물 억제 및 독성을 최소화할 수 있다.By way of example, the on-line measurement of the aqueous stream 22 can be used to monitor the concentration of fermentable carbon sources (e.g., polysaccharides), oil, and / or dissolved oxygen. For example, the FTIR can be used to monitor the dispersion of oil in the aqueous stream 22 and monitor the concentration and size of the oil droplets in the aqueous stream 22 using process imaging. In some embodiments, the on-line measurement of the fermentation section 30 can be used to monitor the removal rate of the product alcohol. The removal rate of the product alcohol can be adjusted so as to maintain the concentration of the product alcohol in the fermentation section 30 at a concentration that the microorganism can withstand, using the measurement of fermentable carbon source, dissolved oxygen, product alcohol, and byproduct. By maintaining the set point product alcohol concentration, product inhibition and toxicity can be minimized.

스트림(105) 및 스트림(122)의 온라인 측정을 사용하여 공정 제어 피드백 루프를 작동시킬 수 있다. 예를 들어, 스트림(105) 중 생성물 알코올의 농도를 사용하여 추출기(120)로의 이러한 스트림의 유량을 제어할 수 있고; 스트림(122) 중 생성물 알코올의 농도를 사용하여, 분리부(130)로의 이러한 스트림의 유량을 제어하고 발효 브로쓰 대 추출제의 비를 설정할 수 있다. 또한, 스트림(105) 및 스트림(122)의 온라인 측정을 또한 사용하여 실시간 생성물 알코올 물질 균형(mass balance)을 확립할 수 있다. 추출기(120) 및 분리부(130)에 대한 공정 제어 피드백 루프를 사용하여 추출제 및 발효 브로쓰의 상분리의 품질을 감시할 수 있다. 예를 들어, 온라인 측정 장치를 사용하여 추출제 및 발효 브로쓰의 분리의 균형을 검출할 수 있고, 그에 따라 추출제 및 발효 브로쓰의 공급 속도를 조정하여 상분리를 개선할 수 있다. 광학 장치와 같은 온라인 장치를 사용하여, 예를 들어, 추출기(120) 내의 래그 층 (예를 들어, 오일, 수용액, 및 고형물의 혼합물)의 존재를 검출할 수 있으며, 발효 브로쓰 대 추출제의 비를 조정하여 래그 층의 형성을 최소화시킬 수 있다. 분리부(130)로부터의 스트림(135)의 온라인 측정을 사용하여 이러한 스트림 내의 발효 브로쓰의 존재를 감시할 수 있으며, 스트림(135) 내의 발효 브로쓰의 존재는 불량한 상분리를 나타낼 수 있다. 스트림(135) 내의 발효 브로쓰의 농도가 소정 설정점을 초과하는 경우, 유량 조정 또는 발효 브로쓰 대 추출제의 비에 대한 조정과 같은 공정 변화를 실행하여 상분리를 개선할 수 있다. 또한, 스트림(135) 내의 생성물 알코올의 농도를 공정 제어 피드백 루프로서 사용하여 분리부(130)의 효율적인 작동을 보장할 수 있다.An on-line measurement of stream 105 and stream 122 may be used to operate the process control feedback loop. For example, the concentration of product alcohol in stream 105 can be used to control the flow rate of this stream to extractor 120; The concentration of product alcohol in stream 122 can be used to control the flow rate of this stream to separator 130 and set the ratio of fermentation broth to extractant. In addition, online measurements of stream 105 and stream 122 can also be used to establish a real-time product alcohol mass balance. The process control feedback loop for the extractor 120 and the separator 130 can be used to monitor the quality of the phase separation of the extractant and the fermentation broth. For example, an on-line measuring device can be used to detect the balance of the separation of the extractant and the fermentation broth, thereby improving the phase separation by adjusting the feed rate of the extractant and the fermentation broth. An on-line device such as an optical device may be used to detect the presence of a lag layer (e.g., a mixture of oil, aqueous solution, and solids) in the extractor 120, for example, The ratio can be adjusted to minimize the formation of the lag layer. The online measurement of stream 135 from separator 130 may be used to monitor the presence of fermentation broth in this stream and the presence of fermentation broth in stream 135 may indicate poor phase separation. When the concentration of the fermentation broth in the stream 135 exceeds a predetermined set point, the phase change can be improved by performing a process change such as adjustment of the flow rate or adjustment of the ratio of the fermentation broth to the extracting agent. In addition, the concentration of product alcohol in stream 135 can be used as a process control feedback loop to ensure efficient operation of separator 130.

다른 예로서, 스트림(127) 내의 생성물 알코올의 농도의 온라인 측정을 사용하여, 추출 효율을 감시할 수 있으며 발효부(30) 내의 생성물 알코올의 농도를 미생물이 견뎌낼 수 있는 농도로 유지할 수 있다. 또한, 발효부(30)로 복귀하는 추출제의 양을 최소화하는 수단으로서, 추출제의 존재에 대해 스트림(127)을 감시할 수 있다. 예를 들어, 분광법 및 공정 이미징 기술을 사용하여 스트림(127) 내의 추출제의 존재를 감시할 수 있다. 게다가, 스트림(127) 내의 추출제를 소정 농도로 유지하여 추출 효율 및 상분리를 개선할 수 있다.As another example, an on-line measurement of the concentration of product alcohol in the stream 127 can be used to monitor the extraction efficiency and to maintain the concentration of product alcohol in the fermentation section 30 at a concentration that the microorganism can withstand. In addition, as a means to minimize the amount of extractant returning to fermentation section 30, stream 127 can be monitored for the presence of extractant. For example, spectrometry and process imaging techniques can be used to monitor the presence of extractant in stream 127. In addition, the extraction agent in stream 127 can be maintained at a predetermined concentration to improve extraction efficiency and phase separation.

다른 실시 형태에서, 분리부(130)로부터의 스트림(135)은, 생성물 알코올 및 추출제(152)의 회수를 포함하는 추가의 처리를 위해 정제부(150)로 안내될 수 있다. 추출제(152)는 추출기(120)로 안내될 수 있다. 온라인 측정을 사용하여, 오염물 및 분해 생성물에 대해 스트림(152)을 감시할 수 있다. 스트림(152)을 감시함으로써, 추출기(120) 및 발효부(30)의 오염 가능성이 최소화된다. 스트림(152) 내의 오염물이 증가한 경우, 예를 들어, 흡수 또는 화학 반응에 의해, 이러한 스트림을 추가로 처리하여 이러한 오염물을 제거할 수 있다.In another embodiment, stream 135 from separator 130 can be directed to purification unit 150 for further processing, including recovery of product alcohol and extractant 152. Extractant 152 may be directed to extractor 120. Using on-line measurements, stream 152 can be monitored for contaminants and degradation products. By monitoring the stream 152, the possibility of contamination of the extractor 120 and the fermentation section 30 is minimized. Such contaminants can be removed by further processing such streams, for example, by absorption or chemical reaction, if the contaminants in the stream 152 are increased.

추출 공정 동안, 수성상과 유기상의 계면에서 래그 층이 형성될 수 있으며, 고형물 및 추출제(예를 들어, 추출제의 소적)로 구성된, 래그 층은 축적되어 아마도 상분리를 방해할 수 있다. 래그 층의 형성을 경감시키기 위해서, 수성상 및 유기상의 교반을 이용할 수 있다. 예를 들어, 임펠러를 사용하여 수성-유기 계면에서 래그 층을 분산시킬 수 있다. 또한, 유체 유동, 예를 들어, 재순환 루프 또는 진동/오실레이션을 사용하여 래그 형성을 붕괴시킬 수 있다. 도 13a 및 도 13b는 래그 층의 형성을 경감시키기 위한 예시적인 공정을 나타낸다. 도 13a는 래그 층의 처리를 위해 침강기 또는 디캔터의 하류에서 교반 유닛과 함께 정적 혼합기를 사용하는 것을 예시하고, 도 13b는 래그 층의 처리를 위해 침강기 또는 디캔터의 상류에서 교반 유닛과 함께 정적 혼합기를 사용하는 것을 예시한다. 일부 실시 형태에서, 다른 장치, 예를 들어, 코어레서 또는 음파 교반(sonic agitation)을 사용하여 래그 층을 분산시킬 수 있다. 일부 실시 형태에서, 이러한 장치는 침강기 또는 디캔터에 일체화될 수 있다.During the extraction process, a lag layer may be formed at the interface between the aqueous phase and the organic phase, and a lag layer composed of solids and extractant (e.g., droplets of the extractant) may accumulate and possibly interfere with phase separation. In order to alleviate the formation of the lag layer, stirring of the aqueous phase and the organic phase may be used. For example, an impeller can be used to disperse the lag layer at the aqueous-organic interface. Fluid flow, for example, recirculation loops or vibration / oscillation can also be used to disrupt lag formation. 13A and 13B show an exemplary process for alleviating the formation of a lag layer. Figure 13a illustrates the use of a static mixer with a stirring unit downstream of a settler or decanter for the treatment of the lag layer and Figure 13b illustrates the use of a static mixer with a stirring unit upstream of the settler or decanter, The use of a mixer is illustrated. In some embodiments, other devices, such as a core or sonic agitation, may be used to disperse the lag layer. In some embodiments, such devices may be integrated into a settler or decanter.

본 명세서에 기재된 공정 및 시스템은, 배치 발효, 유가식(fed-batch) 발효, 또는 연속 발효를 사용하여 수행될 수 있다. 배치 발효는, 발효 브로쓰의 조성이 발효 시작 시에 확정되며 발효 공정 중에 인공적으로 변경되지 않는 폐쇄 시스템이다. 배치 발효의 일부 실시 형태에서, 추출제가 발효기에 첨가될 수 있다. 일부 실시 형태에서, 추출제의 부피는 발효기 작동 부피의 약 20% 내지 약 60%일 수 있다.The processes and systems described herein can be performed using batch fermentation, fed-batch fermentation, or continuous fermentation. Batch fermentation is a closed system in which the composition of the fermentation broth is established at the start of fermentation and is not artificially altered during the fermentation process. In some embodiments of batch fermentation, an extractant may be added to the fermenter. In some embodiments, the volume of the extractant may be from about 20% to about 60% of the volume of the fermenter operating.

유가식 발효는, 기질(예를 들어, 발효가능한 당)이 발효 공정 중에 증분식으로 첨가되는, 배치 발효의 변형이다. 유가식 시스템은, 이화대사물 억제가 미생물의 대사를 저해할 수 있는 경우에 그리고 배지 중에 한정된 양의 기질이 있는 것이 바람직한 경우에 유용하다. 일부 실시 형태에서, 발효 동안 기질 및/또는 영양분의 농도가 감시될 수 있다. 일부 실시 형태에서, 발효 동안 pH, 용존 산소, 및 가스 (예를 들어, CO2)와 같은 파라미터가 감시될 수 있다. 이러한 측정으로부터, 기질 및/또는 영양분 첨가의 속도 및 양이 결정될 수 있다. 일부 실시 형태에서, 발효 동안 발효 브로쓰의 수준 또는 양이 감소함에 따라, 추가적인 매시를 발효기에 첨가하여 발효 브로쓰의 수준 또는 양, 예를 들어, 발효 공정 초기의 발효 브로쓰의 수준 또는 양을 유지할 수 있다. 유가식 발효의 일부 실시 형태에서, 추출제가 발효기에 첨가될 수 있다.Fed-batch fermentation is a variation of batch fermentation in which a substrate (e.g., a fermentable sugar) is added incrementally during the fermentation process. A fed-batch system is useful when the inhibition of metabolite metabolism is capable of inhibiting the metabolism of microorganisms and when it is desired to have a limited amount of substrate in the medium. In some embodiments, the concentration of substrate and / or nutrients during fermentation can be monitored. In some embodiments, parameters such as pH, dissolved oxygen, and gas (e.g., CO 2 ) can be monitored during fermentation. From these measurements, the rate and amount of substrate and / or nutrient addition can be determined. In some embodiments, as the level or amount of fermentation broth decreases during fermentation, additional hourly amounts may be added to the fermenter to increase the level or amount of fermentation broth, for example, the level or amount of fermentation broth at the beginning of the fermentation process . In some embodiments of fed-batch fermentation, an extractant may be added to the fermenter.

연속 발효는, 발효 브로쓰가 발효기에 연속적으로 첨가되고 추가의 처리(예를 들어, 생성물 알코올의 회수)를 위해 일정량의 발효 브로쓰가 제거되는 개방 시스템이다. 일부 실시 형태에서, 발효 브로쓰의 첨가 및 제거는 동시에 일어날 수 있다. 일부 실시 형태에서, 동량의 발효 브로쓰를 발효기에 첨가 및 제거할 수 있다. 연속 발효의 일부 실시 형태에서, 추출제가 발효기에 첨가될 수 있다. 일부 실시 형태에서, 추출제의 부피는 발효기 작동 부피의 약 3% 내지 약 50%일 수 있다. 일부 실시 형태에서, 추출제의 부피는 발효기 작동 부피의 약 3% 내지 약 20%일 수 있다. 일부 실시 형태에서, 추출제의 부피는 발효기 작동 부피의 약 3% 내지 약 10%일 수 있다.Continuous fermentation is an open system in which a fermentation broth is continuously added to a fermenter and a quantity of fermentation broth is removed for further processing (e.g., recovery of the product alcohol). In some embodiments, addition and removal of the fermentation broth may occur simultaneously. In some embodiments, equal amounts of fermentation broth can be added to and removed from the fermenter. In some embodiments of continuous fermentation, an extractant may be added to the fermenter. In some embodiments, the volume of the extractant may be from about 3% to about 50% of the volume of the fermenter operating. In some embodiments, the volume of the extractant may be from about 3% to about 20% of the volume of the fermenter operating. In some embodiments, the volume of the extractant may be from about 3% to about 10% of the volume of the fermenter operating.

본 명세서에 기재된 공정 및 시스템의 일부 실시 형태에서, 가스 스트리핑을 사용하여 발효 브로쓰로부터 생성물 알코올을 제거할 수 있다. 가스 스트리핑은, 하나 이상의 가스, 예를 들어, 공기, 질소, 또는 이산화탄소를 발효 브로쓰에 공급하여, 생성물 알코올-함유 기체상을 형성함으로써 수행될 수 있다. 예를 들어, 가스 스트리핑은 발효 브로쓰를 통해 하나 이상의 가스를 살포함으로써 수행될 수 있다. 일부 실시 형태에서, 가스는 발효 반응에 의해 제공될 수 있다. 예로서, 미생물에 의한 발효가능한 탄소원의 대사의 부산물로서 이산화탄소가 제공될 수 있다. 일부 실시 형태에서, 추출제와 동시에, 가스 스트리핑을 사용하여 발효 브로쓰로부터 생성물 알코올을 제거할 수 있다. 냉수 트랩(chilled water trap)을 사용하여 생성물 알코올을 응축시키거나, 또는 기체상을 용매로 스크러빙(scrubbing)하는 것과 같은, 본 기술 분야에 공지된 방법을 사용하여 생성물 알코올-함유 기체상으로부터 생성물 알코올을 회수할 수 있다.In some embodiments of the processes and systems described herein, gas stripping can be used to remove the product alcohol from the fermentation broth. Gas stripping can be performed by feeding one or more gases, such as air, nitrogen, or carbon dioxide, to the fermentation broth to form the product alcohol-containing gas phase. For example, gas stripping can be performed by spraying one or more gases through a fermentation broth. In some embodiments, the gas may be provided by a fermentation reaction. As an example, carbon dioxide can be provided as a by-product of metabolism of fermentable carbon sources by microorganisms. In some embodiments, concurrent with the extraction agent, gas stripping may be used to remove the product alcohol from the fermentation broth. From a product alcohol-containing gas phase, using methods known in the art, such as condensing the product alcohol using a chilled water trap, or scrubbing the gaseous phase with a solvent, Can be recovered.

재조합 미생물 및 생합성 경로Recombinant microorganism and biosynthetic pathway

이론에 구애되고자 하지는 않지만, 본 명세서에 기재된 공정은, 허용 범위를 초과하는 역가로 알코올을 생성하는 알코올-생성 미생물, 특히 재조합 미생물을 포함하는, 발효 생성물을 생성할 수 있는 임의의 미생물과 함께 유용한 것으로 여겨진다.While not wishing to be bound by theory, the process described herein is useful with any microorganism capable of producing a fermentation product, including alcohol-producing microorganisms, particularly recombinant microorganisms, ≪ / RTI >

알코올 생성 미생물은 본 기술 분야에 공지되어 있다. 예를 들어, 메탄영양 세균(methanotrophic bacteria) (예를 들어, 메틸로시누스 트리코스포리움(Methylosinus trichosporium))에 의한 메탄의 발효성 산화는 메탄올을 생성하며, 효모 균주 CEN.PK113-7D (CBS 8340, the Centraal Buro voor Schimmelculture; 문헌[van Dijken, et al., Enzyme Microb. Techno. 26:706-714, 2000])는 에탄올을 생성한다. 알코올을 생성하는 재조합 미생물이 또한 본 기술 분야에 공지되어 있다 (예를 들어, 모두 본 명세서에 참조로 포함되는, 문헌[Ohta, et al., Appl. Environ. Microbiol. 57:893-900, 1991]; 문헌[Underwood, et al., Appl. Environ. Microbiol. 68:1071-1081, 2002]; 문헌[Shen and Liao, Metab. Eng. 10:312-320, 2008]; 문헌[Hahnai, et al., Appl. Environ. Microbiol. 73:7814-7818, 2007]; 미국 특허 제5,514,583호; 미국 특허 제5,712,133호; 국제특허 공개 WO 1995/028476호; 문헌[Feldmann, et al., Appl. Microbiol. Biotechnol. 38: 354-361, 1992]; 문헌[Zhang, et al., Science 267:240-243, 1995]; 미국 특허 출원 공개 제2007/0031918 A1호; 미국 특허 제7,223,575호; 미국 특허 제7,741,119호; 미국 특허 제7,851,188호; 미국 특허 출원 공개 제2009/0203099 A1호; 미국 특허 출원 공개 제2009/0246846 A1호; 및 국제특허 공개 WO 2010/075241호).Alcohol-producing microorganisms are known in the art. For example, fermentative oxidation of methane by methanotrophic bacteria (e.g., Methylosinus trichosporium ) produces methanol, and yeast strains CEN.PK113-7D (CBS 8340, the Centraal Buro voor Schimmelculture, van Dijken, et al., Enzyme Microb. Techno. 26: 706-714, 2000) produces ethanol. Recombinant microorganisms that produce alcohol are also known in the art (see, for example, Ohta, et al., Appl. Environ. Microbiol. 57: 893-900, 1991 Et al., Appl. Environ. Microbiol. 68: 1071-1081, 2002; Shen and Liao, Metab. Eng. 10: 312-320, 2008; Hahnai, et al U.S. Patent No. 5,514,583; U.S. Patent No. 5,712,133; International Patent Publication No. WO 1995/028476; Feldmann, et al., Appl. Microbiol. Biotechnol. 38: 354-361, 1992; Zhang, et al., Science 267: 240-243, 1995; U.S. Patent Application Publication No. 2007/0031918 A1; U.S. Patent No. 7,223,575; U.S. Patent No. 7,741,119 U.S. Patent No. 7,851,188; U.S. Patent Application Publication No. 2009/0203099 A1; U.S. Patent Application Publication No. 2009/0246846 A1; and International Patent Publication No. WO 2010/075241).

또한, 재조합 기술을 사용하여 미생물을 변형시켜, 에탄올 및 부탄올과 같은 생성물 알코올을 생성할 수 있는 재조합 미생물을 생성할 수 있다. 생합성 경로를 통해 생성물 알코올을 생성하도록 재조합적으로 변형될 수 있는 미생물에는, 클로스트리듐(Clostridium), 자이모모나스(Zymomonas), 에스케리키아(Escherichia), 살모넬라(Salmonella), 세라티아(Serratia), 에르위니아(Erwinia), 클렙시엘라(Klebsiella), 시겔라(Shigella,) 로도코커스(Rhodococcus), 슈도모나스(Pseudomonas), 바실러스(Bacillus), 락토바실러스(Lactobacillus), 엔테로코커스(Enterococcus), 알칼리게네스(Alcaligenes), 클렙시엘라(Klebsiella), 패니바실러스(Paenibacillus), 아스로박터(Arthrobacter), 코리네박테리움(Corynebacterium), 브레비박테리움(Brevibacterium), 스키조사카로마이세스(Schizosaccharomyces), 클루이베로마이세스(Kluyveromyces), 야로위아(Yarrowia), 피키아(Pichia), 칸디다(Candida), 한세뉼라(Hansenula), 이사첸키아(Issatchenkia), 또는 사카로마이세스(Saccharomyces) 속의 구성원이 포함된다. 일부 실시 형태에서, 재조합 미생물은 에스케리키아 콜라이(Escherichia coli), 락토바실러스 플란타룸(Lactobacillus plantarum), 클루이베로마이세스 락티스(Kluyveromyces lactis), 클루이베로마이세스 마르시아누스(Kluyveromyces marxianus) 및 사카로마이세스 세레비시아(Saccharomyces cerevisiae)로 이루어진 군으로부터 선택될 수 있다. 일부 실시 형태에서, 재조합 미생물은 효모이다. 일부 실시 형태에서, 재조합 미생물은 사카로마이세스, 자이고사카로마이세스(Zygosaccharomyces), 스키조사카로마이세스, 덱케라(Dekkera), 토룰롭시스(Torulopsis), 브레타노마이세스(Brettanomyces), 및 몇몇 칸디다 종으로부터 선택되는 크랩트리 양성(crabtree-positive) 효모이다. 크랩트리 양성 효모 종에는 사카로마이세스 세레비시아, 사카로마이세스 클루이베리(Saccharomyces kluyveri), 스키조사카로마이세스 폼베(Schizosaccharomyces pombe), 사카로마이세스 바야누스(Saccharomyces bayanus), 사카로마이세스 미키타에(Saccharomyces mikitae), 사카로마이세스 파라독수스(Saccharomyces paradoxus), 자이고사카로마이세스 룩시이(Zygosaccharomyces rouxii), 및 칸디다 글라브라타(Candida glabrata)가 포함되지만 이에 한정되지 않는다.In addition, recombinant techniques can be used to modify microorganisms to produce recombinant microorganisms that can produce product alcohols such as ethanol and butanol. In microorganisms, which may be modified recombinantly to produce the product alcohol from the biosynthetic pathway, Clostridium (Clostridium), Eisai thigh eggplant (Zymomonas), Escherichia (Escherichia), Salmonella (Salmonella), Serratia marcescens (Serratia) , Er Winiah (Erwinia), keulrep when Ella (Klebsiella), Shigella (Shigella,) Rhodococcus (Rhodococcus), Pseudomonas (Pseudomonas), Bacillus (Bacillus), Lactobacillus bacteria (Lactobacillus), Enterococcus (Enterococcus), alkali to Ness (Alcaligenes), keulrep when Ella (Klebsiella), Waist Bacillus (Paenibacillus), Ars as bakteo (Arthrobacter), Corynebacterium (Corynebacterium), Brevibacterium (Brevibacterium), ski irradiation Caro My process (Schizosaccharomyces), in Vero Cluj My process (Kluyveromyces), Yarrow subtotal (Yarrowia), Pichia (Pichia), Candida (Candida), Hanse nyulra (Hansenula), director Chen Escherichia (Issatchenkia), or Saccharomyces my three (Saccharomyces) are included in the membership. In some embodiments, the recombinant microorganism is selected from the group consisting of Escherichia coli , Lactobacillus plantarum , Kluyveromyces lactis , Kluyveromyces marxianus , ≪ / RTI > Saccharomyces cerevisiae , and the like. In some embodiments, the recombinant microorganism is yeast. In some embodiments, the recombinant microorganism is my process, my process (Zygosaccharomyces) to Eisai Kosaka a saccharide, ski irradiation Caro My process, deck Mosquera (Dekkera), sat rulrop sheath (Torulopsis), Breda Gaetano My process (Brettanomyces), and It is a crabtree-positive yeast selected from several Candida species. The crabtree positive yeast species include Saccharomyces cerevisiae , Saccharomyces kluyveri , Schizosaccharomyces pombe , Saccharomyces bayanus , Saccharomyces bayanus , But are not limited to, Saccharomyces mikitae , Saccharomyces paradoxus , Zygosaccharomyces rouxii , and Candida glabrata .

사카로마이세스 세레비시아는 본 기술 분야에 공지되어 있으며, 아메리칸 타입 컬쳐 컬렉션(American Type Culture Collection)(미국 메릴랜드주 로크빌 소재), 네덜란드의 왕립미생물자원센터 (CBS) 진균류 생물다양성 센터 (Centraalbureau voor Schimmelcultures(CBS) Fungal Biodiversity Centre), 르사프(LeSaffre), 게르트 스트랜드 에이비(Gert Strand AB), 펌 솔루션즈(Ferm Solutions), 노스 아메리칸 바이오프로덕츠(North American Bioproducts), 마트렉스(Martrex), 및 랄르망(Lallemand)을 포함하지만 이에 한정되지 않는 다양한 공급처로부터 입수가능하다. 사카로마이세스 세레비시아는, BY4741, CEN.PK 113-7d, 에탄올 레드(Ethanol Red)(등록상표) 효모, 펌 프로(Ferm Pro)™ 효모, 바이오-펌(Bio-Ferm)(등록상표) XR 효모, 게르트 스트랜드 프레스티지 배치 터보(Gert Strand Prestige Batch Turbo) 알코올 효모, 게르트 스트랜드 포트 디스틸러즈(Gert Strand Pot Distillers) 효모, 게르트 스트랜드 디스틸러즈 터보(Gert Strand Distillers Turbo) 효모, 퍼맥스(FerMax)™ 그린(Green) 효모, 퍼맥스™ 골드(Gold) 효모, 서모사크(Thermosacc)(등록상표) 효모, BG-1, PE-2, CAT-1, CBS7959, CBS7960, 및 CBS7961을 포함하지만, 이에 한정되지 않는다.Saccharomyces cerevisiae is known in the art and is commercially available from the American Type Culture Collection (Rockville, Md.), The Royal Cemetery Resource Center (CBS) Centraalbureau Fertilizer, Fertilizer, Voor Schimmelcultures (CBS) Fungal Biodiversity Center, LeSaffre, Gert Strand AB, Ferm Solutions, North American Bioproducts, Martrex, And are available from a variety of sources including, but not limited to, Lallemand. Saccharomyces cerevisiae are commercially available as BY4741, CEN.PK 113-7d, Ethanol Red TM yeast, Ferm Pro TM yeast, Bio-Ferm TM (registered trademark) ) XR Yeast, Gert Strand Prestige Batch Turbo Alcohol Yeast, Gert Strand Pot Distillers Yeast, Gert Strand Distillers Turbo Yeast, Permax BG-1, PE-2, CAT-1, CBS7959, CBS7960, and CBS7961, but are not limited to, , But is not limited thereto.

일부 실시 형태에서, 미생물은 고정화되거나 캡슐화될 수 있다. 예를 들어, 미생물은, 알기네이트, 칼슘 알기네이트, 또는 폴리아크릴아미드 젤을 사용하여, 또는 규조암(diatomite), 셀라이트, 규조토, 실리카 겔, 플라스틱, 또는 수지와 같은 다양한 고표면적 지지체 매트릭스 상에 바이오필름 형성을 유도하여, 고정화되거나 캡슐화될 수 있다. 일부 실시 형태에서, ISPR은, 고정되거나 캡슐화된 미생물과 함께 사용될 수 있다. 이러한 조합은 비체적 생산성(specific volumetric productivity), 대사 속도, 생성물 알코올 수율, 및 생성물 알코올에 대한 내성과 같은 생산성을 개선할 수 있다. 또한, 고정화 및 캡슐화는 전단과 같은 공정 조건이 미생물에 미치는 영향을 최소화할 수 있다.In some embodiments, the microorganism can be immobilized or encapsulated. For example, the microorganism may be prepared by using alginate, calcium alginate, or polyacrylamide gels or by using a variety of high surface area matrix matrices such as diatomite, celite, diatomaceous earth, silica gel, plastic, To induce biofilm formation, and can be immobilized or encapsulated. In some embodiments, the ISPR can be used with fixed or encapsulated microorganisms. Such a combination can improve productivity, such as specific volumetric productivity, metabolic rate, product alcohol yield, and resistance to product alcohol. In addition, immobilization and encapsulation can minimize the effect of processing conditions such as shear on microorganisms.

발효를 이용한 부탄올의 생성뿐만 아니라 부탄올을 생성하는 미생물은, 예를 들어, 미국 특허 제7,851,188호, 및 미국 특허 출원 공개 제2007/0092957호; 제2007/0259410호; 제2007/0292927호; 제2008/0182308호; 제2008/0274525호; 제2009/0155870호; 제2009/0305363호; 및 제2009/0305370호에 개시되어 있으며, 각각의 전체 내용은 본 명세서에 참고로 포함된다. 일부 실시 형태에서, 미생물은 생합성 경로를 포함하도록 조작된다. 일부 실시 형태에서, 생합성 경로는 조작된 부탄올 생합성 경로이다. 일부 실시 형태에서, 생합성 경로는 피루베이트를 발효 생성물로 변환시킨다. 일부 실시 형태에서, 생합성 경로는 피루베이트뿐만 아니라 아미노산을 발효 생성물로 변환시킨다. 일부 실시형태에서, 경로의, 기질로부터 생성물로의 변환을 촉매하는 적어도 1개, 적어도 2개, 적어도 3개, 또는 적어도 4개의 폴리펩티드가 미생물의 이종 폴리뉴클레오티드에 의해 인코딩된다. 일부 실시형태에서, 경로의, 기질로부터 생성물로의 변환을 촉매하는 모든 폴리펩티드가 미생물의 이종 폴리뉴클레오티드에 의해 인코딩된다. 일부 실시 형태에서, 아세토락테이트로부터 2,3-다이하이드록시아이소발레레이트로의, 기질로부터 생성물로의 변환을 촉매하는 폴리펩티드 및/또는 아이소부티르알데하이드로부터 아이소부탄올로의, 기질로부터 생성물로의 변환을 촉매하는 폴리펩티드는 환원형 니코틴아미드 아데닌 다이뉴클레오티드 (NADH)를 보조인자로서 이용할 수 있다.Microorganisms that produce butanol as well as the production of butanol using fermentation are described, for example, in U.S. Patent No. 7,851,188 and U.S. Patent Application Publication 2007/0092957; 2007/0259410; 2007/0292927; 2008/0182308; 2008/0274525; 2009/0155870; 2009/0305363; And 2009/0305370, each of which is incorporated herein by reference in its entirety. In some embodiments, the microorganism is engineered to include a biosynthetic pathway. In some embodiments, the biosynthetic pathway is engineered butanol biosynthetic pathway. In some embodiments, the biosynthetic pathway converts pyruvate to a fermentation product. In some embodiments, the biosynthetic pathway converts not only pyruvate but also amino acids to fermentation products. In some embodiments, at least one, at least two, at least three, or at least four polypeptides that catalyze the conversion of the pathway from substrate to product are encoded by heterologous polynucleotides of the microorganism. In some embodiments, all polypeptides that catalyze the conversion of pathway from substrate to product are encoded by heterologous polynucleotides of the microorganism. In some embodiments, a polypeptide that catalyzes the conversion of a substrate to a product from acetolactate to 2,3-dihydroxyisovalerate and / or isobutyraldehyde to isobutanol, from the substrate to the product Polypeptides catalyzing the conversion may use reduced nicotinamide adenine dinucleotide (NADH) as a cofactor.

생합성 경로Biosynthetic pathway

사용될 수 있는 아이소부탄올의 생성을 위한 생합성 경로는 본 명세서에 참고로 포함되는 미국 특허 제7,851,188호에 기재된 것들을 포함한다. 일 실시형태에서, 아이소부탄올 생합성 경로는 하기의, 기질로부터 생성물로의 변환을 포함한다:Biosynthetic pathways for the production of isobutanol that may be used include those described in U.S. Patent No. 7,851,188, which is incorporated herein by reference. In one embodiment, the isobutanol biosynthetic pathway involves the conversion of a substrate to a product as follows:

a) 예를 들어, 아세토락테이트 신타아제(synthase)에 의해 촉매될 수 있는, 피루베이트로부터 아세토락테이트로의 변환;a) For example, the conversion of pyruvate to acetolactate, which can be catalysed by acetolactate synthase;

b) 예를 들어, 아세토하이드록시산 리덕토아이소머라아제(reductoisomerase)에 의해 촉매될 수 있는, 아세토락테이트로부터 2,3-다이하이드록시아이소발레레이트로의 변환;b) For example, conversion from acetolactate to 2,3-dihydroxyisovalerate, which can be catalyzed by an acetohydroxy acid reductoisomerase;

c) 예를 들어, 아세토하이드록시산 탈수효소(dehydratase)에 의해 촉매될 수 있는, 2,3-다이하이드록시아이소발레레이트로부터 α-케토아이소발레레이트로의 변환;c) For example, conversion of 2,3-dihydroxyisovvalerate to alpha -keto isovalerate, which can be catalyzed by acetohydroxy acid dehydratase;

d) 예를 들어, 분지쇄 α-케토산 탈카르복실화효소(decarboxylase)에 의해 촉매될 수 있는, α-케토아이소발레레이트로부터 아이소부티르알데하이드로의 변환;d) For example, conversion of a-ketoisovalerate into isobutyraldehyde, which can be catalyzed by a branched chain? -Keto acid decarboxylase;

e) 예를 들어, 분지쇄 알코올 탈수소효소(dehydrogenase)에 의해 촉매될 수 있는, 아이소부티르알데하이드로부터 아이소부탄올로의 변환.e) For example, conversion of isobutyraldehyde to isobutanol, which can be catalyzed by a branched chain alcohol dehydrogenase.

다른 실시형태에서, 아이소부탄올 생합성 경로는 하기의, 기질로부터 생성물로의 변환을 포함한다:In another embodiment, the isobutanol biosynthetic pathway comprises the conversion of a substrate to a product as follows:

a) 예를 들어, 아세토락테이트 신타아제에 의해 촉매될 수 있는, 피루베이트로부터 아세토락테이트로의 변환;a) For example, conversion of pyruvate to acetolactate, which may be catalyzed by acetolactate synthase;

b) 예를 들어, 케톨산 리덕토아이소머라아제에 의해 촉매될 수 있는, 아세토락테이트로부터 2,3-다이하이드록시아이소발레레이트로의 변환;b) For example, conversion from acetolactate to 2,3-dihydroxyisovalerate, which can be catalyzed by ketolanilductoisomerase;

c) 예를 들어, 다이하이드록시산 탈수효소에 의해 촉매될 수 있는, 2,3-다이하이드록시아이소발레레이트로부터 a-케토아이소발레레이트로의 변환;c) For example, conversion of 2,3-dihydroxyisovvalerate to a-ketoisovalerate, which can be catalyzed by dihydroxy acid dehydratase;

d) 예를 들어, 트랜스아미나아제(transaminase) 또는 발린 탈수소효소에 의해 촉매될 수 있는, α-케토아이소발레레이트로부터 발린으로의 변환;d) For example, transformation from alpha -keto isovalerate to valine, which may be catalyzed by transaminase or valine dehydrogenase;

e) 예를 들어, 발린 탈카르복실화효소에 의해 촉매될 수 있는, 발린으로부터 아이소부틸아민으로의 변환;e) For example, conversion of valine to isobutylamine, which may be catalyzed by valentecarboxylating enzymes;

f) 예를 들어, 오메가 트랜스아미나아제(omega transaminase)에 의해 촉매될 수 있는, 아이소부틸아민으로부터 아이소부티르알데하이드로의 변환;f) For example, conversion of isobutylamine to isobutyraldehyde, which can be catalyzed by omega transaminase;

g) 예를 들어, 분지쇄 알코올 탈수소효소에 의해 촉매될 수 있는, 아이소부티르알데하이드로부터 아이소부탄올로의 변환.g) For example, conversion of isobutyraldehyde to isobutanol, which can be catalyzed by a branched chain alcohol dehydrogenase.

다른 실시형태에서, 아이소부탄올 생합성 경로는 하기의, 기질로부터 생성물로의 변환을 포함한다:In another embodiment, the isobutanol biosynthetic pathway comprises the conversion of a substrate to a product as follows:

a) 예를 들어, 아세토락테이트 신타아제에 의해 촉매될 수 있는, 피루베이트로부터 아세토락테이트로의 변환;a) For example, conversion of pyruvate to acetolactate, which may be catalyzed by acetolactate synthase;

b) 예를 들어, 아세토하이드록시산 리덕토아이소머라아제에 의해 촉매될 수 있는, 아세토락테이트로부터 2,3-다이하이드록시아이소발레레이트로의 변환;b) For example, conversion from acetolactate to 2,3-dihydroxyisovalerate, which can be catalyzed by acetohydroxy acid reductoisomerase;

c) 예를 들어, 아세토하이드록시산 탈수효소에 의해 촉매될 수 있는, 2,3-다이하이드록시아이소발레레이트로부터 α-케토아이소발레레이트로의 변환;c) For example, conversion of 2,3-dihydroxyisovvalerate to alpha -ketoisovalerate, which may be catalysed by acetohydroxyacid dehydratase;

d) 예를 들어, 분지쇄 케토산 탈수소효소에 의해 촉매될 수 있는, α-케토아이소발레레이트로부터 아이소부티릴-CoA로의 변환;d) For example, conversion of a-ketoisovalerate to isobutyryl-CoA, which may be catalyzed by a branched chained ketoacid dehydrogenase;

e) 예를 들어, 아실화 알데하이드 탈수소효소에 의해 촉매될 수 있는, 아이소부티릴-CoA로부터 아이소부티르알데히드로의 변환;e) For example, conversion of isobutyryl-CoA to isobutyraldehyde, which can be catalyzed by acylated aldehyde dehydrogenase;

f) 예를 들어, 분지쇄 알코올 탈수소효소에 의해 촉매될 수 있는, 아이소부티르알데하이드로부터 아이소부탄올로의 변환.f) For example, conversion of isobutyraldehyde to isobutanol, which can be catalyzed by a branched chain alcohol dehydrogenase.

사용될 수 있는 1-부탄올의 생성을 위한 생합성 경로는 본 명세서에 참고로 포함되는 미국 특허 출원 공개 제2008/0182308호에 기재된 것들을 포함한다. 일 실시형태에서, 1-부탄올 생합성 경로는 하기의, 기질로부터 생성물로의 변환을 포함한다:Biosynthetic pathways for the production of 1-butanol that may be used include those described in U.S. Patent Application Publication No. 2008/0182308, which is incorporated herein by reference. In one embodiment, the 1-butanol biosynthetic pathway includes the following conversion of substrate to product:

a) 예를 들어, 아세틸-CoA 아세틸전이효소(acetyltransferase)에 의해 촉매될 수 있는, 아세틸-CoA로부터 아세토아세틸-CoA로의 변환;a) For example, the conversion of acetyl-CoA to acetoacetyl-CoA, which can be catalyzed by an acetyl-CoA acetyltransferase;

b) 예를 들어, 3-하이드록시부티릴-CoA 탈수소효소에 의해 촉매될 수 있는, 아세토아세틸-CoA로부터 3-하이드록시부티릴-CoA로의 변환;b) For example, conversion from acetoacetyl-CoA to 3-hydroxybutyryl-CoA, which can be catalyzed by 3-hydroxybutyryl-CoA dehydrogenase;

c) 예를 들어, 크로토나아제(crotonase)에 의해 촉매될 수 있는, 3-하이드록시부티릴-CoA로부터 크로토닐-CoA로의 변환;c) For example, conversion from 3-hydroxybutyryl-CoA to crotyl-CoA, which can be catalyzed by crotonase;

d) 예를 들어, 부티릴-CoA 탈수소효소에 의해 촉매될 수 있는, 크로토닐-CoA로부터 부티릴-CoA로의 변환;d) For example, conversion of crotonyl-CoA to butyryl-CoA, which may be catalyzed by butyryl-CoA dehydrogenase;

e) 예를 들어, 부티르알데하이드 탈수소효소에 의해 촉매될 수 있는, 부티릴-CoA로부터 부티르알데하이드로의 변환;e) For example, conversion of butyryl-CoA to butyraldehyde, which can be catalyzed by butyraldehyde dehydrogenase;

f) 예로서, 부탄올 탈수소효소에 의해 촉매될 수 있는, 부티르알데하이드로부터 1-부탄올로의 변환.f) As an example, the conversion of butyraldehyde to 1-butanol, which can be catalyzed by butanol dehydrogenase.

사용될 수 있는 2-부탄올의 생성을 위한 생합성 경로는 본 명세서에 참고로 포함되는 미국 특허 출원 공개 제2007/0259410호 및 미국 특허 출원 공개 제2009/0155870호에 기재된 것들을 포함한다. 일 실시형태에서, 2-부탄올 생합성 경로는 하기의, 기질로부터 생성물로의 변환을 포함한다:Biosynthetic pathways for the production of 2-butanol that may be used include those described in U.S. Patent Application Publication No. 2007/0259410 and U.S. Patent Application Publication No. 2009/0155870, which are incorporated herein by reference. In one embodiment, the 2-butanol biosynthetic pathway involves the conversion of a substrate to a product as follows:

a) 예를 들어, 아세토락테이트 신타아제에 의해 촉매될 수 있는, 피루베이트로부터 알파-아세토락테이트로의 변환;a) For example, conversion of pyruvate to alpha-acetolactate, which may be catalysed by acetolactate synthase;

b) 예를 들어, 아세토락테이트 탈카르복실화효소에 의해 촉매될 수 있는, 알파-아세토락테이트로부터 아세토인으로의 변환;b) For example, from alpha-acetolactate to acetone, which can be catalyzed by acetolactate decarboxylase;

c) 예를 들어, 아세토닌 아미나아제에 의해 촉매될 수 있는, 아세토인으로부터 3-아미노-2-부탄올로의 변환;c) For example, conversion from acetone to 3-amino-2-butanol, which can be catalyzed by acetoninaminase;

d) 예를 들어, 아미노부탄올 키나아제에 의해 촉매될 수 있는, 3-아미노-2-부탄올로부터 3-아미노-2-부탄올 포스페이트로의 변환;d) For example, conversion from 3-amino-2-butanol to 3-amino-2-butanol phosphate, which can be catalyzed by amino butanol kinase;

e) 예를 들어, 아미노부탄올 포스페이트 포스포릴라아제에 의해 촉매될 수 있는, 3-아미노-2-부탄올 포스페이트로부터 2-부탄온으로의 변환;e) For example, conversion from 3-amino-2-butanol phosphate to 2-butanone, which can be catalyzed by amino butanol phosphate phosphorylase;

f) 예를 들어, 부탄올 탈수소효소에 의해 촉매될 수 있는, 2-부탄온으로부터 2-부탄올로의 변환.f) For example, conversion of 2-butanone to 2-butanol, which can be catalyzed by butanol dehydrogenase.

다른 실시형태에서, 2-부탄올 생합성 경로는 하기의, 기질로부터 생성물로의 변환을 포함한다:In another embodiment, the 2-butanol biosynthetic pathway involves the conversion of a substrate to a product as follows:

a) 예를 들어, 아세토락테이트 신타아제에 의해 촉매될 수 있는, 피루베이트로부터 알파-아세토락테이트로의 변환;a) For example, conversion of pyruvate to alpha-acetolactate, which may be catalysed by acetolactate synthase;

b) 예를 들어, 아세토락테이트 탈카르복실화효소에 의해 촉매될 수 있는, 알파-아세토락테이트로부터 아세토인으로의 변환;b) For example, from alpha-acetolactate to acetone, which can be catalyzed by acetolactate decarboxylase;

c) 예를 들어, 부탄다이올 탈수소효소에 의해 촉매될 수 있는, 아세토인으로부터 2,3-부탄다이올로의 변환;c) For example, conversion from acetone to 2,3-butanediol, which can be catalyzed by butane diol dehydrogenase;

d) 예를 들어, 다이올 탈수효소에 의해 촉매될 수 있는, 2,3-부탄다이올로부터 2-부탄온으로의 변환;d) For example, conversion from 2,3-butanediol to 2-butanone, which can be catalyzed by diol dehydratase;

e) 예를 들어, 부탄올 탈수소효소에 의해 촉매될 수 있는, 2-부탄온으로부터 2-부탄올로의 변환.e) For example, conversion of 2-butanone to 2-butanol, which can be catalyzed by butanol dehydrogenase.

사용될 수 있는 2-부탄온의 생성을 위한 생합성 경로는 본 명세서에 참고로 포함되는 미국 특허 출원 공개 제2007/0259410호 및 미국 특허 출원 공개 제2009/0155870호에 기재된 것들을 포함한다. 일 실시형태에서, 2-부탄온 생합성 경로는 하기의, 기질로부터 생성물로의 변환을 포함한다:Biosynthetic pathways for the production of 2-butanone that may be used include those described in U.S. Patent Application Publication No. 2007/0259410 and U.S. Patent Application Publication No. 2009/0155870, which are incorporated herein by reference. In one embodiment, the 2-butanone biosynthetic pathway involves the conversion of a substrate to a product as follows:

a) 예를 들어, 아세토락테이트 신타아제에 의해 촉매될 수 있는, 피루베이트로부터 알파-아세토락테이트로의 변환;a) For example, conversion of pyruvate to alpha-acetolactate, which may be catalysed by acetolactate synthase;

b) 예를 들어, 아세토락테이트 탈카르복실화효소에 의해 촉매될 수 있는, 알파-아세토락테이트로부터 아세토인으로의 변환;b) For example, from alpha-acetolactate to acetone, which can be catalyzed by acetolactate decarboxylase;

c) 예를 들어, 아세토닌 아미나아제에 의해 촉매될 수 있는, 아세토인으로부터 3-아미노-2-부탄올로의 변환;c) For example, conversion from acetone to 3-amino-2-butanol, which can be catalyzed by acetoninaminase;

d) 예를 들어, 아미노부탄올 키나아제에 의해 촉매될 수 있는, 3-아미노-2-부탄올로부터 3-아미노-2-부탄올 포스페이트로의 변환;d) For example, conversion from 3-amino-2-butanol to 3-amino-2-butanol phosphate, which can be catalyzed by amino butanol kinase;

e) 예를 들어, 아미노부탄올 포스페이트 포스포릴라아제에 의해 촉매될 수 있는, 3-아미노-2-부탄올 포스페이트로부터 2-부탄온으로의 변환.e) For example, conversion from 3-amino-2-butanol phosphate to 2-butanone, which can be catalyzed by amino butanol phosphate phosphorylase.

다른 실시형태에서, 2-부탄온 생합성 경로는 하기의, 기질로부터 생성물로의 변환을 포함한다:In another embodiment, the 2-butanone biosynthetic pathway involves the conversion of a substrate to a product as follows:

a) 예를 들어, 아세토락테이트 신타아제에 의해 촉매될 수 있는, 피루베이트로부터 알파-아세토락테이트로의 변환;a) For example, conversion of pyruvate to alpha-acetolactate, which may be catalysed by acetolactate synthase;

b) 예를 들어, 아세토락테이트 탈카르복실화효소에 의해 촉매될 수 있는, 알파-아세토락테이트로부터 아세토인으로의 변환;b) For example, from alpha-acetolactate to acetone, which can be catalyzed by acetolactate decarboxylase;

c) 예를 들어, 부탄다이올 탈수소효소에 의해 촉매될 수 있는, 아세토인으로부터 2,3-부탄다이올로의 변환;c) For example, conversion from acetone to 2,3-butanediol, which can be catalyzed by butane diol dehydrogenase;

d) 예를 들어, 다이올 탈수효소에 의해 촉매될 수 있는, 2,3-부탄다이올로부터 2-부탄온으로의 변환.d) For example, conversion of 2,3-butanediol to 2-butanone, which can be catalyzed by diol dehydratase.

용어 "아세토하이드록시산 신타아제", "아세토락테이트 신타아제", 및 "아세토락테이트 신타아제" (약어로 "ALS")는 피루베이트로부터 아세토락테이트 및 CO2로의 변환을 촉매하는 효소 활성을 갖는 폴리펩티드 (또는 폴리펩티드들)를 지칭하도록 본 명세서에서 상호교환적으로 사용될 수 있다. 아세토락테이트 신타아제의 예는 EC 번호 2.2.1.6 (문헌[Enzyme Nomenclature 1992, Academic Press, San Diego])으로 공지되어 있다. 이들 변형되지 않은 효소는, 바실러스 서브틸리스 (각각 젠뱅크(GenBank) 번호: CAB15618(서열 번호 1), Z99122(서열 번호 2), NCBI (미국 국립 생물공학 정보 센터(National Center for Biotechnology Information)) 아미노산 서열, NCBI 뉴클레오티드 서열), 클렙시엘라 뉴모니아(Klebsiella pneumoniae) (젠뱅크 번호: AAA25079 (서열 번호 3), M73842 (서열 번호 4)), 및 락토코커스 락티스(Lactococcus lactis) (젠뱅크 번호: AAA25161 (서열 번호 5), L16975 (서열 번호 6))를 포함하지만 이에 한정되지 않는 다수의 공급원으로부터 입수가능하다.The terms "acetohydroxy acid synthase "," acetolactate synthase ", and "acetolactate synthase" (abbreviated as "ALS") refer to enzymatic activity catalyzing the conversion of pyruvate to acetolactate and CO 2 May be used interchangeably herein to refer to a polypeptide (or polypeptides) having an amino acid sequence (e. An example of acetolactate synthase is known from EC No. 2.2.1.6 (Enzyme Nomenclature 1992, Academic Press, San Diego). These unmodified enzymes were identified as Bacillus subtilis (GenBank numbers: CAB15618 (SEQ ID NO: 1), Z99122 (SEQ ID NO: 2), NCBI (National Center for Biotechnology Information) Amino acid sequence, NCBI nucleotide sequence), Klebsiella pneumoniae (Genbank number AAA25079, M73842, and Lactococcus lactis , No. AAA25161 (SEQ ID NO: 5), L16975 (SEQ ID NO: 6)).

용어 "케톨산 리덕토아이소머라아제" ("KARI"), "아세토하이드록시산 아이소메로리덕타아제"(acetohydroxy acid isomeroreductase) 및 "아세토하이드록시산 리덕토아이소머라아제"는 상호 교환가능하게 사용될 수 있으며, (S)-아세토락테이트로부터 2,3-다이하이드록시아이소발레레이트로의 반응을 촉매하는 효소 활성을 갖는 폴리펩티드 (또는 폴리펩티드들)를 지칭한다. 예시적인 KARI 효소는 EC 번호 EC 1.1.1.86 (문헌[Enzyme Nomenclature 1992, Academic Press, San Diego])로 분류될 수 있으며, 에스케리키아 콜라이(젠뱅크 번호: NP_418222(서열 번호 7), NC_000913(서열 번호 8)), 사카로마이세스 세레비시아 (젠뱅크 번호: NP_013459(서열 번호 9), NC_001144(서열 번호 10)), 메타노코커스 마리팔루디스(Methanococcus maripaludis)(젠뱅크 번호: CAF30210(서열 번호 11), BX957220(서열 번호 12)) 및 바실러스 서브틸리스(젠뱅크 번호: CAB14789(서열 번호 13), Z99118(서열 번호 14))를 포함하지만 이에 한정되지 않는 매우 다양한 미생물로부터 입수가능하다. KARI는 아나에로스티페스 카카에(Anaerostipes caccae) KARI 변이체 "K9G9" 및 "K9D3" (각각 서열 번호 15 및 16)을 포함한다. 케톨산 리덕토아이소머라아제 (KARI) 효소는 본 명세서에 참고로 포함되는 미국 특허 출원 공개 제2008/0261230호, 제2009/0163376호 및 제2010/0197519호 및 PCT 출원 공개 제WO/2011/041415호에 기재되어 있다. 상기 문헌에 개시된 KARI의 예에는 락토코커스 락티스, 비브리오 콜레라(Vibrio cholera), 슈도모나스 에루지노사 PAO1, 및 슈도모나스 플루오레센스 PF5 돌연변이체 유래의 것이 있다. 일부 실시 형태에서, KARI는 NADH를 이용한다. 일부 실시 형태에서, KARI는 환원형 니코틴아미드 아데닌 다이뉴클레오티드 포스페이트 (NADPH)를 이용한다.The term "ketolanhydantooisomerase"("KARI"),"acetohydroxy acid isomeroreductase "and" acetohydroxy acid reductoisomerase " Refers to a polypeptide (or polypeptides) having an enzymatic activity that catalyzes the reaction from (S) -acetolactate to 2,3-dihydroxyisovalerate. Exemplary KARI enzymes can be categorized as EC number EC 1.1.1.86 (Enzyme Nomenclature 1992, Academic Press, San Diego) and can be classified as Escherichia coli (Genbank # NP_418222 (SEQ ID NO: 7), NC_000913 No. 8), Saccharomyces cerevisiae (Genbank No .: NP_013459 (SEQ ID NO: 9), NC_001144 (SEQ ID NO: 10)), Methanococcus maripaludis) (Zhen bank number: CAF30210 (SEQ ID NO: 11), BX957220 (SEQ ID NO: 12)) and Bacillus subtilis: include (Zhen bank number CAB14789 (SEQ ID NO: 13), Z99118 (SEQ ID NO: 14)) but limited to, ≪ / RTI > from a wide variety of microorganisms. KARI includes the KARI variants " K9G9 "and" K9D3 "(SEQ ID NOs: 15 and 16, respectively) of Anaerostipes caccae . Ketl acid reductoisomerase (KARI) enzymes are disclosed in U.S. Patent Application Publication Nos. 2008/0261230, 2009/0163376 and 2010/0197519 and PCT Application Publication No. WO / 2011/041415 Lt; / RTI > Examples of KARI disclosed in the above document, there is Lactococcus lactis, Vibrio cholera (Vibrio cholera), Rouge Pseudomonas PAO1 labor, and Pseudomonas fluorescein sense PF5 mutant derived. In some embodiments, KARI uses NADH. In some embodiments, KARI utilizes reduced nicotinamide adenine dinucleotide phosphate (NADPH).

용어 "아세토하이드록시산 탈수효소" 및 "다이하이드록시산 탈수효소" ("DHAD")는 2,3-다이하이드록시아이소발레레이트로부터 α-케토아이소발레레이트로의 변환을 촉매하는 효소 활성을 갖는 폴리펩티드 (또는 폴리펩티드들)를 지칭한다. 아세토하이드록시산 탈수효소의 예는 EC 번호 4.2.1.9로 공지되어 있다. 그러한 효소는, 에스케리키아 콜라이 (젠뱅크 번호: YP_026248(서열 번호 17), NC000913 (서열 번호 18)), 사카로마이세스 세레비시아(젠뱅크 번호: NP_012550(서열 번호 19), NC 001142(서열 번호 20), 엠. 마리팔루디스(M. maripaludis) (젠뱅크 번호: CAF29874(서열 번호 21), BX957219 (서열 번호 22)), 바실러스 서브틸리스(젠뱅크 번호: CAB14105(서열 번호 23), Z99115 (서열 번호 24)), 락토코커스 락티스, 및 뉴로스포라 크라사(N. crassa)를 포함하지만 이에 한정되지 않는 매우 다양한 미생물로부터 입수가능하다. 본 명세서에 참고로 포함되는, 미국 특허 출원 공개 제2010/0081154, 및 미국 특허 제7,851,188호는 스트렙토코커스 뮤탄스(Streptococcus mutans) 유래의 DHAD를 포함하는, 다이하이드록시산 탈수효소 (DHAD)를 기재한다.The term "acetohydroxy acid dehydratase" and "dihydroxy acid dehydratase"("DHAD") refers to the enzyme activity that catalyzes the conversion of 2,3-dihydroxyisovvalerate to a-ketoisovalerate (Or < / RTI > polypeptides). An example of an acetohydroxy acid dehydratase is known as EC No. 4.2.1.9. Such enzyme, Escherichia coli (Zhen bank numbers: YP_026248 (SEQ ID NO: 17), NC000913 (SEQ ID NO: 18)), three Levy cyano as Saccharomyces My process (Zhen bank number: NP_012550 (SEQ ID NO: 19), NC 001142 ( SEQ ID NO: 20), M. maripaludis ( Genbank number: CAF29874 (SEQ ID NO: 21), BX957219 (SEQ ID NO: 22)), Bacillus subtilis (Genbank number: CAB14105 , Z99115 (SEQ ID NO: 24)), Lactococcus lactis, and N. crassa . Patent Application Publication No. 2010/0081154 and U.S. Patent No. 7,851,188 describe dihydroxy acid dehydratase (DHAD), including DHAD from Streptococcus mutans .

용어 "분지쇄 α-케토산 탈카르복실화효소," "α-케토산 탈카르복실화효소," "α-케토아이소발레레이트 탈카르복실화효소," 또는 "2-케토아이소발레레이트 탈카르복실화효소" ("KIVD")는 α-케토아이소발레레이트로부터 아이소부티르알데하이드 및 CO2로의 변환을 촉매하는 효소 활성을 갖는 폴리펩티드 (또는 폴리펩티드들)를 지칭한다. 예시적인 분지쇄 α-케토산 탈카르복실화효소는 EC 번호 4.1.1.72로 공지되어 있으며, 락토코커스 락티스 (젠뱅크 번호: AAS49166(서열 번호 25), AY548760 (서열 번호 26); CAG34226(서열 번호 27), AJ746364 (서열 번호 28)), 살모넬라 타이피무리움(Salmonella typhimurium)(젠뱅크 번호: NP_461346(서열 번호 29), NC_003197 (서열 번호 30)), 클로스트리듐 아세토부틸리쿰(Clostridium acetobutylicum)(젠뱅크 번호: NP_149189(서열 번호 31), NC_001988 (서열 번호 32)), 마크로코커스 카세올리티쿠스(M. caseolyticus)(서열 번호 33) 및 리스테리아 그라이이(L. grayi)(서열 번호 34)를 포함하지만 이에 한정되지 않는 다수의 공급원으로부터 입수가능하다.The term " branched-chain? -Keto acid decarboxylation enzyme,? -Keto acid decarboxylase,? -Keto isovalerate decarboxylase, or? 2-ketoisovalerateate ("KIVD") refers to a polypeptide (or polypeptides) having an enzymatic activity that catalyzes the conversion of a-ketoisovalerate into isobutyraldehyde and CO 2 . Exemplary branched-chain? -Keto acid decarboxylase is known as EC No. 4.1.1.72, and has the amino acid sequence of Lactococcus lactis (GenBank numbers: AAS49166 (SEQ ID NO: 25), AY548760 (SEQ ID NO: 26), CAG34226 No. 27), AJ746364 (SEQ ID NO: 28)), Salmonella tie blood bunch Titanium (Salmonella typhimurium) (Zhen bank number: NP_461346 (SEQ ID NO: 29), NC_003197 (SEQ ID NO: 30)), Clostridium acetonitrile unit Tilikum (Clostridium acetobutylicum) (Zhen bank number: NP_149189 (SEQ ID NO: 31), NC_001988 (SEQ ID NO: 32)), Rhodococcus mark cassette raise tea kusu (M. caseolyticus) (SEQ ID NO: 33) and L. Gras this (L. grayi) (SEQ ID NO: 34). ≪ / RTI >

용어 "분지쇄 알코올 탈수소효소" ("ADH")는 아이소부티르알데하이드로부터 아이소부탄올로의 변환을 촉매하는 효소 활성을 갖는 폴리펩티드 (또는 폴리펩티드들)를 지칭한다. 분지쇄 알코올 탈수소효소의 예는 EC 번호 1.1.1.265로 공지되어 있으나, 또한 다른 알코올 탈수소효소 (구체적으로, EC 1.1.1.1 또는 1.1.1.2)하에 분류될 수도 있다. 알코올 탈수소효소는 NADPH-의존성 또는 NADH-의존성일 수 있다. 그러한 효소는, 사카로마이세스 세레비시아 (젠뱅크 번호: NP_010656(서열 번호 35), NC_001136 (서열 번호 36), NP_014051 (서열 번호 37), NC_001145 (서열 번호 38)), 에스케리키아 콜라이 (젠뱅크 번호: NP_417484(서열 번호 39), NC_000913(서열 번호 40)), 클로스트리듐 아세토부틸리쿰(젠뱅크 번호: NP_349892(서열 번호 41), NC_003030 (서열 번호 42); NP_349891(서열 번호 43), NC_003030 (서열 번호 44))을 포함하지만 이에 한정되지 않는 다수의 공급원으로부터 입수가능하다. 미국 특허 출원 공개 제2009/0269823호는 아크로모박터 자일로속시단스(Achromobacter xylosoxidans) 유래의 알코올 탈수소효소 (ADH)인, SadB를 기재한다. 알코올 탈수소효소는 또한 말 간(horse liver) ADH 및 베이제린키아 인디카(Beijerinkia indica) ADH (본 명세서에 참고로 포함되는 미국 특허 출원 공개 제2011/0269199호에 기재된 바와 같음)를 포함한다.The term " branched chain alcohol dehydrogenase "(" ADH ") refers to a polypeptide (or polypeptides) having an enzymatic activity that catalyzes the conversion of isobutyraldehyde to isobutanol. Examples of branched chain alcohol dehydrogenase enzymes are known as EC No. 1.1.1.265, but may also be classified under other alcohol dehydrogenase enzymes (specifically, EC 1.1.1.1 or 1.1.1.2). The alcohol dehydrogenase may be NADPH-dependent or NADH-dependent. Such enzymes include but are not limited to Saccharomyces cerevisiae (Genbank number: NP_010656, SEQ ID NO: 36, NP_014051, NC_001145, (SEQ ID NO: 39), NC_000913 (SEQ ID NO: 40)), clostridium acetobutyrylchum (Genbank No .: NP_349892 (SEQ ID NO: 41), NC_003030 (SEQ ID NO: 42), NP_349891 ), NC_003030 (SEQ ID NO: 44)). United States Patent Application Publication No. 2009/0269823 describes SadB, an alcohol dehydrogenase (ADH) derived from Achromobacter xylosoxidans . The alcohol dehydrogenase also Horse liver ADH, and Beijerinkia indica ADH (as described in U.S. Patent Application Publication No. 2011/0269199, which is incorporated herein by reference).

용어 "부탄올 탈수소효소"는 아이소부티르알데히드로부터 아이소부탄올로의 변환 또는 2-부탄온 및 2-부탄올의 변환을 촉매하는 효소 활성을 갖는 폴리펩티드 (또는 폴리펩티드들)를 지칭한다. 부탄올 탈수소효소는 광범위한 알코올 탈수소효소 패밀리의 서브셋 (subset)이다. 부탄올 탈수소효소는 NAD- 또는 NADP-의존성일 수 있다. NAD-의존성 효소는 EC 1.1.1.1로 공지되어 있으며, 예를 들어, 로도코커스 루베르(Rhodococcus ruber)(젠뱅크 번호: CAD36475, AJ491307)로부터 입수가능하다. NADP 의존성 효소는 EC 1.1.1.2로 공지되어 있으며, 예를 들어, 피로코커스 푸리오수스(Pyrococcus furiosus)(젠뱅크 번호: AAC25556, AF013169)로부터 입수가능하다. 추가적으로, 부탄올 탈수소효소는 에스케리키아 콜라이 (젠뱅크 번호: NP 417484, NC_000913)로부터 입수가능하며 사이클로헥산올 탈수소효소는 아시네토박터 종(Acinetobacter sp.) (젠뱅크 번호: AAG10026, AF282240)로부터 입수가능하다. 또한, 용어 "부탄올 탈수소효소"는 NADH 또는 NADPH 중 어느 하나를 보조인자로 사용하여 부티르알데하이드로부터 1-부탄올로의 변환을 촉매하는 효소를 지칭한다. 부탄올 탈수소효소는 예를 들어, 클로스트리듐 아세토부틸리쿰 (젠뱅크 번호: NP_149325, NC_001988; 이러한 효소는 알데하이드 및 알코올 탈수소효소 활성 둘 모두를 갖는다); NP_349891, NC_003030; 및 NP_349892, NC_003030) 및 에스케리키아 콜라이 (젠뱅크 번호: NP_417-484, NC_000913)로부터 입수가능하다.The term "butanol dehydrogenase" refers to a polypeptide (or polypeptides) having an enzymatic activity that catalyzes the conversion of isobutyraldehyde to isobutanol or the conversion of 2-butanone and 2-butanol. The butanol dehydrogenase is a subset of a broad family of alcohol dehydrogenase enzymes. The butanol dehydrogenase may be NAD- or NADP-dependent. NAD-dependent enzymes are known as EC 1.1.1.1 and are available, for example, from Rhodococcus ruber (Genbank number: CAD36475, AJ491307). NADP-dependent enzymes are known as EC 1.1.1.2 and are available, for example, from Pyrococcus furiosus (Genbank # AAC25556, AF013169). In addition, the butanol dehydrogenase Escherichia coli: available from (Zhen bank number NP 417484, NC_000913) and cyclohexanol dehydrogenase is Acinetobacter species (Acinetobacter sp .) (Genbank number: AAG10026, AF282240). In addition, the term "butanol dehydrogenase" refers to an enzyme that catalyzes the conversion of butyraldehyde to 1-butanol using either NADH or NADPH as the cofactor. The butanol dehydrogenase can be, for example, Clostridium acetobutylicum No . : NP_149325, NC_001988; These enzymes have both aldehyde and alcohol dehydrogenase activity); NP_349891, NC_003030; And NP_349892, NC_003030) and Escherichia coli (Genbank number: NP_417-484, NC_000913).

용어 "분지쇄 케토산 탈수소효소"는, 전형적으로NAD+ (니코틴아미드 아데닌 다이뉴클레오티드)를 전자 수용체로서 사용하여, α-케토아이소발레레이트로부터 아이소부티릴-CoA (아이소부티릴-보조효소 A)로의 변환을 촉매하는 효소 활성을 갖는 폴리펩티드 (또는 폴리펩티드들)를 지칭한다. 분지쇄 케토산 탈수소효소의 예는 EC 번호 1.2.4.4로 공지되어 있다. 그러한 분지쇄 케토산 탈수소효소는 4개의 서브유닛으로 구성되며, 모든 서브유닛으로부터의 서열은, 바실러스 서브틸리스 (젠뱅크 번호: CAB14336(서열 번호 45), Z99116(서열 번호 46); CAB14335(서열 번호 47), Z99116(서열 번호 48); CAB14334(서열 번호 49), Z99116 (서열 번호 50); 및 CAB14337(서열 번호 51), Z99116 (서열 번호 52)) 및 슈도모나스 푸티다(젠뱅크 번호: AAA65614(서열 번호 53), M57613(서열 번호 54); AAA65615(서열 번호 55), M57613(서열 번호 56); AAA65617(서열 번호 57), M57613 (서열 번호 58); 및 AAA65618(서열 번호 59), M57613 (서열 번호 60))를 포함하지만 이에 한정되지 않는 매우 다양한 미생물로부터 입수가능하다.The term "branched chondroitin dehydrogenase" refers to an isobutyryl-CoA (isobutyryl-coenzyme A) from alpha -ketoisovalerate using NAD + (nicotinamide adenine dinucleotide) Refers to a polypeptide (or polypeptides) having an enzymatic activity that catalyzes the conversion of < RTI ID = 0.0 > An example of a branched chondroitin dehydrogenase is known as EC No. 1.2.4.4. Such a branched chondroitin dehydrogenase is composed of four subunits and the sequence from all the subunits is Bacillus subtilis (GenBank numbers: CAB14336 (SEQ ID NO: 45), Z99116 (SEQ ID NO: 46), CAB14335 No. 47), Z99116 (SEQ ID NO: 48), CAB14334 (SEQ ID NO: 49), Z99116 (SEQ ID NO: 50) and CAB14337 (SEQ ID NO: 51), Z99116 (SEQ ID NO: 52) and Pseudomonas putida (SEQ ID NO: 53), M57613 (SEQ ID NO: 54), AAA65618 (SEQ ID NO: 55), M57613 (SEQ ID NO: 60)).

용어 "아실화 알데하이드 탈수소효소"는, 전형적으로 NADH 또는 NADPH 중 어느 하나를 전자 공여체로서 사용하여, 아이소부티릴-CoA로부터 아이소부티르알데하이드로의 변환을 촉매하는 효소 활성을 갖는 폴리펩티드 (또는 폴리펩티드들)를 지칭한다. 아실화 알데하이드 탈수소효소의 예는 EC 번호 1.2.1.10 및 1.2.1.57로 공지되어 있다. 그러한 효소는, 클로스트리듐 베이제린키이 (Clostridium beijerinckii) (젠뱅크 번호: AAD31841(서열 번호 61), AF157306 (서열 번호 62)), 클로스트리듐 아세토부틸리쿰(젠뱅크 번호: NP_149325(서열 번호 63), NC_001988 (서열 번호 64); NP_149199(서열 번호 65), NC_001988 (서열 번호 66)), 슈도모나스 푸티다 (젠뱅크 번호: AAA89106(서열 번호 67), U13232 (서열 번호 68)) 및 써무스 써모필루스(Thermus thermophilus)(젠뱅크 번호: YP_145486(서열 번호 69), NC_006461 (서열 번호 70))를 포함하지만 이에 한정되지 않는 다수의 공급원으로부터 입수가능하다.The term "acylated aldehyde dehydrogenase" typically refers to a polypeptide (or polypeptides) having enzymatic activity catalyzing the conversion of isobutyryl-CoA to isobutyraldehyde using either NADH or NADPH as an electron donor ). Examples of acylated aldehyde dehydrogenases are known as EC numbers 1.2.1.10 and 1.2.1.57. Such enzymes include but are not limited to Clostridium beijerinckii ( GenBank No .: AAD31841 (SEQ ID NO: 61), AF157306 (SEQ ID NO: 62)), Clostridium acetobutylicum (Genbank No .: NP_149325 63), NC_001988 (SEQ ID NO: 64), NP_149199 (SEQ ID NO: 65), NC_001988 (SEQ ID NO: 66), Pseudomonas putida (Genbank number: AAA89106 (SEQ ID NO: 67), U13232 But are not limited to, a variety of sources including, but not limited to, Thermus thermophilus (Genbank number: YP_145486 (SEQ ID NO: 69), NC_006461 (SEQ ID NO: 70)).

용어 "트랜스아미나아제"는, 알라닌 또는 글루타메이트 중 어느 하나를 아민 공여체로서 사용하여, α-케토아이소발레레이트로부터 L-발린으로의 변환을 촉매하는 효소 활성을 갖는 폴리펩티드 (또는 폴리펩티드들)를 지칭한다. 예시적인 트랜스아미나아제는 EC 번호 2.6.1.42 및 2.6.1.66으로 공지되어 있다. 그러한 효소는 다수의 공급원으로부터 입수가능하다. 알라닌 의존성 효소에 대한 공급원의 예에는, 에스케리키아 콜라이 (젠뱅크 번호: YP_026231(서열 번호 71), NC_000913(서열 번호 72)) 및 바실러스 리케니포르미스(Bacillus licheniformis)(젠뱅크 번호: YP_093743(서열 번호 73), NC_006322 (서열 번호 74))가 포함되지만 이에 한정되지 않는다. 글루타메이트-의존성 효소에 대한 공급원의 예에는, 에스케리키아 콜라이 (젠뱅크 번호: YP_026247(서열 번호 75), NC_000913(서열 번호 76)), 사카로마이세스 세레비시아(젠뱅크 번호: NP_012682(서열 번호 77), NC_001142 (서열 번호 78)) 및 메타노박테리움 써모아우토트로피쿰(Methanobacterium thermoautotrophicum)(젠뱅크 번호: NP_276546(서열 번호 79), NC_000916 (서열 번호 80))이 포함되지만 이에 한정되지 않는다.The term "transaminase" refers to a polypeptide (or polypeptides) having an enzymatic activity that catalyzes the conversion of a-ketoisovalerate to L-valine using either alanine or glutamate as an amine donor . Exemplary transaminases are known as EC numbers 2.6.1.42 and 2.6.1.66. Such enzymes are available from a number of sources. Examples of sources for alanine dependent enzymes include Escherichia coli (Genbank # YP_026231 (SEQ ID NO: 71), NC_000913 (SEQ ID NO: 72)) and Bacillus licheniformis (Genbank # YP_093743 SEQ ID NO: 73), NC_006322 (SEQ ID NO: 74)). Examples of sources for glutamate-dependent enzymes include Escherichia coli (Genbank number: YP_026247 (SEQ ID NO: 75), NC_000913 (SEQ ID NO: 76)), Saccharomyces cerevisiae (Genbank number: NP_012682 No. 77), NC_001142 (SEQ ID NO: 78)) and Methanobacterium thermoautotrophicum (Genbank number: NP_276546 (SEQ ID NO: 79), NC_000916 (SEQ ID NO: 80)) .

용어 "발린 탈수소효소"는, 전형적으로 NAD(P)H를 전자 공여체로서 사용하고 암모니아를 아민 공여체로서 사용하여, α-케토아이소발레레이트로부터 L-발린으로의 변환을 촉매하는 효소 활성을 갖는 폴리펩티드 (또는 폴리펩티드들)를 지칭한다. 예시적인 발린 탈수소효소는 EC 번호 1.4.1.8 및 1.4.1.9로 공지되어 있으며, 그러한 효소는 스트렙토마이세스 코엘리콜라(Streptomyces coelicolor)(젠뱅크 번호: NP_628270(서열 번호 81), NC_003888 (서열 번호 82)) 및 바실러스 서브틸리스 (젠뱅크 번호: CAB14339(서열 번호 83), Z99116 (서열 번호 84))를 포함하지만 이에 한정되지 않는 다수의 공급원으로부터 입수가능하다.The term "valine dehydrogenase" typically refers to a polypeptide having an enzymatic activity that catalyzes the conversion of a-ketoisovalerate to L-valine using NAD (P) H as the electron donor and ammonia as the amine donor (Or polypeptides). Exemplary valine dehydrogenases are known as EC Nos. 1.4.1.8 and 1.4.1.9, and such enzymes are known as Streptomyces coelicolor (Genbank number: NP_628270 (SEQ ID NO: 81), NC_003888 ) And Bacillus subtilis (Genbank number: CAB14339 (SEQ ID NO: 83), Z99116 (SEQ ID NO: 84)).

용어 "발린 탈카르복실화효소"는 L-발린으로부터 아이소부틸아민 및 CO2로의 변환을 촉매하는 효소 활성을 갖는 폴리펩티드 (또는 폴리펩티드들)를 지칭한다. 예시적인 발린 탈카르복실화효소는 EC 번호 4.1.1.14로 공지되어 있다. 그러한 효소는 스트렙토마이세스, 예를 들어, 스트렙토마이세스 비리디파시엔스(Streptomyces viridifaciens)(젠뱅크 번호: AAN10242(서열 번호 85), AY116644 (서열 번호 86))에서 발견된다.The term "valentecarboxylating enzyme" refers to a polypeptide (or polypeptides) having an enzymatic activity that catalyzes the conversion of L-valine to isobutylamine and CO 2 . An exemplary valine decarboxylase is known as EC No. 4.1.1.14. Such enzymes are Streptomyces, e.g., Streptomyces irregularities Defining when Enschede (Streptomyces viridifaciens): It is found from (Zhen bank number AAN10242 (SEQ ID NO: 85), AY116644 (SEQ ID NO: 86)).

용어 "오메가 트랜스아미나아제"는, 적합한 아미노산을 아민 공여체로서 사용하여, 아이소부틸아민으로부터 아이소부티르알데하이드로의 변환을 촉매하는 효소 활성을 갖는 폴리펩티드 (또는 폴리펩티드들)를 지칭한다. 예시적인 오메가 트랜스아미나아제는 EC 번호 2.6.1.18로 공지되어 있으며, 알칼리게네스 데니트리피칸스(Alcaligenes denitrificans)(AAP92672(서열 번호 87), AY330220 (서열 번호 88)), 랄스토니아 유트로파(Ralstonia eutropha)(젠뱅크 번호: YP_294474(서열 번호 89), NC_007347 (서열 번호 90)), 쉬와넬라 오네이덴시스(Shewanella oneidensis)(젠뱅크 번호: NP_719046(서열 번호 91), NC_004347 (서열 번호 92)), 및 슈도모나스 푸티다 (젠뱅크 번호: AAN66223(서열 번호 93), AE016776 (서열 번호 94))를 포함하지만 이에 한정되지 않는 다수의 공급원으로부터 입수가능하다.The term "omega transaminase" refers to a polypeptide (or polypeptides) having an enzymatic activity that catalyzes the conversion of isobutylamine to isobutyraldehyde using a suitable amino acid as an amine donor. Exemplary omega transaminases are known under EC number 2.6.1.18 and include Alcaligenes denitrificans (AAP92672 (SEQ ID NO: 87), AY330220 (SEQ ID NO: 88)), Ralstonia yeastropa (Ralstonia eutropha) (Zhen bank numbers: YP_294474 (SEQ ID NO: 89), NC_007347 (SEQ ID NO: 90)), sh and Nella ohneyi den sheath (Shewanella oneidensis) (Zhen bank number: NP_719046 (SEQ ID NO: 91), NC_004347 (SEQ ID NO: 92)), and Pseudomonas putida (Genbank number: AAN66223 (SEQ ID NO: 93), AE016776 (SEQ ID NO: 94)).

용어 "아세틸-CoA 아세틸전이효소"는 2개의 분자의 아세틸-CoA로부터 아세토아세틸-CoA 및 보조효소 A (CoA)로의 변환을 촉매하는 효소 활성을 갖는 폴리펩티드 (또는 폴리펩티드들)를 지칭한다. 예시적인 아세틸-CoA 아세틸전이효소는 단쇄 아실-CoA 및 아세틸-CoA에 대한 기질 선호성 (순방향에서의 반응)을 갖는 아세틸-CoA 아세틸전이효소이며, E.C. 2.3.1.9 [문헌(Enzyme Nomenclature 1992, Academic Press, San Diego)]로 분류되지만; 더 광범위한 기질 범위를 갖는 효소 (E.C. 2.3.1.16)가 또한 기능성일 것이다. 아세틸-CoA 아세틸전이효소는 다수의 공급원, 예를 들어, 에스케리키아 콜라이(젠뱅크 번호: NP_416728, NC_000913; NCBI 아미노산 서열, NCBI 뉴클레오티드 서열), 클로스트리디움 아세토부틸리쿰 (젠뱅크 번호: NP_349476.1, NC_003030; NP_149242, NC_001988), 바실러스 서브틸리스 (젠뱅크 번호: NP_390297, NC_000964) 및 사카로마이세스 세레비시아 (젠뱅크 번호: NP_015297, NC_001148)로부터 입수가능하다.The term "acetyl-CoA acetyltransferase" refers to a polypeptide (or polypeptides) having an enzymatic activity that catalyzes the conversion of two molecules of acetyl-CoA to acetoacetyl-CoA and coenzyme A (CoA). Exemplary acetyl-CoA acetyltransferases are acetyl-CoA acetyltransferases with substrate preference for short chain acyl-CoA and acetyl-CoA (reaction in forward direction), and E.C. 2.3.1.9 (Enzyme Nomenclature 1992, Academic Press, San Diego); Enzymes with a broader range of substrates (E.C. 2.3.1.16) will also be functional. The acetyl-CoA acetyltransferase can be obtained from a number of sources, for example, Escherichia coli (Genbank number: NP_416728, NC_000913; NCBI amino acid sequence, NCBI nucleotide sequence), Clostridium acetobutylicum (Genbank number: NP_349476 (Genbank number: NP_390297, NC_000964), and Saccharomyces cerevisiae (Genbank number: NP_015297, NC_001148), available from Bacillus subtilis.

용어 "3-하이드록시부티릴-CoA 탈수소효소"는 아세토아세틸-CoA로부터 3-하이드록시부티릴-CoA로의 변환을 촉매하는 촉매 활성을 갖는 폴리펩티드 (또는 폴리펩티드들)를 지칭한다. 예시적인 3-하이드록시부티릴-CoA 탈수소효소는, (S)-3-하이드록시부티릴-CoA 또는 (R)-3-하이드록시부티릴-CoA에 대한 기질 선호성과 함께, NADH-의존성일 수 있다. 예는 각각 E.C. 1.1.1.35 및 E.C. 1.1.1.30으로 분류될 수 있다. 추가로, 3-하이드록시부티릴-CoA 탈수소효소는, (S)-3-하이드록시부티릴-CoA 또는 (R)-3-하이드록시부티릴-CoA에 대한 기질 선호성과 함께, NADPH-의존성일 수 있으며, 각각 E.C. 1.1.1.157 및 E.C. 1.1.1.36으로 분류된다. 3-하이드록시부티릴-CoA 탈수소효소는 다수의 공급원, 예를 들어, 클로스트리듐 아세토부틸리쿰 (젠뱅크 번호: NP_349314, NC_003030), 바실러스 서브틸리스 (젠뱅크 번호: AAB09614, U29084), 랄스토니아 유트로파 (젠뱅크 번호: YP_294481, NC_007347), 및 알칼리게네스 유트로푸스(Alcaligenes eutrophus) (젠뱅크 번호: AAA21973, J04987)로부터 입수가능하다.The term "3-hydroxybutyryl-CoA dehydrogenase" refers to a polypeptide (or polypeptides) having catalytic activity to catalyze the conversion of acetoacetyl-CoA to 3-hydroxybutyryl-CoA. Exemplary 3-hydroxybutyryl-CoA dehydrogenase is an NADH-dependent dihydroxybutyryl-CoA dehydrogenase with substrate preference for (S) -3-hydroxybutyryl-CoA or (R) . Examples can be categorized as EC 1.1.1.35 and EC 1.1.1.30, respectively. In addition, the 3-hydroxybutyryl-CoA dehydrogenase enzyme has a substrate preference for (S) -3-hydroxybutyryl-CoA or (R) -3-hydroxybutyryl- , Which are classified as EC 1.1.1.157 and EC 1.1.1.36, respectively. 3-Hydroxybutyryl-CoA dehydrogenase can be obtained from a number of sources, for example, Clostridium acetobutylicum (Genbank # NP_349314, NC003030), Bacillus subtilis (Genbank # AAB09614, U29084) Are available from Ralstonia yeutropa (Genbank number: YP_294481, NC_007347), and Alcaligenes eutrophus (Genbank number: AAA21973, J04987).

용어 "크로토나아제"는 3-하이드록시부티릴-CoA로부터 크로토닐-CoA 및 H2O로의 변환을 촉매하는 효소 활성을 갖는 폴리펩티드 (또는 폴리펩티드들)를 지칭한다. 예시적인 크로토나아제는 (S)-3-하이드록시부티릴-CoA 또는 (R)-3-하이드록시부티릴-CoA에 대한 기질 선호성을 가질 수 있으며 각각 E.C. 4.2.1.17 및 E.C. 4.2.1.55로 분류될 수 있다. 크로토나아제는 다수의 공급원, 예를 들어, 에스케리키아 콜라이 (젠뱅크 번호: NP_415911, NC_000913), 클로스트리듐 아세토부틸리쿰 (젠뱅크 번호: NP_349318, NC_003030), 바실러스 서브틸리스 (젠뱅크 번호: CAB13705, Z99113), 및 아에로모나스 카비아에(Aeromonas caviae)(젠뱅크 번호: BAA21816, D88825)로부터 입수가능하다.The term "better crotonate the" refers to a polypeptide (or polypeptides) having an enzyme activity that catalyzes the conversion of chroman tonil -CoA and H 2 O from 3-hydroxy-butyryl -CoA. Exemplary crotonases may have substrate preferences for (S) -3-hydroxybutyryl-CoA or (R) -3-hydroxybutyryl-CoA and are described in EC 4.2.1.17 and EC 4.2.1.55 . ≪ / RTI > The crotonase may be obtained from a number of sources such as, for example, Escherichia coli (Genbank number: NP_415911, NC_000913), Clostridium acetobutylicum (Genbank number: NP_349318, NC_003030), Bacillus subtilis Bank number: CAB13705, Z99113), and Aeromonas caviae (Genbank number: BAA21816, D88825).

용어 "부티릴-CoA 탈수소효소"는 크로토닐-CoA로부터 부티릴-CoA로의 변환을 촉매하는 효소 활성을 갖는 폴리펩티드 (또는 폴리펩티드들)를 지칭한다. 예시적인 부티릴-CoA 탈수소효소는 NADH-의존성, NADPH-의존성 또는 플라빈-의존성일 수 있으며, 각각 E.C. 1.3.1.44, E.C. 1.3.1.38 및 E.C. 1.3.99.2로 분류될 수 있다. 부티릴-CoA 탈수소효소는 다수의 공급원, 예를 들어, 클로스트리듐 아세토부틸리쿰 (젠뱅크 번호: NP_347102, NC_ 003030), 유글레나 그라실리스 (Euglena gracilis) (젠뱅크 번호: Q5EU90, AY741582), 스트렙토마이세스 콜리너스(Streptomyces collinus)(젠뱅크 번호: AAA92890, U37135) 및 스트렙토마이세스 코엘리콜라 (젠뱅크 번호: CAA22721, AL939127)로부터 입수가능하다.The term "butyryl-CoA dehydrogenase" refers to a polypeptide (or polypeptides) having an enzymatic activity that catalyzes the conversion of crotyl-CoA to butyryl-CoA. Exemplary butyryl-CoA dehydrogenases can be NADH-dependent, NADPH-dependent or flavin-dependent, and can be classified as EC 1.3.1.44, EC 1.3.1.38 and EC 1.3.99.2, respectively. Butyryl-CoA dehydrogenase can be obtained from a number of sources, such as Clostridium acetobutylicum (Genbank number: NP_347102, NC_003030), Euglena gracilis (Genbank number: Q5EU90, AY741582) , Streptomyces collinus (Genbank number: AAA92890, U37135) and Streptomyces coelicolor (Genbank number: CAA22721, AL939127).

용어 "부티르알데하이드 탈수소효소"는, NADH 또는 NADPH를 보조인자로서 사용하여, 부티릴-CoA로부터 부티르알데하이드로의 변환을 촉매하는 효소 활성을 갖는 폴리펩티드 (또는 폴리펩티드들)를 지칭한다. NADH에 대하여 선호성을 갖는 부티르알데하이드 탈수소효소는 E.C. 1.2.1.57로 공지되어 있으며, 예를 들어, 클로스트리듐 베이제린키이 (젠뱅크 번호: AAD31841, AF157306) 및 클로스트리듐 아세토부틸리쿰 (젠뱅크 번호: NP.sub.--149325, NC.sub.--001988)으로부터 입수가능하다.The term "butyraldehyde dehydrogenase" refers to a polypeptide (or polypeptides) having an enzymatic activity that catalyzes the conversion of butyryl-CoA to butyraldehyde using NADH or NADPH as cofactor. Butyraldehyde dehydrogenase, which has a preference for NADH, For example, clostridium bayerin keyi (Genbank number: AAD31841, AF157306) and clostridium acetobutylicum (Genbank number: NP-149325, NC. sub .-- 001988).

용어 "아이소부티릴-CoA 뮤타아제(mutase)"는 부티릴-CoA로부터 아이소부티릴-CoA로의 변환을 촉매하는 효소 활성을 갖는 폴리펩티드 (또는 폴리펩티드들)를 지칭한다. 이러한 효소는 보조효소 B12를 보조인자로 사용한다. 예시적인 아이소부티릴-CoA 뮤타아제는 EC 번호 5.4.99.13으로 공지되어 있다. 이들 효소는 스트렙토마이세스 신나모넨시스(Streptomyces cinnamonensis)(젠뱅크 번호: AAC08713(서열 번호 95), U67612 (서열 번호 96); CAB59633(서열 번호 97), AJ246005 (서열 번호 98)), 스트렙토마이세스 코엘리콜라 (젠뱅크 번호: CAB70645(서열 번호 99), AL939123 (서열 번호 100); CAB92663(서열 번호 101), AL939121 (서열 번호 102)) 및 스트렙토마이세스 아베르미틸리스(Streptomyces avermitilis)(젠뱅크 번호: NP_824008(서열 번호 103), NC_003155 (서열 번호 104); NP_824637(서열 번호 105), NC_003155 (서열 번호 106))를 포함하지만 이로 한정되지 않는 다수의 스트렙토마이세스에서 발견된다.The term "isobutyryl-CoA mutase" refers to a polypeptide (or polypeptides) having an enzymatic activity that catalyzes the conversion of butyryl-CoA to isobutyryl-CoA. These enzymes use coenzyme B 12 as a cofactor. An exemplary isobutyryl-CoA mutase is known as EC number 5.4.99.13. These enzymes include, but are not limited to, Streptomyces cinnamonensis (Genbank # AAC08713, U67612, CAB59633, AJ246005, (SEQ ID NO: 99), AL939123 (SEQ ID NO: 100), CAB92663 (SEQ ID NO: 101), AL939121 (SEQ ID NO: 102), and Streptomyces avermitilis (SEQ ID NO: But are not limited to, GenBank numbers: NP_824008 (SEQ ID NO: 103), NC_003155 (SEQ ID NO: 104), NP_824637 (SEQ ID NO: 105), NC_003155 (SEQ ID NO: 106).

용어 "아세토락테이트 탈카르복실화효소"는 알파-아세토락테이트로부터 아세토인으로의 변환을 촉매하는 효소 활성을 갖는 폴리펩티드 (또는 폴리펩티드들)를 지칭한다. 예시적인 아세토락테이트 탈카르복실화효소는 EC 4.1.1.5로 공지되어 있으며, 예를 들어, 바실러스 서브틸리스(젠뱅크 번호: AAA22223, L04470), 클렙시엘라 테리게나(Klebsiella terrigena)(젠뱅크 번호: AAA25054, L04507) 및 클렙시엘라 뉴모니아(젠뱅크 번호: AAU43774, AY722056)로부터 입수가능하다.The term "acetolactate decarboxylase" refers to a polypeptide (or polypeptides) having an enzymatic activity that catalyzes the conversion of alpha-acetolactate to acetone. Exemplary acetolactate decarboxylase enzymes are known as EC 4.1.1.5 and include, for example, Bacillus subtilis (Genbank # AAA22223, L04470), Klebsiella terrigena ( Genbank No. AAA25054, L04507) and Klebsiella pneumoniae (Genbank number: AAU43774, AY722056).

용어 "아세토인 아미나아제" 또는 "아세토인 트랜스아미나아제"는 아세토인으로부터 3-아미노-2-부탄올로의 변환을 촉매하는 효소 활성을 갖는 폴리펩티드(또는 폴리펩티드들)를 지칭한다. 아세토인 아미나아제는 보조인자 피리독살 5'-포스페이트 또는 NADH 또는 NADPH를 이용할 수 있다. 생성된 생성물은 3-위치에서 (R) 또는 (S) 입체화학을 가질 수 있다. 피리독살 포스페이트-의존성 효소는 아미노산, 예를 들어, 알라닌 또는 글루타메이트를 아미노 공여체로 사용할 수 있다. NADH- 및 NADPH-의존성 효소는 암모니아를 제2 기질로 사용할 수 있다. 아미노 알코올 탈수소효소로도 공지되어 있는 NADH-의존성 아세토인 아미나아제의 적합한 예는 미국 특허 제6,432,688호 (이토(Ito) 등)에 기재되어 있다. 피리독살-의존성 아세토인 아미나아제의 예로는 문헌[Shin and Kim (J. Org. Chem. 67:2848-2853, 2002)]에 기재된 아민:피루베이트 아미노전이효소 (아민:피루베이트 트랜스아미나아제로도 지칭됨)가 있다.The term "acetoinaminase" or "acetoin transaminase" refers to a polypeptide (or polypeptides) having an enzymatic activity that catalyzes the conversion of acetone to 3-amino-2-butanol. Acetone aminase may utilize co-factors pyridoxal 5'-phosphate or NADH or NADPH. The resulting product may have (R) or (S) stereochemistry at the 3-position. Pyridoxal phosphate-dependent enzymes can use amino acids, such as alanine or glutamate, as amino donors. NADH- and NADPH-dependent enzymes can use ammonia as a secondary substrate. Suitable examples of NADH-dependent acetylinaminases, also known as aminoalcohol dehydrogenases, are described in U.S. Patent No. 6,432,688 (Ito et al.). Examples of pyridoxal-dependent acetylinaminases include the amine: pyruvate amino transferase (amine: pyruvate transaminase described in Shin and Kim (J. Org. Chem. 67: 2848-2853, 2002) Quot;).

용어 "아세토인 키나아제"는 아세토인으로부터 포스포아세토인으로의 변환을 촉매하는 효소 활성을 갖는 폴리펩티드(또는 폴리펩티드들)를 지칭한다. 아세토인 키나아제는 반응에서 ATP (아데노신 트라이포스페이트) 또는 포스포에놀피루베이트를 인산염 공여체로서 사용할 수 있다. 유사 기질 다이하이드록시아세톤 상에서 유사한 반응을 촉매하는 효소에는 예를 들어, EC 2.7.1.29로 공지되어 있는 효소 (문헌[Garcia-Alles, et al., Biochemistry 43:13037-13046, 2004])가 포함된다.The term "acetoin kinase" refers to a polypeptide (or polypeptides) having an enzymatic activity that catalyzes the conversion of acetone to phosphoacetone. Acetone kinase can use ATP (adenosine triphosphate) or phosphoenol pyruvate as a phosphate donor in the reaction. Enzymes catalyzing a similar reaction on pseudoside dihydroxyacetone include, for example, enzymes known as EC 2.7.1.29 (Garcia-Alles, et al., Biochemistry 43: 13037-13046, 2004) do.

용어 "아세토인 포스페이트 아미나아제"는 포스포아세토인으로부터 3-아미노-2- 부탄올 O-포스페이트로의 변환을 촉매하는 효소 활성을 갖는 폴리펩티드(또는 폴리펩티드들)를 지칭한다. 아세토인 포스페이트 아미나아제는 보조인자 피리독살 5'-포스페이트, NADH, 또는 NADPH를 사용할 수 있다. 생성된 생성물은 3-위치에서 (R) 또는 (S) 입체화학을 가질 수 있다. 피리독살 포스페이트-의존성 효소는 아미노산, 예를 들어, 알라닌 또는 글루타메이트를 사용할 수 있다. NADH-의존성 및 NADPH-의존성 효소는 암모니아를 제2 기질로 사용할 수 있다. 포스포아세토인 상에서 이러한 반응을 촉매하는 효소는 보고되어 있지 않지만, 유사 기질 세리놀 포스페이트 상에서 유사한 반응을 수행하는 것으로 제안된 피리독살 포스페이트-의존성 효소가 존재한다 (문헌[Yasuta, et al., Appl. Environ. Microbial. 67:4999-5009, 2001]).The term "acetoinphosphate aminase" refers to a polypeptide (or polypeptides) having an enzymatic activity that catalyzes the conversion of phosphoacetone to 3-amino-2-butanol O-phosphate. Acetoin phosphate aminase may use co-factors pyridoxal 5'-phosphate, NADH, or NADPH. The resulting product may have (R) or (S) stereochemistry at the 3-position. Pyridoxal phosphate-dependent enzymes can use amino acids, such as alanine or glutamate. NADH-dependent and NADPH-dependent enzymes can use ammonia as a secondary substrate. No enzyme has been reported to catalyze this reaction on phosphoacetyline, but there is a proposed pyridoxalphosphate-dependent enzyme that performs a similar reaction on a pseudosubstrate serinephosphate (Yasuta, et al., Appl Environ. Microbial. 67: 4999-5009, 2001).

"아미노 알코올 O-포스페이트 리아제"로도 불리는, 용어 "아미노부탄올 포스페이트 포스포리아제(phospholyase)"는 3-아미노-2-부탄올 O-포스페이트로부터 2-부탄온으로의 변환을 촉매하는 효소 활성을 갖는 폴리펩티드(또는 폴리펩티드들)를 지칭한다. 아미노 부탄올 포스페이트 포스포-리아제는 보조인자 피리독살 5'-포스페이트를 사용할 수 있다. 유사 기질 1-아미노-2-프로판올 포스페이트 상에서 유사한 반응을 촉매하는 효소가 보고되어 있다 (문헌[Jones, et al., Biochem J. 134:167-182, 1973]). 미국 특허 출원 공개 제2007/0259410호에는 유기체 에르위니아 카로토보라 (Erwinia carotovora) 유래의 아미노부탄올 포스페이트 포스포-리아제가 기재되어 있다.The term "amino-butanol phosphate phospholyase", also referred to as "amino alcohol O-phosphate lyase", refers to a polypeptide having an enzymatic activity that catalyzes the conversion of 3-amino-2-butanol O- (Or polypeptides). Aminobutanol phosphate phospho-lyase may use the co-factor pyridoxal 5'-phosphate. Enzymes have been reported that catalyze a similar reaction on the pseudosubstrate 1-amino-2-propanol phosphate (Jones, et al., Biochem J. 134: 167-182, 1973). U.S. Patent Application Publication No. 2007/0259410 discloses an amino butanol phosphate phosphorylase derived from an organism Erwinia carotovora .

용어 "아미노부탄올 키나아제"는 3-아미노-2-부탄올로부터 3-아미노-2-부탄올 O-포스페이트로의 변환을 촉매하는 효소 활성을 갖는 폴리펩티드(또는 폴리펩티드들)를 지칭한다. 아미노 부탄올 키나아제는 ATP를 포스페이트 공여체로 사용할 수 있다. 3-아미노-2-부탄올 상에서 이러한 반응을 촉매하는 효소는 보고되어 있지 않지만, 유사 기질 에탄올아민 및 1-아미노-2-프로판올 상에서 유사한 반응을 촉매하는 효소가 보고되어 있다(상기한 존슨(Jones) 등의 문헌). 미국 특허 출원 공개 제2009/0155870호는 실시예 14에서 에르위니아 카로토보라 아종 아트로셉티카 (Atroseptica )의 아미노 알코올 키나아제를 기재한다.The term "aminobutanol kinase" refers to a polypeptide (or polypeptides) having an enzymatic activity that catalyzes the conversion of 3-amino-2-butanol to 3-amino-2-butanol O-phosphate. Aminobutanol kinase can use ATP as a phosphate donor. No enzyme has been reported to catalyze this reaction on 3-amino-2-butanol, but enzymes that catalyze a similar reaction on quaternary ethanolamine and 1-amino-2-propanol have been reported (Jones, Et al. US Patent Application Publication No. 2009/0155870 discloses a substrate for the amino alcohol kinase of forceps urticae (Atroseptica) from Example 14 in El Winiah Caro sat see subspecies art.

"아세토인 환원효소"로도 알려져 있는, 용어 "부탄다이올 탈수소효소"는 아세토인으로부터 2,3-부탄다이올로의 변환을 촉매하는 효소 활성을 갖는 폴리펩티드(또는 폴리펩티드들)를 지칭한다. 부탄다이올 탈수소효소는 광범위한 알코올 탈수소효소 패밀리의 서브셋이다. 부탄다이올 탈수소효소는 알코올 생성물의 (R)- 또는 (S)-입체화학의 생성에 대하여 특이성을 가질 수 있다. (S)-특이적 부탄다이올 탈수소효소는 EC 1.1.1.76으로 공지되어 있으며, 예를 들어, 클렙시엘라 뉴모니아(젠뱅크 번호: BBA13085, D86412)로부터 입수가능하다. (R)-특이적 부탄다이올 탈수소효소는 EC 1.1.1.4로 공지되어 있으며, 예를 들어, 바실러스 세레우스(Bacillus cereus) 젠뱅크 번호: NP_830481, NC_004722; AAP07682, AE017000) 및 락토코커스 락티스 (젠뱅크 번호: AAK04995, AE006323)로부터 입수가능하다.The term "butanediol dehydrogenase ", also known as" acetone reductase "refers to a polypeptide (or polypeptides) having an enzymatic activity that catalyzes the conversion of acetone to 2,3-butanediol. Butanediol dehydrogenase is a subset of a broad family of alcohol dehydrogenase enzymes. The butanediol dehydrogenase may have specificity for the production of the (R) - or (S) - stereochemistry of the alcohol product. (S) -specific butane diol dehydrogenase is known as EC 1.1.1.76 and is available, for example, from Klebsiella pneumoniae (Genbank number: BBA13085, D86412). (R) -specific butane diol dehydrogenase is known as EC 1.1.1.4, for example, Bacillus cereus Genbank number: NP - 830481, NC - 004729; AAP07682, AE017000) and Lactococcus lactis (Genbank number: AAK04995, AE006323).

"다이알 탈수효소" 또는 "프로판다이올 탈수효소"로도 알려져 있는 용어 "부탄다이올 탈수효소"는 2,3-부탄다이올로부터 2-부탄온으로의 변환을 촉매하는 효소 활성을 갖는 폴리펩티드(또는 폴리펩티드들)를 지칭한다. 부탄다이올 탈수효소는 보조인자 아데노실 코발라민 (보조효소 Bw 또는 비타민 B12로도 공지되어 있지만; 비타민 B12는 보조효소 B12가 아닌 다른 형태의 코발라민을 지칭할 수도 있음)을 사용할 수 있다. 아데노실 코발라민-의존성 효소는 EC 4.2.1.28로 공지되어 있으며, 예를 들어 클렙시엘라 옥시토카(Klebsiella oxytoca) (젠뱅크 번호: AA08099 (알파 서브유닛), D45071; BAA08100 (베타 서브유닛), D45071; 및 BBA08101 (감마 서브유닛), D45071 (활성을 위해서는 3개의 서브유닛이 모두 필요함), 및 클렙시엘라 뉴모니아 (젠뱅크 번호: AAC98384 (알파 서브유닛), AF102064; 젠뱅크 번호: AAC98385 (베타 서브유닛), AF102064, 젠뱅크 번호: AAC98386 (감마 서브유닛), AF102064)로부터 입수가능하다. 다른 적합한 다이알 탈수효소에는 살모넬라 타이피무리움 (젠뱅크 번호: AAB84102 (큰 서브유닛), AF026270; 젠뱅크 번호: AAB84103 (중간의 서브유닛), AF026270; 젠뱅크 번호: AAB84104 (작은 서브유닛), AF026270); 및 락토바실러스 콜리노이데스(Lactobacillus collinoides)(젠뱅크 번호: CAC82541 (큰 서브유닛), AJ297723; 젠뱅크 번호: CAC82542 (중간의 서브유닛); AJ297723; 젠뱅크 번호: CAD01091 (작은 서브유닛), AJ297723)로부터 입수가능한 B12-의존성 다이알 탈수효소; 및 락토바실러스 브레비스 (Lactobacillus brevis) (특히 균주 CNRZ 734 및 CNRZ 735, 문헌[Speranza, et al., J. Agric. Food Chem. 45:3476-3480, 1997]) 유래의 효소, 및 상응하는 효소를 인코딩하는 뉴클레오티드 서열이 포함되지만 이에 한정되지 않는다. 다이알 탈수효소 유전자 단리 방법은 본 기술 분야에 널리 공지되어 있다 (예를 들어, 미국 특허 제5,686,276호).The term "butanediol dehydratase ", also known as" dial dehydratase "or" propanediol dehydrogenase "refers to a polypeptide having an enzymatic activity that catalyzes the conversion of 2,3- ≪ / RTI > polypeptides). Butane diol dehydratase may be co-factor adenosyl cobalamin (also known as coenzyme Bw or vitamin B12, although vitamin B12 may refer to other forms of cobalamin than coenzyme B12). Adenosyl cobalamin-dependent enzymes are known as EC 4.2.1.28 and include, for example, Klebsiella oxytoca (Genbank # AA08099 (alpha subunit), D45071; BAA08100 (beta subunit), D45071 ; And BBA08101 (gamma subunit), D45071 (all three subunits are required for activity), and Klebsiella pneumoniae (Genbank number: AAC98384 (alpha subunit), AF102064; Genbank number: AAC98385 Beta subunit), AF102064, Genbank number: AAC98386 (gamma subunit), AF102064. Other suitable dialytic dehydrogenases include Salmonella typhimurium (GenBank number: AAB84102 (large subunit), AF026270; (Small subunit) AF026270) and Lactobacillus collinoides (Genbank number: CAC82541 (large subunit), < RTI ID = 0.0 >AJ297723; Zen Bank Number: CAC82542 (medium-subunit); AJ297723; Xen bank number: CAD01091 (small subunit), AJ297723) B12- dependent dial dehydratase, available from; and Lactobacillus brevis (Lactobacillus brevis) (particularly strains CNRZ 734 and CNRZ 735, Speranza, et al., J. Agric. Food Chem. 45: 3476-3480, 1997) and nucleotide sequences encoding the corresponding enzymes. Gene isolation methods are well known in the art (see, for example, U.S. Patent No. 5,686,276).

용어 "피루베이트 탈카르복실화효소"는 피루브산으로부터 아세트알데하이드 및 이산화탄소로의 탈카르복실화를 촉매하는 효소 활성을 갖는 폴리펩티드(또는 폴리펩티드들)를 지칭한다. 피루베이트 탈수소효소는 EC 번호 4.1.1.1로 공지되어 있다. 이들 효소는 사카로마이세스 세레비시아 (젠뱅크 번호: CAA97575(서열 번호 107), CAA97705 (서열 번호 109), CAA97091 (서열 번호 111))를 포함하는, 다수의 효모에서 발견된다.The term "pyruvate decarboxylation enzyme" refers to a polypeptide (or polypeptides) having an enzymatic activity that catalyzes the decarboxylation of pyruvic acid to acetaldehyde and carbon dioxide. Pyruvate dehydrogenase is known as EC No. 4.1.1.1. These enzymes are found in a number of yeasts, including Saccharomyces cerevisiae (Genbank number: CAA97575 (SEQ ID NO: 107), CAA97705 (SEQ ID NO: 109), CAA97091 (SEQ ID NO: 111)).

본 명세서에서 제공된 바와 같은 아이소부탄올 생합성 경로를 포함하는 미생물은 하나 이상의 추가의 변형을 추가로 포함할 수 있음이 인식될 것이다. 미국 특허 출원 공개 제2009/0305363호 (참고로 포함됨)는 사이토졸-국소화된 아세토락테이트 신타아제의 발현과, 피루베이트 탈카르복실화효소 활성의 실질적인 제거를 위한 효모의 조작에 의한, 피루베이트로부터 아세토락테이트로의 변환의 증가를 개시한다. 일부 실시형태에서, 미생물은, 미국 특허 출원 공개 제2009/0305363호 (본 명세서에 참고로 포함됨)에 기재된 바와 같은, 글리세롤-3-포스페이트 탈수소효소 활성을 감소시키기 위한 변형 및/또는 피루베이트 탈카르복실화효소 활성을 갖는 폴리펩티드를 인코딩하는 적어도 하나의 유전자에서의 파괴 또는 피루베이트 탈카르복실화효소 유전자 발현을 조절하는 조절 요소를 인코딩하는 적어도 하나의 유전자에서의 파괴, 및/또는 미국 특허 출원 공개 제2010/0120105호 (본 명세서에 참고로 포함)에 기재된 바와 같은, 당량 균형 (equivalents balance)의 감소 또는 엔트너-도우도로프 (Entner-Doudoroff) 경로를 통한 증가된 탄소 유동을 제공하는 변형을 포함할 수 있다. 다른 변형에는 피루베이트-이용 생합성 경로에서 소정의 단계를 촉매하는 폴리펩티드를 인코딩하는 적어도 하나의 폴리뉴클레오티드의 통합이 포함된다. 다른 변형에는 아세토락테이트 환원효소 활성을 갖는 폴리펩티드를 인코딩하는 내인성 폴리뉴클레오티드에서의 적어도 하나의 결실, 돌연변이 및/또는 치환을 포함한다. 일부 실시 형태에서, 아세토락테이트 환원효소 활성을 갖는 폴리펩티드는 사카로마이세스 세레비시아의 YMR226C (서열 번호 127, 128) 또는 이의 상동체이다. 추가의 변형에는 알데하이드 탈수소효소 및/또는 알데하이드 산화효소 활성을 갖는 폴리펩티드를 인코딩하는 내인성 폴리뉴클레오티드의 결실, 돌연변이 및/또는 치환이 포함된다. 일부 실시형태에서, 알데하이드 탈수소효소 활성을 갖는 폴리펩티드에는 사카로마이세스 세레비시아 유래의 ALD6 또는 이의 상동체가 있다. 효모 생성 숙주 세포가 pdc-인, 글루코스 억제 감소의 효과를 갖는 유전자 변형이 본 명세서에 참고로 포함되는 미국 특허 출원 공개 제2011/0124060호에 기재되어 있다. 일부 실시형태에서, 결실되거나 하향-조절되는 피루베이트 탈카르복실화효소는 PDC1, PDC5, PDC6 및 이들의 조합으로 이루어진 군으로부터 선택된다. 일부 실시 형태에서, 피루베이트 탈카르복실화효소는 표 1의 효소들로부터 선택된다. 일부 실시형태에서, 미생물은 글리세르알데하이드-3-포스페이트로부터 글리세레이트 1,3, 바이포스페이트로의 변환을 촉매하는 폴리펩티드를 인코딩하는 폴리뉴클레오티드의 결실 또는 하향-조절을 포함할 수 있다. 일부 실시형태에서, 이러한 반응을 촉매하는 효소는 글리세르알데하이드-3-포스페이트 탈수소효소이다.It will be appreciated that a microorganism comprising an isobutanol biosynthetic pathway as provided herein may additionally comprise one or more additional modifications. U.S. Patent Application Publication No. 2009/0305363 (included herein by reference) discloses a method of inhibiting the expression of cytosol-localized acetolactate synthase and the production of pyruvate by the manipulation of yeast for the substantial removal of pyruvate decarboxylase activity Lt; RTI ID = 0.0 > acetolactate < / RTI > In some embodiments, the microorganism is selected from the group consisting of a variant for reducing glycerol-3-phosphate dehydrogenase activity and / or a derivative thereof, such as described in U.S. Patent Application Publication No. 2009/0305363 (incorporated herein by reference) Disruption in at least one gene encoding a polypeptide having a complexing enzyme activity or disruption in at least one gene encoding a regulatory element that controls the expression of a pyruvate decarboxylase gene and / A variant that provides increased carbon flow through the Entner-Doudoroff path, such as reduction of the equivalents balance, as described in WO 2010/0120105 (incorporated herein by reference) . Other variations include the incorporation of at least one polynucleotide encoding a polypeptide that catalyzes a given step in a pyruvate-utilizing biosynthetic pathway. Other variations include at least one deletion, mutation and / or substitution in an endogenous polynucleotide encoding a polypeptide having acetolactate reductase activity. In some embodiments, the polypeptide having acetolactate reductase activity is YMR226C of Saccharomyces cerevisiae (SEQ ID NO: 127, 128) or its homologues. Further modifications include deletion, mutation and / or substitution of an endogenous polynucleotide encoding an aldehyde dehydrogenase and / or a polypeptide having an aldehyde oxidase activity. In some embodiments, polypeptides having aldehyde dehydrogenase activity include ALD6 from Saccharomyces cerevisiae or homologs thereof. U.S. Patent Application Publication No. 2011/0124060, which is incorporated herein by reference, describes a gene modification having the effect of reducing glucose suppression, wherein the yeast-producing host cell is pdc-. In some embodiments, the deleted or down-regulated pyruvate decarboxylase is selected from the group consisting of PDC1 , PDC5 , PDC6, and combinations thereof. In some embodiments, the pyruvate decarboxylation enzyme is selected from the enzymes of Table 1. In some embodiments, the microorganism may comprise deletion or down-regulation of a polynucleotide encoding a polypeptide that catalyzes the conversion of glyceryl aldehyde-3-phosphate to glycerate 1,3, biphosphate. In some embodiments, the enzyme that catalyzes this reaction is a glyceraldehyde-3-phosphate dehydrogenase.

[표 1][Table 1]

Figure pct00001
Figure pct00001

일부 실시 형태에서, 임의의 특정 핵산 분자 또는 폴리펩티드는 본 명세서에 기재된 뉴클레오티드 서열 또는 폴리펩티드 서열과 80%, 85%, 90%, 95%, 96%, 97%, 98%, 또는 99% 이상 동일할 수 있다. 본 기술 분야에 공지된 바와 같이, 용어 "퍼센트 동일성"(percent identity)은, 서열들을 비교하여 결정되는 바와 같은, 둘 이상의 폴리펩티드 서열 또는 둘 이상의 폴리뉴클레오티드 서열 사이의 관계이다. 본 기술 분야에서, "동일성"은, 경우에 따라서, 서열의 스트링(string)들 사이의 매치(match)에 의해 결정되는 바와 같은, 폴리펩티드 또는 폴리뉴클레오티드 서열 사이의 서열 관련성의 정도를 또한 의미한다. 동일성 및 유사성은 하기의 문헌에 개시된 것을 포함하지만 이에 한정되지 않는 공지의 방법에 의해 용이하게 계산될 수 있다: 문헌[Computational Molecular Biology (Lesk, A. M., Ed.) Oxford University: NY (1988)]; 문헌[Biocomputing: Informatics and Genome Projects (Smith, D. W., Ed.) Academic: NY (1993)]; 문헌[Computer Analysis of Sequence Data, Part I (Griffin, A. M., and Griffin, H. G., Eds.) Humania: NJ (1994)]; 문헌[Sequence Analysis in Molecular Biology (von Heinje, G., Ed.) Academic (1987)]; 및 문헌[Sequence Analysis Primer (Gribskov, M. and Devereux, J., Eds.) Stockton: NY (1991)].In some embodiments, any particular nucleic acid molecule or polypeptide is 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical or more identical to the nucleotide sequence or polypeptide sequence described herein . As is known in the art, the term "percent identity " is a relationship between two or more polypeptide sequences or two or more polynucleotide sequences, as determined by comparing sequences. In the art, "identity" also refers to the degree of sequence relatedness between polypeptides or polynucleotide sequences, as the case may be, as determined by a match between strings of sequences. Identity and similarity can be readily calculated by known methods, including but not limited to those disclosed in the following references: Computational Molecular Biology (Lesk, AM, Ed.) Oxford University: NY (1988); Biocomputing: Informatics and Genome Projects (Smith, DW, Ed.) Academic: NY (1993); Computer Analysis of Sequence Data , Part I (Griffin, AM, and Griffin, HG, Eds.) Humania: NJ (1994); Sequence Analysis in Molecular Biology (von Heinje, G., Ed.) Academic (1987); And Sequence Analysis Primer (Gribskov, M. and Devereux, J., Eds.) Stockton: NY (1991).

동일성을 결정하는 방법은 시험 서열들 사이에서 최상의 매치를 제공하도록 설계된다. 동일성 및 유사성을 결정하는 방법은 대중적으로 입수할 수 있는 컴퓨터 프로그램에 코드화되어 있다. 서열 정렬과 퍼센트 동일성의 계산은 레이저진 바이오인포매틱스 컴퓨팅 스위트 (LASERGENE bioinformatics computing suite)의 멕얼라인(Megalign) (상표명) 프로그램 (미국 위스콘신주 매디슨 소재의 디엔에이스타 인크. (DNASTAR Inc.))을 이용하여 수행될 수 있다. 서열의 다중 정렬은, 레이저진 바이오인포매틱스 컴퓨팅 스위트의 멕얼라인™ 프로그램 (디엔에이스타 인크.)에서 발견되고, 클러스탈(Clustal) V (문헌[Higgins and Sharp, CABIOS. 5:151-153, 1989]; 문헌[Higgins, et al., Comput. Appl. Biosci. 8:189-191, 1992]에 개시됨)로 표지되는 정렬 방법에 상응하는 "클러스탈 V 정렬 방법"을 포함하는 몇 가지 종류의 알고리즘을 포함하는 "클러스탈 정렬 방법"을 사용하여 수행될 수 있다. 다중 정렬의 경우, 디폴트 값은 갭 페널티(GAP PENALTY)=10 및 갭 길이 페널티(GAP LENGTH PENALTY)=10에 상응한다. 클러스탈 방법을 사용하는 단백질 서열의 퍼센트 동일성의 계산 및 쌍정렬을 위한 디폴트 파라미터는 케이터플 (KTUPLE)=1, 갭 페널티=3, 윈도우 (WINDOW)=5 및 다이아고날스 세이브드 (DIAGONALS SAVED)=5이다. 핵산의 경우, 이들 파라미터는 케이터플=2, 갭 페널티=5, 윈도우=4 및 다이아고날스 세이브드=4이다. 클러스탈 V 프로그램을 사용하여 서열들을 정렬한 후에, 동일한 프로그램 내의 서열 거리 표를 봄으로써 퍼센트 동일성을 얻을 수 있다. 부가적으로 클러스탈 W 정렬 방법이 이용가능하며, 이는 클러스탈 W (문헌[Higgins and Sharp, CABIOS. 5:151-153, 1989]; 문헌[Higgins, et al., Comput. Appl. Biosci. 8:189-191, 1992])로 표지되고 레이저진 바이오인포매틱스 컴퓨팅 스위트(디엔에이스타 인크.)의 멕얼라인™ v6.1 프로그램에서 발견되는 정렬 방법에 상응한다. 다중 정렬을 위한 디폴트 파라미터 (갭 페널티=10, 갭 길이 페널티=0.2, 발산 서열 지연율(Delay Divergen Seqs) (%)=30, DNA 전이 가중치=0.5, 단백질 가중 매트릭스(Protein Weight Matrix)=고넷 시리즈(Gonnet Series), DNA 가중 매트릭스(DNA Weight Matrix)=IUB). 클러스탈 W 프로그램을 사용하여 서열들을 정렬한 후에, 동일한 프로그램 내의 서열 거리 표를 봄으로써 퍼센트 동일성을 얻을 수 있다.Methods for determining identity are designed to provide the best match between test sequences. Methods for determining identity and similarity are coded in publicly available computer programs. The sequence alignment and percent identity calculation was performed using the Megalign (TM) program (DNASTAR Inc., Madison, Wis., USA) of the LASERGENE bioinformatics computing suite . ≪ / RTI > Multiple alignments of sequences were found in the McIllain (TM) program of the LaserJin Bioinformatics Computing Suite (DENE STAR INC.) And are described in Clustal V (Higgins and Sharp, CABIOS. 5: 151-153, Several methods, including the "Clustal V Sorting Method" corresponding to the sorting method labeled by the method described in Higgins, et al., Comput. Appl. Biosci. 8: 189-191 &Quot; Clustering Algorithm " For multiple alignment, the default value corresponds to GAP PENALTY = 10 and GAP LENGTH PENALTY = 10. The default parameters for calculating percent identity and pair alignment of protein sequences using the clustering method are KTUPLE = 1, GAP penalty = 3, WINDOW = 5 and DIAGONALS SAVED. = 5. In the case of nucleic acids, these parameters are KetaFlu = 2, Gap Penalty = 5, Window = 4 and Diagonal Cut = 4. After aligning the sequences using the Cluster V program, the percent identity can be obtained by viewing the sequence distance table in the same program. Additionally, clustal W alignment methods are available, which are described in Clustal W (Higgins and Sharp, CABIOS. 5: 151-153, 1989; Higgins, et al., Comput. Appl. Biosci. 8 : 189-191, 1992) and corresponds to the alignment method found in the McLellin (TM) v6.1 program of LaserJein Bioinformatics Computing Suite (DENA STAR INC.). (Gap Penalty = 10, Gap Length Penalty = 0.2, Delay Divergen Seqs (%) = 30, DNA Transition Weight = 0.5, Protein Weight Matrix = Gonette Series Gonnet Series), DNA Weight Matrix = IUB). After aligning the sequences using a cluster W program, you can get percent identity by looking at the sequence distance table in the same program.

표준 재조합 DNA 및 분자 클로닝 기술은 본 기술 분야에 잘 알려져 있으며, 샘브룩(Sambrook) 등의 문헌[Sambrook, J., Fritsch, E. F. and Maniatis, T. (Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 1989] (본 명세서에서 마니아티스(Maniatis)로 지칭함); 및 오스벨(Ausubel) 등의 문헌[Ausubel, et al., Current Protocols in Molecular Biology, pub. by Greene Publishing Assoc. and Wiley-Interscience, 1987]에 기재되어 있다. 부탄올 생합성 경로를 포함하는 미생물을 구축하는 방법의 예는, 예를 들어, 미국 특허 제7,851,188호, 및 미국 특허 출원 공개 제2007/0092957호; 제2007/0259410호; 제2007/0292927호; 제2008/0182308호; 제2008/0274525호; 제2009/0155870호; 제2009/0305363호; 및 제2009/0305370호에 개시되어 있으며, 이들 각각의 전체 내용은 참고로 본 명세서에 포함된다.Standard recombinant DNA and molecular cloning techniques are well known in the art and are described in Sambrook et al., Sambrook, J., Fritsch, EF and Maniatis, T. (Molecular Cloning: A Laboratory Manual; Cold Spring Harbor Laboratory (Ausubel, et al., Current Protocols in Molecular Biology, pub., By Greene Publishing Assoc., 1989), which is incorporated herein by reference in its entirety. and Wiley-Interscience, 1987. Examples of methods for constructing microorganisms comprising a butanol biosynthetic pathway are described, for example, in U.S. Patent No. 7,851,188 and U.S. Patent Application Publication 2007/0092957; / 0259410, 2007/0292927, 2008/0182308, 2008/0274525, 2009/0155870, 2009/0305363 and 2009/0305370, each of the contents Are incorporated herein by reference.

추가로, 본 발명의 다양한 실시 형태가 본 명세서에 기재되었지만, 이들은 다만 일례로서 주어진 것으로 이들로 제한되지 않음이 이해되어야 한다. 형태 및 세부 사항에 있어서의 다양한 변화가 본 발명의 사상 및 범위를 벗어나지 않고서 이뤄질 수 있음이 당업자에게 명백할 것이다. 따라서, 본 발명의 폭 및 범주는 어떠한 기재된 예시적인 실시 형태에 의해서도 제한되어서는 안 되고, 다만 특허청구범위 및 이의 등가물에 의해 정의되어야 한다.In addition, while various embodiments of the invention have been described herein, it should be understood that they have been given by way of example only, and not limitation. It will be apparent to those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention. Accordingly, the breadth and scope of the present invention should not be limited by any of the described exemplary embodiments, but should be defined by the appended claims and their equivalents.

본 명세서에 언급된 모든 간행물, 특허, 및 특허 출원은 본 발명이 속하는 기술 분야의 숙련가의 숙련도를 나타내며, 각 개별 간행물, 특허 또는 특허 출원이 참조로 포함되도록 구체적으로 개별적으로 나타내어지는 경우와 동일한 정도로 참조로 본 명세서에 포함된다.All publications, patents, and patent applications mentioned in this specification are indicative of the level of skill of those skilled in the art to which this invention pertains and are each given by way of illustration and not by way of limitation to the same extent as if each individual publication, patent or patent application were specifically and individually indicated to be incorporated by reference. Which is incorporated herein by reference.

실시예Example

하기 비제한적인 실시예는 본 발명을 추가로 예시할 것이다. 하기 실시예는 옥수수를 공급원료로서 포함하지만, 본 발명으로부터 벗어남 없이, 사탕수수와 같은 다른 바이오매스 공급원이 공급원료를 위해 사용될 수 있는 것으로 이해해야 한다. 더욱이, 하기 실시예는 에탄올 및 부탄올을 포함하지만, 본 발명으로부터 벗어남 없이, 다른 알코올 또는 발효 생성물을 생성할 수 있다.The following non-limiting examples further illustrate the present invention. It should be understood that the following examples include corn as feedstock, but other biomass feedstocks such as sugar cane can be used for the feedstock without departing from the invention. Furthermore, the following examples include ethanol and butanol, but can be used to produce other alcohols or fermentation products without departing from the present invention.

약어의 의미는 다음과 같다: "atm"은 기압을 의미하고, "ccm"은 분당 세제곱센티미터를 의미하고, "g/L"은 리터당 그램을 의미하고, "g"는 그램을 의미하고, "gpl"은 리터당 그램을 의미하고, "gpm"은 분당 갤런을 의미하고, "h" 또는 "hr"은 시간을 의미하고, "HPLC"는 고성능 액체 크로마토그래피를 의미하고, "㎏"는 킬로그램을 의미하고, "L"은 리터를 의미하고, "min"은 분을 의미하고, "mL"은 밀리리터를 의미하고, "ppm"은 백만분율(part per million)을 의미하고, "psig"는 제곱 인치당 파운드, 게이지를 의미하고, "wt%"는 중량 퍼센트를 의미한다.The abbreviations have the following meanings: "atm" means air pressure, "ccm" means cubic centimeters per minute, "g / L" means grams per liter, "g" means grams, "gpl" means grams per liter, "gpm" means gallons per minute, "h" or "hr" means time, "HPLC" means high performance liquid chromatography, "kg" means kilogram , "L" means liter, "min" means minute, "mL" means milliliter, "ppm" means part per million, "psig" means square Means pounds per inch, gage, and "wt%" means weight percent.

실시예 1Example 1

발효에 의해 생성되는 부탄올의 생성 및 회수를 위한 공정Process for the production and recovery of butanol produced by fermentation

아스펜(Aspen) 모델링과 같은 컴퓨터 모델링을 사용하여 본 명세서에 기재된 공정을 입증할 수 있다(예를 들어, 미국 특허 제7,666,282호 참조). 예를 들어, 상용 모델링 소프트웨어인 아스펜 플러스(Aspen Plus)(등록상표) (미국 매사추세츠주 벌링턴 소재의 아스펜 테크놀로지, 인크.(Aspen Technology, Inc.))를, 아메리칸 인스티튜트 오브 케미칼 엔지니어스, 인크.(American Institute of Chemical Engineers, Inc.; 미국 뉴욕주 뉴욕 소재)로부터 입수가능한 DIPPR과 같은 물리적 특성 데이터베이스와 함께 사용하여, 통합된 부탄올 발효, 정제, 및 물 관리 공정에 대한 아스펜 모델을 개발할 수 있다. 이러한 공정 모델링은 다수의 기본적인 공학 계산, 예를 들어, 질량 및 에너지 균형, 증기/액체 평형, 및 반응 속도 계산을 수행할 수 있다. 아스펜 모델을 생성하기 위하여, 정보 입력은, 예를 들어, 실험 데이터, 공급원료의 물 함량 및 조성, 매시 증자(cooking) 및 플래싱(flashing)을 위한 온도, 당화 조건 (예를 들어, 효소 공급, 전분 변환, 온도, 압력), 발효 조건 (예를 들어, 미생물 공급, 글루코스 변환, 온도, 압력), 탈기 조건, 용매 컬럼, 예비-플래시 컬럼, 응축기, 증발기, 원심분리기 등을 포함할 수 있다.Computer modeling, such as Aspen modeling, can be used to demonstrate the process described herein (see, for example, U.S. Patent No. 7,666,282). For example, commercially available modeling software, such as Aspen Plus TM (Aspen Technology, Inc., Burlington, Mass.) Is available from the American Institute of Chemical Engineers, Inc. Such as DIPPR, available from American Institute of Chemical Engineers, Inc., New York, NY, to develop an Aspen model for integrated butanol fermentation, purification, and water management processes. This process modeling can perform a number of basic engineering calculations, such as mass and energy balances, vapor / liquid equilibrium, and reaction rate calculations. In order to generate the Aspen model, the information input may be, for example, the experimental data, the water content and composition of the feedstock, the temperature for mash cooking and flashing, the saccharification conditions (e.g., Starch conversion, temperature, pressure), fermentation conditions (e.g., microbial supply, glucose conversion, temperature, pressure), deaeration conditions, solvent columns, pre-flash columns, condensers, evaporators, centrifuges and the like.

53400 ㎏/h의 옥수수를 매시로 만들고 발효시켜 아이소부탄올을 생성하고, 발효 동안 대부분의 아이소부탄올을 추출하고 증류시키는, 엄격한 물질 및 에너지 균형을 갖는 아스펜 모델을 개발하였다. 이러한 모델은 순차적인 배치 발효들의 근사(approximation)를 연속 공정으로서 포함하였다. 이러한 발효, 추출, 및 증류 공정의 예가 도 14에 나타나있다.We have developed an Aspen model with rigorous materials and energy balance that produces 53400 kg / h maize and fermentes to produce iso-butanol, and most of the isobutanol is extracted and distilled during fermentation. This model included an approximation of sequential batch fermentations as a continuous process. Examples of such fermentation, extraction, and distillation processes are shown in FIG.

1.5 wt%의 부유 고형물을 포함하도록 정화된, 액화된 옥수수 매시(601)를 85℃에서 170.7 톤/h으로 열교환기 및 수냉각기를 통해 펌핑하여 32℃에서 발효부(600)로 공급하였다. 증기 스트림(602)을 대기압에서 17.2 톤/h로 발효부(600)로부터 스크러버로 배기하였는데, 평균 연속 몰 조성은 95.8% 이산화탄소, 3.4% 물, 및 0.8% 아이소부탄올이었다. 12.6 gpl의 아이소부탄올을 포함하는 평균 비어 스트림(603)을 발효부(600)로부터 연속적으로 배출하고, 아이소부탄올 회수를 위해 증류시키기 전에, 매시(601)에 의해 열교환기를 통해 예열하였다.Liquefied corn mash 601, purified to contain 1.5 wt% suspended solids, was pumped through the heat exchanger and water cooler at 85 ° C and 170.7 ton / h, and fed to fermentation unit 600 at 32 ° C. The vapor stream 602 was vented from the fermentor 600 to the scrubber at 17.2 ton / h at atmospheric pressure, with an average continuous molar composition of 95.8% carbon dioxide, 3.4% water, and 0.8% isobutanol. An average via stream 603 containing 12.6 gpl of isobutanol was continuously withdrawn from fermentation section 600 and preheated by mass 601 through a heat exchanger before distillation for isobutanol recovery.

3875 톤/h의 종합 평균 유동을 갖는 스트림(604)을 11.1 gpl의 평균 아이소부탄올 농도 및 32℃의 평균 온도에서 발효부(600)로부터 제거하고, 아이소부탄올의 부분적 제거를 위해 추출기(610)를 통해 순환시킨다. 7.9 gpl의 아이소부탄올을 함유하는, 배출되는 수성 브로쓰(605)를, 발효부(600)로 다시 들어가기 전에, 냉각기 타워수(cooler tower water; CTW)를 사용하여 열교환기에 의해 30℃로 냉각한다. 다이아이소프로필벤젠을 포함하는 용매가 추출기(610)로 들어가고 30.1 gpl의 아이소부탄올을 포함하는 스트림(606)이 빠져나온다. 추출기(610)는 발효 브로쓰와 용매를 접촉시키기 위한 5개의 이론적 액체-액체 평형 스테이지(equilibrium stage)를 효과적으로 제공한다. 스트림(606)은 340 톤/h로 열교환기를 통과하여, 증류 컬럼(620)의 12개의 이론적 스테이지의 중간으로 들어간다. 리보일러가 150 psig의 스팀을 사용하여 0.6 atm 및 183℃에서 작동하여, 다이아이소프로필벤젠을 포함하며 본질적으로 아이소부탄올은 포함하지 않는 용매 스트림(607)을 생성하는데, 이는 열교환기를 통해 용매 스트림(606)과 열을 교환하며, 추출기(610)로 다시 들어가기 전에 냉각 수 CTW에 의해 추가로 냉각된다. 증류 컬럼(620)의 오버헤드 증기를 CTW로 냉각하고 응축시켜(630), 23.1 톤/h의 환류, 0.2 톤/h의 잔류 증기 오프-가스(608), 및 13.2 톤/h의 생성물 증류물(609)을 생성하는데, 생성물 증류물은 99.2% 아이소부탄올, 0.6% 물, 및 0.2% 다이아이소프로필벤젠을 포함한다.Stream 604 having a total average flow of 3875 ton / h was removed from the fermentation section 600 at an average isobutanol concentration of 11.1 gpl and an average temperature of 32 DEG C and an extractor 610 was used for partial removal of isobutanol Lt; / RTI > The exiting aqueous broth 605 containing 7.9 gpl of isobutanol is cooled to 30 占 폚 by a heat exchanger using a cooler tower water (CTW) before entering the fermentation section 600 again . The solvent containing diisopropylbenzene enters extractor 610 and exits stream 606 containing 30.1 gpl of isobutanol. The extractor 610 effectively provides five theoretical liquid-liquid equilibrium stages for contacting the solvent with the fermentation broth. Stream 606 passes through a heat exchanger at 340 tonnes / h and enters the middle of the 12 theoretical stages of distillation column 620. The reboiler operates at 0.6 atm and 183 DEG C using 150 psig of steam to produce a solvent stream 607 that contains diisopropylbenzene and is essentially free of isobutanol which is passed through a heat exchanger 606 and is further cooled by the cooling water CTW before entering the extractor 610 again. The overhead vapor of the distillation column 620 was cooled and condensed 630 with CTW to produce 23.1 ton / h reflux, 0.2 ton / h residual steam off-gas 608, and 13.2 ton / h product distillate (609), the product distillate comprising 99.2% isobutanol, 0.6% water, and 0.2% diisopropylbenzene.

실시예 2Example 2

추출제 컬럼을 사용한 에탄올 회수 공정Ethanol recovery process using extractor column

1" 직경 카르(등록상표) 추출 컬럼 (미국 뉴저지주 파라머스 소재의 코크 모듈러 프로세스 시스템즈(Koch Modular Process Systems))을 사용하여, 에탄올 발효 동안 생성된 발효 브로쓰를 처리하였다. 컬럼은, 컬럼의 길이를 따라 아래로 이어지며 중심축에 부착된 일련의 판을 수용한다. 천공판 (1/4" 직경 천공)을 왕복 운동으로 상하로 이동시킬 수 있는 구동장치(drive)에 축을 부착한다. 운동의 빈도는 시험 동안 변수였지만, 오실레이션의 스트로크 길이 (0.75") 및 트레이의 간격 (2") 둘 모두는 불변이었다. 사용된 컬럼은 판 스택 높이가 3000 mm였다.The fermented broth produced during the ethanol fermentation was processed using a 1 "diameter Carr (TM) extraction column (Koch Modular Process Systems, Paramus, NJ). The shaft is attached to a drive that can move the perforated plate (1/4 "diameter perforations) up and down in reciprocating motion. The frequency of movement was variable during the test, but both stroke length (0.75 ") and tray spacing (2") of the oscillation were unchanged. The column used was 3000 mm plate stack height.

컬럼의 상부에는 발효 브로쓰로 이루어진 수성 공급물을 제공하는 한편, 컬럼의 하부에는 추출제로서 옥수수유 지방산(COFA)의 공급물을 제공하였다. 두 공급물을 컬럼을 통해 서로에 대해 역류로 유동시켰고, 컬럼의 대향하는 단부에서 생성물로서 수집하였다.The top of the column provided an aqueous feed of fermentation broth while the bottom of the column provided a feed of corn oil fatty acid (COFA) as an extractant. Both feeds were flowed countercurrently to each other through the column and collected as product at the opposite end of the column.

일부 경우에 고형물의 일부가 원심분리를 통해 제거되어 있는, 액화되고 당화된 옥수수 매시로부터 에탄올의 생성을 위한 발효 프로토콜을 사용하여 발효 브로쓰를 얻었다. 일부 경우에, 수일에 걸쳐 추출 시험을 행하여서, 시험의 일부는 CO2 오프-가스 발생이 그의 최대치 또는 그 근처인 동안 행한 반면, 다른 부분은 오프-가스 발생이 사실상 중단된 때에 행하였다. 이러한 작업에 사용된 COFA는 에머리 올레오케미칼스(Emery Oleochemicals; 미국 오하이오주 신시내티 소재)로부터의 증류된 등급이었다.A fermentation broth was obtained using a fermentation protocol for the production of ethanol from a liquefied and saccharified corn meal, in which in some cases a portion of the solids was removed by centrifugation. In some cases, extraction tests were conducted over several days, some of the tests being performed while the CO 2 off-gas generation was at or near its maximum, while the other was performed when the off-gas evolution was virtually interrupted. The COFA used in this work was a distilled grade from Emery Oleochemicals (Cincinnati, Ohio, USA).

일부 실험은 컬럼에서 연속상으로서 COFA를 사용하여 실행한 한편, 다른 실험은 연속 수성상을 사용하여 실행하였다. 적소에 내부구조물을 사용하거나 사용하지 않고 또한 실험을 수행하였다. 두 유형의 내부구조물을 시험하였다: 스테인리스강 및 폴리테트라플루오로에틸렌 (PTFE). 컬럼이 범람 없이 작동할 수 있는 유동 체제를 결정하기 위하여 다양한 유량을 시험하였다.Some experiments were carried out using COFA as the continuous phase in the column while other experiments were carried out using the continuous aqueous phase. Experiments were also carried out with or without internal structures in place. Two types of internal structures were tested: stainless steel and polytetrafluoroethylene (PTFE). Various flow rates were tested to determine the flow regime that the column could operate without flooding.

발효부로부터의From the fermentation section 동적  dynamic 공급물의Supply 영향 effect

시험 과정 동안, 일부 경우에, 발효가 진행됨에 따라 컬럼 성능이 변하는 것으로 결정되었다. 발효 초기에는, 공급물을 포함하는 발효 브로쓰에 당이 많고, 중간 시점에는 (유체 유동에 영향을 줄 수 있는) 상당량의 CO2가 발효 브로쓰로부터 발생하는 반면, 나중의 시점에는 발효 브로쓰 중 에탄올의 농도가 높다. 공급물의 이러한 일시적인 변화는 추출 컬럼의 용량의 변화에 반영되었다.During the testing process, in some cases it was determined that the column performance changed as the fermentation progressed. At the beginning of fermentation, there is a large amount of sugar in the fermentation broth containing the feed and a significant amount of CO 2 from the fermentation broth (which can affect fluid flow) at the midpoint, while at later times the fermentation broth The concentration of ethanol is high. This temporary change in the feed was reflected in the change in the capacity of the extraction column.

PTFE 판 및 연속 COFA 상 (교반 없음)을 사용하는 조건에서, 발효가 거의 피크 가스 발생 기간일 때 수집된 발효 브로쓰 ("중간 브로쓰")를 사용하는 경우와 발효가 종료될 때쯤 수집된 발효 브로쓰 ("종료 브로쓰")를 사용하는 경우에 성능의 차이가 나타났다. 종료 브로쓰를 사용하면, 컬럼의 범람 없이 14 gpm/ft2의 액체 처리율 (샘플 3E)이 달성되었다. 범람 전에 달성될 수 있는 중간 브로쓰의 최대 처리량은 9 gpm/ft2 미만이었으며(샘플 4D), 수성 소적의 크기 및 외관의 현저한 차이가 있었다. 중간 브로쓰와 비교하여 종료 브로쓰에서 수성상의 소적 크기가 더 컸다 (소구체를 형성함).In the case of using fermented broth ("intermediate broth"), which is collected when the fermentation is almost in the period of peak gas production, under the condition of using PTFE plate and continuous COFA phase (no agitation) and fermentation collected at the end of fermentation There was a performance difference when using broth ("end broth"). Using a termination broth, a liquid throughput of 14 gpm / ft 2 (sample 3E) was achieved without overflow of the column. The maximum throughput of intermediate broths that could be achieved before flooding was less than 9 gpm / ft 2 (Sample 4D) and there was a significant difference in the size and appearance of the aqueous droplets. The droplet size of the aqueous phase in the endblock was larger (forming small spheres) compared to the intermediate broth.

연속상Continuous phase

최대 컬럼 처리량은 또한 연속상의 속성에 의해 영향을 받았다. 발효 종료 조건의 경우, 연속 수성상 및 스테인리스강(S. 강) 내부구조물을 사용해 실행하여, 거의 14 gpm/ft2의 총 액체 용량이 달성되었다 (샘플 2B). 연속 유기상 및 PTFE 내부구조물의 경우, 처리율은 9 gpm/ft2 미만이었다(샘플 4D). 결과가 표 2에 나타나 있다. 약어 AQ는 수성상을 지칭하고 약어 ORG는 유기상을 지칭한다. 표 2를 참조하면, 상은 연속상이었고, 샘플은 실행 조건을 지칭하고, 내부구조물은 내부구조물의 재료를 지칭하고, 공칭 AQ는 공칭 수성 유량을 지칭하고, 공칭 ORG는 공칭 유기 유량을 지칭하고, 총 유동 (ccm)은 수성 및 유기 공급물의 총 유동을 지칭하고, 총 유동 (gpm/ft2)은 단위 단면적당 총 유동을 지칭한다.The maximum column throughput was also affected by the properties of the continuous phase. For fermentation termination conditions, a continuous liquid phase and a stainless steel (S. steel) internal structure were used to achieve a total liquid capacity of approximately 14 gpm / ft 2 (Sample 2B). For continuous organic phase and PTFE internals, the throughput was less than 9 gpm / ft 2 (Sample 4D). The results are shown in Table 2. The abbreviation AQ refers to the aqueous phase and the abbreviation ORG refers to the organic phase. Referring to Table 2, the phase was a continuous phase, the sample referred to the run condition, the internal structure referred to the material of the internal structure, the nominal AQ the nominal aqueous flow rate, the nominal ORG the nominal organic flow rate, Total flow (ccm) refers to the total flow of aqueous and organic feeds, and total flow (gpm / ft 2 ) refers to total flow per unit cross-section.

[표 2][Table 2]

Figure pct00002
Figure pct00002

거의 발효의 종료 시의 발효 브로쓰로 구성된 공급물을 사용하여 내부구조물 없이 컬럼을 작동시킨 경우, 연속상의 선택이 컬럼 용량에 영향을 주었다. 연속 수성상의 경우, 대략 25 gpm/ft2에서 작동하는 것(샘플 2G 및 샘플 2H)이 가능하였다. 그러나, 연속 COFA 상을 사용하는 경우, 18 gpm/ft2에서 범람이 일어나는 문제가 있었다 (샘플 2I). 결과가 표 3에 나타나 있다.The selection of the continuous phase affected the column capacity when the column was operated without internal structures using a feed consisting essentially of a fermentation broth at the end of fermentation. For continuous aqueous phases, it was possible to operate at approximately 25 gpm / ft 2 (Sample 2G and Sample 2H). However, when using a continuous COFA phase, there was a problem of overflow at 18 gpm / ft 2 (Sample 2I). The results are shown in Table 3.

[표 3][Table 3]

Figure pct00003
Figure pct00003

실시예 3Example 3

추출 컬럼 용량에 대한 발효 조건의 영향Effect of fermentation conditions on the extraction column capacity

발효 브로쓰의 속성은 정적이지 않고, 발효 공정이 진행함에 따라 변화한다. 발효에서, 탄수화물이 미생물에 의해 대사됨에 따라 탄수화물의 농도가 감소한다. 발효 브로쓰의 이러한 조성 변화는 발효 브로쓰의 점도 및 표면장력과 같은 물리적 파라미터를 변화시킬 것이며, 이는 추출 공정에 영향을 준다. 농도의 변화에 더하여, 중간 시점에서, 상당량의 CO2가 발생하며; 이러한 CO2는 컬럼을 통과하는 수성 및 유기 액체의 유동에 영향을 줄 것이다.The properties of the fermentation broth are not static, but change as the fermentation process progresses. In fermentation, the carbohydrate concentration decreases as the carbohydrate is metabolized by the microorganism. This change in composition of the fermentation broth will change physical parameters such as viscosity and surface tension of the fermentation broth, which affects the extraction process. In addition to the change in concentration, at the midpoint, a significant amount of CO 2 is generated; Such CO 2 will affect the flow of aqueous and organic liquids through the column.

PTFE 내부구조물을 갖춘, 1" 직경 유리 카르(등록상표) 추출 컬럼 (미국 뉴저지주 파라머스 소재의 코크 모듈러 프로세스 시스템즈)을 사용하여, 에탄올 발효로부터의 발효 브로쓰를 처리하였다. 처리는 발효 과정 동안 몇몇 시점에 행하였다. 유기 추출제 (COFA)가 컬럼 내의 연속상이었고, 발효 브로쓰는 소적으로서 컬럼을 통과하였다. 발효 브로쓰를 컬럼에 도입하기 전에, 발효 브로쓰를 라인 내의 티(tee)에 통과시켰으며, 여기서 공급물에 존재하는 CO2 버블을 통기구(vent)를 통해 제거하였다.A fermentation broth from ethanol fermentation was processed using a 1 "diameter YuriCar (TM) extraction column (Coke Modular Process Systems, Paramus, NJ) equipped with PTFE internals. The organic extractant (COFA) was a continuous phase in the column and passed through the column as a droplet from the fermentation broth. Before introducing the fermentation broth into the column, the fermentation broth was added to the tee in the line Where the CO 2 bubbles present in the feed were removed via a vent.

정적 내부구조물 (교반 없음)을 사용할 때, 발효가 종료될 때쯤 취한 브로쓰 ("종료 브로쓰")와 비교하여, 피크 가스 발생 기간 동안 취한 발효 브로쓰 ("중간 브로쓰")를 사용한 경우에 성능의 차이가 나타났다. 중간 브로쓰를 사용하면, 14 gpm/ft2의 액체 처리율이 달성되었다. 종료 브로쓰의 경우 (컬럼 범람 전) 최대 처리량이 9 gpm/ft2 미만이었다. 수성 소적의 크기 및 외관에서 현저한 차이가 있었다. 수성상의 소적 크기는 중간 브로쓰와 비교하여 종료 브로쓰에 대해 뚜렷하게 더 컸다.When using a static internal structure (no agitation) and using a fermentation broth ("intermediate broth") taken during the peak gas generation period compared to broth ("end broth") taken at the end of fermentation The difference in performance was shown. Using a medium broth, a liquid throughput of 14 gpm / ft < 2 > was achieved. In the case of a termination broth (before column flooding), the maximum throughput was less than 9 gpm / ft 2 . There was a significant difference in the size and appearance of aqueous droplets. The droplet size of the aqueous phase was significantly greater for the endblocks compared to the midbrows.

실시예 4Example 4

추출 컬럼 효율에 대한 아이소부탄올 농도의 영향Effect of isobutanol concentration on extraction column efficiency

전형적인 발효 공정 동안, 생성물 수준이 시간에 따라 변화한다. 이러한 동적 농도 변화는 추출 공정의 물질 이동에 영향을 줄 수 있다.During a typical fermentation process, product levels change over time. This dynamic concentration change can affect the mass transfer of the extraction process.

아이소부탄올 농도의 영향을 입증하기 위하여, 스테인리스강 내부구조물을 갖춘, 1" 직경 유리 카르(등록상표) 추출 컬럼 (미국 뉴저지주 파라머스 소재의 코크 모듈러 프로세스 시스템즈)을 사용하여, 대략 3 g/L의 아이소부탄올을 함유하는, 발효로부터의 발효 브로쓰를 처리하였다. 발효 브로쓰는 추출기에서 연속상을 형성한 반면, 유기 추출제 (COFA)는 소적으로서 컬럼을 통과하였다. CO2 생성은 본질적으로 중지되었지만, 발효 브로쓰를 라인 내의 티에 통과시켰으며, 여기서 공급물에 존재하는 임의의 CO2 버블을 공급물이 추출 컬럼에 들어가기 전에 제거하였다.To demonstrate the effect of iso-butanol concentration, a 1 "diameter Yurscar (TM) extraction column (Coke Modular Process Systems, Paramus, NJ) with stainless steel internal structure was used to provide approximately 3 g / L (COFA) passed through the column as a droplet, while CO 2 production was essentially stopped by the addition of isobutanol. , But the fermentation broth was passed through the tee in the line where any CO 2 bubbles present in the feed were removed before the feed enters the extraction column.

공급물 및 배출된 스트림의 샘플을, 액체 크로마토그래피 (LC) 또는 기체 크로마토그래피 (GC)에 의해 아이소부탄올에 대해 분석하였다. 결과가 표 4에 나타나 있다. 물질 균형을 행하고, 크렘서(Kremser) 식을 사용하여 평형 이동 스테이지의 높이(height of an equilibrium transfer stage; HETS)를 계산하였다. 있는 그대로(as-is)의 발효 브로쓰에 대한 2개의 데이터 포인트에 대해, HETS 값은 10 및 13 피트였다.Samples of the feed and the discharged stream were analyzed for isobutanol by liquid chromatography (LC) or gas chromatography (GC). The results are shown in Table 4. Material balance was performed and the height of an equilibrium transfer stage (HETS) was calculated using the Kremser equation. For two data points for the as-is fermentation broth, the HETS values were 10 and 13 feet.

이어서, 아이소부탄올을 발효 브로쓰에 첨가하여 농도가 20 g/L이 되게 하였다. 추출 시험을 행하였고, 데이터로부터, HETS가 18 피트인 것으로 나타났다. 이러한 값은 섞인 것이 없는 브로쓰에서 얻어진 값보다 대략 50% 더 높았으며, 대략 20 g/L의 아이소부탄올을 섞은 묽은 증류폐액을 사용하여 얻은 데이터와 일치한다 (도 15 참조).Subsequently, isobutanol was added to the fermentation broth to have a concentration of 20 g / L. Extraction tests were conducted and from the data, HETS was found to be 18 feet. These values were approximately 50% higher than those obtained from the unblended broth and are consistent with data obtained using a dilute distillery wastewater containing approximately 20 g / L of isobutanol (see FIG. 15).

[표 4][Table 4]

Figure pct00004
Figure pct00004

실시예 5Example 5

외부 추출 컬럼을 사용한 ISPRISPR using external extraction column

아이소부탄올 발효 (10리터 규모)로부터의 발효 브로쓰를 5/8" 직경 벤치 톱(bench top) 카르(등록상표) 컬럼으로 순환시켰다. 추출 용매 (COFA)를 추출제 저장조로부터 카르(등록상표) 컬럼으로 재순환시켰다. 일정 부피의 COFA를 발효기에 첨가하여 발효 브로쓰로부터 아이소부탄올을 연속적으로 추출하는 제어 발효를 실행하였다.The fermentation broth from the isobutanol fermentation (10 liters scale) was circulated to a 5/8 "diameter bench top Kar (R) column. The extraction solvent (COFA) A controlled volume of COFA was added to the fermenter to effect continuous controlled extraction of isobutanol from the fermentation broth.

발효 동안 카르(등록상표) 컬럼을 2회 실행시켰다. 첫 번째 실행은 발효로부터 4 및 7시간의 시점이었고 두 번째 실행은 발효로부터 22 및 33시간의 시점이었다. 둘 모두의 발효 동안 pO2 및 pH와 같은 파라미터를 감시하였다. 측정된 pO2는, 카르(등록상표) 컬럼을 사용하지 않은 대조군 실행과 비교하여, 카르(등록상표) 컬럼을 사용한 실행에 대해 더 낮았다. 절대 pH 값은 카르(등록상표) 컬럼 및 대조군이 유사하였지만, pH 프로파일은 두 실행에 대해 상이하였다. 카르(등록상표) 컬럼 실행에서의 pH는 조기에 피크를 나타내고, 평탄화되고, 이어서 다시 피크를 나타낸 반면, 대조군은 단일의 점진적인 피크를 나타내었다.During the fermentation, the Car (TM) column was run twice. The first run was at 4 and 7 hours from fermentation and the second run was at 22 and 33 hours from fermentation. Parameters such as pO 2 and pH were monitored during fermentation of both. The measured pO 2 was lower for performance with the Kar (R) column compared to the control run without the Kar (R) column. Absolute pH values were similar for the Karl (TM) column and control, but the pH profile was different for both runs. The pH at the run of the Kar (TM) column showed an early peak, flattened, followed by a peak again, while the control showed a single, gradual peak.

카르(등록상표) 컬럼으로부터, 추출 용매의 2개의 분취물 (각각 1.8 리터)을 분석하였다. 각각의 분취물로부터 샘플을 취하고 아이소부탄올 함량에 대해 분석하였다. 카르(등록상표) 컬럼을 사용한 발효에서 생성된 아이소부탄올의 양을 대조군 발효에서 생성된 것과 비교하였다. 카르(등록상표) 컬럼을 사용한 발효는 총 82.4 그램의 아이소부탄올을 생성하였는데, 3.6 리터의 유기상 중에 대략 34 그램 및 수성상 중에 48 그램이 있었다. 대조군 (30 부피%의 유기상이 발효기에 첨가됨)은 90 g/L을 생성하였는데, 3 리터의 유기상 중에 60 그램 및 수성상 중에 30 그램이 있었다. 카르(등록상표) 컬럼 실행에서의 추출의 0이 아닌 시작(non-zero start)과 비교하여, 0시간으로부터의 대조군 발효기에서의 COFA의 존재로 인해, 수성상 중 아이소부탄올 농도는 대조군에서 더 낮았다. 22시간에서의 카르(등록상표) 컬럼의 경우, 아이소부탄올이 생성되는 것보다 더 신속하게 발효기로부터 아이소부탄올이 추출되었다. 대조군 및 카르(등록상표) 컬럼에 대해 글루코스 프로파일을 생성하였다. 프로파일은 유사하였는데, 이는 세포 성장 및 대사가 유사함을 나타낸다. 결과가 도 16a 및 도 16b에 나타나 있다. 괄호는 카르(등록상표) 컬럼이 작동 중일 때의 시점 (4 내지 7시간 및 22 내지 33시간)을 나타낸다.Two aliquots of the extraction solvent (1.8 liters each) were analyzed from the Carr (TM) column. Samples were taken from each aliquot and analyzed for isobutanol content. The amount of isobutanol produced in the fermentation using the Carr.RTM. Column was compared to that produced in the control fermentation. Fermentation using a Carr.RTM. Column produced a total of 82.4 grams of isobutanol, approximately 34 grams in the 3.6 liter organic phase and 48 grams in the aqueous phase. The control (30 vol% organic phase added to the fermenter) produced 90 g / L, 60 grams of 3 liters of organic phase and 30 grams of aqueous phase. The isobutanol concentration in the aqueous phase was lower in the control group due to the presence of COFA in the control fermentor from time 0, as compared to the non-zero start of extraction in the Kar (TM) column run . In the case of the KARR (TM) column at 22 hours, isobutanol was extracted from the fermenter faster than isobutanol was produced. A glucose profile was generated for the control and KARR (TM) columns. The profiles were similar, indicating that cell growth and metabolism are similar. The results are shown in Figs. 16A and 16B. The parentheses represent the time point (4 to 7 hours and 22 to 33 hours) when the Carr (registered trademark) column is in operation.

실시예 6Example 6

혼합-침강기를 사용한 ISPRISPR using a mixer-settler

외부 혼합-침강기 시스템을 사용하여, 아이소부탄올을 생성하는 미생물 (즉, 아이소부탄올로젠(isobutanologen))을 함유하는 활성 발효 브로쓰로부터 아이소부탄올을 연속적으로 제거하였다. 이 연구는 아이소부탄올-생성 미생물 (즉, 아이소부탄올로젠)로 접종된 대략 100 리터의 발효 브로쓰를 사용하였다. 발효기의 내용물을 발효기로부터 혼합-침강기 추출 시스템을 통해 재순환시켰다. 아이소부탄올을 함유하지 않는 증류된 COFA를 포함하는 추출제를, 1회 통과(once-through) 기준으로 사용하였다.Isobutanol was continuously removed from the active fermentation broth containing microorganisms producing isobutanol (i. E., Isobutanolen) using an external mixing-settler system. The study used approximately 100 liters of fermentation broth inoculated with isobutanol-producing microorganisms (i.e., isobutanologen). The contents of the fermenter were recycled from the fermenter through a mixer-settler extraction system. An extractant containing distilled COFA free of isobutanol was used on a one-pass basis.

2개의 정적 혼합기를 시험하였다. 시험의 대부분에 케닉스(Kenics)(등록상표) 스테인리스강 정적 혼합기 (36개의 혼합 요소를 갖는 ½" 인치 직경)를 사용하였다. 실행 12시간 내지 24시간 사이에는, 플라스틱 혼합기 (스타믹스코(StaMixCo) HT-11-12.6-24, 미국 뉴욕주 브루클린 소재의 스타믹스코 엘엘씨 (StaMixCo LLC))를 사용하였다. 발효 브로쓰 및 COFA를 티의 양측에 공급하였고, 그로부터 혼합물이 정적 혼합기를 통해 유동하였다. 정적 혼합기를 빠져나온 재료를 침강기로 공급하였다. 침강기는 5 리터의 유리 탱크로 제조된 것이었다. 딥 튜브(dip tube)를, 외연부 근처에서, 침강기의 상부에 통과시키고, 침강기의 대략 중간 아래까지 연장시켰다. 침강기의 상부에서 포트를 통해 유기상을 빼내면서, 침강기의 하부로부터 발효 브로쓰를 제거하였다. 두 액체상의 이탈에 도움을 주어 계면에서의 고형물의 축적을 최소화하기 위해서, 수성-유기 계면에 온화한 혼합을 제공하는 교반기를 침강기에 설치하였다. 실행 동안 수집된 데이터가 표 5에 제공되어 있으며, 도 17은 발효 과정 동안 달성된 아이소부탄올 제거 속도를 나타낸다. 데이터로부터 알 수 있는 바와 같이, 수성 브로쓰 중 아이소부탄올 수준은 상대적으로 일정하게 유지되며, 이는 아이소부탄올이 생성됨에 따라 대략 동일한 속도로 아이소부탄올이 발효 브로쓰로부터 제거되었음을 나타내다. 표 5를 참조하면, 경과 시간은 발효 시작으로부터의 시간이고, AQ 유동은 수성 공급물 유동이고, ORG 유동은 유기 공급물 유동이고, AQ 공급물 중 iB는 수성 공급물 중 아이소부탄올이고, ORG 생성물 중 iB는 풍부 유기 생성물 중 아이소부탄올이다.Two static mixers were tested. For the majority of the tests, a Kenics (R) stainless steel static mixer (½ "inch diameter with 36 mixing elements) was used. Between 12 and 24 hours of run, a plastic mixer (StaMixCo ) HT-11-12.6-24, StaMixCo LLC, Brooklyn, New York) was used as a control. [0080] Fermentation broth and COFA were fed to both sides of the tee, from which the mixture flowed through the static mixer The settler was made of a 5 liter glass tank. A dip tube was passed near the outer edge of the settler and passed through the settler The fermentation broth was removed from the bottom of the settler while withdrawing the organic phase through the port at the top of the settler. In order to minimize the build up of molds, a stirrer was installed in the settler to provide gentle mixing at the aqueous-organic interface. The data collected during the run are provided in Table 5, and Figure 17 shows the isobutanol removal rate achieved during fermentation As can be seen from the data, the level of isobutanol in the aqueous broth remains relatively constant, indicating that isobutanol has been removed from the fermentation broth at about the same rate as isobutanol is produced. 5, the elapsed time is the time since the beginning of the fermentation, the AQ flow is the aqueous feed stream, the ORG flow is the organic feed stream, iB in the AQ feed is isobutanol in the aqueous feed, iB is isobutanol in the abundant organic products.

[표 5][Table 5]

Figure pct00005
Figure pct00005

실시예 7Example 7

온라인, 엣라인, 및 실시간 측정Online, at-line, and real-time measurements

옥수수 공급원료로부터 제조된 매시 스트림을 3상 원심분리기로 안내하여 3개의 스트림: 매시, 옥수수유, 및 습윤 케이크를 생성하였다. 온라인 또는 엣라인 공정 측정은, 예를 들어, 전분/당의 회수 및 옥수수유의 품질을 개선하고, 습윤 케이크로부터 추출되는 전분/당의 양을 최대화하는 데 사용한다. 실시간 측정은, 예를 들어, 슬러리 탱크로의 백세트, 증자수(cookwater), 또는 물의 첨가를 제어하여 전분/당 농도 설정점을 유지하는 데 사용한다. 최소 첨가량의 물을 사용하고 3상 원심분리기에서의 유압 하중(hydraulic load)을 감소시켜, 습윤 케이크로부터 추출되는 전분/당의 양을 최대화한다.The mash stream prepared from corn feedstock was directed to a three phase centrifuge to produce three streams: hourly, corn oil, and wet cake. Online or off-line process measurements are used, for example, to improve the recovery of starch / sugar and corn oil quality and to maximize the amount of starch / sugar extracted from the wet cake. Real-time measurements are used to maintain starch / sugar concentration setpoints, for example, by controlling a back set, slurry tank, cookwater, or water addition. The minimum addition amount of water is used and the hydraulic load in the three phase centrifuge is reduced to maximize the amount of starch / sugar extracted from the wet cake.

고형물 존재 시의 측정을 가능하게 하는 다이아몬드 감쇠 전반사 (ATR) 탐침을 갖는 푸리에 변환 적외선 분광법 (FTIR)을 사용하여 옥수수 매시 샘플을 분석하였다. HPLC를 사용한 총 전분/당 측정이 완료된 표준 샘플의 스펙트럼을 수집하여 FTIR을 보정하였다. HPLC 데이터를 사용하여 FTIR에 대한 다변수 부분 최소 제곱법(PLS) 모델을 생성하였다. FTIR 스펙트럼을 수집하였고 총 전분 농도를 얻었다. 도 18은 FTIR을 보정하는 데에 사용된 전분 농도의 범위를 나타낸다.The corn hourly samples were analyzed using Fourier Transform Infrared Spectroscopy (FTIR) with a diamond attenuated total reflection (ATR) probe that allows measurements in the presence of solids. The spectra of the standard samples that had completed the total starch / sugar measurements using HPLC were collected and corrected for FTIR. A multivariate partial least squares (PLS) model for FTIR was generated using HPLC data. FTIR spectra were collected and total starch concentration was obtained. Figure 18 shows the range of the starch concentration used to correct the FTIR.

평균 시작 농도가 250 g/L인 옥수수 매시를 3상 원심분리기에 공급하였다. 그로부터 얻은 습윤 케이크를 재슬러리화하고, 2개의 샘플: 80 g/L 및 70 g/L에 대해 전분의 농도를 측정하였다. 이어서, 이러한 슬러리를, 3상 원심분리기를 사용하여 분리하고 습윤 케이크를 재슬러리화하였다. 이러한 슬러리의 전분 농도를 측정하였고 28.9 g/L이었다. 결과가 도 19에 나타나 있다. 이러한 측정치를 사용하여, 각각의 스테이지에서 습윤 케이크를 재슬러리화하기 위한 정확한 물의 양을 결정하였다. 물 첨가를 최적화하여 전분 농도를 최대화하고 분리 단계에 대한 유압 하중을 최소화하였다. 근적외선 분광법 (NIR)을 사용하여, 습윤 케이크의 수분 함량을 측정하였다.The corn meal with an average starting concentration of 250 g / L was fed to a three-phase centrifuge. The wet cake obtained therefrom was re-slurried and the concentration of starch was measured for two samples: 80 g / L and 70 g / L. This slurry was then separated using a three-phase centrifuge and the wet cake reslurried. The starch concentration of this slurry was measured and found to be 28.9 g / L. The results are shown in Fig. These measurements were used to determine the exact amount of water to reslurry the wet cake at each stage. The addition of water was optimized to maximize the starch concentration and to minimize the hydraulic load for the separation step. Near-infrared spectroscopy (NIR) was used to determine the moisture content of the wet cake.

옥수수유 품질을 실시간으로 감시하고 이 데이터를 사용하여 3상 원심분리기 변수 (예를 들어, 공급 속도, 중력 (g force), 입구 유량, 스크롤 속도)를 제어한다. 분리 동안 옥수수유 내에 보유된 물의 농도를 감시하여, 3상 원심분리기에 의해 생성된 옥수수유의 품질을 측정하였다. 옥수수유가 3상 원심분리기에서 빠져나올 때, 다이아몬드 ATR 탐침을 갖는 FTIR을 사용하여 옥수수유 스펙트럼을 수집하였다. 다이아몬드 ATR 탐침 접근법을 사용한, 물에 대한 검출 한계는 대략 500 ppm이었다. 더 낮은 검출 하한은 더 긴 유효 경로 길이를 갖는 유동 셀의 사용으로 달성한다.The corn oil quality is monitored in real time and this data is used to control the three-phase centrifuge parameters (eg, feed rate, g force, inlet flow rate, scroll speed). The concentration of water retained in the corn oil during the separation was monitored to determine the quality of the corn oil produced by the three-phase centrifuge. When the corn oil exited the 3-phase centrifuge, the corn oil spectrum was collected using FTIR with diamond ATR probe. Using the diamond ATR probe approach, the detection limit for water was approximately 500 ppm. A lower detection lower limit is achieved with the use of a flow cell having a longer effective path length.

도 20은 수백 ppm에 이르기까지 퍼센트 수준 농도를 초과하는 소정 범위의 물 농도를 함유하는 옥수수유의 일련의 적외선 스펙트럼을 포함한다. 3700 cm-1 내지 3050 cm-1 사이의 ―OH 스트레칭 영역을 사용하여 물 농도를 결정하였다. 데이터는, 공정 FTIR을 사용하여 오일 중 물 농도의 실시간 데이터를 얻을 수 있음을 나타내었다. 실시간 물 농도 데이터를 사용하여 3상 원심분리기의 공정 변수 (예를 들어, 공급 속도, 중력, 입구 유량, 스크롤 속도)를 제어할 수 있다. 3상 원심분리기의 작동을 제어하여, 물 설정점을 초과하지 않으면서 처리량을 최대화시킬 수 있거나 최고 품질의 옥수수유를 수득할 수 있다.Figure 20 includes a series of infrared spectra of corn oil containing a predetermined range of water concentrations in excess of a percent level concentration up to several hundred ppm. The water concentration was determined using an -OH stretching area between 3700 cm < -1 > and 3050 cm < -1 >. The data showed that real-time data of the water concentration in the oil can be obtained using the process FTIR. The real-time water concentration data can be used to control the process variables (e.g., feed rate, gravity, inlet flow rate, scroll speed) of the three-phase centrifuge. By controlling the operation of the three-phase centrifuge, the throughput can be maximized without exceeding the water set point, or the highest quality corn oil can be obtained.

실시간 추출제 감시를 사용하여 추출제의 열분해를 검출 및 감시하였다. 이러한 열분해 생성물의 실시간 검출을 사용하여, 추출제의 정화 또는 오염된 추출제의 공정으로부터의 제거를 유발한다.The pyrolysis of the extractant was detected and monitored using real - time extractive monitoring. Real-time detection of these pyrolysis products is used to purify the extractant or to remove the contaminated extractant from the process.

도 21은 아이소부탄올-풍부 COFA의 실시간 측정의 예이다. 유동 셀에서 다이아몬드 ATR 샘플링 탐침을 사용하는 메터-톨레도(Metter-Toledo) 리액트(React)IR™ 247을 사용하여 데이터를 수집하였다. 1-인치 직경 카르(등록상표) 컬럼의 출구로부터 COFA 스트림을 수집하고, 연동 펌프를 사용하여 FTIR로 펌핑하였다. 아이소부탄올이 섞인 COFA 표준물을 생성하고 다변수 PLS 모델을 생성하여 FTIR을 보정하였다.Figure 21 is an example of real time measurement of isobutanol-rich COFA. Data was collected using a Metter-Toledo React IRTM 247 using diamond ATR sampling probe in the flow cell. The COFA stream was collected from the outlet of a 1-inch diameter Carr (TM) column and pumped to FTIR using a peristaltic pump. The FTIR was corrected by generating a COFA standard with isobutanol and generating a multivariate PLS model.

실시예 8Example 8

소적 크기 분석Colloidal size analysis

본 실시예는, 발효 브로쓰 및 추출제 (COFA)를 함유하는 공정 스트림을 정적 혼합기로 안내한 후의, 액체 추출제 소적의 분석을 설명한다. 공정 스트림이 정적 혼합기를 빠져나간 지 대략 24 hr 후에, PVM(등록상표) 탐침 (미국 오하이오주 콜럼버스 소재의 메틀러-톨레도, 엘엘씨)을 공정 스트림에 삽입하였다. 발효 실행 동안 2분마다 PVM(등록상표) 탐침을 사용하여 이미지를 수집하였다. 이미지는 50 내지 80 μm 직경의 크기 범위의 COFA 소적 및 200 내지 400 μm 직경의 크기 범위의 CO2 버블 둘 모두의 존재를 나타내었다. COFA 소적 내로의 아이소부탄올의 양호한 물질 이동을 보장하기 위해 소적이 특정 평균 직경 미만으로 유지되는 것을 보장하도록, 정적 혼합기 후에 발효 브로쓰 및 COFA를 함유하는 공정 스트림에서의 소적 크기를 감시하는 것을 사용한다.This example illustrates the analysis of a liquid extraction droplet after the process stream containing fermentation broth and extractant (COFA) is directed to a static mixer. Approximately 24 hours after the process stream exited the static mixer, a PVM (TM) probe (METTLER TOLEDO, Columbus Ohio, USA) was inserted into the process stream. Images were collected using a PVM (TM) probe every two minutes during the fermentation run. The images showed the presence of both COFA droplets in the size range of 50-80 μm diameter and CO 2 bubbles in the size range of 200-400 μm diameter. Monitoring the droplet size in the process stream containing the fermentation broth and COFA after a static mixer is used to ensure that droplets are kept below a certain average diameter to ensure good mass transfer of isobutanol into the COFA droplet .

발효기로 스트림을 되돌려 보내기 전에, PVM(등록상표) 탐침을 또한 사용하여, 희박 브로쓰 스트림 내의 COFA 소적을 이미지화하였다. 이러한 스트림 내의 COFA 소적의 검출은 발효기로 복귀하는 COFA의 양을 나타낸다. 발효 동안 2분마다 PVM(등록상표) 탐침을 사용하여 스트림의 이미지를 수집하였다. 정적 혼합기를 빠져나온 스트림과 달리, 희박 브로쓰 스트림은 더 적의 수의 더 작은 소적을 가졌다 (10 내지 40 μm). 이러한 측정은, 공정 이미징을 사용하여, 발효기로 복귀하는 COFA의 양을 감시하는 것의 실현가능성을 입증한다.Prior to sending the stream back to the fermenter, a PVM (TM) probe was also used to image the COFA droplets in the lean broth stream. The detection of COFA droplets in this stream represents the amount of COFA returning to the fermenter. Images of the stream were collected using a PVM (TM) probe every two minutes during fermentation. Unlike the stream exiting the static mixer, the lean broth stream had a smaller number of smaller droplets (10 to 40 μm). This measurement demonstrates the feasibility of monitoring the amount of COFA returning to the fermenter using process imaging.

샘플 포인트 둘 모두로부터의 실시간 평균 소적 크기 데이터를 사용하여 발효 브로쓰 및 COFA의 상분리를 감시한다. (아이소부탄올 추출 후에) 희박 발효 브로쓰 재순환 스트림에서 검출되는 작은 COFA 소적의 농도 또는 수의 증가는, 발효 브로쓰 및 COFA의 상분리가 저하되었으며 너무 많은 COFA가 추출기에서 빠져나오고 있음을 나타낼 수 있다. 상분리의 질을 개선하고, 희박 브로쓰 스트림 중의 발효기로 복귀하는 COFA 소적의 수 또는 농도를 감소시키기 위해서, 정적 혼합기 후에 평균 COFA 소적 크기를 증가시킨다.Real-time average droplet size data from both sample points is used to monitor the phase separation of the fermentation broth and COFA. An increase in the concentration or number of small COFA droplets detected in the lean fermentation broth recycle stream (after isobutanol extraction) may indicate that the phase separation of the fermentation broth and COFA has been reduced and too much COFA is exiting the extractor. To improve the quality of the phase separation and reduce the number or concentration of COFA droplets returning to the fermenter in the lean broth stream, the average COFA droplet size is increased after the static mixer.

평균 COFA 소적 크기에 영향을 줄 수 있는 추가적인 공정 변수에는 발효 브로쓰 중 다당류의 농도, 발효 브로쓰 대 COFA의 비, 및 정적 혼합기를 통과하는 총 유량이 포함된다. 발효가 진행됨에 따라, 유량 및/또는 발효 브로쓰 대 COFA 비를 변화시켜, 일정한 평균 COFA 소적 크기를 유지할 수 있다.Additional process parameters that may affect the average COFA droplet size include the concentration of polysaccharide in the fermentation broth, the ratio of fermentation broth to COFA, and the total flow through the static mixer. As the fermentation progresses, the flow rate and / or the fermentation broth to COFA ratio can be varied to maintain a constant average COFA droplet size.

실시예 9Example 9

추출기 설계Extractor design

본 실시예는 대규모 추출기 유닛을 설계하는 방법을 기재한다. 파일럿-규모 추출로부터의 데이터를 사용하여 대규모 추출기 유닛의 크기를 추정한다. 파일럿-규모 추출로부터 추출기 유닛의 스트림의 상분리에 대한 유량, 교반 속도, 및 내부구조물의 존재 또는 부재의 영향을 결정한다. 발효 브로쓰 유동 대 추출제 유동의 비 및 전체 유동은 불변 온도에서 발효 과정에 걸쳐 변화되며, 상분리가 중단되는 조건이 관찰된다. 추출기 유닛 유동 표면적(제곱 피트)당 추출기 유닛으로의 최대 달성가능한 유동을 기록한다. 하기 식을 사용하여 단위 면적당 유동을 결정한다:This embodiment describes how to design a large-scale extractor unit. The data from the pilot-scale extraction is used to estimate the size of the large extractor unit. The flow rate, the stirring speed, and the influence of the presence or absence of the internal structure on the phase separation of the stream of the extractor unit from the pilot-scale extraction. The ratio and total flow of the fermentation broth to the extractant flow is varied throughout the fermentation process at constant temperature, and conditions under which phase separation is interrupted are observed. Record the maximum achievable flow to the extractor unit per extractor unit flow surface area (square feet). The flow per unit area is determined using the following equation:

[식 1][Formula 1]

Figure pct00006
Figure pct00006

U = 단위 면적당 유동 (갤런/분/제곱 피트)U = flow per unit area (gallons / minute / square feet)

F = 추출기 유닛으로의 발효 브로쓰 및 추출제의 총 유동 (갤런/분)F = total flow of fermentation broth and extractant into extractor unit (gallons / min)

A = 유동 방향에서의 단면적 (제곱 피트)A = cross-sectional area in the flow direction (square feet)

추출 컬럼에 대해서는, 이것이

Figure pct00007
For the extraction column,
Figure pct00007

로 주어지며,D = 컬럼 직경 (피트)이다.D = column diameter (feet).

하기 식을 사용하여, 추출기 유닛으로의 발효 브로쓰 및 추출제의 예상 유동에 의해 대규모 추출기 유닛의 직경을 추정한다:Using the following equation, we estimate the diameter of the large extractor unit by the expected flow of fermentation broth and extractant to the extractor unit:

[식 2][Formula 2]

Figure pct00008
Figure pct00008

F대규모 = 대규모 추출기로의 발효 브로쓰 및 추출제의 총 유동 (갤런/분).F large scale = total flow of fermentation broth and extractant to large scale extractor (gallons per minute).

상이한 유량, 내부구조물의 유무, 상이한 교반 속도, 및 생성물 알코올의 상이한 농도를 포함하는 상이한 유동 체제하에서 파일럿-규모 추출기 유닛의 높이를 측정한다. 이러한 데이터를 사용하여, 추출기 유닛의 높이에 의해 성취되는 이론적 스테이지의 수를, 크렘서 식을 사용하여 추정한다 (문헌[Seader and Henley, Separation Process Principles, 2nd edition, John Wiley & Sons, 2006, pp. 358-359]):The height of the pilot-scale extractor unit is measured under different flow regimes, including different flow rates, the presence of internal structures, different agitation rates, and different concentrations of product alcohol. Using this data, the number of theoretical stages to be achieved by the height of the extractor unit is estimated using the Kramer formula (Seader and Henley, Separation Process Principles , 2 nd edition, John Wiley & Sons, 2006, pp. 358-359)):

[식 3][Formula 3]

Figure pct00009
Figure pct00009

E = 추출 계수 =

Figure pct00010
E = extraction factor =
Figure pct00010

F브로쓰 = 추출기 유닛으로의 브로쓰의 유동 (갤런/분)F Broth = Flow of broth to extractor unit (gallons per minute)

F추출제 = 추출기 유닛으로의 추출제의 유동 (갤런/분)F extraction extractant flows into the extractor unit = (gal / min)

m = 발효 브로쓰 상 및 추출제 상 중 생성물 알코올에 대한 분배 계수m = partition coefficient for product alcohol in fermented broth phase and extractant phase

(g/L 당 g/L)(g / L per g / L)

Xf = 발효 브로쓰 공급물 중 생성물 알코올의 농도 (g/L)Xf = concentration of product alcohol in the fermentation broth feed (g / L)

Xn = 추출기 유닛에서 나온 발효 브로쓰 중 생성물 알코올의 농도(g/L)Xn = concentration of the product alcohol in the fermentation broth from the extractor unit (g / L)

Ys = 추출기 유닛으로 들어가는 추출제 중 생성물 알코올의 농도 (g/L)Ys = concentration of the product alcohol in the extractant entering the extractor unit (g / L)

n = 추출기 유닛의 높이에 의해 성취되는 이론적 스테이지의 수n = number of theoretical stages achieved by the height of the extractor unit

식 3은 오직 E ≠ 1인 경우에만 유효하다.Equation 3 is valid only when E ≠ 1.

추출기 유닛에 대한 이론적 스테이지의 높이는, 파일럿-규모 추출에 사용된 추출 컬럼의 높이를 주어진 실험에서 실현된 이론적 스테이지의 수로 나누어서 얻는다. 대규모에서 분리를 달성하는 데 필요한 이론적 스테이지의 수는, 식 4에서 대규모에서 예상되는 작동 조건을 사용하여 추정한다:The height of the theoretical stage for the extractor unit is obtained by dividing the height of the extraction column used for pilot-scale extraction by the number of theoretical stages realized in a given experiment. The number of theoretical stages required to achieve separation on a large scale is estimated using the operating conditions expected on a large scale in Equation 4:

[식 4][Formula 4]

Figure pct00011
Figure pct00011

여기서, '는 대규모 추출기 유닛의 조건을 나타낸다.Here, 'represents the condition of a large-scale extractor unit.

이론적 스테이지의 수와, 유사한 유동 조건에 대해 측정된 이론적 스테이지의 높이와의 곱은 대규모 추출기 유닛의 총 높이의 추정치를 제공한다. 대규모 추출기 유닛에서 예상되는 유동 및 농도는, 동적 발효 모델을 사용하여 추정한다 (예를 들어, 문헌[Daugulis, et al., Biotech. Bioeng. 27:1345-1356, 1985]).The product of the number of theoretical stages and the height of the theoretical stage measured for similar flow conditions provides an estimate of the total height of the large extractor unit. The expected flow and concentration in a large extractor unit is estimated using a dynamic fermentation model (see, for example, Daugulis, et al., Biotech. Bioeng. 27: 1345-1356, 1985).

본 발명의 다양한 실시 형태가 본 명세서에 기재되었지만, 이들은 제한이 아닌 단지 예로서 제공된 것임이 이해되어야 한다. 형태 및 세부 사항에 있어서의 다양한 변화가 본 발명의 사상 및 범위를 벗어나지 않고서 이뤄질 수 있음이 당업자에게 명백할 것이다. 따라서, 본 발명의 폭 및 범주는 어떠한 기재된 예시적인 실시 형태에 의해서도 안 되고, 다만 특허청구범위 및 이의 등가물에 의해 정의되어야 한다.While various embodiments of the invention have been described herein, it should be understood that they have been presented by way of example only, and not limitation. It will be apparent to those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention. Accordingly, the breadth and scope of the present invention should not be limited by any of the described exemplary embodiments, but should be defined by the appended claims and their equivalents.

본 명세서에 언급된 모든 간행물, 특허, 및 특허 출원은 본 발명이 속하는 기술 분야의 숙련가의 숙련도를 나타내며, 각 개별 간행물, 특허 또는 특허 출원이 참조로 포함되도록 구체적으로 개별적으로 나타내어지는 경우와 동일한 정도로 참조로 본 명세서에 포함된다.All publications, patents, and patent applications mentioned in this specification are indicative of the level of skill of those skilled in the art to which this invention pertains and are each given by way of illustration and not by way of limitation to the same extent as if each individual publication, patent or patent application were specifically and individually indicated to be incorporated by reference. Which is incorporated herein by reference.

SEQUENCE LISTING <110> Butamax Advanced Biofuels LLC <120> Processes and Systems for the Fermentative Production of Alcohols <130> CL5768WOPCT <160> 128 <170> PatentIn version 3.5 <210> 1 <211> 570 <212> PRT <213> Bacillus subtilis <400> 1 Met Thr Lys Ala Thr Lys Glu Gln Lys Ser Leu Val Lys Asn Arg Gly 1 5 10 15 Ala Glu Leu Val Val Asp Cys Leu Val Glu Gln Gly Val Thr His Val 20 25 30 Phe Gly Ile Pro Gly Ala Lys Ile Asp Ala Val Phe Asp Ala Leu Gln 35 40 45 Asp Lys Gly Pro Glu Ile Ile Val Ala Arg His Glu Gln Asn Ala Ala 50 55 60 Phe Met Ala Gln Ala Val Gly Arg Leu Thr Gly Lys Pro Gly Val Val 65 70 75 80 Leu Val Thr Ser Gly Pro Gly Ala Ser Asn Leu Ala Thr Gly Leu Leu 85 90 95 Thr Ala Asn Thr Glu Gly Asp Pro Val Val Ala Leu Ala Gly Asn Val 100 105 110 Ile Arg Ala Asp Arg Leu Lys Arg Thr His Gln Ser Leu Asp Asn Ala 115 120 125 Ala Leu Phe Gln Pro Ile Thr Lys Tyr Ser Val Glu Val Gln Asp Val 130 135 140 Lys Asn Ile Pro Glu Ala Val Thr Asn Ala Phe Arg Ile Ala Ser Ala 145 150 155 160 Gly Gln Ala Gly Ala Ala Phe Val Ser Phe Pro Gln Asp Val Val Asn 165 170 175 Glu Val Thr Asn Thr Lys Asn Val Arg Ala Val Ala Ala Pro Lys Leu 180 185 190 Gly Pro Ala Ala Asp Asp Ala Ile Ser Ala Ala Ile Ala Lys Ile Gln 195 200 205 Thr Ala Lys Leu Pro Val Val Leu Val Gly Met Lys Gly Gly Arg Pro 210 215 220 Glu Ala Ile Lys Ala Val Arg Lys Leu Leu Lys Lys Val Gln Leu Pro 225 230 235 240 Phe Val Glu Thr Tyr Gln Ala Ala Gly Thr Leu Ser Arg Asp Leu Glu 245 250 255 Asp Gln Tyr Phe Gly Arg Ile Gly Leu Phe Arg Asn Gln Pro Gly Asp 260 265 270 Leu Leu Leu Glu Gln Ala Asp Val Val Leu Thr Ile Gly Tyr Asp Pro 275 280 285 Ile Glu Tyr Asp Pro Lys Phe Trp Asn Ile Asn Gly Asp Arg Thr Ile 290 295 300 Ile His Leu Asp Glu Ile Ile Ala Asp Ile Asp His Ala Tyr Gln Pro 305 310 315 320 Asp Leu Glu Leu Ile Gly Asp Ile Pro Ser Thr Ile Asn His Ile Glu 325 330 335 His Asp Ala Val Lys Val Glu Phe Ala Glu Arg Glu Gln Lys Ile Leu 340 345 350 Ser Asp Leu Lys Gln Tyr Met His Glu Gly Glu Gln Val Pro Ala Asp 355 360 365 Trp Lys Ser Asp Arg Ala His Pro Leu Glu Ile Val Lys Glu Leu Arg 370 375 380 Asn Ala Val Asp Asp His Val Thr Val Thr Cys Asp Ile Gly Ser His 385 390 395 400 Ala Ile Trp Met Ser Arg Tyr Phe Arg Ser Tyr Glu Pro Leu Thr Leu 405 410 415 Met Ile Ser Asn Gly Met Gln Thr Leu Gly Val Ala Leu Pro Trp Ala 420 425 430 Ile Gly Ala Ser Leu Val Lys Pro Gly Glu Lys Val Val Ser Val Ser 435 440 445 Gly Asp Gly Gly Phe Leu Phe Ser Ala Met Glu Leu Glu Thr Ala Val 450 455 460 Arg Leu Lys Ala Pro Ile Val His Ile Val Trp Asn Asp Ser Thr Tyr 465 470 475 480 Asp Met Val Ala Phe Gln Gln Leu Lys Lys Tyr Asn Arg Thr Ser Ala 485 490 495 Val Asp Phe Gly Asn Ile Asp Ile Val Lys Tyr Ala Glu Ser Phe Gly 500 505 510 Ala Thr Gly Leu Arg Val Glu Ser Pro Asp Gln Leu Ala Asp Val Leu 515 520 525 Arg Gln Gly Met Asn Ala Glu Gly Pro Val Ile Ile Asp Val Pro Val 530 535 540 Asp Tyr Ser Asp Asn Ile Asn Leu Ala Ser Asp Lys Leu Pro Lys Glu 545 550 555 560 Phe Gly Glu Leu Met Lys Thr Lys Ala Leu 565 570 <210> 2 <211> 1716 <212> DNA <213> Bacillus subtilis <400> 2 atgttgacaa aagcaacaaa agaacaaaaa tcccttgtga aaaacagagg ggcggagctt 60 gttgttgatt gcttagtgga gcaaggtgtc acacatgtat ttggcattcc aggtgcaaaa 120 attgatgcgg tatttgacgc tttacaagat aaaggacctg aaattatcgt tgcccggcac 180 gaacaaaacg cagcattcat ggcccaagca gtcggccgtt taactggaaa accgggagtc 240 gtgttagtca catcaggacc gggtgcctct aacttggcaa caggcctgct gacagcgaac 300 actgaaggag accctgtcgt tgcgcttgct ggaaacgtga tccgtgcaga tcgtttaaaa 360 cggacacatc aatctttgga taatgcggcg ctattccagc cgattacaaa atacagtgta 420 gaagttcaag atgtaaaaaa tataccggaa gctgttacaa atgcatttag gatagcgtca 480 gcagggcagg ctggggccgc ttttgtgagc tttccgcaag atgttgtgaa tgaagtcaca 540 aatacgaaaa acgtgcgtgc tgttgcagcg ccaaaactcg gtcctgcagc agatgatgca 600 atcagtgcgg ccatagcaaa aatccaaaca gcaaaacttc ctgtcgtttt ggtcggcatg 660 aaaggcggaa gaccggaagc aattaaagcg gttcgcaagc ttttgaaaaa ggttcagctt 720 ccatttgttg aaacatatca agctgccggt accctttcta gagatttaga ggatcaatat 780 tttggccgta tcggtttgtt ccgcaaccag cctggcgatt tactgctaga gcaggcagat 840 gttgttctga cgatcggcta tgacccgatt gaatatgatc cgaaattctg gaatatcaat 900 ggagaccgga caattatcca tttagacgag attatcgctg acattgatca tgcttaccag 960 cctgatcttg aattgatcgg tgacattccg tccacgatca atcatatcga acacgatgct 1020 gtgaaagtgg aatttgcaga gcgtgagcag aaaatccttt ctgatttaaa acaatatatg 1080 catgaaggtg agcaggtgcc tgcagattgg aaatcagaca gagcgcaccc tcttgaaatc 1140 gttaaagagt tgcgtaatgc agtcgatgat catgttacag taacttgcga tatcggttcg 1200 cacgccattt ggatgtcacg ttatttccgc agctacgagc cgttaacatt aatgatcagt 1260 aacggtatgc aaacactcgg cgttgcgctt ccttgggcaa tcggcgcttc attggtgaaa 1320 ccgggagaaa aagtggtttc tgtctctggt gacggcggtt tcttattctc agcaatggaa 1380 ttagagacag cagttcgact aaaagcacca attgtacaca ttgtatggaa cgacagcaca 1440 tatgacatgg ttgcattcca gcaattgaaa aaatataacc gtacatctgc ggtcgatttc 1500 ggaaatatcg atatcgtgaa atatgcggaa agcttcggag caactggctt gcgcgtagaa 1560 tcaccagacc agctggcaga tgttctgcgt caaggcatga acgctgaagg tcctgtcatc 1620 atcgatgtcc cggttgacta cagtgataac attaatttag caagtgacaa gcttccgaaa 1680 gaattcgggg aactcatgaa aacgaaagct ctctag 1716 <210> 3 <211> 559 <212> PRT <213> Klebsiella pneumoniae <400> 3 Met Asp Lys Gln Tyr Pro Val Arg Gln Trp Ala His Gly Ala Asp Leu 1 5 10 15 Val Val Ser Gln Leu Glu Ala Gln Gly Val Arg Gln Val Phe Gly Ile 20 25 30 Pro Gly Ala Lys Ile Asp Lys Val Phe Asp Ser Leu Leu Asp Ser Ser 35 40 45 Ile Arg Ile Ile Pro Val Arg His Glu Ala Asn Ala Ala Phe Met Ala 50 55 60 Ala Ala Val Gly Arg Ile Thr Gly Lys Ala Gly Val Ala Leu Val Thr 65 70 75 80 Ser Gly Pro Gly Cys Ser Asn Leu Ile Thr Gly Met Ala Thr Ala Asn 85 90 95 Ser Glu Gly Asp Pro Val Val Ala Leu Gly Gly Ala Val Lys Arg Ala 100 105 110 Asp Lys Ala Lys Gln Val His Gln Ser Met Asp Thr Val Ala Met Phe 115 120 125 Ser Pro Val Thr Lys Tyr Ala Ile Glu Val Thr Ala Pro Asp Ala Leu 130 135 140 Ala Glu Val Val Ser Asn Ala Phe Arg Ala Ala Glu Gln Gly Arg Pro 145 150 155 160 Gly Ser Ala Phe Val Ser Leu Pro Gln Asp Val Val Asp Gly Pro Val 165 170 175 Ser Gly Lys Val Leu Pro Ala Ser Gly Ala Pro Gln Met Gly Ala Ala 180 185 190 Pro Asp Asp Ala Ile Asp Gln Val Ala Lys Leu Ile Ala Gln Ala Lys 195 200 205 Asn Pro Ile Phe Leu Leu Gly Leu Met Ala Ser Gln Pro Glu Asn Ser 210 215 220 Lys Ala Leu Arg Arg Leu Leu Glu Thr Ser His Ile Pro Val Thr Ser 225 230 235 240 Thr Tyr Gln Ala Ala Gly Ala Val Asn Gln Asp Asn Phe Ser Arg Phe 245 250 255 Ala Gly Arg Val Gly Leu Phe Asn Asn Gln Ala Gly Asp Arg Leu Leu 260 265 270 Gln Leu Ala Asp Leu Val Ile Cys Ile Gly Tyr Ser Pro Val Glu Tyr 275 280 285 Glu Pro Ala Met Trp Asn Ser Gly Asn Ala Thr Leu Val His Ile Asp 290 295 300 Val Leu Pro Ala Tyr Glu Glu Arg Asn Tyr Thr Pro Asp Val Glu Leu 305 310 315 320 Val Gly Asp Ile Ala Gly Thr Leu Asn Lys Leu Ala Gln Asn Ile Asp 325 330 335 His Arg Leu Val Leu Ser Pro Gln Ala Ala Glu Ile Leu Arg Asp Arg 340 345 350 Gln His Gln Arg Glu Leu Leu Asp Arg Arg Gly Ala Gln Leu Asn Gln 355 360 365 Phe Ala Leu His Pro Leu Arg Ile Val Arg Ala Met Gln Asp Ile Val 370 375 380 Asn Ser Asp Val Thr Leu Thr Val Asp Met Gly Ser Phe His Ile Trp 385 390 395 400 Ile Ala Arg Tyr Leu Tyr Thr Phe Arg Ala Arg Gln Val Met Ile Ser 405 410 415 Asn Gly Gln Gln Thr Met Gly Val Ala Leu Pro Trp Ala Ile Gly Ala 420 425 430 Trp Leu Val Asn Pro Glu Arg Lys Val Val Ser Val Ser Gly Asp Gly 435 440 445 Gly Phe Leu Gln Ser Ser Met Glu Leu Glu Thr Ala Val Arg Leu Lys 450 455 460 Ala Asn Val Leu His Leu Ile Trp Val Asp Asn Gly Tyr Asn Met Val 465 470 475 480 Ala Ile Gln Glu Glu Lys Lys Tyr Gln Arg Leu Ser Gly Val Glu Phe 485 490 495 Gly Pro Met Asp Phe Lys Ala Tyr Ala Glu Ser Phe Gly Ala Lys Gly 500 505 510 Phe Ala Val Glu Ser Ala Glu Ala Leu Glu Pro Thr Leu Arg Ala Ala 515 520 525 Met Asp Val Asp Gly Pro Ala Val Val Ala Ile Pro Val Asp Tyr Arg 530 535 540 Asp Asn Pro Leu Leu Met Gly Gln Leu His Leu Ser Gln Ile Leu 545 550 555 <210> 4 <211> 2055 <212> DNA <213> Klebsiella pneumoniae <400> 4 tcgaccacgg ggtgctgacc ttcggcgaaa ttcacaagct gatgatcgac ctgcccgccg 60 acagcgcgtt cctgcaggct aatctgcatc ccgataatct cgatgccgcc atccgttccg 120 tagaaagtta agggggtcac atggacaaac agtatccggt acgccagtgg gcgcacggcg 180 ccgatctcgt cgtcagtcag ctggaagctc agggagtacg ccaggtgttc ggcatccccg 240 gcgccaaaat cgacaaggtc tttgattcac tgctggattc ctccattcgc attattccgg 300 tacgccacga agccaacgcc gcatttatgg ccgccgccgt cggacgcatt accggcaaag 360 cgggcgtggc gctggtcacc tccggtccgg gctgttccaa cctgatcacc ggcatggcca 420 ccgcgaacag cgaaggcgac ccggtggtgg ccctgggcgg cgcggtaaaa cgcgccgata 480 aagcgaagca ggtccaccag agtatggata cggtggcgat gttcagcccg gtcaccaaat 540 acgccatcga ggtgacggcg ccggatgcgc tggcggaagt ggtctccaac gccttccgcg 600 ccgccgagca gggccggccg ggcagcgcgt tcgttagcct gccgcaggat gtggtcgatg 660 gcccggtcag cggcaaagtg ctgccggcca gcggggcccc gcagatgggc gccgcgccgg 720 atgatgccat cgaccaggtg gcgaagctta tcgcccaggc gaagaacccg atcttcctgc 780 tcggcctgat ggccagccag ccggaaaaca gcaaggcgct gcgccgtttg ctggagacca 840 gccatattcc agtcaccagc acctatcagg ccgccggagc ggtgaatcag gataacttct 900 ctcgcttcgc cggccgggtt gggctgttta acaaccaggc cggggaccgt ctgctgcagc 960 tcgccgacct ggtgatctgc atcggctaca gcccggtgga atacgaaccg gcgatgtgga 1020 acagcggcaa cgcgacgctg gtgcacatcg acgtgctgcc cgcctatgaa gagcgcaact 1080 acaccccgga tgtcgagctg gtgggcgata tcgccggcac tctcaacaag ctggcgcaaa 1140 atatcgatca tcggctggtg ctctccccgc aggcggcgga gatcctccgc gaccgccagc 1200 accagcgcga gctgctggac cgccgcggcg cgcagctcaa ccagtttgcc ctgcatcccc 1260 tgcgcatcgt tcgcgccatg caggatatcg tcaacagcga cgtcacgttg accgtggaca 1320 tgggcagctt ccatatctgg attgcccgct acctgtacac gttccgcgcc cgtcaggtga 1380 tgatctccaa cggccagcag accatgggcg tcgccctgcc ctgggctatc ggcgcctggc 1440 tggtcaatcc tgagcgcaaa gtggtctccg tctccggcga cggcggcttc ctgcagtcga 1500 gcatggagct ggagaccgcc gtccgcctga aagccaacgt gctgcatctt atctgggtcg 1560 ataacggcta caacatggtc gctatccagg aagagaaaaa atatcagcgc ctgtccggcg 1620 tcgagtttgg gccgatggat tttaaagcct atgccgaatc cttcggcgcg aaagggtttg 1680 ccgtggaaag cgccgaggcg ctggagccga ccctgcgcgc ggcgatggac gtcgacggcc 1740 cggcggtagt ggccatcccg gtggattatc gcgataaccc gctgctgatg ggccagctgc 1800 atctgagtca gattctgtaa gtcatcacaa taaggaaaga aaaatgaaaa aagtcgcact 1860 tgttaccggc gccggccagg ggattggtaa agctatcgcc cttcgtctgg tgaaggatgg 1920 atttgccgtg gccattgccg attataacga cgccaccgcc aaagcggtcg cctccgaaat 1980 caaccaggcc ggcggccgcg ccatggcggt gaaagtggat gtttctgacc gcgaccaggt 2040 atttgccgcc gtcga 2055 <210> 5 <211> 554 <212> PRT <213> Lactococcus lactis <400> 5 Met Ser Glu Lys Gln Phe Gly Ala Asn Leu Val Val Asp Ser Leu Ile 1 5 10 15 Asn His Lys Val Lys Tyr Val Phe Gly Ile Pro Gly Ala Lys Ile Asp 20 25 30 Arg Val Phe Asp Leu Leu Glu Asn Glu Glu Gly Pro Gln Met Val Val 35 40 45 Thr Arg His Glu Gln Gly Ala Ala Phe Met Ala Gln Ala Val Gly Arg 50 55 60 Leu Thr Gly Glu Pro Gly Val Val Val Val Thr Ser Gly Pro Gly Val 65 70 75 80 Ser Asn Leu Ala Thr Pro Leu Leu Thr Ala Thr Ser Glu Gly Asp Ala 85 90 95 Ile Leu Ala Ile Gly Gly Gln Val Lys Arg Ser Asp Arg Leu Lys Arg 100 105 110 Ala His Gln Ser Met Asp Asn Ala Gly Met Met Gln Ser Ala Thr Lys 115 120 125 Tyr Ser Ala Glu Val Leu Asp Pro Asn Thr Leu Ser Glu Ser Ile Ala 130 135 140 Asn Ala Tyr Arg Ile Ala Lys Ser Gly His Pro Gly Ala Thr Phe Leu 145 150 155 160 Ser Ile Pro Gln Asp Val Thr Asp Ala Glu Val Ser Ile Lys Ala Ile 165 170 175 Gln Pro Leu Ser Asp Pro Lys Met Gly Asn Ala Ser Ile Asp Asp Ile 180 185 190 Asn Tyr Leu Ala Gln Ala Ile Lys Asn Ala Val Leu Pro Val Ile Leu 195 200 205 Val Gly Ala Gly Ala Ser Asp Ala Lys Val Ala Ser Ser Leu Arg Asn 210 215 220 Leu Leu Thr His Val Asn Ile Pro Val Val Glu Thr Phe Gln Gly Ala 225 230 235 240 Gly Val Ile Ser His Asp Leu Glu His Thr Phe Tyr Gly Arg Ile Gly 245 250 255 Leu Phe Arg Asn Gln Pro Gly Asp Met Leu Leu Lys Arg Ser Asp Leu 260 265 270 Val Ile Ala Val Gly Tyr Asp Pro Ile Glu Tyr Glu Ala Arg Asn Trp 275 280 285 Asn Ala Glu Ile Asp Ser Arg Ile Ile Val Ile Asp Asn Ala Ile Ala 290 295 300 Glu Ile Asp Thr Tyr Tyr Gln Pro Glu Arg Glu Leu Ile Gly Asp Ile 305 310 315 320 Ala Ala Thr Leu Asp Asn Leu Leu Pro Ala Val Arg Gly Tyr Lys Ile 325 330 335 Pro Lys Gly Thr Lys Asp Tyr Leu Asp Gly Leu His Glu Val Ala Glu 340 345 350 Gln His Glu Phe Asp Thr Glu Asn Thr Glu Glu Gly Arg Met His Pro 355 360 365 Leu Asp Leu Val Ser Thr Phe Gln Glu Ile Val Lys Asp Asp Glu Thr 370 375 380 Val Thr Val Asp Val Gly Ser Leu Tyr Ile Trp Met Ala Arg His Phe 385 390 395 400 Lys Ser Tyr Glu Pro Arg His Leu Leu Phe Ser Asn Gly Met Gln Thr 405 410 415 Leu Gly Val Ala Leu Pro Trp Ala Ile Thr Ala Ala Leu Leu Arg Pro 420 425 430 Gly Lys Lys Val Tyr Ser His Ser Gly Asp Gly Gly Phe Leu Phe Thr 435 440 445 Gly Gln Glu Leu Glu Thr Ala Val Arg Leu Asn Leu Pro Ile Val Gln 450 455 460 Ile Ile Trp Asn Asp Gly His Tyr Asp Met Val Lys Phe Gln Glu Glu 465 470 475 480 Met Lys Tyr Gly Arg Ser Ala Ala Val Asp Phe Gly Tyr Val Asp Tyr 485 490 495 Val Lys Tyr Ala Glu Ala Met Arg Ala Lys Gly Tyr Arg Ala His Ser 500 505 510 Lys Glu Glu Leu Ala Glu Ile Leu Lys Ser Ile Pro Asp Thr Thr Gly 515 520 525 Pro Val Val Ile Asp Val Pro Leu Asp Tyr Ser Asp Asn Ile Lys Leu 530 535 540 Ala Glu Lys Leu Leu Pro Glu Glu Phe Tyr 545 550 <210> 6 <211> 3220 <212> DNA <213> Lactococcus lactis <400> 6 tagatccgga aacaactgat tacctgagtt aacttagcag aaattgcaga agataacggt 60 aatttggatg aagcattaaa ttacctttat caaattccgg tgaatgatga aaattatatt 120 gctgctttaa tcaaaattgc tgacttatat caatttgaag ttgattttga aacagcaatt 180 tctaagttag aagaagcaag agaattatcg gattctcctc tgattacttt tgctttggct 240 gagtcctact ttgaacaagg tgattattca gctgccatta ccgaatatgc aaaactttca 300 gaacgaaaaa ttttacatga aacaaaaatt tctatttatc aaagaattgg tgactcttat 360 gcccaattag gtaattttga gaatgccata tcatttcttg aaaaatcact tgaatttgat 420 gaaaaaccgg aaaccttgta taaaattgct cttctttatg gagaaactca taatgaaaca 480 agagccattg ctaatttcaa acggttagaa aaaatggatg ttgaattttt gaactatgaa 540 ttagcctatg cccaaaccct agaagctaat caagaattta aagctgcact agaaatggca 600 aagaaaggga tgaaaaaaaa tcctaatgcc gttcctctct tacacttcgc ttcaaaaatt 660 tgtttcaaac ttaaggacaa agctgcagca gaacgttatc tcgtggatgc tttaaattta 720 ccagaattac atgacgaaac agtctttttg cttgctaatt tatacttcaa cgaagaagat 780 tttgaagctg tcattaatct tgaagagctt ttagaagatg aacatttatt agctaaatgg 840 ctttttgcag gagcacataa agctttggaa aatgattctg aagcggctgc tttgtatgaa 900 gaactcattc aaaccaatct gtcagagaat ccagagtttt tagaagacta tattgatttt 960 cttaaagaaa ttggtcaaat ttctaaaaca gaaccaatta ttgaacaata tttggaactt 1020 gttccagatg atgaaaatat gagaaattta ctgacagact taaaaaataa ttactgacaa 1080 agctgtcagt aattattttt attgtaagct agaaaattca aaaacttgcg tcaaaataat 1140 tgtaaaaggt tctattatct gataaaatga ttgtgaagta atccaagaga ttatgaaata 1200 tgaattagaa caaatagagg taaaataaaa aatgtctgag aaacaatttg gggcgaactt 1260 ggttgtcgat agtttgatta accataaagt gaagtatgta tttgggattc caggagcaaa 1320 aattgaccgg gtttttgatt tattagaaaa tgaagaaggc cctcaaatgg tcgtgactcg 1380 tcatgagcaa ggagctgctt tcatggctca agctgtcggt cgtttaactg gcgaacctgg 1440 tgtagtagtt gttacgagtg ggcctggtgt atcaaacctt gcgactccgc ttttgaccgc 1500 gacatcagaa ggtgatgcta ttttggctat cggtggacaa gttaaacgaa gtgaccgtct 1560 taaacgtgcg caccaatcaa tggataatgc tggaatgatg caatcagcaa caaaatattc 1620 agcagaagtt cttgacccta atacactttc tgaatcaatt gccaacgctt atcgtattgc 1680 aaaatcagga catccaggtg caactttctt atcaatcccc caagatgtaa cggatgccga 1740 agtatcaatc aaagccattc aaccactttc agaccctaaa atggggaatg cctctattga 1800 tgacattaat tatttagcac aagcaattaa aaatgctgta ttgccagtaa ttttggttgg 1860 agctggtgct tcagatgcta aagtcgcttc atccttgcgt aatctattga ctcatgttaa 1920 tattcctgtc gttgaaacat tccaaggtgc aggggttatt tcacatgatt tagaacatac 1980 tttttatgga cgtatcggtc ttttccgcaa tcaaccaggc gatatgcttc tgaaacgttc 2040 tgaccttgtt attgctgttg gttatgaccc aattgaatat gaagctcgta actggaatgc 2100 agaaattgat agtcgaatta tcgttattga taatgccatt gctgaaattg atacttacta 2160 ccaaccagag cgtgaattaa ttggtgatat cgcagcaaca ttggataatc ttttaccagc 2220 tgttcgtggc tacaaaattc caaaaggaac aaaagattat ctcgatggcc ttcatgaagt 2280 tgctgagcaa cacgaatttg atactgaaaa tactgaagaa ggtagaatgc accctcttga 2340 tttggtcagc actttccaag aaatcgtcaa ggatgatgaa acagtaaccg ttgacgtagg 2400 ttcactctac atttggatgg cacgtcattt caaatcatac gaaccacgtc atctcctctt 2460 ctcaaacgga atgcaaacac tcggagttgc acttccttgg gcaattacag ccgcattgtt 2520 gcgcccaggt aaaaaagttt attcacactc tggtgatgga ggcttccttt tcacagggca 2580 agaattggaa acagctgtac gtttgaatct tccaatcgtt caaattatct ggaatgacgg 2640 ccattatgat atggttaaat tccaagaaga aatgaaatat ggtcgttcag cagccgttga 2700 ttttggctat gttgattacg taaaatatgc tgaagcaatg agagcaaaag gttaccgtgc 2760 acacagcaaa gaagaacttg ctgaaattct caaatcaatc ccagatacta ctggaccggt 2820 ggtaattgac gttcctttgg actattctga taacattaaa ttagcagaaa aattattgcc 2880 tgaagagttt tattgattac aatcaagcaa tttgtggcat aacaaaataa aagaagaagg 2940 ccttgaacac ctaagcgttc agggcctttt tttgtgaaat aaattagatg aaatttacaa 3000 tgagttttgt gaaactagct tctagtttgt gaaaaattgc ctataattgc cgaataaaaa 3060 tacccattta ccactccaag aggatgcttc aaattagcta aatacccgtt ttagaggatg 3120 cgtaaaaaca acaaaagagg atgagtatag aacgataaaa cttttttatg ataggttgag 3180 agaattgaat ataaaatata ataagtagaa ggcagcaatt 3220 <210> 7 <211> 491 <212> PRT <213> Escherichia coli <400> 7 Met Ala Asn Tyr Phe Asn Thr Leu Asn Leu Arg Gln Gln Leu Ala Gln 1 5 10 15 Leu Gly Lys Cys Arg Phe Met Gly Arg Asp Glu Phe Ala Asp Gly Ala 20 25 30 Ser Tyr Leu Gln Gly Lys Lys Val Val Ile Val Gly Cys Gly Ala Gln 35 40 45 Gly Leu Asn Gln Gly Leu Asn Met Arg Asp Ser Gly Leu Asp Ile Ser 50 55 60 Tyr Ala Leu Arg Lys Glu Ala Ile Ala Glu Lys Arg Ala Ser Trp Arg 65 70 75 80 Lys Ala Thr Glu Asn Gly Phe Lys Val Gly Thr Tyr Glu Glu Leu Ile 85 90 95 Pro Gln Ala Asp Leu Val Ile Asn Leu Thr Pro Asp Lys Gln His Ser 100 105 110 Asp Val Val Arg Thr Val Gln Pro Leu Met Lys Asp Gly Ala Ala Leu 115 120 125 Gly Tyr Ser His Gly Phe Asn Ile Val Glu Val Gly Glu Gln Ile Arg 130 135 140 Lys Asp Ile Thr Val Val Met Val Ala Pro Lys Cys Pro Gly Thr Glu 145 150 155 160 Val Arg Glu Glu Tyr Lys Arg Gly Phe Gly Val Pro Thr Leu Ile Ala 165 170 175 Val His Pro Glu Asn Asp Pro Lys Gly Glu Gly Met Ala Ile Ala Lys 180 185 190 Ala Trp Ala Ala Ala Thr Gly Gly His Arg Ala Gly Val Leu Glu Ser 195 200 205 Ser Phe Val Ala Glu Val Lys Ser Asp Leu Met Gly Glu Gln Thr Ile 210 215 220 Leu Cys Gly Met Leu Gln Ala Gly Ser Leu Leu Cys Phe Asp Lys Leu 225 230 235 240 Val Glu Glu Gly Thr Asp Pro Ala Tyr Ala Glu Lys Leu Ile Gln Phe 245 250 255 Gly Trp Glu Thr Ile Thr Glu Ala Leu Lys Gln Gly Gly Ile Thr Leu 260 265 270 Met Met Asp Arg Leu Ser Asn Pro Ala Lys Leu Arg Ala Tyr Ala Leu 275 280 285 Ser Glu Gln Leu Lys Glu Ile Met Ala Pro Leu Phe Gln Lys His Met 290 295 300 Asp Asp Ile Ile Ser Gly Glu Phe Ser Ser Gly Met Met Ala Asp Trp 305 310 315 320 Ala Asn Asp Asp Lys Lys Leu Leu Thr Trp Arg Glu Glu Thr Gly Lys 325 330 335 Thr Ala Phe Glu Thr Ala Pro Gln Tyr Glu Gly Lys Ile Gly Glu Gln 340 345 350 Glu Tyr Phe Asp Lys Gly Val Leu Met Ile Ala Met Val Lys Ala Gly 355 360 365 Val Glu Leu Ala Phe Glu Thr Met Val Asp Ser Gly Ile Ile Glu Glu 370 375 380 Ser Ala Tyr Tyr Glu Ser Leu His Glu Leu Pro Leu Ile Ala Asn Thr 385 390 395 400 Ile Ala Arg Lys Arg Leu Tyr Glu Met Asn Val Val Ile Ser Asp Thr 405 410 415 Ala Glu Tyr Gly Asn Tyr Leu Phe Ser Tyr Ala Cys Val Pro Leu Leu 420 425 430 Lys Pro Phe Met Ala Glu Leu Gln Pro Gly Asp Leu Gly Lys Ala Ile 435 440 445 Pro Glu Gly Ala Val Asp Asn Gly Gln Leu Arg Asp Val Asn Glu Ala 450 455 460 Ile Arg Ser His Ala Ile Glu Gln Val Gly Lys Lys Leu Arg Gly Tyr 465 470 475 480 Met Thr Asp Met Lys Arg Ile Ala Val Ala Gly 485 490 <210> 8 <211> 1476 <212> DNA <213> Escherichia coli <400> 8 atggctaact acttcaatac actgaatctg cgccagcagc tggcacagct gggcaaatgt 60 cgctttatgg gccgcgatga attcgccgat ggcgcgagct accttcaggg taaaaaagta 120 gtcatcgtcg gctgtggcgc acagggtctg aaccagggcc tgaacatgcg tgattctggt 180 ctcgatatct cctacgctct gcgtaaagaa gcgattgccg agaagcgcgc gtcctggcgt 240 aaagcgaccg aaaatggttt taaagtgggt acttacgaag aactgatccc acaggcggat 300 ctggtgatta acctgacgcc ggacaagcag cactctgatg tagtgcgcac cgtacagcca 360 ctgatgaaag acggcgcggc gctgggctac tcgcacggtt tcaacatcgt cgaagtgggc 420 gagcagatcc gtaaagatat caccgtagtg atggttgcgc cgaaatgccc aggcaccgaa 480 gtgcgtgaag agtacaaacg tgggttcggc gtaccgacgc tgattgccgt tcacccggaa 540 aacgatccga aaggcgaagg catggcgatt gccaaagcct gggcggctgc aaccggtggt 600 caccgtgcgg gtgtgctgga atcgtccttc gttgcggaag tgaaatctga cctgatgggc 660 gagcaaacca tcctgtgcgg tatgttgcag gctggctctc tgctgtgctt cgacaagctg 720 gtggaagaag gtaccgatcc agcatacgca gaaaaactga ttcagttcgg ttgggaaacc 780 atcaccgaag cactgaaaca gggcggcatc accctgatga tggaccgtct ctctaacccg 840 gcgaaactgc gtgcttatgc gctttctgaa cagctgaaag agatcatggc acccctgttc 900 cagaaacata tggacgacat catctccggc gaattctctt ccggtatgat ggcggactgg 960 gccaacgatg ataagaaact gctgacctgg cgtgaagaga ccggcaaaac cgcgtttgaa 1020 accgcgccgc agtatgaagg caaaatcggc gagcaggagt acttcgataa aggcgtactg 1080 atgattgcga tggtgaaagc gggcgttgaa ctggcgttcg aaaccatggt cgattccggc 1140 atcattgaag agtctgcata ttatgaatca ctgcacgagc tgccgctgat tgccaacacc 1200 atcgcccgta agcgtctgta cgaaatgaac gtggttatct ctgataccgc tgagtacggt 1260 aactatctgt tctcttacgc ttgtgtgccg ttgctgaaac cgtttatggc agagctgcaa 1320 ccgggcgacc tgggtaaagc tattccggaa ggcgcggtag ataacgggca actgcgtgat 1380 gtgaacgaag cgattcgcag ccatgcgatt gagcaggtag gtaagaaact gcgcggctat 1440 atgacagata tgaaacgtat tgctgttgcg ggttaa 1476 <210> 9 <211> 395 <212> PRT <213> Saccharomyces cerevisiae <400> 9 Met Leu Arg Thr Gln Ala Ala Arg Leu Ile Cys Asn Ser Arg Val Ile 1 5 10 15 Thr Ala Lys Arg Thr Phe Ala Leu Ala Thr Arg Ala Ala Ala Tyr Ser 20 25 30 Arg Pro Ala Ala Arg Phe Val Lys Pro Met Ile Thr Thr Arg Gly Leu 35 40 45 Lys Gln Ile Asn Phe Gly Gly Thr Val Glu Thr Val Tyr Glu Arg Ala 50 55 60 Asp Trp Pro Arg Glu Lys Leu Leu Asp Tyr Phe Lys Asn Asp Thr Phe 65 70 75 80 Ala Leu Ile Gly Tyr Gly Ser Gln Gly Tyr Gly Gln Gly Leu Asn Leu 85 90 95 Arg Asp Asn Gly Leu Asn Val Ile Ile Gly Val Arg Lys Asp Gly Ala 100 105 110 Ser Trp Lys Ala Ala Ile Glu Asp Gly Trp Val Pro Gly Lys Asn Leu 115 120 125 Phe Thr Val Glu Asp Ala Ile Lys Arg Gly Ser Tyr Val Met Asn Leu 130 135 140 Leu Ser Asp Ala Ala Gln Ser Glu Thr Trp Pro Ala Ile Lys Pro Leu 145 150 155 160 Leu Thr Lys Gly Lys Thr Leu Tyr Phe Ser His Gly Phe Ser Pro Val 165 170 175 Phe Lys Asp Leu Thr His Val Glu Pro Pro Lys Asp Leu Asp Val Ile 180 185 190 Leu Val Ala Pro Lys Gly Ser Gly Arg Thr Val Arg Ser Leu Phe Lys 195 200 205 Glu Gly Arg Gly Ile Asn Ser Ser Tyr Ala Val Trp Asn Asp Val Thr 210 215 220 Gly Lys Ala His Glu Lys Ala Gln Ala Leu Ala Val Ala Ile Gly Ser 225 230 235 240 Gly Tyr Val Tyr Gln Thr Thr Phe Glu Arg Glu Val Asn Ser Asp Leu 245 250 255 Tyr Gly Glu Arg Gly Cys Leu Met Gly Gly Ile His Gly Met Phe Leu 260 265 270 Ala Gln Tyr Asp Val Leu Arg Glu Asn Gly His Ser Pro Ser Glu Ala 275 280 285 Phe Asn Glu Thr Val Glu Glu Ala Thr Gln Ser Leu Tyr Pro Leu Ile 290 295 300 Gly Lys Tyr Gly Met Asp Tyr Met Tyr Asp Ala Cys Ser Thr Thr Ala 305 310 315 320 Arg Arg Gly Ala Leu Asp Trp Tyr Pro Ile Phe Lys Asn Ala Leu Lys 325 330 335 Pro Val Phe Gln Asp Leu Tyr Glu Ser Thr Lys Asn Gly Thr Glu Thr 340 345 350 Lys Arg Ser Leu Glu Phe Asn Ser Gln Pro Asp Tyr Arg Glu Lys Leu 355 360 365 Glu Lys Glu Leu Asp Thr Ile Arg Asn Met Glu Ile Trp Lys Val Gly 370 375 380 Lys Glu Val Arg Lys Leu Arg Pro Glu Asn Gln 385 390 395 <210> 10 <211> 1188 <212> DNA <213> Saccharomyces cerevisiae <400> 10 atgttgagaa ctcaagccgc cagattgatc tgcaactccc gtgtcatcac tgctaagaga 60 acctttgctt tggccacccg tgctgctgct tacagcagac cagctgcccg tttcgttaag 120 ccaatgatca ctacccgtgg tttgaagcaa atcaacttcg gtggtactgt tgaaaccgtc 180 tacgaaagag ctgactggcc aagagaaaag ttgttggact acttcaagaa cgacactttt 240 gctttgatcg gttacggttc ccaaggttac ggtcaaggtt tgaacttgag agacaacggt 300 ttgaacgtta tcattggtgt ccgtaaagat ggtgcttctt ggaaggctgc catcgaagac 360 ggttgggttc caggcaagaa cttgttcact gttgaagatg ctatcaagag aggtagttac 420 gttatgaact tgttgtccga tgccgctcaa tcagaaacct ggcctgctat caagccattg 480 ttgaccaagg gtaagacttt gtacttctcc cacggtttct ccccagtctt caaggacttg 540 actcacgttg aaccaccaaa ggacttagat gttatcttgg ttgctccaaa gggttccggt 600 agaactgtca gatctttgtt caaggaaggt cgtggtatta actcttctta cgccgtctgg 660 aacgatgtca ccggtaaggc tcacgaaaag gcccaagctt tggccgttgc cattggttcc 720 ggttacgttt accaaaccac tttcgaaaga gaagtcaact ctgacttgta cggtgaaaga 780 ggttgtttaa tgggtggtat ccacggtatg ttcttggctc aatacgacgt cttgagagaa 840 aacggtcact ccccatctga agctttcaac gaaaccgtcg aagaagctac ccaatctcta 900 tacccattga tcggtaagta cggtatggat tacatgtacg atgcttgttc caccaccgcc 960 agaagaggtg ctttggactg gtacccaatc ttcaagaatg ctttgaagcc tgttttccaa 1020 gacttgtacg aatctaccaa gaacggtacc gaaaccaaga gatctttgga attcaactct 1080 caacctgact acagagaaaa gctagaaaag gaattagaca ccatcagaaa catggaaatc 1140 tggaaggttg gtaaggaagt cagaaagttg agaccagaaa accaataa 1188 <210> 11 <211> 330 <212> PRT <213> Methanococcus maripaludis <400> 11 Met Lys Val Phe Tyr Asp Ser Asp Phe Lys Leu Asp Ala Leu Lys Glu 1 5 10 15 Lys Thr Ile Ala Val Ile Gly Tyr Gly Ser Gln Gly Arg Ala Gln Ser 20 25 30 Leu Asn Met Lys Asp Ser Gly Leu Asn Val Val Val Gly Leu Arg Lys 35 40 45 Asn Gly Ala Ser Trp Asn Asn Ala Lys Ala Asp Gly His Asn Val Met 50 55 60 Thr Ile Glu Glu Ala Ala Glu Lys Ala Asp Ile Ile His Ile Leu Ile 65 70 75 80 Pro Asp Glu Leu Gln Ala Glu Val Tyr Glu Ser Gln Ile Lys Pro Tyr 85 90 95 Leu Lys Glu Gly Lys Thr Leu Ser Phe Ser His Gly Phe Asn Ile His 100 105 110 Tyr Gly Phe Ile Val Pro Pro Lys Gly Val Asn Val Val Leu Val Ala 115 120 125 Pro Lys Ser Pro Gly Lys Met Val Arg Arg Thr Tyr Glu Glu Gly Phe 130 135 140 Gly Val Pro Gly Leu Ile Cys Ile Glu Ile Asp Ala Thr Asn Asn Ala 145 150 155 160 Phe Asp Ile Val Ser Ala Met Ala Lys Gly Ile Gly Leu Ser Arg Ala 165 170 175 Gly Val Ile Gln Thr Thr Phe Lys Glu Glu Thr Glu Thr Asp Leu Phe 180 185 190 Gly Glu Gln Ala Val Leu Cys Gly Gly Val Thr Glu Leu Ile Lys Ala 195 200 205 Gly Phe Glu Thr Leu Val Glu Ala Gly Tyr Ala Pro Glu Met Ala Tyr 210 215 220 Phe Glu Thr Cys His Glu Leu Lys Leu Ile Val Asp Leu Ile Tyr Gln 225 230 235 240 Lys Gly Phe Lys Asn Met Trp Asn Asp Val Ser Asn Thr Ala Glu Tyr 245 250 255 Gly Gly Leu Thr Arg Arg Ser Arg Ile Val Thr Ala Asp Ser Lys Ala 260 265 270 Ala Met Lys Glu Ile Leu Arg Glu Ile Gln Asp Gly Arg Phe Thr Lys 275 280 285 Glu Phe Leu Leu Glu Lys Gln Val Ser Tyr Ala His Leu Lys Ser Met 290 295 300 Arg Arg Leu Glu Gly Asp Leu Gln Ile Glu Glu Val Gly Ala Lys Leu 305 310 315 320 Arg Lys Met Cys Gly Leu Glu Lys Glu Glu 325 330 <210> 12 <211> 993 <212> DNA <213> Methanococcus maripaludis <400> 12 atgaaggtat tctatgactc agattttaaa ttagatgctt taaaagaaaa aacaattgca 60 gtaatcggtt atggaagtca aggtagggca cagtccttaa acatgaaaga cagcggatta 120 aacgttgttg ttggtttaag aaaaaacggt gcttcatgga acaacgctaa agcagacggt 180 cacaatgtaa tgaccattga agaagctgct gaaaaagcgg acatcatcca catcttaata 240 cctgatgaat tacaggcaga agtttatgaa agccagataa aaccatacct aaaagaagga 300 aaaacactaa gcttttcaca tggttttaac atccactatg gattcattgt tccaccaaaa 360 ggagttaacg tggttttagt tgctccaaaa tcacctggaa aaatggttag aagaacatac 420 gaagaaggtt tcggtgttcc aggtttaatc tgtattgaaa ttgatgcaac aaacaacgca 480 tttgatattg tttcagcaat ggcaaaagga atcggtttat caagagctgg agttatccag 540 acaactttca aagaagaaac agaaactgac cttttcggtg aacaagctgt tttatgcggt 600 ggagttaccg aattaatcaa ggcaggattt gaaacactcg ttgaagcagg atacgcacca 660 gaaatggcat actttgaaac ctgccacgaa ttgaaattaa tcgttgactt aatctaccaa 720 aaaggattca aaaacatgtg gaacgatgta agtaacactg cagaatacgg cggacttaca 780 agaagaagca gaatcgttac agctgattca aaagctgcaa tgaaagaaat cttaagagaa 840 atccaagatg gaagattcac aaaagaattc cttctcgaaa aacaggtaag ctatgctcat 900 ttaaaatcaa tgagaagact cgaaggagac ttacaaatcg aagaagtcgg cgcaaaatta 960 agaaaaatgt gcggtcttga aaaagaagaa taa 993 <210> 13 <211> 342 <212> PRT <213> Bacillus subtilis <400> 13 Met Val Lys Val Tyr Tyr Asn Gly Asp Ile Lys Glu Asn Val Leu Ala 1 5 10 15 Gly Lys Thr Val Ala Val Ile Gly Tyr Gly Ser Gln Gly His Ala His 20 25 30 Ala Leu Asn Leu Lys Glu Ser Gly Val Asp Val Ile Val Gly Val Arg 35 40 45 Gln Gly Lys Ser Phe Thr Gln Ala Gln Glu Asp Gly His Lys Val Phe 50 55 60 Ser Val Lys Glu Ala Ala Ala Gln Ala Glu Ile Ile Met Val Leu Leu 65 70 75 80 Pro Asp Glu Gln Gln Gln Lys Val Tyr Glu Ala Glu Ile Lys Asp Glu 85 90 95 Leu Thr Ala Gly Lys Ser Leu Val Phe Ala His Gly Phe Asn Val His 100 105 110 Phe His Gln Ile Val Pro Pro Ala Asp Val Asp Val Phe Leu Val Ala 115 120 125 Pro Lys Gly Pro Gly His Leu Val Arg Arg Thr Tyr Glu Gln Gly Ala 130 135 140 Gly Val Pro Ala Leu Phe Ala Ile Tyr Gln Asp Val Thr Gly Glu Ala 145 150 155 160 Arg Asp Lys Ala Leu Ala Tyr Ala Lys Gly Ile Gly Gly Ala Arg Ala 165 170 175 Gly Val Leu Glu Thr Thr Phe Lys Glu Glu Thr Glu Thr Asp Leu Phe 180 185 190 Gly Glu Gln Ala Val Leu Cys Gly Gly Leu Ser Ala Leu Val Lys Ala 195 200 205 Gly Phe Glu Thr Leu Thr Glu Ala Gly Tyr Gln Pro Glu Leu Ala Tyr 210 215 220 Phe Glu Cys Leu His Glu Leu Lys Leu Ile Val Asp Leu Met Tyr Glu 225 230 235 240 Glu Gly Leu Ala Gly Met Arg Tyr Ser Ile Ser Asp Thr Ala Gln Trp 245 250 255 Gly Asp Phe Val Ser Gly Pro Arg Val Val Asp Ala Lys Val Lys Glu 260 265 270 Ser Met Lys Glu Val Leu Lys Asp Ile Gln Asn Gly Thr Phe Ala Lys 275 280 285 Glu Trp Ile Val Glu Asn Gln Val Asn Arg Pro Arg Phe Asn Ala Ile 290 295 300 Asn Ala Ser Glu Asn Glu His Gln Ile Glu Val Val Gly Arg Lys Leu 305 310 315 320 Arg Glu Met Met Pro Phe Val Lys Gln Gly Lys Lys Lys Glu Ala Val 325 330 335 Val Ser Val Ala Gln Asn 340 <210> 14 <211> 1476 <212> DNA <213> Bacillus subtilis <400> 14 atggctaact acttcaatac actgaatctg cgccagcagc tggcacagct gggcaaatgt 60 cgctttatgg gccgcgatga attcgccgat ggcgcgagct accttcaggg taaaaaagta 120 gtcatcgtcg gctgtggcgc acagggtctg aaccagggcc tgaacatgcg tgattctggt 180 ctcgatatct cctacgctct gcgtaaagaa gcgattgccg agaagcgcgc gtcctggcgt 240 aaagcgaccg aaaatggttt taaagtgggt acttacgaag aactgatccc acaggcggat 300 ctggtgatta acctgacgcc ggacaagcag cactctgatg tagtgcgcac cgtacagcca 360 ctgatgaaag acggcgcggc gctgggctac tcgcacggtt tcaacatcgt cgaagtgggc 420 gagcagatcc gtaaagatat caccgtagtg atggttgcgc cgaaatgccc aggcaccgaa 480 gtgcgtgaag agtacaaacg tgggttcggc gtaccgacgc tgattgccgt tcacccggaa 540 aacgatccga aaggcgaagg catggcgatt gccaaagcct gggcggctgc aaccggtggt 600 caccgtgcgg gtgtgctgga atcgtccttc gttgcggaag tgaaatctga cctgatgggc 660 gagcaaacca tcctgtgcgg tatgttgcag gctggctctc tgctgtgctt cgacaagctg 720 gtggaagaag gtaccgatcc agcatacgca gaaaaactga ttcagttcgg ttgggaaacc 780 atcaccgaag cactgaaaca gggcggcatc accctgatga tggaccgtct ctctaacccg 840 gcgaaactgc gtgcttatgc gctttctgaa cagctgaaag agatcatggc acccctgttc 900 cagaaacata tggacgacat catctccggc gaattctctt ccggtatgat ggcggactgg 960 gccaacgatg ataagaaact gctgacctgg cgtgaagaga ccggcaaaac cgcgtttgaa 1020 accgcgccgc agtatgaagg caaaatcggc gagcaggagt acttcgataa aggcgtactg 1080 atgattgcga tggtgaaagc gggcgttgaa ctggcgttcg aaaccatggt cgattccggc 1140 atcattgaag agtctgcata ttatgaatca ctgcacgagc tgccgctgat tgccaacacc 1200 atcgcccgta agcgtctgta cgaaatgaac gtggttatct ctgataccgc tgagtacggt 1260 aactatctgt tctcttacgc ttgtgtgccg ttgctgaaac cgtttatggc agagctgcaa 1320 ccgggcgacc tgggtaaagc tattccggaa ggcgcggtag ataacgggca actgcgtgat 1380 gtgaacgaag cgattcgcag ccatgcgatt gagcaggtag gtaagaaact gcgcggctat 1440 atgacagata tgaaacgtat tgctgttgcg ggttaa 1476 <210> 15 <211> 343 <212> PRT <213> Anaerostipes caccae <400> 15 Met Glu Glu Cys Lys Met Ala Lys Ile Tyr Tyr Gln Glu Asp Cys Asn 1 5 10 15 Leu Ser Leu Leu Asp Gly Lys Thr Ile Ala Val Ile Gly Tyr Gly Ser 20 25 30 Gln Gly His Ala His Ala Leu Asn Ala Lys Glu Ser Gly Cys Asn Val 35 40 45 Ile Ile Gly Leu Tyr Glu Gly Ala Lys Glu Trp Lys Arg Ala Glu Glu 50 55 60 Gln Gly Phe Glu Val Tyr Thr Ala Ala Glu Ala Ala Lys Lys Ala Asp 65 70 75 80 Ile Ile Met Ile Leu Ile Asn Asp Glu Lys Gln Ala Thr Met Tyr Lys 85 90 95 Asn Asp Ile Glu Pro Asn Leu Glu Ala Gly Asn Met Leu Met Phe Ala 100 105 110 His Gly Phe Asn Ile His Phe Gly Cys Ile Val Pro Pro Lys Asp Val 115 120 125 Asp Val Thr Met Ile Ala Pro Lys Gly Pro Gly His Thr Val Arg Ser 130 135 140 Glu Tyr Glu Glu Gly Lys Gly Val Pro Cys Leu Val Ala Val Glu Gln 145 150 155 160 Asp Ala Thr Gly Lys Ala Leu Asp Met Ala Leu Ala Tyr Ala Leu Ala 165 170 175 Ile Gly Gly Ala Arg Ala Gly Val Leu Glu Thr Thr Phe Arg Thr Glu 180 185 190 Thr Glu Thr Asp Leu Phe Gly Glu Gln Ala Val Leu Cys Gly Gly Val 195 200 205 Cys Ala Leu Met Gln Ala Gly Phe Glu Thr Leu Val Glu Ala Gly Tyr 210 215 220 Asp Pro Arg Asn Ala Tyr Phe Glu Cys Ile His Glu Met Lys Leu Ile 225 230 235 240 Val Asp Leu Ile Tyr Gln Ser Gly Phe Ser Gly Met Arg Tyr Ser Ile 245 250 255 Ser Asn Thr Ala Glu Tyr Gly Asp Tyr Ile Thr Gly Pro Lys Ile Ile 260 265 270 Thr Glu Asp Thr Lys Lys Ala Met Lys Lys Ile Leu Ser Asp Ile Gln 275 280 285 Asp Gly Thr Phe Ala Lys Asp Phe Leu Val Asp Met Ser Asp Ala Gly 290 295 300 Ser Gln Val His Phe Lys Ala Met Arg Lys Leu Ala Ser Glu His Pro 305 310 315 320 Ala Glu Val Val Gly Glu Glu Ile Arg Ser Leu Tyr Ser Trp Ser Asp 325 330 335 Glu Asp Lys Leu Ile Asn Asn 340 <210> 16 <211> 343 <212> PRT <213> Anaerostipes caccae <400> 16 Met Glu Glu Cys Lys Met Ala Lys Ile Tyr Tyr Gln Glu Asp Cys Asn 1 5 10 15 Leu Ser Leu Leu Asp Gly Lys Thr Ile Ala Val Ile Gly Tyr Gly Ser 20 25 30 Gln Gly His Ala His Ala Leu Asn Ala Lys Glu Ser Gly Cys Asn Val 35 40 45 Ile Ile Gly Leu Tyr Glu Gly Ala Lys Asp Trp Lys Arg Ala Glu Glu 50 55 60 Gln Gly Phe Glu Val Tyr Thr Ala Ala Glu Ala Ala Lys Lys Ala Asp 65 70 75 80 Ile Ile Met Ile Leu Ile Asn Asp Glu Lys Gln Ala Thr Met Tyr Lys 85 90 95 Asn Asp Ile Glu Pro Asn Leu Glu Ala Gly Asn Met Leu Met Phe Ala 100 105 110 His Gly Phe Asn Ile His Phe Gly Cys Ile Val Pro Pro Lys Asp Val 115 120 125 Asp Val Thr Met Ile Ala Pro Lys Gly Pro Gly His Thr Val Arg Ser 130 135 140 Glu Tyr Glu Glu Gly Lys Gly Val Pro Cys Leu Val Ala Val Glu Gln 145 150 155 160 Asp Ala Thr Gly Lys Ala Leu Asp Met Ala Leu Ala Tyr Ala Leu Ala 165 170 175 Ile Gly Gly Ala Arg Ala Gly Val Leu Glu Thr Thr Phe Arg Thr Glu 180 185 190 Thr Glu Thr Asp Leu Phe Gly Glu Gln Ala Val Leu Cys Gly Gly Val 195 200 205 Cys Ala Leu Met Gln Ala Gly Phe Glu Thr Leu Val Glu Ala Gly Tyr 210 215 220 Asp Pro Arg Asn Ala Tyr Phe Glu Cys Ile His Glu Met Lys Leu Ile 225 230 235 240 Val Asp Leu Ile Tyr Gln Ser Gly Phe Ser Gly Met Arg Tyr Ser Ile 245 250 255 Ser Asn Thr Ala Glu Tyr Gly Asp Tyr Ile Thr Gly Pro Lys Ile Ile 260 265 270 Thr Glu Asp Thr Lys Lys Ala Met Lys Lys Ile Leu Ser Asp Ile Gln 275 280 285 Asp Gly Thr Phe Ala Lys Asp Phe Leu Val Asp Met Ser Asp Ala Gly 290 295 300 Ser Gln Val His Phe Lys Ala Met Arg Lys Leu Ala Ser Glu His Pro 305 310 315 320 Ala Glu Val Val Gly Glu Glu Ile Arg Ser Leu Tyr Ser Trp Ser Asp 325 330 335 Glu Asp Lys Leu Ile Asn Asn 340 <210> 17 <211> 616 <212> PRT <213> Escherichia coli <400> 17 Met Pro Lys Tyr Arg Ser Ala Thr Thr Thr His Gly Arg Asn Met Ala 1 5 10 15 Gly Ala Arg Ala Leu Trp Arg Ala Thr Gly Met Thr Asp Ala Asp Phe 20 25 30 Gly Lys Pro Ile Ile Ala Val Val Asn Ser Phe Thr Gln Phe Val Pro 35 40 45 Gly His Val His Leu Arg Asp Leu Gly Lys Leu Val Ala Glu Gln Ile 50 55 60 Glu Ala Ala Gly Gly Val Ala Lys Glu Phe Asn Thr Ile Ala Val Asp 65 70 75 80 Asp Gly Ile Ala Met Gly His Gly Gly Met Leu Tyr Ser Leu Pro Ser 85 90 95 Arg Glu Leu Ile Ala Asp Ser Val Glu Tyr Met Val Asn Ala His Cys 100 105 110 Ala Asp Ala Met Val Cys Ile Ser Asn Cys Asp Lys Ile Thr Pro Gly 115 120 125 Met Leu Met Ala Ser Leu Arg Leu Asn Ile Pro Val Ile Phe Val Ser 130 135 140 Gly Gly Pro Met Glu Ala Gly Lys Thr Lys Leu Ser Asp Gln Ile Ile 145 150 155 160 Lys Leu Asp Leu Val Asp Ala Met Ile Gln Gly Ala Asp Pro Lys Val 165 170 175 Ser Asp Ser Gln Ser Asp Gln Val Glu Arg Ser Ala Cys Pro Thr Cys 180 185 190 Gly Ser Cys Ser Gly Met Phe Thr Ala Asn Ser Met Asn Cys Leu Thr 195 200 205 Glu Ala Leu Gly Leu Ser Gln Pro Gly Asn Gly Ser Leu Leu Ala Thr 210 215 220 His Ala Asp Arg Lys Gln Leu Phe Leu Asn Ala Gly Lys Arg Ile Val 225 230 235 240 Glu Leu Thr Lys Arg Tyr Tyr Glu Gln Asn Asp Glu Ser Ala Leu Pro 245 250 255 Arg Asn Ile Ala Ser Lys Ala Ala Phe Glu Asn Ala Met Thr Leu Asp 260 265 270 Ile Ala Met Gly Gly Ser Thr Asn Thr Val Leu His Leu Leu Ala Ala 275 280 285 Ala Gln Glu Ala Glu Ile Asp Phe Thr Met Ser Asp Ile Asp Lys Leu 290 295 300 Ser Arg Lys Val Pro Gln Leu Cys Lys Val Ala Pro Ser Thr Gln Lys 305 310 315 320 Tyr His Met Glu Asp Val His Arg Ala Gly Gly Val Ile Gly Ile Leu 325 330 335 Gly Glu Leu Asp Arg Ala Gly Leu Leu Asn Arg Asp Val Lys Asn Val 340 345 350 Leu Gly Leu Thr Leu Pro Gln Thr Leu Glu Gln Tyr Asp Val Met Leu 355 360 365 Thr Gln Asp Asp Ala Val Lys Asn Met Phe Arg Ala Gly Pro Ala Gly 370 375 380 Ile Arg Thr Thr Gln Ala Phe Ser Gln Asp Cys Arg Trp Asp Thr Leu 385 390 395 400 Asp Asp Asp Arg Ala Asn Gly Cys Ile Arg Ser Leu Glu His Ala Tyr 405 410 415 Ser Lys Asp Gly Gly Leu Ala Val Leu Tyr Gly Asn Phe Ala Glu Asn 420 425 430 Gly Cys Ile Val Lys Thr Ala Gly Val Asp Asp Ser Ile Leu Lys Phe 435 440 445 Thr Gly Pro Ala Lys Val Tyr Glu Ser Gln Asp Asp Ala Val Glu Ala 450 455 460 Ile Leu Gly Gly Lys Val Val Ala Gly Asp Val Val Val Ile Arg Tyr 465 470 475 480 Glu Gly Pro Lys Gly Gly Pro Gly Met Gln Glu Met Leu Tyr Pro Thr 485 490 495 Ser Phe Leu Lys Ser Met Gly Leu Gly Lys Ala Cys Ala Leu Ile Thr 500 505 510 Asp Gly Arg Phe Ser Gly Gly Thr Ser Gly Leu Ser Ile Gly His Val 515 520 525 Ser Pro Glu Ala Ala Ser Gly Gly Ser Ile Gly Leu Ile Glu Asp Gly 530 535 540 Asp Leu Ile Ala Ile Asp Ile Pro Asn Arg Gly Ile Gln Leu Gln Val 545 550 555 560 Ser Asp Ala Glu Leu Ala Ala Arg Arg Glu Ala Gln Asp Ala Arg Gly 565 570 575 Asp Lys Ala Trp Thr Pro Lys Asn Arg Glu Arg Gln Val Ser Phe Ala 580 585 590 Leu Arg Ala Tyr Ala Ser Leu Ala Thr Ser Ala Asp Lys Gly Ala Val 595 600 605 Arg Asp Lys Ser Lys Leu Gly Gly 610 615 <210> 18 <211> 1851 <212> DNA <213> Escherichia coli <400> 18 atgcctaagt accgttccgc caccaccact catggtcgta atatggcggg tgctcgtgcg 60 ctgtggcgcg ccaccggaat gaccgacgcc gatttcggta agccgattat cgcggttgtg 120 aactcgttca cccaatttgt accgggtcac gtccatctgc gcgatctcgg taaactggtc 180 gccgaacaaa ttgaagcggc tggcggcgtt gccaaagagt tcaacaccat tgcggtggat 240 gatgggattg ccatgggcca cggggggatg ctttattcac tgccatctcg cgaactgatc 300 gctgattccg ttgagtatat ggtcaacgcc cactgcgccg acgccatggt ctgcatctct 360 aactgcgaca aaatcacccc ggggatgctg atggcttccc tgcgcctgaa tattccggtg 420 atctttgttt ccggcggccc gatggaggcc gggaaaacca aactttccga tcagatcatc 480 aagctcgatc tggttgatgc gatgatccag ggcgcagacc cgaaagtatc tgactcccag 540 agcgatcagg ttgaacgttc cgcgtgtccg acctgcggtt cctgctccgg gatgtttacc 600 gctaactcaa tgaactgcct gaccgaagcg ctgggcctgt cgcagccggg caacggctcg 660 ctgctggcaa cccacgccga ccgtaagcag ctgttcctta atgctggtaa acgcattgtt 720 gaattgacca aacgttatta cgagcaaaac gacgaaagtg cactgccgcg taatatcgcc 780 agtaaggcgg cgtttgaaaa cgccatgacg ctggatatcg cgatgggtgg atcgactaac 840 accgtacttc acctgctggc ggcggcgcag gaagcggaaa tcgacttcac catgagtgat 900 atcgataagc tttcccgcaa ggttccacag ctgtgtaaag ttgcgccgag cacccagaaa 960 taccatatgg aagatgttca ccgtgctggt ggtgttatcg gtattctcgg cgaactggat 1020 cgcgcggggt tactgaaccg tgatgtgaaa aacgtacttg gcctgacgtt gccgcaaacg 1080 ctggaacaat acgacgttat gctgacccag gatgacgcgg taaaaaatat gttccgcgca 1140 ggtcctgcag gcattcgtac cacacaggca ttctcgcaag attgccgttg ggatacgctg 1200 gacgacgatc gcgccaatgg ctgtatccgc tcgctggaac acgcctacag caaagacggc 1260 ggcctggcgg tgctctacgg taactttgcg gaaaacggct gcatcgtgaa aacggcaggc 1320 gtcgatgaca gcatcctcaa attcaccggc ccggcgaaag tgtacgaaag ccaggacgat 1380 gcggtagaag cgattctcgg cggtaaagtt gtcgccggag atgtggtagt aattcgctat 1440 gaaggcccga aaggcggtcc ggggatgcag gaaatgctct acccaaccag cttcctgaaa 1500 tcaatgggtc tcggcaaagc ctgtgcgctg atcaccgacg gtcgtttctc tggtggcacc 1560 tctggtcttt ccatcggcca cgtctcaccg gaagcggcaa gcggcggcag cattggcctg 1620 attgaagatg gtgacctgat cgctatcgac atcccgaacc gtggcattca gttacaggta 1680 agcgatgccg aactggcggc gcgtcgtgaa gcgcaggacg ctcgaggtga caaagcctgg 1740 acgccgaaaa atcgtgaacg tcaggtctcc tttgccctgc gtgcttatgc cagcctggca 1800 accagcgccg acaaaggcgc ggtgcgcgat aaatcgaaac tggggggtta a 1851 <210> 19 <211> 585 <212> PRT <213> Saccharomyces cerevisiae <400> 19 Met Gly Leu Leu Thr Lys Val Ala Thr Ser Arg Gln Phe Ser Thr Thr 1 5 10 15 Arg Cys Val Ala Lys Lys Leu Asn Lys Tyr Ser Tyr Ile Ile Thr Glu 20 25 30 Pro Lys Gly Gln Gly Ala Ser Gln Ala Met Leu Tyr Ala Thr Gly Phe 35 40 45 Lys Lys Glu Asp Phe Lys Lys Pro Gln Val Gly Val Gly Ser Cys Trp 50 55 60 Trp Ser Gly Asn Pro Cys Asn Met His Leu Leu Asp Leu Asn Asn Arg 65 70 75 80 Cys Ser Gln Ser Ile Glu Lys Ala Gly Leu Lys Ala Met Gln Phe Asn 85 90 95 Thr Ile Gly Val Ser Asp Gly Ile Ser Met Gly Thr Lys Gly Met Arg 100 105 110 Tyr Ser Leu Gln Ser Arg Glu Ile Ile Ala Asp Ser Phe Glu Thr Ile 115 120 125 Met Met Ala Gln His Tyr Asp Ala Asn Ile Ala Ile Pro Ser Cys Asp 130 135 140 Lys Asn Met Pro Gly Val Met Met Ala Met Gly Arg His Asn Arg Pro 145 150 155 160 Ser Ile Met Val Tyr Gly Gly Thr Ile Leu Pro Gly His Pro Thr Cys 165 170 175 Gly Ser Ser Lys Ile Ser Lys Asn Ile Asp Ile Val Ser Ala Phe Gln 180 185 190 Ser Tyr Gly Glu Tyr Ile Ser Lys Gln Phe Thr Glu Glu Glu Arg Glu 195 200 205 Asp Val Val Glu His Ala Cys Pro Gly Pro Gly Ser Cys Gly Gly Met 210 215 220 Tyr Thr Ala Asn Thr Met Ala Ser Ala Ala Glu Val Leu Gly Leu Thr 225 230 235 240 Ile Pro Asn Ser Ser Ser Phe Pro Ala Val Ser Lys Glu Lys Leu Ala 245 250 255 Glu Cys Asp Asn Ile Gly Glu Tyr Ile Lys Lys Thr Met Glu Leu Gly 260 265 270 Ile Leu Pro Arg Asp Ile Leu Thr Lys Glu Ala Phe Glu Asn Ala Ile 275 280 285 Thr Tyr Val Val Ala Thr Gly Gly Ser Thr Asn Ala Val Leu His Leu 290 295 300 Val Ala Val Ala His Ser Ala Gly Val Lys Leu Ser Pro Asp Asp Phe 305 310 315 320 Gln Arg Ile Ser Asp Thr Thr Pro Leu Ile Gly Asp Phe Lys Pro Ser 325 330 335 Gly Lys Tyr Val Met Ala Asp Leu Ile Asn Val Gly Gly Thr Gln Ser 340 345 350 Val Ile Lys Tyr Leu Tyr Glu Asn Asn Met Leu His Gly Asn Thr Met 355 360 365 Thr Val Thr Gly Asp Thr Leu Ala Glu Arg Ala Lys Lys Ala Pro Ser 370 375 380 Leu Pro Glu Gly Gln Glu Ile Ile Lys Pro Leu Ser His Pro Ile Lys 385 390 395 400 Ala Asn Gly His Leu Gln Ile Leu Tyr Gly Ser Leu Ala Pro Gly Gly 405 410 415 Ala Val Gly Lys Ile Thr Gly Lys Glu Gly Thr Tyr Phe Lys Gly Arg 420 425 430 Ala Arg Val Phe Glu Glu Glu Gly Ala Phe Ile Glu Ala Leu Glu Arg 435 440 445 Gly Glu Ile Lys Lys Gly Glu Lys Thr Val Val Val Ile Arg Tyr Glu 450 455 460 Gly Pro Arg Gly Ala Pro Gly Met Pro Glu Met Leu Lys Pro Ser Ser 465 470 475 480 Ala Leu Met Gly Tyr Gly Leu Gly Lys Asp Val Ala Leu Leu Thr Asp 485 490 495 Gly Arg Phe Ser Gly Gly Ser His Gly Phe Leu Ile Gly His Ile Val 500 505 510 Pro Glu Ala Ala Glu Gly Gly Pro Ile Gly Leu Val Arg Asp Gly Asp 515 520 525 Glu Ile Ile Ile Asp Ala Asp Asn Asn Lys Ile Asp Leu Leu Val Ser 530 535 540 Asp Lys Glu Met Ala Gln Arg Lys Gln Ser Trp Val Ala Pro Pro Pro 545 550 555 560 Arg Tyr Thr Arg Gly Thr Leu Ser Lys Tyr Ala Lys Leu Val Ser Asn 565 570 575 Ala Ser Asn Gly Cys Val Leu Asp Ala 580 585 <210> 20 <211> 1131 <212> DNA <213> Saccharomyces cerevisiae <400> 20 atgaccttgg cacccctaga cgcctccaaa gttaagataa ctaccacaca acatgcatct 60 aagccaaaac cgaacagtga gttagtgttt ggcaagagct tcacggacca catgttaact 120 gcggaatgga cagctgaaaa agggtggggt accccagaga ttaaacctta tcaaaatctg 180 tctttagacc cttccgcggt ggttttccat tatgcttttg agctattcga agggatgaag 240 gcttacagaa cggtggacaa caaaattaca atgtttcgtc cagatatgaa tatgaagcgc 300 atgaataagt ctgctcagag aatctgtttg ccaacgttcg acccagaaga gttgattacc 360 ctaattggga aactgatcca gcaagataag tgcttagttc ctgaaggaaa aggttactct 420 ttatatatca ggcctacatt aatcggcact acggccggtt taggggtttc cacgcctgat 480 agagccttgc tatatgtcat ttgctgccct gtgggtcctt attacaaaac tggatttaag 540 gcggtcagac tggaagccac tgattatgcc acaagagctt ggccaggagg ctgtggtgac 600 aagaaactag gtgcaaacta cgccccctgc gtcctgccac aattgcaagc tgcttcaagg 660 ggttaccaac aaaatttatg gctatttggt ccaaataaca acattactga agtcggcacc 720 atgaatgctt ttttcgtgtt taaagatagt aaaacgggca agaaggaact agttactgct 780 ccactagacg gtaccatttt ggaaggtgtt actagggatt ccattttaaa tcttgctaaa 840 gaaagactcg aaccaagtga atggaccatt agtgaacgct acttcactat aggcgaagtt 900 actgagagat ccaagaacgg tgaactactt gaagcctttg gttctggtac tgctgcgatt 960 gtttctccca ttaaggaaat cggctggaaa ggcgaacaaa ttaatattcc gttgttgccc 1020 ggcgaacaaa ccggtccatt ggccaaagaa gttgcacaat ggattaatgg aatccaatat 1080 ggcgagactg agcatggcaa ttggtcaagg gttgttactg atttgaactg a 1131 <210> 21 <211> 550 <212> PRT <213> Methanococcus maripaludis <400> 21 Met Ile Ser Asp Asn Val Lys Lys Gly Val Ile Arg Thr Pro Asn Arg 1 5 10 15 Ala Leu Leu Lys Ala Cys Gly Tyr Thr Asp Glu Asp Met Glu Lys Pro 20 25 30 Phe Ile Gly Ile Val Asn Ser Phe Thr Glu Val Val Pro Gly His Ile 35 40 45 His Leu Arg Thr Leu Ser Glu Ala Ala Lys His Gly Val Tyr Ala Asn 50 55 60 Gly Gly Thr Pro Phe Glu Phe Asn Thr Ile Gly Ile Cys Asp Gly Ile 65 70 75 80 Ala Met Gly His Glu Gly Met Lys Tyr Ser Leu Pro Ser Arg Glu Ile 85 90 95 Ile Ala Asp Ala Val Glu Ser Met Ala Arg Ala His Gly Phe Asp Gly 100 105 110 Leu Val Leu Ile Pro Thr Cys Asp Lys Ile Val Pro Gly Met Ile Met 115 120 125 Gly Ala Leu Arg Leu Asn Ile Pro Phe Ile Val Val Thr Gly Gly Pro 130 135 140 Met Leu Pro Gly Glu Phe Gln Gly Lys Lys Tyr Glu Leu Ile Ser Leu 145 150 155 160 Phe Glu Gly Val Gly Glu Tyr Gln Val Gly Lys Ile Thr Glu Glu Glu 165 170 175 Leu Lys Cys Ile Glu Asp Cys Ala Cys Ser Gly Ala Gly Ser Cys Ala 180 185 190 Gly Leu Tyr Thr Ala Asn Ser Met Ala Cys Leu Thr Glu Ala Leu Gly 195 200 205 Leu Ser Leu Pro Met Cys Ala Thr Thr His Ala Val Asp Ala Gln Lys 210 215 220 Val Arg Leu Ala Lys Lys Ser Gly Ser Lys Ile Val Asp Met Val Lys 225 230 235 240 Glu Asp Leu Lys Pro Thr Asp Ile Leu Thr Lys Glu Ala Phe Glu Asn 245 250 255 Ala Ile Leu Val Asp Leu Ala Leu Gly Gly Ser Thr Asn Thr Thr Leu 260 265 270 His Ile Pro Ala Ile Ala Asn Glu Ile Glu Asn Lys Phe Ile Thr Leu 275 280 285 Asp Asp Phe Asp Arg Leu Ser Asp Glu Val Pro His Ile Ala Ser Ile 290 295 300 Lys Pro Gly Gly Glu His Tyr Met Ile Asp Leu His Asn Ala Gly Gly 305 310 315 320 Ile Pro Ala Val Leu Asn Val Leu Lys Glu Lys Ile Arg Asp Thr Lys 325 330 335 Thr Val Asp Gly Arg Ser Ile Leu Glu Ile Ala Glu Ser Val Lys Tyr 340 345 350 Ile Asn Tyr Asp Val Ile Arg Lys Val Glu Ala Pro Val His Glu Thr 355 360 365 Ala Gly Leu Arg Val Leu Lys Gly Asn Leu Ala Pro Asn Gly Cys Val 370 375 380 Val Lys Ile Gly Ala Val His Pro Lys Met Tyr Lys His Asp Gly Pro 385 390 395 400 Ala Lys Val Tyr Asn Ser Glu Asp Glu Ala Ile Ser Ala Ile Leu Gly 405 410 415 Gly Lys Ile Val Glu Gly Asp Val Ile Val Ile Arg Tyr Glu Gly Pro 420 425 430 Ser Gly Gly Pro Gly Met Arg Glu Met Leu Ser Pro Thr Ser Ala Ile 435 440 445 Cys Gly Met Gly Leu Asp Asp Ser Val Ala Leu Ile Thr Asp Gly Arg 450 455 460 Phe Ser Gly Gly Ser Arg Gly Pro Cys Ile Gly His Val Ser Pro Glu 465 470 475 480 Ala Ala Ala Gly Gly Val Ile Ala Ala Ile Glu Asn Gly Asp Ile Ile 485 490 495 Lys Ile Asp Met Ile Glu Lys Glu Ile Asn Val Asp Leu Asp Glu Ser 500 505 510 Val Ile Lys Glu Arg Leu Ser Lys Leu Gly Glu Phe Glu Pro Lys Ile 515 520 525 Lys Lys Gly Tyr Leu Ser Arg Tyr Ser Lys Leu Val Ser Ser Ala Asp 530 535 540 Glu Gly Ala Val Leu Lys 545 550 <210> 22 <211> 1653 <212> DNA <213> Methanococcus maripaludis <400> 22 atgataagtg ataacgtcaa aaagggagtt ataagaactc caaaccgagc tcttttaaag 60 gcttgcggat atacagacga agacatggaa aaaccattta ttggaattgt aaacagcttt 120 acagaagttg ttcccggcca cattcactta agaacattat cagaagcggc taaacatggt 180 gtttatgcaa acggtggaac accatttgaa tttaatacca ttggaatttg cgacggtatt 240 gcaatgggcc acgaaggtat gaaatactct ttaccttcaa gagaaattat tgcagacgct 300 gttgaatcaa tggcaagagc acatggattt gatggtcttg ttttaattcc tacgtgtgat 360 aaaatcgttc ctggaatgat aatgggtgct ttaagactaa acattccatt tattgtagtt 420 actggaggac caatgcttcc cggagaattc caaggtaaaa aatacgaact tatcagcctt 480 tttgaaggtg tcggagaata ccaagttgga aaaattactg aagaagagtt aaagtgcatt 540 gaagactgtg catgttcagg tgctggaagt tgtgcagggc tttacactgc aaacagtatg 600 gcctgcctta cagaagcttt gggactctct cttccaatgt gtgcaacaac gcatgcagtt 660 gatgcccaaa aagttaggct tgctaaaaaa agtggctcaa aaattgttga tatggtaaaa 720 gaagacctaa aaccaacaga catattaaca aaagaagctt ttgaaaatgc tattttagtt 780 gaccttgcac ttggtggatc aacaaacaca acattacaca ttcctgcaat tgcaaatgaa 840 attgaaaata aattcataac tctcgatgac tttgacaggt taagcgatga agttccacac 900 attgcatcaa tcaaaccagg tggagaacac tacatgattg atttacacaa tgctggaggt 960 attcctgcgg tattgaacgt tttaaaagaa aaaattagag atacaaaaac agttgatgga 1020 agaagcattt tggaaatcgc agaatctgtt aaatacataa attacgacgt tataagaaaa 1080 gtggaagctc cggttcacga aactgctggt ttaagggttt taaagggaaa tcttgctcca 1140 aacggttgcg ttgtaaaaat cggtgcagta catccgaaaa tgtacaaaca cgatggacct 1200 gcaaaagttt acaattccga agatgaagca atttctgcga tacttggcgg aaaaattgta 1260 gaaggggacg ttatagtaat cagatacgaa ggaccatcag gaggccctgg aatgagagaa 1320 atgctctccc caacttcagc aatctgtgga atgggtcttg atgacagcgt tgcattgatt 1380 actgatggaa gattcagtgg tggaagtagg ggcccatgta tcggacacgt ttctccagaa 1440 gctgcagctg gcggagtaat tgctgcaatt gaaaacgggg atatcatcaa aatcgacatg 1500 attgaaaaag aaataaatgt tgatttagat gaatcagtca ttaaagaaag actctcaaaa 1560 ctgggagaat ttgagcctaa aatcaaaaaa ggctatttat caagatactc aaaacttgtc 1620 tcatctgctg acgaaggggc agttttaaaa taa 1653 <210> 23 <211> 558 <212> PRT <213> Bacillus subtilis <400> 23 Met Ala Glu Leu Arg Ser Asn Met Ile Thr Gln Gly Ile Asp Arg Ala 1 5 10 15 Pro His Arg Ser Leu Leu Arg Ala Ala Gly Val Lys Glu Glu Asp Phe 20 25 30 Gly Lys Pro Phe Ile Ala Val Cys Asn Ser Tyr Ile Asp Ile Val Pro 35 40 45 Gly His Val His Leu Gln Glu Phe Gly Lys Ile Val Lys Glu Ala Ile 50 55 60 Arg Glu Ala Gly Gly Val Pro Phe Glu Phe Asn Thr Ile Gly Val Asp 65 70 75 80 Asp Gly Ile Ala Met Gly His Ile Gly Met Arg Tyr Ser Leu Pro Ser 85 90 95 Arg Glu Ile Ile Ala Asp Ser Val Glu Thr Val Val Ser Ala His Trp 100 105 110 Phe Asp Gly Met Val Cys Ile Pro Asn Cys Asp Lys Ile Thr Pro Gly 115 120 125 Met Leu Met Ala Ala Met Arg Ile Asn Ile Pro Thr Ile Phe Val Ser 130 135 140 Gly Gly Pro Met Ala Ala Gly Arg Thr Ser Asp Gly Arg Lys Ile Ser 145 150 155 160 Leu Ser Ser Val Phe Glu Gly Val Gly Ala Tyr Gln Ala Gly Lys Ile 165 170 175 Asn Glu Asn Glu Leu Gln Glu Leu Glu Gln Phe Gly Cys Pro Thr Cys 180 185 190 Gly Ser Cys Ser Gly Met Phe Thr Ala Asn Ser Met Asn Cys Leu Ser 195 200 205 Glu Ala Leu Gly Leu Ala Leu Pro Gly Asn Gly Thr Ile Leu Ala Thr 210 215 220 Ser Pro Glu Arg Lys Glu Phe Val Arg Lys Ser Ala Ala Gln Leu Met 225 230 235 240 Glu Thr Ile Arg Lys Asp Ile Lys Pro Arg Asp Ile Val Thr Val Lys 245 250 255 Ala Ile Asp Asn Ala Phe Ala Leu Asp Met Ala Leu Gly Gly Ser Thr 260 265 270 Asn Thr Val Leu His Thr Leu Ala Leu Ala Asn Glu Ala Gly Val Glu 275 280 285 Tyr Ser Leu Glu Arg Ile Asn Glu Val Ala Glu Arg Val Pro His Leu 290 295 300 Ala Lys Leu Ala Pro Ala Ser Asp Val Phe Ile Glu Asp Leu His Glu 305 310 315 320 Ala Gly Gly Val Ser Ala Ala Leu Asn Glu Leu Ser Lys Lys Glu Gly 325 330 335 Ala Leu His Leu Asp Ala Leu Thr Val Thr Gly Lys Thr Leu Gly Glu 340 345 350 Thr Ile Ala Gly His Glu Val Lys Asp Tyr Asp Val Ile His Pro Leu 355 360 365 Asp Gln Pro Phe Thr Glu Lys Gly Gly Leu Ala Val Leu Phe Gly Asn 370 375 380 Leu Ala Pro Asp Gly Ala Ile Ile Lys Thr Gly Gly Val Gln Asn Gly 385 390 395 400 Ile Thr Arg His Glu Gly Pro Ala Val Val Phe Asp Ser Gln Asp Glu 405 410 415 Ala Leu Asp Gly Ile Ile Asn Arg Lys Val Lys Glu Gly Asp Val Val 420 425 430 Ile Ile Arg Tyr Glu Gly Pro Lys Gly Gly Pro Gly Met Pro Glu Met 435 440 445 Leu Ala Pro Thr Ser Gln Ile Val Gly Met Gly Leu Gly Pro Lys Val 450 455 460 Ala Leu Ile Thr Asp Gly Arg Phe Ser Gly Ala Ser Arg Gly Leu Ser 465 470 475 480 Ile Gly His Val Ser Pro Glu Ala Ala Glu Gly Gly Pro Leu Ala Phe 485 490 495 Val Glu Asn Gly Asp His Ile Ile Val Asp Ile Glu Lys Arg Ile Leu 500 505 510 Asp Val Gln Val Pro Glu Glu Glu Trp Glu Lys Arg Lys Ala Asn Trp 515 520 525 Lys Gly Phe Glu Pro Lys Val Lys Thr Gly Tyr Leu Ala Arg Tyr Ser 530 535 540 Lys Leu Val Thr Ser Ala Asn Thr Gly Gly Ile Met Lys Ile 545 550 555 <210> 24 <211> 1677 <212> DNA <213> Bacillus subtilis <400> 24 atggcagaat tacgcagtaa tatgatcaca caaggaatcg atagagctcc gcaccgcagt 60 ttgcttcgtg cagcaggggt aaaagaagag gatttcggca agccgtttat tgcggtgtgt 120 aattcataca ttgatatcgt tcccggtcat gttcacttgc aggagtttgg gaaaatcgta 180 aaagaagcaa tcagagaagc agggggcgtt ccgtttgaat ttaataccat tggggtagat 240 gatggcatcg caatggggca tatcggtatg agatattcgc tgccaagccg tgaaattatc 300 gcagactctg tggaaacggt tgtatccgca cactggtttg acggaatggt ctgtattccg 360 aactgcgaca aaatcacacc gggaatgctt atggcggcaa tgcgcatcaa cattccgacg 420 atttttgtca gcggcggacc gatggcggca ggaagaacaa gttacgggcg aaaaatctcc 480 ctttcctcag tattcgaagg ggtaggcgcc taccaagcag ggaaaatcaa cgaaaacgag 540 cttcaagaac tagagcagtt cggatgccca acgtgcgggt cttgctcagg catgtttacg 600 gcgaactcaa tgaactgtct gtcagaagca cttggtcttg ctttgccggg taatggaacc 660 attctggcaa catctccgga acgcaaagag tttgtgagaa aatcggctgc gcaattaatg 720 gaaacgattc gcaaagatat caaaccgcgt gatattgtta cagtaaaagc gattgataac 780 gcgtttgcac tcgatatggc gctcggaggt tctacaaata ccgttcttca tacccttgcc 840 cttgcaaacg aagccggcgt tgaatactct ttagaacgca ttaacgaagt cgctgagcgc 900 gtgccgcact tggctaagct ggcgcctgca tcggatgtgt ttattgaaga tcttcacgaa 960 gcgggcggcg tttcagcggc tctgaatgag ctttcgaaga aagaaggagc gcttcattta 1020 gatgcgctga ctgttacagg aaaaactctt ggagaaacca ttgccggaca tgaagtaaag 1080 gattatgacg tcattcaccc gctggatcaa ccattcactg aaaagggagg ccttgctgtt 1140 ttattcggta atctagctcc ggacggcgct atcattaaaa caggcggcgt acagaatggg 1200 attacaagac acgaagggcc ggctgtcgta ttcgattctc aggacgaggc gcttgacggc 1260 attatcaacc gaaaagtaaa agaaggcgac gttgtcatca tcagatacga agggccaaaa 1320 ggcggacctg gcatgccgga aatgctggcg ccaacatccc aaatcgttgg aatgggactc 1380 gggccaaaag tggcattgat tacggacgga cgtttttccg gagcctcccg tggcctctca 1440 atcggccacg tatcacctga ggccgctgag ggcgggccgc ttgcctttgt tgaaaacgga 1500 gaccatatta tcgttgatat tgaaaaacgc atcttggatg tacaagtgcc agaagaagag 1560 tgggaaaaac gaaaagcgaa ctggaaaggt tttgaaccga aagtgaaaac cggctacctg 1620 gcacgttatt ctaaacttgt gacaagtgcc aacaccggcg gtattatgaa aatctag 1677 <210> 25 <211> 547 <212> PRT <213> Lactococcus lactis <400> 25 Met Tyr Thr Val Gly Asp Tyr Leu Leu Asp Arg Leu His Glu Leu Gly 1 5 10 15 Ile Glu Glu Ile Phe Gly Val Pro Gly Asp Tyr Asn Leu Gln Phe Leu 20 25 30 Asp Gln Ile Ile Ser Arg Glu Asp Met Lys Trp Ile Gly Asn Ala Asn 35 40 45 Glu Leu Asn Ala Ser Tyr Met Ala Asp Gly Tyr Ala Arg Thr Lys Lys 50 55 60 Ala Ala Ala Phe Leu Thr Thr Phe Gly Val Gly Glu Leu Ser Ala Ile 65 70 75 80 Asn Gly Leu Ala Gly Ser Tyr Ala Glu Asn Leu Pro Val Val Glu Ile 85 90 95 Val Gly Ser Pro Thr Ser Lys Val Gln Asn Asp Gly Lys Phe Val His 100 105 110 His Thr Leu Ala Asp Gly Asp Phe Lys His Phe Met Lys Met His Glu 115 120 125 Pro Val Thr Ala Ala Arg Thr Leu Leu Thr Ala Glu Asn Ala Thr Tyr 130 135 140 Glu Ile Asp Arg Val Leu Ser Gln Leu Leu Lys Glu Arg Lys Pro Val 145 150 155 160 Tyr Ile Asn Leu Pro Val Asp Val Ala Ala Ala Lys Ala Glu Lys Pro 165 170 175 Ala Leu Ser Leu Glu Lys Glu Ser Ser Thr Thr Asn Thr Thr Glu Gln 180 185 190 Val Ile Leu Ser Lys Ile Glu Glu Ser Leu Lys Asn Ala Gln Lys Pro 195 200 205 Val Val Ile Ala Gly His Glu Val Ile Ser Phe Gly Leu Glu Lys Thr 210 215 220 Val Thr Gln Phe Val Ser Glu Thr Lys Leu Pro Ile Thr Thr Leu Asn 225 230 235 240 Phe Gly Lys Ser Ala Val Asp Glu Ser Leu Pro Ser Phe Leu Gly Ile 245 250 255 Tyr Asn Gly Lys Leu Ser Glu Ile Ser Leu Lys Asn Phe Val Glu Ser 260 265 270 Ala Asp Phe Ile Leu Met Leu Gly Val Lys Leu Thr Asp Ser Ser Thr 275 280 285 Gly Ala Phe Thr His His Leu Asp Glu Asn Lys Met Ile Ser Leu Asn 290 295 300 Ile Asp Glu Gly Ile Ile Phe Asn Lys Val Val Glu Asp Phe Asp Phe 305 310 315 320 Arg Ala Val Val Ser Ser Leu Ser Glu Leu Lys Gly Ile Glu Tyr Glu 325 330 335 Gly Gln Tyr Ile Asp Lys Gln Tyr Glu Glu Phe Ile Pro Ser Ser Ala 340 345 350 Pro Leu Ser Gln Asp Arg Leu Trp Gln Ala Val Glu Ser Leu Thr Gln 355 360 365 Ser Asn Glu Thr Ile Val Ala Glu Gln Gly Thr Ser Phe Phe Gly Ala 370 375 380 Ser Thr Ile Phe Leu Lys Ser Asn Ser Arg Phe Ile Gly Gln Pro Leu 385 390 395 400 Trp Gly Ser Ile Gly Tyr Thr Phe Pro Ala Ala Leu Gly Ser Gln Ile 405 410 415 Ala Asp Lys Glu Ser Arg His Leu Leu Phe Ile Gly Asp Gly Ser Leu 420 425 430 Gln Leu Thr Val Gln Glu Leu Gly Leu Ser Ile Arg Glu Lys Leu Asn 435 440 445 Pro Ile Cys Phe Ile Ile Asn Asn Asp Gly Tyr Thr Val Glu Arg Glu 450 455 460 Ile His Gly Pro Thr Gln Ser Tyr Asn Asp Ile Pro Met Trp Asn Tyr 465 470 475 480 Ser Lys Leu Pro Glu Thr Phe Gly Ala Thr Glu Asp Arg Val Val Ser 485 490 495 Lys Ile Val Arg Thr Glu Asn Glu Phe Val Ser Val Met Lys Glu Ala 500 505 510 Gln Ala Asp Val Asn Arg Met Tyr Trp Ile Glu Leu Val Leu Glu Lys 515 520 525 Glu Asp Ala Pro Lys Leu Leu Lys Lys Met Gly Lys Leu Phe Ala Glu 530 535 540 Gln Asn Lys 545 <210> 26 <211> 1828 <212> DNA <213> Lactococcus lactis <400> 26 tttaaataag tcaatatcgt tgacttattt agaagaaaga gttattcttt aaatgtcaag 60 ttagttgact aaattaaata taaaatatgg aggaatgtga tgtatacagt aggagattac 120 ctgttagacc gattacacga gttgggaatt gaagaaattt ttggagttcc tggtgactat 180 aacttacaat ttttagatca aattatttca cgcgaagata tgaaatggat tggaaatgct 240 aatgaattaa atgcttctta tatggctgat ggttatgctc gtactaaaaa agctgccgca 300 tttctcacca catttggagt cggcgaattg agtgcgatca atggactggc aggaagttat 360 gccgaaaatt taccagtagt agaaattgtt ggttcaccaa cttcaaaagt acaaaatgac 420 ggaaaatttg tccatcatac actagcagat ggtgatttta aacactttat gaagatgcat 480 gaacctgtta cagcagcgcg gactttactg acagcagaaa atgccacata tgaaattgac 540 cgagtacttt ctcaattact aaaagaaaga aaaccagtct atattaactt accagtcgat 600 gttgctgcag caaaagcaga gaagcctgca ttatctttag aaaaagaaag ctctacaaca 660 aatacaactg aacaagtgat tttgagtaag attgaagaaa gtttgaaaaa tgcccaaaaa 720 ccagtagtga ttgcaggaca cgaagtaatt agttttggtt tagaaaaaac ggtaactcag 780 tttgtttcag aaacaaaact accgattacg acactaaatt ttggtaaaag tgctgttgat 840 gaatctttgc cctcattttt aggaatatat aacgggaaac tttcagaaat cagtcttaaa 900 aattttgtgg agtccgcaga ctttatccta atgcttggag tgaagcttac ggactcctca 960 acaggtgcat tcacacatca tttagatgaa aataaaatga tttcactaaa catagatgaa 1020 ggaataattt tcaataaagt ggtagaagat tttgatttta gagcagtggt ttcttcttta 1080 tcagaattaa aaggaataga atatgaagga caatatattg ataagcaata tgaagaattt 1140 attccatcaa gtgctccctt atcacaagac cgtctatggc aggcagttga aagtttgact 1200 caaagcaatg aaacaatcgt tgctgaacaa ggaacctcat tttttggagc ttcaacaatt 1260 ttcttaaaat caaatagtcg ttttattgga caacctttat ggggttctat tggatatact 1320 tttccagcgg ctttaggaag ccaaattgcg gataaagaga gcagacacct tttatttatt 1380 ggtgatggtt cacttcaact taccgtacaa gaattaggac tatcaatcag agaaaaactc 1440 aatccaattt gttttatcat aaataatgat ggttatacag ttgaaagaga aatccacgga 1500 cctactcaaa gttataacga cattccaatg tggaattact cgaaattacc agaaacattt 1560 ggagcaacag aagatcgtgt agtatcaaaa attgttagaa cagagaatga atttgtgtct 1620 gtcatgaaag aagcccaagc agatgtcaat agaatgtatt ggatagaact agttttggaa 1680 aaagaagatg cgccaaaatt actgaaaaaa atgggtaaat tatttgctga gcaaaataaa 1740 tagatatcaa cggatgatga aaagtaaaat agacaaagtc caataatttt ataaaaagta 1800 aaaacattag gattttccta atgttttt 1828 <210> 27 <211> 548 <212> PRT <213> Lactococcus lactis <400> 27 Met Tyr Thr Val Gly Asp Tyr Leu Leu Asp Arg Leu His Glu Leu Gly 1 5 10 15 Ile Glu Glu Ile Phe Gly Val Pro Gly Asp Tyr Asn Leu Gln Phe Leu 20 25 30 Asp Gln Ile Ile Ser His Lys Asp Met Lys Trp Val Gly Asn Ala Asn 35 40 45 Glu Leu Asn Ala Ser Tyr Met Ala Asp Gly Tyr Ala Arg Thr Lys Lys 50 55 60 Ala Ala Ala Phe Leu Thr Thr Phe Gly Val Gly Glu Leu Ser Ala Val 65 70 75 80 Asn Gly Leu Ala Gly Ser Tyr Ala Glu Asn Leu Pro Val Val Glu Ile 85 90 95 Val Gly Ser Pro Thr Ser Lys Val Gln Asn Glu Gly Lys Phe Val His 100 105 110 His Thr Leu Ala Asp Gly Asp Phe Lys His Phe Met Lys Met His Glu 115 120 125 Pro Val Thr Ala Ala Arg Thr Leu Leu Thr Ala Glu Asn Ala Thr Val 130 135 140 Glu Ile Asp Arg Val Leu Ser Ala Leu Leu Lys Glu Arg Lys Pro Val 145 150 155 160 Tyr Ile Asn Leu Pro Val Asp Val Ala Ala Ala Lys Ala Glu Lys Pro 165 170 175 Ser Leu Pro Leu Lys Lys Glu Asn Ser Thr Ser Asn Thr Ser Asp Gln 180 185 190 Glu Ile Leu Asn Lys Ile Gln Glu Ser Leu Lys Asn Ala Lys Lys Pro 195 200 205 Ile Val Ile Thr Gly His Glu Ile Ile Ser Phe Gly Leu Glu Lys Thr 210 215 220 Val Thr Gln Phe Ile Ser Lys Thr Lys Leu Pro Ile Thr Thr Leu Asn 225 230 235 240 Phe Gly Lys Ser Ser Val Asp Glu Ala Leu Pro Ser Phe Leu Gly Ile 245 250 255 Tyr Asn Gly Thr Leu Ser Glu Pro Asn Leu Lys Glu Phe Val Glu Ser 260 265 270 Ala Asp Phe Ile Leu Met Leu Gly Val Lys Leu Thr Asp Ser Ser Thr 275 280 285 Gly Ala Phe Thr His His Leu Asn Glu Asn Lys Met Ile Ser Leu Asn 290 295 300 Ile Asp Glu Gly Lys Ile Phe Asn Glu Arg Ile Gln Asn Phe Asp Phe 305 310 315 320 Glu Ser Leu Ile Ser Ser Leu Leu Asp Leu Ser Glu Ile Glu Tyr Lys 325 330 335 Gly Lys Tyr Ile Asp Lys Lys Gln Glu Asp Phe Val Pro Ser Asn Ala 340 345 350 Leu Leu Ser Gln Asp Arg Leu Trp Gln Ala Val Glu Asn Leu Thr Gln 355 360 365 Ser Asn Glu Thr Ile Val Ala Glu Gln Gly Thr Ser Phe Phe Gly Ala 370 375 380 Ser Ser Ile Phe Leu Lys Ser Lys Ser His Phe Ile Gly Gln Pro Leu 385 390 395 400 Trp Gly Ser Ile Gly Tyr Thr Phe Pro Ala Ala Leu Gly Ser Gln Ile 405 410 415 Ala Asp Lys Glu Ser Arg His Leu Leu Phe Ile Gly Asp Gly Ser Leu 420 425 430 Gln Leu Thr Val Gln Glu Leu Gly Leu Ala Ile Arg Glu Lys Ile Asn 435 440 445 Pro Ile Cys Phe Ile Ile Asn Asn Asp Gly Tyr Thr Val Glu Arg Glu 450 455 460 Ile His Gly Pro Asn Gln Ser Tyr Asn Asp Ile Pro Met Trp Asn Tyr 465 470 475 480 Ser Lys Leu Pro Glu Ser Phe Gly Ala Thr Glu Asp Arg Val Val Ser 485 490 495 Lys Ile Val Arg Thr Glu Asn Glu Phe Val Ser Val Met Lys Glu Ala 500 505 510 Gln Ala Asp Pro Asn Arg Met Tyr Trp Ile Glu Leu Ile Leu Ala Lys 515 520 525 Glu Gly Ala Pro Lys Val Leu Lys Lys Met Gly Lys Leu Phe Ala Glu 530 535 540 Gln Asn Lys Ser 545 <210> 28 <211> 1954 <212> DNA <213> Lactococcus lactis <400> 28 ctagagtttt ctttagtcat aattcactcc ttttattagt ctattatact tgataattca 60 aataagtcaa tatcgttgac ttatttaaag aaaagcgtta ttctataaat gtcaagttga 120 ttgaccaata tataataaaa tatggaggaa tgcgatgtat acagtaggag attacctatt 180 agaccgatta cacgagttag gaattgaaga aatttttgga gtccctggag actataactt 240 acaattttta gatcaaatta tttcccacaa ggatatgaaa tgggtcggaa atgctaatga 300 attaaatgct tcatatatgg ctgatggcta tgctcgtact aaaaaagctg ccgcatttct 360 tacaaccttt ggagtaggtg aattgagtgc agttaatgga ttagcaggaa gttacgccga 420 aaatttacca gtagtagaaa tagtgggatc acctacatca aaagttcaaa atgaaggaaa 480 atttgttcat catacgctgg ctgacggtga ttttaaacac tttatgaaaa tgcacgaacc 540 tgttacagca gctcgaactt tactgacagc agaaaatgca accgttgaaa ttgaccgagt 600 actttctgca ctattaaaag aaagaaaacc tgtctatatc aacttaccag ttgatgttgc 660 tgctgcaaaa gcagagaaac cctcactccc tttgaaaaag gaaaactcaa cttcaaatac 720 aagtgaccaa gaaattttga acaaaattca agaaagcttg aaaaatgcca aaaaaccaat 780 cgtgattaca ggacatgaaa taattagttt tggcttagaa aaaacagtca ctcaatttat 840 ttcaaagaca aaactaccta ttacgacatt aaactttggt aaaagttcag ttgatgaagc 900 cctcccttca tttttaggaa tctataatgg tacactctca gagcctaatc ttaaagaatt 960 cgtggaatca gccgacttca tcttgatgct tggagttaaa ctcacagact cttcaacagg 1020 agccttcact catcatttaa atgaaaataa aatgatttca ctgaatatag atgaaggaaa 1080 aatatttaac gaaagaatcc aaaattttga ttttgaatcc ctcatctcct ctctcttaga 1140 cctaagcgaa atagaataca aaggaaaata tatcgataaa aagcaagaag actttgttcc 1200 atcaaatgcg cttttatcac aagaccgcct atggcaagca gttgaaaacc taactcaaag 1260 caatgaaaca atcgttgctg aacaagggac atcattcttt ggcgcttcat caattttctt 1320 aaaatcaaag agtcatttta ttggtcaacc cttatgggga tcaattggat atacattccc 1380 agcagcatta ggaagccaaa ttgcagataa agaaagcaga caccttttat ttattggtga 1440 tggttcactt caacttacag tgcaagaatt aggattagca atcagagaaa aaattaatcc 1500 aatttgcttt attatcaata atgatggtta tacagtcgaa agagaaattc atggaccaaa 1560 tcaaagctac aatgatattc caatgtggaa ttactcaaaa ttaccagaat cgtttggagc 1620 aacagaagat cgagtagtct caaaaatcgt tagaactgaa aatgaatttg tgtctgtcat 1680 gaaagaagct caagcagatc caaatagaat gtactggatt gagttaattt tggcaaaaga 1740 aggtgcacca aaagtactga aaaaaatggg caaactattt gctgaacaaa ataaatcata 1800 atttataaat agtaaaaaac attaggaaat acctaatgtt tttttgttga ctaaatcaat 1860 ccctctttat atagaaaacc ttagtttctc aaagacaact taattaagcc tgccaaattg 1920 gaactcgcaa aatgtaatct atcctctgct ccta 1954 <210> 29 <211> 550 <212> PRT <213> Salmonella typhimurium <400> 29 Met Gln Asn Pro Tyr Thr Val Ala Asp Tyr Leu Leu Asp Arg Leu Ala 1 5 10 15 Gly Cys Gly Ile Gly His Leu Phe Gly Val Pro Gly Asp Tyr Asn Leu 20 25 30 Gln Phe Leu Asp His Val Ile Asp His Pro Thr Leu Arg Trp Val Gly 35 40 45 Cys Ala Asn Glu Leu Asn Ala Ala Tyr Ala Ala Asp Gly Tyr Ala Arg 50 55 60 Met Ser Gly Ala Gly Ala Leu Leu Thr Thr Phe Gly Val Gly Glu Leu 65 70 75 80 Ser Ala Ile Asn Gly Ile Ala Gly Ser Tyr Ala Glu Tyr Val Pro Val 85 90 95 Leu His Ile Val Gly Ala Pro Cys Ser Ala Ala Gln Gln Arg Gly Glu 100 105 110 Leu Met His His Thr Leu Gly Asp Gly Asp Phe Arg His Phe Tyr Arg 115 120 125 Met Ser Gln Ala Ile Ser Ala Ala Ser Ala Ile Leu Asp Glu Gln Asn 130 135 140 Ala Cys Phe Glu Ile Asp Arg Val Leu Gly Glu Met Leu Ala Ala Arg 145 150 155 160 Arg Pro Gly Tyr Ile Met Leu Pro Ala Asp Val Ala Lys Lys Thr Ala 165 170 175 Ile Pro Pro Thr Gln Ala Leu Ala Leu Pro Val His Glu Ala Gln Ser 180 185 190 Gly Val Glu Thr Ala Phe Arg Tyr His Ala Arg Gln Cys Leu Met Asn 195 200 205 Ser Arg Arg Ile Ala Leu Leu Ala Asp Phe Leu Ala Gly Arg Phe Gly 210 215 220 Leu Arg Pro Leu Leu Gln Arg Trp Met Ala Glu Thr Pro Ile Ala His 225 230 235 240 Ala Thr Leu Leu Met Gly Lys Gly Leu Phe Asp Glu Gln His Pro Asn 245 250 255 Phe Val Gly Thr Tyr Ser Ala Gly Ala Ser Ser Lys Glu Val Arg Gln 260 265 270 Ala Ile Glu Asp Ala Asp Arg Val Ile Cys Val Gly Thr Arg Phe Val 275 280 285 Asp Thr Leu Thr Ala Gly Phe Thr Gln Gln Leu Pro Ala Glu Arg Thr 290 295 300 Leu Glu Ile Gln Pro Tyr Ala Ser Arg Ile Gly Glu Thr Trp Phe Asn 305 310 315 320 Leu Pro Met Ala Gln Ala Val Ser Thr Leu Arg Glu Leu Cys Leu Glu 325 330 335 Cys Ala Phe Ala Pro Pro Pro Thr Arg Ser Ala Gly Gln Pro Val Arg 340 345 350 Ile Asp Lys Gly Glu Leu Thr Gln Glu Ser Phe Trp Gln Thr Leu Gln 355 360 365 Gln Tyr Leu Lys Pro Gly Asp Ile Ile Leu Val Asp Gln Gly Thr Ala 370 375 380 Ala Phe Gly Ala Ala Ala Leu Ser Leu Pro Asp Gly Ala Glu Val Val 385 390 395 400 Leu Gln Pro Leu Trp Gly Ser Ile Gly Tyr Ser Leu Pro Ala Ala Phe 405 410 415 Gly Ala Gln Thr Ala Cys Pro Asp Arg Arg Val Ile Leu Ile Ile Gly 420 425 430 Asp Gly Ala Ala Gln Leu Thr Ile Gln Glu Met Gly Ser Met Leu Arg 435 440 445 Asp Gly Gln Ala Pro Val Ile Leu Leu Leu Asn Asn Asp Gly Tyr Thr 450 455 460 Val Glu Arg Ala Ile His Gly Ala Ala Gln Arg Tyr Asn Asp Ile Ala 465 470 475 480 Ser Trp Asn Trp Thr Gln Ile Pro Pro Ala Leu Asn Ala Ala Gln Gln 485 490 495 Ala Glu Cys Trp Arg Val Thr Gln Ala Ile Gln Leu Ala Glu Val Leu 500 505 510 Glu Arg Leu Ala Arg Pro Gln Arg Leu Ser Phe Ile Glu Val Met Leu 515 520 525 Pro Lys Ala Asp Leu Pro Glu Leu Leu Arg Thr Val Thr Arg Ala Leu 530 535 540 Glu Ala Arg Asn Gly Gly 545 550 <210> 30 <211> 1653 <212> DNA <213> Salmonella typhimurium <400> 30 ttatcccccg ttgcgggctt ccagcgcccg ggtcacggta cgcagtaatt ccggcagatc 60 ggcttttggc aacatcactt caataaatga cagacgttgt gggcgcgcca accgttcgag 120 gacctctgcc agttggatag cctgcgtcac ccgccagcac tccgcctgtt gcgccgcgtt 180 tagcgccggt ggtatctgcg tccagttcca gctcgcgatg tcgttatacc gctgggccgc 240 gccgtgaatg gcgcgctcta cggtatagcc gtcattgttg agcagcagga tgaccggcgc 300 ctgcccgtcg cgtaacatcg agcccatctc ctgaatcgtg agctgcgccg cgccatcgcc 360 gataatcaga atcacccgcc gatcgggaca ggcggtttgc gcgccaaacg cggcgggcaa 420 ggaatagccg atagaccccc acagcggctg taacacaact tccgcgccgt caggaagcga 480 cagcgcggca gcgccaaaag ctgctgtccc ctggtcgaca aggataatat ctccgggttt 540 gagatactgc tgtaaggttt gccagaagct ttcctgggtc agttctcctt tatcaatccg 600 cactggctgt ccggcggaac gcgtcggcgg cggcgcaaaa gcgcattcca ggcacagttc 660 gcgcagcgta gacaccgcct gcgccatcgg gaggttgaac caggtttcgc cgatgcgcga 720 cgcgtaaggc tgaatctcca gcgtgcgttc cgccggtaat tgttgggtaa atccggccgt 780 aagggtatcg acaaaacggg tgccgacgca gataacccta tcggcgtcct ctatggcctg 840 acgcacttct ttgctgctgg cgccagcgct ataggtgcca acgaagttcg ggtgctgttc 900 atcaaaaagc cccttcccca tcagtagtgt cgcatgagcg atgggcgttt ccgccatcca 960 gcgctgcaac agtggtcgta aaccaaaacg cccggcaaga aagtcggcca atagcgcaat 1020 gcgccgactg ttcatcaggc actgacgggc gtgataacga aaggccgtct ccacgccgct 1080 ttgcgcttca tgcacgggca acgccagcgc ctgcgtaggt gggatggccg tttttttcgc 1140 cacatcggcg ggcaacatga tgtatcctgg cctgcgtgcg gcaagcattt cacccaacac 1200 gcggtcaatc tcgaaacagg cgttctgttc atctaatatt gcgctggcag cggatatcgc 1260 ctgactcatg cgataaaaat gacgaaaatc gccgtcaccg agggtatggt gcatcaattc 1320 gccacgctgc tgcgcagcgc tacagggcgc gccgacgata tgcaagaccg ggacatattc 1380 cgcgtaactg cccgcgatac cgttaatagc gctaagttct cccacgccaa aggtggtgag 1440 tagcgctcca gcgcccgaca tgcgcgcata gccgtccgcg gcataagcgg cgttcagctc 1500 attggcgcat cccacccaac gcagggtcgg gtggtcaatc acatggtcaa gaaactgcaa 1560 gttataatcg cccggtacgc caaaaagatg gccaatgccg catcctgcca gtctgtccag 1620 caaatagtcg gccacggtat aggggttttg cat 1653 <210> 31 <211> 554 <212> PRT <213> Clostridium acetobutylicum <400> 31 Met Lys Ser Glu Tyr Thr Ile Gly Arg Tyr Leu Leu Asp Arg Leu Ser 1 5 10 15 Glu Leu Gly Ile Arg His Ile Phe Gly Val Pro Gly Asp Tyr Asn Leu 20 25 30 Ser Phe Leu Asp Tyr Ile Met Glu Tyr Lys Gly Ile Asp Trp Val Gly 35 40 45 Asn Cys Asn Glu Leu Asn Ala Gly Tyr Ala Ala Asp Gly Tyr Ala Arg 50 55 60 Ile Asn Gly Ile Gly Ala Ile Leu Thr Thr Phe Gly Val Gly Glu Leu 65 70 75 80 Ser Ala Ile Asn Ala Ile Ala Gly Ala Tyr Ala Glu Gln Val Pro Val 85 90 95 Val Lys Ile Thr Gly Ile Pro Thr Ala Lys Val Arg Asp Asn Gly Leu 100 105 110 Tyr Val His His Thr Leu Gly Asp Gly Arg Phe Asp His Phe Phe Glu 115 120 125 Met Phe Arg Glu Val Thr Val Ala Glu Ala Leu Leu Ser Glu Glu Asn 130 135 140 Ala Ala Gln Glu Ile Asp Arg Val Leu Ile Ser Cys Trp Arg Gln Lys 145 150 155 160 Arg Pro Val Leu Ile Asn Leu Pro Ile Asp Val Tyr Asp Lys Pro Ile 165 170 175 Asn Lys Pro Leu Lys Pro Leu Leu Asp Tyr Thr Ile Ser Ser Asn Lys 180 185 190 Glu Ala Ala Cys Glu Phe Val Thr Glu Ile Val Pro Ile Ile Asn Arg 195 200 205 Ala Lys Lys Pro Val Ile Leu Ala Asp Tyr Gly Val Tyr Arg Tyr Gln 210 215 220 Val Gln His Val Leu Lys Asn Leu Ala Glu Lys Thr Gly Phe Pro Val 225 230 235 240 Ala Thr Leu Ser Met Gly Lys Gly Val Phe Asn Glu Ala His Pro Gln 245 250 255 Phe Ile Gly Val Tyr Asn Gly Asp Val Ser Ser Pro Tyr Leu Arg Gln 260 265 270 Arg Val Asp Glu Ala Asp Cys Ile Ile Ser Val Gly Val Lys Leu Thr 275 280 285 Asp Ser Thr Thr Gly Gly Phe Ser His Gly Phe Ser Lys Arg Asn Val 290 295 300 Ile His Ile Asp Pro Phe Ser Ile Lys Ala Lys Gly Lys Lys Tyr Ala 305 310 315 320 Pro Ile Thr Met Lys Asp Ala Leu Thr Glu Leu Thr Ser Lys Ile Glu 325 330 335 His Arg Asn Phe Glu Asp Leu Asp Ile Lys Pro Tyr Lys Ser Asp Asn 340 345 350 Gln Lys Tyr Phe Ala Lys Glu Lys Pro Ile Thr Gln Lys Arg Phe Phe 355 360 365 Glu Arg Ile Ala His Phe Ile Lys Glu Lys Asp Val Leu Leu Ala Glu 370 375 380 Gln Gly Thr Cys Phe Phe Gly Ala Ser Thr Ile Gln Leu Pro Lys Asp 385 390 395 400 Ala Thr Phe Ile Gly Gln Pro Leu Trp Gly Ser Ile Gly Tyr Thr Leu 405 410 415 Pro Ala Leu Leu Gly Ser Gln Leu Ala Asp Gln Lys Arg Arg Asn Ile 420 425 430 Leu Leu Ile Gly Asp Gly Ala Phe Gln Met Thr Ala Gln Glu Ile Ser 435 440 445 Thr Met Leu Arg Leu Gln Ile Lys Pro Ile Ile Phe Leu Ile Asn Asn 450 455 460 Asp Gly Tyr Thr Ile Glu Arg Ala Ile His Gly Arg Glu Gln Val Tyr 465 470 475 480 Asn Asn Ile Gln Met Trp Arg Tyr His Asn Val Pro Lys Val Leu Gly 485 490 495 Pro Lys Glu Cys Ser Leu Thr Phe Lys Val Gln Ser Glu Thr Glu Leu 500 505 510 Glu Lys Ala Leu Leu Val Ala Asp Lys Asp Cys Glu His Leu Ile Phe 515 520 525 Ile Glu Val Val Met Asp Arg Tyr Asp Lys Pro Glu Pro Leu Glu Arg 530 535 540 Leu Ser Lys Arg Phe Ala Asn Gln Asn Asn 545 550 <210> 32 <211> 1665 <212> DNA <213> Clostridium acetobutylicum <400> 32 ttgaagagtg aatacacaat tggaagatat ttgttagacc gtttatcaga gttgggtatt 60 cggcatatct ttggtgtacc tggagattac aatctatcct ttttagacta tataatggag 120 tacaaaggga tagattgggt tggaaattgc aatgaattga atgctgggta tgctgctgat 180 ggatatgcaa gaataaatgg aattggagcc atacttacaa catttggtgt tggagaatta 240 agtgccatta acgcaattgc tggggcatac gctgagcaag ttccagttgt taaaattaca 300 ggtatcccca cagcaaaagt tagggacaat ggattatatg tacaccacac attaggtgac 360 ggaaggtttg atcacttttt tgaaatgttt agagaagtaa cagttgctga ggcattacta 420 agcgaagaaa atgcagcaca agaaattgat cgtgttctta tttcatgctg gagacaaaaa 480 cgtcctgttc ttataaattt accgattgat gtatatgata aaccaattaa caaaccatta 540 aagccattac tcgattatac tatttcaagt aacaaagagg ctgcatgtga atttgttaca 600 gaaatagtac ctataataaa tagggcaaaa aagcctgtta ttcttgcaga ttatggagta 660 tatcgttacc aagttcaaca tgtgcttaaa aacttggccg aaaaaaccgg atttcctgtg 720 gctacactaa gtatgggaaa aggtgttttc aatgaagcac accctcaatt tattggtgtt 780 tataatggtg atgtaagttc tccttattta aggcagcgag ttgatgaagc agactgcatt 840 attagcgttg gtgtaaaatt gacggattca accacagggg gattttctca tggattttct 900 aaaaggaatg taattcacat tgatcctttt tcaataaagg caaaaggtaa aaaatatgca 960 cctattacga tgaaagatgc tttaacagaa ttaacaagta aaattgagca tagaaacttt 1020 gaggatttag atataaagcc ttacaaatca gataatcaaa agtattttgc aaaagagaag 1080 ccaattacac aaaaacgttt ttttgagcgt attgctcact ttataaaaga aaaagatgta 1140 ttattagcag aacagggtac atgctttttt ggtgcgtcaa ccatacaact acccaaagat 1200 gcaactttta ttggtcaacc tttatgggga tctattggat acacacttcc tgctttatta 1260 ggttcacaat tagctgatca aaaaaggcgt aatattcttt taattgggga tggtgcattt 1320 caaatgacag cacaagaaat ttcaacaatg cttcgtttac aaatcaaacc tattattttt 1380 ttaattaata acgatggtta tacaattgaa cgtgctattc atggtagaga acaagtatat 1440 aacaatattc aaatgtggcg atatcataat gttccaaagg ttttaggtcc taaagaatgc 1500 agcttaacct ttaaagtaca aagtgaaact gaacttgaaa aggctctttt agtggcagat 1560 aaggattgtg aacatttgat ttttatagaa gttgttatgg atcgttatga taaacccgag 1620 cctttagaac gtctttcgaa acgttttgca aatcaaaata attag 1665 <210> 33 <211> 1641 <212> DNA <213> Clostridium acetobutylicum <400> 33 atgaaacaac gtatcgggca atacttgatc gatgccctac acgttaatgg tgtcgataag 60 atctttggag tcccaggtga tttcacttta gcctttttgg acgatatcat aagacatgac 120 aacgtggaat gggtgggaaa tactaatgag ttgaacgccg cttacgccgc tgatggttac 180 gctagagtta atggattagc cgctgtatct accacttttg gggttggcga gttatctgct 240 gtgaatggta ttgctggaag ttacgcagag cgtgttcctg taatcaaaat ctcaggcggt 300 ccttcatcag ttgctcaaca agagggtaga tatgtccacc attcattggg tgaaggaatc 360 tttgattcat attcaaagat gtacgctcac ataaccgcaa caactacaat cttatccgtt 420 gacaacgcag tcgacgaaat tgatagagtt attcattgtg ctttgaagga aaagaggcca 480 gtgcatattc atttgcctat tgacgtagcc ttaactgaga ttgaaatccc tcatgcacca 540 aaagtttaca cacacgaatc ccagaacgtc gatgcttaca ttcaagctgt tgagaaaaag 600 ttaatgtctg caaaacaacc agtaatcata gcaggtcatg aaatcaattc attcaagttg 660 cacgaacaac tggaacagtt tgtcaatcag acaaacatcc ctgttgcaca actttccttg 720 ggtaagtctg ctttcaatga agagaatgaa cattaccttg gtatctacga tggcaaaatc 780 gcaaaggaaa atgtgagaga gtacgtcgac aatgctgatg tcatattgaa cataggtgcc 840 aaactgactg attctgctac agctggattt tcctacaagt tcgatacaaa caacataatc 900 tacattaacc ataatgactt caaagctgaa gatgtgattt ctgataatgt ttcactgatt 960 gatcttgtga atggcctgaa ttctattgac tatagaaatg aaacacacta cccatcttat 1020 caaagatctg atatgaaata cgaattgaat gacgcaccac ttacacaatc taactatttc 1080 aaaatgatga acgcttttct agaaaaagat gacatcctac tagctgaaca aggtacatcc 1140 tttttcggcg catatgactt atccctatac aagggaaatc agtttatcgg tcagccttta 1200 tgggggtcaa tagggtatac ttttccatct ttactaggaa gtcaactagc agacatgcat 1260 aggagaaaca ttttgcttat aggcgatggt agtttacaac ttactgttca agccctaagt 1320 acaatgatta gaaaggatat caaaccaatc attttcgtta tcaataacga cggttacacc 1380 gtcgaaagac ttatccacgg catggaagag ccatacaatg atatccaaat gtggaactac 1440 aagcaattgc cagaagtatt tggtggaaaa gatactgtaa aagttcatga tgctaaaacc 1500 tccaacgaac tgaaaactgt aatggattct gttaaagcag acaaagatca catgcatttc 1560 attgaagtgc atatggcagt agaggacgcc ccaaagaagt tgattgatat agctaaagcc 1620 tttagtgatg ctaacaagta a 1641 <210> 34 <211> 1647 <212> DNA <213> Listeria grayi <400> 34 atgtacaccg tcggccaata cttagtagac cgcttagaag agatcggcat cgataaggtt 60 tttggtgtcc cgggtgacta caacctgacc tttttggact acatccagaa ccacgaaggt 120 ctgagctggc aaggtaatac gaatgaactg aatgccgcgt acgcagctga tggctatgct 180 cgtgaacgcg gtgttagcgc tttggtcacg accttcggcg ttggtgagct gtccgcaatc 240 aatggcaccg caggtagctt cgcggagcaa gttccggtga ttcatatcgt gggcagcccg 300 accatgaatg ttcagagcaa caagaaactg gttcatcaca gcctgggtat gggcaacttt 360 cacaacttca gcgagatggc gaaagaagtc accgccgcaa ccacgatgct gacggaagag 420 aatgcggcgt cggagattga tcgtgttctg gaaaccgccc tgctggagaa acgcccagtg 480 tacatcaatc tgccgatcga cattgctcac aaggcgatcg tcaagccggc gaaagccctg 540 caaaccgaga agagctctgg cgagcgtgag gcacaactgg cggagatcat tctgagccat 600 ctggagaagg ctgcacagcc gattgtgatt gcgggtcacg agatcgcgcg cttccagatc 660 cgtgagcgtt tcgagaattg gattaatcaa acgaaactgc cggtgaccaa tctggcctac 720 ggcaagggta gcttcaacga agaaaacgag catttcattg gtacctatta tcctgcattt 780 agcgataaga acgtgctgga ctacgtggat aactccgact ttgtcctgca ctttggtggt 840 aaaatcattg ataacagcac ctccagcttc tcccaaggct tcaaaaccga gaacaccctg 900 actgcggcga acgatatcat tatgctgccg gacggtagca cgtattctgg tattagcctg 960 aatggcctgc tggccgagct ggaaaaactg aatttcacgt ttgccgacac cgcagcaaag 1020 caggcggagt tggcggtgtt tgagccgcag gctgaaaccc cgttgaaaca ggaccgtttt 1080 caccaggcgg tgatgaattt tctgcaagct gacgatgtcc tggttacgga acagggcacc 1140 tcttcttttg gcttgatgct ggcgcctctg aaaaagggta tgaacttgat ctcgcaaacg 1200 ctgtggggta gcattggtta cacgttgccg gcgatgattg gtagccaaat tgcggcaccg 1260 gagcgtcgtc atatcctgag cattggtgat ggtagctttc agctgactgc gcaggaaatg 1320 agcaccattt tccgtgagaa actgacccca gtcatcttca tcattaacaa tgatggctat 1380 accgttgagc gtgcgatcca tggcgaagat gaaagctata acgacattcc gacgtggaac 1440 ttgcaactgg tggcggaaac cttcggtggt gacgccgaaa ccgtcgacac tcacaatgtg 1500 ttcacggaga ctgatttcgc caacaccctg gcggcaattg acgcgacgcc gcagaaagca 1560 cacgttgtgg aagttcacat ggaacaaatg gatatgccgg agagcctgcg ccagatcggt 1620 ctggcactgt ccaagcagaa tagctaa 1647 <210> 35 <211> 312 <212> PRT <213> Saccharomyces cerevisiae <400> 35 Met Pro Ala Thr Leu Lys Asn Ser Ser Ala Thr Leu Lys Leu Asn Thr 1 5 10 15 Gly Ala Ser Ile Pro Val Leu Gly Phe Gly Thr Trp Arg Ser Val Asp 20 25 30 Asn Asn Gly Tyr His Ser Val Ile Ala Ala Leu Lys Ala Gly Tyr Arg 35 40 45 His Ile Asp Ala Ala Ala Ile Tyr Leu Asn Glu Glu Glu Val Gly Arg 50 55 60 Ala Ile Lys Asp Ser Gly Val Pro Arg Glu Glu Ile Phe Ile Thr Thr 65 70 75 80 Lys Leu Trp Gly Thr Glu Gln Arg Asp Pro Glu Ala Ala Leu Asn Lys 85 90 95 Ser Leu Lys Arg Leu Gly Leu Asp Tyr Val Asp Leu Tyr Leu Met His 100 105 110 Trp Pro Val Pro Leu Lys Thr Asp Arg Val Thr Asp Gly Asn Val Leu 115 120 125 Cys Ile Pro Thr Leu Glu Asp Gly Thr Val Asp Ile Asp Thr Lys Glu 130 135 140 Trp Asn Phe Ile Lys Thr Trp Glu Leu Met Gln Glu Leu Pro Lys Thr 145 150 155 160 Gly Lys Thr Lys Ala Val Gly Val Ser Asn Phe Ser Ile Asn Asn Ile 165 170 175 Lys Glu Leu Leu Glu Ser Pro Asn Asn Lys Val Val Pro Ala Thr Asn 180 185 190 Gln Ile Glu Ile His Pro Leu Leu Pro Gln Asp Glu Leu Ile Ala Phe 195 200 205 Cys Lys Glu Lys Gly Ile Val Val Glu Ala Tyr Ser Pro Phe Gly Ser 210 215 220 Ala Asn Ala Pro Leu Leu Lys Glu Gln Ala Ile Ile Asp Met Ala Lys 225 230 235 240 Lys His Gly Val Glu Pro Ala Gln Leu Ile Ile Ser Trp Ser Ile Gln 245 250 255 Arg Gly Tyr Val Val Leu Ala Lys Ser Val Asn Pro Glu Arg Ile Val 260 265 270 Ser Asn Phe Lys Ile Phe Thr Leu Pro Glu Asp Asp Phe Lys Thr Ile 275 280 285 Ser Asn Leu Ser Lys Val His Gly Thr Lys Arg Val Val Asp Met Lys 290 295 300 Trp Gly Ser Phe Pro Ile Phe Gln 305 310 <210> 36 <211> 939 <212> DNA <213> Saccharomyces cerevisiae <400> 36 atgcctgcta cgttaaagaa ttcttctgct acattaaaac taaatactgg tgcctccatt 60 ccagtgttgg gtttcggcac ttggcgttcc gttgacaata acggttacca ttctgtaatt 120 gcagctttga aagctggata cagacacatt gatgctgcgg ctatctattt gaatgaagaa 180 gaagttggca gggctattaa agattccgga gtccctcgtg aggaaatttt tattactact 240 aagctttggg gtacggaaca acgtgatccg gaagctgctc taaacaagtc tttgaaaaga 300 ctaggcttgg attatgttga cctatatctg atgcattggc cagtgccttt gaaaaccgac 360 agagttactg atggtaacgt tctgtgcatt ccaacattag aagatggcac tgttgacatc 420 gatactaagg aatggaattt tatcaagacg tgggagttga tgcaagagtt gccaaagacg 480 ggcaaaacta aagccgttgg tgtctctaat ttttctatta acaacattaa agaattatta 540 gaatctccaa ataacaaggt ggtaccagct actaatcaaa ttgaaattca tccattgcta 600 ccacaagacg aattgattgc cttttgtaag gaaaagggta ttgttgttga agcctactca 660 ccatttggga gtgctaatgc tcctttacta aaagagcaag caattattga tatggctaaa 720 aagcacggcg ttgagccagc acagcttatt atcagttgga gtattcaaag aggctacgtt 780 gttctggcca aatcggttaa tcctgaaaga attgtatcca attttaagat tttcactctg 840 cctgaggatg atttcaagac tattagtaac ctatccaaag tgcatggtac aaagagagtc 900 gttgatatga agtggggatc cttcccaatt ttccaatga 939 <210> 37 <211> 360 <212> PRT <213> Saccharomyces cerevisiae <400> 37 Met Ser Tyr Pro Glu Lys Phe Glu Gly Ile Ala Ile Gln Ser His Glu 1 5 10 15 Asp Trp Lys Asn Pro Lys Lys Thr Lys Tyr Asp Pro Lys Pro Phe Tyr 20 25 30 Asp His Asp Ile Asp Ile Lys Ile Glu Ala Cys Gly Val Cys Gly Ser 35 40 45 Asp Ile His Cys Ala Ala Gly His Trp Gly Asn Met Lys Met Pro Leu 50 55 60 Val Val Gly His Glu Ile Val Gly Lys Val Val Lys Leu Gly Pro Lys 65 70 75 80 Ser Asn Ser Gly Leu Lys Val Gly Gln Arg Val Gly Val Gly Ala Gln 85 90 95 Val Phe Ser Cys Leu Glu Cys Asp Arg Cys Lys Asn Asp Asn Glu Pro 100 105 110 Tyr Cys Thr Lys Phe Val Thr Thr Tyr Ser Gln Pro Tyr Glu Asp Gly 115 120 125 Tyr Val Ser Gln Gly Gly Tyr Ala Asn Tyr Val Arg Val His Glu His 130 135 140 Phe Val Val Pro Ile Pro Glu Asn Ile Pro Ser His Leu Ala Ala Pro 145 150 155 160 Leu Leu Cys Gly Gly Leu Thr Val Tyr Ser Pro Leu Val Arg Asn Gly 165 170 175 Cys Gly Pro Gly Lys Lys Val Gly Ile Val Gly Leu Gly Gly Ile Gly 180 185 190 Ser Met Gly Thr Leu Ile Ser Lys Ala Met Gly Ala Glu Thr Tyr Val 195 200 205 Ile Ser Arg Ser Ser Arg Lys Arg Glu Asp Ala Met Lys Met Gly Ala 210 215 220 Asp His Tyr Ile Ala Thr Leu Glu Glu Gly Asp Trp Gly Glu Lys Tyr 225 230 235 240 Phe Asp Thr Phe Asp Leu Ile Val Val Cys Ala Ser Ser Leu Thr Asp 245 250 255 Ile Asp Phe Asn Ile Met Pro Lys Ala Met Lys Val Gly Gly Arg Ile 260 265 270 Val Ser Ile Ser Ile Pro Glu Gln His Glu Met Leu Ser Leu Lys Pro 275 280 285 Tyr Gly Leu Lys Ala Val Ser Ile Ser Tyr Ser Ala Leu Gly Ser Ile 290 295 300 Lys Glu Leu Asn Gln Leu Leu Lys Leu Val Ser Glu Lys Asp Ile Lys 305 310 315 320 Ile Trp Val Glu Thr Leu Pro Val Gly Glu Ala Gly Val His Glu Ala 325 330 335 Phe Glu Arg Met Glu Lys Gly Asp Val Arg Tyr Arg Phe Thr Leu Val 340 345 350 Gly Tyr Asp Lys Glu Phe Ser Asp 355 360 <210> 38 <211> 1083 <212> DNA <213> Saccharomyces cerevisiae <400> 38 ctagtctgaa aattctttgt cgtagccgac taaggtaaat ctatatctaa cgtcaccctt 60 ttccatcctt tcgaaggctt catggacgcc ggcttcacca acaggtaatg tttccaccca 120 aattttgata tctttttcag agactaattt caagagttgg ttcaattctt tgatggaacc 180 taaagcactg taagaaatgg agacagcctt taagccatat ggctttagcg ataacatttc 240 gtgttgttct ggtatagaga ttgagacaat tctaccacca accttcatag cctttggcat 300 aatgttgaag tcaatgtcgg taagggagga agcacagact acaatcaggt cgaaggtgtc 360 aaagtacttt tcaccccaat caccttcttc taatgtagca atgtagtgat cggcgcccat 420 cttcattgca tcttctcttt ttctcgaaga acgagaaata acatacgtct ctgcccccat 480 ggctttggaa atcaatgtac ccatactgcc gataccacca agaccaacta taccaacttt 540 tttacctgga ccgcaaccgt tacgaaccaa tggagagtac acagtcaaac caccacataa 600 tagtggagca gccaaatgtg atggaatatt ctctgggata ggcaccacaa aatgttcatg 660 aactctgacg tagtttgcat agccaccctg cgacacatag ccgtcttcat aaggctgact 720 gtatgtggta acaaacttgg tgcagtatgg ttcattatca ttcttacaac ggtcacattc 780 caagcatgaa aagacttgag cacctacacc aacacgttga ccgactttca acccactgtt 840 tgacttgggc cctagcttga caactttacc aacgatttca tgaccaacga ctagcggcat 900 cttcatattg ccccaatgac cagctgcaca atgaatatca ctaccgcaga caccacatgc 960 ttcgatctta atgtcaatgt catgatcgta aaatggtttt gggtcatact ttgtcttctt 1020 tgggtttttc caatcttcgt gtgattgaat agcgatacct tcaaatttct caggataaga 1080 cat 1083 <210> 39 <211> 387 <212> PRT <213> Escherichia coli <400> 39 Met Asn Asn Phe Asn Leu His Thr Pro Thr Arg Ile Leu Phe Gly Lys 1 5 10 15 Gly Ala Ile Ala Gly Leu Arg Glu Gln Ile Pro His Asp Ala Arg Val 20 25 30 Leu Ile Thr Tyr Gly Gly Gly Ser Val Lys Lys Thr Gly Val Leu Asp 35 40 45 Gln Val Leu Asp Ala Leu Lys Gly Met Asp Val Leu Glu Phe Gly Gly 50 55 60 Ile Glu Pro Asn Pro Ala Tyr Glu Thr Leu Met Asn Ala Val Lys Leu 65 70 75 80 Val Arg Glu Gln Lys Val Thr Phe Leu Leu Ala Val Gly Gly Gly Ser 85 90 95 Val Leu Asp Gly Thr Lys Phe Ile Ala Ala Ala Ala Asn Tyr Pro Glu 100 105 110 Asn Ile Asp Pro Trp His Ile Leu Gln Thr Gly Gly Lys Glu Ile Lys 115 120 125 Ser Ala Ile Pro Met Gly Cys Val Leu Thr Leu Pro Ala Thr Gly Ser 130 135 140 Glu Ser Asn Ala Gly Ala Val Ile Ser Arg Lys Thr Thr Gly Asp Lys 145 150 155 160 Gln Ala Phe His Ser Ala His Val Gln Pro Val Phe Ala Val Leu Asp 165 170 175 Pro Val Tyr Thr Tyr Thr Leu Pro Pro Arg Gln Val Ala Asn Gly Val 180 185 190 Val Asp Ala Phe Val His Thr Val Glu Gln Tyr Val Thr Lys Pro Val 195 200 205 Asp Ala Lys Ile Gln Asp Arg Phe Ala Glu Gly Ile Leu Leu Thr Leu 210 215 220 Ile Glu Asp Gly Pro Lys Ala Leu Lys Glu Pro Glu Asn Tyr Asp Val 225 230 235 240 Arg Ala Asn Val Met Trp Ala Ala Thr Gln Ala Leu Asn Gly Leu Ile 245 250 255 Gly Ala Gly Val Pro Gln Asp Trp Ala Thr His Met Leu Gly His Glu 260 265 270 Leu Thr Ala Met His Gly Leu Asp His Ala Gln Thr Leu Ala Ile Val 275 280 285 Leu Pro Ala Leu Trp Asn Glu Lys Arg Asp Thr Lys Arg Ala Lys Leu 290 295 300 Leu Gln Tyr Ala Glu Arg Val Trp Asn Ile Thr Glu Gly Ser Asp Asp 305 310 315 320 Glu Arg Ile Asp Ala Ala Ile Ala Ala Thr Arg Asn Phe Phe Glu Gln 325 330 335 Leu Gly Val Pro Thr His Leu Ser Asp Tyr Gly Leu Asp Gly Ser Ser 340 345 350 Ile Pro Ala Leu Leu Lys Lys Leu Glu Glu His Gly Met Thr Gln Leu 355 360 365 Gly Glu Asn His Asp Ile Thr Leu Asp Val Ser Arg Arg Ile Tyr Glu 370 375 380 Ala Ala Arg 385 <210> 40 <211> 387 <212> PRT <213> Escherichia coli <400> 40 Met Asn Asn Phe Asn Leu His Thr Pro Thr Arg Ile Leu Phe Gly Lys 1 5 10 15 Gly Ala Ile Ala Gly Leu Arg Glu Gln Ile Pro His Asp Ala Arg Val 20 25 30 Leu Ile Thr Tyr Gly Gly Gly Ser Val Lys Lys Thr Gly Val Leu Asp 35 40 45 Gln Val Leu Asp Ala Leu Lys Gly Met Asp Val Leu Glu Phe Gly Gly 50 55 60 Ile Glu Pro Asn Pro Ala Tyr Glu Thr Leu Met Asn Ala Val Lys Leu 65 70 75 80 Val Arg Glu Gln Lys Val Thr Phe Leu Leu Ala Val Gly Gly Gly Ser 85 90 95 Val Leu Asp Gly Thr Lys Phe Ile Ala Ala Ala Ala Asn Tyr Pro Glu 100 105 110 Asn Ile Asp Pro Trp His Ile Leu Gln Thr Gly Gly Lys Glu Ile Lys 115 120 125 Ser Ala Ile Pro Met Gly Cys Val Leu Thr Leu Pro Ala Thr Gly Ser 130 135 140 Glu Ser Asn Ala Gly Ala Val Ile Ser Arg Lys Thr Thr Gly Asp Lys 145 150 155 160 Gln Ala Phe His Ser Ala His Val Gln Pro Val Phe Ala Val Leu Asp 165 170 175 Pro Val Tyr Thr Tyr Thr Leu Pro Pro Arg Gln Val Ala Asn Gly Val 180 185 190 Val Asp Ala Phe Val His Thr Val Glu Gln Tyr Val Thr Lys Pro Val 195 200 205 Asp Ala Lys Ile Gln Asp Arg Phe Ala Glu Gly Ile Leu Leu Thr Leu 210 215 220 Ile Glu Asp Gly Pro Lys Ala Leu Lys Glu Pro Glu Asn Tyr Asp Val 225 230 235 240 Arg Ala Asn Val Met Trp Ala Ala Thr Gln Ala Leu Asn Gly Leu Ile 245 250 255 Gly Ala Gly Val Pro Gln Asp Trp Ala Thr His Met Leu Gly His Glu 260 265 270 Leu Thr Ala Met His Gly Leu Asp His Ala Gln Thr Leu Ala Ile Val 275 280 285 Leu Pro Ala Leu Trp Asn Glu Lys Arg Asp Thr Lys Arg Ala Lys Leu 290 295 300 Leu Gln Tyr Ala Glu Arg Val Trp Asn Ile Thr Glu Gly Ser Asp Asp 305 310 315 320 Glu Arg Ile Asp Ala Ala Ile Ala Ala Thr Arg Asn Phe Phe Glu Gln 325 330 335 Leu Gly Val Pro Thr His Leu Ser Asp Tyr Gly Leu Asp Gly Ser Ser 340 345 350 Ile Pro Ala Leu Leu Lys Lys Leu Glu Glu His Gly Met Thr Gln Leu 355 360 365 Gly Glu Asn His Asp Ile Thr Leu Asp Val Ser Arg Arg Ile Tyr Glu 370 375 380 Ala Ala Arg 385 <210> 41 <211> 389 <212> PRT <213> Clostridium acetobutylicum <400> 41 Met Leu Ser Phe Asp Tyr Ser Ile Pro Thr Lys Val Phe Phe Gly Lys 1 5 10 15 Gly Lys Ile Asp Val Ile Gly Glu Glu Ile Lys Lys Tyr Gly Ser Arg 20 25 30 Val Leu Ile Val Tyr Gly Gly Gly Ser Ile Lys Arg Asn Gly Ile Tyr 35 40 45 Asp Arg Ala Thr Ala Ile Leu Lys Glu Asn Asn Ile Ala Phe Tyr Glu 50 55 60 Leu Ser Gly Val Glu Pro Asn Pro Arg Ile Thr Thr Val Lys Lys Gly 65 70 75 80 Ile Glu Ile Cys Arg Glu Asn Asn Val Asp Leu Val Leu Ala Ile Gly 85 90 95 Gly Gly Ser Ala Ile Asp Cys Ser Lys Val Ile Ala Ala Gly Val Tyr 100 105 110 Tyr Asp Gly Asp Thr Trp Asp Met Val Lys Asp Pro Ser Lys Ile Thr 115 120 125 Lys Val Leu Pro Ile Ala Ser Ile Leu Thr Leu Ser Ala Thr Gly Ser 130 135 140 Glu Met Asp Gln Ile Ala Val Ile Ser Asn Met Glu Thr Asn Glu Lys 145 150 155 160 Leu Gly Val Gly His Asp Asp Met Arg Pro Lys Phe Ser Val Leu Asp 165 170 175 Pro Thr Tyr Thr Phe Thr Val Pro Lys Asn Gln Thr Ala Ala Gly Thr 180 185 190 Ala Asp Ile Met Ser His Thr Phe Glu Ser Tyr Phe Ser Gly Val Glu 195 200 205 Gly Ala Tyr Val Gln Asp Gly Ile Ala Glu Ala Ile Leu Arg Thr Cys 210 215 220 Ile Lys Tyr Gly Lys Ile Ala Met Glu Lys Thr Asp Asp Tyr Glu Ala 225 230 235 240 Arg Ala Asn Leu Met Trp Ala Ser Ser Leu Ala Ile Asn Gly Leu Leu 245 250 255 Ser Leu Gly Lys Asp Arg Lys Trp Ser Cys His Pro Met Glu His Glu 260 265 270 Leu Ser Ala Tyr Tyr Asp Ile Thr His Gly Val Gly Leu Ala Ile Leu 275 280 285 Thr Pro Asn Trp Met Glu Tyr Ile Leu Asn Asp Asp Thr Leu His Lys 290 295 300 Phe Val Ser Tyr Gly Ile Asn Val Trp Gly Ile Asp Lys Asn Lys Asp 305 310 315 320 Asn Tyr Glu Ile Ala Arg Glu Ala Ile Lys Asn Thr Arg Glu Tyr Phe 325 330 335 Asn Ser Leu Gly Ile Pro Ser Lys Leu Arg Glu Val Gly Ile Gly Lys 340 345 350 Asp Lys Leu Glu Leu Met Ala Lys Gln Ala Val Arg Asn Ser Gly Gly 355 360 365 Thr Ile Gly Ser Leu Arg Pro Ile Asn Ala Glu Asp Val Leu Glu Ile 370 375 380 Phe Lys Lys Ser Tyr 385 <210> 42 <211> 1170 <212> DNA <213> Clostridium acetobutylicum <400> 42 ttaataagat tttttaaata tctcaagaac atcctctgca tttattggtc ttaaacttcc 60 tattgttcct ccagaatttc taacagcttg ctttgccatt agttctagtt tatcttttcc 120 tattccaact tctctaagct ttgaaggaat acccaatgaa ttaaagtatt ctctcgtatt 180 tttaatagcc tctcgtgcta tttcatagtt atctttgttc ttgtctattc cccaaacatt 240 tattccataa gaaacaaatt tatgaagtgt atcgtcattt agaatatatt ccatccaatt 300 aggtgttaaa attgcaagtc ctacaccatg tgttatatca taatatgcac ttaactcgtg 360 ttccatagga tgacaactcc attttctatc cttaccaagt gataatagac catttatagc 420 taaacttgaa gcccacatca aattagctct agcctcgtaa tcatcagtct tctccattgc 480 tatttttcca tactttatac atgttcttaa gattgcttct gctataccgt cctgcacata 540 agcaccttca acaccactaa agtaagattc aaaggtgtga ctcataatgt cagctgttcc 600 cgctgctgtt tgatttttag gtactgtaaa agtatatgta ggatctaaca ctgaaaattt 660 aggtctcata tcatcatgtc ctactccaag cttttcatta gtctccatat ttgaaattac 720 tgcaatttga tccatttcag accctgttgc tgaaagagta agtatacttg caattggaag 780 aactttagtt attttagatg gatctttaac catgtcccat gtatcgccat cataataaac 840 tccagctgca attaccttag aacagtctat tgcacttcct ccccctattg ctaatactaa 900 atccacatta ttttctctac atatttctat gccttttttt actgttgtta tcctaggatt 960 tggctctact cctgaaagtt catagaaagc tatattgttt tcttttaata tagctgttgc 1020 tctatcatat ataccgttcc tttttatact tcctccgcca taaactataa gcactcttga 1080 gccatatttc ttaatttctt ctccaattac gtctattttt ccttttccaa aaaaaacttt 1140 agttggtatt gaataatcaa aacttagcat 1170 <210> 43 <211> 390 <212> PRT <213> Clostridium acetobutylicum <400> 43 Met Val Asp Phe Glu Tyr Ser Ile Pro Thr Arg Ile Phe Phe Gly Lys 1 5 10 15 Asp Lys Ile Asn Val Leu Gly Arg Glu Leu Lys Lys Tyr Gly Ser Lys 20 25 30 Val Leu Ile Val Tyr Gly Gly Gly Ser Ile Lys Arg Asn Gly Ile Tyr 35 40 45 Asp Lys Ala Val Ser Ile Leu Glu Lys Asn Ser Ile Lys Phe Tyr Glu 50 55 60 Leu Ala Gly Val Glu Pro Asn Pro Arg Val Thr Thr Val Glu Lys Gly 65 70 75 80 Val Lys Ile Cys Arg Glu Asn Gly Val Glu Val Val Leu Ala Ile Gly 85 90 95 Gly Gly Ser Ala Ile Asp Cys Ala Lys Val Ile Ala Ala Ala Cys Glu 100 105 110 Tyr Asp Gly Asn Pro Trp Asp Ile Val Leu Asp Gly Ser Lys Ile Lys 115 120 125 Arg Val Leu Pro Ile Ala Ser Ile Leu Thr Ile Ala Ala Thr Gly Ser 130 135 140 Glu Met Asp Thr Trp Ala Val Ile Asn Asn Met Asp Thr Asn Glu Lys 145 150 155 160 Leu Ile Ala Ala His Pro Asp Met Ala Pro Lys Phe Ser Ile Leu Asp 165 170 175 Pro Thr Tyr Thr Tyr Thr Val Pro Thr Asn Gln Thr Ala Ala Gly Thr 180 185 190 Ala Asp Ile Met Ser His Ile Phe Glu Val Tyr Phe Ser Asn Thr Lys 195 200 205 Thr Ala Tyr Leu Gln Asp Arg Met Ala Glu Ala Leu Leu Arg Thr Cys 210 215 220 Ile Lys Tyr Gly Gly Ile Ala Leu Glu Lys Pro Asp Asp Tyr Glu Ala 225 230 235 240 Arg Ala Asn Leu Met Trp Ala Ser Ser Leu Ala Ile Asn Gly Leu Leu 245 250 255 Thr Tyr Gly Lys Asp Thr Asn Trp Ser Val His Leu Met Glu His Glu 260 265 270 Leu Ser Ala Tyr Tyr Asp Ile Thr His Gly Val Gly Leu Ala Ile Leu 275 280 285 Thr Pro Asn Trp Met Glu Tyr Ile Leu Asn Asn Asp Thr Val Tyr Lys 290 295 300 Phe Val Glu Tyr Gly Val Asn Val Trp Gly Ile Asp Lys Glu Lys Asn 305 310 315 320 His Tyr Asp Ile Ala His Gln Ala Ile Gln Lys Thr Arg Asp Tyr Phe 325 330 335 Val Asn Val Leu Gly Leu Pro Ser Arg Leu Arg Asp Val Gly Ile Glu 340 345 350 Glu Glu Lys Leu Asp Ile Met Ala Lys Glu Ser Val Lys Leu Thr Gly 355 360 365 Gly Thr Ile Gly Asn Leu Arg Pro Val Asn Ala Ser Glu Val Leu Gln 370 375 380 Ile Phe Lys Lys Ser Val 385 390 <210> 44 <211> 1173 <212> DNA <213> Clostridium acetobutylicum <400> 44 gtggttgatt tcgaatattc aataccaact agaatttttt tcggtaaaga taagataaat 60 gtacttggaa gagagcttaa aaaatatggt tctaaagtgc ttatagttta tggtggagga 120 agtataaaga gaaatggaat atatgataaa gctgtaagta tacttgaaaa aaacagtatt 180 aaattttatg aacttgcagg agtagagcca aatccaagag taactacagt tgaaaaagga 240 gttaaaatat gtagagaaaa tggagttgaa gtagtactag ctataggtgg aggaagtgca 300 atagattgcg caaaggttat agcagcagca tgtgaatatg atggaaatcc atgggatatt 360 gtgttagatg gctcaaaaat aaaaagggtg cttcctatag ctagtatatt aaccattgct 420 gcaacaggat cagaaatgga tacgtgggca gtaataaata atatggatac aaacgaaaaa 480 ctaattgcgg cacatccaga tatggctcct aagttttcta tattagatcc aacgtatacg 540 tataccgtac ctaccaatca aacagcagca ggaacagctg atattatgag tcatatattt 600 gaggtgtatt ttagtaatac aaaaacagca tatttgcagg atagaatggc agaagcgtta 660 ttaagaactt gtattaaata tggaggaata gctcttgaga agccggatga ttatgaggca 720 agagccaatc taatgtgggc ttcaagtctt gcgataaatg gacttttaac atatggtaaa 780 gacactaatt ggagtgtaca cttaatggaa catgaattaa gtgcttatta cgacataaca 840 cacggcgtag ggcttgcaat tttaacacct aattggatgg agtatatttt aaataatgat 900 acagtgtaca agtttgttga atatggtgta aatgtttggg gaatagacaa agaaaaaaat 960 cactatgaca tagcacatca agcaatacaa aaaacaagag attactttgt aaatgtacta 1020 ggtttaccat ctagactgag agatgttgga attgaagaag aaaaattgga cataatggca 1080 aaggaatcag taaagcttac aggaggaacc ataggaaacc taagaccagt aaacgcctcc 1140 gaagtcctac aaatattcaa aaaatctgtg taa 1173 <210> 45 <211> 330 <212> PRT <213> Bacillus subtilis <400> 45 Met Ser Thr Asn Arg His Gln Ala Leu Gly Leu Thr Asp Gln Glu Ala 1 5 10 15 Val Asp Met Tyr Arg Thr Met Leu Leu Ala Arg Lys Ile Asp Glu Arg 20 25 30 Met Trp Leu Leu Asn Arg Ser Gly Lys Ile Pro Phe Val Ile Ser Cys 35 40 45 Gln Gly Gln Glu Ala Ala Gln Val Gly Ala Ala Phe Ala Leu Asp Arg 50 55 60 Glu Met Asp Tyr Val Leu Pro Tyr Tyr Arg Asp Met Gly Val Val Leu 65 70 75 80 Ala Phe Gly Met Thr Ala Lys Asp Leu Met Met Ser Gly Phe Ala Lys 85 90 95 Ala Ala Asp Pro Asn Ser Gly Gly Arg Gln Met Pro Gly His Phe Gly 100 105 110 Gln Lys Lys Asn Arg Ile Val Thr Gly Ser Ser Pro Val Thr Thr Gln 115 120 125 Val Pro His Ala Val Gly Ile Ala Leu Ala Gly Arg Met Glu Lys Lys 130 135 140 Asp Ile Ala Ala Phe Val Thr Phe Gly Glu Gly Ser Ser Asn Gln Gly 145 150 155 160 Asp Phe His Glu Gly Ala Asn Phe Ala Ala Val His Lys Leu Pro Val 165 170 175 Ile Phe Met Cys Glu Asn Asn Lys Tyr Ala Ile Ser Val Pro Tyr Asp 180 185 190 Lys Gln Val Ala Cys Glu Asn Ile Ser Asp Arg Ala Ile Gly Tyr Gly 195 200 205 Met Pro Gly Val Thr Val Asn Gly Asn Asp Pro Leu Glu Val Tyr Gln 210 215 220 Ala Val Lys Glu Ala Arg Glu Arg Ala Arg Arg Gly Glu Gly Pro Thr 225 230 235 240 Leu Ile Glu Thr Ile Ser Tyr Arg Leu Thr Pro His Ser Ser Asp Asp 245 250 255 Asp Asp Ser Ser Tyr Arg Gly Arg Glu Glu Val Glu Glu Ala Lys Lys 260 265 270 Ser Asp Pro Leu Leu Thr Tyr Gln Ala Tyr Leu Lys Glu Thr Gly Leu 275 280 285 Leu Ser Asp Glu Ile Glu Gln Thr Met Leu Asp Glu Ile Met Ala Ile 290 295 300 Val Asn Glu Ala Thr Asp Glu Ala Glu Asn Ala Pro Tyr Ala Ala Pro 305 310 315 320 Glu Ser Ala Leu Asp Tyr Val Tyr Ala Lys 325 330 <210> 46 <211> 993 <212> DNA <213> Bacillus subtilis <400> 46 atgagtacaa accgacatca agcactaggg ctgactgatc aggaagccgt tgatatgtat 60 agaaccatgc tgttagcaag aaaaatcgat gaaagaatgt ggctgttaaa ccgttctggc 120 aaaattccat ttgtaatctc ttgtcaagga caggaagcag cacaggtagg agcggctttc 180 gcacttgacc gtgaaatgga ttatgtattg ccgtactaca gagacatggg tgtcgtgctc 240 gcgtttggca tgacagcaaa ggacttaatg atgtccgggt ttgcaaaagc agcagatccg 300 aactcaggag gccgccagat gccgggacat ttcggacaaa agaaaaaccg cattgtgacg 360 ggatcatctc cggttacaac gcaagtgccg cacgcagtcg gtattgcgct tgcgggacgt 420 atggagaaaa aggatatcgc agcctttgtt acattcgggg aagggtcttc aaaccaaggc 480 gatttccatg aaggggcaaa ctttgccgct gtccataagc tgccggttat tttcatgtgt 540 gaaaacaaca aatacgcaat ctcagtgcct tacgataagc aagtcgcatg tgagaacatt 600 tccgaccgtg ccataggcta tgggatgcct ggcgtaactg tgaatggaaa tgatccgctg 660 gaagtttatc aagcggttaa agaagcacgc gaaagggcac gcagaggaga aggcccgaca 720 ttaattgaaa cgatttctta ccgccttaca ccacattcca gtgatgacga tgacagcagc 780 tacagaggcc gtgaagaagt agaggaagcg aaaaaaagtg atcccctgct tacttatcaa 840 gcttacttaa aggaaacagg cctgctgtcc gatgagatag aacaaaccat gctggatgaa 900 attatggcaa tcgtaaatga agcgacggat gaagcggaga acgccccata tgcagctcct 960 gagtcagcgc ttgattatgt ttatgcgaag tag 993 <210> 47 <211> 327 <212> PRT <213> Bacillus subtilis <400> 47 Met Ser Val Met Ser Tyr Ile Asp Ala Ile Asn Leu Ala Met Lys Glu 1 5 10 15 Glu Met Glu Arg Asp Ser Arg Val Phe Val Leu Gly Glu Asp Val Gly 20 25 30 Arg Lys Gly Gly Val Phe Lys Ala Thr Ala Gly Leu Tyr Glu Gln Phe 35 40 45 Gly Glu Glu Arg Val Met Asp Thr Pro Leu Ala Glu Ser Ala Ile Ala 50 55 60 Gly Val Gly Ile Gly Ala Ala Met Tyr Gly Met Arg Pro Ile Ala Glu 65 70 75 80 Met Gln Phe Ala Asp Phe Ile Met Pro Ala Val Asn Gln Ile Ile Ser 85 90 95 Glu Ala Ala Lys Ile Arg Tyr Arg Ser Asn Asn Asp Trp Ser Cys Pro 100 105 110 Ile Val Val Arg Ala Pro Tyr Gly Gly Gly Val His Gly Ala Leu Tyr 115 120 125 His Ser Gln Ser Val Glu Ala Ile Phe Ala Asn Gln Pro Gly Leu Lys 130 135 140 Ile Val Met Pro Ser Thr Pro Tyr Asp Ala Lys Gly Leu Leu Lys Ala 145 150 155 160 Ala Val Arg Asp Glu Asp Pro Val Leu Phe Phe Glu His Lys Arg Ala 165 170 175 Tyr Arg Leu Ile Lys Gly Glu Val Pro Ala Asp Asp Tyr Val Leu Pro 180 185 190 Ile Gly Lys Ala Asp Val Lys Arg Glu Gly Asp Asp Ile Thr Val Ile 195 200 205 Thr Tyr Gly Leu Cys Val His Phe Ala Leu Gln Ala Ala Glu Arg Leu 210 215 220 Glu Lys Asp Gly Ile Ser Ala His Val Val Asp Leu Arg Thr Val Tyr 225 230 235 240 Pro Leu Asp Lys Glu Ala Ile Ile Glu Ala Ala Ser Lys Thr Gly Lys 245 250 255 Val Leu Leu Val Thr Glu Asp Thr Lys Glu Gly Ser Ile Met Ser Glu 260 265 270 Val Ala Ala Ile Ile Ser Glu His Cys Leu Phe Asp Leu Asp Ala Pro 275 280 285 Ile Lys Arg Leu Ala Gly Pro Asp Ile Pro Ala Met Pro Tyr Ala Pro 290 295 300 Thr Met Glu Lys Tyr Phe Met Val Asn Pro Asp Lys Val Glu Ala Ala 305 310 315 320 Met Arg Glu Leu Ala Glu Phe 325 <210> 48 <211> 984 <212> DNA <213> Bacillus subtilis <400> 48 atgtcagtaa tgtcatatat tgatgcaatc aatttggcga tgaaagaaga aatggaacga 60 gattctcgcg ttttcgtcct tggggaagat gtaggaagaa aaggcggtgt gtttaaagcg 120 acagcgggac tctatgaaca atttggggaa gagcgcgtta tggatacgcc gcttgctgaa 180 tctgcaatcg caggagtcgg tatcggagcg gcaatgtacg gaatgagacc gattgctgaa 240 atgcagtttg ctgatttcat tatgccggca gtcaaccaaa ttatttctga agcggctaaa 300 atccgctacc gcagcaacaa tgactggagc tgtccgattg tcgtcagagc gccatacggc 360 ggaggcgtgc acggagccct gtatcattct caatcagtcg aagcaatttt cgccaaccag 420 cccggactga aaattgtcat gccatcaaca ccatatgacg cgaaagggct cttaaaagcc 480 gcagttcgtg acgaagaccc cgtgctgttt tttgagcaca agcgggcata ccgtctgata 540 aagggcgagg ttccggctga tgattatgtc ctgccaatcg gcaaggcgga cgtaaaaagg 600 gaaggcgacg acatcacagt gatcacatac ggcctgtgtg tccacttcgc cttacaagct 660 gcagaacgtc tcgaaaaaga tggcatttca gcgcatgtgg tggatttaag aacagtttac 720 ccgcttgata aagaagccat catcgaagct gcgtccaaaa ctggaaaggt tcttttggtc 780 acagaagata caaaagaagg cagcatcatg agcgaagtag ccgcaattat atccgagcat 840 tgtctgttcg acttagacgc gccgatcaaa cggcttgcag gtcctgatat tccggctatg 900 ccttatgcgc cgacaatgga aaaatacttt atggtcaacc ctgataaagt ggaagcggcg 960 atgagagaat tagcggagtt ttaa 984 <210> 49 <211> 424 <212> PRT <213> Bacillus subtilis <400> 49 Met Ala Ile Glu Gln Met Thr Met Pro Gln Leu Gly Glu Ser Val Thr 1 5 10 15 Glu Gly Thr Ile Ser Lys Trp Leu Val Ala Pro Gly Asp Lys Val Asn 20 25 30 Lys Tyr Asp Pro Ile Ala Glu Val Met Thr Asp Lys Val Asn Ala Glu 35 40 45 Val Pro Ser Ser Phe Thr Gly Thr Ile Thr Glu Leu Val Gly Glu Glu 50 55 60 Gly Gln Thr Leu Gln Val Gly Glu Met Ile Cys Lys Ile Glu Thr Glu 65 70 75 80 Gly Ala Asn Pro Ala Glu Gln Lys Gln Glu Gln Pro Ala Ala Ser Glu 85 90 95 Ala Ala Glu Asn Pro Val Ala Lys Ser Ala Gly Ala Ala Asp Gln Pro 100 105 110 Asn Lys Lys Arg Tyr Ser Pro Ala Val Leu Arg Leu Ala Gly Glu His 115 120 125 Gly Ile Asp Leu Asp Gln Val Thr Gly Thr Gly Ala Gly Gly Arg Ile 130 135 140 Thr Arg Lys Asp Ile Gln Arg Leu Ile Glu Thr Gly Gly Val Gln Glu 145 150 155 160 Gln Asn Pro Glu Glu Leu Lys Thr Ala Ala Pro Ala Pro Lys Ser Ala 165 170 175 Ser Lys Pro Glu Pro Lys Glu Glu Thr Ser Tyr Pro Ala Ser Ala Ala 180 185 190 Gly Asp Lys Glu Ile Pro Val Thr Gly Val Arg Lys Ala Ile Ala Ser 195 200 205 Asn Met Lys Arg Ser Lys Thr Glu Ile Pro His Ala Trp Thr Met Met 210 215 220 Glu Val Asp Val Thr Asn Met Val Ala Tyr Arg Asn Ser Ile Lys Asp 225 230 235 240 Ser Phe Lys Lys Thr Glu Gly Phe Asn Leu Thr Phe Phe Ala Phe Phe 245 250 255 Val Lys Ala Val Ala Gln Ala Leu Lys Glu Phe Pro Gln Met Asn Ser 260 265 270 Met Trp Ala Gly Asp Lys Ile Ile Gln Lys Lys Asp Ile Asn Ile Ser 275 280 285 Ile Ala Val Ala Thr Glu Asp Ser Leu Phe Val Pro Val Ile Lys Asn 290 295 300 Ala Asp Glu Lys Thr Ile Lys Gly Ile Ala Lys Asp Ile Thr Gly Leu 305 310 315 320 Ala Lys Lys Val Arg Asp Gly Lys Leu Thr Ala Asp Asp Met Gln Gly 325 330 335 Gly Thr Phe Thr Val Asn Asn Thr Gly Ser Phe Gly Ser Val Gln Ser 340 345 350 Met Gly Ile Ile Asn Tyr Pro Gln Ala Ala Ile Leu Gln Val Glu Ser 355 360 365 Ile Val Lys Arg Pro Val Val Met Asp Asn Gly Met Ile Ala Val Arg 370 375 380 Asp Met Val Asn Leu Cys Leu Ser Leu Asp His Arg Val Leu Asp Gly 385 390 395 400 Leu Val Cys Gly Arg Phe Leu Gly Arg Val Lys Gln Ile Leu Glu Ser 405 410 415 Ile Asp Glu Lys Thr Ser Val Tyr 420 <210> 50 <211> 1275 <212> DNA <213> Bacillus subtilis <400> 50 atggcaattg aacaaatgac gatgccgcag cttggagaaa gcgtaacaga ggggacgatc 60 agcaaatggc ttgtcgcccc cggtgataaa gtgaacaaat acgatccgat cgcggaagtc 120 atgacagata aggtaaatgc agaggttccg tcttctttta ctggtacgat aacagagctt 180 gtgggagaag aaggccaaac cctgcaagtc ggagaaatga tttgcaaaat tgaaacagaa 240 ggcgcgaatc cggctgaaca aaaacaagaa cagccagcag catcagaagc cgctgagaac 300 cctgttgcaa aaagtgctgg agcagccgat cagcccaata aaaagcgcta ctcgccagct 360 gttctccgtt tggccggaga gcacggcatt gacctcgatc aagtgacagg aactggtgcc 420 ggcgggcgca tcacacgaaa agatattcag cgcttaattg aaacaggcgg cgtgcaagaa 480 cagaatcctg aggagctgaa aacagcagct cctgcaccga agtctgcatc aaaacctgag 540 ccaaaagaag agacgtcata tcctgcgtct gcagccggtg ataaagaaat ccctgtcaca 600 ggtgtaagaa aagcaattgc ttccaatatg aagcgaagca aaacagaaat tccgcatgct 660 tggacgatga tggaagtcga cgtcacaaat atggttgcat atcgcaacag tataaaagat 720 tcttttaaga agacagaagg ctttaattta acgttcttcg ccttttttgt aaaagcggtc 780 gctcaggcgt taaaagaatt cccgcaaatg aatagcatgt gggcggggga caaaattatt 840 cagaaaaagg atatcaatat ttcaattgca gttgccacag aggattcttt atttgttccg 900 gtgattaaaa acgctgatga aaaaacaatt aaaggcattg cgaaagacat taccggccta 960 gctaaaaaag taagagacgg aaaactcact gcagatgaca tgcagggagg cacgtttacc 1020 gtcaacaaca caggttcgtt cgggtctgtt cagtcgatgg gcattatcaa ctaccctcag 1080 gctgcgattc ttcaagtaga atccatcgtc aaacgcccgg ttgtcatgga caatggcatg 1140 attgctgtca gagacatggt taatctgtgc ctgtcattag atcacagagt gcttgacggt 1200 ctcgtgtgcg gacgattcct cggacgagtg aaacaaattt tagaatcgat tgacgagaag 1260 acatctgttt actaa 1275 <210> 51 <211> 474 <212> PRT <213> Bacillus subtilis <400> 51 Met Ala Thr Glu Tyr Asp Val Val Ile Leu Gly Gly Gly Thr Gly Gly 1 5 10 15 Tyr Val Ala Ala Ile Arg Ala Ala Gln Leu Gly Leu Lys Thr Ala Val 20 25 30 Val Glu Lys Glu Lys Leu Gly Gly Thr Cys Leu His Lys Gly Cys Ile 35 40 45 Pro Ser Lys Ala Leu Leu Arg Ser Ala Glu Val Tyr Arg Thr Ala Arg 50 55 60 Glu Ala Asp Gln Phe Gly Val Glu Thr Ala Gly Val Ser Leu Asn Phe 65 70 75 80 Glu Lys Val Gln Gln Arg Lys Gln Ala Val Val Asp Lys Leu Ala Ala 85 90 95 Gly Val Asn His Leu Met Lys Lys Gly Lys Ile Asp Val Tyr Thr Gly 100 105 110 Tyr Gly Arg Ile Leu Gly Pro Ser Ile Phe Ser Pro Leu Pro Gly Thr 115 120 125 Ile Ser Val Glu Arg Gly Asn Gly Glu Glu Asn Asp Met Leu Ile Pro 130 135 140 Lys Gln Val Ile Ile Ala Thr Gly Ser Arg Pro Arg Met Leu Pro Gly 145 150 155 160 Leu Glu Val Asp Gly Lys Ser Val Leu Thr Ser Asp Glu Ala Leu Gln 165 170 175 Met Glu Glu Leu Pro Gln Ser Ile Ile Ile Val Gly Gly Gly Val Ile 180 185 190 Gly Ile Glu Trp Ala Ser Met Leu His Asp Phe Gly Val Lys Val Thr 195 200 205 Val Ile Glu Tyr Ala Asp Arg Ile Leu Pro Thr Glu Asp Leu Glu Ile 210 215 220 Ser Lys Glu Met Glu Ser Leu Leu Lys Lys Lys Gly Ile Gln Phe Ile 225 230 235 240 Thr Gly Ala Lys Val Leu Pro Asp Thr Met Thr Lys Thr Ser Asp Asp 245 250 255 Ile Ser Ile Gln Ala Glu Lys Asp Gly Glu Thr Val Thr Tyr Ser Ala 260 265 270 Glu Lys Met Leu Val Ser Ile Gly Arg Gln Ala Asn Ile Glu Gly Ile 275 280 285 Gly Leu Glu Asn Thr Asp Ile Val Thr Glu Asn Gly Met Ile Ser Val 290 295 300 Asn Glu Ser Cys Gln Thr Lys Glu Ser His Ile Tyr Ala Ile Gly Asp 305 310 315 320 Val Ile Gly Gly Leu Gln Leu Ala His Val Ala Ser His Glu Gly Ile 325 330 335 Ile Ala Val Glu His Phe Ala Gly Leu Asn Pro His Pro Leu Asp Pro 340 345 350 Thr Leu Val Pro Lys Cys Ile Tyr Ser Ser Pro Glu Ala Ala Ser Val 355 360 365 Gly Leu Thr Glu Asp Glu Ala Lys Ala Asn Gly His Asn Val Lys Ile 370 375 380 Gly Lys Phe Pro Phe Met Ala Ile Gly Lys Ala Leu Val Tyr Gly Glu 385 390 395 400 Ser Asp Gly Phe Val Lys Ile Val Ala Asp Arg Asp Thr Asp Asp Ile 405 410 415 Leu Gly Val His Met Ile Gly Pro His Val Thr Asp Met Ile Ser Glu 420 425 430 Ala Gly Leu Ala Lys Val Leu Asp Ala Thr Pro Trp Glu Val Gly Gln 435 440 445 Thr Ile His Pro His Pro Thr Leu Ser Glu Ala Ile Gly Glu Ala Ala 450 455 460 Leu Ala Ala Asp Gly Lys Ala Ile His Phe 465 470 <210> 52 <211> 1425 <212> DNA <213> Bacillus subtilis <400> 52 atggcaactg agtatgacgt agtcattctg ggcggcggta ccggcggtta tgttgcggcc 60 atcagagccg ctcagctcgg cttaaaaaca gccgttgtgg aaaaggaaaa actcggggga 120 acatgtctgc ataaaggctg tatcccgagt aaagcgctgc ttagaagcgc agaggtatac 180 cggacagctc gtgaagccga tcaattcgga gtggaaacgg ctggcgtgtc cctcaacttt 240 gaaaaagtgc agcagcgtaa gcaagccgtt gttgataagc ttgcagcggg tgtaaatcat 300 ttaatgaaaa aaggaaaaat tgacgtgtac accggatatg gacgtatcct tggaccgtca 360 atcttctctc cgctgccggg aacaatttct gttgagcggg gaaatggcga agaaaatgac 420 atgctgatcc cgaaacaagt gatcattgca acaggatcaa gaccgagaat gcttccgggt 480 cttgaagtgg acggtaagtc tgtactgact tcagatgagg cgctccaaat ggaggagctg 540 ccacagtcaa tcatcattgt cggcggaggg gttatcggta tcgaatgggc gtctatgctt 600 catgattttg gcgttaaggt aacggttatt gaatacgcgg atcgcatatt gccgactgaa 660 gatctagaga tttcaaaaga aatggaaagt cttcttaaga aaaaaggcat ccagttcata 720 acaggggcaa aagtgctgcc tgacacaatg acaaaaacat cagacgatat cagcatacaa 780 gcggaaaaag acggagaaac cgttacctat tctgctgaga aaatgcttgt ttccatcggc 840 agacaggcaa atatcgaagg catcggccta gagaacaccg atattgttac tgaaaatggc 900 atgatttcag tcaatgaaag ctgccaaacg aaggaatctc atatttatgc aatcggagac 960 gtaatcggtg gcctgcagtt agctcacgtt gcttcacatg agggaattat tgctgttgag 1020 cattttgcag gtctcaatcc gcatccgctt gatccgacgc ttgtgccgaa gtgcatttac 1080 tcaagccctg aagctgccag tgtcggctta accgaagacg aagcaaaggc gaacgggcat 1140 aatgtcaaaa tcggcaagtt cccatttatg gcgattggaa aagcgcttgt atacggtgaa 1200 agcgacggtt ttgtcaaaat cgtggctgac cgagatacag atgatattct cggcgttcat 1260 atgattggcc cgcatgtcac cgacatgatt tctgaagcgg gtcttgccaa agtgctggac 1320 gcaacaccgt gggaggtcgg gcaaacgatt cacccgcatc caacgctttc tgaagcaatt 1380 ggagaagctg cgcttgccgc agatggcaaa gccattcatt tttaa 1425 <210> 53 <211> 410 <212> PRT <213> Pseudomonas putida <400> 53 Met Asn Glu Tyr Ala Pro Leu Arg Leu His Val Pro Glu Pro Thr Gly 1 5 10 15 Arg Pro Gly Cys Gln Thr Asp Phe Ser Tyr Leu Arg Leu Asn Asp Ala 20 25 30 Gly Gln Ala Arg Lys Pro Pro Val Asp Val Asp Ala Ala Asp Thr Ala 35 40 45 Asp Leu Ser Tyr Ser Leu Val Arg Val Leu Asp Glu Gln Gly Asp Ala 50 55 60 Gln Gly Pro Trp Ala Glu Asp Ile Asp Pro Gln Ile Leu Arg Gln Gly 65 70 75 80 Met Arg Ala Met Leu Lys Thr Arg Ile Phe Asp Ser Arg Met Val Val 85 90 95 Ala Gln Arg Gln Lys Lys Met Ser Phe Tyr Met Gln Ser Leu Gly Glu 100 105 110 Glu Ala Ile Gly Ser Gly Gln Ala Leu Ala Leu Asn Arg Thr Asp Met 115 120 125 Cys Phe Pro Thr Tyr Arg Gln Gln Ser Ile Leu Met Ala Arg Asp Val 130 135 140 Ser Leu Val Glu Met Ile Cys Gln Leu Leu Ser Asn Glu Arg Asp Pro 145 150 155 160 Leu Lys Gly Arg Gln Leu Pro Ile Met Tyr Ser Val Arg Glu Ala Gly 165 170 175 Phe Phe Thr Ile Ser Gly Asn Leu Ala Thr Gln Phe Val Gln Ala Val 180 185 190 Gly Trp Ala Met Ala Ser Ala Ile Lys Gly Asp Thr Lys Ile Ala Ser 195 200 205 Ala Trp Ile Gly Asp Gly Ala Thr Ala Glu Ser Asp Phe His Thr Ala 210 215 220 Leu Thr Phe Ala His Val Tyr Arg Ala Pro Val Ile Leu Asn Val Val 225 230 235 240 Asn Asn Gln Trp Ala Ile Ser Thr Phe Gln Ala Ile Ala Gly Gly Glu 245 250 255 Ser Thr Thr Phe Ala Gly Arg Gly Val Gly Cys Gly Ile Ala Ser Leu 260 265 270 Arg Val Asp Gly Asn Asp Phe Val Ala Val Tyr Ala Ala Ser Arg Trp 275 280 285 Ala Ala Glu Arg Ala Arg Arg Gly Leu Gly Pro Ser Leu Ile Glu Trp 290 295 300 Val Thr Tyr Arg Ala Gly Pro His Ser Thr Ser Asp Asp Pro Ser Lys 305 310 315 320 Tyr Arg Pro Ala Asp Asp Trp Ser His Phe Pro Leu Gly Asp Pro Ile 325 330 335 Ala Arg Leu Lys Gln His Leu Ile Lys Ile Gly His Trp Ser Glu Glu 340 345 350 Glu His Gln Ala Thr Thr Ala Glu Phe Glu Ala Ala Val Ile Ala Ala 355 360 365 Gln Lys Glu Ala Glu Gln Tyr Gly Thr Leu Ala Asn Gly His Ile Pro 370 375 380 Ser Ala Ala Ser Met Phe Glu Asp Val Tyr Lys Glu Met Pro Asp His 385 390 395 400 Leu Arg Arg Gln Arg Gln Glu Leu Gly Val 405 410 <210> 54 <211> 6643 <212> DNA <213> Pseudomonas putida <400> 54 gcatgcctgc aggccgccga tgaaatggtg gaaggtatcg gtaggctggc cctgctcatc 60 gctgaacacg ttacgcccgc tgccggtatc gaccaggctc tggtgaatat gcatggaact 120 gccaggcgtg cgcgccagcg gtttggccat gcacaccacg gtcagcccgt gcttgagtgc 180 cacttccttg agcaggtgtt tgaacaggaa ggtctggtcg gccagcagca gcgggtcgcc 240 atgtagcaag ttgatctcga actggctgac gcccatttcg tgcatgaagg tgtcgcgcgg 300 caggccgagc gcggccatgc actggtacac ctcattgaag aacgggcgca ggccgttgtt 360 ggaactgaca ctgaacgccg aatggcccag ctcgcggcgg ccgtcggtgc ccagcggtgg 420 ctggaacggc tgctgcgggt cactgttggg ggcaaacacg aagaactcaa gctcggtcgc 480 cactaccggt gccagaccca acgctgcgta gcgggcgatc acggccttca gctggccccg 540 ggtggacagt gccgagggcc ggccatccag ttcattggca tcgcagatgg ccagggcgcg 600 accgtcatcg ctccagggca agcgatgaac ctggctgggt tccgctacca acgccaggtc 660 gccgtcgtcg cagccgtaga atttcgccgg cgggtagccg cccatgatgc attgcagcag 720 caccccacgg gccatctgca ggcggcggcc ttcgagaaag ccttcggcgg tcatcacctt 780 gccgcgtggg acgccgttga ggtcgggggt gacgcattcg atttcatcga tgccctggag 840 ctgagcgatg ctcatgacgc ttgtccttgt tgttgtaggc tgacaacaac ataggctggg 900 ggtgtttaaa atatcaagca gcctctcgaa cgcctggggc ctcttctatt cgcgcaaggt 960 catgccattg gccggcaacg gcaaggctgt cttgtagcgc acctgtttca aggcaaaact 1020 cgagcggata ttcgccacac ccggcaaccg ggtcaggtaa tcgagaaacc gctccagcgc 1080 ctggatactc ggcagcagta cccgcaacag gtagtccggg tcgcccgtca tcaggtagca 1140 ctccatcacc tcgggccgtt cggcaatttc ttcctcgaag cggtgcagcg actgctctac 1200 ctgtttttcc aggctgacat ggatgaacac attcacatcc agccccaacg cctcgggcga 1260 caacaaggtc acctgctggc ggatcacccc cagttcttcc atggcccgca cccggttgaa 1320 acagggcgtg ggcgacaggt tgaccgagcg tgccagctcg gcgttggtga tgcgggcgtt 1380 ttcctgcagg ctgttgagaa tgccgatatc ggtacgatcg agtttgcgca tgagacaaaa 1440 tcaccggttt tttgtgttta tgcggaatgt ttatctgccc cgctcggcaa aggcaatcaa 1500 cttgagagaa aaattctcct gccggaccac taagatgtag gggacgctga cttaccagtc 1560 acaagccggt actcagcggc ggccgcttca gagctcacaa aaacaaatac ccgagcgagc 1620 gtaaaaagca tgaacgagta cgcccccctg cgtttgcatg tgcccgagcc caccggccgg 1680 ccaggctgcc agaccgattt ttcctacctg cgcctgaacg atgcaggtca agcccgtaaa 1740 ccccctgtcg atgtcgacgc tgccgacacc gccgacctgt cctacagcct ggtccgcgtg 1800 ctcgacgagc aaggcgacgc ccaaggcccg tgggctgaag acatcgaccc gcagatcctg 1860 cgccaaggca tgcgcgccat gctcaagacg cggatcttcg acagccgcat ggtggttgcc 1920 cagcgccaga agaagatgtc cttctacatg cagagcctgg gcgaagaagc catcggcagc 1980 ggccaggcgc tggcgcttaa ccgcaccgac atgtgcttcc ccacctaccg tcagcaaagc 2040 atcctgatgg cccgcgacgt gtcgctggtg gagatgatct gccagttgct gtccaacgaa 2100 cgcgaccccc tcaagggccg ccagctgccg atcatgtact cggtacgcga ggccggcttc 2160 ttcaccatca gcggcaacct ggcgacccag ttcgtgcagg cggtcggctg ggccatggcc 2220 tcggcgatca agggcgatac caagattgcc tcggcctgga tcggcgacgg cgccactgcc 2280 gaatcggact tccacaccgc cctcaccttt gcccacgttt accgcgcccc ggtgatcctc 2340 aacgtggtca acaaccagtg ggccatctca accttccagg ccatcgccgg tggcgagtcg 2400 accaccttcg ccggccgtgg cgtgggctgc ggcatcgctt cgctgcgggt ggacggcaac 2460 gacttcgtcg ccgtttacgc cgcttcgcgc tgggctgccg aacgtgcccg ccgtggtttg 2520 ggcccgagcc tgatcgagtg ggtcacctac cgtgccggcc cgcactcgac ctcggacgac 2580 ccgtccaagt accgccctgc cgatgactgg agccacttcc cgctgggtga cccgatcgcc 2640 cgcctgaagc agcacctgat caagatcggc cactggtccg aagaagaaca ccaggccacc 2700 acggccgagt tcgaagcggc cgtgattgct gcgcaaaaag aagccgagca gtacggcacc 2760 ctggccaacg gtcacatccc gagcgccgcc tcgatgttcg aggacgtgta caaggagatg 2820 cccgaccacc tgcgccgcca acgccaggaa ctgggggttt gagatgaacg accacaacaa 2880 cagcatcaac ccggaaaccg ccatggccac cactaccatg accatgatcc aggccctgcg 2940 ctcggccatg gatgtcatgc ttgagcgcga cgacaatgtg gtggtgtacg gccaggacgt 3000 cggctacttc ggcggcgtgt tccgctgcac cgaaggcctg cagaccaagt acggcaagtc 3060 ccgcgtgttc gacgcgccca tctctgaaag cggcatcgtc ggcaccgccg tgggcatggg 3120 tgcctacggc ctgcgcccgg tggtggaaat ccagttcgct gactacttct acccggcctc 3180 cgaccagatc gtttctgaaa tggcccgcct gcgctaccgt tcggccggcg agttcatcgc 3240 cccgctgacc ctgcgtatgc cctgcggtgg cggtatctat ggcggccaga cacacagcca 3300 gagcccggaa gcgatgttca ctcaggtgtg cggcctgcgc accgtaatgc catccaaccc 3360 gtacgacgcc aaaggcctgc tgattgcctc gatcgaatgc gacgacccgg tgatcttcct 3420 ggagcccaag cgcctgtaca acggcccgtt cgacggccac catgaccgcc cggttacgcc 3480 gtggtcgaaa cacccgcaca gcgccgtgcc cgatggctac tacaccgtgc cactggacaa 3540 ggccgccatc acccgccccg gcaatgacgt gagcgtgctc acctatggca ccaccgtgta 3600 cgtggcccag gtggccgccg aagaaagtgg cgtggatgcc gaagtgatcg acctgcgcag 3660 cctgtggccg ctagacctgg acaccatcgt cgagtcggtg aaaaagaccg gccgttgcgt 3720 ggtagtacac gaggccaccc gtacttgtgg ctttggcgca gaactggtgt cgctggtgca 3780 ggagcactgc ttccaccacc tggaggcgcc gatcgagcgc gtcaccggtt gggacacccc 3840 ctaccctcac gcgcaggaat gggcttactt cccagggcct tcgcgggtag gtgcggcatt 3900 gaaaaaggtc atggaggtct gaatgggcac gcacgtcatc aagatgccgg acattggcga 3960 aggcatcgcg caggtcgaat tggtggaatg gttcgtcaag gtgggcgaca tcatcgccga 4020 ggaccaagtg gtagccgacg tcatgaccga caaggccacc gtggaaatcc cgtcgccggt 4080 cagcggcaag gtgctggccc tgggtggcca gccaggtgaa gtgatggcgg tcggcagtga 4140 gctgatccgc atcgaagtgg aaggcagcgg caaccatgtg gatgtgccgc aagccaagcc 4200 ggccgaagtg cctgcggcac cggtagccgc taaacctgaa ccacagaaag acgttaaacc 4260 ggcggcgtac caggcgtcag ccagccacga ggcagcgccc atcgtgccgc gccagccggg 4320 cgacaagccg ctggcctcgc cggcggtgcg caaacgcgcc ctcgatgccg gcatcgaatt 4380 gcgttatgtg cacggcagcg gcccggccgg gcgcatcctg cacgaagacc tcgacgcgtt 4440 catgagcaaa ccgcaaagcg ctgccgggca aacccccaat ggctatgcca ggcgcaccga 4500 cagcgagcag gtgccggtga tcggcctgcg ccgcaagatc gcccagcgca tgcaggacgc 4560 caagcgccgg gtcgcgcact tcagctatgt ggaagaaatc gacgtcaccg ccctggaagc 4620 cctgcgccag cagctcaaca gcaagcacgg cgacagccgc ggcaagctga cactgctgcc 4680 gttcctggtg cgcgccctgg tcgtggcact gcgtgacttc ccgcagataa acgccaccta 4740 cgatgacgaa gcgcagatca tcacccgcca tggcgcggtg catgtgggca tcgccaccca 4800 aggtgacaac ggcctgatgg tacccgtgct gcgccacgcc gaagcgggca gcctgtgggc 4860 caatgccggt gagatttcac gcctggccaa cgctgcgcgc aacaacaagg ccagccgcga 4920 agagctgtcc ggttcgacca ttaccctgac cagcctcggc gccctgggcg gcatcgtcag 4980 cacgccggtg gtcaacaccc cggaagtggc gatcgtcggt gtcaaccgca tggttgagcg 5040 gcccgtggtg atcgacggcc agatcgtcgt gcgcaagatg atgaacctgt ccagctcgtt 5100 cgaccaccgc gtggtcgatg gcatggacgc cgccctgttc atccaggccg tgcgtggcct 5160 gctcgaacaa cccgcctgcc tgttcgtgga gtgagcatgc aacagactat ccagacaacc 5220 ctgttgatca tcggcggcgg ccctggcggc tatgtggcgg ccatccgcgc cgggcaactg 5280 ggcatcccta ccgtgctggt ggaaggccag gcgctgggcg gtacctgcct gaacatcggc 5340 tgcattccgt ccaaggcgct gatccatgtg gccgagcagt tccaccaggc ctcgcgcttt 5400 accgaaccct cgccgctggg catcagcgtg gcttcgccac gcctggacat cggccagagc 5460 gtggcctgga aagacggcat cgtcgatcgc ctgaccactg gtgtcgccgc cctgctgaaa 5520 aagcacgggg tgaaggtggt gcacggctgg gccaaggtgc ttgatggcaa gcaggtcgag 5580 gtggatggcc agcgcatcca gtgcgagcac ctgttgctgg ccacgggctc cagcagtgtc 5640 gaactgccga tgctgccgtt gggtgggccg gtgatttcct cgaccgaggc cctggcaccg 5700 aaagccctgc cgcaacacct ggtggtggtg ggcggtggct acatcggcct ggagctgggt 5760 atcgcctacc gcaagctcgg cgcgcaggtc agcgtggtgg aagcgcgcga gcgcatcctg 5820 ccgacttacg acagcgaact gaccgccccg gtggccgagt cgctgaaaaa gctgggtatc 5880 gccctgcacc ttggccacag cgtcgaaggt tacgaaaatg gctgcctgct ggccaacgat 5940 ggcaagggcg gacaactgcg cctggaagcc gaccgggtgc tggtggccgt gggccgccgc 6000 ccacgcacca agggcttcaa cctggaatgc ctggacctga agatgaatgg tgccgcgatt 6060 gccatcgacg agcgctgcca gaccagcatg cacaacgtct gggccatcgg cgacgtggcc 6120 ggcgaaccga tgctggcgca ccgggccatg gcccagggcg agatggtggc cgagatcatc 6180 gccggcaagg cacgccgctt cgaacccgct gcgatagccg ccgtgtgctt caccgacccg 6240 gaagtggtcg tggtcggcaa gacgccggaa caggccagtc agcaaggcct ggactgcatc 6300 gtcgcgcagt tcccgttcgc cgccaacggc cgggccatga gcctggagtc gaaaagcggt 6360 ttcgtgcgcg tggtcgcgcg gcgtgacaac cacctgatcc tgggctggca agcggttggc 6420 gtggcggttt ccgagctgtc cacggcgttt gcccagtcgc tggagatggg tgcctgcctg 6480 gaggatgtgg ccggtaccat ccatgcccac ccgaccctgg gtgaagcggt acaggaagcg 6540 gcactgcgtg ccctgggcca cgccctgcat atctgacact gaagcggccg aggccgattt 6600 ggcccgccgc gccgagaggc gctgcgggtc ttttttatac ctg 6643 <210> 55 <211> 352 <212> PRT <213> Pseudomonas putida <400> 55 Met Asn Asp His Asn Asn Ser Ile Asn Pro Glu Thr Ala Met Ala Thr 1 5 10 15 Thr Thr Met Thr Met Ile Gln Ala Leu Arg Ser Ala Met Asp Val Met 20 25 30 Leu Glu Arg Asp Asp Asn Val Val Val Tyr Gly Gln Asp Val Gly Tyr 35 40 45 Phe Gly Gly Val Phe Arg Cys Thr Glu Gly Leu Gln Thr Lys Tyr Gly 50 55 60 Lys Ser Arg Val Phe Asp Ala Pro Ile Ser Glu Ser Gly Ile Val Gly 65 70 75 80 Thr Ala Val Gly Met Gly Ala Tyr Gly Leu Arg Pro Val Val Glu Ile 85 90 95 Gln Phe Ala Asp Tyr Phe Tyr Pro Ala Ser Asp Gln Ile Val Ser Glu 100 105 110 Met Ala Arg Leu Arg Tyr Arg Ser Ala Gly Glu Phe Ile Ala Pro Leu 115 120 125 Thr Leu Arg Met Pro Cys Gly Gly Gly Ile Tyr Gly Gly Gln Thr His 130 135 140 Ser Gln Ser Pro Glu Ala Met Phe Thr Gln Val Cys Gly Leu Arg Thr 145 150 155 160 Val Met Pro Ser Asn Pro Tyr Asp Ala Lys Gly Leu Leu Ile Ala Ser 165 170 175 Ile Glu Cys Asp Asp Pro Val Ile Phe Leu Glu Pro Lys Arg Leu Tyr 180 185 190 Asn Gly Pro Phe Asp Gly His His Asp Arg Pro Val Thr Pro Trp Ser 195 200 205 Lys His Pro His Ser Ala Val Pro Asp Gly Tyr Tyr Thr Val Pro Leu 210 215 220 Asp Lys Ala Ala Ile Thr Arg Pro Gly Asn Asp Val Ser Val Leu Thr 225 230 235 240 Tyr Gly Thr Thr Val Tyr Val Ala Gln Val Ala Ala Glu Glu Ser Gly 245 250 255 Val Asp Ala Glu Val Ile Asp Leu Arg Ser Leu Trp Pro Leu Asp Leu 260 265 270 Asp Thr Ile Val Glu Ser Val Lys Lys Thr Gly Arg Cys Val Val Val 275 280 285 His Glu Ala Thr Arg Thr Cys Gly Phe Gly Ala Glu Leu Val Ser Leu 290 295 300 Val Gln Glu His Cys Phe His His Leu Glu Ala Pro Ile Glu Arg Val 305 310 315 320 Thr Gly Trp Asp Thr Pro Tyr Pro His Ala Gln Glu Trp Ala Tyr Phe 325 330 335 Pro Gly Pro Ser Arg Val Gly Ala Ala Leu Lys Lys Val Met Glu Val 340 345 350 <210> 56 <211> 6643 <212> DNA <213> Pseudomonas putida <400> 56 gcatgcctgc aggccgccga tgaaatggtg gaaggtatcg gtaggctggc cctgctcatc 60 gctgaacacg ttacgcccgc tgccggtatc gaccaggctc tggtgaatat gcatggaact 120 gccaggcgtg cgcgccagcg gtttggccat gcacaccacg gtcagcccgt gcttgagtgc 180 cacttccttg agcaggtgtt tgaacaggaa ggtctggtcg gccagcagca gcgggtcgcc 240 atgtagcaag ttgatctcga actggctgac gcccatttcg tgcatgaagg tgtcgcgcgg 300 caggccgagc gcggccatgc actggtacac ctcattgaag aacgggcgca ggccgttgtt 360 ggaactgaca ctgaacgccg aatggcccag ctcgcggcgg ccgtcggtgc ccagcggtgg 420 ctggaacggc tgctgcgggt cactgttggg ggcaaacacg aagaactcaa gctcggtcgc 480 cactaccggt gccagaccca acgctgcgta gcgggcgatc acggccttca gctggccccg 540 ggtggacagt gccgagggcc ggccatccag ttcattggca tcgcagatgg ccagggcgcg 600 accgtcatcg ctccagggca agcgatgaac ctggctgggt tccgctacca acgccaggtc 660 gccgtcgtcg cagccgtaga atttcgccgg cgggtagccg cccatgatgc attgcagcag 720 caccccacgg gccatctgca ggcggcggcc ttcgagaaag ccttcggcgg tcatcacctt 780 gccgcgtggg acgccgttga ggtcgggggt gacgcattcg atttcatcga tgccctggag 840 ctgagcgatg ctcatgacgc ttgtccttgt tgttgtaggc tgacaacaac ataggctggg 900 ggtgtttaaa atatcaagca gcctctcgaa cgcctggggc ctcttctatt cgcgcaaggt 960 catgccattg gccggcaacg gcaaggctgt cttgtagcgc acctgtttca aggcaaaact 1020 cgagcggata ttcgccacac ccggcaaccg ggtcaggtaa tcgagaaacc gctccagcgc 1080 ctggatactc ggcagcagta cccgcaacag gtagtccggg tcgcccgtca tcaggtagca 1140 ctccatcacc tcgggccgtt cggcaatttc ttcctcgaag cggtgcagcg actgctctac 1200 ctgtttttcc aggctgacat ggatgaacac attcacatcc agccccaacg cctcgggcga 1260 caacaaggtc acctgctggc ggatcacccc cagttcttcc atggcccgca cccggttgaa 1320 acagggcgtg ggcgacaggt tgaccgagcg tgccagctcg gcgttggtga tgcgggcgtt 1380 ttcctgcagg ctgttgagaa tgccgatatc ggtacgatcg agtttgcgca tgagacaaaa 1440 tcaccggttt tttgtgttta tgcggaatgt ttatctgccc cgctcggcaa aggcaatcaa 1500 cttgagagaa aaattctcct gccggaccac taagatgtag gggacgctga cttaccagtc 1560 acaagccggt actcagcggc ggccgcttca gagctcacaa aaacaaatac ccgagcgagc 1620 gtaaaaagca tgaacgagta cgcccccctg cgtttgcatg tgcccgagcc caccggccgg 1680 ccaggctgcc agaccgattt ttcctacctg cgcctgaacg atgcaggtca agcccgtaaa 1740 ccccctgtcg atgtcgacgc tgccgacacc gccgacctgt cctacagcct ggtccgcgtg 1800 ctcgacgagc aaggcgacgc ccaaggcccg tgggctgaag acatcgaccc gcagatcctg 1860 cgccaaggca tgcgcgccat gctcaagacg cggatcttcg acagccgcat ggtggttgcc 1920 cagcgccaga agaagatgtc cttctacatg cagagcctgg gcgaagaagc catcggcagc 1980 ggccaggcgc tggcgcttaa ccgcaccgac atgtgcttcc ccacctaccg tcagcaaagc 2040 atcctgatgg cccgcgacgt gtcgctggtg gagatgatct gccagttgct gtccaacgaa 2100 cgcgaccccc tcaagggccg ccagctgccg atcatgtact cggtacgcga ggccggcttc 2160 ttcaccatca gcggcaacct ggcgacccag ttcgtgcagg cggtcggctg ggccatggcc 2220 tcggcgatca agggcgatac caagattgcc tcggcctgga tcggcgacgg cgccactgcc 2280 gaatcggact tccacaccgc cctcaccttt gcccacgttt accgcgcccc ggtgatcctc 2340 aacgtggtca acaaccagtg ggccatctca accttccagg ccatcgccgg tggcgagtcg 2400 accaccttcg ccggccgtgg cgtgggctgc ggcatcgctt cgctgcgggt ggacggcaac 2460 gacttcgtcg ccgtttacgc cgcttcgcgc tgggctgccg aacgtgcccg ccgtggtttg 2520 ggcccgagcc tgatcgagtg ggtcacctac cgtgccggcc cgcactcgac ctcggacgac 2580 ccgtccaagt accgccctgc cgatgactgg agccacttcc cgctgggtga cccgatcgcc 2640 cgcctgaagc agcacctgat caagatcggc cactggtccg aagaagaaca ccaggccacc 2700 acggccgagt tcgaagcggc cgtgattgct gcgcaaaaag aagccgagca gtacggcacc 2760 ctggccaacg gtcacatccc gagcgccgcc tcgatgttcg aggacgtgta caaggagatg 2820 cccgaccacc tgcgccgcca acgccaggaa ctgggggttt gagatgaacg accacaacaa 2880 cagcatcaac ccggaaaccg ccatggccac cactaccatg accatgatcc aggccctgcg 2940 ctcggccatg gatgtcatgc ttgagcgcga cgacaatgtg gtggtgtacg gccaggacgt 3000 cggctacttc ggcggcgtgt tccgctgcac cgaaggcctg cagaccaagt acggcaagtc 3060 ccgcgtgttc gacgcgccca tctctgaaag cggcatcgtc ggcaccgccg tgggcatggg 3120 tgcctacggc ctgcgcccgg tggtggaaat ccagttcgct gactacttct acccggcctc 3180 cgaccagatc gtttctgaaa tggcccgcct gcgctaccgt tcggccggcg agttcatcgc 3240 cccgctgacc ctgcgtatgc cctgcggtgg cggtatctat ggcggccaga cacacagcca 3300 gagcccggaa gcgatgttca ctcaggtgtg cggcctgcgc accgtaatgc catccaaccc 3360 gtacgacgcc aaaggcctgc tgattgcctc gatcgaatgc gacgacccgg tgatcttcct 3420 ggagcccaag cgcctgtaca acggcccgtt cgacggccac catgaccgcc cggttacgcc 3480 gtggtcgaaa cacccgcaca gcgccgtgcc cgatggctac tacaccgtgc cactggacaa 3540 ggccgccatc acccgccccg gcaatgacgt gagcgtgctc acctatggca ccaccgtgta 3600 cgtggcccag gtggccgccg aagaaagtgg cgtggatgcc gaagtgatcg acctgcgcag 3660 cctgtggccg ctagacctgg acaccatcgt cgagtcggtg aaaaagaccg gccgttgcgt 3720 ggtagtacac gaggccaccc gtacttgtgg ctttggcgca gaactggtgt cgctggtgca 3780 ggagcactgc ttccaccacc tggaggcgcc gatcgagcgc gtcaccggtt gggacacccc 3840 ctaccctcac gcgcaggaat gggcttactt cccagggcct tcgcgggtag gtgcggcatt 3900 gaaaaaggtc atggaggtct gaatgggcac gcacgtcatc aagatgccgg acattggcga 3960 aggcatcgcg caggtcgaat tggtggaatg gttcgtcaag gtgggcgaca tcatcgccga 4020 ggaccaagtg gtagccgacg tcatgaccga caaggccacc gtggaaatcc cgtcgccggt 4080 cagcggcaag gtgctggccc tgggtggcca gccaggtgaa gtgatggcgg tcggcagtga 4140 gctgatccgc atcgaagtgg aaggcagcgg caaccatgtg gatgtgccgc aagccaagcc 4200 ggccgaagtg cctgcggcac cggtagccgc taaacctgaa ccacagaaag acgttaaacc 4260 ggcggcgtac caggcgtcag ccagccacga ggcagcgccc atcgtgccgc gccagccggg 4320 cgacaagccg ctggcctcgc cggcggtgcg caaacgcgcc ctcgatgccg gcatcgaatt 4380 gcgttatgtg cacggcagcg gcccggccgg gcgcatcctg cacgaagacc tcgacgcgtt 4440 catgagcaaa ccgcaaagcg ctgccgggca aacccccaat ggctatgcca ggcgcaccga 4500 cagcgagcag gtgccggtga tcggcctgcg ccgcaagatc gcccagcgca tgcaggacgc 4560 caagcgccgg gtcgcgcact tcagctatgt ggaagaaatc gacgtcaccg ccctggaagc 4620 cctgcgccag cagctcaaca gcaagcacgg cgacagccgc ggcaagctga cactgctgcc 4680 gttcctggtg cgcgccctgg tcgtggcact gcgtgacttc ccgcagataa acgccaccta 4740 cgatgacgaa gcgcagatca tcacccgcca tggcgcggtg catgtgggca tcgccaccca 4800 aggtgacaac ggcctgatgg tacccgtgct gcgccacgcc gaagcgggca gcctgtgggc 4860 caatgccggt gagatttcac gcctggccaa cgctgcgcgc aacaacaagg ccagccgcga 4920 agagctgtcc ggttcgacca ttaccctgac cagcctcggc gccctgggcg gcatcgtcag 4980 cacgccggtg gtcaacaccc cggaagtggc gatcgtcggt gtcaaccgca tggttgagcg 5040 gcccgtggtg atcgacggcc agatcgtcgt gcgcaagatg atgaacctgt ccagctcgtt 5100 cgaccaccgc gtggtcgatg gcatggacgc cgccctgttc atccaggccg tgcgtggcct 5160 gctcgaacaa cccgcctgcc tgttcgtgga gtgagcatgc aacagactat ccagacaacc 5220 ctgttgatca tcggcggcgg ccctggcggc tatgtggcgg ccatccgcgc cgggcaactg 5280 ggcatcccta ccgtgctggt ggaaggccag gcgctgggcg gtacctgcct gaacatcggc 5340 tgcattccgt ccaaggcgct gatccatgtg gccgagcagt tccaccaggc ctcgcgcttt 5400 accgaaccct cgccgctggg catcagcgtg gcttcgccac gcctggacat cggccagagc 5460 gtggcctgga aagacggcat cgtcgatcgc ctgaccactg gtgtcgccgc cctgctgaaa 5520 aagcacgggg tgaaggtggt gcacggctgg gccaaggtgc ttgatggcaa gcaggtcgag 5580 gtggatggcc agcgcatcca gtgcgagcac ctgttgctgg ccacgggctc cagcagtgtc 5640 gaactgccga tgctgccgtt gggtgggccg gtgatttcct cgaccgaggc cctggcaccg 5700 aaagccctgc cgcaacacct ggtggtggtg ggcggtggct acatcggcct ggagctgggt 5760 atcgcctacc gcaagctcgg cgcgcaggtc agcgtggtgg aagcgcgcga gcgcatcctg 5820 ccgacttacg acagcgaact gaccgccccg gtggccgagt cgctgaaaaa gctgggtatc 5880 gccctgcacc ttggccacag cgtcgaaggt tacgaaaatg gctgcctgct ggccaacgat 5940 ggcaagggcg gacaactgcg cctggaagcc gaccgggtgc tggtggccgt gggccgccgc 6000 ccacgcacca agggcttcaa cctggaatgc ctggacctga agatgaatgg tgccgcgatt 6060 gccatcgacg agcgctgcca gaccagcatg cacaacgtct gggccatcgg cgacgtggcc 6120 ggcgaaccga tgctggcgca ccgggccatg gcccagggcg agatggtggc cgagatcatc 6180 gccggcaagg cacgccgctt cgaacccgct gcgatagccg ccgtgtgctt caccgacccg 6240 gaagtggtcg tggtcggcaa gacgccggaa caggccagtc agcaaggcct ggactgcatc 6300 gtcgcgcagt tcccgttcgc cgccaacggc cgggccatga gcctggagtc gaaaagcggt 6360 ttcgtgcgcg tggtcgcgcg gcgtgacaac cacctgatcc tgggctggca agcggttggc 6420 gtggcggttt ccgagctgtc cacggcgttt gcccagtcgc tggagatggg tgcctgcctg 6480 gaggatgtgg ccggtaccat ccatgcccac ccgaccctgg gtgaagcggt acaggaagcg 6540 gcactgcgtg ccctgggcca cgccctgcat atctgacact gaagcggccg aggccgattt 6600 ggcccgccgc gccgagaggc gctgcgggtc ttttttatac ctg 6643 <210> 57 <211> 423 <212> PRT <213> Pseudomonas putida <400> 57 Met Gly Thr His Val Ile Lys Met Pro Asp Ile Gly Glu Gly Ile Ala 1 5 10 15 Gln Val Glu Leu Val Glu Trp Phe Val Lys Val Gly Asp Ile Ile Ala 20 25 30 Glu Asp Gln Val Val Ala Asp Val Met Thr Asp Lys Ala Thr Val Glu 35 40 45 Ile Pro Ser Pro Val Ser Gly Lys Val Leu Ala Leu Gly Gly Gln Pro 50 55 60 Gly Glu Val Met Ala Val Gly Ser Glu Leu Ile Arg Ile Glu Val Glu 65 70 75 80 Gly Ser Gly Asn His Val Asp Val Pro Gln Ala Lys Pro Ala Glu Val 85 90 95 Pro Ala Ala Pro Val Ala Ala Lys Pro Glu Pro Gln Lys Asp Val Lys 100 105 110 Pro Ala Ala Tyr Gln Ala Ser Ala Ser His Glu Ala Ala Pro Ile Val 115 120 125 Pro Arg Gln Pro Gly Asp Lys Pro Leu Ala Ser Pro Ala Val Arg Lys 130 135 140 Arg Ala Leu Asp Ala Gly Ile Glu Leu Arg Tyr Val His Gly Ser Gly 145 150 155 160 Pro Ala Gly Arg Ile Leu His Glu Asp Leu Asp Ala Phe Met Ser Lys 165 170 175 Pro Gln Ser Ala Ala Gly Gln Thr Pro Asn Gly Tyr Ala Arg Arg Thr 180 185 190 Asp Ser Glu Gln Val Pro Val Ile Gly Leu Arg Arg Lys Ile Ala Gln 195 200 205 Arg Met Gln Asp Ala Lys Arg Arg Val Ala His Phe Ser Tyr Val Glu 210 215 220 Glu Ile Asp Val Thr Ala Leu Glu Ala Leu Arg Gln Gln Leu Asn Ser 225 230 235 240 Lys His Gly Asp Ser Arg Gly Lys Leu Thr Leu Leu Pro Phe Leu Val 245 250 255 Arg Ala Leu Val Val Ala Leu Arg Asp Phe Pro Gln Ile Asn Ala Thr 260 265 270 Tyr Asp Asp Glu Ala Gln Ile Ile Thr Arg His Gly Ala Val His Val 275 280 285 Gly Ile Ala Thr Gln Gly Asp Asn Gly Leu Met Val Pro Val Leu Arg 290 295 300 His Ala Glu Ala Gly Ser Leu Trp Ala Asn Ala Gly Glu Ile Ser Arg 305 310 315 320 Leu Ala Asn Ala Ala Arg Asn Asn Lys Ala Ser Arg Glu Glu Leu Ser 325 330 335 Gly Ser Thr Ile Thr Leu Thr Ser Leu Gly Ala Leu Gly Gly Ile Val 340 345 350 Ser Thr Pro Val Val Asn Thr Pro Glu Val Ala Ile Val Gly Val Asn 355 360 365 Arg Met Val Glu Arg Pro Val Val Ile Asp Gly Gln Ile Val Val Arg 370 375 380 Lys Met Met Asn Leu Ser Ser Ser Phe Asp His Arg Val Val Asp Gly 385 390 395 400 Met Asp Ala Ala Leu Phe Ile Gln Ala Val Arg Gly Leu Leu Glu Gln 405 410 415 Pro Ala Cys Leu Phe Val Glu 420 <210> 58 <211> 6643 <212> DNA <213> Pseudomonas putida <400> 58 gcatgcctgc aggccgccga tgaaatggtg gaaggtatcg gtaggctggc cctgctcatc 60 gctgaacacg ttacgcccgc tgccggtatc gaccaggctc tggtgaatat gcatggaact 120 gccaggcgtg cgcgccagcg gtttggccat gcacaccacg gtcagcccgt gcttgagtgc 180 cacttccttg agcaggtgtt tgaacaggaa ggtctggtcg gccagcagca gcgggtcgcc 240 atgtagcaag ttgatctcga actggctgac gcccatttcg tgcatgaagg tgtcgcgcgg 300 caggccgagc gcggccatgc actggtacac ctcattgaag aacgggcgca ggccgttgtt 360 ggaactgaca ctgaacgccg aatggcccag ctcgcggcgg ccgtcggtgc ccagcggtgg 420 ctggaacggc tgctgcgggt cactgttggg ggcaaacacg aagaactcaa gctcggtcgc 480 cactaccggt gccagaccca acgctgcgta gcgggcgatc acggccttca gctggccccg 540 ggtggacagt gccgagggcc ggccatccag ttcattggca tcgcagatgg ccagggcgcg 600 accgtcatcg ctccagggca agcgatgaac ctggctgggt tccgctacca acgccaggtc 660 gccgtcgtcg cagccgtaga atttcgccgg cgggtagccg cccatgatgc attgcagcag 720 caccccacgg gccatctgca ggcggcggcc ttcgagaaag ccttcggcgg tcatcacctt 780 gccgcgtggg acgccgttga ggtcgggggt gacgcattcg atttcatcga tgccctggag 840 ctgagcgatg ctcatgacgc ttgtccttgt tgttgtaggc tgacaacaac ataggctggg 900 ggtgtttaaa atatcaagca gcctctcgaa cgcctggggc ctcttctatt cgcgcaaggt 960 catgccattg gccggcaacg gcaaggctgt cttgtagcgc acctgtttca aggcaaaact 1020 cgagcggata ttcgccacac ccggcaaccg ggtcaggtaa tcgagaaacc gctccagcgc 1080 ctggatactc ggcagcagta cccgcaacag gtagtccggg tcgcccgtca tcaggtagca 1140 ctccatcacc tcgggccgtt cggcaatttc ttcctcgaag cggtgcagcg actgctctac 1200 ctgtttttcc aggctgacat ggatgaacac attcacatcc agccccaacg cctcgggcga 1260 caacaaggtc acctgctggc ggatcacccc cagttcttcc atggcccgca cccggttgaa 1320 acagggcgtg ggcgacaggt tgaccgagcg tgccagctcg gcgttggtga tgcgggcgtt 1380 ttcctgcagg ctgttgagaa tgccgatatc ggtacgatcg agtttgcgca tgagacaaaa 1440 tcaccggttt tttgtgttta tgcggaatgt ttatctgccc cgctcggcaa aggcaatcaa 1500 cttgagagaa aaattctcct gccggaccac taagatgtag gggacgctga cttaccagtc 1560 acaagccggt actcagcggc ggccgcttca gagctcacaa aaacaaatac ccgagcgagc 1620 gtaaaaagca tgaacgagta cgcccccctg cgtttgcatg tgcccgagcc caccggccgg 1680 ccaggctgcc agaccgattt ttcctacctg cgcctgaacg atgcaggtca agcccgtaaa 1740 ccccctgtcg atgtcgacgc tgccgacacc gccgacctgt cctacagcct ggtccgcgtg 1800 ctcgacgagc aaggcgacgc ccaaggcccg tgggctgaag acatcgaccc gcagatcctg 1860 cgccaaggca tgcgcgccat gctcaagacg cggatcttcg acagccgcat ggtggttgcc 1920 cagcgccaga agaagatgtc cttctacatg cagagcctgg gcgaagaagc catcggcagc 1980 ggccaggcgc tggcgcttaa ccgcaccgac atgtgcttcc ccacctaccg tcagcaaagc 2040 atcctgatgg cccgcgacgt gtcgctggtg gagatgatct gccagttgct gtccaacgaa 2100 cgcgaccccc tcaagggccg ccagctgccg atcatgtact cggtacgcga ggccggcttc 2160 ttcaccatca gcggcaacct ggcgacccag ttcgtgcagg cggtcggctg ggccatggcc 2220 tcggcgatca agggcgatac caagattgcc tcggcctgga tcggcgacgg cgccactgcc 2280 gaatcggact tccacaccgc cctcaccttt gcccacgttt accgcgcccc ggtgatcctc 2340 aacgtggtca acaaccagtg ggccatctca accttccagg ccatcgccgg tggcgagtcg 2400 accaccttcg ccggccgtgg cgtgggctgc ggcatcgctt cgctgcgggt ggacggcaac 2460 gacttcgtcg ccgtttacgc cgcttcgcgc tgggctgccg aacgtgcccg ccgtggtttg 2520 ggcccgagcc tgatcgagtg ggtcacctac cgtgccggcc cgcactcgac ctcggacgac 2580 ccgtccaagt accgccctgc cgatgactgg agccacttcc cgctgggtga cccgatcgcc 2640 cgcctgaagc agcacctgat caagatcggc cactggtccg aagaagaaca ccaggccacc 2700 acggccgagt tcgaagcggc cgtgattgct gcgcaaaaag aagccgagca gtacggcacc 2760 ctggccaacg gtcacatccc gagcgccgcc tcgatgttcg aggacgtgta caaggagatg 2820 cccgaccacc tgcgccgcca acgccaggaa ctgggggttt gagatgaacg accacaacaa 2880 cagcatcaac ccggaaaccg ccatggccac cactaccatg accatgatcc aggccctgcg 2940 ctcggccatg gatgtcatgc ttgagcgcga cgacaatgtg gtggtgtacg gccaggacgt 3000 cggctacttc ggcggcgtgt tccgctgcac cgaaggcctg cagaccaagt acggcaagtc 3060 ccgcgtgttc gacgcgccca tctctgaaag cggcatcgtc ggcaccgccg tgggcatggg 3120 tgcctacggc ctgcgcccgg tggtggaaat ccagttcgct gactacttct acccggcctc 3180 cgaccagatc gtttctgaaa tggcccgcct gcgctaccgt tcggccggcg agttcatcgc 3240 cccgctgacc ctgcgtatgc cctgcggtgg cggtatctat ggcggccaga cacacagcca 3300 gagcccggaa gcgatgttca ctcaggtgtg cggcctgcgc accgtaatgc catccaaccc 3360 gtacgacgcc aaaggcctgc tgattgcctc gatcgaatgc gacgacccgg tgatcttcct 3420 ggagcccaag cgcctgtaca acggcccgtt cgacggccac catgaccgcc cggttacgcc 3480 gtggtcgaaa cacccgcaca gcgccgtgcc cgatggctac tacaccgtgc cactggacaa 3540 ggccgccatc acccgccccg gcaatgacgt gagcgtgctc acctatggca ccaccgtgta 3600 cgtggcccag gtggccgccg aagaaagtgg cgtggatgcc gaagtgatcg acctgcgcag 3660 cctgtggccg ctagacctgg acaccatcgt cgagtcggtg aaaaagaccg gccgttgcgt 3720 ggtagtacac gaggccaccc gtacttgtgg ctttggcgca gaactggtgt cgctggtgca 3780 ggagcactgc ttccaccacc tggaggcgcc gatcgagcgc gtcaccggtt gggacacccc 3840 ctaccctcac gcgcaggaat gggcttactt cccagggcct tcgcgggtag gtgcggcatt 3900 gaaaaaggtc atggaggtct gaatgggcac gcacgtcatc aagatgccgg acattggcga 3960 aggcatcgcg caggtcgaat tggtggaatg gttcgtcaag gtgggcgaca tcatcgccga 4020 ggaccaagtg gtagccgacg tcatgaccga caaggccacc gtggaaatcc cgtcgccggt 4080 cagcggcaag gtgctggccc tgggtggcca gccaggtgaa gtgatggcgg tcggcagtga 4140 gctgatccgc atcgaagtgg aaggcagcgg caaccatgtg gatgtgccgc aagccaagcc 4200 ggccgaagtg cctgcggcac cggtagccgc taaacctgaa ccacagaaag acgttaaacc 4260 ggcggcgtac caggcgtcag ccagccacga ggcagcgccc atcgtgccgc gccagccggg 4320 cgacaagccg ctggcctcgc cggcggtgcg caaacgcgcc ctcgatgccg gcatcgaatt 4380 gcgttatgtg cacggcagcg gcccggccgg gcgcatcctg cacgaagacc tcgacgcgtt 4440 catgagcaaa ccgcaaagcg ctgccgggca aacccccaat ggctatgcca ggcgcaccga 4500 cagcgagcag gtgccggtga tcggcctgcg ccgcaagatc gcccagcgca tgcaggacgc 4560 caagcgccgg gtcgcgcact tcagctatgt ggaagaaatc gacgtcaccg ccctggaagc 4620 cctgcgccag cagctcaaca gcaagcacgg cgacagccgc ggcaagctga cactgctgcc 4680 gttcctggtg cgcgccctgg tcgtggcact gcgtgacttc ccgcagataa acgccaccta 4740 cgatgacgaa gcgcagatca tcacccgcca tggcgcggtg catgtgggca tcgccaccca 4800 aggtgacaac ggcctgatgg tacccgtgct gcgccacgcc gaagcgggca gcctgtgggc 4860 caatgccggt gagatttcac gcctggccaa cgctgcgcgc aacaacaagg ccagccgcga 4920 agagctgtcc ggttcgacca ttaccctgac cagcctcggc gccctgggcg gcatcgtcag 4980 cacgccggtg gtcaacaccc cggaagtggc gatcgtcggt gtcaaccgca tggttgagcg 5040 gcccgtggtg atcgacggcc agatcgtcgt gcgcaagatg atgaacctgt ccagctcgtt 5100 cgaccaccgc gtggtcgatg gcatggacgc cgccctgttc atccaggccg tgcgtggcct 5160 gctcgaacaa cccgcctgcc tgttcgtgga gtgagcatgc aacagactat ccagacaacc 5220 ctgttgatca tcggcggcgg ccctggcggc tatgtggcgg ccatccgcgc cgggcaactg 5280 ggcatcccta ccgtgctggt ggaaggccag gcgctgggcg gtacctgcct gaacatcggc 5340 tgcattccgt ccaaggcgct gatccatgtg gccgagcagt tccaccaggc ctcgcgcttt 5400 accgaaccct cgccgctggg catcagcgtg gcttcgccac gcctggacat cggccagagc 5460 gtggcctgga aagacggcat cgtcgatcgc ctgaccactg gtgtcgccgc cctgctgaaa 5520 aagcacgggg tgaaggtggt gcacggctgg gccaaggtgc ttgatggcaa gcaggtcgag 5580 gtggatggcc agcgcatcca gtgcgagcac ctgttgctgg ccacgggctc cagcagtgtc 5640 gaactgccga tgctgccgtt gggtgggccg gtgatttcct cgaccgaggc cctggcaccg 5700 aaagccctgc cgcaacacct ggtggtggtg ggcggtggct acatcggcct ggagctgggt 5760 atcgcctacc gcaagctcgg cgcgcaggtc agcgtggtgg aagcgcgcga gcgcatcctg 5820 ccgacttacg acagcgaact gaccgccccg gtggccgagt cgctgaaaaa gctgggtatc 5880 gccctgcacc ttggccacag cgtcgaaggt tacgaaaatg gctgcctgct ggccaacgat 5940 ggcaagggcg gacaactgcg cctggaagcc gaccgggtgc tggtggccgt gggccgccgc 6000 ccacgcacca agggcttcaa cctggaatgc ctggacctga agatgaatgg tgccgcgatt 6060 gccatcgacg agcgctgcca gaccagcatg cacaacgtct gggccatcgg cgacgtggcc 6120 ggcgaaccga tgctggcgca ccgggccatg gcccagggcg agatggtggc cgagatcatc 6180 gccggcaagg cacgccgctt cgaacccgct gcgatagccg ccgtgtgctt caccgacccg 6240 gaagtggtcg tggtcggcaa gacgccggaa caggccagtc agcaaggcct ggactgcatc 6300 gtcgcgcagt tcccgttcgc cgccaacggc cgggccatga gcctggagtc gaaaagcggt 6360 ttcgtgcgcg tggtcgcgcg gcgtgacaac cacctgatcc tgggctggca agcggttggc 6420 gtggcggttt ccgagctgtc cacggcgttt gcccagtcgc tggagatggg tgcctgcctg 6480 gaggatgtgg ccggtaccat ccatgcccac ccgaccctgg gtgaagcggt acaggaagcg 6540 gcactgcgtg ccctgggcca cgccctgcat atctgacact gaagcggccg aggccgattt 6600 ggcccgccgc gccgagaggc gctgcgggtc ttttttatac ctg 6643 <210> 59 <211> 459 <212> PRT <213> Pseudomonas putida <400> 59 Met Gln Gln Thr Ile Gln Thr Thr Leu Leu Ile Ile Gly Gly Gly Pro 1 5 10 15 Gly Gly Tyr Val Ala Ala Ile Arg Ala Gly Gln Leu Gly Ile Pro Thr 20 25 30 Val Leu Val Glu Gly Gln Ala Leu Gly Gly Thr Cys Leu Asn Ile Gly 35 40 45 Cys Ile Pro Ser Lys Ala Leu Ile His Val Ala Glu Gln Phe His Gln 50 55 60 Ala Ser Arg Phe Thr Glu Pro Ser Pro Leu Gly Ile Ser Val Ala Ser 65 70 75 80 Pro Arg Leu Asp Ile Gly Gln Ser Val Ala Trp Lys Asp Gly Ile Val 85 90 95 Asp Arg Leu Thr Thr Gly Val Ala Ala Leu Leu Lys Lys His Gly Val 100 105 110 Lys Val Val His Gly Trp Ala Lys Val Leu Asp Gly Lys Gln Val Glu 115 120 125 Val Asp Gly Gln Arg Ile Gln Cys Glu His Leu Leu Leu Ala Thr Gly 130 135 140 Ser Ser Ser Val Glu Leu Pro Met Leu Pro Leu Gly Gly Pro Val Ile 145 150 155 160 Ser Ser Thr Glu Ala Leu Ala Pro Lys Ala Leu Pro Gln His Leu Val 165 170 175 Val Val Gly Gly Gly Tyr Ile Gly Leu Glu Leu Gly Ile Ala Tyr Arg 180 185 190 Lys Leu Gly Ala Gln Val Ser Val Val Glu Ala Arg Glu Arg Ile Leu 195 200 205 Pro Thr Tyr Asp Ser Glu Leu Thr Ala Pro Val Ala Glu Ser Leu Lys 210 215 220 Lys Leu Gly Ile Ala Leu His Leu Gly His Ser Val Glu Gly Tyr Glu 225 230 235 240 Asn Gly Cys Leu Leu Ala Asn Asp Gly Lys Gly Gly Gln Leu Arg Leu 245 250 255 Glu Ala Asp Arg Val Leu Val Ala Val Gly Arg Arg Pro Arg Thr Lys 260 265 270 Gly Phe Asn Leu Glu Cys Leu Asp Leu Lys Met Asn Gly Ala Ala Ile 275 280 285 Ala Ile Asp Glu Arg Cys Gln Thr Ser Met His Asn Val Trp Ala Ile 290 295 300 Gly Asp Val Ala Gly Glu Pro Met Leu Ala His Arg Ala Met Ala Gln 305 310 315 320 Gly Glu Met Val Ala Glu Ile Ile Ala Gly Lys Ala Arg Arg Phe Glu 325 330 335 Pro Ala Ala Ile Ala Ala Val Cys Phe Thr Asp Pro Glu Val Val Val 340 345 350 Val Gly Lys Thr Pro Glu Gln Ala Ser Gln Gln Gly Leu Asp Cys Ile 355 360 365 Val Ala Gln Phe Pro Phe Ala Ala Asn Gly Arg Ala Met Ser Leu Glu 370 375 380 Ser Lys Ser Gly Phe Val Arg Val Val Ala Arg Arg Asp Asn His Leu 385 390 395 400 Ile Leu Gly Trp Gln Ala Val Gly Val Ala Val Ser Glu Leu Ser Thr 405 410 415 Ala Phe Ala Gln Ser Leu Glu Met Gly Ala Cys Leu Glu Asp Val Ala 420 425 430 Gly Thr Ile His Ala His Pro Thr Leu Gly Glu Ala Val Gln Glu Ala 435 440 445 Ala Leu Arg Ala Leu Gly His Ala Leu His Ile 450 455 <210> 60 <211> 6643 <212> DNA <213> Pseudomonas putida <400> 60 gcatgcctgc aggccgccga tgaaatggtg gaaggtatcg gtaggctggc cctgctcatc 60 gctgaacacg ttacgcccgc tgccggtatc gaccaggctc tggtgaatat gcatggaact 120 gccaggcgtg cgcgccagcg gtttggccat gcacaccacg gtcagcccgt gcttgagtgc 180 cacttccttg agcaggtgtt tgaacaggaa ggtctggtcg gccagcagca gcgggtcgcc 240 atgtagcaag ttgatctcga actggctgac gcccatttcg tgcatgaagg tgtcgcgcgg 300 caggccgagc gcggccatgc actggtacac ctcattgaag aacgggcgca ggccgttgtt 360 ggaactgaca ctgaacgccg aatggcccag ctcgcggcgg ccgtcggtgc ccagcggtgg 420 ctggaacggc tgctgcgggt cactgttggg ggcaaacacg aagaactcaa gctcggtcgc 480 cactaccggt gccagaccca acgctgcgta gcgggcgatc acggccttca gctggccccg 540 ggtggacagt gccgagggcc ggccatccag ttcattggca tcgcagatgg ccagggcgcg 600 accgtcatcg ctccagggca agcgatgaac ctggctgggt tccgctacca acgccaggtc 660 gccgtcgtcg cagccgtaga atttcgccgg cgggtagccg cccatgatgc attgcagcag 720 caccccacgg gccatctgca ggcggcggcc ttcgagaaag ccttcggcgg tcatcacctt 780 gccgcgtggg acgccgttga ggtcgggggt gacgcattcg atttcatcga tgccctggag 840 ctgagcgatg ctcatgacgc ttgtccttgt tgttgtaggc tgacaacaac ataggctggg 900 ggtgtttaaa atatcaagca gcctctcgaa cgcctggggc ctcttctatt cgcgcaaggt 960 catgccattg gccggcaacg gcaaggctgt cttgtagcgc acctgtttca aggcaaaact 1020 cgagcggata ttcgccacac ccggcaaccg ggtcaggtaa tcgagaaacc gctccagcgc 1080 ctggatactc ggcagcagta cccgcaacag gtagtccggg tcgcccgtca tcaggtagca 1140 ctccatcacc tcgggccgtt cggcaatttc ttcctcgaag cggtgcagcg actgctctac 1200 ctgtttttcc aggctgacat ggatgaacac attcacatcc agccccaacg cctcgggcga 1260 caacaaggtc acctgctggc ggatcacccc cagttcttcc atggcccgca cccggttgaa 1320 acagggcgtg ggcgacaggt tgaccgagcg tgccagctcg gcgttggtga tgcgggcgtt 1380 ttcctgcagg ctgttgagaa tgccgatatc ggtacgatcg agtttgcgca tgagacaaaa 1440 tcaccggttt tttgtgttta tgcggaatgt ttatctgccc cgctcggcaa aggcaatcaa 1500 cttgagagaa aaattctcct gccggaccac taagatgtag gggacgctga cttaccagtc 1560 acaagccggt actcagcggc ggccgcttca gagctcacaa aaacaaatac ccgagcgagc 1620 gtaaaaagca tgaacgagta cgcccccctg cgtttgcatg tgcccgagcc caccggccgg 1680 ccaggctgcc agaccgattt ttcctacctg cgcctgaacg atgcaggtca agcccgtaaa 1740 ccccctgtcg atgtcgacgc tgccgacacc gccgacctgt cctacagcct ggtccgcgtg 1800 ctcgacgagc aaggcgacgc ccaaggcccg tgggctgaag acatcgaccc gcagatcctg 1860 cgccaaggca tgcgcgccat gctcaagacg cggatcttcg acagccgcat ggtggttgcc 1920 cagcgccaga agaagatgtc cttctacatg cagagcctgg gcgaagaagc catcggcagc 1980 ggccaggcgc tggcgcttaa ccgcaccgac atgtgcttcc ccacctaccg tcagcaaagc 2040 atcctgatgg cccgcgacgt gtcgctggtg gagatgatct gccagttgct gtccaacgaa 2100 cgcgaccccc tcaagggccg ccagctgccg atcatgtact cggtacgcga ggccggcttc 2160 ttcaccatca gcggcaacct ggcgacccag ttcgtgcagg cggtcggctg ggccatggcc 2220 tcggcgatca agggcgatac caagattgcc tcggcctgga tcggcgacgg cgccactgcc 2280 gaatcggact tccacaccgc cctcaccttt gcccacgttt accgcgcccc ggtgatcctc 2340 aacgtggtca acaaccagtg ggccatctca accttccagg ccatcgccgg tggcgagtcg 2400 accaccttcg ccggccgtgg cgtgggctgc ggcatcgctt cgctgcgggt ggacggcaac 2460 gacttcgtcg ccgtttacgc cgcttcgcgc tgggctgccg aacgtgcccg ccgtggtttg 2520 ggcccgagcc tgatcgagtg ggtcacctac cgtgccggcc cgcactcgac ctcggacgac 2580 ccgtccaagt accgccctgc cgatgactgg agccacttcc cgctgggtga cccgatcgcc 2640 cgcctgaagc agcacctgat caagatcggc cactggtccg aagaagaaca ccaggccacc 2700 acggccgagt tcgaagcggc cgtgattgct gcgcaaaaag aagccgagca gtacggcacc 2760 ctggccaacg gtcacatccc gagcgccgcc tcgatgttcg aggacgtgta caaggagatg 2820 cccgaccacc tgcgccgcca acgccaggaa ctgggggttt gagatgaacg accacaacaa 2880 cagcatcaac ccggaaaccg ccatggccac cactaccatg accatgatcc aggccctgcg 2940 ctcggccatg gatgtcatgc ttgagcgcga cgacaatgtg gtggtgtacg gccaggacgt 3000 cggctacttc ggcggcgtgt tccgctgcac cgaaggcctg cagaccaagt acggcaagtc 3060 ccgcgtgttc gacgcgccca tctctgaaag cggcatcgtc ggcaccgccg tgggcatggg 3120 tgcctacggc ctgcgcccgg tggtggaaat ccagttcgct gactacttct acccggcctc 3180 cgaccagatc gtttctgaaa tggcccgcct gcgctaccgt tcggccggcg agttcatcgc 3240 cccgctgacc ctgcgtatgc cctgcggtgg cggtatctat ggcggccaga cacacagcca 3300 gagcccggaa gcgatgttca ctcaggtgtg cggcctgcgc accgtaatgc catccaaccc 3360 gtacgacgcc aaaggcctgc tgattgcctc gatcgaatgc gacgacccgg tgatcttcct 3420 ggagcccaag cgcctgtaca acggcccgtt cgacggccac catgaccgcc cggttacgcc 3480 gtggtcgaaa cacccgcaca gcgccgtgcc cgatggctac tacaccgtgc cactggacaa 3540 ggccgccatc acccgccccg gcaatgacgt gagcgtgctc acctatggca ccaccgtgta 3600 cgtggcccag gtggccgccg aagaaagtgg cgtggatgcc gaagtgatcg acctgcgcag 3660 cctgtggccg ctagacctgg acaccatcgt cgagtcggtg aaaaagaccg gccgttgcgt 3720 ggtagtacac gaggccaccc gtacttgtgg ctttggcgca gaactggtgt cgctggtgca 3780 ggagcactgc ttccaccacc tggaggcgcc gatcgagcgc gtcaccggtt gggacacccc 3840 ctaccctcac gcgcaggaat gggcttactt cccagggcct tcgcgggtag gtgcggcatt 3900 gaaaaaggtc atggaggtct gaatgggcac gcacgtcatc aagatgccgg acattggcga 3960 aggcatcgcg caggtcgaat tggtggaatg gttcgtcaag gtgggcgaca tcatcgccga 4020 ggaccaagtg gtagccgacg tcatgaccga caaggccacc gtggaaatcc cgtcgccggt 4080 cagcggcaag gtgctggccc tgggtggcca gccaggtgaa gtgatggcgg tcggcagtga 4140 gctgatccgc atcgaagtgg aaggcagcgg caaccatgtg gatgtgccgc aagccaagcc 4200 ggccgaagtg cctgcggcac cggtagccgc taaacctgaa ccacagaaag acgttaaacc 4260 ggcggcgtac caggcgtcag ccagccacga ggcagcgccc atcgtgccgc gccagccggg 4320 cgacaagccg ctggcctcgc cggcggtgcg caaacgcgcc ctcgatgccg gcatcgaatt 4380 gcgttatgtg cacggcagcg gcccggccgg gcgcatcctg cacgaagacc tcgacgcgtt 4440 catgagcaaa ccgcaaagcg ctgccgggca aacccccaat ggctatgcca ggcgcaccga 4500 cagcgagcag gtgccggtga tcggcctgcg ccgcaagatc gcccagcgca tgcaggacgc 4560 caagcgccgg gtcgcgcact tcagctatgt ggaagaaatc gacgtcaccg ccctggaagc 4620 cctgcgccag cagctcaaca gcaagcacgg cgacagccgc ggcaagctga cactgctgcc 4680 gttcctggtg cgcgccctgg tcgtggcact gcgtgacttc ccgcagataa acgccaccta 4740 cgatgacgaa gcgcagatca tcacccgcca tggcgcggtg catgtgggca tcgccaccca 4800 aggtgacaac ggcctgatgg tacccgtgct gcgccacgcc gaagcgggca gcctgtgggc 4860 caatgccggt gagatttcac gcctggccaa cgctgcgcgc aacaacaagg ccagccgcga 4920 agagctgtcc ggttcgacca ttaccctgac cagcctcggc gccctgggcg gcatcgtcag 4980 cacgccggtg gtcaacaccc cggaagtggc gatcgtcggt gtcaaccgca tggttgagcg 5040 gcccgtggtg atcgacggcc agatcgtcgt gcgcaagatg atgaacctgt ccagctcgtt 5100 cgaccaccgc gtggtcgatg gcatggacgc cgccctgttc atccaggccg tgcgtggcct 5160 gctcgaacaa cccgcctgcc tgttcgtgga gtgagcatgc aacagactat ccagacaacc 5220 ctgttgatca tcggcggcgg ccctggcggc tatgtggcgg ccatccgcgc cgggcaactg 5280 ggcatcccta ccgtgctggt ggaaggccag gcgctgggcg gtacctgcct gaacatcggc 5340 tgcattccgt ccaaggcgct gatccatgtg gccgagcagt tccaccaggc ctcgcgcttt 5400 accgaaccct cgccgctggg catcagcgtg gcttcgccac gcctggacat cggccagagc 5460 gtggcctgga aagacggcat cgtcgatcgc ctgaccactg gtgtcgccgc cctgctgaaa 5520 aagcacgggg tgaaggtggt gcacggctgg gccaaggtgc ttgatggcaa gcaggtcgag 5580 gtggatggcc agcgcatcca gtgcgagcac ctgttgctgg ccacgggctc cagcagtgtc 5640 gaactgccga tgctgccgtt gggtgggccg gtgatttcct cgaccgaggc cctggcaccg 5700 aaagccctgc cgcaacacct ggtggtggtg ggcggtggct acatcggcct ggagctgggt 5760 atcgcctacc gcaagctcgg cgcgcaggtc agcgtggtgg aagcgcgcga gcgcatcctg 5820 ccgacttacg acagcgaact gaccgccccg gtggccgagt cgctgaaaaa gctgggtatc 5880 gccctgcacc ttggccacag cgtcgaaggt tacgaaaatg gctgcctgct ggccaacgat 5940 ggcaagggcg gacaactgcg cctggaagcc gaccgggtgc tggtggccgt gggccgccgc 6000 ccacgcacca agggcttcaa cctggaatgc ctggacctga agatgaatgg tgccgcgatt 6060 gccatcgacg agcgctgcca gaccagcatg cacaacgtct gggccatcgg cgacgtggcc 6120 ggcgaaccga tgctggcgca ccgggccatg gcccagggcg agatggtggc cgagatcatc 6180 gccggcaagg cacgccgctt cgaacccgct gcgatagccg ccgtgtgctt caccgacccg 6240 gaagtggtcg tggtcggcaa gacgccggaa caggccagtc agcaaggcct ggactgcatc 6300 gtcgcgcagt tcccgttcgc cgccaacggc cgggccatga gcctggagtc gaaaagcggt 6360 ttcgtgcgcg tggtcgcgcg gcgtgacaac cacctgatcc tgggctggca agcggttggc 6420 gtggcggttt ccgagctgtc cacggcgttt gcccagtcgc tggagatggg tgcctgcctg 6480 gaggatgtgg ccggtaccat ccatgcccac ccgaccctgg gtgaagcggt acaggaagcg 6540 gcactgcgtg ccctgggcca cgccctgcat atctgacact gaagcggccg aggccgattt 6600 ggcccgccgc gccgagaggc gctgcgggtc ttttttatac ctg 6643 <210> 61 <211> 468 <212> PRT <213> Clostridium beijerinckii <400> 61 Met Asn Lys Asp Thr Leu Ile Pro Thr Thr Lys Asp Leu Lys Leu Lys 1 5 10 15 Thr Asn Val Glu Asn Ile Asn Leu Lys Asn Tyr Lys Asp Asn Ser Ser 20 25 30 Cys Phe Gly Val Phe Glu Asn Val Glu Asn Ala Ile Asn Ser Ala Val 35 40 45 His Ala Gln Lys Ile Leu Ser Leu His Tyr Thr Lys Glu Gln Arg Glu 50 55 60 Lys Ile Ile Thr Glu Ile Arg Lys Ala Ala Leu Glu Asn Lys Glu Val 65 70 75 80 Leu Ala Thr Met Ile Leu Glu Glu Thr His Met Gly Arg Tyr Glu Asp 85 90 95 Lys Ile Leu Lys His Glu Leu Val Ala Lys Tyr Thr Pro Gly Thr Glu 100 105 110 Asp Leu Thr Thr Thr Ala Trp Ser Gly Asp Asn Gly Leu Thr Val Val 115 120 125 Glu Met Ser Pro Tyr Gly Val Ile Gly Ala Ile Thr Pro Ser Thr Asn 130 135 140 Pro Thr Glu Thr Val Ile Cys Asn Ser Ile Gly Met Ile Ala Ala Gly 145 150 155 160 Asn Ala Val Val Phe Asn Gly His Pro Gly Ala Lys Lys Cys Val Ala 165 170 175 Phe Ala Ile Glu Met Ile Asn Lys Ala Ile Ile Ser Cys Gly Gly Pro 180 185 190 Glu Asn Leu Val Thr Thr Ile Lys Asn Pro Thr Met Glu Ser Leu Asp 195 200 205 Ala Ile Ile Lys His Pro Leu Ile Lys Leu Leu Cys Gly Thr Gly Gly 210 215 220 Pro Gly Met Val Lys Thr Leu Leu Asn Ser Gly Lys Lys Ala Ile Gly 225 230 235 240 Ala Gly Ala Gly Asn Pro Pro Val Ile Val Asp Asp Thr Ala Asp Ile 245 250 255 Glu Lys Ala Gly Lys Ser Ile Ile Glu Gly Cys Ser Phe Asp Asn Asn 260 265 270 Leu Pro Cys Ile Ala Glu Lys Glu Val Phe Val Phe Glu Asn Val Ala 275 280 285 Asp Asp Leu Ile Ser Asn Met Leu Lys Asn Asn Ala Val Ile Ile Asn 290 295 300 Glu Asp Gln Val Ser Lys Leu Ile Asp Leu Val Leu Gln Lys Asn Asn 305 310 315 320 Glu Thr Gln Glu Tyr Phe Ile Asn Lys Lys Trp Val Gly Lys Asp Ala 325 330 335 Lys Leu Phe Ser Asp Glu Ile Asp Val Glu Ser Pro Ser Asn Ile Lys 340 345 350 Cys Ile Val Cys Glu Val Asn Ala Asn His Pro Phe Val Met Thr Glu 355 360 365 Leu Met Met Pro Ile Leu Pro Ile Val Arg Val Lys Asp Ile Asp Glu 370 375 380 Ala Val Lys Tyr Thr Lys Ile Ala Glu Gln Asn Arg Lys His Ser Ala 385 390 395 400 Tyr Ile Tyr Ser Lys Asn Ile Asp Asn Leu Asn Arg Phe Glu Arg Glu 405 410 415 Ile Asp Thr Thr Ile Phe Val Lys Asn Ala Lys Ser Phe Ala Gly Val 420 425 430 Gly Tyr Glu Ala Glu Gly Phe Thr Thr Phe Thr Ile Ala Gly Ser Thr 435 440 445 Gly Glu Gly Ile Thr Ser Ala Arg Asn Phe Thr Arg Gln Arg Arg Cys 450 455 460 Val Leu Ala Gly 465 <210> 62 <211> 6558 <212> DNA <213> Clostridium beijerinckii <400> 62 aagcttaaaa tatccatagg ctattgttaa taagactata gcgcttaata ctctaagcgc 60 accatctaaa aaattataca taggaattgg ataaactcca atcttctcca taatactttt 120 cataggtgaa attgatatta taattaaggc tgcataaagc aaactcatat ctccaataaa 180 tgtcactatc ataggtaatt tccttttcat gttcacatac tcccccgtat tctataataa 240 tttacaataa acttccatca caaataaatt ataacatata ttgtaaatat agttttatta 300 ttcgcatatt tatagataaa caatatataa cttagactta tgcaataacc taccgaaagt 360 aaaaacattg ttatttcaca ggactatgaa aatttcgctg aaagtactaa attgcaggtt 420 gcaccactaa tgcttgctcc caatttcatt gtgacaagca ttagttgaac aacctacaat 480 taagagcctt taacagctca tttccaatgc ctgctacata aaaatgtttc tactttctaa 540 tatggtattt acttcaaagt gtaaatcaaa ttcttaagtt gtttatctat atagggttcc 600 atattgataa caatacatat ctactgtttc aatttcatga ataccagcga tattgaaatt 660 ttgtaagttt gaatatcatt gtgaaaccct atatatcaaa tacaatctca aaattataca 720 aaaagatccc aacttcacaa tatgaatttg agatcttcta tcttaacttc ttcaatattt 780 ttaagattat ttatactgcg tgcaaatctt ctataagtat caattatcag ctatgtacat 840 tgatagtgga cttgtaatct gaacagctta tatatttaca cttttaagtt ctcttccact 900 aacccctgct ttgaaacttc tcataaacaa atcgaaagta cctttaatta gctgtgcatt 960 ctcaaactca gaatttaact taagtacttc aattgccgct tcgatagtat agagctctcc 1020 ttctgaagca ccttttctta aagtatattc tgatttatta attggattta atgaaattct 1080 tggaagcttc tttaagtagt cgctctttct tagtatcttc tctgcttctt tccatgtgcc 1140 atctaagata ataaatgctg gaattttttc tgaatcttta catttagact ttctttctag 1200 aggttcatca tcatccatag gaaataatac acgtatttca taatcatcgc tattaatata 1260 ttcaattaat ttttcaggag tctttactct ctcccaaaga attaactcag ttgattctgg 1320 attcaccaat ttcaataatc tagcggtatt tgaaggccta ctaaattctc tttctgttga 1380 taatatcaat atctttgctt ttgtctctat tttaggcaca atatcgcaga tacaatttat 1440 tattggcaac ccacatttat tgcagctctc atataactta gtaatttgct taactttaaa 1500 ttcagactcc attttacctc cattattagt tggttagtgt gtcatatctt cttgctatta 1560 ctaactgatt ataacatatg tattcaatat atcactccta gttttcaaag cactggcaat 1620 acgaattaca aattaatttc tggatttatg tcagtatttc attaataaaa ggtcggactt 1680 ttaagatact tgttttagct attgatcata tttattaaag actatgcatt taatgtataa 1740 ttataatgaa tattatcaat aatatttatt ttatattaca atcttacagt ctttattcta 1800 aatttcactc aaataccaaa cgagctttat tcataaacaa tatataacaa taattccaaa 1860 ataatacgat attttatctg taacagccat ataaaaaaaa tatcatatag tcttgtcatt 1920 tgataacgtt ttgtcttcct tatatttact ttttcggttt aataggttga ttctgtaaat 1980 tttagtgata acatatattt gatgacatta aaaatttaat atttcatata aatttttaat 2040 gtctattaat ttttaaatca caaggaggaa tagttcatga ataaagacac actaatacct 2100 acaactaaag atttaaaatt aaaaacaaat gttgaaaaca ttaatttaaa gaactacaag 2160 gataattctt catgtttcgg agtattcgaa aatgttgaaa atgctataaa cagcgctgta 2220 cacgcgcaaa agatattatc ccttcattat acaaaagaac aaagagaaaa aatcataact 2280 gagataagaa aggccgcatt agaaaataaa gaggttttag ctaccatgat tctggaagaa 2340 acacatatgg gaaggtatga agataaaata ttaaagcatg aattagtagc taaatatact 2400 cctggtacag aagatttaac tactactgct tggtcaggtg ataatggtct tacagttgta 2460 gaaatgtctc catatggcgt tataggtgca ataactcctt ctacgaatcc aactgaaact 2520 gtaatatgta atagcatcgg catgatagct gctggaaatg ctgtagtatt taacggacac 2580 ccaggcgcta aaaaatgtgt tgcttttgct attgaaatga taaataaagc aattatttca 2640 tgtggcggtc ctgagaattt agtaacaact ataaaaaatc caactatgga atccctagat 2700 gcaattatta agcatccttt aataaaactt ctttgcggaa ctggaggtcc aggaatggta 2760 aaaaccctct taaattctgg caagaaagct ataggtgctg gtgctggaaa tccaccagtt 2820 attgtagatg ataccgctga tatagaaaag gctggtaaga gtatcattga aggctgttct 2880 tttgataata atttaccttg tattgcagaa aaagaagtat ttgtttttga gaatgttgca 2940 gatgatttaa tatctaacat gctaaaaaat aatgctgtaa ttataaatga agatcaagta 3000 tcaaaattaa tagatttagt attacaaaaa aataatgaaa ctcaagaata ctttataaac 3060 aaaaaatggg taggaaaaga tgcaaaatta ttctcagatg aaatagatgt tgagtctcct 3120 tcaaatatta aatgcatagt ctgcgaagta aatgcaaatc atccatttgt catgacagaa 3180 ctcatgatgc caatattacc aattgtaaga gttaaagata tagatgaagc tgttaaatat 3240 acaaagatag cagaacaaaa tagaaaacat agtgcctata tttattctaa aaatatagac 3300 aacctaaata gatttgaaag agaaattgat actactattt ttgtaaagaa tgctaaatct 3360 tttgctggtg ttggttatga agctgaagga tttacaactt tcactattgc tggatctact 3420 ggtgaaggca taacctctgc aagaaatttt acaagacaaa gaagatgtgt acttgccggc 3480 taacttcttg ctaaatttat acatttattc acataacttt aatatgcaat gttcccacaa 3540 aatattaaaa actatttaga agggagatat taaatgaata aattagtaaa attaacagat 3600 ttaaagcgca ttttcaaaga tggtatgaca attatggttg ggggtttttt agattgtgga 3660 actcctgaaa atattataga tatgctagtt gatttaaata taaaaaatct gactattata 3720 agcaatgata cagcttttcc taataaagga ataggaaaac ttattgtaaa tggtcaagtt 3780 tctaaagtaa ttgcttcaca tattggaact aatcctgaaa ctgggaaaaa aatgagctct 3840 ggtgaactta aagttgagct ttctccacaa ggaacactga tcgaaagaat tcgtgcagct 3900 ggatctggac tcggaggtgt attaactcca accggacttg ggactatcgt tgaagaaggt 3960 aagaaaaaag ttactatcgg tggcaaagaa tatctattag aacttccttt atccgctgat 4020 gtttcattaa taaaaggtag cattgtagat gaatttggaa ataccttcta tagagctgct 4080 actaaaaatt tcaatccata tatggcaatg gctgcaaaaa cagttatagt tgaagcagaa 4140 aatttagtta aatgtgaaga tttaaaaaga gatgccataa tgactcctgg cgtattagta 4200 gattatatcg ttaaggaggc ggcttaattg attgtagata aagttttagc aaaagagata 4260 attgccaaaa gagttgcaaa agaactaaaa aaaggccaac tcgtaaacct tggaatagga 4320 cttccaactt tagtagctaa ttatgtgcca aaagaaatga acattacttt cgaatcagaa 4380 aatggcatgg ttggcatggc acaaatggcc tcatcaggtg aaaatgaccc agatataata 4440 aatgctggtg gggaatatgt aacattatta cctcaaggtg cattttttga tagttcaacg 4500 tcttttgcac taataagagg aggacatgtt gatgttgctg ttcttggtgc tctagaagtt 4560 gatgaagaag gtaatttagc taactggatt gttccaaata aaattgtccc aggtatggga 4620 ggcgccatgg atttggcaat aggcgcaaaa aaaataatag tggcaatgca acatacagga 4680 aaaggtaaac ctaaaatcgt aaaaaaatgt actctcccac ttactgctaa ggctcaggta 4740 gatttaattg ttacagaact ttgtgtaatt gatgtaacaa atgatggttt acttttcaga 4800 gaaattcata aagatacaac tattgatgaa ataaaatttt taacagatgc agatttaatt 4860 attcccgaca acttaaaaat tatggatatc taaatcattc tattttaaat atataacttt 4920 aaaaatctta tgtattaaaa actaagaaaa gaggttgatt attttatgtt agaaagtgaa 4980 gtatctaaac aaattacaac tccacttgct gctccagcgt ttcctagagg accatataga 5040 tttcacaata gagaatatct aaacattatt tatcgaactg atttagatgc tcttcgaaaa 5100 atagtaccag agccacttga attagatgga gcatatgtta ggtttgagat gatggctatg 5160 cctgatacaa ccggactagg ctcatatact gagtgtggtc aagccattcc agtaaaatat 5220 aatgaggtta aaggtgacta cttgcatatg atgtacctag ataatgaacc tgctattgct 5280 gttggaagag aaagcagtgc ttatcccaaa aagttcggct atccaaagct atttgttgat 5340 tcagacgccc tagttggcgc ccttaagtat ggtgcattac cggtagttac tgcgacgatg 5400 ggatataagc atgagcccct agatcttaaa gaagcctata ctcaaattgc aagacccaat 5460 ttcatgctaa aaatcattca aggttatgat ggtaagccaa gaatttgtga actcatctgt 5520 gcagaaaata ctgatataac tatccacggt gcttggactg gaagtgcacg cctacaatta 5580 tttagccatg cactagctcc tcttgctgat ttacctgtat tagagatcgt atcagcatct 5640 catatcctaa cagatttaac tcttggaaca cctaaggttg tacatgatta tctttcagta 5700 aaataaaagc aatatagaat aaccactaca aaagtagtgg ttattctata ttttaaatca 5760 aactgtaaaa cttaagtttt atagtaccta ataatatttt actaccagca ttagattagt 5820 taaaatacaa agtttgtggt aaaagtattt tagattgcat aatagccttc tatactttta 5880 acaatataac caattgctca ccatctgctt agaatatgct tctttaagct ctaaaataca 5940 tataaaaaag taggaatttc ttattaaaat tcctacttat attatatata aatttaatcg 6000 ttaggtttta ttcgcattgt tcctctttaa tttatctctt ataacatttt attataattg 6060 ttcatataat taattcaata tactattata tattttcaag cattaataat tattcagcat 6120 ctgtcattac atatgcttcc atactttgac ttcttattaa atcatagcta atccatccat 6180 agccattgat tccccagtct ttaccccatg aatttattat ttttacagct tttttactat 6240 catcataacc aactacgcaa actgcatgac cacctctatt ttctccatca atctggtcat 6300 aaattggatt atcagaattt aaattatcaa aatctggata tactgatatt ccaataacta 6360 ctggatttcc agctgctatt tgtgccttta ttgcattata gtcaccatct ggaagttgac 6420 tccaactttt tgctttatat ttggctgcat tagccttttg ttcatctgta ggtgtaacct 6480 cccaactata ttcactacca tcataaggca tatcagataa tgtagtacaa ccttgttctt 6540 ctaataattt aaatgcat 6558 <210> 63 <211> 862 <212> PRT <213> Clostridium acetobutylicum <400> 63 Met Lys Val Thr Thr Val Lys Glu Leu Asp Glu Lys Leu Lys Val Ile 1 5 10 15 Lys Glu Ala Gln Lys Lys Phe Ser Cys Tyr Ser Gln Glu Met Val Asp 20 25 30 Glu Ile Phe Arg Asn Ala Ala Met Ala Ala Ile Asp Ala Arg Ile Glu 35 40 45 Leu Ala Lys Ala Ala Val Leu Glu Thr Gly Met Gly Leu Val Glu Asp 50 55 60 Lys Val Ile Lys Asn His Phe Ala Gly Glu Tyr Ile Tyr Asn Lys Tyr 65 70 75 80 Lys Asp Glu Lys Thr Cys Gly Ile Ile Glu Arg Asn Glu Pro Tyr Gly 85 90 95 Ile Thr Lys Ile Ala Glu Pro Ile Gly Val Val Ala Ala Ile Ile Pro 100 105 110 Val Thr Asn Pro Thr Ser Thr Thr Ile Phe Lys Ser Leu Ile Ser Leu 115 120 125 Lys Thr Arg Asn Gly Ile Phe Phe Ser Pro His Pro Arg Ala Lys Lys 130 135 140 Ser Thr Ile Leu Ala Ala Lys Thr Ile Leu Asp Ala Ala Val Lys Ser 145 150 155 160 Gly Ala Pro Glu Asn Ile Ile Gly Trp Ile Asp Glu Pro Ser Ile Glu 165 170 175 Leu Thr Gln Tyr Leu Met Gln Lys Ala Asp Ile Thr Leu Ala Thr Gly 180 185 190 Gly Pro Ser Leu Val Lys Ser Ala Tyr Ser Ser Gly Lys Pro Ala Ile 195 200 205 Gly Val Gly Pro Gly Asn Thr Pro Val Ile Ile Asp Glu Ser Ala His 210 215 220 Ile Lys Met Ala Val Ser Ser Ile Ile Leu Ser Lys Thr Tyr Asp Asn 225 230 235 240 Gly Val Ile Cys Ala Ser Glu Gln Ser Val Ile Val Leu Lys Ser Ile 245 250 255 Tyr Asn Lys Val Lys Asp Glu Phe Gln Glu Arg Gly Ala Tyr Ile Ile 260 265 270 Lys Lys Asn Glu Leu Asp Lys Val Arg Glu Val Ile Phe Lys Asp Gly 275 280 285 Ser Val Asn Pro Lys Ile Val Gly Gln Ser Ala Tyr Thr Ile Ala Ala 290 295 300 Met Ala Gly Ile Lys Val Pro Lys Thr Thr Arg Ile Leu Ile Gly Glu 305 310 315 320 Val Thr Ser Leu Gly Glu Glu Glu Pro Phe Ala His Glu Lys Leu Ser 325 330 335 Pro Val Leu Ala Met Tyr Glu Ala Asp Asn Phe Asp Asp Ala Leu Lys 340 345 350 Lys Ala Val Thr Leu Ile Asn Leu Gly Gly Leu Gly His Thr Ser Gly 355 360 365 Ile Tyr Ala Asp Glu Ile Lys Ala Arg Asp Lys Ile Asp Arg Phe Ser 370 375 380 Ser Ala Met Lys Thr Val Arg Thr Phe Val Asn Ile Pro Thr Ser Gln 385 390 395 400 Gly Ala Ser Gly Asp Leu Tyr Asn Phe Arg Ile Pro Pro Ser Phe Thr 405 410 415 Leu Gly Cys Gly Phe Trp Gly Gly Asn Ser Val Ser Glu Asn Val Gly 420 425 430 Pro Lys His Leu Leu Asn Ile Lys Thr Val Ala Glu Arg Arg Glu Asn 435 440 445 Met Leu Trp Phe Arg Val Pro His Lys Val Tyr Phe Lys Phe Gly Cys 450 455 460 Leu Gln Phe Ala Leu Lys Asp Leu Lys Asp Leu Lys Lys Lys Arg Ala 465 470 475 480 Phe Ile Val Thr Asp Ser Asp Pro Tyr Asn Leu Asn Tyr Val Asp Ser 485 490 495 Ile Ile Lys Ile Leu Glu His Leu Asp Ile Asp Phe Lys Val Phe Asn 500 505 510 Lys Val Gly Arg Glu Ala Asp Leu Lys Thr Ile Lys Lys Ala Thr Glu 515 520 525 Glu Met Ser Ser Phe Met Pro Asp Thr Ile Ile Ala Leu Gly Gly Thr 530 535 540 Pro Glu Met Ser Ser Ala Lys Leu Met Trp Val Leu Tyr Glu His Pro 545 550 555 560 Glu Val Lys Phe Glu Asp Leu Ala Ile Lys Phe Met Asp Ile Arg Lys 565 570 575 Arg Ile Tyr Thr Phe Pro Lys Leu Gly Lys Lys Ala Met Leu Val Ala 580 585 590 Ile Thr Thr Ser Ala Gly Ser Gly Ser Glu Val Thr Pro Phe Ala Leu 595 600 605 Val Thr Asp Asn Asn Thr Gly Asn Lys Tyr Met Leu Ala Asp Tyr Glu 610 615 620 Met Thr Pro Asn Met Ala Ile Val Asp Ala Glu Leu Met Met Lys Met 625 630 635 640 Pro Lys Gly Leu Thr Ala Tyr Ser Gly Ile Asp Ala Leu Val Asn Ser 645 650 655 Ile Glu Ala Tyr Thr Ser Val Tyr Ala Ser Glu Tyr Thr Asn Gly Leu 660 665 670 Ala Leu Glu Ala Ile Arg Leu Ile Phe Lys Tyr Leu Pro Glu Ala Tyr 675 680 685 Lys Asn Gly Arg Thr Asn Glu Lys Ala Arg Glu Lys Met Ala His Ala 690 695 700 Ser Thr Met Ala Gly Met Ala Ser Ala Asn Ala Phe Leu Gly Leu Cys 705 710 715 720 His Ser Met Ala Ile Lys Leu Ser Ser Glu His Asn Ile Pro Ser Gly 725 730 735 Ile Ala Asn Ala Leu Leu Ile Glu Glu Val Ile Lys Phe Asn Ala Val 740 745 750 Asp Asn Pro Val Lys Gln Ala Pro Cys Pro Gln Tyr Lys Tyr Pro Asn 755 760 765 Thr Ile Phe Arg Tyr Ala Arg Ile Ala Asp Tyr Ile Lys Leu Gly Gly 770 775 780 Asn Thr Asp Glu Glu Lys Val Asp Leu Leu Ile Asn Lys Ile His Glu 785 790 795 800 Leu Lys Lys Ala Leu Asn Ile Pro Thr Ser Ile Lys Asp Ala Gly Val 805 810 815 Leu Glu Glu Asn Phe Tyr Ser Ser Leu Asp Arg Ile Ser Glu Leu Ala 820 825 830 Leu Asp Asp Gln Cys Thr Gly Ala Asn Pro Arg Phe Pro Leu Thr Ser 835 840 845 Glu Ile Lys Glu Met Tyr Ile Asn Cys Phe Lys Lys Gln Pro 850 855 860 <210> 64 <211> 1665 <212> DNA <213> Clostridium acetobutylicum <400> 64 ttgaagagtg aatacacaat tggaagatat ttgttagacc gtttatcaga gttgggtatt 60 cggcatatct ttggtgtacc tggagattac aatctatcct ttttagacta tataatggag 120 tacaaaggga tagattgggt tggaaattgc aatgaattga atgctgggta tgctgctgat 180 ggatatgcaa gaataaatgg aattggagcc atacttacaa catttggtgt tggagaatta 240 agtgccatta acgcaattgc tggggcatac gctgagcaag ttccagttgt taaaattaca 300 ggtatcccca cagcaaaagt tagggacaat ggattatatg tacaccacac attaggtgac 360 ggaaggtttg atcacttttt tgaaatgttt agagaagtaa cagttgctga ggcattacta 420 agcgaagaaa atgcagcaca agaaattgat cgtgttctta tttcatgctg gagacaaaaa 480 cgtcctgttc ttataaattt accgattgat gtatatgata aaccaattaa caaaccatta 540 aagccattac tcgattatac tatttcaagt aacaaagagg ctgcatgtga atttgttaca 600 gaaatagtac ctataataaa tagggcaaaa aagcctgtta ttcttgcaga ttatggagta 660 tatcgttacc aagttcaaca tgtgcttaaa aacttggccg aaaaaaccgg atttcctgtg 720 gctacactaa gtatgggaaa aggtgttttc aatgaagcac accctcaatt tattggtgtt 780 tataatggtg atgtaagttc tccttattta aggcagcgag ttgatgaagc agactgcatt 840 attagcgttg gtgtaaaatt gacggattca accacagggg gattttctca tggattttct 900 aaaaggaatg taattcacat tgatcctttt tcaataaagg caaaaggtaa aaaatatgca 960 cctattacga tgaaagatgc tttaacagaa ttaacaagta aaattgagca tagaaacttt 1020 gaggatttag atataaagcc ttacaaatca gataatcaaa agtattttgc aaaagagaag 1080 ccaattacac aaaaacgttt ttttgagcgt attgctcact ttataaaaga aaaagatgta 1140 ttattagcag aacagggtac atgctttttt ggtgcgtcaa ccatacaact acccaaagat 1200 gcaactttta ttggtcaacc tttatgggga tctattggat acacacttcc tgctttatta 1260 ggttcacaat tagctgatca aaaaaggcgt aatattcttt taattgggga tggtgcattt 1320 caaatgacag cacaagaaat ttcaacaatg cttcgtttac aaatcaaacc tattattttt 1380 ttaattaata acgatggtta tacaattgaa cgtgctattc atggtagaga acaagtatat 1440 aacaatattc aaatgtggcg atatcataat gttccaaagg ttttaggtcc taaagaatgc 1500 agcttaacct ttaaagtaca aagtgaaact gaacttgaaa aggctctttt agtggcagat 1560 aaggattgtg aacatttgat ttttatagaa gttgttatgg atcgttatga taaacccgag 1620 cctttagaac gtctttcgaa acgttttgca aatcaaaata attag 1665 <210> 65 <211> 858 <212> PRT <213> Clostridium acetobutylicum <400> 65 Met Lys Val Thr Asn Gln Lys Glu Leu Lys Gln Lys Leu Asn Glu Leu 1 5 10 15 Arg Glu Ala Gln Lys Lys Phe Ala Thr Tyr Thr Gln Glu Gln Val Asp 20 25 30 Lys Ile Phe Lys Gln Cys Ala Ile Ala Ala Ala Lys Glu Arg Ile Asn 35 40 45 Leu Ala Lys Leu Ala Val Glu Glu Thr Gly Ile Gly Leu Val Glu Asp 50 55 60 Lys Ile Ile Lys Asn His Phe Ala Ala Glu Tyr Ile Tyr Asn Lys Tyr 65 70 75 80 Lys Asn Glu Lys Thr Cys Gly Ile Ile Asp His Asp Asp Ser Leu Gly 85 90 95 Ile Thr Lys Val Ala Glu Pro Ile Gly Ile Val Ala Ala Ile Val Pro 100 105 110 Thr Thr Asn Pro Thr Ser Thr Ala Ile Phe Lys Ser Leu Ile Ser Leu 115 120 125 Lys Thr Arg Asn Ala Ile Phe Phe Ser Pro His Pro Arg Ala Lys Lys 130 135 140 Ser Thr Ile Ala Ala Ala Lys Leu Ile Leu Asp Ala Ala Val Lys Ala 145 150 155 160 Gly Ala Pro Lys Asn Ile Ile Gly Trp Ile Asp Glu Pro Ser Ile Glu 165 170 175 Leu Ser Gln Asp Leu Met Ser Glu Ala Asp Ile Ile Leu Ala Thr Gly 180 185 190 Gly Pro Ser Met Val Lys Ala Ala Tyr Ser Ser Gly Lys Pro Ala Ile 195 200 205 Gly Val Gly Ala Gly Asn Thr Pro Ala Ile Ile Asp Glu Ser Ala Asp 210 215 220 Ile Asp Met Ala Val Ser Ser Ile Ile Leu Ser Lys Thr Tyr Asp Asn 225 230 235 240 Gly Val Ile Cys Ala Ser Glu Gln Ser Ile Leu Val Met Asn Ser Ile 245 250 255 Tyr Glu Lys Val Lys Glu Glu Phe Val Lys Arg Gly Ser Tyr Ile Leu 260 265 270 Asn Gln Asn Glu Ile Ala Lys Ile Lys Glu Thr Met Phe Lys Asn Gly 275 280 285 Ala Ile Asn Ala Asp Ile Val Gly Lys Ser Ala Tyr Ile Ile Ala Lys 290 295 300 Met Ala Gly Ile Glu Val Pro Gln Thr Thr Lys Ile Leu Ile Gly Glu 305 310 315 320 Val Gln Ser Val Glu Lys Ser Glu Leu Phe Ser His Glu Lys Leu Ser 325 330 335 Pro Val Leu Ala Met Tyr Lys Val Lys Asp Phe Asp Glu Ala Leu Lys 340 345 350 Lys Ala Gln Arg Leu Ile Glu Leu Gly Gly Ser Gly His Thr Ser Ser 355 360 365 Leu Tyr Ile Asp Ser Gln Asn Asn Lys Asp Lys Val Lys Glu Phe Gly 370 375 380 Leu Ala Met Lys Thr Ser Arg Thr Phe Ile Asn Met Pro Ser Ser Gln 385 390 395 400 Gly Ala Ser Gly Asp Leu Tyr Asn Phe Ala Ile Ala Pro Ser Phe Thr 405 410 415 Leu Gly Cys Gly Thr Trp Gly Gly Asn Ser Val Ser Gln Asn Val Glu 420 425 430 Pro Lys His Leu Leu Asn Ile Lys Ser Val Ala Glu Arg Arg Glu Asn 435 440 445 Met Leu Trp Phe Lys Val Pro Gln Lys Ile Tyr Phe Lys Tyr Gly Cys 450 455 460 Leu Arg Phe Ala Leu Lys Glu Leu Lys Asp Met Asn Lys Lys Arg Ala 465 470 475 480 Phe Ile Val Thr Asp Lys Asp Leu Phe Lys Leu Gly Tyr Val Asn Lys 485 490 495 Ile Thr Lys Val Leu Asp Glu Ile Asp Ile Lys Tyr Ser Ile Phe Thr 500 505 510 Asp Ile Lys Ser Asp Pro Thr Ile Asp Ser Val Lys Lys Gly Ala Lys 515 520 525 Glu Met Leu Asn Phe Glu Pro Asp Thr Ile Ile Ser Ile Gly Gly Gly 530 535 540 Ser Pro Met Asp Ala Ala Lys Val Met His Leu Leu Tyr Glu Tyr Pro 545 550 555 560 Glu Ala Glu Ile Glu Asn Leu Ala Ile Asn Phe Met Asp Ile Arg Lys 565 570 575 Arg Ile Cys Asn Phe Pro Lys Leu Gly Thr Lys Ala Ile Ser Val Ala 580 585 590 Ile Pro Thr Thr Ala Gly Thr Gly Ser Glu Ala Thr Pro Phe Ala Val 595 600 605 Ile Thr Asn Asp Glu Thr Gly Met Lys Tyr Pro Leu Thr Ser Tyr Glu 610 615 620 Leu Thr Pro Asn Met Ala Ile Ile Asp Thr Glu Leu Met Leu Asn Met 625 630 635 640 Pro Arg Lys Leu Thr Ala Ala Thr Gly Ile Asp Ala Leu Val His Ala 645 650 655 Ile Glu Ala Tyr Val Ser Val Met Ala Thr Asp Tyr Thr Asp Glu Leu 660 665 670 Ala Leu Arg Ala Ile Lys Met Ile Phe Lys Tyr Leu Pro Arg Ala Tyr 675 680 685 Lys Asn Gly Thr Asn Asp Ile Glu Ala Arg Glu Lys Met Ala His Ala 690 695 700 Ser Asn Ile Ala Gly Met Ala Phe Ala Asn Ala Phe Leu Gly Val Cys 705 710 715 720 His Ser Met Ala His Lys Leu Gly Ala Met His His Val Pro His Gly 725 730 735 Ile Ala Cys Ala Val Leu Ile Glu Glu Val Ile Lys Tyr Asn Ala Thr 740 745 750 Asp Cys Pro Thr Lys Gln Thr Ala Phe Pro Gln Tyr Lys Ser Pro Asn 755 760 765 Ala Lys Arg Lys Tyr Ala Glu Ile Ala Glu Tyr Leu Asn Leu Lys Gly 770 775 780 Thr Ser Asp Thr Glu Lys Val Thr Ala Leu Ile Glu Ala Ile Ser Lys 785 790 795 800 Leu Lys Ile Asp Leu Ser Ile Pro Gln Asn Ile Ser Ala Ala Gly Ile 805 810 815 Asn Lys Lys Asp Phe Tyr Asn Thr Leu Asp Lys Met Ser Glu Leu Ala 820 825 830 Phe Asp Asp Gln Cys Thr Thr Ala Asn Pro Arg Tyr Pro Leu Ile Ser 835 840 845 Glu Leu Lys Asp Ile Tyr Ile Lys Ser Phe 850 855 <210> 66 <211> 2589 <212> DNA <213> Clostridium acetobutylicum <400> 66 atgaaagtca caacagtaaa ggaattagat gaaaaactca aggtaattaa agaagctcaa 60 aaaaaattct cttgttactc gcaagaaatg gttgatgaaa tctttagaaa tgcagcaatg 120 gcagcaatcg acgcaaggat agagctagca aaagcagctg ttttggaaac cggtatgggc 180 ttagttgaag acaaggttat aaaaaatcat tttgcaggcg aatacatcta taacaaatat 240 aaggatgaaa aaacctgcgg tataattgaa cgaaatgaac cctacggaat tacaaaaata 300 gcagaaccta taggagttgt agctgctata atccctgtaa caaaccccac atcaacaaca 360 atatttaaat ccttaatatc ccttaaaact agaaatggaa ttttcttttc gcctcaccca 420 agggcaaaaa aatccacaat actagcagct aaaacaatac ttgatgcagc cgttaagagt 480 ggtgccccgg aaaatataat aggttggata gatgaacctt caattgaact aactcaatat 540 ttaatgcaaa aagcagatat aacccttgca actggtggtc cctcactagt taaatctgct 600 tattcttccg gaaaaccagc aataggtgtt ggtccgggta acaccccagt aataattgat 660 gaatctgctc atataaaaat ggcagtaagt tcaattatat tatccaaaac ctatgataat 720 ggtgttatat gtgcttctga acaatctgta atagtcttaa aatccatata taacaaggta 780 aaagatgagt tccaagaaag aggagcttat ataataaaga aaaacgaatt ggataaagtc 840 cgtgaagtga tttttaaaga tggatccgta aaccctaaaa tagtcggaca gtcagcttat 900 actatagcag ctatggctgg cataaaagta cctaaaacca caagaatatt aataggagaa 960 gttacctcct taggtgaaga agaacctttt gcccacgaaa aactatctcc tgttttggct 1020 atgtatgagg ctgacaattt tgatgatgct ttaaaaaaag cagtaactct aataaactta 1080 ggaggcctcg gccatacctc aggaatatat gcagatgaaa taaaagcacg agataaaata 1140 gatagattta gtagtgccat gaaaaccgta agaacctttg taaatatccc aacctcacaa 1200 ggtgcaagtg gagatctata taattttaga ataccacctt ctttcacgct tggctgcgga 1260 ttttggggag gaaattctgt ttccgagaat gttggtccaa aacatctttt gaatattaaa 1320 accgtagctg aaaggagaga aaacatgctt tggtttagag ttccacataa agtatatttt 1380 aagttcggtt gtcttcaatt tgctttaaaa gatttaaaag atctaaagaa aaaaagagcc 1440 tttatagtta ctgatagtga cccctataat ttaaactatg ttgattcaat aataaaaata 1500 cttgagcacc tagatattga ttttaaagta tttaataagg ttggaagaga agctgatctt 1560 aaaaccataa aaaaagcaac tgaagaaatg tcctccttta tgccagacac tataatagct 1620 ttaggtggta cccctgaaat gagctctgca aagctaatgt gggtactata tgaacatcca 1680 gaagtaaaat ttgaagatct tgcaataaaa tttatggaca taagaaagag aatatatact 1740 ttcccaaaac tcggtaaaaa ggctatgtta gttgcaatta caacttctgc tggttccggt 1800 tctgaggtta ctccttttgc tttagtaact gacaataaca ctggaaataa gtacatgtta 1860 gcagattatg aaatgacacc aaatatggca attgtagatg cagaacttat gatgaaaatg 1920 ccaaagggat taaccgctta ttcaggtata gatgcactag taaatagtat agaagcatac 1980 acatccgtat atgcttcaga atacacaaac ggactagcac tagaggcaat acgattaata 2040 tttaaatatt tgcctgaggc ttacaaaaac ggaagaacca atgaaaaagc aagagagaaa 2100 atggctcacg cttcaactat ggcaggtatg gcatccgcta atgcatttct aggtctatgt 2160 cattccatgg caataaaatt aagttcagaa cacaatattc ctagtggcat tgccaatgca 2220 ttactaatag aagaagtaat aaaatttaac gcagttgata atcctgtaaa acaagcccct 2280 tgcccacaat ataagtatcc aaacaccata tttagatatg ctcgaattgc agattatata 2340 aagcttggag gaaatactga tgaggaaaag gtagatctct taattaacaa aatacatgaa 2400 ctaaaaaaag ctttaaatat accaacttca ataaaggatg caggtgtttt ggaggaaaac 2460 ttctattcct cccttgatag aatatctgaa cttgcactag atgatcaatg cacaggcgct 2520 aatcctagat ttcctcttac aagtgagata aaagaaatgt atataaattg ttttaaaaaa 2580 caaccttaa 2589 <210> 67 <211> 307 <212> PRT <213> Pseudomonas putida <400> 67 Met Ser Lys Lys Leu Lys Ala Ala Ile Ile Gly Pro Gly Asn Ile Gly 1 5 10 15 Thr Asp Leu Val Met Lys Met Leu Arg Ser Glu Trp Ile Glu Pro Val 20 25 30 Trp Met Val Gly Ile Asp Pro Asn Ser Asp Gly Leu Lys Arg Ala Arg 35 40 45 Asp Phe Gly Met Lys Thr Thr Ala Glu Gly Val Asp Gly Leu Leu Pro 50 55 60 His Val Leu Asp Asp Asp Ile Arg Ile Ala Phe Asp Ala Thr Ser Ala 65 70 75 80 Tyr Val His Ala Glu Asn Ser Arg Lys Leu Asn Ala Leu Gly Val Leu 85 90 95 Met Val Asp Leu Thr Pro Ala Ala Ile Gly Pro Tyr Cys Val Pro Pro 100 105 110 Val Asn Leu Lys Gln His Val Gly Arg Leu Glu Met Asn Val Asn Met 115 120 125 Val Thr Cys Gly Gly Gln Ala Thr Ile Pro Met Val Ala Ala Val Ser 130 135 140 Arg Val Gln Pro Val Ala Tyr Ala Glu Ile Val Ala Thr Val Ser Ser 145 150 155 160 Arg Ser Val Gly Pro Gly Thr Arg Lys Asn Ile Asp Glu Phe Thr Arg 165 170 175 Thr Thr Ala Gly Ala Ile Glu Gln Val Gly Gly Ala Arg Glu Gly Lys 180 185 190 Ala Ile Ile Val Ile Asn Pro Ala Glu Pro Pro Leu Met Met Arg Asp 195 200 205 Thr Ile His Cys Leu Thr Asp Ser Glu Pro Asp Gln Ala Ala Ile Thr 210 215 220 Ala Ser Val His Ala Met Ile Ala Glu Val Gln Lys Tyr Val Pro Gly 225 230 235 240 Tyr Arg Leu Lys Asn Gly Pro Val Phe Asp Gly Asn Arg Val Ser Ile 245 250 255 Phe Met Glu Val Glu Gly Leu Gly Asp Tyr Leu Pro Lys Tyr Ala Gly 260 265 270 Asn Leu Asp Ile Met Thr Ala Ala Ala Leu Arg Thr Gly Glu Met Phe 275 280 285 Ala Glu Glu Ile Ala Ala Gly Thr Ile Gln Leu Pro Arg Arg Asp Ile 290 295 300 Ala Leu Ala 305 <210> 68 <211> 2180 <212> DNA <213> Pseudomonas putida <400> 68 ggtacccctg gagccggtca aggccggcga cttcatgcgc gtcgagatcg gcggcatcgg 60 cagcgcctcc gtgcgcttca cctgatcgaa cagaggacaa acccatgagc aagaaactca 120 aggcggccat cataggcccc ggcaatatcg gtaccgatct ggtgatgaag atgctccgtt 180 ccgagtggat tgagccggtg tggatggtcg gcatcgaccc caactccgac ggcctcaaac 240 gcgcccgcga tttcggcatg aagaccacag ccgaaggcgt cgacggcctg ctcccgcacg 300 tgctggacga cgacatccgc atcgccttcg acgccacctc ggcctatgtg catgccgaga 360 atagccgcaa gctcaacgcg cttggcgtgc tgatggtcga cctgaccccg gcggccatcg 420 gcccctactg cgtgccgccg gtcaacctca agcagcatgt cggccgcctg gaaatgaacg 480 tcaacatggt cacctgcggc ggccaggcca ccatccccat ggtcgccgcg gtgtcccgcg 540 tgcagccggt ggcctacgcc gagatcgtcg ccaccgtctc ctcgcgctcg gtcggcccgg 600 gcacgcgcaa gaacatcgac gagttcaccc gcaccaccgc cggcgccatc gagcaggtcg 660 gcggcgccag ggaaggcaag gcgatcatcg tcatcaaccc ggccgagccg ccgctgatga 720 tgcgcgacac catccactgc ctgaccgaca gcgagccgga ccaggctgcg atcaccgctt 780 cggttcacgc gatgatcgcc gaggtgcaga aatacgtgcc cggctaccgc ctgaagaacg 840 gcccggtgtt cgacggcaac cgcgtgtcga tcttcatgga agtcgaaggc ctgggcgact 900 acctgcccaa gtacgccggc aacctcgaca tcatgaccgc cgccgcgctg cgtaccggcg 960 agatgttcgc cgaggaaatc gccgccggca ccattcaact gccgcgtcgc gacatcgcgc 1020 tggcttgagg agtagcacca tgaatttgca cggcaagagc gtcatcctgc acgacatgag 1080 cctgcgcgac ggcatgcacg ccaagcgcca ccagatcagc ctggagcaga tggtcgcggt 1140 cgccaccggc ctcgatcaag ccggtatgcc gctgatcgag atcacccacg gcgacggcct 1200 cggcggtcgt tcgatcaact acggcttccc ggcccacagt gacgaggagt acctgcgcgc 1260 ggtgatcccg cagctcaagc aggccaaagt ctcggcgctg ctgctgcccg gcatcggcac 1320 cgtcgaccac ctgaagatgg ccctggactg cggcgtctcg actattcgcg tggccaccca 1380 ctgtaccgag gcggatgtct ccgagcagca catcggcatg gcgcgcaagc tgggggtcga 1440 caccgtcggc ttcctgatga tggcgcacat gatcagcgcc gagaaagtcc tggagcaggc 1500 caagctgatg gaaagctatg gtgccaactg catctactgc accgactcgg ccggctacat 1560 gctgcctgat gaagtcagcg agaaaatcgg cctcctgcgc gccgagctga acccggccac 1620 cgaagtcggc ttccacggcc accacaacat gggcatggct atcgccaact cgctggccgc 1680 catcgaagcc ggtgccgcgc gcatcgacgg ctcggtcgcc ggcctcggcg ccggtgccgg 1740 caacaccccg ctggaagtgt tcgtcgcagt gtgcaaacgc atgggcgtgg agaccggcat 1800 cgacctgtac aagatcatgg acgtggccga ggacctggtg gtgccgatga tggatcagcc 1860 gatccgcgtc gaccgcgacg ccctgaccct gggctacgcc ggggtgtaca gctcgttcct 1920 gctgttcgcc cagcgcgccg agaagaaata tggcgtgtcg gcccgcgaca tcctggtcga 1980 actgggccgg cgcggcaccg tcggtggcca ggaagacatg atcgaagacc tcgccctgga 2040 catggcccgg gcccgtcagc agcagaaggt gagcgcatga accgtaccct gacccgcgaa 2100 caggtgctgg ccctggccga gcacatcgaa aacgccgagc tgaatgtcca cgacatcggc 2160 aaggtgacca acgattttcc 2180 <210> 69 <211> 307 <212> PRT <213> Thermus thermophilus <400> 69 Met Ser Glu Arg Val Lys Val Ala Ile Leu Gly Ser Gly Asn Ile Gly 1 5 10 15 Thr Asp Leu Met Tyr Lys Leu Leu Lys Asn Pro Gly His Met Glu Leu 20 25 30 Val Ala Val Val Gly Ile Asp Pro Lys Ser Glu Gly Leu Ala Arg Ala 35 40 45 Arg Ala Leu Gly Leu Glu Ala Ser His Glu Gly Ile Ala Tyr Ile Leu 50 55 60 Glu Arg Pro Glu Ile Lys Ile Val Phe Asp Ala Thr Ser Ala Lys Ala 65 70 75 80 His Val Arg His Ala Lys Leu Leu Arg Glu Ala Gly Lys Ile Ala Ile 85 90 95 Asp Leu Thr Pro Ala Ala Arg Gly Pro Tyr Val Val Pro Pro Val Asn 100 105 110 Leu Lys Glu His Leu Asp Lys Asp Asn Val Asn Leu Ile Thr Cys Gly 115 120 125 Gly Gln Ala Thr Ile Pro Leu Val Tyr Ala Val His Arg Val Ala Pro 130 135 140 Val Leu Tyr Ala Glu Met Val Ser Thr Val Ala Ser Arg Ser Ala Gly 145 150 155 160 Pro Gly Thr Arg Gln Asn Ile Asp Glu Phe Thr Phe Thr Thr Ala Arg 165 170 175 Gly Leu Glu Ala Ile Gly Gly Ala Lys Lys Gly Lys Ala Ile Ile Ile 180 185 190 Leu Asn Pro Ala Glu Pro Pro Ile Leu Met Thr Asn Thr Val Arg Cys 195 200 205 Ile Pro Glu Asp Glu Gly Phe Asp Arg Glu Ala Val Val Ala Ser Val 210 215 220 Arg Ala Met Glu Arg Glu Val Gln Ala Tyr Val Pro Gly Tyr Arg Leu 225 230 235 240 Lys Ala Asp Pro Val Phe Glu Arg Leu Pro Thr Pro Trp Gly Glu Arg 245 250 255 Thr Val Val Ser Met Leu Leu Glu Val Glu Gly Ala Gly Asp Tyr Leu 260 265 270 Pro Lys Tyr Ala Gly Asn Leu Asp Ile Met Thr Ala Ser Ala Arg Arg 275 280 285 Val Gly Glu Val Phe Ala Gln His Leu Leu Gly Lys Pro Val Glu Glu 290 295 300 Val Val Ala 305 <210> 70 <211> 924 <212> DNA <213> Thermus thermophilus <400> 70 atgtccgaaa gggttaaggt agccatcctg ggctccggca acatcgggac ggacctgatg 60 tacaagctcc tgaagaaccc gggccacatg gagcttgtgg cggtggtggg gatagacccc 120 aagtccgagg gcctggcccg ggcgcgggcc ttagggttag aggcgagcca cgaagggatc 180 gcctacatcc tggagaggcc ggagatcaag atcgtctttg acgccaccag cgccaaggcc 240 cacgtgcgcc acgccaagct cctgagggag gcggggaaga tcgccataga cctcacgccg 300 gcggcccggg gcccttacgt ggtgcccccg gtgaacctga aggaacacct ggacaaggac 360 aacgtgaacc tcatcacctg cggggggcag gccaccatcc ccctggtcta cgcggtgcac 420 cgggtggccc ccgtgctcta cgcggagatg gtctccacgg tggcctcccg ctccgcgggc 480 cccggcaccc ggcagaacat cgacgagttc accttcacca ccgcccgggg cctggaggcc 540 atcggggggg ccaagaaggg gaaggccatc atcatcctga acccggcgga accccccatc 600 ctcatgacca acaccgtgcg ctgcatcccc gaggacgagg gctttgaccg ggaggccgtg 660 gtggcgagcg tccgggccat ggagcgggag gtccaggcct acgtgcccgg ctaccgcctg 720 aaggcggacc cggtgtttga gaggcttccc accccctggg gggagcgcac cgtggtctcc 780 atgctcctgg aggtggaggg ggcgggggac tatttgccca aatacgccgg caacctggac 840 atcatgacgg cttctgcccg gagggtgggg gaggtcttcg cccagcacct cctggggaag 900 cccgtggagg aggtggtggc gtga 924 <210> 71 <211> 417 <212> PRT <213> Escherichia coli <400> 71 Met Thr Phe Ser Leu Phe Gly Asp Lys Phe Thr Arg His Ser Gly Ile 1 5 10 15 Thr Leu Leu Met Glu Asp Leu Asn Asp Gly Leu Arg Thr Pro Gly Ala 20 25 30 Ile Met Leu Gly Gly Gly Asn Pro Ala Gln Ile Pro Glu Met Gln Asp 35 40 45 Tyr Phe Gln Thr Leu Leu Thr Asp Met Leu Glu Ser Gly Lys Ala Thr 50 55 60 Asp Ala Leu Cys Asn Tyr Asp Gly Pro Gln Gly Lys Thr Glu Leu Leu 65 70 75 80 Thr Leu Leu Ala Gly Met Leu Arg Glu Lys Leu Gly Trp Asp Ile Glu 85 90 95 Pro Gln Asn Ile Ala Leu Thr Asn Gly Ser Gln Ser Ala Phe Phe Tyr 100 105 110 Leu Phe Asn Leu Phe Ala Gly Arg Arg Ala Asp Gly Arg Val Lys Lys 115 120 125 Val Leu Phe Pro Leu Ala Pro Glu Tyr Ile Gly Tyr Ala Asp Ala Gly 130 135 140 Leu Glu Glu Asp Leu Phe Val Ser Ala Arg Pro Asn Ile Glu Leu Leu 145 150 155 160 Pro Glu Gly Gln Phe Lys Tyr His Val Asp Phe Glu His Leu His Ile 165 170 175 Gly Glu Glu Thr Gly Met Ile Cys Val Ser Arg Pro Thr Asn Pro Thr 180 185 190 Gly Asn Val Ile Thr Asp Glu Glu Leu Leu Lys Leu Asp Ala Leu Ala 195 200 205 Asn Gln His Gly Ile Pro Leu Val Ile Asp Asn Ala Tyr Gly Val Pro 210 215 220 Phe Pro Gly Ile Ile Phe Ser Glu Ala Arg Pro Leu Trp Asn Pro Asn 225 230 235 240 Ile Val Leu Cys Met Ser Leu Ser Lys Leu Gly Leu Pro Gly Ser Arg 245 250 255 Cys Gly Ile Ile Ile Ala Asn Glu Lys Ile Ile Thr Ala Ile Thr Asn 260 265 270 Met Asn Gly Ile Ile Ser Leu Ala Pro Gly Gly Ile Gly Pro Ala Met 275 280 285 Met Cys Glu Met Ile Lys Arg Asn Asp Leu Leu Arg Leu Ser Glu Thr 290 295 300 Val Ile Lys Pro Phe Tyr Tyr Gln Arg Val Gln Glu Thr Ile Ala Ile 305 310 315 320 Ile Arg Arg Tyr Leu Pro Glu Asn Arg Cys Leu Ile His Lys Pro Glu 325 330 335 Gly Ala Ile Phe Leu Trp Leu Trp Phe Lys Asp Leu Pro Ile Thr Thr 340 345 350 Lys Gln Leu Tyr Gln Arg Leu Lys Ala Arg Gly Val Leu Met Val Pro 355 360 365 Gly His Asn Phe Phe Pro Gly Leu Asp Lys Pro Trp Pro His Thr His 370 375 380 Gln Cys Met Arg Met Asn Tyr Val Pro Glu Pro Glu Lys Ile Glu Ala 385 390 395 400 Gly Val Lys Ile Leu Ala Glu Glu Ile Glu Arg Ala Trp Ala Glu Ser 405 410 415 His <210> 72 <211> 417 <212> PRT <213> Escherichia coli <400> 72 Met Thr Phe Ser Leu Phe Gly Asp Lys Phe Thr Arg His Ser Gly Ile 1 5 10 15 Thr Leu Leu Met Glu Asp Leu Asn Asp Gly Leu Arg Thr Pro Gly Ala 20 25 30 Ile Met Leu Gly Gly Gly Asn Pro Ala Gln Ile Pro Glu Met Gln Asp 35 40 45 Tyr Phe Gln Thr Leu Leu Thr Asp Met Leu Glu Ser Gly Lys Ala Thr 50 55 60 Asp Ala Leu Cys Asn Tyr Asp Gly Pro Gln Gly Lys Thr Glu Leu Leu 65 70 75 80 Thr Leu Leu Ala Gly Met Leu Arg Glu Lys Leu Gly Trp Asp Ile Glu 85 90 95 Pro Gln Asn Ile Ala Leu Thr Asn Gly Ser Gln Ser Ala Phe Phe Tyr 100 105 110 Leu Phe Asn Leu Phe Ala Gly Arg Arg Ala Asp Gly Arg Val Lys Lys 115 120 125 Val Leu Phe Pro Leu Ala Pro Glu Tyr Ile Gly Tyr Ala Asp Ala Gly 130 135 140 Leu Glu Glu Asp Leu Phe Val Ser Ala Arg Pro Asn Ile Glu Leu Leu 145 150 155 160 Pro Glu Gly Gln Phe Lys Tyr His Val Asp Phe Glu His Leu His Ile 165 170 175 Gly Glu Glu Thr Gly Met Ile Cys Val Ser Arg Pro Thr Asn Pro Thr 180 185 190 Gly Asn Val Ile Thr Asp Glu Glu Leu Leu Lys Leu Asp Ala Leu Ala 195 200 205 Asn Gln His Gly Ile Pro Leu Val Ile Asp Asn Ala Tyr Gly Val Pro 210 215 220 Phe Pro Gly Ile Ile Phe Ser Glu Ala Arg Pro Leu Trp Asn Pro Asn 225 230 235 240 Ile Val Leu Cys Met Ser Leu Ser Lys Leu Gly Leu Pro Gly Ser Arg 245 250 255 Cys Gly Ile Ile Ile Ala Asn Glu Lys Ile Ile Thr Ala Ile Thr Asn 260 265 270 Met Asn Gly Ile Ile Ser Leu Ala Pro Gly Gly Ile Gly Pro Ala Met 275 280 285 Met Cys Glu Met Ile Lys Arg Asn Asp Leu Leu Arg Leu Ser Glu Thr 290 295 300 Val Ile Lys Pro Phe Tyr Tyr Gln Arg Val Gln Glu Thr Ile Ala Ile 305 310 315 320 Ile Arg Arg Tyr Leu Pro Glu Asn Arg Cys Leu Ile His Lys Pro Glu 325 330 335 Gly Ala Ile Phe Leu Trp Leu Trp Phe Lys Asp Leu Pro Ile Thr Thr 340 345 350 Lys Gln Leu Tyr Gln Arg Leu Lys Ala Arg Gly Val Leu Met Val Pro 355 360 365 Gly His Asn Phe Phe Pro Gly Leu Asp Lys Pro Trp Pro His Thr His 370 375 380 Gln Cys Met Arg Met Asn Tyr Val Pro Glu Pro Glu Lys Ile Glu Ala 385 390 395 400 Gly Val Lys Ile Leu Ala Glu Glu Ile Glu Arg Ala Trp Ala Glu Ser 405 410 415 His <210> 73 <211> 425 <212> PRT <213> Bacillus licheniformis <400> 73 Met Lys Pro Pro Leu Ser Lys Ile Gly Glu Lys Met Ile Glu Lys Thr 1 5 10 15 Gly Val Arg Ala Val Met Ser Asp Ile Gln Glu Val Leu Ala Gly Gly 20 25 30 Glu Arg Ser Tyr Ile Asn Leu Ser Ala Gly Asn Pro Met Ile Leu Pro 35 40 45 Gly Val Ser Ala Met Trp Lys Ser Ala Leu Ala Asp Leu Leu Asp Asp 50 55 60 Asp Arg Phe Ser Ser Val Ile Gly Gln Tyr Gly Ser Ser Tyr Gly Thr 65 70 75 80 Asp Glu Leu Ile Ala Ser Val Val Arg Phe Phe Ser Glu Arg Tyr Ser 85 90 95 Ala Gly Ile Arg Lys Glu Asn Val Leu Ile Thr Ala Gly Ser Gln Gln 100 105 110 Leu Phe Phe Leu Ala Ile Asn Ser Phe Cys Gly Met Gly Ser Gly Ser 115 120 125 Val Met Lys Lys Ala Leu Ile Pro Met Leu Pro Asp Tyr Ser Gly Tyr 130 135 140 Ser Gly Ala Ala Leu Glu Arg Glu Met Ile Glu Gly Ile Pro Pro Leu 145 150 155 160 Ile Ser Lys Leu Asp Asp His Thr Phe Arg Tyr Glu Leu Asp Arg Lys 165 170 175 Gly Phe Leu Glu Arg Met Arg Ile Gly Ala Val Leu Leu Ser Arg Pro 180 185 190 Asn Asn Pro Cys Gly Asn Ile Leu Pro Lys Glu Asp Val Ala Phe Ile 195 200 205 Ser Asp Ala Cys Arg Glu Ala Asn Val Pro Leu Phe Ile Asp Ser Ala 210 215 220 Tyr Ala Pro Pro Phe Pro Ala Ile His Phe Ile Asp Met Glu Pro Ile 225 230 235 240 Phe Asn Glu Gln Ile Ile His Cys Met Ser Leu Ser Lys Ala Gly Leu 245 250 255 Pro Gly Glu Arg Ile Gly Ile Ala Ile Gly Pro Ser Arg Tyr Ile Gln 260 265 270 Ala Met Glu Ala Phe Gln Ser Asn Ala Ala Ile His Ser Ser Arg Leu 275 280 285 Gly Gln Tyr Met Ala Ala Ser Val Leu Asn Asp Gly Arg Leu Ala Asp 290 295 300 Val Ser Leu Asn Glu Val Arg Pro Tyr Tyr Arg Asn Lys Phe Met Leu 305 310 315 320 Leu Lys Glu Thr Leu Leu Cys Lys Met Pro Glu Asp Ile Lys Trp Tyr 325 330 335 Leu His Gln Gly Glu Gly Ser Leu Phe Gly Trp Leu Trp Phe Glu Asp 340 345 350 Leu Pro Val Thr Asp Ala Ala Leu Tyr Glu Tyr Met Lys Ala Asp Gly 355 360 365 Val Ile Ile Val Pro Gly Ser Ser Phe Phe His Arg Gln Ser Arg Arg 370 375 380 Leu Ala His Ser His Gln Cys Ile Arg Ile Ser Leu Thr Ala Ala Asp 385 390 395 400 Glu Asp Ile Ile Arg Gly Ile Asp Val Leu Ala Lys Ile Ala Lys Gly 405 410 415 Val Tyr Glu Lys Gln Val Glu Tyr Leu 420 425 <210> 74 <211> 1278 <212> DNA <213> Bacillus licheniformis <400> 74 ttataagtat tcaacctgtt tctcatatac acccttcgca attttagcta aaacatcgat 60 tccccttata atatcttcat ccgccgcggt taggctgatt cgtatacact ggtgtgaatg 120 cgccaggcgc cgggattgac ggtgaaagaa agatgatccg ggaacgataa tgactccatc 180 cgctttcata tactcataca gcgctgcatc ggtcaccggc aggtcttcaa accacagcca 240 tccgaaaagc gatccttccc cttgatgcag ataccatttg atgtcttcag gcatcttgca 300 taaaagcgtt tccttgagca gcatgaattt attgcggtaa tatggcctga cttcattcag 360 cgacacgtcg gcgaggcgcc cgtcattcaa tactgatgca gccatatact gccccagcct 420 tgaagaatgg atcgccgcat tcgactgaaa agcttccatt gcctgaatat accgggacgg 480 cccgatggcg attccgatcc tttcgccagg caggccggct tttgaaaggc tcatacagtg 540 aatgatctgc tcgttgaaaa tcggttccat gtcgataaag tgaatcgccg gaaaaggcgg 600 agcatatgcg gaatcaatga acagcggaac attcgcttct cggcatgcgt ctgaaatgaa 660 tgctacatct tctttaggca agatgtttcc gcaaggattg ttcgggcgcg atagcaagac 720 agcaccgatg cgcatcctct ctaaaaaccc cttacggtcg agctcatatc gaaacgtatg 780 atcatccaat ttcgatatga gcggagggat cccctcaatc atctcccgct ccagtgccgc 840 cccgctgtat cccgaatagt caggcagcat cgggatcaag gcttttttca tcacagatcc 900 gcttcccatt ccgcaaaacg aattgatcgc cagaaaaaac agctgctggc ttccggctgt 960 aatcaacacg ttctcttttc gaatgccggc gctataccgc tctgaaaaga agcggacaac 1020 acttgcaatc agttcatcgg ttccatagct cgatccgtat tggccgatca ccgaagaaaa 1080 cctgtcatcg tcaaggagat cggcaagagc cgacttccac atggctgaca cgccgggcaa 1140 aatcatcgga ttgcccgcac ttaaattaat gtatgaccgt tcaccgccgg ccaggacttc 1200 ctgaatatcg ctcatcacag ccctgacccc tgttttctca atcattttct ctccgatttt 1260 gcttaatggc ggcttcac 1278 <210> 75 <211> 309 <212> PRT <213> Escherichia coli <400> 75 Met Thr Thr Lys Lys Ala Asp Tyr Ile Trp Phe Asn Gly Glu Met Val 1 5 10 15 Arg Trp Glu Asp Ala Lys Val His Val Met Ser His Ala Leu His Tyr 20 25 30 Gly Thr Ser Val Phe Glu Gly Ile Arg Cys Tyr Asp Ser His Lys Gly 35 40 45 Pro Val Val Phe Arg His Arg Glu His Met Gln Arg Leu His Asp Ser 50 55 60 Ala Lys Ile Tyr Arg Phe Pro Val Ser Gln Ser Ile Asp Glu Leu Met 65 70 75 80 Glu Ala Cys Arg Asp Val Ile Arg Lys Asn Asn Leu Thr Ser Ala Tyr 85 90 95 Ile Arg Pro Leu Ile Phe Val Gly Asp Val Gly Met Gly Val Asn Pro 100 105 110 Pro Ala Gly Tyr Ser Thr Asp Val Ile Ile Ala Ala Phe Pro Trp Gly 115 120 125 Ala Tyr Leu Gly Ala Glu Ala Leu Glu Gln Gly Ile Asp Ala Met Val 130 135 140 Ser Ser Trp Asn Arg Ala Ala Pro Asn Thr Ile Pro Thr Ala Ala Lys 145 150 155 160 Ala Gly Gly Asn Tyr Leu Ser Ser Leu Leu Val Gly Ser Glu Ala Arg 165 170 175 Arg His Gly Tyr Gln Glu Gly Ile Ala Leu Asp Val Asn Gly Tyr Ile 180 185 190 Ser Glu Gly Ala Gly Glu Asn Leu Phe Glu Val Lys Asp Gly Val Leu 195 200 205 Phe Thr Pro Pro Phe Thr Ser Ser Ala Leu Pro Gly Ile Thr Arg Asp 210 215 220 Ala Ile Ile Lys Leu Ala Lys Glu Leu Gly Ile Glu Val Arg Glu Gln 225 230 235 240 Val Leu Ser Arg Glu Ser Leu Tyr Leu Ala Asp Glu Val Phe Met Ser 245 250 255 Gly Thr Ala Ala Glu Ile Thr Pro Val Arg Ser Val Asp Gly Ile Gln 260 265 270 Val Gly Glu Gly Arg Cys Gly Pro Val Thr Lys Arg Ile Gln Gln Ala 275 280 285 Phe Phe Gly Leu Phe Thr Gly Glu Thr Glu Asp Lys Trp Gly Trp Leu 290 295 300 Asp Gln Val Asn Gln 305 <210> 76 <211> 1476 <212> DNA <213> Escherichia coli <400> 76 atggctaact acttcaatac actgaatctg cgccagcagc tggcacagct gggcaaatgt 60 cgctttatgg gccgcgatga attcgccgat ggcgcgagct accttcaggg taaaaaagta 120 gtcatcgtcg gctgtggcgc acagggtctg aaccagggcc tgaacatgcg tgattctggt 180 ctcgatatct cctacgctct gcgtaaagaa gcgattgccg agaagcgcgc gtcctggcgt 240 aaagcgaccg aaaatggttt taaagtgggt acttacgaag aactgatccc acaggcggat 300 ctggtgatta acctgacgcc ggacaagcag cactctgatg tagtgcgcac cgtacagcca 360 ctgatgaaag acggcgcggc gctgggctac tcgcacggtt tcaacatcgt cgaagtgggc 420 gagcagatcc gtaaagatat caccgtagtg atggttgcgc cgaaatgccc aggcaccgaa 480 gtgcgtgaag agtacaaacg tgggttcggc gtaccgacgc tgattgccgt tcacccggaa 540 aacgatccga aaggcgaagg catggcgatt gccaaagcct gggcggctgc aaccggtggt 600 caccgtgcgg gtgtgctgga atcgtccttc gttgcggaag tgaaatctga cctgatgggc 660 gagcaaacca tcctgtgcgg tatgttgcag gctggctctc tgctgtgctt cgacaagctg 720 gtggaagaag gtaccgatcc agcatacgca gaaaaactga ttcagttcgg ttgggaaacc 780 atcaccgaag cactgaaaca gggcggcatc accctgatga tggaccgtct ctctaacccg 840 gcgaaactgc gtgcttatgc gctttctgaa cagctgaaag agatcatggc acccctgttc 900 cagaaacata tggacgacat catctccggc gaattctctt ccggtatgat ggcggactgg 960 gccaacgatg ataagaaact gctgacctgg cgtgaagaga ccggcaaaac cgcgtttgaa 1020 accgcgccgc agtatgaagg caaaatcggc gagcaggagt acttcgataa aggcgtactg 1080 atgattgcga tggtgaaagc gggcgttgaa ctggcgttcg aaaccatggt cgattccggc 1140 atcattgaag agtctgcata ttatgaatca ctgcacgagc tgccgctgat tgccaacacc 1200 atcgcccgta agcgtctgta cgaaatgaac gtggttatct ctgataccgc tgagtacggt 1260 aactatctgt tctcttacgc ttgtgtgccg ttgctgaaac cgtttatggc agagctgcaa 1320 ccgggcgacc tgggtaaagc tattccggaa ggcgcggtag ataacgggca actgcgtgat 1380 gtgaacgaag cgattcgcag ccatgcgatt gagcaggtag gtaagaaact gcgcggctat 1440 atgacagata tgaaacgtat tgctgttgcg ggttaa 1476 <210> 77 <211> 376 <212> PRT <213> Saccharomyces cerevisiae <400> 77 Met Thr Leu Ala Pro Leu Asp Ala Ser Lys Val Lys Ile Thr Thr Thr 1 5 10 15 Gln His Ala Ser Lys Pro Lys Pro Asn Ser Glu Leu Val Phe Gly Lys 20 25 30 Ser Phe Thr Asp His Met Leu Thr Ala Glu Trp Thr Ala Glu Lys Gly 35 40 45 Trp Gly Thr Pro Glu Ile Lys Pro Tyr Gln Asn Leu Ser Leu Asp Pro 50 55 60 Ser Ala Val Val Phe His Tyr Ala Phe Glu Leu Phe Glu Gly Met Lys 65 70 75 80 Ala Tyr Arg Thr Val Asp Asn Lys Ile Thr Met Phe Arg Pro Asp Met 85 90 95 Asn Met Lys Arg Met Asn Lys Ser Ala Gln Arg Ile Cys Leu Pro Thr 100 105 110 Phe Asp Pro Glu Glu Leu Ile Thr Leu Ile Gly Lys Leu Ile Gln Gln 115 120 125 Asp Lys Cys Leu Val Pro Glu Gly Lys Gly Tyr Ser Leu Tyr Ile Arg 130 135 140 Pro Thr Leu Ile Gly Thr Thr Ala Gly Leu Gly Val Ser Thr Pro Asp 145 150 155 160 Arg Ala Leu Leu Tyr Val Ile Cys Cys Pro Val Gly Pro Tyr Tyr Lys 165 170 175 Thr Gly Phe Lys Ala Val Arg Leu Glu Ala Thr Asp Tyr Ala Thr Arg 180 185 190 Ala Trp Pro Gly Gly Cys Gly Asp Lys Lys Leu Gly Ala Asn Tyr Ala 195 200 205 Pro Cys Val Leu Pro Gln Leu Gln Ala Ala Ser Arg Gly Tyr Gln Gln 210 215 220 Asn Leu Trp Leu Phe Gly Pro Asn Asn Asn Ile Thr Glu Val Gly Thr 225 230 235 240 Met Asn Ala Phe Phe Val Phe Lys Asp Ser Lys Thr Gly Lys Lys Glu 245 250 255 Leu Val Thr Ala Pro Leu Asp Gly Thr Ile Leu Glu Gly Val Thr Arg 260 265 270 Asp Ser Ile Leu Asn Leu Ala Lys Glu Arg Leu Glu Pro Ser Glu Trp 275 280 285 Thr Ile Ser Glu Arg Tyr Phe Thr Ile Gly Glu Val Thr Glu Arg Ser 290 295 300 Lys Asn Gly Glu Leu Leu Glu Ala Phe Gly Ser Gly Thr Ala Ala Ile 305 310 315 320 Val Ser Pro Ile Lys Glu Ile Gly Trp Lys Gly Glu Gln Ile Asn Ile 325 330 335 Pro Leu Leu Pro Gly Glu Gln Thr Gly Pro Leu Ala Lys Glu Val Ala 340 345 350 Gln Trp Ile Asn Gly Ile Gln Tyr Gly Glu Thr Glu His Gly Asn Trp 355 360 365 Ser Arg Val Val Thr Asp Leu Asn 370 375 <210> 78 <211> 376 <212> PRT <213> Saccharomyces cerevisiae <400> 78 Met Thr Leu Ala Pro Leu Asp Ala Ser Lys Val Lys Ile Thr Thr Thr 1 5 10 15 Gln His Ala Ser Lys Pro Lys Pro Asn Ser Glu Leu Val Phe Gly Lys 20 25 30 Ser Phe Thr Asp His Met Leu Thr Ala Glu Trp Thr Ala Glu Lys Gly 35 40 45 Trp Gly Thr Pro Glu Ile Lys Pro Tyr Gln Asn Leu Ser Leu Asp Pro 50 55 60 Ser Ala Val Val Phe His Tyr Ala Phe Glu Leu Phe Glu Gly Met Lys 65 70 75 80 Ala Tyr Arg Thr Val Asp Asn Lys Ile Thr Met Phe Arg Pro Asp Met 85 90 95 Asn Met Lys Arg Met Asn Lys Ser Ala Gln Arg Ile Cys Leu Pro Thr 100 105 110 Phe Asp Pro Glu Glu Leu Ile Thr Leu Ile Gly Lys Leu Ile Gln Gln 115 120 125 Asp Lys Cys Leu Val Pro Glu Gly Lys Gly Tyr Ser Leu Tyr Ile Arg 130 135 140 Pro Thr Leu Ile Gly Thr Thr Ala Gly Leu Gly Val Ser Thr Pro Asp 145 150 155 160 Arg Ala Leu Leu Tyr Val Ile Cys Cys Pro Val Gly Pro Tyr Tyr Lys 165 170 175 Thr Gly Phe Lys Ala Val Arg Leu Glu Ala Thr Asp Tyr Ala Thr Arg 180 185 190 Ala Trp Pro Gly Gly Cys Gly Asp Lys Lys Leu Gly Ala Asn Tyr Ala 195 200 205 Pro Cys Val Leu Pro Gln Leu Gln Ala Ala Ser Arg Gly Tyr Gln Gln 210 215 220 Asn Leu Trp Leu Phe Gly Pro Asn Asn Asn Ile Thr Glu Val Gly Thr 225 230 235 240 Met Asn Ala Phe Phe Val Phe Lys Asp Ser Lys Thr Gly Lys Lys Glu 245 250 255 Leu Val Thr Ala Pro Leu Asp Gly Thr Ile Leu Glu Gly Val Thr Arg 260 265 270 Asp Ser Ile Leu Asn Leu Ala Lys Glu Arg Leu Glu Pro Ser Glu Trp 275 280 285 Thr Ile Ser Glu Arg Tyr Phe Thr Ile Gly Glu Val Thr Glu Arg Ser 290 295 300 Lys Asn Gly Glu Leu Leu Glu Ala Phe Gly Ser Gly Thr Ala Ala Ile 305 310 315 320 Val Ser Pro Ile Lys Glu Ile Gly Trp Lys Gly Glu Gln Ile Asn Ile 325 330 335 Pro Leu Leu Pro Gly Glu Gln Thr Gly Pro Leu Ala Lys Glu Val Ala 340 345 350 Gln Trp Ile Asn Gly Ile Gln Tyr Gly Glu Thr Glu His Gly Asn Trp 355 360 365 Ser Arg Val Val Thr Asp Leu Asn 370 375 <210> 79 <211> 330 <212> PRT <213> Methanobacterium thermoautotrophicum <400> 79 Met Arg Leu Trp Arg Ala Leu Tyr Arg Pro Pro Thr Ile Thr Tyr Pro 1 5 10 15 Ser Lys Ser Pro Glu Val Ile Ile Met Ser Cys Glu Ala Ser Gly Lys 20 25 30 Ile Trp Leu Asn Gly Glu Met Val Glu Trp Glu Glu Ala Thr Val His 35 40 45 Val Leu Ser His Val Val His Tyr Gly Ser Ser Val Phe Glu Gly Ile 50 55 60 Arg Cys Tyr Arg Asn Ser Lys Gly Ser Ala Ile Phe Arg Leu Arg Glu 65 70 75 80 His Val Lys Arg Leu Phe Asp Ser Ala Lys Ile Tyr Arg Met Asp Ile 85 90 95 Pro Tyr Thr Gln Glu Gln Ile Cys Asp Ala Ile Val Glu Thr Val Arg 100 105 110 Glu Asn Gly Leu Glu Glu Cys Tyr Ile Arg Pro Val Val Phe Arg Gly 115 120 125 Tyr Gly Glu Met Gly Val His Pro Val Asn Cys Pro Val Asp Val Ala 130 135 140 Val Ala Ala Trp Glu Trp Gly Ala Tyr Leu Gly Ala Glu Ala Leu Glu 145 150 155 160 Val Gly Val Asp Ala Gly Val Ser Thr Trp Arg Arg Met Ala Pro Asn 165 170 175 Thr Met Pro Asn Met Ala Lys Ala Gly Gly Asn Tyr Leu Asn Ser Gln 180 185 190 Leu Ala Lys Met Glu Ala Val Arg His Gly Tyr Asp Glu Ala Ile Met 195 200 205 Leu Asp Tyr His Gly Tyr Ile Ser Glu Gly Ser Gly Glu Asn Ile Phe 210 215 220 Leu Val Ser Glu Gly Glu Ile Tyr Thr Pro Pro Val Ser Ser Ser Leu 225 230 235 240 Leu Arg Gly Ile Thr Arg Asp Ser Val Ile Lys Ile Ala Arg Thr Glu 245 250 255 Gly Val Thr Val His Glu Glu Pro Ile Thr Arg Glu Met Leu Tyr Ile 260 265 270 Ala Asp Glu Ala Phe Phe Thr Gly Thr Ala Ala Glu Ile Thr Pro Ile 275 280 285 Arg Ser Val Asp Gly Ile Glu Ile Gly Ala Gly Arg Arg Gly Pro Val 290 295 300 Thr Lys Leu Leu Gln Asp Glu Phe Phe Arg Ile Ile Arg Ala Glu Thr 305 310 315 320 Glu Asp Ser Phe Gly Trp Leu Thr Tyr Ile 325 330 <210> 80 <211> 993 <212> DNA <213> Methanobacterium thermoautotrophicum <400> 80 tcagatgtag gtgagccatc cgaagctgtc ctctgtctct gccctgatta tcctgaagaa 60 ctcatcctgc agcagctttg taacgggacc ccttcgcccg gcacctatct ctataccatc 120 aactgatctg atgggtgtta tctctgcggc tgtacctgtg aagaaggcct catctgcgat 180 gtagagcatc tccctggtta tgggttcctc atgcacggta acaccctcgg tcctggctat 240 ctttattacg gagtcccttg ttatccccct cagaagggat gatgaaacag ggggggtgta 300 aatttcaccc tcactgacga ggaatatgtt ctccccgcta ccctcactta tgtagccatg 360 gtagtccagc attatggcct catcatagcc gtgtctcaca gcctccatct tggcaagctg 420 tgagttgagg tagttaccgc cggcctttgc catgttgggc attgtgtttg gtgccatcct 480 ccgccaggtt gaaacaccag catcgacacc aacctcaagg gcctctgcac ccagataggc 540 cccccattcc caggcagcca cagcgacgtc cactgggcag ttcaccgggt gaacacccat 600 ctcaccgtat cccctgaata ccacgggtct tatatagcac tcctcaagtc cgttctccct 660 gacggtctca actatggcat cacatatctg ctcctgggtg tagggtatgt ccatccggta 720 tatctttgca gaatcaaaaa ggcgtttaac atgctcccgc aaacggaaga tggctgaccc 780 cttactgttc ctgtagcacc ttattccctc aaagacagat gatccataat gcacaacatg 840 tgagagtacg tggacggtgg cttcttccca ttcaaccatt tcaccgttta accatatctt 900 tccactggct tcgcatgaca tgataataac ctcaggtgat ttactaggat aggttatggt 960 tggaggccta tataatgctc tccataaccg caa 993 <210> 81 <211> 364 <212> PRT <213> Streptomyces coelicolor <400> 81 Met Thr Asp Val Asn Gly Ala Pro Ala Asp Val Leu His Thr Leu Phe 1 5 10 15 His Ser Asp Gln Gly Gly His Glu Gln Val Val Leu Cys Gln Asp Arg 20 25 30 Ala Ser Gly Leu Lys Ala Val Ile Ala Leu His Ser Thr Ala Leu Gly 35 40 45 Pro Ala Leu Gly Gly Thr Arg Phe Tyr Pro Tyr Ala Ser Glu Ala Glu 50 55 60 Ala Val Ala Asp Ala Leu Asn Leu Ala Arg Gly Met Ser Tyr Lys Asn 65 70 75 80 Ala Met Ala Gly Leu Asp His Gly Gly Gly Lys Ala Val Ile Ile Gly 85 90 95 Asp Pro Glu Gln Ile Lys Ser Glu Glu Leu Leu Leu Ala Tyr Gly Arg 100 105 110 Phe Val Ala Ser Leu Gly Gly Arg Tyr Val Thr Ala Cys Asp Val Gly 115 120 125 Thr Tyr Val Ala Asp Met Asp Val Val Ala Arg Glu Cys Arg Trp Thr 130 135 140 Thr Gly Arg Ser Pro Glu Asn Gly Gly Ala Gly Asp Ser Ser Val Leu 145 150 155 160 Thr Ser Phe Gly Val Tyr Gln Gly Met Arg Ala Ala Ala Gln His Leu 165 170 175 Trp Gly Asp Pro Thr Leu Arg Asp Arg Thr Val Gly Ile Ala Gly Val 180 185 190 Gly Lys Val Gly His His Leu Val Glu His Leu Leu Ala Glu Gly Ala 195 200 205 His Val Val Val Thr Asp Val Arg Lys Asp Val Val Arg Gly Ile Thr 210 215 220 Glu Arg His Pro Ser Val Val Ala Val Ala Asp Thr Asp Ala Leu Ile 225 230 235 240 Arg Val Glu Asn Leu Asp Ile Tyr Ala Pro Cys Ala Leu Gly Gly Ala 245 250 255 Leu Asn Asp Asp Thr Val Pro Val Leu Thr Ala Lys Val Val Cys Gly 260 265 270 Ala Ala Asn Asn Gln Leu Ala His Pro Gly Val Glu Lys Asp Leu Ala 275 280 285 Asp Arg Gly Ile Leu Tyr Ala Pro Asp Tyr Val Val Asn Ala Gly Gly 290 295 300 Val Ile Gln Val Ala Asp Glu Leu His Gly Phe Asp Phe Asp Arg Cys 305 310 315 320 Lys Ala Lys Ala Ser Lys Ile Tyr Asp Thr Thr Leu Ala Ile Phe Ala 325 330 335 Arg Ala Lys Glu Asp Gly Ile Pro Pro Ala Ala Ala Ala Asp Arg Ile 340 345 350 Ala Glu Gln Arg Met Ala Glu Ala Arg Pro Arg Pro 355 360 <210> 82 <211> 1095 <212> DNA <213> Streptomyces coelicolor <400> 82 tcacggccgg ggacgggcct ccgccatccg ctgctcggcg atccggtcgg ccgccgcggc 60 cggcggaata ccgtcctcct tcgcacgtgc gaatatggcc agcgtggtgt cgtagatctt 120 cgaggccttc gccttgcacc ggtcgaagtc gaacccgtgc agctcgtcgg cgacctggat 180 gacaccgccg gcgttcacca catagtccgg cgcgtagagg atcccgcggt cggcgaggtc 240 cttctcgacg cccgggtggg cgagctggtt gttggccgcg ccgcacacca ccttggcggt 300 cagcaccggc acggtgtcgt cgttcagcgc gccgccgagc gcgcagggcg cgtagatgtc 360 caggttctcc acccggatca gcgcgtcggt gtcggcgacg gcgaccaccg acgggtgccg 420 ctccgtgatc ccgcgcacca cgtccttgcg cacgtccgtg acgacgacgt gggcgccctc 480 ggcgagcagg tgctcgacca ggtggtggcc gaccttgccg acgcccgcga tgccgacggt 540 gcggtcgcgc agcgtcgggt cgccccacag gtgctgggcg gcggcccgca tgccctggta 600 gacgccgaag gaggtgagca cggaggagtc gcccgcgccg ccgttctccg gggaacgccc 660 ggtcgtccag cggcactcgc gggccacgac gtccatgtcg gcgacgtagg tgccgacgtc 720 gcacgcggtg acgtagcggc cgcccagcga ggcgacgaac cggccgtagg cgaggagcag 780 ctcctcgctc ttgatctgct ccggatcgcc gatgatcacg gccttgccgc caccgtggtc 840 cagaccggcc atggcgttct tgtacgacat cccgcgggcg aggttcagcg cgtcggcgac 900 ggcctccgcc tcgctcgcgt acgggtagaa gcgggtaccg ccgagcgccg ggcccagggc 960 ggtggagtgg agggcgatca cggccttgag gccgctggca cggtcctggc agagcacgac 1020 ttgctcatgt cccccctgat ccgagtggaa cagggtgtgc agtacatcag caggtgcgcc 1080 gtttacgtcg gtcac 1095 <210> 83 <211> 364 <212> PRT <213> Bacillus subtilis <400> 83 Met Glu Leu Phe Lys Tyr Met Glu Lys Tyr Asp Tyr Glu Gln Leu Val 1 5 10 15 Phe Cys Gln Asp Glu Gln Ser Gly Leu Lys Ala Ile Ile Ala Ile His 20 25 30 Asp Thr Thr Leu Gly Pro Ala Leu Gly Gly Thr Arg Met Trp Thr Tyr 35 40 45 Glu Asn Glu Glu Ala Ala Ile Glu Asp Ala Leu Arg Leu Ala Arg Gly 50 55 60 Met Thr Tyr Lys Asn Ala Ala Ala Gly Leu Asn Leu Gly Gly Gly Lys 65 70 75 80 Thr Val Ile Ile Gly Asp Pro Arg Lys Asp Lys Asn Glu Glu Met Phe 85 90 95 Arg Ala Phe Gly Arg Tyr Ile Gln Gly Leu Asn Gly Arg Tyr Ile Thr 100 105 110 Ala Glu Asp Val Gly Thr Thr Val Glu Asp Met Asp Ile Ile His Asp 115 120 125 Glu Thr Asp Tyr Val Thr Gly Ile Ser Pro Ala Phe Gly Ser Ser Gly 130 135 140 Asn Pro Ser Pro Val Thr Ala Tyr Gly Val Tyr Arg Gly Met Lys Ala 145 150 155 160 Ala Ala Lys Ala Ala Phe Gly Thr Asp Ser Leu Glu Gly Lys Thr Ile 165 170 175 Ala Val Gln Gly Val Gly Asn Val Ala Tyr Asn Leu Cys Arg His Leu 180 185 190 His Glu Glu Gly Ala Asn Leu Ile Val Thr Asp Ile Asn Lys Gln Ser 195 200 205 Val Gln Arg Ala Val Glu Asp Phe Gly Ala Arg Ala Val Asp Pro Asp 210 215 220 Asp Ile Tyr Ser Gln Asp Cys Asp Ile Tyr Ala Pro Cys Ala Leu Gly 225 230 235 240 Ala Thr Ile Asn Asp Asp Thr Ile Lys Gln Leu Lys Ala Lys Val Ile 245 250 255 Ala Gly Ala Ala Asn Asn Gln Leu Lys Glu Thr Arg His Gly Asp Gln 260 265 270 Ile His Glu Met Gly Ile Val Tyr Ala Pro Asp Tyr Val Ile Asn Ala 275 280 285 Gly Gly Val Ile Asn Val Ala Asp Glu Leu Tyr Gly Tyr Asn Ala Glu 290 295 300 Arg Ala Leu Lys Lys Val Glu Gly Ile Tyr Gly Asn Ile Glu Arg Val 305 310 315 320 Leu Glu Ile Ser Gln Arg Asp Gly Ile Pro Ala Tyr Leu Ala Ala Asp 325 330 335 Arg Leu Ala Glu Glu Arg Ile Glu Arg Met Arg Arg Ser Arg Ser Gln 340 345 350 Phe Leu Gln Asn Gly His Ser Val Leu Ser Arg Arg 355 360 <210> 84 <211> 364 <212> PRT <213> Bacillus subtilis <400> 84 Met Glu Leu Phe Lys Tyr Met Glu Lys Tyr Asp Tyr Glu Gln Leu Val 1 5 10 15 Phe Cys Gln Asp Glu Gln Ser Gly Leu Lys Ala Ile Ile Ala Ile His 20 25 30 Asp Thr Thr Leu Gly Pro Ala Leu Gly Gly Thr Arg Met Trp Thr Tyr 35 40 45 Glu Asn Glu Glu Ala Ala Ile Glu Asp Ala Leu Arg Leu Ala Arg Gly 50 55 60 Met Thr Tyr Lys Asn Ala Ala Ala Gly Leu Asn Leu Gly Gly Gly Lys 65 70 75 80 Thr Val Ile Ile Gly Asp Pro Arg Lys Asp Lys Asn Glu Glu Met Phe 85 90 95 Arg Ala Phe Gly Arg Tyr Ile Gln Gly Leu Asn Gly Arg Tyr Ile Thr 100 105 110 Ala Glu Asp Val Gly Thr Thr Val Glu Asp Met Asp Ile Ile His Asp 115 120 125 Glu Thr Asp Tyr Val Thr Gly Ile Ser Pro Ala Phe Gly Ser Ser Gly 130 135 140 Asn Pro Ser Pro Val Thr Ala Tyr Gly Val Tyr Arg Gly Met Lys Ala 145 150 155 160 Ala Ala Lys Ala Ala Phe Gly Thr Asp Ser Leu Glu Gly Lys Thr Ile 165 170 175 Ala Val Gln Gly Val Gly Asn Val Ala Tyr Asn Leu Cys Arg His Leu 180 185 190 His Glu Glu Gly Ala Asn Leu Ile Val Thr Asp Ile Asn Lys Gln Ser 195 200 205 Val Gln Arg Ala Val Glu Asp Phe Gly Ala Arg Ala Val Asp Pro Asp 210 215 220 Asp Ile Tyr Ser Gln Asp Cys Asp Ile Tyr Ala Pro Cys Ala Leu Gly 225 230 235 240 Ala Thr Ile Asn Asp Asp Thr Ile Lys Gln Leu Lys Ala Lys Val Ile 245 250 255 Ala Gly Ala Ala Asn Asn Gln Leu Lys Glu Thr Arg His Gly Asp Gln 260 265 270 Ile His Glu Met Gly Ile Val Tyr Ala Pro Asp Tyr Val Ile Asn Ala 275 280 285 Gly Gly Val Ile Asn Val Ala Asp Glu Leu Tyr Gly Tyr Asn Ala Glu 290 295 300 Arg Ala Leu Lys Lys Val Glu Gly Ile Tyr Gly Asn Ile Glu Arg Val 305 310 315 320 Leu Glu Ile Ser Gln Arg Asp Gly Ile Pro Ala Tyr Leu Ala Ala Asp 325 330 335 Arg Leu Ala Glu Glu Arg Ile Glu Arg Met Arg Arg Ser Arg Ser Gln 340 345 350 Phe Leu Gln Asn Gly His Ser Val Leu Ser Arg Arg 355 360 <210> 85 <211> 594 <212> PRT <213> Streptomyces viridifaciens <400> 85 Met Ser Thr Ser Ser Ala Ser Ser Gly Pro Asp Leu Pro Phe Gly Pro 1 5 10 15 Glu Asp Thr Pro Trp Gln Lys Ala Phe Ser Arg Leu Arg Ala Val Asp 20 25 30 Gly Val Pro Arg Val Thr Ala Pro Ser Ser Asp Pro Arg Glu Val Tyr 35 40 45 Met Asp Ile Pro Glu Ile Pro Phe Ser Lys Val Gln Ile Pro Pro Asp 50 55 60 Gly Met Asp Glu Gln Gln Tyr Ala Glu Ala Glu Ser Leu Phe Arg Arg 65 70 75 80 Tyr Val Asp Ala Gln Thr Arg Asn Phe Ala Gly Tyr Gln Val Thr Ser 85 90 95 Asp Leu Asp Tyr Gln His Leu Ser His Tyr Leu Asn Arg His Leu Asn 100 105 110 Asn Val Gly Asp Pro Tyr Glu Ser Ser Ser Tyr Thr Leu Asn Ser Lys 115 120 125 Val Leu Glu Arg Ala Val Leu Asp Tyr Phe Ala Ser Leu Trp Asn Ala 130 135 140 Lys Trp Pro His Asp Ala Ser Asp Pro Glu Thr Tyr Trp Gly Tyr Val 145 150 155 160 Leu Thr Met Gly Ser Ser Glu Gly Asn Leu Tyr Gly Leu Trp Asn Ala 165 170 175 Arg Asp Tyr Leu Ser Gly Lys Leu Leu Arg Arg Gln His Arg Glu Ala 180 185 190 Gly Gly Asp Lys Ala Ser Val Val Tyr Thr Gln Ala Leu Arg His Glu 195 200 205 Gly Gln Ser Pro His Ala Tyr Glu Pro Val Ala Phe Phe Ser Gln Asp 210 215 220 Thr His Tyr Ser Leu Thr Lys Ala Val Arg Val Leu Gly Ile Asp Thr 225 230 235 240 Phe His Ser Ile Gly Ser Ser Arg Tyr Pro Asp Glu Asn Pro Leu Gly 245 250 255 Pro Gly Thr Pro Trp Pro Thr Glu Val Pro Ser Val Asp Gly Ala Ile 260 265 270 Asp Val Asp Lys Leu Ala Ser Leu Val Arg Phe Phe Ala Ser Lys Gly 275 280 285 Tyr Pro Ile Leu Val Ser Leu Asn Tyr Gly Ser Thr Phe Lys Gly Ala 290 295 300 Tyr Asp Asp Val Pro Ala Val Ala Gln Ala Val Arg Asp Ile Cys Thr 305 310 315 320 Glu Tyr Gly Leu Asp Arg Arg Arg Val Tyr His Asp Arg Ser Lys Asp 325 330 335 Ser Asp Phe Asp Glu Arg Ser Gly Phe Trp Ile His Ile Asp Ala Ala 340 345 350 Leu Gly Ala Gly Tyr Ala Pro Tyr Leu Gln Met Ala Arg Asp Ala Gly 355 360 365 Met Val Glu Glu Ala Pro Pro Val Phe Asp Phe Arg Leu Pro Glu Val 370 375 380 His Ser Leu Thr Met Ser Gly His Lys Trp Met Gly Thr Pro Trp Ala 385 390 395 400 Cys Gly Val Tyr Met Thr Arg Thr Gly Leu Gln Met Thr Pro Pro Lys 405 410 415 Ser Ser Glu Tyr Ile Gly Ala Ala Asp Thr Thr Phe Ala Gly Ser Arg 420 425 430 Asn Gly Phe Ser Ser Leu Leu Leu Trp Asp Tyr Leu Ser Arg His Ser 435 440 445 Tyr Asp Asp Leu Val Arg Leu Ala Ala Asp Cys Asp Arg Leu Ala Gly 450 455 460 Tyr Ala His Asp Arg Leu Leu Thr Leu Gln Asp Lys Leu Gly Met Asp 465 470 475 480 Leu Trp Val Ala Arg Ser Pro Gln Ser Leu Thr Val Arg Phe Arg Gln 485 490 495 Pro Cys Ala Asp Ile Val Arg Lys Tyr Ser Leu Ser Cys Glu Thr Val 500 505 510 Tyr Glu Asp Asn Glu Gln Arg Thr Tyr Val His Leu Tyr Ala Val Pro 515 520 525 His Leu Thr Arg Glu Leu Val Asp Glu Leu Val Arg Asp Leu Arg Gln 530 535 540 Pro Gly Ala Phe Thr Asn Ala Gly Ala Leu Glu Gly Glu Ala Trp Ala 545 550 555 560 Gly Val Ile Asp Ala Leu Gly Arg Pro Asp Pro Asp Gly Thr Tyr Ala 565 570 575 Gly Ala Leu Ser Ala Pro Ala Ser Gly Pro Arg Ser Glu Asp Gly Gly 580 585 590 Gly Ser <210> 86 <211> 1785 <212> DNA <213> Streptomyces viridifaciens <400> 86 gtgtcaactt cctccgcttc ttccgggccg gacctcccct tcgggcccga ggacacgcca 60 tggcagaagg ccttcagcag gctgcgggcg gtggatggcg tgccgcgcgt caccgcgccg 120 tccagtgatc cgcgtgaggt ctacatggac atcccggaga tccccttctc caaggtccag 180 atccccccgg acggaatgga cgagcagcag tacgcagagg ccgagagcct cttccgccgc 240 tacgtagacg cccagacccg caacttcgcg ggataccagg tcaccagcga cctcgactac 300 cagcacctca gtcactatct caaccggcat ctgaacaacg tcggcgatcc ctatgagtcc 360 agctcctaca cgctgaactc caaggtcctt gagcgagccg ttctcgacta cttcgcctcc 420 ctgtggaacg ccaagtggcc ccatgacgca agcgatccgg aaacgtactg gggttacgtg 480 ctgaccatgg gctccagcga aggcaacctg tacgggttgt ggaacgcacg ggactatctg 540 tcgggcaagc tgctgcggcg ccagcaccgg gaggccggcg gcgacaaggc ctcggtcgtc 600 tacacgcaag cgctgcgaca cgaagggcag agtccgcatg cctacgagcc ggtggcgttc 660 ttctcgcagg acacgcacta ctcgctcacg aaggccgtgc gggttctggg catcgacacc 720 ttccacagca tcggcagcag tcggtatccg gacgagaacc cgctgggccc cggcactccg 780 tggccgaccg aagtgccctc ggttgacggt gccatcgatg tcgacaaact cgcctcgttg 840 gtccgcttct tcgccagcaa gggctacccg atactggtca gcctcaacta cgggtcaacg 900 ttcaagggcg cctacgacga cgtcccggcc gtggcacagg ccgtgcggga catctgcacg 960 gaatacggtc tggatcggcg gcgggtatac cacgaccgca gtaaggacag tgacttcgac 1020 gagcgcagcg gcttctggat ccacatcgat gccgccctgg gggcgggcta cgctccctac 1080 ctgcagatgg cccgggatgc cggcatggtc gaggaggcgc cgcccgtttt cgacttccgg 1140 ctcccggagg tgcactcgct gaccatgagc ggccacaagt ggatgggaac accgtgggca 1200 tgcggtgtct acatgacacg gaccgggctg cagatgaccc cgccgaagtc gtccgagtac 1260 atcggggcgg ccgacaccac cttcgcgggc tcccgcaacg gcttctcgtc actgctgctg 1320 tgggactacc tgtcccggca ttcgtatgac gatctggtgc gcctggccgc cgactgcgac 1380 cggctggccg gctacgccca cgaccggttg ctgaccttgc aggacaaact cggcatggat 1440 ctgtgggtcg cccgcagccc gcagtccctc acggtgcgct tccgtcagcc atgtgcagac 1500 atcgtccgca agtactcgct gtcgtgtgag acggtctacg aagacaacga gcaacggacc 1560 tacgtacatc tctacgccgt tccccacctc actcgggaac tcgtggatga gctcgtgcgc 1620 gatctgcgcc agcccggagc cttcaccaac gctggtgcac tggaggggga ggcctgggcc 1680 ggggtgatcg atgccctcgg ccgcccggac cccgacggaa cctatgccgg cgccttgagc 1740 gctccggctt ccggcccccg ctccgaggac ggcggcggga gctga 1785 <210> 87 <211> 440 <212> PRT <213> Alcaligenes denitrificans <400> 87 Met Ser Ala Ala Lys Leu Pro Asp Leu Ser His Leu Trp Met Pro Phe 1 5 10 15 Thr Ala Asn Arg Gln Phe Lys Ala Asn Pro Arg Leu Leu Ala Ser Ala 20 25 30 Lys Gly Met Tyr Tyr Thr Ser Phe Asp Gly Arg Gln Ile Leu Asp Gly 35 40 45 Thr Ala Gly Leu Trp Cys Val Asn Ala Gly His Cys Arg Glu Glu Ile 50 55 60 Val Ser Ala Ile Ala Ser Gln Ala Gly Val Met Asp Tyr Ala Pro Gly 65 70 75 80 Phe Gln Leu Gly His Pro Leu Ala Phe Glu Ala Ala Thr Ala Val Ala 85 90 95 Gly Leu Met Pro Gln Gly Leu Asp Arg Val Phe Phe Thr Asn Ser Gly 100 105 110 Ser Glu Ser Val Asp Thr Ala Leu Lys Ile Ala Leu Ala Tyr His Arg 115 120 125 Ala Arg Gly Glu Ala Gln Arg Thr Arg Leu Ile Gly Arg Glu Arg Gly 130 135 140 Tyr His Gly Val Gly Phe Gly Gly Ile Ser Val Gly Gly Ile Ser Pro 145 150 155 160 Asn Arg Lys Thr Phe Ser Gly Ala Leu Leu Pro Ala Val Asp His Leu 165 170 175 Pro His Thr His Ser Leu Glu His Asn Ala Phe Thr Arg Gly Gln Pro 180 185 190 Glu Trp Gly Ala His Leu Ala Asp Glu Leu Glu Arg Ile Ile Ala Leu 195 200 205 His Asp Ala Ser Thr Ile Ala Ala Val Ile Val Glu Pro Met Ala Gly 210 215 220 Ser Thr Gly Val Leu Val Pro Pro Lys Gly Tyr Leu Glu Lys Leu Arg 225 230 235 240 Glu Ile Thr Ala Arg His Gly Ile Leu Leu Ile Phe Asp Glu Val Ile 245 250 255 Thr Ala Tyr Gly Arg Leu Gly Glu Ala Thr Ala Ala Ala Tyr Phe Gly 260 265 270 Val Thr Pro Asp Leu Ile Thr Met Ala Lys Gly Val Ser Asn Ala Ala 275 280 285 Val Pro Ala Gly Ala Val Ala Val Arg Arg Glu Val His Asp Ala Ile 290 295 300 Val Asn Gly Pro Gln Gly Gly Ile Glu Phe Phe His Gly Tyr Thr Tyr 305 310 315 320 Ser Ala His Pro Leu Ala Ala Ala Ala Val Leu Ala Thr Leu Asp Ile 325 330 335 Tyr Arg Arg Glu Asp Leu Phe Ala Arg Ala Arg Lys Leu Ser Ala Ala 340 345 350 Phe Glu Glu Ala Ala His Ser Leu Lys Gly Ala Pro His Val Ile Asp 355 360 365 Val Arg Asn Ile Gly Leu Val Ala Gly Ile Glu Leu Ser Pro Arg Glu 370 375 380 Gly Ala Pro Gly Ala Arg Ala Ala Glu Ala Phe Gln Lys Cys Phe Asp 385 390 395 400 Thr Gly Leu Met Val Arg Tyr Thr Gly Asp Ile Leu Ala Val Ser Pro 405 410 415 Pro Leu Ile Val Asp Glu Asn Gln Ile Gly Gln Ile Phe Glu Gly Ile 420 425 430 Gly Lys Val Leu Lys Glu Val Ala 435 440 <210> 88 <211> 1947 <212> DNA <213> Alcaligenes denitrificans <400> 88 ttcgatggcg cgctgcacgg cggccaccag ctgctccacc aggggtgggc gcctgcccgc 60 gcgcgcggtc gggctggaaa tcgatcatgg atgaatctat acagttgtca tgattgcaac 120 tatacagtta gcccgttttg cggcaattgt atattttcat tcgctcgtgg acgtccgaga 180 atcggtttga tcgcgccgcc cgcccctttc cgcgcagcgg cgtttctttt cctccggagt 240 ctccccatga gcgctgccaa actgcccgac ctgtcccacc tctggatgcc ctttaccgcc 300 aaccggcagt tcaaggcgaa cccccgcctg ctggcctcgg ccaagggcat gtactacacg 360 tctttcgacg gccgccagat cctggacggc acggccggcc tgtggtgcgt gaacgccggc 420 cactgccgcg aagaaatcgt ctccgccatc gccagccagg ccggcgtcat ggactacgcg 480 ccggggttcc agctcggcca cccgctggcc ttcgaggccg ccaccgccgt ggccggcctg 540 atgccgcagg gcctggaccg cgtgttcttc accaattcgg gctccgaatc ggtggacacc 600 gcgctgaaga tcgccctggc ctaccaccgc gcgcgcggcg aggcgcagcg cacccgcctc 660 atcgggcgcg agcgcggcta ccacggcgtg ggcttcggcg gcatttccgt gggcggcatc 720 tcgcccaacc gcaagacctt ctccggcgcg ctgctgccgg ccgtggacca cctgccgcac 780 acccacagcc tggaacacaa cgccttcacg cgcggccagc ccgagtgggg cgcgcacctg 840 gccgacgagt tggaacgcat catcgccctg cacgacgcct ccaccatcgc ggccgtgatc 900 gtcgagccca tggccggctc caccggcgtg ctcgtcccgc ccaagggcta tctcgaaaaa 960 ctgcgcgaaa tcaccgcccg ccacggcatt ctgctgatct tcgacgaagt catcaccgcg 1020 tacggccgcc tgggcgaggc caccgccgcg gcctatttcg gcgtaacgcc cgacctcatc 1080 accatggcca agggcgtgag caacgccgcc gttccggccg gcgccgtcgc ggtgcgccgc 1140 gaagtgcatg acgccatcgt caacggaccg caaggcggca tcgagttctt ccacggctac 1200 acctactcgg cccacccgct ggccgccgcc gccgtgctcg ccacgctgga catctaccgc 1260 cgcgaagacc tgttcgcccg cgcccgcaag ctgtcggccg cgttcgagga agccgcccac 1320 agcctcaagg gcgcgccgca cgtcatcgac gtgcgcaaca tcggcctggt ggccggcatc 1380 gagctgtcgc cgcgcgaagg cgccccgggc gcgcgcgccg ccgaagcctt ccagaaatgc 1440 ttcgacaccg gcctcatggt gcgctacacg ggcgacatcc tcgcggtgtc gcctccgctc 1500 atcgtcgacg aaaaccagat cggccagatc ttcgagggca tcggcaaggt gctcaaggaa 1560 gtggcttagg gtgaacacgc cctgagccgg ccccggcagg aaacgcgccg ccgcgcggcg 1620 gcgcgtccat cgaactcccg catcgagctt ttgcattcat gaagaaaatc acgcatttca 1680 tcaacggcca gccccacgaa ggccgcagca accgctacac cgagggcttc aacccggcca 1740 cgggcgagtc gtctcctcga tctgcctggg cggggccgaa gaagtggacc tggccgtggc 1800 ggccgcccgc gcggcctttc ccgcctggtc cgaaacgccg gcgctcaagc gcgcgcgcgt 1860 gctgttcaac ttcaaggcgc tgctggacaa gcaccaggac gagctggccg cgctcatcac 1920 gcgcgagcac ggcaaggtgt tttccga 1947 <210> 89 <211> 443 <212> PRT <213> Ralstonia eutropha <400> 89 Met Asp Ala Ala Lys Thr Val Ile Pro Asp Leu Asp Ala Leu Trp Met 1 5 10 15 Pro Phe Thr Ala Asn Arg Gln Tyr Lys Ala Ala Pro Arg Leu Leu Ala 20 25 30 Ser Ala Ser Gly Met Tyr Tyr Thr Thr His Asp Gly Arg Gln Ile Leu 35 40 45 Asp Gly Cys Ala Gly Leu Trp Cys Val Ala Ala Gly His Cys Arg Lys 50 55 60 Glu Ile Ala Glu Ala Val Ala Arg Gln Ala Ala Thr Leu Asp Tyr Ala 65 70 75 80 Pro Pro Phe Gln Met Gly His Pro Leu Ser Phe Glu Ala Ala Thr Lys 85 90 95 Val Ala Ala Ile Met Pro Gln Gly Leu Asp Arg Ile Phe Phe Thr Asn 100 105 110 Ser Gly Ser Glu Ser Val Asp Thr Ala Leu Lys Ile Ala Leu Ala Tyr 115 120 125 His Arg Ala Arg Gly Glu Gly Gln Arg Thr Arg Phe Ile Gly Arg Glu 130 135 140 Arg Gly Tyr His Gly Val Gly Phe Gly Gly Met Ala Val Gly Gly Ile 145 150 155 160 Gly Pro Asn Arg Lys Ala Phe Ser Ala Asn Leu Met Pro Gly Thr Asp 165 170 175 His Leu Pro Ala Thr Leu Asn Ile Ala Glu Ala Ala Phe Ser Lys Gly 180 185 190 Gln Pro Thr Trp Gly Ala His Leu Ala Asp Glu Leu Glu Arg Ile Val 195 200 205 Ala Leu His Asp Pro Ser Thr Ile Ala Ala Val Ile Val Glu Pro Leu 210 215 220 Ala Gly Ser Ala Gly Val Leu Val Pro Pro Val Gly Tyr Leu Asp Lys 225 230 235 240 Leu Arg Glu Ile Thr Thr Lys His Gly Ile Leu Leu Ile Phe Asp Glu 245 250 255 Val Ile Thr Ala Phe Gly Arg Leu Gly Thr Ala Thr Ala Ala Glu Arg 260 265 270 Phe Lys Val Thr Pro Asp Leu Ile Thr Met Ala Lys Ala Ile Asn Asn 275 280 285 Ala Ala Val Pro Met Gly Ala Val Ala Val Arg Arg Glu Val His Asp 290 295 300 Thr Val Val Asn Ser Ala Ala Pro Gly Ala Ile Glu Leu Ala His Gly 305 310 315 320 Tyr Thr Tyr Ser Gly His Pro Leu Ala Ala Ala Ala Ala Ile Ala Thr 325 330 335 Leu Asp Leu Tyr Gln Arg Glu Asn Leu Phe Gly Arg Ala Ala Glu Leu 340 345 350 Ser Pro Val Phe Glu Ala Ala Val His Ser Val Arg Ser Ala Pro His 355 360 365 Val Lys Asp Ile Arg Asn Leu Gly Met Val Ala Gly Ile Glu Leu Glu 370 375 380 Pro Arg Pro Gly Gln Pro Gly Ala Arg Ala Tyr Glu Ala Phe Leu Lys 385 390 395 400 Cys Leu Glu Arg Gly Val Leu Val Arg Tyr Thr Gly Asp Ile Leu Ala 405 410 415 Phe Ser Pro Pro Leu Ile Ile Ser Glu Ala Gln Ile Ala Glu Leu Phe 420 425 430 Asp Thr Val Lys Gln Ala Leu Gln Glu Val Gln 435 440 <210> 90 <211> 1341 <212> DNA <213> Ralstonia eutropha <400> 90 atggccgact cacccaacaa cctcgctcac gaacatcctt cacttgaaca ctattggatg 60 ccttttaccg ccaatcgcca attcaaagcg agccctcgtt tactcgccca agctgaaggt 120 atgtattaca cagatatcaa tggcaacaag gtattagact ctacagcggg cttatggtgt 180 tgtaatgctg gccatggtcg ccgtgagatc agtgaagccg tcagcaaaca aattcggcag 240 atggattacg ctccctcctt ccaaatgggc catcccatcg cttttgaact ggccgaacgt 300 ttaaccgaac tcagcccaga aggactcaac aaagtattct ttaccaactc aggctctgag 360 tcggttgata ccgcgctaaa aatggctctt tgctaccata gagccaatgg ccaagcgtca 420 cgcacccgct ttattggccg tgaaatgggt taccatggcg taggatttgg tgggatctcg 480 gtgggtggtt taagcaataa ccgtaaagcc ttcagcggcc agctattgca aggcgtggat 540 cacctgcccc acaccttaga cattcaacat gccgccttta gtcgtggctt accgagcctc 600 ggtgctgaaa aagctgaggt attagaacaa ttagtcacac tccatggcgc cgaaaatatt 660 gccgccgtta ttgttgaacc catgtcaggt tctgcagggg taattttacc acctcaaggc 720 tacttaaaac gcttacgtga aatcactaaa aaacacggca tcttattgat tttcgatgaa 780 gtcattaccg catttggccg tgtaggtgca gcattcgcca gccaacgttg gggcgttatt 840 ccagacataa tcaccacggc taaagccatt aataatggcg ccatccccat gggcgcagtg 900 tttgtacagg attatatcca cgatacttgc atgcaagggc caaccgaact gattgaattt 960 ttccacggtt atacctattc gggccaccca gtcgccgcag cagcagcact cgccacgctc 1020 tccatctacc aaaacgagca actgtttgag cgcagttttg agcttgagcg gtatttcgaa 1080 gaagccgttc atagcctcaa agggttaccg aatgtgattg atattcgcaa caccggatta 1140 gtcgcgggtt tccagctagc accgaatagc caaggtgttg gtaaacgcgg atacagcgtg 1200 ttcgagcatt gtttccatca aggcacactc gtgcgggcaa cgggcgatat tatcgccatg 1260 tccccaccac tcattgttga gaaacatcag attgaccaaa tggtaaatag ccttagcgat 1320 gcaattcacg ccgttggatg a 1341 <210> 91 <211> 446 <212> PRT <213> Shewanella oneidensis <400> 91 Met Ala Asp Ser Pro Asn Asn Leu Ala His Glu His Pro Ser Leu Glu 1 5 10 15 His Tyr Trp Met Pro Phe Thr Ala Asn Arg Gln Phe Lys Ala Ser Pro 20 25 30 Arg Leu Leu Ala Gln Ala Glu Gly Met Tyr Tyr Thr Asp Ile Asn Gly 35 40 45 Asn Lys Val Leu Asp Ser Thr Ala Gly Leu Trp Cys Cys Asn Ala Gly 50 55 60 His Gly Arg Arg Glu Ile Ser Glu Ala Val Ser Lys Gln Ile Arg Gln 65 70 75 80 Met Asp Tyr Ala Pro Ser Phe Gln Met Gly His Pro Ile Ala Phe Glu 85 90 95 Leu Ala Glu Arg Leu Thr Glu Leu Ser Pro Glu Gly Leu Asn Lys Val 100 105 110 Phe Phe Thr Asn Ser Gly Ser Glu Ser Val Asp Thr Ala Leu Lys Met 115 120 125 Ala Leu Cys Tyr His Arg Ala Asn Gly Gln Ala Ser Arg Thr Arg Phe 130 135 140 Ile Gly Arg Glu Met Gly Tyr His Gly Val Gly Phe Gly Gly Ile Ser 145 150 155 160 Val Gly Gly Leu Ser Asn Asn Arg Lys Ala Phe Ser Gly Gln Leu Leu 165 170 175 Gln Gly Val Asp His Leu Pro His Thr Leu Asp Ile Gln His Ala Ala 180 185 190 Phe Ser Arg Gly Leu Pro Ser Leu Gly Ala Glu Lys Ala Glu Val Leu 195 200 205 Glu Gln Leu Val Thr Leu His Gly Ala Glu Asn Ile Ala Ala Val Ile 210 215 220 Val Glu Pro Met Ser Gly Ser Ala Gly Val Ile Leu Pro Pro Gln Gly 225 230 235 240 Tyr Leu Lys Arg Leu Arg Glu Ile Thr Lys Lys His Gly Ile Leu Leu 245 250 255 Ile Phe Asp Glu Val Ile Thr Ala Phe Gly Arg Val Gly Ala Ala Phe 260 265 270 Ala Ser Gln Arg Trp Gly Val Ile Pro Asp Ile Ile Thr Thr Ala Lys 275 280 285 Ala Ile Asn Asn Gly Ala Ile Pro Met Gly Ala Val Phe Val Gln Asp 290 295 300 Tyr Ile His Asp Thr Cys Met Gln Gly Pro Thr Glu Leu Ile Glu Phe 305 310 315 320 Phe His Gly Tyr Thr Tyr Ser Gly His Pro Val Ala Ala Ala Ala Ala 325 330 335 Leu Ala Thr Leu Ser Ile Tyr Gln Asn Glu Gln Leu Phe Glu Arg Ser 340 345 350 Phe Glu Leu Glu Arg Tyr Phe Glu Glu Ala Val His Ser Leu Lys Gly 355 360 365 Leu Pro Asn Val Ile Asp Ile Arg Asn Thr Gly Leu Val Ala Gly Phe 370 375 380 Gln Leu Ala Pro Asn Ser Gln Gly Val Gly Lys Arg Gly Tyr Ser Val 385 390 395 400 Phe Glu His Cys Phe His Gln Gly Thr Leu Val Arg Ala Thr Gly Asp 405 410 415 Ile Ile Ala Met Ser Pro Pro Leu Ile Val Glu Lys His Gln Ile Asp 420 425 430 Gln Met Val Asn Ser Leu Ser Asp Ala Ile His Ala Val Gly 435 440 445 <210> 92 <211> 1341 <212> DNA <213> Shewanella oneidensis <400> 92 atggccgact cacccaacaa cctcgctcac gaacatcctt cacttgaaca ctattggatg 60 ccttttaccg ccaatcgcca attcaaagcg agccctcgtt tactcgccca agctgaaggt 120 atgtattaca cagatatcaa tggcaacaag gtattagact ctacagcggg cttatggtgt 180 tgtaatgctg gccatggtcg ccgtgagatc agtgaagccg tcagcaaaca aattcggcag 240 atggattacg ctccctcctt ccaaatgggc catcccatcg cttttgaact ggccgaacgt 300 ttaaccgaac tcagcccaga aggactcaac aaagtattct ttaccaactc aggctctgag 360 tcggttgata ccgcgctaaa aatggctctt tgctaccata gagccaatgg ccaagcgtca 420 cgcacccgct ttattggccg tgaaatgggt taccatggcg taggatttgg tgggatctcg 480 gtgggtggtt taagcaataa ccgtaaagcc ttcagcggcc agctattgca aggcgtggat 540 cacctgcccc acaccttaga cattcaacat gccgccttta gtcgtggctt accgagcctc 600 ggtgctgaaa aagctgaggt attagaacaa ttagtcacac tccatggcgc cgaaaatatt 660 gccgccgtta ttgttgaacc catgtcaggt tctgcagggg taattttacc acctcaaggc 720 tacttaaaac gcttacgtga aatcactaaa aaacacggca tcttattgat tttcgatgaa 780 gtcattaccg catttggccg tgtaggtgca gcattcgcca gccaacgttg gggcgttatt 840 ccagacataa tcaccacggc taaagccatt aataatggcg ccatccccat gggcgcagtg 900 tttgtacagg attatatcca cgatacttgc atgcaagggc caaccgaact gattgaattt 960 ttccacggtt atacctattc gggccaccca gtcgccgcag cagcagcact cgccacgctc 1020 tccatctacc aaaacgagca actgtttgag cgcagttttg agcttgagcg gtatttcgaa 1080 gaagccgttc atagcctcaa agggttaccg aatgtgattg atattcgcaa caccggatta 1140 gtcgcgggtt tccagctagc accgaatagc caaggtgttg gtaaacgcgg atacagcgtg 1200 ttcgagcatt gtttccatca aggcacactc gtgcgggcaa cgggcgatat tatcgccatg 1260 tccccaccac tcattgttga gaaacatcag attgaccaaa tggtaaatag ccttagcgat 1320 gcaattcacg ccgttggatg a 1341 <210> 93 <211> 448 <212> PRT <213> Pseudomonas putida <400> 93 Met Asn Met Pro Glu Thr Gly Pro Ala Gly Ile Ala Ser Gln Leu Lys 1 5 10 15 Leu Asp Ala His Trp Met Pro Tyr Thr Ala Asn Arg Asn Phe Gln Arg 20 25 30 Asp Pro Arg Leu Ile Val Ala Ala Glu Gly Asn Tyr Leu Val Asp Asp 35 40 45 His Gly Arg Lys Ile Phe Asp Ala Leu Ser Gly Leu Trp Thr Cys Gly 50 55 60 Ala Gly His Thr Arg Lys Glu Ile Ala Asp Ala Val Thr Arg Gln Leu 65 70 75 80 Ser Thr Leu Asp Tyr Ser Pro Ala Phe Gln Phe Gly His Pro Leu Ser 85 90 95 Phe Gln Leu Ala Glu Lys Ile Ala Glu Leu Val Pro Gly Asn Leu Asn 100 105 110 His Val Phe Tyr Thr Asn Ser Gly Ser Glu Cys Ala Asp Thr Ala Leu 115 120 125 Lys Met Val Arg Ala Tyr Trp Arg Leu Lys Gly Gln Ala Thr Lys Thr 130 135 140 Lys Ile Ile Gly Arg Ala Arg Gly Tyr His Gly Val Asn Ile Ala Gly 145 150 155 160 Thr Ser Leu Gly Gly Val Asn Gly Asn Arg Lys Met Phe Gly Gln Leu 165 170 175 Leu Asp Val Asp His Leu Pro His Thr Val Leu Pro Val Asn Ala Phe 180 185 190 Ser Lys Gly Leu Pro Glu Glu Gly Gly Ile Ala Leu Ala Asp Glu Met 195 200 205 Leu Lys Leu Ile Glu Leu His Asp Ala Ser Asn Ile Ala Ala Val Ile 210 215 220 Val Glu Pro Leu Ala Gly Ser Ala Gly Val Leu Pro Pro Pro Lys Gly 225 230 235 240 Tyr Leu Lys Arg Leu Arg Glu Ile Cys Thr Gln His Asn Ile Leu Leu 245 250 255 Ile Phe Asp Glu Val Ile Thr Gly Phe Gly Arg Met Gly Ala Met Thr 260 265 270 Gly Ser Glu Ala Phe Gly Val Thr Pro Asp Leu Met Cys Ile Ala Lys 275 280 285 Gln Val Thr Asn Gly Ala Ile Pro Met Gly Ala Val Ile Ala Ser Ser 290 295 300 Glu Ile Tyr Gln Thr Phe Met Asn Gln Pro Thr Pro Glu Tyr Ala Val 305 310 315 320 Glu Phe Pro His Gly Tyr Thr Tyr Ser Ala His Pro Val Ala Cys Ala 325 330 335 Ala Gly Leu Ala Ala Leu Asp Leu Leu Gln Lys Glu Asn Leu Val Gln 340 345 350 Ser Ala Ala Glu Leu Ala Pro His Phe Glu Lys Leu Leu His Gly Val 355 360 365 Lys Gly Thr Lys Asn Ile Val Asp Ile Arg Asn Tyr Gly Leu Ala Gly 370 375 380 Ala Ile Gln Ile Ala Ala Arg Asp Gly Asp Ala Ile Val Arg Pro Tyr 385 390 395 400 Glu Ala Ala Met Lys Leu Trp Lys Ala Gly Phe Tyr Val Arg Phe Gly 405 410 415 Gly Asp Thr Leu Gln Phe Gly Pro Thr Phe Asn Thr Lys Pro Gln Glu 420 425 430 Leu Asp Arg Leu Phe Asp Ala Val Gly Glu Thr Leu Asn Leu Ile Asp 435 440 445 <210> 94 <211> 930 <212> DNA <213> Pseudomonas putida <400> 94 atgaccacga agaaagctga ttacatttgg ttcaatgggg agatggttcg ctgggaagac 60 gcgaaggtgc atgtgatgtc gcacgcgctg cactatggca cttcggtttt tgaaggcatc 120 cgttgctacg actcgcacaa aggaccggtt gtattccgcc atcgtgagca tatgcagcgt 180 ctgcatgact ccgccaaaat ctatcgcttc ccggtttcgc agagcattga tgagctgatg 240 gaagcttgtc gtgacgtgat ccgcaaaaac aatctcacca gcgcctatat ccgtccgctg 300 atcttcgtcg gtgatgttgg catgggagta aacccgccag cgggatactc aaccgacgtg 360 attatcgctg ctttcccgtg gggagcgtat ctgggcgcag aagcgctgga gcaggggatc 420 gatgcgatgg tttcctcctg gaaccgcgca gcaccaaaca ccatcccgac ggcggcaaaa 480 gccggtggta actacctctc ttccctgctg gtgggtagcg aagcgcgccg ccacggttat 540 caggaaggta tcgcgctgga tgtgaacggt tatatctctg aaggcgcagg cgaaaacctg 600 tttgaagtga aagatggtgt gctgttcacc ccaccgttca cctcctccgc gctgccgggt 660 attacccgtg atgccatcat caaactggcg aaagagctgg gaattgaagt acgtgagcag 720 gtgctgtcgc gcgaatccct gtacctggcg gatgaagtgt ttatgtccgg tacggcggca 780 gaaatcacgc cagtgcgcag cgtagacggt attcaggttg gcgaaggccg ttgtggcccg 840 gttaccaaac gcattcagca agccttcttc ggcctcttca ctggcgaaac cgaagataaa 900 tggggctggt tagatcaagt taatcaataa 930 <210> 95 <211> 566 <212> PRT <213> Streptomyces cinnamonensis <400> 95 Met Asp Ala Asp Ala Ile Glu Glu Gly Arg Arg Arg Trp Gln Ala Arg 1 5 10 15 Tyr Asp Lys Ala Arg Lys Arg Asp Ala Asp Phe Thr Thr Leu Ser Gly 20 25 30 Asp Pro Val Asp Pro Val Tyr Gly Pro Arg Pro Gly Asp Thr Tyr Asp 35 40 45 Gly Phe Glu Arg Ile Gly Trp Pro Gly Glu Tyr Pro Phe Thr Arg Gly 50 55 60 Leu Tyr Ala Thr Gly Tyr Arg Gly Arg Thr Trp Thr Ile Arg Gln Phe 65 70 75 80 Ala Gly Phe Gly Asn Ala Glu Gln Thr Asn Glu Arg Tyr Lys Met Ile 85 90 95 Leu Ala Asn Gly Gly Gly Gly Leu Ser Val Ala Phe Asp Met Pro Thr 100 105 110 Leu Met Gly Arg Asp Ser Asp Asp Pro Arg Ser Leu Gly Glu Val Gly 115 120 125 His Cys Gly Val Ala Ile Asp Ser Ala Ala Asp Met Glu Val Leu Phe 130 135 140 Lys Asp Ile Pro Leu Gly Asp Val Thr Thr Ser Met Thr Ile Ser Gly 145 150 155 160 Pro Ala Val Pro Val Phe Cys Met Tyr Leu Val Ala Ala Glu Arg Gln 165 170 175 Gly Val Asp Pro Ala Val Leu Asn Gly Thr Leu Gln Thr Asp Ile Phe 180 185 190 Lys Glu Tyr Ile Ala Gln Lys Glu Trp Leu Phe Gln Pro Glu Pro His 195 200 205 Leu Arg Leu Ile Gly Asp Leu Met Glu His Cys Ala Arg Asp Ile Pro 210 215 220 Ala Tyr Lys Pro Leu Ser Val Ser Gly Tyr His Ile Arg Glu Ala Gly 225 230 235 240 Ala Thr Ala Ala Gln Glu Leu Ala Tyr Thr Leu Ala Asp Gly Phe Gly 245 250 255 Tyr Val Glu Leu Gly Leu Ser Arg Gly Leu Asp Val Asp Val Phe Ala 260 265 270 Pro Gly Leu Ser Phe Phe Phe Asp Ala His Val Asp Phe Phe Glu Glu 275 280 285 Ile Ala Lys Phe Arg Ala Ala Arg Arg Ile Trp Ala Arg Trp Leu Arg 290 295 300 Asp Glu Tyr Gly Ala Lys Thr Glu Lys Ala Gln Trp Leu Arg Phe His 305 310 315 320 Thr Gln Thr Ala Gly Val Ser Leu Thr Ala Gln Gln Pro Tyr Asn Asn 325 330 335 Val Val Arg Thr Ala Val Glu Ala Leu Ala Ala Val Leu Gly Gly Thr 340 345 350 Asn Ser Leu His Thr Asn Ala Leu Asp Glu Thr Leu Ala Leu Pro Ser 355 360 365 Glu Gln Ala Ala Glu Ile Ala Leu Arg Thr Gln Gln Val Leu Met Glu 370 375 380 Glu Thr Gly Val Ala Asn Val Ala Asp Pro Leu Gly Gly Ser Trp Tyr 385 390 395 400 Ile Glu Gln Leu Thr Asp Arg Ile Glu Ala Asp Ala Glu Lys Ile Phe 405 410 415 Glu Gln Ile Arg Glu Arg Gly Arg Arg Ala Cys Pro Asp Gly Gln His 420 425 430 Pro Ile Gly Pro Ile Thr Ser Gly Ile Leu Arg Gly Ile Glu Asp Gly 435 440 445 Trp Phe Thr Gly Glu Ile Ala Glu Ser Ala Phe Gln Tyr Gln Arg Ser 450 455 460 Leu Glu Lys Gly Asp Lys Arg Val Val Gly Val Asn Cys Leu Glu Gly 465 470 475 480 Ser Val Thr Gly Asp Leu Glu Ile Leu Arg Val Ser His Glu Val Glu 485 490 495 Arg Glu Gln Val Arg Glu Leu Ala Gly Arg Lys Gly Arg Arg Asp Asp 500 505 510 Ala Arg Val Arg Ala Ser Leu Asp Ala Met Leu Ala Ala Ala Arg Asp 515 520 525 Gly Ser Asn Met Ile Ala Pro Met Leu Glu Ala Val Arg Ala Glu Ala 530 535 540 Thr Leu Gly Glu Ile Cys Gly Val Leu Arg Asp Glu Trp Gly Val Tyr 545 550 555 560 Val Glu Pro Pro Gly Phe 565 <210> 96 <211> 4362 <212> DNA <213> Streptomyces cinnamonensis <400> 96 tgaggcgctg gatcgcctcg gagagcagct ggtaacggtc cgcgtggtac tcggccgggg 60 tgcagccgtc cacgatgtgc gggatcgcgt cgggctcgag gatcaccagg gcgggggcgt 120 cgccgatcgc gtcggcgaac gtgtccaccc agctccggta ggcctccgca ctggccgcgc 180 cgcccgcgga gtgctgaccg cagtcgcggt gcgggatgtt gtacgcgacg agtacggcgg 240 tgcggtcctc cttgaccgcg ccccgcgtcg ccttcgcgac gtcgggcgcc ggatcgtccc 300 cggccggcca cacggccatg gcccgttcgg agatgcgcct gagcgtctcg gcgtcctcgg 360 cgcggccctg ttcctcccac tgcctgacct ggcgcgcggc ggggctgtcg gggtcgaccc 420 agaaggtgcc ggcggggggc ccggcgctcg cggtggcggg cttgcgcacg gccgcctcct 480 ccttcgtgcc gtcggacccc gggtctgagg aggagcagcc tgccgggagc ccgagggcgg 540 cgagggccgc gagtgccgtg aacgtgcgga gcagccggtg catccagccc ccttgggcga 600 tggtgacagt gacggtcagt cagcccggca atcgttacat aaaggactat tcaagctctt 660 gtgccacacc gcctccggtg ccgagcgcga acccggcggg caccagagcc ccgccgcggc 720 cgcggagccg tacgtacgac cgaattgcga gacggggctg accaccatat gaccggcggg 780 taaggtcgat gccgtgccga agccgctcag cctccccttc gatcccatcg cccgcgccga 840 cgagctctgg aagcagcgct ggggatcggt cccggccatg ggcgcgatca cctcgatcat 900 gcgggcgcac cagatcctgc tcgccgaggt cgacgcggtc gtcaagccgt acggactgac 960 cttcgcgcgc tacgaggcgc tggtgctcct caccttctcg caggccggcg agttgccgat 1020 gtcgaagatc ggcgagcggc tcatggtgca cccgacctcg gtcacgaaca ccgtggaccg 1080 cctggtgaag tccggcctgg tcgacaagcg cccgaacccc aacgacggcc gcggcacgct 1140 cgcctccatc acggagaagg gccgcgaggt cgtcgaggcg gccacccgcg agctgatggc 1200 gatggacttc gggctcgggg tgtacgacgc ggaggagtgc ggggagatct tcgcgatgct 1260 gcggcccctg cgggtggcgg cgcgcgattt cgaggagcag tagggcccgc ccggtgagaa 1320 gtgggatcgg gtcgtcccgg tacgggcggg ggcggcgaag atcgcgtgaa aagggcggtt 1380 acgctcgtag ccatgaaacg cagcgtgctg acccgctacc gggtgatggc ctacgtcacc 1440 gccgtcatgc tcctcatcct gtgcgcctgc atggtggcca agtacggctt cgacaagggc 1500 gagggtctga ccctcgtcgt gtcgcaggtg cacggcgtgc tctacatcat ctacctgatc 1560 ttcgccttcg acctgggctc caaggcgaag tggccgttcg gcaagctgct ctgggtgctg 1620 gtctcgggca cgatcccgac cgccgccttc ttcgtcgagc gcaaggtcgc ccgtgacgtc 1680 gagccgctga tcgccgacgg ctccccggtc accgcgaagg cgtaacccgc accgccacgg 1740 acaggtccgt ggcggttggc catcgacttt tactaggacg tcctagtaaa ttcgatggta 1800 tggacgctga cgcgatcgag gaaggccgcc gacgctggca ggcccgttac gacaaggccc 1860 gcaagcgcga cgcggacttc accacgctct ccggggaccc cgtcgacccc gtctacggcc 1920 cccggcccgg ggacacgtac gacgggttcg agcggatcgg ctggccgggg gagtacccct 1980 tcacccgcgg gctctacgcc accgggtacc gcggccgcac ctggaccatc cgccagttcg 2040 ccggcttcgg caacgccgag cagacgaacg agcgctacaa gatgatcctg gccaacggcg 2100 gcggcggcct ctccgtcgcc ttcgacatgc cgaccctcat gggccgcgac tccgacgacc 2160 cgcgctcgct cggcgaggtc ggccactgcg gtgtcgccat cgactccgcc gccgacatgg 2220 aggtcctctt caaggacatc ccgctcggcg acgtcacgac gtccatgacc atcagcgggc 2280 ccgccgtgcc cgtcttctgc atgtacctcg tcgcggccga gcgccagggc gtcgacccgg 2340 ccgtcctcaa cggcacgctg cagaccgaca tcttcaagga gtacatcgcc cagaaggagt 2400 ggctcttcca gcccgagccg cacctgcgcc tcatcggcga cctgatggag cactgcgcgc 2460 gcgacatccc cgcgtacaag ccgctctcgg tctccggcta ccacatccgc gaggccgggg 2520 cgacggccgc gcaggagctc gcgtacaccc tcgcggacgg cttcgggtac gtggaactgg 2580 gcctctcgcg cggcctggac gtggacgtct tcgcgcccgg cctctccttc ttcttcgacg 2640 cgcacgtcga cttcttcgag gagatcgcga agttccgcgc cgcacgccgc atctgggcgc 2700 gctggctccg ggacgagtac ggagcgaaga ccgagaaggc acagtggctg cgcttccaca 2760 cgcagaccgc gggggtctcg ctcacggccc agcagccgta caacaacgtg gtgcggacgg 2820 cggtggaggc cctcgccgcg gtgctcggcg gcacgaactc cctgcacacc aacgctctcg 2880 acgagaccct tgccctcccc agcgagcagg ccgcggagat cgcgctgcgc acccagcagg 2940 tgctgatgga ggagaccggc gtcgccaacg tcgcggaccc gctgggcggc tcctggtaca 3000 tcgagcagct caccgaccgc atcgaggccg acgccgagaa gatcttcgag cagatcaggg 3060 agcgggggcg gcgggcctgc cccgacgggc agcacccgat cgggccgatc acctccggca 3120 tcctgcgcgg catcgaggac ggctggttca ccggcgagat cgccgagtcc gccttccagt 3180 accagcggtc cctggagaag ggcgacaagc gggtcgtcgg cgtcaactgc ctcgaaggct 3240 ccgtcaccgg cgacctggag atcctgcgcg tcagccacga ggtcgagcgc gagcaggtgc 3300 gggagcttgc ggggcgcaag gggcggcgtg acgatgcgcg ggtgcgggcc tcgctcgacg 3360 cgatgctcgc cgctgcgcgg gacgggtcga acatgattgc ccccatgctg gaggcggtgc 3420 gggccgaggc gaccctcggg gagatctgcg gggtgcttcg cgatgagtgg ggggtctacg 3480 tggagccgcc cgggttctga gggcgcgctc cctttgcctg cgggtctgct gtggctggtc 3540 gcgcagttcc ccgcacccct gaaagacccc ggcgctttcc cttcctggct cgcctcgtcg 3600 ctgtctgcgg ggccgtgggg gctggtcgcg cagttccccg cgcccctgcc cgcacctgcg 3660 ccccgccgcc tgcatgccgc ccccaccctg acgggggcgt tcggggccca ccctgacggg 3720 tgcggtcggg gcgtgccggg gtcttttagg ggcgcgggga actgcgcgag caacccccac 3780 ccacccgcag gtgcacgcgg agcggcggac gccccgcaga cgggggcaaa acgggcggag 3840 tgcccccgcc cgccgggcgg cgcgaattcg taggtttaag gggcaggggt cagggcaggc 3900 gccgagccgg tcaaccgccc ccgtcccagg agaccccgtg acctcgaccg gccacgcccg 3960 caccgccgcc atcgccatcg gagccgccac cgccaccgtc ctcggcgcgc tgctggtcgg 4020 cggctccggc gaggtgagtg cgagcccgcc gcccgagccc aaggtccagg acgacttcga 4080 ctccctcggc cccgaggtgc gcgccgcgaa gctctccgac gggcggacgg cccactactc 4140 ggacacgggc gacaaggacg gcaagccggc cctgttcatc ggcggcaccg gcacgagcgc 4200 ccgcgcctcc cacatgaccg acttcttccg ctcgacgcgc gaggacctgg gcctgcgcct 4260 catctccgtg gagcgcaacg gcttcggcga caccgcgttc gacgagaagc tgggcaccgc 4320 cgacttcgcg aaggacgccc tcgaagtcct cgaccggctc gg 4362 <210> 97 <211> 136 <212> PRT <213> Streptomyces cinnamonensis <400> 97 Met Gly Val Ala Ala Gly Pro Ile Arg Val Val Val Ala Lys Pro Gly 1 5 10 15 Leu Asp Gly His Asp Arg Gly Ala Lys Val Ile Ala Arg Ala Leu Arg 20 25 30 Asp Ala Gly Met Glu Val Ile Tyr Thr Gly Leu His Gln Thr Pro Glu 35 40 45 Gln Val Val Asp Thr Ala Ile Gln Glu Asp Ala Asp Ala Ile Gly Leu 50 55 60 Ser Ile Leu Ser Gly Ala His Asn Thr Leu Phe Ala Arg Val Leu Glu 65 70 75 80 Leu Leu Lys Glu Arg Asp Ala Glu Asp Ile Lys Val Phe Gly Gly Gly 85 90 95 Ile Ile Pro Glu Ala Asp Ile Ala Pro Leu Lys Glu Lys Gly Val Ala 100 105 110 Glu Ile Phe Thr Pro Gly Ala Thr Thr Thr Ser Ile Val Glu Trp Val 115 120 125 Arg Gly Asn Val Arg Gln Ala Val 130 135 <210> 98 <211> 1643 <212> DNA <213> Streptomyces cinnamonensis <400> 98 gtcgacctcc cgtttggcgc acggaaggga ggctctgtcc cccgtgtgcc ctagggggag 60 tcgtggtcga ggagtcggct gtgcgatggc gatcccggcc accgccctgc ggtgactccg 120 tgcccccgtt gcatcgccga tgcgcggtgt caccacgccg tgcggctgcc ggcgcggtgg 180 cccggcgtct cgttgcggct cccctcgcgc ctggtccgga tgcggagcgt gaacccctgg 240 gttacggacg ggcgcgcagc gaacgtgtcc cacgtgtgat ttccccctcg ctctccaccg 300 cgaaactgcc gcttgcgcga tgctggggat aacgttcgtt cacttccccg gccggtgcgg 360 tgcggggtat ctgtgccggg acagactttg tcggtacgga tatcggtaca tggaggcagt 420 gatgggtgtg gcagccgggc cgatccgcgt ggtggtcgcc aagccggggc tcgacgggca 480 cgatcgcggg gccaaggtga tcgcgcgggc gttgcgtgac gcgggtatgg aggtcatcta 540 caccgggctg caccagacgc ccgagcaggt ggtggacacc gcgatccagg aggacgccga 600 cgcgatcggc ctctccatcc tctccggagc gcacaacacg ctgttcgcgc gcgtgttgga 660 gctcttgaag gagcgggacg cggaggacat caaggtgttt ggtggcggca tcatcccgga 720 ggcggacatc gcgccgctga aggagaaggg cgtcgcggag atcttcacgc ccggggccac 780 caccacgtcg atcgtggagt gggttcgggg gaacgtgcga caggccgtct gaggcattcc 840 ccgtcgcccg tctgccgtgg tcggcgtcat atcggcggac atcgtctcgg tggacgtcat 900 ggcggcgggg ggagttcgtc gcgtatcgcc gcgcggaggc gcagggtggt gaccaggcgc 960 tggaacgctt ccgaccagta gctgcccgcg ccgggtgacg cgtcctccgc ttcgtcgggg 1020 accgcggtga gcgcttccag gcggaccgcc tcggccgggt ccagacagcg ttccgccagg 1080 cccatcactc cgctgaagct ccatgggtaa ctgcccgcgt cgcgcgcgat gttcagggcg 1140 tccaccacgg cccggccgag agggccggcc cagggcaccg cgcagacgcc gagcagttgg 1200 aacgcctccg acaggccgtg tgccgctatg aaccccgcca cccagtccgc gcgctcggcg 1260 gcaggcatgg aggcgagcag tttggcccgc tcggcgaggg acacggcgcc aggccccgcc 1320 gcgtcgggtg aggcgggggc gccgagcagc gctctggacc aggcgacgtc acgctggcgt 1380 acggccgcgc ggcaccatgc ggcgtgcagt tcgccccgcc agtcgtcggc caccgggagc 1440 gccacgatct ccgccggggt gcggttgccg agccggggcg gccaggtggc gagcggggcc 1500 gattccacga gctggccgag ccaccaggag cgctcgcccc ggccggtggg gggcttcggg 1560 acgacgccgt cccgctccat gcccgcgtcg cactcgtgcg gcgcctcgac ggtgagggtc 1620 ggcgtgctcg atgtgtggtc gac 1643 <210> 99 <211> 566 <212> PRT <213> Streptomyces coelicolor <400> 99 Met Asp Ala His Ala Ile Glu Glu Gly Arg Leu Arg Trp Gln Ala Arg 1 5 10 15 Tyr Asp Ala Ala Arg Lys Arg Asp Ala Asp Phe Thr Thr Leu Ser Gly 20 25 30 Asp Pro Val Glu Pro Val Tyr Gly Pro Arg Pro Gly Asp Glu Tyr Glu 35 40 45 Gly Phe Glu Arg Ile Gly Trp Pro Gly Glu Tyr Pro Phe Thr Arg Gly 50 55 60 Leu Tyr Pro Thr Gly Tyr Arg Gly Arg Thr Trp Thr Ile Arg Gln Phe 65 70 75 80 Ala Gly Phe Gly Asn Ala Glu Gln Thr Asn Glu Arg Tyr Lys Met Ile 85 90 95 Leu Arg Asn Gly Gly Gly Gly Leu Ser Val Ala Phe Asp Met Pro Thr 100 105 110 Leu Met Gly Arg Asp Ser Asp Asp Pro Arg Ser Leu Gly Glu Val Gly 115 120 125 His Cys Gly Val Ala Ile Asp Ser Ala Ala Asp Met Glu Val Leu Phe 130 135 140 Lys Asp Ile Pro Leu Gly Asp Val Thr Thr Ser Met Thr Ile Ser Gly 145 150 155 160 Pro Ala Val Pro Val Phe Cys Met Tyr Leu Val Ala Ala Glu Arg Gln 165 170 175 Gly Val Asp Ala Ser Val Leu Asn Gly Thr Leu Gln Thr Asp Ile Phe 180 185 190 Lys Glu Tyr Ile Ala Gln Lys Glu Trp Leu Phe Gln Pro Glu Pro His 195 200 205 Leu Arg Leu Ile Gly Asp Leu Met Glu Tyr Cys Ala Ala Gly Ile Pro 210 215 220 Ala Tyr Lys Pro Leu Ser Val Ser Gly Tyr His Ile Arg Glu Ala Gly 225 230 235 240 Ala Thr Ala Ala Gln Glu Leu Ala Tyr Thr Leu Ala Asp Gly Phe Gly 245 250 255 Tyr Val Glu Leu Gly Leu Ser Arg Gly Leu Asp Val Asp Val Phe Ala 260 265 270 Pro Gly Leu Ser Phe Phe Phe Asp Ala His Leu Asp Phe Phe Glu Glu 275 280 285 Ile Ala Lys Phe Arg Ala Ala Arg Arg Ile Trp Ala Arg Trp Met Arg 290 295 300 Asp Val Tyr Gly Ala Arg Thr Asp Lys Ala Gln Trp Leu Arg Phe His 305 310 315 320 Thr Gln Thr Ala Gly Val Ser Leu Thr Ala Gln Gln Pro Tyr Asn Asn 325 330 335 Val Val Arg Thr Ala Val Glu Ala Leu Ala Ala Val Leu Gly Gly Thr 340 345 350 Asn Ser Leu His Thr Asn Ala Leu Asp Glu Thr Leu Ala Leu Pro Ser 355 360 365 Glu Gln Ala Ala Glu Ile Ala Leu Arg Thr Gln Gln Val Leu Met Glu 370 375 380 Glu Thr Gly Val Ala Asn Val Ala Asp Pro Leu Gly Gly Ser Trp Phe 385 390 395 400 Ile Glu Gln Leu Thr Asp Arg Ile Glu Ala Asp Ala Glu Lys Ile Phe 405 410 415 Glu Gln Ile Lys Glu Arg Gly Leu Arg Ala His Pro Asp Gly Gln His 420 425 430 Pro Val Gly Pro Ile Thr Ser Gly Leu Leu Arg Gly Ile Glu Asp Gly 435 440 445 Trp Phe Thr Gly Glu Ile Ala Glu Ser Ala Phe Arg Tyr Gln Gln Ser 450 455 460 Leu Glu Lys Asp Asp Lys Lys Val Val Gly Val Asn Val His Thr Gly 465 470 475 480 Ser Val Thr Gly Asp Leu Glu Ile Leu Arg Val Ser His Glu Val Glu 485 490 495 Arg Glu Gln Val Arg Val Leu Gly Glu Arg Lys Asp Ala Arg Asp Asp 500 505 510 Ala Ala Val Arg Gly Ala Leu Asp Ala Met Leu Ala Ala Ala Arg Ser 515 520 525 Gly Gly Asn Met Ile Gly Pro Met Leu Asp Ala Val Arg Ala Glu Ala 530 535 540 Thr Leu Gly Glu Ile Cys Gly Val Leu Arg Asp Glu Trp Gly Val Tyr 545 550 555 560 Thr Glu Pro Ala Gly Phe 565 <210> 100 <211> 1701 <212> DNA <213> Streptomyces coelicolor <400> 100 atggacgctc atgccataga ggagggccgc cttcgctggc aggcccggta cgacgcggcg 60 cgcaagcgcg acgcggactt caccacgctc tccggagacc ccgtggagcc ggtgtacggg 120 ccccgccccg gggacgagta cgagggcttc gagcggatcg gctggccggg cgagtacccc 180 ttcacccgcg gcctgtatcc gaccgggtac cgggggcgta cgtggaccat ccggcagttc 240 gccgggttcg gcaacgccga gcagaccaac gagcgctaca agatgatcct ccgcaacggc 300 ggcggcgggc tctcggtcgc cttcgacatg ccgaccctga tgggccgcga ctccgacgac 360 ccgcgctcgc tgggcgaggt cgggcactgc ggggtggcca tcgactcggc cgccgacatg 420 gaagtgctgt tcaaggacat cccgctcggg gacgtgacga cctccatgac gatcagcggg 480 cccgccgtgc ccgtgttctg catgtacctc gtcgccgccg agcgccaggg cgtcgacgca 540 tccgtgctca acggcacgct gcagaccgac atcttcaagg agtacatcgc ccagaaggag 600 tggctcttcc agcccgagcc ccacctccgg ctcatcggcg acctcatgga gtactgcgcg 660 gccggcatcc ccgcctacaa gccgctctcc gtctccggct accacatccg cgaggcgggc 720 gcgacggccg cgcaggagct ggcgtacacg ctcgccgacg gcttcggata cgtggagctg 780 ggcctcagcc gcgggctcga cgtggacgtc ttcgcgcccg gcctctcctt cttcttcgac 840 gcgcacctcg acttcttcga ggagatcgcc aagttccgcg cggcccgcag gatctgggcc 900 cgctggatgc gcgacgtgta cggcgcgcgg accgacaagg cccagtggct gcggttccac 960 acccagaccg ccggagtctc gctcaccgcg cagcagccgt acaacaacgt cgtacgcacc 1020 gcggtggagg cgctggcggc cgtgctcggc ggcaccaact ccctgcacac caacgcgctc 1080 gacgagaccc tcgccctgcc cagcgagcag gccgccgaga tcgccctgcg cacccagcag 1140 gtgctgatgg aggagaccgg cgtcgccaac gtcgccgacc cgctgggcgg ttcctggttc 1200 atcgagcagc tgaccgaccg catcgaggcc gacgccgaga agatcttcga gcagatcaag 1260 gagcgggggc tgcgcgccca ccccgacggg cagcaccccg tcggaccgat cacctccggc 1320 ctgctgcgcg gcatcgagga cggctggttc accggcgaga tcgccgagtc cgccttccgc 1380 taccagcagt ccttggagaa ggacgacaag aaggtggtcg gcgtcaacgt ccacaccggc 1440 tccgtcaccg gcgacctgga gatcctgcgg gtcagccacg aggtcgagcg cgagcaggtg 1500 cgggtcctgg gcgagcgcaa ggacgcccgg gacgacgccg ccgtgcgcgg cgccctggac 1560 gccatgctgg ccgcggcccg ctccggcggc aacatgatcg ggccgatgct ggacgcggtg 1620 cgcgcggagg cgacgctggg cgagatctgc ggtgtgctgc gcgacgagtg gggggtgtac 1680 acggaaccgg cggggttctg a 1701 <210> 101 <211> 138 <212> PRT <213> Streptomyces coelicolor <400> 101 Met Gly Val Ala Ala Gly Pro Ile Arg Val Val Val Ala Lys Pro Gly 1 5 10 15 Leu Asp Gly His Asp Arg Gly Ala Lys Val Ile Ala Arg Ala Leu Arg 20 25 30 Asp Ala Gly Met Glu Val Ile Tyr Thr Gly Leu His Gln Thr Pro Glu 35 40 45 Gln Ile Val Asp Thr Ala Ile Gln Glu Asp Ala Asp Ala Ile Gly Leu 50 55 60 Ser Ile Leu Ser Gly Ala His Asn Thr Leu Phe Ala Ala Val Ile Glu 65 70 75 80 Leu Leu Arg Glu Arg Asp Ala Ala Asp Ile Leu Val Phe Gly Gly Gly 85 90 95 Ile Ile Pro Glu Ala Asp Ile Ala Pro Leu Lys Glu Lys Gly Val Ala 100 105 110 Glu Ile Phe Thr Pro Gly Ala Thr Thr Ala Ser Ile Val Asp Trp Val 115 120 125 Arg Ala Asn Val Arg Glu Pro Ala Gly Ala 130 135 <210> 102 <211> 417 <212> DNA <213> Streptomyces coelicolor <400> 102 atgggtgtgg cagccggtcc gatccgcgtg gtggtggcca agccggggct cgacggccac 60 gatcgcgggg ccaaggtgat cgcgagggcc ctgcgtgacg ccggtatgga ggtgatctac 120 accgggctcc accagacgcc cgagcagatc gtcgacaccg cgatccagga ggacgccgac 180 gcgatcgggc tgtccatcct ctccggtgcg cacaacacgc tcttcgccgc cgtgatcgag 240 ctgctccggg agcgggacgc cgcggacatc ctggtcttcg gcggcgggat catccccgag 300 gcggacatcg ccccgctgaa ggagaagggc gtcgcggaga tcttcacgcc cggcgccacc 360 acggcgtcca tcgtggactg ggtccgggcg aacgtgcggg agcccgcggg agcatag 417 <210> 103 <211> 566 <212> PRT <213> Streptomyces avermitilis <400> 103 Met Asp Ala Asp Ala Ile Glu Glu Gly Arg Arg Arg Trp Gln Ala Arg 1 5 10 15 Tyr Asp Ala Ser Arg Lys Arg Glu Ala Asp Phe Thr Thr Leu Ser Gly 20 25 30 Asp Pro Val Glu Pro Ala Tyr Gly Pro Arg Pro Gly Asp Ala Tyr Glu 35 40 45 Gly Phe Glu Arg Ile Gly Trp Pro Gly Glu Tyr Pro Phe Thr Arg Gly 50 55 60 Leu Tyr Pro Thr Gly Tyr Arg Gly Arg Thr Trp Thr Ile Arg Gln Phe 65 70 75 80 Ala Gly Phe Gly Asn Ala Glu Gln Thr Asn Glu Arg Tyr Lys Lys Ile 85 90 95 Leu Ala Asn Gly Gly Gly Gly Leu Ser Val Ala Phe Asp Met Pro Thr 100 105 110 Leu Met Gly Arg Asp Ser Asp Asp Arg Arg Ala Leu Gly Glu Val Gly 115 120 125 His Cys Gly Val Ala Ile Asp Ser Ala Ala Asp Met Glu Val Leu Phe 130 135 140 Lys Asp Ile Pro Leu Gly Asp Val Thr Thr Ser Met Thr Ile Ser Gly 145 150 155 160 Pro Ala Val Pro Val Phe Cys Met Tyr Leu Val Ala Ala Glu Arg Gln 165 170 175 Gly Val Asp Pro Ser Val Leu Asn Gly Thr Leu Gln Thr Asp Ile Phe 180 185 190 Lys Glu Tyr Ile Ala Gln Lys Glu Trp Leu Phe Gln Pro Glu Pro His 195 200 205 Leu Arg Leu Ile Gly Asp Leu Met Glu His Cys Ala Ser Lys Ile Pro 210 215 220 Ala Tyr Lys Pro Leu Ser Val Ser Gly Tyr His Ile Arg Glu Ala Gly 225 230 235 240 Ala Thr Ala Ala Gln Glu Leu Ala Tyr Thr Leu Ala Asp Gly Phe Gly 245 250 255 Tyr Val Glu Leu Gly Leu Ser Arg Gly Leu Asp Val Asp Val Phe Ala 260 265 270 Pro Gly Leu Ser Phe Phe Phe Asp Ala His Val Asp Phe Phe Glu Glu 275 280 285 Ile Ala Lys Phe Arg Ala Ala Arg Arg Ile Trp Ala Arg Trp Leu Arg 290 295 300 Asp Val Tyr Gly Ala Lys Ser Glu Lys Ala Gln Trp Leu Arg Phe His 305 310 315 320 Thr Gln Thr Ala Gly Val Ser Leu Thr Ala Gln Gln Pro Tyr Asn Asn 325 330 335 Val Val Arg Thr Ala Val Glu Ala Leu Ala Ala Val Leu Gly Gly Thr 340 345 350 Asn Ser Leu His Thr Asn Ala Leu Asp Glu Thr Leu Ala Leu Pro Ser 355 360 365 Glu Gln Ala Ala Glu Ile Ala Leu Arg Thr Gln Gln Val Leu Met Glu 370 375 380 Glu Thr Gly Val Ala Asn Val Ala Asp Pro Leu Gly Gly Ser Trp Tyr 385 390 395 400 Val Glu Gln Leu Thr Asp Arg Ile Glu Ala Asp Ala Glu Lys Ile Phe 405 410 415 Glu Gln Ile Arg Glu Arg Gly Leu Arg Ala His Pro Asp Gly Arg His 420 425 430 Pro Ile Gly Pro Ile Thr Ser Gly Ile Leu Arg Gly Ile Glu Asp Gly 435 440 445 Trp Phe Thr Gly Glu Ile Ala Glu Ser Ala Phe Gln Tyr Gln Gln Ala 450 455 460 Leu Glu Lys Gly Asp Lys Arg Val Val Gly Val Asn Val His His Gly 465 470 475 480 Ser Val Thr Gly Asp Leu Glu Ile Leu Arg Val Ser His Glu Val Glu 485 490 495 Arg Glu Gln Val Arg Val Leu Gly Glu Arg Lys Ser Gly Arg Asp Asp 500 505 510 Thr Ala Val Thr Ala Ala Leu Asp Ala Met Leu Ala Ala Ala Arg Asp 515 520 525 Gly Ser Asn Met Ile Ala Pro Met Leu Asp Ala Val Arg Ala Glu Ala 530 535 540 Thr Leu Gly Glu Ile Cys Asp Val Leu Arg Glu Glu Trp Gly Val Tyr 545 550 555 560 Thr Glu Pro Ala Gly Phe 565 <210> 104 <211> 1701 <212> DNA <213> Streptomyces avermitilis <400> 104 tcagaaaccg gcgggctccg tgtagacccc ccactcctcc cggaggacat cgcagatctc 60 gcccagcgtg gcctccgcgc ggaccgcgtc cagcatcggg gcgatcatgt tcgacccgtc 120 gcgcgcggcg gcgagcatcg cgtccagggc cgcggttacg gccgtgtcgt cgcgccccga 180 cttccgctcg cccagcaccc gcacctgctc gcgctccacc tcgtggctga cgcgcaggat 240 ctccaggtcg cccgtcacgg acccgtggtg gacgttgacg ccgacgaccc gcttgtcgcc 300 cttctccagc gcctgctggt actggaaggc cgactcggcg atctccccgg tgaaccagcc 360 gtcctcgatg ccgcgcagga tgccggaggt gatgggcccg atcgggtgcc gcccgtccgg 420 gtgggcccgc agcccgcgct ccctgatctg ttcgaagatc ttctcggcgt cggcctcgat 480 ccggtcggtc agctgctcca cgtaccagga accgcccagc ggatcggcca cgttggcgac 540 gcccgtctcc tccatcagca cctgctgggt gcgcagggcg atctcggccg cctgctcgga 600 cggcagggcg agggtctcgt cgagggcgtt ggtgtgcagc gagttcgtcc cgccgagcac 660 cgcggcgagg gcctccacgg ccgtccgtac gacgttgttg tacggctgct gcgcggtgag 720 cgagacgccc gcggtctggg tgtggaagcg cagccactgc gccttctccg acttcgcccc 780 gtacacgtcc cgcagccagc gcgcccagat gcgccgcgcc gcacggaact tggcgatctc 840 ctcgaagaag tcgacgtgcg cgtcgaagaa gaaggagagc ccgggcgcga acacgtccac 900 gtccaggccg cggctcagcc ccagctccac gtatccgaaa ccgtcggcga gggtgtacgc 960 cagctcctgg gcggccgtgg caccggcctc ccggatgtgg tacccggaga cggacagcgg 1020 cttgtacgcg gggatcttcg aggcgcagtg ctccatcagg tcgccgatga gccgcagatg 1080 gggctcgggc tggaagagcc actccttctg cgcgatgtac tccttgaaga tgtcggtctg 1140 gagggtgccg ttgaggacgg aggggtcgac gccctgccgc tcggccgcga ccaggtacat 1200 gcagaagacg ggcacggcgg gcccgctgat cgtcatcgac gtcgtcacgt cacccagcgg 1260 gatgtccttg aacaggacct ccatgtcggc cgccgagtcg atcgcgaccc cgcagtgccc 1320 gacctcgccg agcgcgcggc ggtcgtcgga gtcgcgcccc atgagcgtcg gcatgtcgaa 1380 ggccacggac agcccaccgc cgccgttggc gaggatcttc ttgtagcgct cgttggtctg 1440 ctcggcgttg ccgaacccgg cgaactgccg gatggtccag gtccggcccc ggtagccggt 1500 cggatacaga ccgcgcgtga aggggtactc acccggccag ccgatccgct cgaaaccctc 1560 gtacgcgtcc ccgggccggg gcccgtacgc cggctccacg ggatcgccgg agagcgtggt 1620 gaaatcggcc tcgcgcttgc gtgaggcgtc gtagcgggcc tgccagcgtc ggcggccttc 1680 ctcgatggcg tcagcgtcca t 1701 <210> 105 <211> 138 <212> PRT <213> Streptomyces avermitilis <400> 105 Met Gly Val Ala Ala Gly Pro Ile Arg Val Val Val Ala Lys Pro Gly 1 5 10 15 Leu Asp Gly His Asp Arg Gly Ala Lys Val Ile Ala Arg Ala Leu Arg 20 25 30 Asp Ala Gly Met Glu Val Ile Tyr Thr Gly Leu His Gln Thr Pro Glu 35 40 45 Gln Ile Val Gly Thr Ala Ile Gln Glu Asp Ala Asp Ala Ile Gly Leu 50 55 60 Ser Ile Leu Ser Gly Ala His Asn Thr Leu Phe Ala Ala Val Ile Asp 65 70 75 80 Leu Leu Lys Glu Arg Asp Ala Glu Asp Ile Lys Val Phe Gly Gly Gly 85 90 95 Ile Ile Pro Glu Ala Asp Ile Ala Pro Leu Lys Glu Lys Gly Val Ala 100 105 110 Glu Ile Phe Thr Pro Gly Ala Thr Thr Ala Ser Ile Val Glu Trp Val 115 120 125 Arg Ala Asn Val Arg Gln Pro Ala Gly Ala 130 135 <210> 106 <211> 1701 <212> DNA <213> Streptomyces avermitilis <400> 106 tcagaaaccg gcgggctccg tgtagacccc ccactcctcc cggaggacat cgcagatctc 60 gcccagcgtg gcctccgcgc ggaccgcgtc cagcatcggg gcgatcatgt tcgacccgtc 120 gcgcgcggcg gcgagcatcg cgtccagggc cgcggttacg gccgtgtcgt cgcgccccga 180 cttccgctcg cccagcaccc gcacctgctc gcgctccacc tcgtggctga cgcgcaggat 240 ctccaggtcg cccgtcacgg acccgtggtg gacgttgacg ccgacgaccc gcttgtcgcc 300 cttctccagc gcctgctggt actggaaggc cgactcggcg atctccccgg tgaaccagcc 360 gtcctcgatg ccgcgcagga tgccggaggt gatgggcccg atcgggtgcc gcccgtccgg 420 gtgggcccgc agcccgcgct ccctgatctg ttcgaagatc ttctcggcgt cggcctcgat 480 ccggtcggtc agctgctcca cgtaccagga accgcccagc ggatcggcca cgttggcgac 540 gcccgtctcc tccatcagca cctgctgggt gcgcagggcg atctcggccg cctgctcgga 600 cggcagggcg agggtctcgt cgagggcgtt ggtgtgcagc gagttcgtcc cgccgagcac 660 cgcggcgagg gcctccacgg ccgtccgtac gacgttgttg tacggctgct gcgcggtgag 720 cgagacgccc gcggtctggg tgtggaagcg cagccactgc gccttctccg acttcgcccc 780 gtacacgtcc cgcagccagc gcgcccagat gcgccgcgcc gcacggaact tggcgatctc 840 ctcgaagaag tcgacgtgcg cgtcgaagaa gaaggagagc ccgggcgcga acacgtccac 900 gtccaggccg cggctcagcc ccagctccac gtatccgaaa ccgtcggcga gggtgtacgc 960 cagctcctgg gcggccgtgg caccggcctc ccggatgtgg tacccggaga cggacagcgg 1020 cttgtacgcg gggatcttcg aggcgcagtg ctccatcagg tcgccgatga gccgcagatg 1080 gggctcgggc tggaagagcc actccttctg cgcgatgtac tccttgaaga tgtcggtctg 1140 gagggtgccg ttgaggacgg aggggtcgac gccctgccgc tcggccgcga ccaggtacat 1200 gcagaagacg ggcacggcgg gcccgctgat cgtcatcgac gtcgtcacgt cacccagcgg 1260 gatgtccttg aacaggacct ccatgtcggc cgccgagtcg atcgcgaccc cgcagtgccc 1320 gacctcgccg agcgcgcggc ggtcgtcgga gtcgcgcccc atgagcgtcg gcatgtcgaa 1380 ggccacggac agcccaccgc cgccgttggc gaggatcttc ttgtagcgct cgttggtctg 1440 ctcggcgttg ccgaacccgg cgaactgccg gatggtccag gtccggcccc ggtagccggt 1500 cggatacaga ccgcgcgtga aggggtactc acccggccag ccgatccgct cgaaaccctc 1560 gtacgcgtcc ccgggccggg gcccgtacgc cggctccacg ggatcgccgg agagcgtggt 1620 gaaatcggcc tcgcgcttgc gtgaggcgtc gtagcgggcc tgccagcgtc ggcggccttc 1680 ctcgatggcg tcagcgtcca t 1701 <210> 107 <211> 139 <212> PRT <213> Saccharomyces cerevisiae <400> 107 Met Ser Glu Ile Thr Leu Gly Lys Tyr Leu Phe Glu Arg Leu Lys Gln 1 5 10 15 Val Asn Val Asn Thr Val Phe Gly Leu Pro Gly Asp Phe Asn Leu Ser 20 25 30 Leu Leu Asp Lys Ile Tyr Glu Val Glu Gly Met Arg Trp Ala Gly Asn 35 40 45 Ala Asn Glu Leu Asn Ala Ala Tyr Ala Ala Asp Gly Tyr Ala Arg Ile 50 55 60 Lys Gly Met Ser Cys Ile Ile Thr Thr Phe Gly Val Gly Glu Leu Ser 65 70 75 80 Ala Leu Asn Gly Ile Ala Gly Ser Tyr Ala Glu His Val Gly Val Leu 85 90 95 His Val Val Gly Val Pro Ser Ile Ser Ala Gln Ala Lys Gln Leu Leu 100 105 110 Leu His His Thr Leu Gly Asn Gly Asp Phe Thr Val Phe His Arg Met 115 120 125 Ser Ala Asn Ile Ser Glu Thr Thr Ala Met Ile 130 135 <210> 108 <211> 1689 <212> DNA <213> Saccharomyces cerevisiae <400> 108 atgtctgaaa ttactttggg taaatatttg ttcgaaagat taaagcaagt caacgttaac 60 accgttttcg gtttgccagg tgacttcaac ttgtccttgt tggacaagat ctacgaagtt 120 gaaggtatga gatgggctgg taacgccaac gaattgaacg ctgcttacgc cgctgatggt 180 tacgctcgta tcaagggtat gtcttgtatc atcaccacct tcggtgtcgg tgaattgtct 240 gctttgaacg gtattgccgg ttcttacgct gaacacgtcg gtgttttgca cgttgttggt 300 gtcccatcca tctctgctca agctaagcaa ttgttgttgc accacacctt gggtaacggt 360 gacttcactg ttttccacag aatgtctgcc aacatttctg aaaccactgc tatgatcact 420 gacattgcta ccgccccagc tgaaattgac agatgtatca gaaccactta cgtcacccaa 480 agaccagtct acttaggttt gccagctaac ttggtcgact tgaacgtccc agctaagttg 540 ttgcaaactc caattgacat gtctttgaag ccaaacgatg ctgaatccga aaaggaagtc 600 attgacacca tcttggcttt ggtcaaggat gctaagaacc cagttatctt ggctgatgct 660 tgttgttcca gacacgacgt caaggctgaa actaagaagt tgattgactt gactcaattc 720 ccagctttcg tcaccccaat gggtaagggt tccattgacg aacaacaccc aagatacggt 780 ggtgtttacg tcggtacctt gtccaagcca gaagttaagg aagccgttga atctgctgac 840 ttgattttgt ctgtcggtgc tttgttgtct gatttcaaca ccggttcttt ctcttactct 900 tacaagacca agaacattgt cgaattccac tccgaccaca tgaagatcag aaacgccact 960 ttcccaggtg tccaaatgaa attcgttttg caaaagttgt tgaccactat tgctgacgcc 1020 gctaagggtt acaagccagt tgctgtccca gctagaactc cagctaacgc tgctgtccca 1080 gcttctaccc cattgaagca agaatggatg tggaaccaat tgggtaactt cttgcaagaa 1140 ggtgatgttg tcattgctga aaccggtacc tccgctttcg gtatcaacca aaccactttc 1200 ccaaacaaca cctacggtat ctctcaagtc ttatggggtt ccattggttt caccactggt 1260 gctaccttgg gtgctgcttt cgctgctgaa gaaattgatc caaagaagag agttatctta 1320 ttcattggtg acggttcttt gcaattgact gttcaagaaa tctccaccat gatcagatgg 1380 ggcttgaagc catacttgtt cgtcttgaac aacgatggtt acaccattga aaagttgatt 1440 cacggtccaa aggctcaata caacgaaatt caaggttggg accacctatc cttgttgcca 1500 actttcggtg ctaaggacta tgaaacccac agagtcgcta ccaccggtga atgggacaag 1560 ttgacccaag acaagtcttt caacgacaac tctaagatca gaatgattga aatcatgttg 1620 ccagtcttcg atgctccaca aaacttggtt gaacaagcta agttgactgc tgctaccaac 1680 gctaagcaa 1689 <210> 109 <211> 563 <212> PRT <213> Saccharomyces cerevisiae <400> 109 Met Ser Glu Ile Thr Leu Gly Lys Tyr Leu Phe Glu Arg Leu Ser Gln 1 5 10 15 Val Asn Cys Asn Thr Val Phe Gly Leu Pro Gly Asp Phe Asn Leu Ser 20 25 30 Leu Leu Asp Lys Leu Tyr Glu Val Lys Gly Met Arg Trp Ala Gly Asn 35 40 45 Ala Asn Glu Leu Asn Ala Ala Tyr Ala Ala Asp Gly Tyr Ala Arg Ile 50 55 60 Lys Gly Met Ser Cys Ile Ile Thr Thr Phe Gly Val Gly Glu Leu Ser 65 70 75 80 Ala Leu Asn Gly Ile Ala Gly Ser Tyr Ala Glu His Val Gly Val Leu 85 90 95 His Val Val Gly Val Pro Ser Ile Ser Ser Gln Ala Lys Gln Leu Leu 100 105 110 Leu His His Thr Leu Gly Asn Gly Asp Phe Thr Val Phe His Arg Met 115 120 125 Ser Ala Asn Ile Ser Glu Thr Thr Ala Met Ile Thr Asp Ile Ala Asn 130 135 140 Ala Pro Ala Glu Ile Asp Arg Cys Ile Arg Thr Thr Tyr Thr Thr Gln 145 150 155 160 Arg Pro Val Tyr Leu Gly Leu Pro Ala Asn Leu Val Asp Leu Asn Val 165 170 175 Pro Ala Lys Leu Leu Glu Thr Pro Ile Asp Leu Ser Leu Lys Pro Asn 180 185 190 Asp Ala Glu Ala Glu Ala Glu Val Val Arg Thr Val Val Glu Leu Ile 195 200 205 Lys Asp Ala Lys Asn Pro Val Ile Leu Ala Asp Ala Cys Ala Ser Arg 210 215 220 His Asp Val Lys Ala Glu Thr Lys Lys Leu Met Asp Leu Thr Gln Phe 225 230 235 240 Pro Val Tyr Val Thr Pro Met Gly Lys Gly Ala Ile Asp Glu Gln His 245 250 255 Pro Arg Tyr Gly Gly Val Tyr Val Gly Thr Leu Ser Arg Pro Glu Val 260 265 270 Lys Lys Ala Val Glu Ser Ala Asp Leu Ile Leu Ser Ile Gly Ala Leu 275 280 285 Leu Ser Asp Phe Asn Thr Gly Ser Phe Ser Tyr Ser Tyr Lys Thr Lys 290 295 300 Asn Ile Val Glu Phe His Ser Asp His Ile Lys Ile Arg Asn Ala Thr 305 310 315 320 Phe Pro Gly Val Gln Met Lys Phe Ala Leu Gln Lys Leu Leu Asp Ala 325 330 335 Ile Pro Glu Val Val Lys Asp Tyr Lys Pro Val Ala Val Pro Ala Arg 340 345 350 Val Pro Ile Thr Lys Ser Thr Pro Ala Asn Thr Pro Met Lys Gln Glu 355 360 365 Trp Met Trp Asn His Leu Gly Asn Phe Leu Arg Glu Gly Asp Ile Val 370 375 380 Ile Ala Glu Thr Gly Thr Ser Ala Phe Gly Ile Asn Gln Thr Thr Phe 385 390 395 400 Pro Thr Asp Val Tyr Ala Ile Val Gln Val Leu Trp Gly Ser Ile Gly 405 410 415 Phe Thr Val Gly Ala Leu Leu Gly Ala Thr Met Ala Ala Glu Glu Leu 420 425 430 Asp Pro Lys Lys Arg Val Ile Leu Phe Ile Gly Asp Gly Ser Leu Gln 435 440 445 Leu Thr Val Gln Glu Ile Ser Thr Met Ile Arg Trp Gly Leu Lys Pro 450 455 460 Tyr Ile Phe Val Leu Asn Asn Asn Gly Tyr Thr Ile Glu Lys Leu Ile 465 470 475 480 His Gly Pro His Ala Glu Tyr Asn Glu Ile Gln Gly Trp Asp His Leu 485 490 495 Ala Leu Leu Pro Thr Phe Gly Ala Arg Asn Tyr Glu Thr His Arg Val 500 505 510 Ala Thr Thr Gly Glu Trp Glu Lys Leu Thr Gln Asp Lys Asp Phe Gln 515 520 525 Asp Asn Ser Lys Ile Arg Met Ile Glu Val Met Leu Pro Val Phe Asp 530 535 540 Ala Pro Gln Asn Leu Val Lys Gln Ala Gln Leu Thr Ala Ala Thr Asn 545 550 555 560 Ala Lys Gln <210> 110 <211> 1689 <212> DNA <213> Saccharomyces cerevisiae <400> 110 atgtctgaaa taaccttagg taaatattta tttgaaagat tgagccaagt caactgtaac 60 accgtcttcg gtttgccagg tgactttaac ttgtctcttt tggataagct ttatgaagtc 120 aaaggtatga gatgggctgg taacgctaac gaattgaacg ctgcctatgc tgctgatggt 180 tacgctcgta tcaagggtat gtcctgtatt attaccacct tcggtgttgg tgaattgtct 240 gctttgaatg gtattgccgg ttcttacgct gaacatgtcg gtgttttgca cgttgttggt 300 gttccatcca tctcttctca agctaagcaa ttgttgttgc atcatacctt gggtaacggt 360 gacttcactg ttttccacag aatgtctgcc aacatttctg aaaccactgc catgatcact 420 gatattgcta acgctccagc tgaaattgac agatgtatca gaaccaccta cactacccaa 480 agaccagtct acttgggttt gccagctaac ttggttgact tgaacgtccc agccaagtta 540 ttggaaactc caattgactt gtctttgaag ccaaacgacg ctgaagctga agctgaagtt 600 gttagaactg ttgttgaatt gatcaaggat gctaagaacc cagttatctt ggctgatgct 660 tgtgcttcta gacatgatgt caaggctgaa actaagaagt tgatggactt gactcaattc 720 ccagtttacg tcaccccaat gggtaagggt gctattgacg aacaacaccc aagatacggt 780 ggtgtttacg ttggtacctt gtctagacca gaagttaaga aggctgtaga atctgctgat 840 ttgatattgt ctatcggtgc tttgttgtct gatttcaata ccggttcttt ctcttactcc 900 tacaagacca aaaatatcgt tgaattccac tctgaccaca tcaagatcag aaacgccacc 960 ttcccaggtg ttcaaatgaa atttgccttg caaaaattgt tggatgctat tccagaagtc 1020 gtcaaggact acaaacctgt tgctgtccca gctagagttc caattaccaa gtctactcca 1080 gctaacactc caatgaagca agaatggatg tggaaccatt tgggtaactt cttgagagaa 1140 ggtgatattg ttattgctga aaccggtact tccgccttcg gtattaacca aactactttc 1200 ccaacagatg tatacgctat cgtccaagtc ttgtggggtt ccattggttt cacagtcggc 1260 gctctattgg gtgctactat ggccgctgaa gaacttgatc caaagaagag agttatttta 1320 ttcattggtg acggttctct acaattgact gttcaagaaa tctctaccat gattagatgg 1380 ggtttgaagc catacatttt tgtcttgaat aacaacggtt acaccattga aaaattgatt 1440 cacggtcctc atgccgaata taatgaaatt caaggttggg accacttggc cttattgcca 1500 acttttggtg ctagaaacta cgaaacccac agagttgcta ccactggtga atgggaaaag 1560 ttgactcaag acaaggactt ccaagacaac tctaagatta gaatgattga agttatgttg 1620 ccagtctttg atgctccaca aaacttggtt aaacaagctc aattgactgc cgctactaac 1680 gctaaacaa 1689 <210> 111 <211> 533 <212> PRT <213> Saccharomyces cerevisiae <400> 111 Met Ser Glu Ile Thr Leu Gly Lys Tyr Leu Phe Glu Arg Leu Lys Gln 1 5 10 15 Val Asn Val Asn Thr Ile Phe Gly Leu Pro Gly Asp Phe Asn Leu Ser 20 25 30 Leu Leu Asp Lys Ile Tyr Glu Val Asp Gly Leu Arg Trp Ala Gly Asn 35 40 45 Ala Asn Glu Leu Asn Ala Ala Tyr Ala Ala Asp Gly Tyr Ala Arg Ile 50 55 60 Lys Gly Leu Ser Val Leu Val Thr Thr Phe Gly Val Gly Glu Leu Ser 65 70 75 80 Ala Leu Asn Gly Ile Ala Gly Ser Tyr Ala Glu His Val Gly Val Leu 85 90 95 His Val Val Gly Val Pro Ser Ile Ser Ala Gln Ala Lys Gln Leu Leu 100 105 110 Leu His His Thr Leu Gly Asn Gly Asp Phe Thr Val Phe His Arg Met 115 120 125 Ser Ala Asn Ile Ser Glu Thr Thr Ser Met Ile Thr Asp Ile Ala Thr 130 135 140 Ala Pro Ser Glu Ile Asp Arg Leu Ile Arg Thr Thr Phe Ile Thr Gln 145 150 155 160 Arg Pro Ser Tyr Leu Gly Leu Pro Ala Asn Leu Val Asp Leu Lys Val 165 170 175 Pro Gly Ser Leu Leu Glu Lys Pro Ile Asp Leu Ser Leu Lys Pro Asn 180 185 190 Asp Pro Glu Ala Glu Lys Glu Val Ile Asp Thr Val Leu Glu Leu Ile 195 200 205 Gln Asn Ser Lys Asn Pro Val Ile Leu Ser Asp Ala Cys Ala Ser Arg 210 215 220 His Asn Val Lys Lys Glu Thr Gln Lys Leu Ile Asp Leu Thr Gln Phe 225 230 235 240 Pro Ala Phe Val Thr Pro Leu Gly Lys Gly Ser Ile Asp Glu Gln His 245 250 255 Pro Arg Tyr Gly Gly Val Tyr Val Gly Thr Leu Ser Lys Gln Asp Val 260 265 270 Lys Gln Ala Val Glu Ser Ala Asp Leu Ile Leu Ser Val Gly Ala Leu 275 280 285 Leu Ser Asp Phe Asn Thr Gly Ser Phe Ser Tyr Ser Tyr Lys Thr Lys 290 295 300 Asn Val Val Glu Phe His Ser Asp Tyr Val Lys Val Lys Asn Ala Thr 305 310 315 320 Phe Leu Gly Val Gln Met Lys Phe Ala Leu Gln Asn Leu Leu Lys Val 325 330 335 Ile Pro Asp Val Val Lys Gly Tyr Lys Ser Val Pro Val Pro Thr Lys 340 345 350 Thr Pro Ala Asn Lys Gly Val Pro Ala Ser Thr Pro Leu Lys Gln Glu 355 360 365 Trp Leu Trp Asn Glu Leu Ser Lys Phe Leu Gln Glu Gly Asp Val Ile 370 375 380 Ile Ser Glu Thr Gly Thr Ser Ala Phe Gly Ile Asn Gln Thr Ile Phe 385 390 395 400 Pro Lys Asp Ala Tyr Gly Ile Ser Gln Val Leu Trp Gly Ser Ile Gly 405 410 415 Phe Thr Thr Gly Ala Thr Leu Gly Ala Ala Phe Ala Ala Glu Glu Ile 420 425 430 Asp Pro Asn Lys Arg Val Ile Leu Phe Ile Gly Asp Gly Ser Leu Gln 435 440 445 Leu Thr Val Gln Glu Ile Ser Thr Met Ile Arg Trp Gly Leu Lys Pro 450 455 460 Tyr Leu Phe Val Leu Asn Asn Asp Gly Tyr Thr Ile Glu Lys Leu Ile 465 470 475 480 His Gly Pro His Ala Glu Tyr Asn Glu Ile Gln Thr Trp Asp His Leu 485 490 495 Ala Leu Leu Pro Ala Phe Gly Ala Lys Lys Tyr Glu Asn His Lys Ile 500 505 510 Ala Thr Thr Gly Glu Trp Asp Ala Leu Thr Thr Asp Ser Glu Phe Gln 515 520 525 Lys Asn Ser Val Ile 530 <210> 112 <211> 1599 <212> DNA <213> Saccharomyces cerevisiae <400> 112 atgtctgaaa ttactcttgg aaaatactta tttgaaagat tgaagcaagt taatgttaac 60 accatttttg ggctaccagg cgacttcaac ttgtccctat tggacaagat ttacgaggta 120 gatggattga gatgggctgg taatgcaaat gagctgaacg ccgcctatgc cgccgatggt 180 tacgcacgca tcaagggttt atctgtgctg gtaactactt ttggcgtagg tgaattatcc 240 gccttgaatg gtattgcagg atcgtatgca gaacacgtcg gtgtactgca tgttgttggt 300 gtcccctcta tctccgctca ggctaagcaa ttgttgttgc atcatacctt gggtaacggt 360 gattttaccg tttttcacag aatgtccgcc aatatctcag aaactacatc aatgattaca 420 gacattgcta cagccccttc agaaatcgat aggttgatca ggacaacatt tataacacaa 480 aggcctagct acttggggtt gccagcgaat ttggtagatc taaaggttcc tggttctctt 540 ttggaaaaac cgattgatct atcattaaaa cctaacgatc ccgaagctga aaaggaagtt 600 attgataccg tactagaatt gatccagaat tcgaaaaacc ctgttatact atcggatgcc 660 tgtgcttcta ggcacaacgt taaaaaagaa acccagaagt taattgattt gacgcaattc 720 ccagcttttg tgacacctct aggtaaaggg tcaatagatg aacagcatcc cagatatggc 780 ggtgtttatg tgggaacgct gtccaaacaa gacgtgaaac aggccgttga gtcggctgat 840 ttgatccttt cggtcggtgc tttgctctct gattttaaca caggttcgtt ttcctactcc 900 tacaagacta aaaatgtagt ggagtttcat tccgattacg taaaggtgaa gaacgctacg 960 ttcctcggtg tacaaatgaa atttgcacta caaaacttac tgaaggttat tcccgatgtt 1020 gttaagggct acaagagcgt tcccgtacca accaaaactc ccgcaaacaa aggtgtacct 1080 gctagcacgc ccttgaaaca agagtggttg tggaacgaat tgtccaaatt cttgcaagaa 1140 ggtgatgtta tcatttccga gaccggcacg tctgccttcg gtatcaatca aactatcttt 1200 cctaaggacg cctacggtat ctcgcaggtg ttgtgggggt ccatcggttt tacaacagga 1260 gcaactttag gtgctgcctt tgccgctgag gagattgacc ccaacaagag agtcatctta 1320 ttcataggtg acgggtcttt gcagttaacc gtccaagaaa tctccaccat gatcagatgg 1380 gggttaaagc cgtatctttt tgtccttaac aacgacggct acactatcga aaagctgatt 1440 catgggcctc acgcagagta caacgaaatc cagacctggg atcacctcgc cctgttgccc 1500 gcatttggtg cgaaaaagta cgaaaatcac aagatcgcca ctacgggtga gtgggatgcc 1560 ttaaccactg attcagagtt ccagaaaaac tcggtgatc 1599 <210> 113 <211> 564 <212> PRT <213> Candida glabrata <400> 113 Met Ser Glu Ile Thr Leu Gly Arg Tyr Leu Phe Glu Arg Leu Asn Gln 1 5 10 15 Val Asp Val Lys Thr Ile Phe Gly Leu Pro Gly Asp Phe Asn Leu Ser 20 25 30 Leu Leu Asp Lys Ile Tyr Glu Val Glu Gly Met Arg Trp Ala Gly Asn 35 40 45 Ala Asn Glu Leu Asn Ala Ala Tyr Ala Ala Asp Gly Tyr Ala Arg Ile 50 55 60 Lys Gly Met Ser Cys Ile Ile Thr Thr Phe Gly Val Gly Glu Leu Ser 65 70 75 80 Ala Leu Asn Gly Ile Ala Gly Ser Tyr Ala Glu His Val Gly Val Leu 85 90 95 His Val Val Gly Val Pro Ser Ile Ser Ser Gln Ala Lys Gln Leu Leu 100 105 110 Leu His His Thr Leu Gly Asn Gly Asp Phe Thr Val Phe His Arg Met 115 120 125 Ser Ala Asn Ile Ser Glu Thr Thr Ala Met Val Thr Asp Ile Ala Thr 130 135 140 Ala Pro Ala Glu Ile Asp Arg Cys Ile Arg Thr Thr Tyr Ile Thr Gln 145 150 155 160 Arg Pro Val Tyr Leu Gly Leu Pro Ala Asn Leu Val Asp Leu Lys Val 165 170 175 Pro Ala Lys Leu Leu Glu Thr Pro Ile Asp Leu Ser Leu Lys Pro Asn 180 185 190 Asp Pro Glu Ala Glu Thr Glu Val Val Asp Thr Val Leu Glu Leu Ile 195 200 205 Lys Ala Ala Lys Asn Pro Val Ile Leu Ala Asp Ala Cys Ala Ser Arg 210 215 220 His Asp Val Lys Ala Glu Thr Lys Lys Leu Ile Asp Ala Thr Gln Phe 225 230 235 240 Pro Ser Phe Val Thr Pro Met Gly Lys Gly Ser Ile Asp Glu Gln His 245 250 255 Pro Arg Phe Gly Gly Val Tyr Val Gly Thr Leu Ser Arg Pro Glu Val 260 265 270 Lys Glu Ala Val Glu Ser Ala Asp Leu Ile Leu Ser Val Gly Ala Leu 275 280 285 Leu Ser Asp Phe Asn Thr Gly Ser Phe Ser Tyr Ser Tyr Lys Thr Lys 290 295 300 Asn Ile Val Glu Phe His Ser Asp Tyr Ile Lys Ile Arg Asn Ala Thr 305 310 315 320 Phe Pro Gly Val Gln Met Lys Phe Ala Leu Gln Lys Leu Leu Asn Ala 325 330 335 Val Pro Glu Ala Ile Lys Gly Tyr Lys Pro Val Pro Val Pro Ala Arg 340 345 350 Val Pro Glu Asn Lys Ser Cys Asp Pro Ala Thr Pro Leu Lys Gln Glu 355 360 365 Trp Met Trp Asn Gln Val Ser Lys Phe Leu Gln Glu Gly Asp Val Val 370 375 380 Ile Thr Glu Thr Gly Thr Ser Ala Phe Gly Ile Asn Gln Thr Pro Phe 385 390 395 400 Pro Asn Asn Ala Tyr Gly Ile Ser Gln Val Leu Trp Gly Ser Ile Gly 405 410 415 Phe Thr Thr Gly Ala Cys Leu Gly Ala Ala Phe Ala Ala Glu Glu Ile 420 425 430 Asp Pro Lys Lys Arg Val Ile Leu Phe Ile Gly Asp Gly Ser Leu Gln 435 440 445 Leu Thr Val Gln Glu Ile Ser Thr Met Ile Arg Trp Gly Leu Lys Pro 450 455 460 Tyr Leu Phe Val Leu Asn Asn Asp Gly Tyr Thr Ile Glu Arg Leu Ile 465 470 475 480 His Gly Glu Lys Ala Gly Tyr Asn Asp Ile Gln Asn Trp Asp His Leu 485 490 495 Ala Leu Leu Pro Thr Phe Gly Ala Lys Asp Tyr Glu Asn His Arg Val 500 505 510 Ala Thr Thr Gly Glu Trp Asp Lys Leu Thr Gln Asp Lys Glu Phe Asn 515 520 525 Lys Asn Ser Lys Ile Arg Met Ile Glu Val Met Leu Pro Val Met Asp 530 535 540 Ala Pro Thr Ser Leu Ile Glu Gln Ala Lys Leu Thr Ala Ser Ile Asn 545 550 555 560 Ala Lys Gln Glu <210> 114 <211> 1692 <212> DNA <213> Candida glabrata <400> 114 atgtctgaga ttactttggg tagatacttg ttcgagagat tgaaccaagt cgacgttaag 60 accatcttcg gtttgccagg tgacttcaac ttgtccctat tggacaagat ctacgaagtt 120 gaaggtatga gatgggctgg taacgctaac gaattgaacg ctgcttacgc tgctgacggt 180 tacgctagaa tcaagggtat gtcctgtatc atcaccacct tcggtgtcgg tgaattgtct 240 gccttgaacg gtattgccgg ttcttacgct gaacacgtcg gtgtcttgca cgtcgtcggt 300 gtcccatcca tctcctctca agctaagcaa ttgttgttgc accacacctt gggtaacggt 360 gacttcactg tcttccacag aatgtccgct aacatctctg agaccaccgc tatggtcact 420 gacatcgcta ccgctccagc tgagatcgac agatgtatca gaaccaccta catcacccaa 480 agaccagtct acttgggtct accagctaac ttggtcgacc taaaggtccc agccaagctt 540 ttggaaaccc caattgactt gtccttgaag ccaaacgacc cagaagccga aactgaagtc 600 gttgacaccg tcttggaatt gatcaaggct gctaagaacc cagttatctt ggctgatgct 660 tgtgcttcca gacacgacgt caaggctgaa accaagaagt tgattgacgc cactcaattc 720 ccatccttcg ttaccccaat gggtaagggt tccatcgacg aacaacaccc aagattcggt 780 ggtgtctacg tcggtacctt gtccagacca gaagttaagg aagctgttga atccgctgac 840 ttgatcttgt ctgtcggtgc tttgttgtcc gatttcaaca ctggttcttt ctcttactct 900 tacaagacca agaacatcgt cgaattccac tctgactaca tcaagatcag aaacgctacc 960 ttcccaggtg tccaaatgaa gttcgctttg caaaagttgt tgaacgccgt cccagaagct 1020 atcaagggtt acaagccagt ccctgtccca gctagagtcc cagaaaacaa gtcctgtgac 1080 ccagctaccc cattgaagca agaatggatg tggaaccaag tttccaagtt cttgcaagaa 1140 ggtgatgttg ttatcactga aaccggtacc tccgcttttg gtatcaacca aaccccattc 1200 ccaaacaacg cttacggtat ctcccaagtt ctatggggtt ccatcggttt caccaccggt 1260 gcttgtttgg gtgccgcttt cgctgctgaa gaaatcgacc caaagaagag agttatcttg 1320 ttcattggtg acggttcttt gcaattgact gtccaagaaa tctccaccat gatcagatgg 1380 ggcttgaagc catacttgtt cgtcttgaac aacgacggtt acaccatcga aagattgatt 1440 cacggtgaaa aggctggtta caacgacatc caaaactggg accacttggc tctattgcca 1500 accttcggtg ctaaggacta cgaaaaccac agagtcgcca ccaccggtga atgggacaag 1560 ttgacccaag acaaggaatt caacaagaac tccaagatca gaatgatcga agttatgttg 1620 ccagttatgg acgctccaac ttccttgatt gaacaagcta agttgaccgc ttccatcaac 1680 gctaagcaag aa 1692 <210> 115 <211> 596 <212> PRT <213> Pichia stipitis <400> 115 Met Ala Glu Val Ser Leu Gly Arg Tyr Leu Phe Glu Arg Leu Tyr Gln 1 5 10 15 Leu Gln Val Gln Thr Ile Phe Gly Val Pro Gly Asp Phe Asn Leu Ser 20 25 30 Leu Leu Asp Lys Ile Tyr Glu Val Glu Asp Ala His Gly Lys Asn Ser 35 40 45 Phe Arg Trp Ala Gly Asn Ala Asn Glu Leu Asn Ala Ser Tyr Ala Ala 50 55 60 Asp Gly Tyr Ser Arg Val Lys Arg Leu Gly Cys Leu Val Thr Thr Phe 65 70 75 80 Gly Val Gly Glu Leu Ser Ala Leu Asn Gly Ile Ala Gly Ser Tyr Ala 85 90 95 Glu His Val Gly Leu Leu His Val Val Gly Val Pro Ser Ile Ser Ser 100 105 110 Gln Ala Lys Gln Leu Leu Leu His His Thr Leu Gly Asn Gly Asp Phe 115 120 125 Thr Val Phe His Arg Met Ser Asn Asn Ile Ser Gln Thr Thr Ala Phe 130 135 140 Ile Ser Asp Ile Asn Ser Ala Pro Ala Glu Ile Asp Arg Cys Ile Arg 145 150 155 160 Glu Ala Tyr Val Lys Gln Arg Pro Val Tyr Ile Gly Leu Pro Ala Asn 165 170 175 Leu Val Asp Leu Asn Val Pro Ala Ser Leu Leu Glu Ser Pro Ile Asn 180 185 190 Leu Ser Leu Glu Lys Asn Asp Pro Glu Ala Gln Asp Glu Val Ile Asp 195 200 205 Ser Val Leu Asp Leu Ile Lys Lys Ser Ser Asn Pro Ile Ile Leu Val 210 215 220 Asp Ala Cys Ala Ser Arg His Asp Cys Lys Ala Glu Val Thr Gln Leu 225 230 235 240 Ile Glu Gln Thr Gln Phe Pro Val Phe Val Thr Pro Met Gly Lys Gly 245 250 255 Thr Val Asp Glu Gly Gly Val Asp Gly Glu Leu Leu Glu Asp Asp Pro 260 265 270 His Leu Ile Ala Lys Val Ala Ala Arg Leu Ser Ala Gly Lys Asn Ala 275 280 285 Ala Ser Arg Phe Gly Gly Val Tyr Val Gly Thr Leu Ser Lys Pro Glu 290 295 300 Val Lys Asp Ala Val Glu Ser Ala Asp Leu Ile Leu Ser Val Gly Ala 305 310 315 320 Leu Leu Ser Asp Phe Asn Thr Gly Ser Phe Ser Tyr Ser Tyr Arg Thr 325 330 335 Lys Asn Ile Val Glu Phe His Ser Asp Tyr Thr Lys Ile Arg Gln Ala 340 345 350 Thr Phe Pro Gly Val Gln Met Lys Glu Ala Leu Gln Glu Leu Asn Lys 355 360 365 Lys Val Ser Ser Ala Ala Ser His Tyr Glu Val Lys Pro Val Pro Lys 370 375 380 Ile Lys Leu Ala Asn Thr Pro Ala Thr Arg Glu Val Lys Leu Thr Gln 385 390 395 400 Glu Trp Leu Trp Thr Arg Val Ser Ser Trp Phe Arg Glu Gly Asp Ile 405 410 415 Ile Ile Thr Glu Thr Gly Thr Ser Ser Phe Gly Ile Val Gln Ser Arg 420 425 430 Phe Pro Asn Asn Thr Ile Gly Ile Ser Gln Val Leu Trp Gly Ser Ile 435 440 445 Gly Phe Ser Val Gly Ala Thr Leu Gly Ala Ala Met Ala Ala Gln Glu 450 455 460 Leu Asp Pro Asn Lys Arg Thr Ile Leu Phe Val Gly Asp Gly Ser Leu 465 470 475 480 Gln Leu Thr Val Gln Glu Ile Ser Thr Ile Ile Arg Trp Gly Thr Thr 485 490 495 Pro Tyr Leu Phe Val Leu Asn Asn Asp Gly Tyr Thr Ile Glu Arg Leu 500 505 510 Ile His Gly Val Asn Ala Ser Tyr Asn Asp Ile Gln Pro Trp Gln Asn 515 520 525 Leu Glu Ile Leu Pro Thr Phe Ser Ala Lys Asn Tyr Asp Ala Val Arg 530 535 540 Ile Ser Asn Ile Gly Glu Ala Glu Asp Ile Leu Lys Asp Lys Glu Phe 545 550 555 560 Gly Lys Asn Ser Lys Ile Arg Leu Ile Glu Val Met Leu Pro Arg Leu 565 570 575 Asp Ala Pro Ser Asn Leu Ala Lys Gln Ala Ala Ile Thr Ala Ala Thr 580 585 590 Asn Ala Glu Ala 595 <210> 116 <211> 1788 <212> DNA <213> Pichia stipitis <400> 116 atggctgaag tctcattagg aagatatctc ttcgagagat tgtaccaatt gcaagtgcag 60 accatcttcg gtgtccctgg tgatttcaac ttgtcgcttt tggacaagat ctacgaagtg 120 gaagatgccc atggcaagaa ttcgtttaga tgggctggta atgccaacga attgaatgca 180 tcgtacgctg ctgacggtta ctcgagagtc aagcgtttag ggtgtttggt cactaccttt 240 ggtgtcggtg aattgtctgc tttgaatggt attgccggtt cttatgccga acatgttggt 300 ttgcttcatg tcgtaggtgt tccatcgatt tcctcgcaag ctaagcaatt gttacttcac 360 cacactttgg gtaatggtga tttcactgtt ttccatagaa tgtccaacaa catttctcag 420 accacagcct ttatctccga tatcaactcg gctccagctg aaattgatag atgtatcaga 480 gaggcctacg tcaaacaaag accagtttat atcgggttac cagctaactt agttgatttg 540 aatgttccgg cctctttgct tgagtctcca atcaacttgt cgttggaaaa gaacgaccca 600 gaggctcaag atgaagtcat tgactctgtc ttagacttga tcaaaaagtc gctgaaccca 660 atcatcttgg tcgatgcctg tgcctcgaga catgactgta aggctgaagt tactcagttg 720 attgaacaaa cccaattccc agtatttgtc actccaatgg gtaaaggtac cgttgatgag 780 ggtggtgtag acggagaatt gttagaagat gatcctcatt tgattgccaa ggtcgctgct 840 aggttgtctg ctggcaagaa cgctgcctct agattcggag gtgtttatgt cggaaccttg 900 tcgaagcccg aagtcaagga cgctgtagag agtgcagatt tgattttgtc tgtcggtgcc 960 cttttgtctg atttcaacac tggttcattt tcctactcct acagaaccaa gaacatcgtc 1020 gaattccatt ctgattacac taagattaga caagccactt tcccaggtgt gcagatgaag 1080 gaagccttgc aagaattgaa caagaaagtt tcatctgctg ctagtcacta tgaagtcaag 1140 cctgtgccca agatcaagtt ggccaataca ccagccacca gagaagtcaa gttaactcag 1200 gaatggttgt ggaccagagt gtcttcgtgg ttcagagaag gtgatattat tatcaccgaa 1260 accggtacat cctccttcgg tatagttcaa tccagattcc caaacaacac catcggtatc 1320 tcccaagtat tgtggggttc tattggtttc tctgttggtg ccactttggg tgctgccatg 1380 gctgcccaag aactcgaccc taacaagaga accatcttgt ttgttggaga tggttctttg 1440 caattgaccg ttcaggaaat ctccaccata atcagatggg gtaccacacc ttaccttttc 1500 gtgttgaaca atgacggtta caccatcgag cgtttgatcc acggtgtaaa tgcctcatat 1560 aatgacatcc aaccatggca aaacttggaa atcttgccta ctttctcggc caagaactac 1620 gacgctgtga gaatctccaa catcggagaa gcagaagata tcttgaaaga caaggaattc 1680 ggaaagaact ccaagattag attgatagaa gtcatgttac caagattgga tgcaccatct 1740 aaccttgcca aacaagctgc cattacagct gccaccaacg ccgaagct 1788 <210> 117 <211> 569 <212> PRT <213> Pichia stipitis <400> 117 Met Val Ser Thr Tyr Pro Glu Ser Glu Val Thr Leu Gly Arg Tyr Leu 1 5 10 15 Phe Glu Arg Leu His Gln Leu Lys Val Asp Thr Ile Phe Gly Leu Pro 20 25 30 Gly Asp Phe Asn Leu Ser Leu Leu Asp Lys Val Tyr Glu Val Pro Asp 35 40 45 Met Arg Trp Ala Gly Asn Ala Asn Glu Leu Asn Ala Ala Tyr Ala Ala 50 55 60 Asp Gly Tyr Ser Arg Ile Lys Gly Leu Ser Cys Leu Val Thr Thr Phe 65 70 75 80 Gly Val Gly Glu Leu Ser Ala Leu Asn Gly Val Gly Gly Ala Tyr Ala 85 90 95 Glu His Val Gly Leu Leu His Val Val Gly Val Pro Ser Ile Ser Ser 100 105 110 Gln Ala Lys Gln Leu Leu Leu His His Thr Leu Gly Asn Gly Asp Phe 115 120 125 Thr Val Phe His Arg Met Ser Asn Ser Ile Ser Gln Thr Thr Ala Phe 130 135 140 Leu Ser Asp Ile Ser Ile Ala Pro Gly Gln Ile Asp Arg Cys Ile Arg 145 150 155 160 Glu Ala Tyr Val His Gln Arg Pro Val Tyr Val Gly Leu Pro Ala Asn 165 170 175 Met Val Asp Leu Lys Val Pro Ser Ser Leu Leu Glu Thr Pro Ile Asp 180 185 190 Leu Lys Leu Lys Gln Asn Asp Pro Glu Ala Gln Glu Val Val Glu Thr 195 200 205 Val Leu Lys Leu Val Ser Gln Ala Thr Asn Pro Ile Ile Leu Val Asp 210 215 220 Ala Cys Ala Leu Arg His Asn Cys Lys Glu Glu Val Lys Gln Leu Val 225 230 235 240 Asp Ala Thr Asn Phe Gln Val Phe Thr Thr Pro Met Gly Lys Ser Gly 245 250 255 Ile Ser Glu Ser His Pro Arg Leu Gly Gly Val Tyr Val Gly Thr Met 260 265 270 Ser Ser Pro Gln Val Lys Lys Ala Val Glu Asn Ala Asp Leu Ile Leu 275 280 285 Ser Val Gly Ser Leu Leu Ser Asp Phe Asn Thr Gly Ser Phe Ser Tyr 290 295 300 Ser Tyr Lys Thr Lys Asn Val Val Glu Phe His Ser Asp Tyr Met Lys 305 310 315 320 Ile Arg Gln Ala Thr Phe Pro Gly Val Gln Met Lys Glu Ala Leu Gln 325 330 335 Gln Leu Ile Lys Arg Val Ser Ser Tyr Ile Asn Pro Ser Tyr Ile Pro 340 345 350 Thr Arg Val Pro Lys Arg Lys Gln Pro Leu Lys Ala Pro Ser Glu Ala 355 360 365 Pro Leu Thr Gln Glu Tyr Leu Trp Ser Lys Val Ser Gly Trp Phe Arg 370 375 380 Glu Gly Asp Ile Ile Val Thr Glu Thr Gly Thr Ser Ala Phe Gly Ile 385 390 395 400 Ile Gln Ser His Phe Pro Ser Asn Thr Ile Gly Ile Ser Gln Val Leu 405 410 415 Trp Gly Ser Ile Gly Phe Thr Val Gly Ala Thr Val Gly Ala Ala Met 420 425 430 Ala Ala Gln Glu Ile Asp Pro Ser Arg Arg Val Ile Leu Phe Val Gly 435 440 445 Asp Gly Ser Leu Gln Leu Thr Val Gln Glu Ile Ser Thr Leu Cys Lys 450 455 460 Trp Asp Cys Asn Asn Thr Tyr Leu Tyr Val Leu Asn Asn Asp Gly Tyr 465 470 475 480 Thr Ile Glu Arg Leu Ile His Gly Lys Ser Ala Ser Tyr Asn Asp Ile 485 490 495 Gln Pro Trp Asn His Leu Ser Leu Leu Arg Leu Phe Asn Ala Lys Lys 500 505 510 Tyr Gln Asn Val Arg Val Ser Thr Ala Gly Glu Leu Asp Ser Leu Phe 515 520 525 Ser Asp Lys Lys Phe Ala Ser Pro Asp Arg Ile Arg Met Ile Glu Val 530 535 540 Met Leu Ser Arg Leu Asp Ala Pro Ala Asn Leu Val Ala Gln Ala Lys 545 550 555 560 Leu Ser Glu Arg Val Asn Leu Glu Asn 565 <210> 118 <211> 1707 <212> DNA <213> Pichia stipitis <400> 118 atggtatcaa cctacccaga atcagaggtt actctaggaa ggtacctctt tgagcgactc 60 caccaattga aagtggacac cattttcggc ttgccgggtg acttcaacct ttccttattg 120 gacaaagtgt atgaagttcc ggatatgagg tgggctggaa atgccaacga attgaatgct 180 gcctatgctg ccgatggtta ctccagaata aagggattgt cttgcttggt cacaactttt 240 ggtgttggtg aattgtctgc tttaaacgga gttggtggtg cctatgctga acacgtagga 300 cttctacatg tcgttggagt tccatccata tcgtcacagg ctaaacagtt gttgctccac 360 cataccttgg gtaatggtga cttcactgtt tttcacagaa tgtccaatag catttctcaa 420 actacagcat ttctctcaga tatctctatt gcaccaggtc aaatagatag atgcatcaga 480 gaagcatatg ttcatcagag accagtttat gttggtttac cggcaaatat ggttgatctc 540 aaggttcctt ctagtctctt agaaactcca attgatttga aattgaaaca aaatgatcct 600 gaagctcaag aagttgttga aacagtcctg aagttggtgt cccaagctac aaaccccatt 660 atcttggtag acgcttgtgc cctcagacac aattgcaaag aggaagtcaa acaattggtt 720 gatgccacta attttcaagt ctttacaact ccaatgggta aatctggtat ctccgaatct 780 catccaagat tgggcggtgt ctatgtcggg acaatgtcga gtcctcaagt caaaaaagcc 840 gttgaaaatg ccgatcttat actatctgtt ggttcgttgt tatcggactt caatacaggt 900 tcattttcat actcctacaa gacgaagaat gttgttgaat tccactctga ctatatgaaa 960 atcagacagg ccaccttccc aggagttcaa atgaaagaag ccttgcaaca gttgataaaa 1020 agggtctctt cttacatcaa tccaagctac attcctactc gagttcctaa aaggaaacag 1080 ccattgaaag ctccatcaga agctcctttg acccaagaat atttgtggtc taaagtatcc 1140 ggctggttta gagagggtga tattatcgta accgaaactg gtacatctgc tttcggaatt 1200 attcaatccc attttcccag caacactatc ggtatatccc aagtcttgtg gggctcaatt 1260 ggtttcacag taggtgcaac agttggtgct gccatggcag cccaggaaat cgaccctagc 1320 aggagagtaa ttttgttcgt cggtgatggt tcattgcagt tgacggttca ggaaatctct 1380 acgttgtgta aatgggattg taacaatact tatctttacg tgttgaacaa tgatggttac 1440 actatagaaa ggttgatcca cggcaaaagt gccagctaca acgatataca gccttggaac 1500 catttatcct tgcttcgctt attcaatgct aagaaatacc aaaatgtcag agtatcgact 1560 gctggagaat tggactcttt gttctctgat aagaaatttg cttctccaga taggataaga 1620 atgattgagg tgatgttatc gagattggat gcaccagcaa atcttgttgc tcaagcaaag 1680 ttgtctgaac gggtaaacct tgaaaat 1707 <210> 119 <211> 563 <212> PRT <213> Kluyveromyces lactis <400> 119 Met Ser Glu Ile Thr Leu Gly Arg Tyr Leu Phe Glu Arg Leu Lys Gln 1 5 10 15 Val Glu Val Gln Thr Ile Phe Gly Leu Pro Gly Asp Phe Asn Leu Ser 20 25 30 Leu Leu Asp Asn Ile Tyr Glu Val Pro Gly Met Arg Trp Ala Gly Asn 35 40 45 Ala Asn Glu Leu Asn Ala Ala Tyr Ala Ala Asp Gly Tyr Ala Arg Leu 50 55 60 Lys Gly Met Ser Cys Ile Ile Thr Thr Phe Gly Val Gly Glu Leu Ser 65 70 75 80 Ala Leu Asn Gly Ile Ala Gly Ser Tyr Ala Glu His Val Gly Val Leu 85 90 95 His Val Val Gly Val Pro Ser Val Ser Ser Gln Ala Lys Gln Leu Leu 100 105 110 Leu His His Thr Leu Gly Asn Gly Asp Phe Thr Val Phe His Arg Met 115 120 125 Ser Ser Asn Ile Ser Glu Thr Thr Ala Met Ile Thr Asp Ile Asn Thr 130 135 140 Ala Pro Ala Glu Ile Asp Arg Cys Ile Arg Thr Thr Tyr Val Ser Gln 145 150 155 160 Arg Pro Val Tyr Leu Gly Leu Pro Ala Asn Leu Val Asp Leu Thr Val 165 170 175 Pro Ala Ser Leu Leu Asp Thr Pro Ile Asp Leu Ser Leu Lys Pro Asn 180 185 190 Asp Pro Glu Ala Glu Glu Glu Val Ile Glu Asn Val Leu Gln Leu Ile 195 200 205 Lys Glu Ala Lys Asn Pro Val Ile Leu Ala Asp Ala Cys Cys Ser Arg 210 215 220 His Asp Ala Lys Ala Glu Thr Lys Lys Leu Ile Asp Leu Thr Gln Phe 225 230 235 240 Pro Ala Phe Val Thr Pro Met Gly Lys Gly Ser Ile Asp Glu Lys His 245 250 255 Pro Arg Phe Gly Gly Val Tyr Val Gly Thr Leu Ser Ser Pro Ala Val 260 265 270 Lys Glu Ala Val Glu Ser Ala Asp Leu Val Leu Ser Val Gly Ala Leu 275 280 285 Leu Ser Asp Phe Asn Thr Gly Ser Phe Ser Tyr Ser Tyr Lys Thr Lys 290 295 300 Asn Ile Val Glu Phe His Ser Asp Tyr Thr Lys Ile Arg Ser Ala Thr 305 310 315 320 Phe Pro Gly Val Gln Met Lys Phe Ala Leu Gln Lys Leu Leu Thr Lys 325 330 335 Val Ala Asp Ala Ala Lys Gly Tyr Lys Pro Val Pro Val Pro Ser Glu 340 345 350 Pro Glu His Asn Glu Ala Val Ala Asp Ser Thr Pro Leu Lys Gln Glu 355 360 365 Trp Val Trp Thr Gln Val Gly Glu Phe Leu Arg Glu Gly Asp Val Val 370 375 380 Ile Thr Glu Thr Gly Thr Ser Ala Phe Gly Ile Asn Gln Thr His Phe 385 390 395 400 Pro Asn Asn Thr Tyr Gly Ile Ser Gln Val Leu Trp Gly Ser Ile Gly 405 410 415 Phe Thr Thr Gly Ala Thr Leu Gly Ala Ala Phe Ala Ala Glu Glu Ile 420 425 430 Asp Pro Lys Lys Arg Val Ile Leu Phe Ile Gly Asp Gly Ser Leu Gln 435 440 445 Leu Thr Val Gln Glu Ile Ser Thr Met Ile Arg Trp Gly Leu Lys Pro 450 455 460 Tyr Leu Phe Val Leu Asn Asn Asp Gly Tyr Thr Ile Glu Arg Leu Ile 465 470 475 480 His Gly Glu Thr Ala Gln Tyr Asn Cys Ile Gln Asn Trp Gln His Leu 485 490 495 Glu Leu Leu Pro Thr Phe Gly Ala Lys Asp Tyr Glu Ala Val Arg Val 500 505 510 Ser Thr Thr Gly Glu Trp Asn Lys Leu Thr Thr Asp Glu Lys Phe Gln 515 520 525 Asp Asn Thr Arg Ile Arg Leu Ile Glu Val Met Leu Pro Thr Met Asp 530 535 540 Ala Pro Ser Asn Leu Val Lys Gln Ala Gln Leu Thr Ala Ala Thr Asn 545 550 555 560 Ala Lys Asn <210> 120 <211> 1689 <212> DNA <213> Kluyveromyces lactis <400> 120 atgtctgaaa ttacattagg tcgttacttg ttcgaaagat taaagcaagt cgaagttcaa 60 accatctttg gtctaccagg tgatttcaac ttgtccctat tggacaatat ctacgaagtc 120 ccaggtatga gatgggctgg taatgccaac gaattgaacg ctgcttacgc tgctgatggt 180 tacgccagat taaagggtat gtcctgtatc atcaccacct tcggtgtcgg tgaattgtct 240 gctttgaacg gtattgccgg ttcttacgct gaacacgttg gtgtcttgca cgttgtcggt 300 gttccatccg tctcttctca agctaagcaa ttgttgttgc accacacctt gggtaacggt 360 gacttcactg ttttccacag aatgtcctcc aacatttctg aaaccactgc tatgatcacc 420 gatatcaaca ctgccccagc tgaaatcgac agatgtatca gaaccactta cgtttcccaa 480 agaccagtct acttgggttt gccagctaac ttggtcgact tgactgtccc agcttctttg 540 ttggacactc caattgattt gagcttgaag ccaaatgacc cagaagccga agaagaagtc 600 atcgaaaacg tcttgcaact gatcaaggaa gctaagaacc cagttatctt ggctgatgct 660 tgttgttcca gacacgatgc caaggctgag accaagaagt tgatcgactt gactcaattc 720 ccagccttcg ttaccccaat gggtaagggt tccattgacg aaaagcaccc aagattcggt 780 ggtgtctacg tcggtaccct atcttctcca gctgtcaagg aagccgttga atctgctgac 840 ttggttctat cggtcggtgc tctattgtcc gatttcaaca ctggttcttt ctcttactct 900 tacaagacca agaacattgt cgaattccac tctgactaca ccaagatcag aagcgctacc 960 ttcccaggtg tccaaatgaa gttcgcttta caaaaattgt tgactaaggt tgccgatgct 1020 gctaagggtt acaagccagt tccagttcca tctgaaccag aacacaacga agctgtcgct 1080 gactccactc cattgaagca agaatgggtc tggactcaag tcggtgaatt cttgagagaa 1140 ggtgatgttg ttatcactga aaccggtacc tctgccttcg gtatcaacca aactcatttc 1200 ccaaacaaca catacggtat ctctcaagtt ttatggggtt ccattggttt caccactggt 1260 gctaccttgg gtgctgcctt cgctgccgaa gaaattgatc caaagaagag agttatctta 1320 ttcattggtg acggttcttt gcaattgact gttcaagaaa tctccaccat gatcagatgg 1380 ggcttgaagc catacttgtt cgtattgaac aacgacggtt acaccattga aagattgatt 1440 cacggtgaaa ccgctcaata caactgtatc caaaactggc aacacttgga attattgcca 1500 actttcggtg ccaaggacta cgaagctgtc agagtttcca ccactggtga atggaacaag 1560 ttgaccactg acgaaaagtt ccaagacaac accagaatca gattgatcga agttatgttg 1620 ccaactatgg atgctccatc taacttggtt aagcaagctc aattgactgc tgctaccaac 1680 gctaagaac 1689 <210> 121 <211> 571 <212> PRT <213> Yarrowia lipolytica <400> 121 Met Ser Asp Ser Glu Pro Gln Met Val Asp Leu Gly Asp Tyr Leu Phe 1 5 10 15 Ala Arg Phe Lys Gln Leu Gly Val Asp Ser Val Phe Gly Val Pro Gly 20 25 30 Asp Phe Asn Leu Thr Leu Leu Asp His Val Tyr Asn Val Asp Met Arg 35 40 45 Trp Val Gly Asn Thr Asn Glu Leu Asn Ala Gly Tyr Ser Ala Asp Gly 50 55 60 Tyr Ser Arg Val Lys Arg Leu Ala Cys Leu Val Thr Thr Phe Gly Val 65 70 75 80 Gly Glu Leu Ser Ala Val Ala Ala Val Ala Gly Ser Tyr Ala Glu His 85 90 95 Val Gly Val Val His Val Val Gly Val Pro Ser Thr Ser Ala Glu Asn 100 105 110 Lys His Leu Leu Leu His His Thr Leu Gly Asn Gly Asp Phe Arg Val 115 120 125 Phe Ala Gln Met Ser Lys Leu Ile Ser Glu Tyr Thr His His Ile Glu 130 135 140 Asp Pro Ser Glu Ala Ala Asp Val Ile Asp Thr Ala Ile Arg Ile Ala 145 150 155 160 Tyr Thr His Gln Arg Pro Val Tyr Ile Ala Val Pro Ser Asn Phe Ser 165 170 175 Glu Val Asp Ile Ala Asp Gln Ala Arg Leu Asp Thr Pro Leu Asp Leu 180 185 190 Ser Leu Gln Pro Asn Asp Pro Glu Ser Gln Tyr Glu Val Ile Glu Glu 195 200 205 Ile Cys Ser Arg Ile Lys Ala Ala Lys Lys Pro Val Ile Leu Val Asp 210 215 220 Ala Cys Ala Ser Arg Tyr Arg Cys Val Asp Glu Thr Lys Glu Leu Ala 225 230 235 240 Lys Ile Thr Asn Phe Ala Tyr Phe Val Thr Pro Met Gly Lys Gly Ser 245 250 255 Val Asp Glu Asp Thr Asp Arg Tyr Gly Gly Thr Tyr Val Gly Ser Leu 260 265 270 Thr Ala Pro Ala Thr Ala Glu Val Val Glu Thr Ala Asp Leu Ile Ile 275 280 285 Ser Val Gly Ala Leu Leu Ser Asp Phe Asn Thr Gly Ser Phe Ser Tyr 290 295 300 Ser Tyr Ser Thr Lys Asn Val Val Glu Leu His Ser Asp His Val Lys 305 310 315 320 Ile Lys Ser Ala Thr Tyr Asn Asn Val Gly Met Lys Met Leu Phe Pro 325 330 335 Pro Leu Leu Glu Ala Val Lys Lys Leu Val Ala Glu Thr Pro Asp Phe 340 345 350 Ala Ser Lys Ala Leu Ala Val Pro Asp Thr Thr Pro Lys Ile Pro Glu 355 360 365 Val Pro Asp Asp His Ile Thr Thr Gln Ala Trp Leu Trp Gln Arg Leu 370 375 380 Ser Tyr Phe Leu Arg Pro Thr Asp Ile Val Val Thr Glu Thr Gly Thr 385 390 395 400 Ser Ser Phe Gly Ile Ile Gln Thr Lys Phe Pro His Asn Val Arg Gly 405 410 415 Ile Ser Gln Val Leu Trp Gly Ser Ile Gly Tyr Ser Val Gly Ala Ala 420 425 430 Cys Gly Ala Ser Ile Ala Ala Gln Glu Ile Asp Pro Gln Gln Arg Val 435 440 445 Ile Leu Phe Val Gly Asp Gly Ser Leu Gln Leu Thr Val Thr Glu Ile 450 455 460 Ser Cys Met Ile Arg Asn Asn Val Lys Pro Tyr Ile Phe Val Leu Asn 465 470 475 480 Asn Asp Gly Tyr Thr Ile Glu Arg Leu Ile His Gly Glu Asn Ala Ser 485 490 495 Tyr Asn Asp Val His Met Trp Lys Tyr Ser Lys Ile Leu Asp Thr Phe 500 505 510 Asn Ala Lys Ala His Glu Ser Ile Val Val Asn Thr Lys Gly Glu Met 515 520 525 Asp Ala Leu Phe Asp Asn Glu Glu Phe Ala Lys Pro Asp Lys Ile Arg 530 535 540 Leu Ile Glu Val Met Cys Asp Lys Met Asp Ala Pro Ala Ser Leu Ile 545 550 555 560 Lys Gln Ala Glu Leu Ser Ala Lys Thr Asn Val 565 570 <210> 122 <211> 1713 <212> DNA <213> Yarrowia lipolytica <400> 122 atgagcgact ccgaacccca aatggtcgac ctgggcgact atctctttgc ccgattcaag 60 cagctaggcg tggactccgt ctttggagtg cccggcgact tcaacctcac cctgttggac 120 cacgtgtaca atgtcgacat gcggtgggtt gggaacacaa acgagctgaa tgccggctac 180 tcggccgacg gctactcccg ggtcaagcgg ctggcatgtc ttgtcaccac ctttggcgtg 240 ggagagctgt ctgccgtggc tgctgtggca ggctcgtacg ccgagcatgt gggcgtggtg 300 catgttgtgg gcgttcccag cacctctgct gagaacaagc atctgctgct gcaccacaca 360 ctcggtaacg gcgacttccg ggtctttgcc cagatgtcca aactcatctc cgagtacacc 420 caccatattg aggaccccag cgaggctgcc gacgtaatcg acaccgccat ccgaatcgcc 480 tacacccacc agcggcccgt ttacattgct gtgccctcca acttctccga ggtcgatatt 540 gccgaccagg ctagactgga tacccccctg gacctttcgc tgcagcccaa cgaccccgag 600 agccagtacg aggtgattga ggagatttgc tcgcgtatca aggccgccaa gaagcccgtg 660 attctcgtcg acgcctgcgc ttcgcgatac agatgtgtgg acgagaccaa ggagctggcc 720 aagatcacca actttgccta ctttgtcact cccatgggta agggttctgt ggacgaggat 780 actgaccggt acggaggaac atacgtcgga tcgctgactg ctcctgctac tgccgaggtg 840 gttgagacag ctgatctcat catctccgta ggagctcttc tgtcggactt caacaccggt 900 tccttctcgt actcctactc caccaaaaac gtggtggaat tgcattcgga ccacgtcaaa 960 atcaagtccg ccacctacaa caacgtcggc atgaaaatgc tgttcccgcc cctgctcgaa 1020 gccgtcaaga aactggttgc cgagacccct gactttgcat ccaaggctct ggctgttccc 1080 gacaccactc ccaagatccc cgaggtaccc gatgatcaca ttacgaccca ggcatggctg 1140 tggcagcgtc tcagttactt tctgaggccc accgacatcg tggtcaccga gaccggaacc 1200 tcgtcctttg gaatcatcca gaccaagttc ccccacaacg tccgaggtat ctcgcaggtg 1260 ctgtggggct ctattggata ctcggtggga gcagcctgtg gagcctccat tgctgcacag 1320 gagattgacc cccagcagcg agtgattctg tttgtgggcg acggctctct tcagctgacg 1380 gtgaccgaga tctcgtgcat gatccgcaac aacgtcaagc cgtacatttt tgtgctcaac 1440 aacgacggct acaccatcga gaggctcatt cacggcgaaa acgcctcgta caacgatgtg 1500 cacatgtgga agtactccaa gattctcgac acgttcaacg ccaaggccca cgagtcgatt 1560 gtggtcaaca ccaagggcga gatggacgct ctgttcgaca acgaagagtt tgccaagccc 1620 gacaagatcc ggctcattga ggtcatgtgc gacaagatgg acgcgcctgc ctcgttgatc 1680 aagcaggctg agctctctgc caagaccaac gtt 1713 <210> 123 <211> 571 <212> PRT <213> Schizosaccharomyces pombe <400> 123 Met Ser Gly Asp Ile Leu Val Gly Glu Tyr Leu Phe Lys Arg Leu Glu 1 5 10 15 Gln Leu Gly Val Lys Ser Ile Leu Gly Val Pro Gly Asp Phe Asn Leu 20 25 30 Ala Leu Leu Asp Leu Ile Glu Lys Val Gly Asp Glu Lys Phe Arg Trp 35 40 45 Val Gly Asn Thr Asn Glu Leu Asn Gly Ala Tyr Ala Ala Asp Gly Tyr 50 55 60 Ala Arg Val Asn Gly Leu Ser Ala Ile Val Thr Thr Phe Gly Val Gly 65 70 75 80 Glu Leu Ser Ala Ile Asn Gly Val Ala Gly Ser Tyr Ala Glu His Val 85 90 95 Pro Val Val His Ile Val Gly Met Pro Ser Thr Lys Val Gln Asp Thr 100 105 110 Gly Ala Leu Leu His His Thr Leu Gly Asp Gly Asp Phe Arg Thr Phe 115 120 125 Met Asp Met Phe Lys Lys Val Ser Ala Tyr Ser Ile Met Ile Asp Asn 130 135 140 Gly Asn Asp Ala Ala Glu Lys Ile Asp Glu Ala Leu Ser Ile Cys Tyr 145 150 155 160 Lys Lys Ala Arg Pro Val Tyr Ile Gly Ile Pro Ser Asp Ala Gly Tyr 165 170 175 Phe Lys Ala Ser Ser Ser Asn Leu Gly Lys Arg Leu Lys Leu Glu Glu 180 185 190 Asp Thr Asn Asp Pro Ala Val Glu Gln Glu Val Ile Asn His Ile Ser 195 200 205 Glu Met Val Val Asn Ala Lys Lys Pro Val Ile Leu Ile Asp Ala Cys 210 215 220 Ala Val Arg His Arg Val Val Pro Glu Val His Glu Leu Ile Lys Leu 225 230 235 240 Thr His Phe Pro Thr Tyr Val Thr Pro Met Gly Lys Ser Ala Ile Asp 245 250 255 Glu Thr Ser Gln Phe Phe Asp Gly Val Tyr Val Gly Ser Ile Ser Asp 260 265 270 Pro Glu Val Lys Asp Arg Ile Glu Ser Thr Asp Leu Leu Leu Ser Ile 275 280 285 Gly Ala Leu Lys Ser Asp Phe Asn Thr Gly Ser Phe Ser Tyr His Leu 290 295 300 Ser Gln Lys Asn Ala Val Glu Phe His Ser Asp His Met Arg Ile Arg 305 310 315 320 Tyr Ala Leu Tyr Pro Asn Val Ala Met Lys Tyr Ile Leu Arg Lys Leu 325 330 335 Leu Lys Val Leu Asp Ala Ser Met Cys His Ser Lys Ala Ala Pro Thr 340 345 350 Ile Gly Tyr Asn Ile Lys Pro Lys His Ala Glu Gly Tyr Ser Ser Asn 355 360 365 Glu Ile Thr His Cys Trp Phe Trp Pro Lys Phe Ser Glu Phe Leu Lys 370 375 380 Pro Arg Asp Val Leu Ile Thr Glu Thr Gly Thr Ala Asn Phe Gly Val 385 390 395 400 Leu Asp Cys Arg Phe Pro Lys Asp Val Thr Ala Ile Ser Gln Val Leu 405 410 415 Trp Gly Ser Ile Gly Tyr Ser Val Gly Ala Met Phe Gly Ala Val Leu 420 425 430 Ala Val His Asp Ser Lys Glu Pro Asp Arg Arg Thr Ile Leu Val Val 435 440 445 Gly Asp Gly Ser Leu Gln Leu Thr Ile Thr Glu Ile Ser Thr Cys Ile 450 455 460 Arg His Asn Leu Lys Pro Ile Ile Phe Ile Ile Asn Asn Asp Gly Tyr 465 470 475 480 Thr Ile Glu Arg Leu Ile His Gly Leu His Ala Ser Tyr Asn Glu Ile 485 490 495 Asn Thr Lys Trp Gly Tyr Gln Gln Ile Pro Lys Phe Phe Gly Ala Ala 500 505 510 Glu Asn His Phe Arg Thr Tyr Cys Val Lys Thr Pro Thr Asp Val Glu 515 520 525 Lys Leu Phe Ser Asp Lys Glu Phe Ala Asn Ala Asp Val Ile Gln Val 530 535 540 Val Glu Leu Val Met Pro Met Leu Asp Ala Pro Arg Val Leu Val Glu 545 550 555 560 Gln Ala Lys Leu Thr Ser Lys Ile Asn Lys Gln 565 570 <210> 124 <211> 1713 <212> DNA <213> Schizosaccharomyces pombe <400> 124 atgagtgggg atattttagt cggtgaatat ctattcaaaa ggcttgaaca attaggggtc 60 aagtccattc ttggtgttcc aggagatttc aatttagctc tacttgactt aattgagaaa 120 gttggagatg agaaatttcg ttgggttggc aataccaatg agttgaatgg tgcttatgcc 180 gctgatggtt atgctcgtgt taatggtctt tcagccattg ttacaacgtt cggcgtggga 240 gagctttccg ctattaatgg agtggcaggt tcttatgcgg agcatgtccc agtagttcat 300 attgttggaa tgccttccac aaaggtgcaa gatactggag ctttgcttca tcatacttta 360 ggagatggag actttcgcac tttcatggat atgtttaaga aagtttctgc ctacagtata 420 atgatcgata acggaaacga tgcagctgaa aagatcgatg aagccttgtc gatttgttat 480 aaaaaggcta ggcctgttta cattggtatt ccttctgatg ctggctactt caaagcatct 540 tcatcaaatc ttgggaaaag actaaagctc gaggaggata ctaacgatcc agcagttgag 600 caagaagtca tcaatcatat ctcggaaatg gttgtcaatg caaagaaacc agtgatttta 660 attgacgctt gtgctgtaag acatcgtgtc gttccagaag tacatgagct gattaaattg 720 acccatttcc ctacatatgt aactcccatg ggtaaatctg caattgacga aacttcgcaa 780 ttttttgacg gcgtttatgt tggttcaatt tcagatcctg aagttaaaga cagaattgaa 840 tccactgatc tgttgctatc catcggtgct ctcaaatcag actttaacac gggttccttc 900 tcttaccacc tcagccaaaa gaatgccgtt gagtttcatt cagaccacat gcgcattcga 960 tatgctcttt atccaaatgt agccatgaag tatattcttc gcaaactgtt gaaagtactt 1020 gatgcttcta tgtgtcattc caaggctgct cctaccattg gctacaacat caagcctaag 1080 catgcggaag gatattcttc caacgagatt actcattgct ggttttggcc taaatttagt 1140 gaatttttga agccccgaga tgttttgatc accgagactg gaactgcaaa ctttggtgtc 1200 cttgattgca ggtttccaaa ggatgtaaca gccatttccc aggtattatg gggatctatt 1260 ggatactccg ttggtgcaat gtttggtgct gttttggccg tccacgattc taaagagccc 1320 gatcgtcgta ccattcttgt agtaggtgat ggatccttac aactgacgat tacagagatt 1380 tcaacctgca ttcgccataa cctcaaacca attattttca taattaacaa cgacggttac 1440 accattgagc gtttaattca tggtttgcat gctagctata acgaaattaa cactaaatgg 1500 ggctaccaac agattcccaa gtttttcgga gctgctgaaa accacttccg cacttactgt 1560 gttaaaactc ctactgacgt tgaaaagttg tttagcgaca aggagtttgc aaatgcagat 1620 gtcattcaag tagttgagct tgtaatgcct atgttggatg cacctcgtgt cctagttgag 1680 caagccaagt tgacgtctaa gatcaataag caa 1713 <210> 125 <211> 563 <212> PRT <213> Zygosaccharomyces rouxii <400> 125 Met Ser Glu Ile Thr Leu Gly Arg Tyr Leu Phe Glu Arg Leu Lys Gln 1 5 10 15 Val Asp Thr Asn Thr Ile Phe Gly Val Pro Gly Asp Phe Asn Leu Ser 20 25 30 Leu Leu Asp Lys Val Tyr Glu Val Gln Gly Leu Arg Trp Ala Gly Asn 35 40 45 Ala Asn Glu Leu Asn Ala Ala Tyr Ala Ala Asp Gly Tyr Ala Arg Val 50 55 60 Lys Gly Leu Ala Ala Leu Ile Thr Thr Phe Gly Val Gly Glu Leu Ser 65 70 75 80 Ala Leu Asn Gly Ile Ala Gly Ser Tyr Ala Glu His Val Gly Val Leu 85 90 95 His Ile Val Gly Val Pro Ser Val Ser Ser Gln Ala Lys Gln Leu Leu 100 105 110 Leu His His Thr Leu Gly Asn Gly Asp Phe Thr Val Phe His Arg Met 115 120 125 Ser Ala Asn Ile Ser Glu Thr Thr Ala Met Leu Thr Asp Ile Thr Ala 130 135 140 Ala Pro Ala Glu Ile Asp Arg Cys Ile Arg Val Ala Tyr Val Asn Gln 145 150 155 160 Arg Pro Val Tyr Leu Gly Leu Pro Ala Asn Leu Val Asp Gln Lys Val 165 170 175 Pro Ala Ser Leu Leu Asn Thr Pro Ile Asp Leu Ser Leu Lys Glu Asn 180 185 190 Asp Pro Glu Ala Glu Thr Glu Val Val Asp Thr Val Leu Glu Leu Ile 195 200 205 Lys Glu Ala Lys Asn Pro Val Ile Leu Ala Asp Ala Cys Cys Ser Arg 210 215 220 His Asp Val Lys Ala Glu Thr Lys Lys Leu Ile Asp Leu Thr Gln Phe 225 230 235 240 Pro Ser Phe Val Thr Pro Met Gly Lys Gly Ser Ile Asp Glu Gln Asn 245 250 255 Pro Arg Phe Gly Gly Val Tyr Val Gly Thr Leu Ser Ser Pro Glu Val 260 265 270 Lys Glu Ala Val Glu Ser Ala Asp Leu Val Leu Ser Val Gly Ala Leu 275 280 285 Leu Ser Asp Phe Asn Thr Gly Ser Phe Ser Tyr Ser Tyr Lys Thr Lys 290 295 300 Asn Val Val Glu Phe His Ser Asp His Ile Lys Ile Arg Asn Ala Thr 305 310 315 320 Phe Pro Gly Val Gln Met Lys Phe Val Leu Lys Lys Leu Leu Gln Ala 325 330 335 Val Pro Glu Ala Val Lys Asn Tyr Lys Pro Gly Pro Val Pro Ala Pro 340 345 350 Pro Ser Pro Asn Ala Glu Val Ala Asp Ser Thr Thr Leu Lys Gln Glu 355 360 365 Trp Leu Trp Arg Gln Val Gly Ser Phe Leu Arg Glu Gly Asp Val Val 370 375 380 Ile Thr Glu Thr Gly Thr Ser Ala Phe Gly Ile Asn Gln Thr His Phe 385 390 395 400 Pro Asn Gln Thr Tyr Gly Ile Ser Gln Val Leu Trp Gly Ser Ile Gly 405 410 415 Tyr Thr Thr Gly Ser Thr Leu Gly Ala Ala Phe Ala Ala Glu Glu Ile 420 425 430 Asp Pro Lys Lys Arg Val Ile Leu Phe Ile Gly Asp Gly Ser Leu Gln 435 440 445 Leu Thr Val Gln Glu Ile Ser Thr Met Ile Arg Trp Gly Leu Lys Pro 450 455 460 Tyr Leu Phe Val Leu Asn Asn Asp Gly Tyr Thr Ile Glu Arg Leu Ile 465 470 475 480 His Gly Glu Thr Ala Glu Tyr Asn Cys Ile Gln Pro Trp Lys His Leu 485 490 495 Glu Leu Leu Asn Thr Phe Gly Ala Lys Asp Tyr Glu Asn His Arg Val 500 505 510 Ser Thr Val Gly Glu Trp Asn Lys Leu Thr Gln Asp Pro Lys Phe Asn 515 520 525 Glu Asn Ser Arg Ile Arg Met Ile Glu Val Met Leu Glu Val Met Asp 530 535 540 Ala Pro Ser Ser Leu Val Ala Gln Ala Gln Leu Thr Ala Ala Thr Asn 545 550 555 560 Ala Lys Gln <210> 126 <211> 1689 <212> DNA <213> Zygosaccharomyces rouxii <400> 126 atgtctgaaa ttactctagg tcgttacttg ttcgaaagat taaagcaagt tgacactaac 60 accatcttcg gtgttccagg tgacttcaac ttgtccttgt tggacaaggt ctacgaagtg 120 caaggtctaa gatgggctgg taacgctaac gaattgaacg ctgcctacgc tgctgacggt 180 tacgccagag ttaagggttt ggctgctttg atcaccacct tcggtgtcgg tgaattgtct 240 gctttgaacg gtattgcagg ttcttacgct gaacacgttg gtgttttgca cattgttggt 300 gttccatctg tctcttctca agctaagcaa ttgttgttgc accacacctt gggtaacggt 360 gacttcactg ttttccacag aatgtccgcc aacatctctg aaaccaccgc tatgttgacc 420 gacatcactg ctgctccagc tgaaattgac cgttgcatca gagttgctta cgtcaaccaa 480 agaccagtct acttgggtct accagctaac ttggttgacc aaaaggtccc agcttctttg 540 ttgaacactc caattgatct atctctaaag gagaacgacc cagaagctga aaccgaagtt 600 gttgacaccg ttttggaatt gatcaaggaa gctaagaacc cagttatctt ggctgatgct 660 tgctgctcca gacacgacgt caaggctgaa accaagaagt tgatcgactt gactcaattc 720 ccatctttcg ttactcctat gggtaagggt tccatcgacg aacaaaaccc aagattcggt 780 ggtgtctacg tcggtactct atccagccca gaagttaagg aagctgttga atctgctgac 840 ttggttctat ctgtcggtgc tctattgtcc gatttcaaca ctggttcttt ctcttactct 900 tacaagacca agaacgttgt tgaattccac tctgaccaca tcaagatcag aaacgctacc 960 ttcccaggtg ttcaaatgaa attcgttttg aagaaactat tgcaagctgt cccagaagct 1020 gtcaagaact acaagccagg tccagtccca gctccgccat ctccaaacgc tgaagttgct 1080 gactctacca ccttgaagca agaatggtta tggagacaag tcggtagctt cttgagagaa 1140 ggtgatgttg ttattaccga aactggtacc tctgctttcg gtatcaacca aactcacttc 1200 cctaaccaaa cttacggtat ctctcaagtc ttgtggggtt ctattggtta caccactggt 1260 tccactttgg gtgctgcctt cgctgctgaa gaaattgacc ctaagaagag agttatcttg 1320 ttcattggtg acggttctct acaattgacc gttcaagaaa tctccaccat gatcagatgg 1380 ggtctaaagc catacttgtt cgttttgaac aacgatggtt acaccattga aagattgatt 1440 cacggtgaaa ccgctgaata caactgtatc caaccatgga agcacttgga attgttgaac 1500 accttcggtg ccaaggacta cgaaaaccac agagtctcca ctgtcggtga atggaacaag 1560 ttgactcaag atccaaaatt caacgaaaac tctagaatta gaatgatcga agttatgctt 1620 gaagtcatgg acgctccatc ttctttggtc gctcaagctc aattgaccgc tgctactaac 1680 gctaagcaa 1689 <210> 127 <211> 267 <212> PRT <213> Saccharomyces cerevisiae <400> 127 Met Ser Gln Gly Arg Lys Ala Ala Glu Arg Leu Ala Lys Lys Thr Val 1 5 10 15 Leu Ile Thr Gly Ala Ser Ala Gly Ile Gly Lys Ala Thr Ala Leu Glu 20 25 30 Tyr Leu Glu Ala Ser Asn Gly Asp Met Lys Leu Ile Leu Ala Ala Arg 35 40 45 Arg Leu Glu Lys Leu Glu Glu Leu Lys Lys Thr Ile Asp Gln Glu Phe 50 55 60 Pro Asn Ala Lys Val His Val Ala Gln Leu Asp Ile Thr Gln Ala Glu 65 70 75 80 Lys Ile Lys Pro Phe Ile Glu Asn Leu Pro Gln Glu Phe Lys Asp Ile 85 90 95 Asp Ile Leu Val Asn Asn Ala Gly Lys Ala Leu Gly Ser Asp Arg Val 100 105 110 Gly Gln Ile Ala Thr Glu Asp Ile Gln Asp Val Phe Asp Thr Asn Val 115 120 125 Thr Ala Leu Ile Asn Ile Thr Gln Ala Val Leu Pro Ile Phe Gln Ala 130 135 140 Lys Asn Ser Gly Asp Ile Val Asn Leu Gly Ser Ile Ala Gly Arg Asp 145 150 155 160 Ala Tyr Pro Thr Gly Ser Ile Tyr Cys Ala Ser Lys Phe Ala Val Gly 165 170 175 Ala Phe Thr Asp Ser Leu Arg Lys Glu Leu Ile Asn Thr Lys Ile Arg 180 185 190 Val Ile Leu Ile Ala Pro Gly Leu Val Glu Thr Glu Phe Ser Leu Val 195 200 205 Arg Tyr Arg Gly Asn Glu Glu Gln Ala Lys Asn Val Tyr Lys Asp Thr 210 215 220 Thr Pro Leu Met Ala Asp Asp Val Ala Asp Leu Ile Val Tyr Ala Thr 225 230 235 240 Ser Arg Lys Gln Asn Thr Val Ile Ala Asp Thr Leu Ile Phe Pro Thr 245 250 255 Asn Gln Ala Ser Pro His His Ile Phe Arg Gly 260 265 <210> 128 <211> 804 <212> DNA <213> Saccharomyces cerevisiae <400> 128 atgtcccaag gtagaaaagc tgcagaaaga ttggctaaga agactgtcct cattacaggt 60 gcatctgctg gtattggtaa ggcgaccgca ttagagtact tggaggcatc caatggtgat 120 atgaaactga tcttggctgc tagaagatta gaaaagctcg aggaattgaa gaagaccatt 180 gatcaagagt ttccaaacgc aaaagttcat gtggcccagc tggatatcac tcaagcagaa 240 aaaatcaagc ccttcattga aaacttgcca caagagttca aggatattga cattctggtg 300 aacaatgccg gaaaggctct tggcagtgac cgtgtgggcc agatcgcaac ggaggatatc 360 caggacgtgt ttgacaccaa cgtcacggct ttaatcaata tcacacaagc tgtactgccc 420 atattccaag ccaagaattc aggagatatt gtaaatttgg gttcaatcgc tggcagagac 480 gcatacccaa caggttctat ctattgtgcc tctaagtttg ccgtgggggc gttcactgat 540 agtttgagaa aggagctcat caacactaaa attagagtca ttctaattgc accagggcta 600 gtcgagactg aattttcact agttagatac agaggtaacg aggaacaagc caagaatgtt 660 tacaaggata ctaccccatt gatggctgat gacgtggctg atctgatcgt ctatgcaact 720 tccagaaaac aaaatactgt aattgcagac actttaatct ttccaacaaa ccaagcgtca 780 cctcatcata tcttccgtgg ataa 804                          SEQUENCE LISTING <110> Butamax Advanced Biofuels LLC   <120> Processes and Systems for the Fermentative Production of Alcohols <130> CL5768WOPCT <160> 128 <170> PatentIn version 3.5 <210> 1 <211> 570 <212> PRT <213> Bacillus subtilis <400> 1 Met Thr Lys Ala Thr Lys Glu Gln Lys Ser Leu Val Lys Asn Arg Gly 1 5 10 15 Ala Glu Leu Val Val Asp Cys Leu Val Glu Gln Gly Val Thr His Val             20 25 30 Phe Gly Ile Pro Gly Ala Lys Ile Asp Ala Val Phe Asp Ala Leu Gln         35 40 45 Asp Lys Gly Pro Glu Ile Ile Val Ala Arg His Glu Gln Asn Ala Ala     50 55 60 Phe Met Ala Gln Ala Val Gly Arg Leu Thr Gly Lys Pro Gly Val Val 65 70 75 80 Leu Val Thr Ser Gly Pro Gly Ala Ser Asn Leu Ala Thr Gly Leu Leu                 85 90 95 Thr Ala Asn Thr Glu Gly Asp Pro Val Val Ala Leu Ala Gly Asn Val             100 105 110 Ile Arg Ala Asp Arg Leu Lys Arg Thr His Gln Ser Leu Asp Asn Ala         115 120 125 Ala Leu Phe Gln Pro Ile Thr Lys Tyr Ser Val Glu Val Gln Asp Val     130 135 140 Lys Asn Ile Pro Glu Ala Val Thr Asn Ala Phe Arg Ile Ala Ser Ala 145 150 155 160 Gly Gln Ala Gly Ala Phe Val Ser Phe Pro Gln Asp Val Val Asn                 165 170 175 Glu Val Thr Asn Thr Lys Asn Val Arg Ala Val Ala Ala Pro Lys Leu             180 185 190 Gly Pro Ala Ala Asp Asp Ala Ile Ser Ala Ala Ila Ala Lys Ile Gln         195 200 205 Thr Ala Lys Leu Pro Val Val Leu Val Gly Met Lys Gly Gly Arg Pro     210 215 220 Glu Ala Ile Lys Ala Val Arg Lys Leu Leu Lys Lys Val Gln Leu Pro 225 230 235 240 Phe Val Glu Thr Tyr Gln Ala Gly Thr Leu Ser Arg Asp Leu Glu                 245 250 255 Asp Gln Tyr Phe Gly Arg Ile Gly Leu Phe Arg Asn Gln Pro Gly Asp             260 265 270 Leu Leu Leu Glu Gln Ala Asp Val Val Leu Thr Ile Gly Tyr Asp Pro         275 280 285 Ile Glu Tyr Asp Pro Lys Phe Trp Asn Ile Asn Gly Asp Arg Thr Ile     290 295 300 Ile His Leu Asp Glu Ile Ile Ala Asp Ile Asp His Ala Tyr Gln Pro 305 310 315 320 Asp Leu Glu Leu Ile Gly Asp Ile Pro Ser Thr Ile Asn His Ile Glu                 325 330 335 His Asp Ala Val Lys Val Glu Phe Ala Glu Arg Glu Gln Lys Ile Leu             340 345 350 Ser Asp Leu Lys Gln Tyr Met His Glu Gly Glu Gln Val Pro Ala Asp         355 360 365 Trp Lys Ser Asp Arg Ala His Pro Leu Glu Ile Val Lys Glu Leu Arg     370 375 380 Asn Ala Val Asp Asp His Val Thr Val Thr Cys Asp Ile Gly Ser His 385 390 395 400 Ala Ile Trp Met Ser Arg Tyr Phe Arg Ser Tyr Glu Pro Leu Thr Leu                 405 410 415 Met Ile Ser Asn Gly Met Gln Thr Leu Gly Val Ala Leu Pro Trp Ala             420 425 430 Ile Gly Ala Ser Leu Val Lys Pro Gly Glu Lys Val Val Ser Ser Ser         435 440 445 Gly Asp Gly Gly Phe Leu Phe Ser Ala Met Glu Leu Glu Thr Ala Val     450 455 460 Arg Leu Lys Ala Pro Ile Val His Ile Val Trp Asn Asp Ser Thr Tyr 465 470 475 480 Asp Met Val Ala Phe Gln Gln Leu Lys Lys Tyr Asn Arg Thr Ser Ala                 485 490 495 Val Asp Phe Gly Asn Ile Asp Ile Val Lys Tyr Ala Glu Ser Phe Gly             500 505 510 Ala Thr Gly Leu Arg Val Glu Ser Pro Asp Gln Leu Ala Asp Val Leu         515 520 525 Arg Gln Gly Met Asn Ala Glu Gly Pro Val Ile Ile Asp Val Pro Val     530 535 540 Asp Tyr Ser Asp Asn Ile Asn Leu Ala Ser Asp Lys Leu Pro Lys Glu 545 550 555 560 Phe Gly Glu Leu Met Lys Thr Lys Ala Leu                 565 570 <210> 2 <211> 1716 <212> DNA <213> Bacillus subtilis <400> 2 atgttgacaa aagcaacaaa agaacaaaaa tcccttgtga aaaacagagg ggcggagctt 60 gttgttgatt gcttagtgga gcaaggtgtc acacatgtat ttggcattcc aggtgcaaaa 120 attgatgcgg tatttgacgc tttacaagat aaaggacctg aaattatcgt tgcccggcac 180 gaacaaaacg cagcattcat ggcccaagca gtcggccgtt taactggaaa accgggagtc 240 gtgttagtca catcaggacc gggtgcctct aacttggcaa caggcctgct gacagcgaac 300 actgaaggag accctgtcgt tgcgcttgct ggaaacgtga tccgtgcaga tcgtttaaaa 360 cggacacatc aatctttgga taatgcggcg ctattccagc cgattacaaa atacagtgta 420 gaagttcaag atgtaaaaaa tataccggaa gctgttacaa atgcatttag gatagcgtca 480 gcagggcagg ctggggccgc ttttgtgagc tttccgcaag atgttgtgaa tgaagtcaca 540 aatacgaaaa acgtgcgtgc tgttgcagcg ccaaaactcg gtcctgcagc agatgatgca 600 atcagtgcgg ccatagcaaa aatccaaaca gcaaaacttc ctgtcgtttt ggtcggcatg 660 aaaggcggaa gaccggaagc aattaaagcg gttcgcaagc ttttgaaaaa ggttcagctt 720 ccatttgttg aaacatatca agctgccggt accctttcta gagatttaga ggatcaatat 780 tttggccgta tcggtttgtt ccgcaaccag cctggcgatt tactgctaga gcaggcagat 840 gttgttctga cgatcggcta tgacccgatt gaatatgatc cgaaattctg gaatatcaat 900 ggagaccgga caattatcca tttagacgag attatcgctg acattgatca tgcttaccag 960 cctgatcttg aattgatcgg tgacattccg tccacgatca atcatatcga acacgatgct 1020 gtgaaagtgg aatttgcaga gcgtgagcag aaaatccttt ctgatttaaa acaatatatg 1080 catgaaggtg agcaggtgcc tgcagattgg aaatcagaca gagcgcaccc tcttgaaatc 1140 gttaaagagt tgcgtaatgc agtcgatgat catgttacag taacttgcga tatcggttcg 1200 cacgccattt ggatgtcacg ttatttccgc agctacgagc cgttaacatt aatgatcagt 1260 aacggtatgc aaacactcgg cgttgcgctt ccttgggcaa tcggcgcttc attggtgaaa 1320 ccgggagaaa aagtggtttc tgtctctggt gacggcggtt tcttattctc agcaatggaa 1380 ttagagacag cagttcgact aaaagcacca attgtacaca ttgtatggaa cgacagcaca 1440 tatgacatgg ttgcattcca gcaattgaaa aaatataacc gtacatctgc ggtcgatttc 1500 ggaaatatcg atatcgtgaa atatgcggaa agcttcggag caactggctt gcgcgtagaa 1560 tcaccagacc agctggcaga tgttctgcgt caaggcatga acgctgaagg tcctgtcatc 1620 atcgatgtcc cggttgacta cagtgataac attaatttag caagtgacaa gcttccgaaa 1680 gaattcgggg aactcatgaa aacgaaagct ctctag 1716 <210> 3 <211> 559 <212> PRT <213> Klebsiella pneumoniae <400> 3 Met Asp Lys Gln Tyr Pro Val Arg Gln Trp Ala His Gly Ala Asp Leu 1 5 10 15 Val Val Ser Gln Leu Glu Ala Gln Gly Val Arg Gln Val Phe Gly Ile             20 25 30 Pro Gly Ala Lys Ile Asp Lys Val Phe Asp Ser Leu Leu Asp Ser Ser         35 40 45 Ile Arg Ile Ile Pro Val Arg His Glu Ala Asn Ala Ala Phe Met Ala     50 55 60 Ala Ala Val Gly Arg Ile Thr Gly Lys Ala Gly Val Ala Leu Val Thr 65 70 75 80 Ser Gly Pro Gly Cys Ser Asn Leu Ile Thr Gly Met Ala Thr Ala Asn                 85 90 95 Ser Glu Gly Asp Pro Val Val Ala Leu Gly Gly Ala Val Lys Arg Ala             100 105 110 Asp Lys Ala Lys Gln Val His Gln Ser Met Asp Thr Val Ala Met Phe         115 120 125 Ser Pro Val Thr Lys Tyr Ala Ile Glu Val Thr Ala Pro Asp Ala Leu     130 135 140 Ala Glu Val Val Ser Asn Ala Phe Arg Ala Ala Glu Gln Gly Arg Pro 145 150 155 160 Gly Ser Ala Phe Val Ser Leu Pro Gln Asp Val Val Asp Gly Pro Val                 165 170 175 Ser Gly Lys Val Leu Pro Ala Ser Gly Ala Pro Gln Met Gly Ala Ala             180 185 190 Pro Asp Asp Ala Ile Asp Gln Val Ala Lys Leu Ile Ala Gln Ala Lys         195 200 205 Asn Pro Ile Phe Leu Leu Gly Leu Met Ala Ser Gln Pro Glu Asn Ser     210 215 220 Lys Ala Leu Arg Arg Leu Leu Glu Thr Ser His Ile Pro Val Thr Ser 225 230 235 240 Thr Tyr Gln Ala Ala Gly Ala Val Asn Gln Asp Asn Phe Ser Arg Phe                 245 250 255 Ala Gly Arg Val Gly Leu Phe Asn Gln Ala Gly Asp Arg Leu Leu             260 265 270 Gln Leu Ala Asp Leu Val Ile Cys Ile Gly Tyr Ser Pro Val Glu Tyr         275 280 285 Glu Pro Ala Met Trp Asn Ser Gly Asn Ala Thr Leu Val His Ile Asp     290 295 300 Val Leu Pro Ala Tyr Glu Glu Arg Asn Tyr Thr Pro Asp Val Glu Leu 305 310 315 320 Val Gly Asp Ile Ala Gly Thr Leu Asn Lys Leu Ala Gln Asn Ile Asp                 325 330 335 His Arg Leu Val Leu Ser Pro Gln Ala Ala Glu Ile Leu Arg Asp Arg             340 345 350 Gln His Gln Arg Glu Leu Leu Asp Arg Arg Gly Ala Gln Leu Asn Gln         355 360 365 Phe Ala Leu His Pro Leu Arg Ile Val Arg Ala Met Gln Asp Ile Val     370 375 380 Asn Ser Asp Val Thr Leu Thr Val Asp Met Gly Ser Phe His Ile Trp 385 390 395 400 Ile Ala Arg Tyr Leu Tyr Thr Phe Arg Ala Arg Gln Val Met Ile Ser                 405 410 415 Asn Gly Gln Gln Thr Met Gly Val Ala Leu Pro Trp Ala Ile Gly Ala             420 425 430 Trp Leu Val Asn Pro Glu Arg Lys Val Val Ser Val Ser Gly Asp Gly         435 440 445 Gly Phe Leu Gln Ser Ser Met Glu Leu Glu Thr Ala Val Arg Leu Lys     450 455 460 Ala Asn Val Leu His Leu Ile Trp Val Asp Asn Gly Tyr Asn Met Val 465 470 475 480 Ala Ile Gln Glu Glu Lys Lys Tyr Gln Arg Leu Ser Gly Val Glu Phe                 485 490 495 Gly Pro Met Asp Phe Lys Ala Tyr Ala Glu Ser Phe Gly Ala Lys Gly             500 505 510 Phe Ala Val Glu Ser Ala Glu Ala Leu Glu Pro Thr Leu Arg Ala Ala         515 520 525 Met Asp Val Asp Gly Pro Ala Val Val Ala Ile Pro Val Asp Tyr Arg     530 535 540 Asp Asn Pro Leu Leu Met Gly Gln Leu His Leu Ser Gln Ile Leu 545 550 555 <210> 4 <211> 2055 <212> DNA <213> Klebsiella pneumoniae <400> 4 tcgaccacgg ggtgctgacc ttcggcgaaa ttcacaagct gatgatcgac ctgcccgccg 60 acagcgcgtt cctgcaggct aatctgcatc ccgataatct cgatgccgcc atccgttccg 120 tagaaagtta agggggtcac atggacaaac agtatccggt acgccagtgg gcgcacggcg 180 ccgatctcgt cgtcagtcag ctggaagctc agggagtacg ccaggtgttc ggcatccccg 240 gcgccaaaat cgacaaggtc tttgattcac tgctggattc ctccattcgc attattccgg 300 tacgccacga agccaacgcc gcatttatgg ccgccgccgt cggacgcatt accggcaaag 360 cgggcgtggc gctggtcacc tccggtccgg gctgttccaa cctgatcacc ggcatggcca 420 ccgcgaacag cgaaggcgac ccggtggtgg ccctgggcgg cgcggtaaaa cgcgccgata 480 aagcgaagca ggtccaccag agtatggata cggtggcgat gttcagcccg gtcaccaaat 540 acgccatcga ggtgacggcg ccggatgcgc tggcggaagt ggtctccaac gccttccgcg 600 ccgccgagca gggccggccg ggcagcgcgt tcgttagcct gccgcaggat gtggtcgatg 660 gcccggtcag cggcaaagtg ctgccggcca gcggggcccc gcagatgggc gccgcgccgg 720 atgatgccat cgaccaggtg gcgaagctta tcgcccaggc gaagaacccg atcttcctgc 780 tcggcctgat ggccagccag ccggaaaaca gcaaggcgct gcgccgtttg ctggagacca 840 gccatattcc agtcaccagc acctatcagg ccgccggagc ggtgaatcag gataacttct 900 ctcgcttcgc cggccgggtt gggctgttta acaaccaggc cggggaccgt ctgctgcagc 960 tcgccgacct ggtgatctgc atcggctaca gcccggtgga atacgaaccg gcgatgtgga 1020 acagcggcaa cgcgacgctg gtgcacatcg acgtgctgcc cgcctatgaa gagcgcaact 1080 acaccccgga tgtcgagctg gtgggcgata tcgccggcac tctcaacaag ctggcgcaaa 1140 atatcgatca tcggctggtg ctctccccgc aggcggcgga gatcctccgc gaccgccagc 1200 accagcgcga gctgctggac cgccgcggcg cgcagctcaa ccagtttgcc ctgcatcccc 1260 tgcgcatcgt tcgcgccatg caggatatcg tcaacagcga cgtcacgttg accgtggaca 1320 tgggcagctt ccatatctgg attgcccgct acctgtacac gttccgcgcc cgtcaggtga 1380 tgatctccaa cggccagcag accatgggcg tcgccctgcc ctgggctatc ggcgcctggc 1440 tggtcaatcc tgagcgcaaa gtggtctccg tctccggcga cggcggcttc ctgcagtcga 1500 gcatggagct ggagaccgcc gtccgcctga aagccaacgt gctgcatctt atctgggtcg 1560 ataacggcta caacatggtc gctatccagg aagagaaaaa atatcagcgc ctgtccggcg 1620 tcgagtttgg gccgatggat tttaaagcct atgccgaatc cttcggcgcg aaagggtttg 1680 ccgtggaaag cgccgaggcg ctggagccga ccctgcgcgc ggcgatggac gtcgacggcc 1740 cggcggtagt ggccatcccg gtggattatc gcgataaccc gctgctgatg ggccagctgc 1800 atctgagtca gattctgtaa gtcatcacaa taaggaaaga aaaatgaaaa aagtcgcact 1860 tgttaccggc gccggccagg ggattggtaa agctatcgcc cttcgtctgg tgaaggatgg 1920 atttgccgtg gccattgccg attataacga cgccaccgcc aaagcggtcg cctccgaaat 1980 caaccaggcc ggcggccgcg ccatggcggt gaaagtggat gtttctgacc gcgaccaggt 2040 atttgccgcc gtcga 2055 <210> 5 <211> 554 <212> PRT <213> Lactococcus lactis <400> 5 Met Ser Glu Lys Gln Phe Gly Ala Asn Leu Val Val Asp Ser Leu Ile 1 5 10 15 Asn His Lys Val Lys Tyr Val Phe Gly Ile Pro Gly Ala Lys Ile Asp             20 25 30 Arg Val Phe Asp Leu Leu Glu Asn Glu Glu Gly Pro Gln Met Val Val         35 40 45 Thr Arg His Glu Gln Gly Ala Ala Phe Met Ala Gln Ala Val Gly Arg     50 55 60 Leu Thr Gly Glu Pro Gly Val Val Val Val Thr Ser Gly Pro Gly Val 65 70 75 80 Ser Asn Leu Ala Thr Pro Leu Leu Thr Ala Thr Ser Glu Asp Ala                 85 90 95 Ile Leu Ala Ile Gly Gly Gln Val Lys Arg Ser Asp Arg Leu Lys Arg             100 105 110 Ala His Gln Ser Met Asp Asn Ala Gly Met Met Gln Ser Ala Thr Lys         115 120 125 Tyr Ser Ala Glu Val Leu Asp Pro Asn Thr Leu Ser Glu Ser Ile Ala     130 135 140 Asn Ala Tyr Arg Ile Ala Lys Ser Gly His Pro Gly Ala Thr Phe Leu 145 150 155 160 Ser Ile Pro Gln Asp Val Thr Asp Ala Glu Val Ser Ile Lys Ala Ile                 165 170 175 Gln Pro Leu Ser Asp Pro Lys Met Gly Asn Ala Ser Ile Asp Asp Ile             180 185 190 Asn Tyr Leu Ala Gln Ala Ile Lys Asn Ala Val Leu Pro Val Ile Leu         195 200 205 Val Gly Ala Gly Ala Ser Asp Ala Lys Val Ala Ser Ser Leu Arg Asn     210 215 220 Leu Leu Thr His Val Asn Ile Pro Val Val Glu Thr Phe Gln Gly Ala 225 230 235 240 Gly Val Ile Ser His Asp Leu Glu His Thr Phe Tyr Gly Arg Ile Gly                 245 250 255 Leu Phe Arg Asn Gln Pro Gly Asp Met Leu Leu Lys Arg Ser Asp Leu             260 265 270 Val Ile Ala Val Gly Tyr Asp Pro Ile Glu Tyr Glu Ala Arg Asn Trp         275 280 285 Asn Ala Glu Ile Asp Ser Ile Ile Ile Val Ile Asp Asn Ale Ile Ala     290 295 300 Glu Ile Asp Thr Tyr Gln Pro Glu Arg Glu Leu Ile Gly Asp Ile 305 310 315 320 Ala Ala Thr Leu Asp Asn Leu Leu Pro Ala Val Arg Gly Tyr Lys Ile                 325 330 335 Pro Lys Gly Thr Lys Asp Tyr Leu Asp Gly Leu His Glu Val Ala Glu             340 345 350 Gln His Glu Phe Asp Thr Glu Asn Thr Glu Glu Gly Arg Met His Pro         355 360 365 Leu Asp Leu Val Ser Thr Phe Gln Glu Ile Val Lys Asp Asp Glu Thr     370 375 380 Val Thr Val Asp Val Gly Ser Leu Tyr Ile Trp Met Ala Arg His Phe 385 390 395 400 Lys Ser Tyr Glu Pro Arg His Leu Leu Phe Ser Asn Gly Met Gln Thr                 405 410 415 Leu Gly Val Ala Leu Pro Trp Ala Ile Thr Ala Ala Leu Leu Arg Pro             420 425 430 Gly Lys Lys Val Tyr Ser His Ser Gly Asp Gly Gly Phe Leu Phe Thr         435 440 445 Gly Gln Glu Leu Glu Thr Ala Val Arg Leu Asn Leu Pro Ile Val Gln     450 455 460 Ile Ile Trp Asn Asp Gly His Tyr Asp Met Val Lys Phe Gln Glu Glu 465 470 475 480 Met Lys Tyr Gly Arg Ser Ala Ala Val Asp Phe Gly Tyr Val Asp Tyr                 485 490 495 Val Lys Tyr Ala Glu Ala Met Arg Ala Lys Gly Tyr Arg Ala His Ser             500 505 510 Lys Glu Glu Leu Ala Glu Ile Leu Lys Ser Ile Pro Asp Thr Thr Gly         515 520 525 Pro Val Val Ile Asp Val Pro Leu Asp Tyr Ser Asp Asn Ile Lys Leu     530 535 540 Ala Glu Lys Leu Leu Pro Glu Glu Phe Tyr 545 550 <210> 6 <211> 3220 <212> DNA <213> Lactococcus lactis <400> 6 tagatccgga aacaactgat tacctgagtt aacttagcag aaattgcaga agataacggt 60 aatttggatg aagcattaaa ttacctttat caaattccgg tgaatgatga aaattatatt 120 gctgctttaa tcaaaattgc tgacttatat caatttgaag ttgattttga aacagcaatt 180 tctaagttag aagaagcaag agaattatcg gattctcctc tgattacttt tgctttggct 240 gagtcctact ttgaacaagg tgattattca gctgccatta ccgaatatgc aaaactttca 300 gaacgaaaaa ttttacatga aacaaaaatt tctatttatc aaagaattgg tgactcttat 360 gcccaattag gtaattttga gaatgccata tcatttcttg aaaaatcact tgaatttgat 420 gaaaaaccgg aaaccttgta taaaattgct cttctttatg gagaaactca taatgaaaca 480 agagccattg ctaatttcaa acggttagaa aaaatggatg ttgaattttt gaactatgaa 540 ttagcctatg cccaaaccct agaagctaat caagaattta aagctgcact agaaatggca 600 aagaaaggga tgaaaaaaaa tcctaatgcc gttcctctct tacacttcgc ttcaaaaatt 660 tgtttcaaac ttaaggacaa agctgcagca gaacgttatc tcgtggatgc tttaaattta 720 ccagaattac atgacgaaac agtctttttg cttgctaatt tatacttcaa cgaagaagat 780 tttgaagctg tcattaatct tgaagagctt ttagaagatg aacatttatt agctaaatgg 840 ctttttgcag gagcacataa agctttggaa aatgattctg aagcggctgc tttgtatgaa 900 gaactcattc aaaccaatct gtcagagaat ccagagtttt tagaagacta tattgatttt 960 cttaaagaaa ttggtcaaat ttctaaaaca gaaccaatta ttgaacaata tttggaactt 1020 gttccagatg atgaaaatat gagaaattta ctgacagact taaaaaataa ttactgacaa 1080 agctgtcagt aattattttt attgtaagct agaaaattca aaaacttgcg tcaaaataat 1140 tgtaaaaggt tctattatct gataaaatga ttgtgaagta atccaagaga ttatgaaata 1200 tgaattagaa caaatagagg taaaataaaa aatgtctgag aaacaatttg gggcgaactt 1260 ggttgtcgat agtttgatta accataaagt gaagtatgta tttgggattc caggagcaaa 1320 aattgaccgg gtttttgatt tattagaaaa tgaagaaggc cctcaaatgg tcgtgactcg 1380 tcatgagcaa ggagctgctt tcatggctca agctgtcggt cgtttaactg gcgaacctgg 1440 tgtagtagtt gttacgagtg ggcctggtgt atcaaacctt gcgactccgc ttttgaccgc 1500 gacatcagaa ggtgatgcta ttttggctat cggtggacaa gttaaacgaa gtgaccgtct 1560 taaacgtgcg caccaatcaa tggataatgc tggaatgatg caatcagcaa caaaatattc 1620 agcagaagtt cttgacccta atacactttc tgaatcaatt gccaacgctt atcgtattgc 1680 aaaatcagga catccaggtg caactttctt atcaatcccc caagatgtaa cggatgccga 1740 agtatcaatc aaagccattc aaccactttc agaccctaaa atggggaatg cctctattga 1800 tgacattaat tatttagcac aaganattaa aaatgctgta ttgccagtaa ttttggttgg 1860 agctggtgct tcagatgcta aagtcgcttc atccttgcgt aatctattga ctcatgttaa 1920 tattcctgtc gttgaaacat tccaaggtgc aggggttatt tcacatgatt tagaacatac 1980 tttttatgga cgtatcggtc ttttccgcaa tcaaccaggc gatatgcttc tgaaacgttc 2040 tgaccttgtt attgctgttg gttatgaccc aattgaatat gaagctcgta actggaatgc 2100 agaaattgat agtcgaatta tcgttattga taatgccatt gctgaaattg atacttacta 2160 ccaaccagag cgtgaattaa ttggtgatat cgcagcaaca ttggataatc ttttaccagc 2220 tgttcgtggc tacaaaattc caaaaggaac aaaagattat ctcgatggcc ttcatgaagt 2280 tgctgagcaa cacgaatttg atactgaaaa tactgaagaa ggtagaatgc accctcttga 2340 tttggtcagc actttccaag aaatcgtcaa ggatgatgaa acagtaaccg ttgacgtagg 2400 ttcactctac atttggatgg cacgtcattt caaatcatac gaaccacgtc atctcctctt 2460 ctcaaacgga atgcaaacac tcggagttgc acttccttgg gcaattacag ccgcattgtt 2520 gcgcccaggt aaaaaagttt attcacactc tggtgatgga ggcttccttt tcacagggca 2580 agaattggaa acagctgtac gtttgaatct tccaatcgtt caaattatct ggaatgacgg 2640 ccattatgat atggttaaat tccaagaaga aatgaaatat ggtcgttcag cagccgttga 2700 ttttggctat gttgattacg taaaatatgc tgaagcaatg agagcaaaag gttaccgtgc 2760 acacagcaaa gaagaacttg ctgaaattct caaatcaatc ccagatacta ctggaccggt 2820 ggtaattgac gttcctttgg actattctga taacattaaa ttagcagaaa aattattgcc 2880 tgaagagttt tattgattac aatcaagcaa tttgtggcat aacaaaataa aagaagaagg 2940 ccttgaacac ctaagcgttc agggcctttt tttgtgaaat aaattagatg aaatttacaa 3000 tgagttttgt gaaactagct tctagtttgt gaaaaattgc ctataattgc cgaataaaaa 3060 tacccattta ccactccaag aggatgcttc aaattagcta aatacccgtt ttagaggatg 3120 cgtaaaaaca acaaaagagg atgagtatag aacgataaaa cttttttatg ataggttgag 3180 agaattgaat ataaaatata ataagtagaa ggcagcaatt 3220 <210> 7 <211> 491 <212> PRT <213> Escherichia coli <400> 7 Met Ala Asn Tyr Phe Asn Thr Leu Asn Leu Arg Gln Gln Leu Ala Gln 1 5 10 15 Leu Gly Lys Cys Arg Phe Met Gly Arg Asp Glu Phe Ala Asp Gly Ala             20 25 30 Ser Tyr Leu Gln Gly Lys Lys Val Val Ile Val Gly Cys Gly Ala Gln         35 40 45 Gly Leu Asn Gln Gly Leu Asn Met Arg Asp Ser Gly Leu Asp Ile Ser     50 55 60 Tyr Ala Leu Arg Lys Glu Ala Ile Ala Glu Lys Arg Ala Ser Trp Arg 65 70 75 80 Lys Ala Thr Glu Asn Gly Phe Lys Val Gly Thr Tyr Glu Glu Leu Ile                 85 90 95 Pro Gln Ala Asp Leu Val Ile Asn Leu Thr Pro Asp Lys Gln His Ser             100 105 110 Asp Val Val Arg Thr Val Gln Pro Leu Met Lys Asp Gly Ala Ala Leu         115 120 125 Gly Tyr Ser His Gly Phe Asn Ile Val Glu Val Gly Glu Gln Ile Arg     130 135 140 Lys Asp Ile Thr Val Val Met Ala Pro Lys Cys Pro Gly Thr Glu 145 150 155 160 Val Arg Glu Glu Tyr Lys Arg Gly Phe Gly Val Pro Thr Leu Ile Ala                 165 170 175 Val His Pro Glu Asn Asp Pro Lys Gly Glu Gly Met Ala Ile Ala Lys             180 185 190 Ala Trp Ala Ala Ala Thr Gly Gly His Arg Ala Gly Val Leu Glu Ser         195 200 205 Ser Phe Val Ala Glu Val Lys Ser Asp Leu Met Gly Glu Gln Thr Ile     210 215 220 Leu Cys Gly Met Leu Gln Ala Gly Ser Leu Leu Cys Phe Asp Lys Leu 225 230 235 240 Val Glu Glu Gly Thr Asp Pro Ala Tyr Ala Glu Lys Leu Ile Gln Phe                 245 250 255 Gly Trp Glu Thr Ile Thr Glu Ale Leu Lys Gln Gly Gly Ile Thr Leu             260 265 270 Met Met Asp Arg Leu Ser Asn Pro Ala Lys Leu Arg Ala Tyr Ala Leu         275 280 285 Ser Glu Gln Leu Lys Glu Ile Met Ala Pro Leu Phe Gln Lys His Met     290 295 300 Asp Asp Ile Ile Ser Gly Glu Phe Ser Ser Gly Met Met Ala Asp Trp 305 310 315 320 Ala Asn Asp Asp Lys Lys Leu Leu Thr Trp Arg Glu Glu Thr Gly Lys                 325 330 335 Thr Ala Phe Glu Thr Ala Pro Gln Tyr Glu Gly Lys Ile Gly Glu Gln             340 345 350 Glu Tyr Phe Asp Lys Gly Val Leu Met Ile Ala Met Val Lys Ala Gly         355 360 365 Val Glu Leu Ala Phe Glu Thr Met Val Asp Ser Gly Ile Ile Glu Glu     370 375 380 Ser Ala Tyr Tyr Glu Ser Leu His Glu Leu Pro Leu Ile Ala Asn Thr 385 390 395 400 Ile Ala Arg Lys Arg Leu Tyr Glu Met Asn Val Val Ile Ser Asp Thr                 405 410 415 Ala Glu Tyr Gly Asn Tyr Leu Phe Ser Tyr Ala Cys Val Pro Leu Leu             420 425 430 Lys Pro Phe Met Ala Glu Leu Gln Pro Gly Asp Leu Gly Lys Ala Ile         435 440 445 Pro Glu Gly Ala Val Asp Asn Gly Gln Leu Arg Asp Val Asn Glu Ala     450 455 460 Ile Arg Ser His Ala Ile Glu Gln Val Gly Lys Lys Leu Arg Gly Tyr 465 470 475 480 Met Thr Asp Met Lys Arg Ile Ala Val Ala Gly                 485 490 <210> 8 <211> 1476 <212> DNA <213> Escherichia coli <400> 8 atggctaact acttcaatac actgaatctg cgccagcagc tggcacagct gggcaaatgt 60 cgctttatgg gccgcgatga attcgccgat ggcgcgagct accttcaggg taaaaaagta 120 gtcatcgtcg gctgtggcgc acagggtctg aaccagggcc tgaacatgcg tgattctggt 180 ctcgatatct cctacgctct gcgtaaagaa gcgattgccg agaagcgcgc gtcctggcgt 240 aaagcgaccg aaaatggttt taaagtgggt acttacgaag aactgatccc acaggcggat 300 ctggtgatta acctgacgcc ggacaagcag cactctgatg tagtgcgcac cgtacagcca 360 ctgatgaaag acggcgcggc gctgggctac tcgcacggtt tcaacatcgt cgaagtgggc 420 gagcagatcc gtaaagatat caccgtagtg atggttgcgc cgaaatgccc aggcaccgaa 480 gtgcgtgaag agtacaaacg tgggttcggc gtaccgacgc tgattgccgt tcacccggaa 540 aacgatccga aaggcgaagg catggcgatt gccaaagcct gggcggctgc aaccggtggt 600 caccgtgcgg gtgtgctgga atcgtccttc gttgcggaag tgaaatctga cctgatgggc 660 gagcaaacca tcctgtgcgg tatgttgcag gctggctctc tgctgtgctt cgacaagctg 720 gtggaagaag gtaccgatcc agcatacgca gaaaaactga ttcagttcgg ttgggaaacc 780 atcaccgaag cactgaaaca gggcggcatc accctgatga tggaccgtct ctctaacccg 840 gcgaaactgc gtgcttatgc gctttctgaa cagctgaaag agatcatggc acccctgttc 900 cagaaacata tggacgacat catctccggc gaattctctt ccggtatgat ggcggactgg 960 gccaacgatg ataagaaact gctgacctgg cgtgaagaga ccggcaaaac cgcgtttgaa 1020 accgcgccgc agtatgaagg caaaatcggc gagcaggagt acttcgataa aggcgtactg 1080 atgattgcga tggtgaaagc gggcgttgaa ctggcgttcg aaaccatggt cgattccggc 1140 atcattgaag agtctgcata ttatgaatca ctgcacgagc tgccgctgat tgccaacacc 1200 atcgcccgta agcgtctgta cgaaatgaac gtggttatct ctgataccgc tgagtacggt 1260 aactatctgt tctcttacgc ttgtgtgccg ttgctgaaac cgtttatggc agagctgcaa 1320 ccgggcgacc tgggtaaagc tattccggaa ggcgcggtag ataacgggca actgcgtgat 1380 gtgaacgaag cgattcgcag ccatgcgatt gagcaggtag gtaagaaact gcgcggctat 1440 atgacagata tgaaacgtat tgctgttgcg ggttaa 1476 <210> 9 <211> 395 <212> PRT <213> Saccharomyces cerevisiae <400> 9 Met Leu Arg Thr Gln Ala Ala Arg Leu Ile Cys Asn Ser Arg Val Ile 1 5 10 15 Thr Ala Lys Arg Thr Phe Ala Leu Ala Thr Arg Ala Ala Ala Tyr Ser             20 25 30 Arg Pro Ala Ala Arg Phe Val Lys Pro Met Ile Thr Thr Arg Gly Leu         35 40 45 Lys Gln Ile Asn Phe Gly Gly Thr Val Glu Thr Val Tyr Glu Arg Ala     50 55 60 Asp Trp Pro Arg Glu Lys Leu Leu Asp Tyr Phe Lys Asn Asp Thr Phe 65 70 75 80 Ala Leu Ile Gly Tyr Gly Ser Gln Gly Tyr Gly Gln Gly Leu Asn Leu                 85 90 95 Arg Asp Asn Gly Leu Asn Val Ile Ile Gly Val Arg Lys Asp Gly Ala             100 105 110 Ser Trp Lys Ala Ala Ile Glu Asp Gly Trp Val Pro Gly Lys Asn Leu         115 120 125 Phe Thr Val Glu Asp Ala Ile Lys Arg Gly Ser Tyr Val Met Asn Leu     130 135 140 Leu Ser Asp Ala Ala Gln Ser Glu Thr Trp Pro Ala Ile Lys Pro Leu 145 150 155 160 Leu Thr Lys Gly Lys Thr Leu Tyr Phe Ser His Gly Phe Ser Pro Val                 165 170 175 Phe Lys Asp Leu Thr His Val Glu Pro Pro Lys Asp Leu Asp Val Ile             180 185 190 Leu Val Ala Pro Lys Gly Ser Gly Arg Thr Val Arg Ser Leu Phe Lys         195 200 205 Glu Gly Arg Gly Ile Asn Ser Ser Tyr Ala Val Trp Asn Asp Val Thr     210 215 220 Gly Lys Ala His Glu Lys Ala Gln Ala Leu Ala Val Ala Ile Gly Ser 225 230 235 240 Gly Tyr Val Tyr Gln Thr Thr Phe Glu Arg Glu Val Asn Ser Asp Leu                 245 250 255 Tyr Gly Glu Arg Gly Cys Leu Met Gly Gly Ile His Gly Met Phe Leu             260 265 270 Ala Gln Tyr Asp Val Leu Arg Glu Asn Gly His Ser Pro Ser Glu Ala         275 280 285 Phe Asn Glu Thr Val Glu Glu Ala Thr Gln Ser Leu Tyr Pro Leu Ile     290 295 300 Gly Lys Tyr Gly Met Asp Tyr Met Tyr Asp Ala Cys Ser Thr Thr Ala 305 310 315 320 Arg Arg Gly Ala Leu Asp Trp Tyr Pro Ile Phe Lys Asn Ala Leu Lys                 325 330 335 Pro Val Phe Gln Asp Leu Tyr Glu Ser Thr Lys Asn Gly Thr Glu Thr             340 345 350 Lys Arg Ser Leu Glu Phe Asn Ser Gln Pro Asp Tyr Arg Glu Lys Leu         355 360 365 Glu Lys Glu Leu Asp Thr Ile Arg Asn Met Glu Ile Trp Lys Val Gly     370 375 380 Lys Glu Val Arg Lys Leu Arg Pro Glu Asn Gln 385 390 395 <210> 10 <211> 1188 <212> DNA <213> Saccharomyces cerevisiae <400> 10 atgttgagaa ctcaagccgc cagattgatc tgcaactccc gtgtcatcac tgctaagaga 60 acctttgctt tggccacccg tgctgctgct tacagcagac cagctgcccg tttcgttaag 120 ccaatgatca ctacccgtgg tttgaagcaa atcaacttcg gtggtactgt tgaaaccgtc 180 tacgaaagag ctgactggcc aagagaaaag ttgttggact acttcaagaa cgacactttt 240 gctttgatcg gttacggttc ccaaggttac ggtcaaggtt tgaacttgag agacaacggt 300 ttgaacgtta tcattggtgt ccgtaaagat ggtgcttctt ggaaggctgc catcgaagac 360 ggttgggttc caggcaagaa cttgttcact gttgaagatg ctatcaagag aggtagttac 420 gttatgaact tgttgtccga tgccgctcaa tcagaaacct ggcctgctat caagccattg 480 ttgaccaagg gtaagacttt gtacttctcc cacggtttct ccccagtctt caaggacttg 540 actcacgttg aaccaccaaa ggacttagat gttatcttgg ttgctccaaa gggttccggt 600 agaactgtca gatctttgtt caaggaaggt cgtggtatta actcttctta cgccgtctgg 660 aacgatgtca ccggtaaggc tcacgaaaag gcccaagctt tggccgttgc cattggttcc 720 ggttacgttt accaaaccac tttcgaaaga gaagtcaact ctgacttgta cggtgaaaga 780 ggttgtttaa tgggtggtat ccacggtatg ttcttggctc aatacgacgt cttgagagaa 840 aacggtcact ccccatctga agctttcaac gaaaccgtcg aagaagctac ccaatctcta 900 tacccattga tcggtaagta cggtatggat tacatgtacg atgcttgttc caccaccgcc 960 agaagaggtg ctttggactg gtacccaatc ttcaagaatg ctttgaagcc tgttttccaa 1020 gacttgtacg aatctaccaa gaacggtacc gaaaccaaga gatctttgga attcaactct 1080 caacctgact acagagaaaa gctagaaaag gaattagaca ccatcagaaa catggaaatc 1140 tggaaggttg gtaaggaagt cagaaagttg agaccagaaa accaataa 1188 <210> 11 <211> 330 <212> PRT <213> Methanococcus maripaludis <400> 11 Met Lys Val Phe Tyr Asp Ser Asp Phe Lys Leu Asp Ala Leu Lys Glu 1 5 10 15 Lys Thr Ile Ala Val Ile Gly Tyr Gly Ser Gln Gly Arg Ala Gln Ser             20 25 30 Leu Asn Met Lys Asp Ser Gly Leu Asn Val Val Gly Leu Arg Lys         35 40 45 Asn Gly Ala Ser Trp Asn Asn Ala Lys Ala Asp Gly His Asn Val Met     50 55 60 Thr Ile Glu Glu Ala Gla Lys Ala Asp Ile Ile His Ile Leu Ile 65 70 75 80 Pro Asp Glu Leu Gln Ala Glu Val Tyr Glu Ser Gln Ile Lys Pro Tyr                 85 90 95 Leu Lys Glu Gly Lys Thr Leu Ser Phe Ser His Gly Phe Asn Ile His             100 105 110 Tyr Gly Phe Ile Val Pro Pro Lys Gly Val Asn Val Val Leu Val Ala         115 120 125 Pro Lys Ser Pro Gly Lys Met Val Arg Arg Thr Tyr Glu Glu Gly Phe     130 135 140 Gly Val Pro Gly Leu Ile Cys Ile Glu Ile Asp Ala Thr Asn Asn Ala 145 150 155 160 Phe Asp Ile Val Ser Ala Met Ala Lys Gly Ile Gly Leu Ser Arg Ala                 165 170 175 Gly Val Ile Gln Thr Thr Phe Lys Glu Glu Thr Glu Thr Asp Leu Phe             180 185 190 Gly Glu Gln Ala Val Leu Cys Gly Gly Val Thr Glu Leu Ile Lys Ala         195 200 205 Gly Phe Glu Thr Leu Val Glu Ala Gly Tyr Ala Pro Glu Met Ala Tyr     210 215 220 Phe Glu Thr Cys His Glu Leu Lys Leu Ile Val Asp Leu Ile Tyr Gln 225 230 235 240 Lys Gly Phe Lys Asn Met Trp Asn Asp Val Ser Asn Thr Ala Glu Tyr                 245 250 255 Gly Gly Leu Thr Arg Arg Ser Ser Ile Val Thr Ala Asp Ser Lys Ala             260 265 270 Ala Met Lys Glu Ile Leu Arg Glu Ile Gln Asp Gly Arg Phe Thr Lys         275 280 285 Glu Phe Leu Leu Glu Lys Gln Val Ser Tyr Ala His Leu Lys Ser Met     290 295 300 Arg Arg Leu Glu Gly Asp Leu Gln Ile Glu Glu Val Gly Ala Lys Leu 305 310 315 320 Arg Lys Met Cys Gly Leu Glu Lys Glu Glu                 325 330 <210> 12 <211> 993 <212> DNA <213> Methanococcus maripaludis <400> 12 atgaaggtat tctatgactc agattttaaa ttagatgctt taaaagaaaa aacaattgca 60 gtaatcggtt atggaagtca aggtagggca cagtccttaa acatgaaaga cagcggatta 120 aacgttgttg ttggtttaag aaaaaacggt gcttcatgga acaacgctaa agcagacggt 180 cacaatgtaa tgaccattga agaagctgct gaaaaagcgg acatcatcca catcttaata 240 cctgatgaat tacaggcaga agtttatgaa agccagataa aaccatacct aaaagaagga 300 aaaacactaa gcttttcaca tggttttaac atccactatg gattcattgt tccaccaaaa 360 ggagttaacg tggttttagt tgctccaaaa tcacctggaa aaatggttag aagaacatac 420 gaagaaggtt tcggtgttcc aggtttaatc tgtattgaaa ttgatgcaac aaacaacgca 480 tttgatattg tttcagcaat ggcaaaagga atcggtttat caagagctgg agttatccag 540 acaactttca aagaagaaac agaaactgac cttttcggtg aacaagctgt tttatgcggt 600 ggagttaccg aattaatcaa ggcaggattt gaaacactcg ttgaagcagg atacgcacca 660 gaaatggcat actttgaaac ctgccacgaa ttgaaattaa tcgttgactt aatctaccaa 720 aaaggattca aaaacatgtg gaacgatgta agtaacactg cagaatacgg cggacttaca 780 agaagaagca gaatcgttac agctgattca aaagctgcaa tgaaagaaat cttaagagaa 840 atccaagatg gaagattcac aaaagaattc cttctcgaaa aacaggtaag ctatgctcat 900 ttaaaatcaa tgagaagact cgaaggagac ttacaaatcg aagaagtcgg cgcaaaatta 960 agaaaaatgt gcggtcttga aaaagaagaa taa 993 <210> 13 <211> 342 <212> PRT <213> Bacillus subtilis <400> 13 Met Val Lys Val Tyr Tyr Asn Gly Asp Ile Lys Glu Asn Val Leu Ala 1 5 10 15 Gly Lys Thr Val Ala Val Ile Gly Tyr Gly Ser Gln Gly His Ala His             20 25 30 Ala Leu Asn Leu Lys Glu Ser Gly Val Asp Val Ile Val Gly Val Arg         35 40 45 Gln Gly Lys Ser Phe Thr Gln Ala Gln Glu Asp Gly His Lys Val Phe     50 55 60 Ser Val Lys Glu Ala Ala Ala Gl Ala Glu Ile Ile Met Val Leu Leu 65 70 75 80 Pro Asp Glu Gln Gln Gln Lys Val Tyr Glu Ala Glu Ile Lys Asp Glu                 85 90 95 Leu Thr Ala Gly Lys Ser Leu Val Phe Ala His Gly Phe Asn Val His             100 105 110 Phe His Gln Ile Val Pro Pro Ala Asp Val Asp Val Phe Leu Val Ala         115 120 125 Pro Lys Gly Pro Gly His Leu Val Arg Arg Thr Tyr Glu Gln Gly Ala     130 135 140 Gly Val Pro Ala Leu Phe Ala Ile Tyr Gln Asp Val Thr Gly Glu Ala 145 150 155 160 Arg Asp Lys Ala Leu Ala Tyr Ala Lys Gly Ile Gly Gly Ala Arg Ala                 165 170 175 Gly Val Leu Glu Thr Thr Phe Lys Glu Glu Thr Glu Thr Asp Leu Phe             180 185 190 Gly Glu Gln Ala Val Leu Cys Gly Gly Leu Ser Ala Leu Val Lys Ala         195 200 205 Gly Phe Glu Thr Leu Thr Glu Ala Gly Tyr Gln Pro Glu Leu Ala Tyr     210 215 220 Phe Glu Cys Leu His Glu Leu Lys Leu Ile Val Asp Leu Met Tyr Glu 225 230 235 240 Glu Gly Leu Ala Gly Met Arg Tyr Ser Ile Ser Asp Thr Ala Gln Trp                 245 250 255 Gly Asp Phe Val Ser Gly Pro Arg Val Val Asp Ala Lys Val Lys Glu             260 265 270 Ser Met Lys Glu Val Leu Lys Asp Ile Gln Asn Gly Thr Phe Ala Lys         275 280 285 Glu Trp Ile Val Glu Asn Gln Val Asn Arg Pro Arg Phe Asn Ala Ile     290 295 300 Asn Ala Ser Glu Asn Glu His Gln Ile Glu Val Val Gly Arg Lys Leu 305 310 315 320 Arg Glu Met Met Pro Phe Val Lys Gln Gly Lys Lys Lys Glu Ala Val                 325 330 335 Val Ser Val Ala Gln Asn             340 <210> 14 <211> 1476 <212> DNA <213> Bacillus subtilis <400> 14 atggctaact acttcaatac actgaatctg cgccagcagc tggcacagct gggcaaatgt 60 cgctttatgg gccgcgatga attcgccgat ggcgcgagct accttcaggg taaaaaagta 120 gtcatcgtcg gctgtggcgc acagggtctg aaccagggcc tgaacatgcg tgattctggt 180 ctcgatatct cctacgctct gcgtaaagaa gcgattgccg agaagcgcgc gtcctggcgt 240 aaagcgaccg aaaatggttt taaagtgggt acttacgaag aactgatccc acaggcggat 300 ctggtgatta acctgacgcc ggacaagcag cactctgatg tagtgcgcac cgtacagcca 360 ctgatgaaag acggcgcggc gctgggctac tcgcacggtt tcaacatcgt cgaagtgggc 420 gagcagatcc gtaaagatat caccgtagtg atggttgcgc cgaaatgccc aggcaccgaa 480 gtgcgtgaag agtacaaacg tgggttcggc gtaccgacgc tgattgccgt tcacccggaa 540 aacgatccga aaggcgaagg catggcgatt gccaaagcct gggcggctgc aaccggtggt 600 caccgtgcgg gtgtgctgga atcgtccttc gttgcggaag tgaaatctga cctgatgggc 660 gagcaaacca tcctgtgcgg tatgttgcag gctggctctc tgctgtgctt cgacaagctg 720 gtggaagaag gtaccgatcc agcatacgca gaaaaactga ttcagttcgg ttgggaaacc 780 atcaccgaag cactgaaaca gggcggcatc accctgatga tggaccgtct ctctaacccg 840 gcgaaactgc gtgcttatgc gctttctgaa cagctgaaag agatcatggc acccctgttc 900 cagaaacata tggacgacat catctccggc gaattctctt ccggtatgat ggcggactgg 960 gccaacgatg ataagaaact gctgacctgg cgtgaagaga ccggcaaaac cgcgtttgaa 1020 accgcgccgc agtatgaagg caaaatcggc gagcaggagt acttcgataa aggcgtactg 1080 atgattgcga tggtgaaagc gggcgttgaa ctggcgttcg aaaccatggt cgattccggc 1140 atcattgaag agtctgcata ttatgaatca ctgcacgagc tgccgctgat tgccaacacc 1200 atcgcccgta agcgtctgta cgaaatgaac gtggttatct ctgataccgc tgagtacggt 1260 aactatctgt tctcttacgc ttgtgtgccg ttgctgaaac cgtttatggc agagctgcaa 1320 ccgggcgacc tgggtaaagc tattccggaa ggcgcggtag ataacgggca actgcgtgat 1380 gtgaacgaag cgattcgcag ccatgcgatt gagcaggtag gtaagaaact gcgcggctat 1440 atgacagata tgaaacgtat tgctgttgcg ggttaa 1476 <210> 15 <211> 343 <212> PRT <213> Anaerostipes caccae <400> 15 Met Glu Glu Cys Lys Met Ala Lys Ile Tyr Tyr Gln Glu Asp Cys Asn 1 5 10 15 Leu Ser Leu Leu Asp Gly Lys Thr Ile Ala Val Ile Gly Tyr Gly Ser             20 25 30 Gln Gly His Ala His Ala Leu Asn Ala Lys Glu Ser Gly Cys Asn Val         35 40 45 Ile Ile Gly Leu Tyr Glu Gly Ala Lys Glu Trp Lys Arg Ala Glu Glu     50 55 60 Gln Gly Phe Glu Val Tyr Thr Ala Ala Glu Ala Ala Lys Lys Ala Asp 65 70 75 80 Ile Ile Met Ile Leu Ile Asn Asp Glu Lys Gln Ala Thr Met Tyr Lys                 85 90 95 Asn Asp Ile Glu Pro Asn Leu Glu Ala Gly Asn Met Leu Met Phe Ala             100 105 110 His Gly Phe Asn Ile His Phe Gly Cys Ile Val Pro Pro Lys Asp Val         115 120 125 Asp Val Thr Met Ile Ala Pro Lys Gly Pro Gly His Thr Val Arg Ser     130 135 140 Glu Tyr Glu Glu Gly Lys Gly Val Pro Cys Leu Val Ala Val Glu Gln 145 150 155 160 Asp Ala Thr Gly Lys Ala Leu Asp Met Ala Leu Ala Tyr Ala Leu Ala                 165 170 175 Ile Gly Gly Ala Arg Ala Gly Val Leu Glu Thr Thr Phe Arg Thr Glu             180 185 190 Thr Glu Thr Asp Leu Phe Gly Glu Gln Ala Val Leu Cys Gly Gly Val         195 200 205 Cys Ala Leu Met Gln Ala Gly Phe Glu Thr Leu Val Glu Ala Gly Tyr     210 215 220 Asp Pro Arg Asn Ala Tyr Phe Glu Cys Ile His Glu Met Lys Leu Ile 225 230 235 240 Val Asp Leu Ile Tyr Gln Ser Gly Phe Ser Gly Met Arg Tyr Ser Ile                 245 250 255 Ser Asn Thr Ala Glu Tyr Gly Asp Tyr Ile Thr Gly Pro Lys Ile Ile             260 265 270 Thr Glu Asp Thr Lys Lys Ala Met Lys Lys Ile Leu Ser Asp Ile Gln         275 280 285 Asp Gly Thr Phe Ala Lys Asp Phe Leu Val Asp Met Ser Asp Ala Gly     290 295 300 Ser Gln Val His Phe Lys Ala Met Arg Lys Leu Ala Ser Glu His Pro 305 310 315 320 Ala Glu Val Val Gly Glu Glu Ile Arg Ser Leu Tyr Ser Trp Ser Asp                 325 330 335 Glu Asp Lys Leu Ile Asn Asn             340 <210> 16 <211> 343 <212> PRT <213> Anaerostipes caccae <400> 16 Met Glu Glu Cys Lys Met Ala Lys Ile Tyr Tyr Gln Glu Asp Cys Asn 1 5 10 15 Leu Ser Leu Leu Asp Gly Lys Thr Ile Ala Val Ile Gly Tyr Gly Ser             20 25 30 Gln Gly His Ala His Ala Leu Asn Ala Lys Glu Ser Gly Cys Asn Val         35 40 45 Ile Ile Gly Leu Tyr Glu Gly Ala Lys Asp Trp Lys Arg Ala Glu Glu     50 55 60 Gln Gly Phe Glu Val Tyr Thr Ala Ala Glu Ala Ala Lys Lys Ala Asp 65 70 75 80 Ile Ile Met Ile Leu Ile Asn Asp Glu Lys Gln Ala Thr Met Tyr Lys                 85 90 95 Asn Asp Ile Glu Pro Asn Leu Glu Ala Gly Asn Met Leu Met Phe Ala             100 105 110 His Gly Phe Asn Ile His Phe Gly Cys Ile Val Pro Pro Lys Asp Val         115 120 125 Asp Val Thr Met Ile Ala Pro Lys Gly Pro Gly His Thr Val Arg Ser     130 135 140 Glu Tyr Glu Glu Gly Lys Gly Val Pro Cys Leu Val Ala Val Glu Gln 145 150 155 160 Asp Ala Thr Gly Lys Ala Leu Asp Met Ala Leu Ala Tyr Ala Leu Ala                 165 170 175 Ile Gly Gly Ala Arg Ala Gly Val Leu Glu Thr Thr Phe Arg Thr Glu             180 185 190 Thr Glu Thr Asp Leu Phe Gly Glu Gln Ala Val Leu Cys Gly Gly Val         195 200 205 Cys Ala Leu Met Gln Ala Gly Phe Glu Thr Leu Val Glu Ala Gly Tyr     210 215 220 Asp Pro Arg Asn Ala Tyr Phe Glu Cys Ile His Glu Met Lys Leu Ile 225 230 235 240 Val Asp Leu Ile Tyr Gln Ser Gly Phe Ser Gly Met Arg Tyr Ser Ile                 245 250 255 Ser Asn Thr Ala Glu Tyr Gly Asp Tyr Ile Thr Gly Pro Lys Ile Ile             260 265 270 Thr Glu Asp Thr Lys Lys Ala Met Lys Lys Ile Leu Ser Asp Ile Gln         275 280 285 Asp Gly Thr Phe Ala Lys Asp Phe Leu Val Asp Met Ser Asp Ala Gly     290 295 300 Ser Gln Val His Phe Lys Ala Met Arg Lys Leu Ala Ser Glu His Pro 305 310 315 320 Ala Glu Val Val Gly Glu Glu Ile Arg Ser Leu Tyr Ser Trp Ser Asp                 325 330 335 Glu Asp Lys Leu Ile Asn Asn             340 <210> 17 <211> 616 <212> PRT <213> Escherichia coli <400> 17 Met Pro Lys Tyr Arg Ser Ala Thr Thr His Gly Arg Asn Met Ala 1 5 10 15 Gly Ala Arg Ala Leu Trp Arg Ala Thr Gly Met Thr Asp Ala Asp Phe             20 25 30 Gly Lys Pro Ile Ile Ala Val Val Asn Ser Phe Thr Gln Phe Val Pro         35 40 45 Gly His Val His Leu Arg Asp Leu Gly Lys Leu Val Ala Glu Gln Ile     50 55 60 Glu Ala Ala Gly Gly Val Ala Lys Glu Phe Asn Thr Ile Ala Val Asp 65 70 75 80 Asp Gly Ile Ala Met Gly His Gly Gly Met Leu Tyr Ser Leu Pro Ser                 85 90 95 Arg Glu Leu Ile Ala Asp Ser Val Glu Tyr Met Val Asn Ala His Cys             100 105 110 Ala Asp Ala Met Val Cys Ile Ser Asn Cys Asp Lys Ile Thr Pro Gly         115 120 125 Met Leu Met Ala Ser Leu Arg Leu Asn Ile Pro Val Ile Phe Val Ser     130 135 140 Gly Gly Pro Met Glu Ala Gly Lys Thr Lys Leu Ser Asp Gln Ile Ile 145 150 155 160 Lys Leu Asp Leu Val Asp Ala Met Ile Gln Gly Ala Asp Pro Lys Val                 165 170 175 Ser Asp Ser Gln Ser Asp Gln Val Glu Arg Ser Ala Cys Pro Thr Cys             180 185 190 Gly Ser Cys Ser Gly Met Phe Thr Ala Asn Ser Met Asn Cys Leu Thr         195 200 205 Glu Ala Leu Gly Leu Ser Gln Pro Gly Asn Gly Ser Leu Leu Ala Thr     210 215 220 His Ala Asp Arg Lys Gln Leu Phe Leu Asn Ala Gly Lys Arg Ile Val 225 230 235 240 Glu Leu Thr Lys Arg Tyr Tyr Glu Gln Asn Asp Glu Ser Ala Leu Pro                 245 250 255 Arg Asn Ile Ala Ser Lys Ala Ala Phe Glu Asn Ala Met Thr Leu Asp             260 265 270 Ile Ala Met Gly Gly Ser Thr Asn Thr Val Leu His Leu Leu Ala Ala         275 280 285 Ala Gln Glu Ala Glu Ile Asp Phe Thr Met Ser Asp Ile Asp Lys Leu     290 295 300 Ser Arg Lys Val Pro Gln Leu Cys Lys Val Ala Pro Ser Thr Gln Lys 305 310 315 320 Tyr His Met Glu Asp Val His Arg Ala Gly Gly Val Ile Gly Ile Leu                 325 330 335 Gly Glu Leu Asp Arg Ala Gly Leu Leu Asn Arg Asp Val Lys Asn Val             340 345 350 Leu Gly Leu Thr Leu Pro Gln Thr Leu Glu Gln Tyr Asp Val Met Leu         355 360 365 Thr Gln Asp Asp Ala Val Lys Asn Met Phe Arg Ala Gly Pro Ala Gly     370 375 380 Ile Arg Thr Thr Gln Ala Phe Ser Gln Asp Cys Arg Trp Asp Thr Leu 385 390 395 400 Asp Asp Arg Ala Asn Gly Cys Ile Arg Ser Leu Glu His Ala Tyr                 405 410 415 Ser Lys Asp Gly Gly Leu Ala Val Leu Tyr Gly Asn Phe Ala Glu Asn             420 425 430 Gly Cys Ile Val Lys Thr Ala Gly Val Asp Asp Ser Ile Leu Lys Phe         435 440 445 Thr Gly Pro Ala Lys Val Tyr Glu Ser Gln Asp Asp Ala Val Glu Ala     450 455 460 Ile Leu Gly Gly Lys Val Val Ala Gly Asp Val Val Ile Arg Tyr 465 470 475 480 Glu Gly Pro Lys Gly Gly Pro Gly Met Gln Glu Met Leu Tyr Pro Thr                 485 490 495 Ser Phe Leu Lys Ser Met Gly Leu Gly Lys Ala Cys Ala Leu Ile Thr             500 505 510 Asp Gly Arg Phe Ser Gly Gly Thr Ser Gly Leu Ser Ile Gly His Val         515 520 525 Ser Pro Glu Ala Ala Ser Gly Gly Ser Ile Gly Leu Ile Glu Asp Gly     530 535 540 Asp Leu Ile Ale Ile Asp Ile Pro Asn Arg Gly Ile Gln Leu Gln Val 545 550 555 560 Ser Asp Ala Glu Leu Ala Ala Arg Arg Glu Ala Gln Asp Ala Arg Gly                 565 570 575 Asp Lys Ala Trp Thr Pro Lys Asn Arg Glu Arg Gln Val Ser Phe Ala             580 585 590 Leu Arg Ala Tyr Ala Ser Leu Ala Thr Ser Ala Asp Lys Gly Ala Val         595 600 605 Arg Asp Lys Ser Lys Leu Gly Gly     610 615 <210> 18 <211> 1851 <212> DNA <213> Escherichia coli <400> 18 atgcctaagt accgttccgc caccaccact catggtcgta atatggcggg tgctcgtgcg 60 ctgtggcgcg ccaccggaat gaccgacgcc gatttcggta agccgattat cgcggttgtg 120 aactcgttca cccaatttgt accgggtcac gtccatctgc gcgatctcgg taaactggtc 180 gccgaacaaa ttgaagcggc tggcggcgtt gccaaagagt tcaacaccat tgcggtggat 240 gatgggattg ccatgggcca cggggggatg ctttattcac tgccatctcg cgaactgatc 300 gctgattccg ttgagtatat ggtcaacgcc cactgcgccg acgccatggt ctgcatctct 360 aactgcgaca aaatcacccc ggggatgctg atggcttccc tgcgcctgaa tattccggtg 420 atctttgttt ccggcggccc gatggaggcc gggaaaacca aactttccga tcagatcatc 480 aagctcgatc tggttgatgc gatgatccag ggcgcagacc cgaaagtatc tgactcccag 540 agcgatcagg ttgaacgttc cgcgtgtccg acctgcggtt cctgctccgg gatgtttacc 600 gctaactcaa tgaactgcct gaccgaagcg ctgggcctgt cgcagccggg caacggctcg 660 ctgctggcaa cccacgccga ccgtaagcag ctgttcctta atgctggtaa acgcattgtt 720 gaattgacca aacgttatta cgagcaaaac gacgaaagtg cactgccgcg taatatcgcc 780 agtaaggcgg cgtttgaaaa cgccatgacg ctggatatcg cgatgggtgg atcgactaac 840 accgtacttc acctgctggc ggcggcgcag gaagcggaaa tcgacttcac catgagtgat 900 atcgataagc tttcccgcaa ggttccacag ctgtgtaaag ttgcgccgag cacccagaaa 960 taccatatgg aagatgttca ccgtgctggt ggtgttatcg gtattctcgg cgaactggat 1020 cgcgcggggt tactgaaccg tgatgtgaaa aacgtacttg gcctgacgtt gccgcaaacg 1080 ctggaacaat acgacgttat gctgacccag gatgacgcgg taaaaaatat gttccgcgca 1140 ggtcctgcag gcattcgtac cacacaggca ttctcgcaag attgccgttg ggatacgctg 1200 gcgccgatc gcgccaatgg ctgtatccgc tcgctggaac acgcctacag caaagacggc 1260 ggcctggcgg tgctctacgg taactttgcg gaaaacggct gcatcgtgaa aacggcaggc 1320 gtcgatgaca gcatcctcaa attcaccggc ccggcgaaag tgtacgaaag ccaggacgat 1380 gcggtagaag cgattctcgg cggtaaagtt gtcgccggag atgtggtagt aattcgctat 1440 gaaggcccga aaggcggtcc ggggatgcag gaaatgctct acccaaccag cttcctgaaa 1500 tcaatgggtc tcggcaaagc ctgtgcgctg atcaccgacg gtcgtttctc tggtggcacc 1560 tctggtcttt ccatcggcca cgtctcaccg gaagcggcaa gcggcggcag cattggcctg 1620 attgaagatg gtgacctgat cgctatcgac atcccgaacc gtggcattca gttacaggta 1680 agcgatgccg aactggcggc gcgtcgtgaa gcgcaggacg ctcgaggtga caaagcctgg 1740 acgccgaaaa atcgtgaacg tcaggtctcc tttgccctgc gtgcttatgc cagcctggca 1800 accagcgccg acaaaggcgc ggtgcgcgat aaatcgaaac tggggggtta a 1851 <210> 19 <211> 585 <212> PRT <213> Saccharomyces cerevisiae <400> 19 Met Gly Leu Leu Thr Lys Val Ala Thr Ser Arg Gln Phe Ser Thr Thr 1 5 10 15 Arg Cys Val Ala Lys Lys Leu Asn Lys Tyr Ser Tyr Ile Ile Thr Glu             20 25 30 Pro Lys Gly Gln Gly Ala Ser Gln Ala Met Leu Tyr Ala Thr Gly Phe         35 40 45 Lys Lys Glu Asp Phe Lys Lys Pro Gln Val Gly Val Gly Ser Cys Trp     50 55 60 Trp Ser Gly Asn Pro Cys Asn Met His Leu Leu Asp Leu Asn Asn Arg 65 70 75 80 Cys Ser Gln Ser Ile Glu Lys Ala Gly Leu Lys Ala Met Gln Phe Asn                 85 90 95 Thr Ile Gly Val Ser Asp Gly Ile Ser Met Gly Thr Lys Gly Met Arg             100 105 110 Tyr Ser Leu Gln Ser Arg Glu Ile Ile Ala Asp Ser Phe Glu Thr Ile         115 120 125 Met Met Ala Gln His Tyr Asp Ala Asn Ile Ala Ile Pro Ser Cys Asp     130 135 140 Lys Asn Met Pro Gly Val Met Met Ala Met Gly Arg His His As Arg Pro 145 150 155 160 Ser Ile Met Val Tyr Gly Gly Thr Ile Leu Pro Gly His Pro Thr Cys                 165 170 175 Gly Ser Ser Lys Ile Ser Lys Asn Ile Asp Ile Val Ser Ala Phe Gln             180 185 190 Ser Tyr Gly Glu Tyr Ile Ser Lys Gln Phe Thr Glu Glu Glu Arg Glu         195 200 205 Asp Val Val Glu His Ala Cys Pro Gly Pro Gly Ser Cys Gly Gly Met     210 215 220 Tyr Thr Ala Asn Thr Met Ala Ser Ala Ala Glu Val Leu Gly Leu Thr 225 230 235 240 Ile Pro Asn Ser Ser Ser Phe Pro Ala Val Ser Lys Glu Lys Leu Ala                 245 250 255 Glu Cys Asp Asn Ile Gly Glu Tyr Ile Lys Lys Thr Met Glu Leu Gly             260 265 270 Ile Leu Pro Arg Asp Ile Leu Thr Lys Glu Ala Phe Glu Asn Ala Ile         275 280 285 Thr Val Val Ala Thr Gly Gly Ser Thr Asn Ala Val Leu His Leu     290 295 300 Val Ala Val Ala His Ser Ala Gly Val Lys Leu Ser Pro Asp Asp Phe 305 310 315 320 Gln Arg Ile Ser Asp Thr Thr Pro Leu Ile Gly Asp Phe Lys Pro Ser                 325 330 335 Gly Lys Tyr Val Met Ala Asp Leu Ile Asn Val Gly Gly Thr Gln Ser             340 345 350 Val Ile Lys Tyr Leu Tyr Glu Asn Asn Met Leu His Gly Asn Thr Met         355 360 365 Thr Val Thr Gly Asp Thr Leu Ala Glu Arg Ala Lys Lys Ala Pro Ser     370 375 380 Leu Pro Glu Gly Gln Glu Ile Ile Lys Pro Leu Ser His Pro Ile Lys 385 390 395 400 Ala Asn Gly His Leu Gln Ile Leu Tyr Gly Ser Leu Ala Pro Gly Gly                 405 410 415 Ala Val Gly Lys Ile Thr Gly Lys Gly Gly Thr Tyr Phe Lys Gly Arg             420 425 430 Ala Arg Val Phe Glu Glu Glu Gly Ala Phe Ile Glu Ala Leu Glu Arg         435 440 445 Gly Glu Ile Lys Lys Gly Glu Lys Thr Val Val Ile Arg Tyr Glu     450 455 460 Gly Pro Arg Gly Ala Pro Gly Met Pro Glu Met Leu Lys Pro Ser Ser 465 470 475 480 Ala Leu Met Gly Tyr Gly Leu Gly Lys Asp Val Ala Leu Leu Thr Asp                 485 490 495 Gly Arg Phe Ser Gly Gly Ser His Gly Phe Leu Ile Gly His Ile Val             500 505 510 Pro Glu Ala Ala Glu Gly Gly Pro Ile Gly Leu Val Arg Asp Gly Asp         515 520 525 Glu Ile Ile Asp Asp Ala Asp Asn Asn Lys Ile Asp Leu Leu Val Ser     530 535 540 Asp Lys Glu Met Ala Gln Arg Lys Gln Ser Trp Val Ala Pro Pro Pro 545 550 555 560 Arg Tyr Thr Arg Gly Thr Leu Ser Lys Tyr Ala Lys Leu Val Ser Asn                 565 570 575 Ala Ser Asn Gly Cys Val Leu Asp Ala             580 585 <210> 20 <211> 1131 <212> DNA <213> Saccharomyces cerevisiae <400> 20 atgaccttgg cacccctaga cgcctccaaa gttaagataa ctaccacaca acatgcatct 60 aagccaaaac cgaacagtga gttagtgttt ggcaagagct tcacggacca catgttaact 120 gcggaatgga cagctgaaaa agggtggggt accccagaga ttaaacctta tcaaaatctg 180 tctttagacc cttccgcggt ggttttccat tatgcttttg agctattcga agggatgaag 240 gcttacagaa cggtggacaa caaaattaca atgtttcgtc cagatatgaa tatgaagcgc 300 atgaataagt ctgctcagag aatctgtttg ccaacgttcg acccagaaga gttgattacc 360 ctaattggga aactgatcca gcaagataag tgcttagttc ctgaaggaaa aggttactct 420 ttatatatca ggcctacatt aatcggcact acggccggtt taggggtttc cacgcctgat 480 agagccttgc tatatgtcat ttgctgccct gtgggtcctt attacaaaac tggatttaag 540 gcggtcagac tggaagccac tgattatgcc acaagagctt ggccaggagg ctgtggtgac 600 aagaaactag gtgcaaacta cgccccctgc gtcctgccac aattgcaagc tgcttcaagg 660 ggttaccaac aaaatttatg gctatttggt ccaaataaca acattactga agtcggcacc 720 atgaatgctt ttttcgtgtt taaagatagt aaaacgggca agaaggaact agttactgct 780 ccactagacg gtaccatttt ggaaggtgtt actagggatt ccattttaaa tcttgctaaa 840 gaaagactcg aaccaagtga atggaccatt agtgaacgct acttcactat aggcgaagtt 900 actgagagat ccaagaacgg tgaactactt gaagcctttg gttctggtac tgctgcgatt 960 gtttccccca ttaaggaaat cggctggaaa ggcgaacaaa ttaatattcc gttgttgccc 1020 ggcgaacaaa ccggtccatt ggccaaagaa gttgcacaat ggattaatgg aatccaatat 1080 ggcgagactg agcatggcaa ttggtcaagg gttgttactg atttgaactg a 1131 <210> 21 <211> 550 <212> PRT <213> Methanococcus maripaludis <400> 21 Met Ile Ser Asp Asn Val Lys Lys Gly Val Ile Arg Thr Pro Asn Arg 1 5 10 15 Ala Leu Leu Lys Ala Cys Gly Tyr Thr Asp Glu Asp Met Glu Lys Pro             20 25 30 Phe Ile Gly Ile Val Asn Ser Phe Thr Glu Val Val Pro Gly His Ile         35 40 45 His Leu Arg Thr Leu Ser Glu Ala Ala Lys His Gly Val Tyr Ala Asn     50 55 60 Gly Gly Thr Pro Phe Glu Phe Asn Thr Ile Gly Ile Cys Asp Gly Ile 65 70 75 80 Ala Met Gly His Glu Gly Met Lys Tyr Ser Leu Pro Ser Arg Glu Ile                 85 90 95 Ile Ala Asp Ala Val Glu Ser Met Ala Arg Ala His Gly Phe Asp Gly             100 105 110 Leu Val Leu Ile Pro Thr Cys Asp Lys Ile Val Pro Gly Met Ile Met         115 120 125 Gly Ala Leu Arg Leu Asn Ile Pro Phe Ile Val Val Thr Gly Gly Pro     130 135 140 Met Leu Pro Gly Glu Phe Gln Gly Lys Lys Tyr Glu Leu Ile Ser Leu 145 150 155 160 Phe Glu Gly Val Gly Glu Tyr Gln Val Gly Lys Ile Thr Glu Glu Glu                 165 170 175 Leu Lys Cys Ile Glu Asp Cys Ala Cys Ser Gly Ala Gly Ser Cys Ala             180 185 190 Gly Leu Tyr Thr Ala Asn Ser Ala Cys Leu Thr Glu Ala Leu Gly         195 200 205 Leu Ser Leu Pro Met Cys Ala Thr Thr His Ala Val Asp Ala Gln Lys     210 215 220 Val Arg Leu Ala Lys Lys Ser Gly Ser Lys Ile Val Asp Met Val Lys 225 230 235 240 Glu Asp Leu Lys Pro Thr Asp Ile Leu Thr Lys Glu Ala Phe Glu Asn                 245 250 255 Ala Ile Leu Val Asp Leu Ala Leu Gly Gly Ser Thr Asn Thr Thr Leu             260 265 270 His Ile Pro Ala Ile Ala Asn Glu Ile Glu Asn Lys Phe Ile Thr Leu         275 280 285 Asp Asp Phe Asp Arg Leu Ser Asp Glu Val Pro His Ile Ala Ser Ile     290 295 300 Lys Pro Gly Gly Glu His Tyr Met Ile Asp Leu His Asn Ala Gly Gly 305 310 315 320 Ile Pro Ala Val Leu Asn Val Leu Lys Glu Lys Ile Arg Asp Thr Lys                 325 330 335 Thr Val Asp Gly Arg Ser Ile Leu Glu Ile Ala Glu Ser Val Lys Tyr             340 345 350 Ile Asn Tyr Asp Val Ile Arg Lys Val Glu Ala Pro Val His Glu Thr         355 360 365 Ala Gly Leu Arg Val Leu Lys Gly Asn Leu Ala Pro Asn Gly Cys Val     370 375 380 Val Lys Ile Gly Ala Val His Pro Lys Met Tyr Lys His Asp Gly Pro 385 390 395 400 Ala Lys Val Tyr Asn Ser Glu Asp Glu Ala Ile Ser Ala Ile Leu Gly                 405 410 415 Gly Lys Ile Val Glu Gly Asp Val Ile Val Ile Arg Tyr Glu Gly Pro             420 425 430 Ser Gly Gly Pro Gly Met Gly Met Leu Ser Pro Thr Ser Ala Ile         435 440 445 Cys Gly Met Gly Leu Asp Asp Ser Val Ala Leu Ile Thr Asp Gly Arg     450 455 460 Phe Ser Gly Gly Ser Arg Gly Pro Cys Ile Gly His Val Ser Pro Glu 465 470 475 480 Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Ala Gla Asp Ile Ile                 485 490 495 Lys Ile Asp Met Ile Glu Lys Glu Ile Asn Val Asp Leu Asp Glu Ser             500 505 510 Val Ile Lys Glu Arg Leu Ser Lys Leu Gly Glu Phe Glu Pro Lys Ile         515 520 525 Lys Lys Gly Tyr Leu Ser Ser Tyr Ser Lys Leu Val Ser Ser Ala Asp     530 535 540 Glu Gly Ala Val Leu Lys 545 550 <210> 22 <211> 1653 <212> DNA <213> Methanococcus maripaludis <400> 22 atgataagtg ataacgtcaa aaagggagtt ataagaactc caaaccgagc tcttttaaag 60 gcttgcggat atacagacga agacatggaa aaaccattta ttggaattgt aaacagcttt 120 acagaagttg ttcccggcca cattcactta agaacattat cagaagcggc taaacatggt 180 gtttatgcaa acggtggaac accatttgaa tttaatacca ttggaatttg cgacggtatt 240 gcaatgggcc acgaaggtat gaaatactct ttaccttcaa gagaaattat tgcagacgct 300 gttgaatcaa tggcaagagc acatggattt gatggtcttg ttttaattcc tacgtgtgat 360 aaaatcgttc ctggaatgat aatgggtgct ttaagactaa acattccatt tattgtagtt 420 actggaggac caatgcttcc cggagaattc caaggtaaaa aatacgaact tatcagcctt 480 tttgaaggtg tcggagaata ccaagttgga aaaattactg aagaagagtt aaagtgcatt 540 gaagactgtg catgttcagg tgctggaagt tgtgcagggc tttacactgc aaacagtatg 600 gcctgcctta cagaagcttt gggactctct cttccaatgt gtgcaacaac gcatgcagtt 660 gatgcccaaa aagttaggct tgctaaaaaa agtggctcaa aaattgttga tatggtaaaa 720 gaagacctaa aaccaacaga catattaaca aaagaagctt ttgaaaatgc tattttagtt 780 gaccttgcac ttggtggatc aacaaacaca acattacaca ttcctgcaat tgcaaatgaa 840 attgaaaata aattcataac tctcgatgac tttgacaggt taagcgatga agttccacac 900 attgcatcaa tcaaaccagg tggagaacac tacatgattg atttacacaa tgctggaggt 960 attcctgcgg tattgaacgt tttaaaagaa aaaattagag atacaaaaac agttgatgga 1020 agaagcattt tggaaatcgc agaatctgtt aaatacataa attacgacgt tataagaaaa 1080 gtggaagctc cggttcacga aactgctggt ttaagggttt taaagggaaa tcttgctcca 1140 aacggttgcg ttgtaaaaat cggtgcagta catccgaaaa tgtacaaaca cgatggacct 1200 gcaaaagttt acaattccga agatgaagca atttctgcga tacttggcgg aaaaattgta 1260 gaaggggacg ttatagtaat cagatacgaa ggaccatcag gaggccctgg aatgagagaa 1320 atgctctccc caacttcagc aatctgtgga atgggtcttg atgacagcgt tgcattgatt 1380 actgatggaa gattcagtgg tggaagtagg ggcccatgta tcggacacgt ttctccagaa 1440 gctgcagctg gcggagtaat tgctgcaatt gaaaacgggg atatcatcaa aatcgacatg 1500 attgaaaaag aaataaatgt tgatttagat gaatcagtca ttaaagaaag actctcaaaa 1560 ctgggagaat ttgagcctaa aatcaaaaaa ggctatttat caagatactc aaaacttgtc 1620 tcatctgctg acgaaggggc agttttaaaa taa 1653 <210> 23 <211> 558 <212> PRT <213> Bacillus subtilis <400> 23 Met Ala Glu Leu Arg Ser Asn Met Ile Thr Gln Gly Ile Asp Arg Ala 1 5 10 15 Pro His Arg Ser Leu Leu Arg Ala Ala Gly Val Lys Glu Glu Asp Phe             20 25 30 Gly Lys Pro Phe Ile Ala Val Cys Asn Ser Tyr Ile Asp Ile Val Pro         35 40 45 Gly His Val His Leu Gln Glu Phe Gly Lys Ile Val Lys Glu Ala Ile     50 55 60 Arg Glu Ala Gly Gly Val Pro Phe Glu Phe Asn Thr Ile Gly Val Asp 65 70 75 80 Asp Gly Ile Ala Met Gly His Ile Gly Met Arg Tyr Ser Leu Pro Ser                 85 90 95 Arg Glu Ile Ile Ala Asp Ser Val Glu Thr Val Val Ser Ala His Trp             100 105 110 Phe Asp Gly Met Val Cys Ile Pro Asn Cys Asp Lys Ile Thr Pro Gly         115 120 125 Met Leu Met Ala Ala Met Arg Ile Asn Ile Pro Thr Ile Phe Val Ser     130 135 140 Gly Gly Pro Met Ala Ala Gly Arg Thr Ser Asp Gly Arg Lys Ile Ser 145 150 155 160 Leu Ser Ser Val Phe Glu Gly Val Gly Ala Tyr Gln Ala Gly Lys Ile                 165 170 175 Asn Glu Asn Glu Leu Gln Glu Leu Glu Gln Phe Gly Cys Pro Thr Cys             180 185 190 Gly Ser Cys Ser Gly Met Phe Thr Ala Asn Ser Met Asn Cys Leu Ser         195 200 205 Glu Ala Leu Gly Leu Ala Leu Pro Gly Asn Gly     210 215 220 Ser Pro Glu Arg Lys Glu Phe Val Arg Lys Ser Ala Gln Leu Met 225 230 235 240 Glu Thr Ile Arg Lys Asp Ile Lys Pro Arg Asp Ile Val Thr Val Lys                 245 250 255 Ala Ile Asp Asn Ala Phe Ala Leu Asp Met Ala Leu Gly Gly Ser Thr             260 265 270 Asn Thr Val Leu His Thr Leu Ala Leu Ala Asn Glu Ala Gly Val Glu         275 280 285 Tyr Ser Leu Glu Arg Ile Asn Glu Val Ala Glu Arg Val Val His Leu     290 295 300 Ala Lys Leu Ala Pro Ala Ser Asp Val Phe Ile Glu Asp Leu His Glu 305 310 315 320 Ala Gly Gly Val Ser Ala Ala Leu Asn Glu Leu Ser Lys Lys Glu Gly                 325 330 335 Ala Leu His Leu Asp Ala Leu Thr Val Thr Gly Lys Thr Leu Gly Glu             340 345 350 Thr Ile Ala Gly His Glu Val Lys Asp Tyr Asp Val Ile His Pro Leu         355 360 365 Asp Gln Pro Phe Thr Glu Lys Gly Gly Leu Ala Val Leu Phe Gly Asn     370 375 380 Leu Ala Pro Asp Gly Ala Ile Lys Thr Gly Gly Val Gln Asn Gly 385 390 395 400 Ile Thr Arg His Glu Gly Pro Ala Val Val Phe Asp Ser Gln Asp Glu                 405 410 415 Ala Leu Asp Gly Ile Ile Asn Arg Lys Val Lys Glu Gly Asp Val Val             420 425 430 Ile Ile Arg Tyr Glu Gly Pro Lys Gly Gly Pro Gly Met Pro Glu Met         435 440 445 Leu Ala Pro Thr Ser Gln Ile Val Gly Met Gly Leu Gly Pro Lys Val     450 455 460 Ala Leu Ile Thr Asp Gly Arg Phe Ser Gly Ala Ser Arg Gly Leu Ser 465 470 475 480 Ile Gly His Val Ser Pro Glu Ala Ala Glu Gly Gly Pro Leu Ala Phe                 485 490 495 Val Glu Asn Gly Asp His Ile Ile Val Asp Ile Glu Lys Arg Ile Leu             500 505 510 Asp Val Gln Val Pro Glu Glu Glu Trp Glu Lys Arg Lys Ala Asn Trp         515 520 525 Lys Gly Phe Glu Pro Lys Val Lys Thr Gly Tyr Leu Ala Arg Tyr Ser     530 535 540 Lys Leu Val Thr Ser Ala Asn Thr Gly Gly Ile Met Lys Ile 545 550 555 <210> 24 <211> 1677 <212> DNA <213> Bacillus subtilis <400> 24 atggcagaat tacgcagtaa tatgatcaca caaggaatcg atagagctcc gcaccgcagt 60 ttgcttcgtg cagcaggggt aaaagaagag gatttcggca agccgtttat tgcggtgtgt 120 aattcataca ttgatatcgt tcccggtcat gttcacttgc aggagtttgg gaaaatcgta 180 aaagaagcaa tcagagaagc agggggcgtt ccgtttgaat ttaataccat tggggtagat 240 gatggcatcg caatggggca tatcggtatg agatattcgc tgccaagccg tgaaattatc 300 gcagactctg tggaaacggt tgtatccgca cactggtttg acggaatggt ctgtattccg 360 aactgcgaca aaatcacacc gggaatgctt atggcggcaa tgcgcatcaa cattccgacg 420 atttttgtca gcggcggacc gatggcggca ggaagaacaa gttacgggcg aaaaatctcc 480 ctttcctcag tattcgaagg ggtaggcgcc taccaagcag ggaaaatcaa cgaaaacgag 540 cttcaagaac tagagcagtt cggatgccca acgtgcgggt cttgctcagg catgtttacg 600 gcgaactcaa tgaactgtct gtcagaagca cttggtcttg ctttgccggg taatggaacc 660 attctggcaa catctccgga acgcaaagag tttgtgagaa aatcggctgc gcaattaatg 720 gaaacgattc gcaaagatat caaaccgcgt gatattgtta cagtaaaagc gattgataac 780 gcgtttgcac tcgatatggc gctcggaggt tctacaaata ccgttcttca tacccttgcc 840 cttgcaaacg aagccggcgt tgaatactct ttagaacgca ttaacgaagt cgctgagcgc 900 gtgccgcact tggctaagct ggcgcctgca tcggatgtgt ttattgaaga tcttcacgaa 960 gcgggcggcg tttcagcggc tctgaatgag ctttcgaaga aagaaggagc gcttcattta 1020 gatgcgctga ctgttacagg aaaaactctt ggagaaacca ttgccggaca tgaagtaaag 1080 gattatgacg tcattcaccc gctggatcaa ccattcactg aaaagggagg ccttgctgtt 1140 ttattcggta atctagctcc ggacggcgct atcattaaaa caggcggcgt acagaatggg 1200 attacaagac acgaagggcc ggctgtcgta ttcgattctc aggacgaggc gcttgacggc 1260 attatcaacc gaaaagtaaa agaaggcgac gttgtcatca tcagatacga agggccaaaa 1320 ggcggacctg gcatgccgga aatgctggcg ccaacatccc aaatcgttgg aatgggactc 1380 gggccaaaag tggcattgat tacggacgga cgtttttccg gagcctcccg tggcctctca 1440 atcggccacg tatcacctga ggccgctgag ggcgggccgc ttgcctttgt tgaaaacgga 1500 gaccatatta tcgttgatat tgaaaaacgc atcttggatg tacaagtgcc agaagaagag 1560 tgggaaaaac gaaaagcgaa ctggaaaggt tttgaaccga aagtgaaaac cggctacctg 1620 gcacgttatt ctaaacttgt gacaagtgcc aacaccggcg gtattatgaa aatctag 1677 <210> 25 <211> 547 <212> PRT <213> Lactococcus lactis <400> 25 Met Tyr Thr Val Gly Asp Tyr Leu Leu Asp Arg Leu His Glu Leu Gly 1 5 10 15 Ile Glu Glu Ile Phe Gly Val Gly Asp Tyr Asn Leu Gln Phe Leu             20 25 30 Asp Gln Ile Ile Ser Arg Glu Asp Met Lys Trp Ile Gly Asn Ala Asn         35 40 45 Glu Leu Asn Ala Ser Tyr Met Ala Asp Gly Tyr Ala Arg Thr Lys Lys     50 55 60 Ala Ala Ala Phe Leu Thr Thr Phe Gly Val Gly Glu Leu Ser Ala Ile 65 70 75 80 Asn Gly Leu Ala Gly Ser Tyr Ala Glu Asn Leu Pro Val Val Glu Ile                 85 90 95 Val Gly Ser Pro Thr Ser Lys Val Gln Asn Asp Gly Lys Phe Val His             100 105 110 His Thr Leu Ala Asp Gly Asp Phe Lys His Phe Met Lys Met His Glu         115 120 125 Pro Val Thr Ala Ala Arg Thr Leu Leu Thr Ala Glu Asn Ala Thr Tyr     130 135 140 Glu Ile Asp Arg Val Leu Ser Gln Leu Leu Lys Glu Arg Lys Pro Val 145 150 155 160 Tyr Ile Asn Leu Pro Val Asp Val Ala Ala Ala Lys Ala Glu Lys Pro                 165 170 175 Ala Leu Ser Leu Glu Lys Glu Ser Ser Thr Thr Asn Thr Thr Glu Gln             180 185 190 Val Ile Leu Ser Lys Ile Glu Glu Ser Leu Lys Asn Ala Gln Lys Pro         195 200 205 Val Val Ile Ala Gly His Glu Val Ile Ser Phe Gly Leu Glu Lys Thr     210 215 220 Val Thr Gln Phe Val Ser Glu Thr Lys Leu Pro Ile Thr Thr Leu Asn 225 230 235 240 Phe Gly Lys Ser Ala Val Asp Glu Ser Leu Pro Ser Phe Leu Gly Ile                 245 250 255 Tyr Asn Gly Lys Leu Ser Glu Ile Ser Leu Lys Asn Phe Val Glu Ser             260 265 270 Ala Asp Phe Ile Leu Met Leu Gly Val Lys Leu Thr Asp Ser Ser Thr         275 280 285 Gly Ala Phe Thr His His Leu Asp Glu Asn Lys Met Ile Ser Leu Asn     290 295 300 Ile Asp Glu Gly Ile Ile Phe Asn Lys Val Val Glu Asp Phe Asp Phe 305 310 315 320 Arg Ala Val Val Ser Ser Leu Ser Glu Leu Lys Gly Ile Glu Tyr Glu                 325 330 335 Gly Gln Tyr Ile Asp Lys Gln Tyr Glu Glu Phe Ile Pro Ser Ser Ala             340 345 350 Pro Leu Ser Gln Asp Arg Leu Trp Gln Ala Val Glu Ser Leu Thr Gln         355 360 365 Ser Asn Glu Thr Ile Val Ala Glu Gln Gly Thr Ser Phe Phe Gly Ala     370 375 380 Ser Thr Ile Phe Leu Lys Ser Asn Ser Arg Phe Ile Gly Gln Pro Leu 385 390 395 400 Trp Gly Ser Ile Gly Tyr Thr Phe Pro Ala Ala Leu Gly Ser Gln Ile                 405 410 415 Ala Asp Lys Glu Ser Arg His Leu Leu Phe Ile Gly Asp Gly Ser Leu             420 425 430 Gln Leu Thr Val Gln Glu Leu Gly Leu Ser Ile Arg Glu Lys Leu Asn         435 440 445 Pro Ile Cys Phe Ile Ile Asn Asn Asp Gly Tyr Thr Val Glu Arg Glu     450 455 460 Ile His Gly Pro Thr Gln Ser Tyr Asn Asp Ile Pro Met Trp Asn Tyr 465 470 475 480 Ser Lys Leu Pro Glu Thr Phe Gly Ala Thr Glu Asp Arg Val Val Ser                 485 490 495 Lys Ile Val Arg Thr Glu Asn Glu Phe Val Ser Val Met Lys Glu Ala             500 505 510 Gln Ala Asp Val Asn Arg Met Tyr Trp Ile Glu Leu Val Leu Glu Lys         515 520 525 Glu Asp Ala Pro Lys Leu Leu Lys Lys Met Gly Lys Leu Phe Ala Glu     530 535 540 Gln Asn Lys 545 <210> 26 <211> 1828 <212> DNA <213> Lactococcus lactis <400> 26 tttaaataag tcaatatcgt tgacttattt agaagaaaga gttattcttt aaatgtcaag 60 ttagttgact aaattaaata taaaatatgg aggaatgtga tgtatacagt aggagattac 120 ctgttagacc gattacacga gttgggaatt gaagaaattt ttggagttcc tggtgactat 180 aacttacaat ttttagatca aattatttca cgcgaagata tgaaatggat tggaaatgct 240 aatgaattaa atgcttctta tatggctgat ggttatgctc gtactaaaaa agctgccgca 300 tttctcacca catttggagt cggcgaattg agtgcgatca atggactggc aggaagttat 360 gccgaaaatt taccagtagt agaaattgtt ggttcaccaa cttcaaaagt acaaaatgac 420 ggaaaatttg tccatcatac actagcagat ggtgatttta aacactttat gaagatgcat 480 gaacctgtta cagcagcgcg gactttactg acagcagaaa atgccacata tgaaattgac 540 cgagtacttt ctcaattact aaaagaaaga aaaccagtct atattaactt accagtcgat 600 gttgctgcag caaaagcaga gaagcctgca ttatctttag aaaaagaaag ctctacaaca 660 aatacaactg aacaagtgat tttgagtaag attgaagaaa gtttgaaaaa tgcccaaaaa 720 ccagtagtga ttgcaggaca cgaagtaatt agttttggtt tagaaaaaac ggtaactcag 780 tttgtttcag aaacaaaact accgattacg acactaaatt ttggtaaaag tgctgttgat 840 gaatctttgc cctcattttt aggaatatat aacgggaaac tttcagaaat cagtcttaaa 900 aattttgtgg agtccgcaga ctttatccta atgcttggag tgaagcttac ggactcctca 960 acaggtgcat tcacacatca tttagatgaa aataaaatga tttcactaaa catagatgaa 1020 ggaataattt tcaataaagt ggtagaagat tttgatttta gagcagtggt ttcttcttta 1080 tcagaattaa aaggaataga atatgaagga caatatattg ataagcaata tgaagaattt 1140 attccatcaa gtgctccctt atcacaagac cgtctatggc aggcagttga aagtttgact 1200 caaagcaatg aaacaatcgt tgctgaacaa ggaacctcat tttttggagc ttcaacaatt 1260 ttcttaaaat caaatagtcg ttttattgga caacctttat ggggttctat tggatatact 1320 tttccagcgg ctttaggaag ccaaattgcg gataaagaga gcagacacct tttatttatt 1380 ggtgatggtt cacttcaact taccgtacaa gaattaggac tatcaatcag agaaaaactc 1440 aatccaattt gttttatcat aaataatgat ggttatacag ttgaaagaga aatccacgga 1500 cctactcaaa gttataacga cattccaatg tggaattact cgaaattacc agaaacattt 1560 ggagcaacag aagatcgtgt agtatcaaaa attgttagaa cagagaatga atttgtgtct 1620 gtcatgaaag aagcccaagc agatgtcaat agaatgtatt ggatagaact agttttggaa 1680 aaagaagatg cgccaaaatt actgaaaaaa atgggtaaat tatttgctga gcaaaataaa 1740 tagatatcaa cggatgatga aaagtaaaat agacaaagtc caataatttt ataaaaagta 1800 aaaacattag gattttccta atgttttt 1828 <210> 27 <211> 548 <212> PRT <213> Lactococcus lactis <400> 27 Met Tyr Thr Val Gly Asp Tyr Leu Leu Asp Arg Leu His Glu Leu Gly 1 5 10 15 Ile Glu Glu Ile Phe Gly Val Gly Asp Tyr Asn Leu Gln Phe Leu             20 25 30 Asp Gln Ile Ile Ser His Lys Asp Met Lys Trp Val Gly Asn Ala Asn         35 40 45 Glu Leu Asn Ala Ser Tyr Met Ala Asp Gly Tyr Ala Arg Thr Lys Lys     50 55 60 Ala Ala Ala Phe Leu Thr Thr Phe Gly Val Gly Glu Leu Ser Ala Val 65 70 75 80 Asn Gly Leu Ala Gly Ser Tyr Ala Glu Asn Leu Pro Val Val Glu Ile                 85 90 95 Val Gly Ser Pro Thr Ser Lys Val Gln Asn Glu Gly Lys Phe Val His             100 105 110 His Thr Leu Ala Asp Gly Asp Phe Lys His Phe Met Lys Met His Glu         115 120 125 Pro Val Thr Ala Ala Arg Thr Leu Leu Thr Ala Glu Asn Ala Thr Val     130 135 140 Glu Ile Asp Arg Val Leu Ser Ala Leu Leu Lys Glu Arg Lys Pro Val 145 150 155 160 Tyr Ile Asn Leu Pro Val Asp Val Ala Ala Ala Lys Ala Glu Lys Pro                 165 170 175 Ser Leu Pro Leu Lys Lys Glu Asn Ser Thr Ser Asn Thr Ser Asp Gln             180 185 190 Glu Ile Leu Asn Lys Ile Gln Glu Ser Leu Lys Asn Ala Lys Lys Pro         195 200 205 Ile Val Ile Thr Gly His Glu Ile Ile Ser Phe Gly Leu Glu Lys Thr     210 215 220 Val Thr Gln Phe Ile Ser Lys Thr Lys Leu Pro Ile Thr Thr Leu Asn 225 230 235 240 Phe Gly Lys Ser Ser Val Asp Glu Ala Leu Pro Ser Phe Leu Gly Ile                 245 250 255 Tyr Asn Gly Thr Leu Ser Glu Pro Asn Leu Lys Glu Phe Val Glu Ser             260 265 270 Ala Asp Phe Ile Leu Met Leu Gly Val Lys Leu Thr Asp Ser Ser Thr         275 280 285 Gly Ala Phe Thr His His Leu Asn Glu Asn Lys Met Ile Ser Leu Asn     290 295 300 Ile Asp Glu Gly Lys Ile Phe Asn Glu Arg Ile Gln Asn Phe Asp Phe 305 310 315 320 Glu Ser Leu Ile Ser Ser Leu Leu Asp Leu Ser Glu Ile Glu Tyr Lys                 325 330 335 Gly Lys Tyr Ile Asp Lys Lys Gln Glu Asp Phe Val Pro Ser Asn Ala             340 345 350 Leu Leu Ser Gln Asp Arg Leu Trp Gln Ala Val Glu Asn Leu Thr Gln         355 360 365 Ser Asn Glu Thr Ile Val Ala Glu Gln Gly Thr Ser Phe Phe Gly Ala     370 375 380 Ser Ser Ile Phe Leu Lys Ser Lys Ser His Phe Ile Gly Gln Pro Leu 385 390 395 400 Trp Gly Ser Ile Gly Tyr Thr Phe Pro Ala Ala Leu Gly Ser Gln Ile                 405 410 415 Ala Asp Lys Glu Ser Arg His Leu Leu Phe Ile Gly Asp Gly Ser Leu             420 425 430 Gln Leu Thr Val Gln Glu Leu Gly Leu Ala Ile Arg Glu Lys Ile Asn         435 440 445 Pro Ile Cys Phe Ile Ile Asn Asn Asp Gly Tyr Thr Val Glu Arg Glu     450 455 460 Ile His Gly Pro Asn Gln Ser Tyr Asn Asp Ile Pro Met Trp Asn Tyr 465 470 475 480 Ser Lys Leu Pro Glu Ser Phe Gly Ala Thr Glu Asp Arg Val Val Ser                 485 490 495 Lys Ile Val Arg Thr Glu Asn Glu Phe Val Ser Val Met Lys Glu Ala             500 505 510 Gln Ala Asp Pro Asn Arg Met Tyr Trp Ile Glu Leu Ile Leu Ala Lys         515 520 525 Glu Gly Ala Pro Lys Val Leu Lys Lys Met Gly Lys Leu Phe Ala Glu     530 535 540 Gln Asn Lys Ser 545 <210> 28 <211> 1954 <212> DNA <213> Lactococcus lactis <400> 28 ctagagtttt ctttagtcat aattcactcc ttttattagt ctattatact tgataattca 60 aataagtcaa tatcgttgac ttatttaaag aaaagcgtta ttctataaat gtcaagttga 120 ttgaccaata tataataaaa tatggaggaa tgcgatgtat acagtaggag attacctatt 180 agaccgatta cacgagttag gaattgaaga aatttttgga gtccctggag actataactt 240 acaattttta gatcaaatta tttcccacaa ggatatgaaa tgggtcggaa atgctaatga 300 attaaatgct tcatatatgg ctgatggcta tgctcgtact aaaaaagctg ccgcatttct 360 tacaaccttt ggagtaggtg aattgagtgc agttaatgga ttagcaggaa gttacgccga 420 aaatttacca gtagtagaaa tagtgggatc acctacatca aaagttcaaa atgaaggaaa 480 atttgttcat catacgctgg ctgacggtga ttttaaacac tttatgaaaa tgcacgaacc 540 tgttacagca gctcgaactt tactgacagc agaaaatgca accgttgaaa ttgaccgagt 600 actttctgca ctattaaaag aaagaaaacc tgtctatatc aacttaccag ttgatgttgc 660 tgctgcaaaa gcagagaaac cctcactccc tttgaaaaag gaaaactcaa cttcaaatac 720 aagtgaccaa gaaattttga acaaaattca agaaagcttg aaaaatgcca aaaaaccaat 780 cgtgattaca ggacatgaaa taattagttt tggcttagaa aaaacagtca ctcaatttat 840 ttcaaagaca aaactaccta ttacgacatt aaactttggt aaaagttcag ttgatgaagc 900 cctcccttca tttttaggaa tctataatgg tacactctca gagcctaatc ttaaagaatt 960 cgtggaatca gccgacttca tcttgatgct tggagttaaa ctcacagact cttcaacagg 1020 agccttcact catcatttaa atgaaaataa aatgatttca ctgaatatag atgaaggaaa 1080 aatatttaac gaaagaatcc aaaattttga ttttgaatcc ctcatctcct ctctcttaga 1140 cctaagcgaa atagaataca aaggaaaata tatcgataaa aagcaagaag actttgttcc 1200 atcaaatgcg cttttatcac aagaccgcct atggcaagca gttgaaaacc taactcaaag 1260 caatgaaaca atcgttgctg aacaagggac atcattcttt ggcgcttcat caattttctt 1320 aaaatcaaag agtcatttta ttggtcaacc cttatgggga tcaattggat atacattccc 1380 agcagcatta ggaagccaaa ttgcagataa agaaagcaga caccttttat ttattggtga 1440 tggttcactt caacttacag tgcaagaatt aggattagca atcagagaaa aaattaatcc 1500 aatttgcttt attatcaata atgatggtta tacagtcgaa agagaaattc atggaccaaa 1560 tcaaagctac aatgatattc caatgtggaa ttactcaaaa ttaccagaat cgtttggagc 1620 aacagaagat cgagtagtct caaaaatcgt tagaactgaa aatgaatttg tgtctgtcat 1680 gaaagaagct caagcagatc caaatagaat gtactggatt gagttaattt tggcaaaaga 1740 aggtgcacca aaagtactga aaaaaatggg caaactattt gctgaacaaa ataaatcata 1800 atttataaat agtaaaaaac attaggaaat acctaatgtt tttttgttga ctaaatcaat 1860 ccctctttat atagaaaacc ttagtttctc aaagacaact taattaagcc tgccaaattg 1920 gaactcgcaa aatgtaatct atcctctgct ccta 1954 <210> 29 <211> 550 <212> PRT <213> Salmonella typhimurium <400> 29 Met Gln Asn Pro Tyr Thr Val Ala Asp Tyr Leu Leu Asp Arg Leu Ala 1 5 10 15 Gly Cys Gly Ile Gly His Leu Phe Gly Val Pro Gly Asp Tyr Asn Leu             20 25 30 Gln Phe Leu Asp His Val Ile Asp His Pro Thr Leu Arg Trp Val Gly         35 40 45 Cys Ala Asn Glu Leu Asn Ala Ala Tyr Ala Ala Asp Gly Tyr Ala Arg     50 55 60 Met Ser Gly Ala Gly Ala Leu Leu Thr Thr Phe Gly Val Gly Glu Leu 65 70 75 80 Ser Ala Ile Asn Gly Ile Ala Gly Ser Tyr Ala Glu Tyr Val                 85 90 95 Leu His Ile Val Gly Ala Pro Cys Ser Ala Ala Gln Gln Arg Gly Glu             100 105 110 Leu Met His His Thr Leu Gly Asp Gly Asp Phe Arg His Phe Tyr Arg         115 120 125 Met Ser Gln Ala Ile Ser Ala Ala Ser Ala Ile Leu Asp Glu Gln Asn     130 135 140 Ala Cys Phe Glu Ile Asp Arg Val Leu Gly Glu Met Leu Ala Ala Arg 145 150 155 160 Arg Pro Gly Tyr Ile Met Leu Pro Ala Asp Val Ala Lys Lys Thr Ala                 165 170 175 Ile Pro Pro Thr Gln Ala Leu Ala Leu Pro Val His Glu Ala Gln Ser             180 185 190 Gly Val Glu Thr Ala Phe Arg Tyr His Ala Arg Gln Cys Leu Met Asn         195 200 205 Ser Arg Arg Ile Ala Leu Leu Ala Asp Phe Leu Ala Gly Arg Phe Gly     210 215 220 Leu Arg Pro Leu Leu Gln Arg Trp Met Ala Glu Thr Pro Ile Ala His 225 230 235 240 Ala Thr Leu Leu Met Gly Lys Gly Leu Phe Asp Glu Gln His Pro Asn                 245 250 255 Phe Val Gly Thr Tyr Ser Ala Gly Ala Ser Ser Lys Glu Val Arg Gln             260 265 270 Ala Ile Glu Asp Ala Asp Arg Val Ile Cys Val Gly Thr Arg Phe Val         275 280 285 Asp Thr Leu Thr Ala Gly Phe Thr Gln Gln Leu Pro Ala Glu Arg Thr     290 295 300 Leu Glu Ile Gln Pro Tyr Ala Ser Arg Ile Gly Glu Thr Trp Phe Asn 305 310 315 320 Leu Pro Met Ala Gln Ala Val Ser Thr Leu Arg Glu Leu Cys Leu Glu                 325 330 335 Cys Ala Phe Ala Pro Pro Thr Arg Ser Ala Gly Gln Pro Val Arg             340 345 350 Ile Asp Lys Gly Glu Leu Thr Gln Glu Ser Phe Trp Gln Thr Leu Gln         355 360 365 Gln Tyr Leu Lys Pro Gly Asp Ile Ile Leu Val Asp Gln Gly Thr Ala     370 375 380 Ala Phe Gly Ala Ala Ala Leu Ser Leu Pro Asp Gly Ala Glu Val Val 385 390 395 400 Leu Gln Pro Leu Trp Gly Ser Ile Gly Tyr Ser Leu Pro Ala Ala Phe                 405 410 415 Gly Ala Gln Thr Ala Cys Pro Asp Arg Arg Val Ile Leu Ile Ile Gly             420 425 430 Asp Gly Ala Ala Gln Leu Thr Ile Gln Glu Met Gly Ser Met Leu Arg         435 440 445 Asp Gly Gln Ala Pro Val Ile Leu Leu Leu Asn Asn Asp Gly Tyr Thr     450 455 460 Val Glu Arg Ala Ile His Gly Ala Ala Gln Arg Tyr Asn Asp Ile Ala 465 470 475 480 Ser Trp Asn Trp Thr Gln Ile Pro Pro Ala Leu Asn Ala Ala Gln Gln                 485 490 495 Ala Glu Cys Trp Arg Val Thr Gln Ala Ile Gln Leu Ala Glu Val Leu             500 505 510 Glu Arg Leu Ala Arg Pro Gln Arg Leu Ser Phe Ile Glu Val Met Leu         515 520 525 Pro Lys Ala Asp Leu Pro Glu Leu Leu Arg Thr Val Thr Arg Ala Leu     530 535 540 Glu Ala Arg Asn Gly Gly 545 550 <210> 30 <211> 1653 <212> DNA <213> Salmonella typhimurium <400> 30 ttatcccccg ttgcgggctt ccagcgcccg ggtcacggta cgcagtaatt ccggcagatc 60 ggcttttggc aacatcactt caataaatga cagacgttgt gggcgcgcca accgttcgag 120 gacctctgcc agttggatag cctgcgtcac ccgccagcac tccgcctgtt gcgccgcgtt 180 tagcgccggt ggtatctgcg tccagttcca gctcgcgatg tcgttatacc gctgggccgc 240 gccgtgaatg gcgcgctcta cggtatagcc gtcattgttg agcagcagga tgaccggcgc 300 ctgcccgtcg cgtaacatcg agcccatctc ctgaatcgtg agctgcgccg cgccatcgcc 360 gataatcaga atcacccgcc gatcgggaca ggcggtttgc gcgccaaacg cggcgggcaa 420 ggaatagccg atagaccccc acagcggctg taacacaact tccgcgccgt caggaagcga 480 cagcgcggca gcgccaaaag ctgctgtccc ctggtcgaca aggataatat ctccgggttt 540 gagatactgc tgtaaggttt gccagaagct ttcctgggtc agttctcctt tatcaatccg 600 cactggctgt ccggcggaac gcgtcggcgg cggcgcaaaa gcgcattcca ggcacagttc 660 gcgcagcgta gacaccgcct gcgccatcgg gaggttgaac caggtttcgc cgatgcgcga 720 cgcgtaaggc tgaatctcca gcgtgcgttc cgccggtaat tgttgggtaa atccggccgt 780 aagggtatcg acaaaacggg tgccgacgca gataacccta tcggcgtcct ctatggcctg 840 acgcacttct ttgctgctgg cgccagcgct ataggtgcca acgaagttcg ggtgctgttc 900 atcaaaaagc cccttcccca tcagtagtgt cgcatgagcg atgggcgttt ccgccatcca 960 gcgctgcaac agtggtcgta aaccaaaacg cccggcaaga aagtcggcca atagcgcaat 1020 gcgccgactg ttcatcaggc actgacgggc gtgataacga aaggccgtct ccacgccgct 1080 ttgcgcttca tgcacgggca acgccagcgc ctgcgtaggt gggatggccg tttttttcgc 1140 cacatcggcg ggcaacatga tgtatcctgg cctgcgtgcg gcaagcattt cacccaacac 1200 gcggtcaatc tcgaaacagg cgttctgttc atctaatatt gcgctggcag cggatatcgc 1260 ctgactcatg cgataaaaat gacgaaaatc gccgtcaccg agggtatggt gcatcaattc 1320 gccacgctgc tgcgcagcgc tacagggcgc gccgacgata tgcaagaccg ggacatattc 1380 cgcgtaactg cccgcgatac cgttaatagc gctaagttct cccacgccaa aggtggtgag 1440 tagcgctcca gcgcccgaca tgcgcgcata gccgtccgcg gcataagcgg cgttcagctc 1500 attggcgcat cccacccaac gcagggtcgg gtggtcaatc acatggtcaa gaaactgcaa 1560 gttataatcg cccggtacgc caaaaagatg gccaatgccg catcctgcca gtctgtccag 1620 caaatagtcg gccacggtat aggggttttg cat 1653 <210> 31 <211> 554 <212> PRT <213> Clostridium acetobutylicum <400> 31 Met Lys Ser Glu Tyr Thr Ile Gly Arg Tyr Leu Leu Asp Arg Leu Ser 1 5 10 15 Glu Leu Gly Ile Arg His Ile Phe Gly Val Pro Gly Asp Tyr Asn Leu             20 25 30 Ser Phe Leu Asp Tyr Ile Met Glu Tyr Lys Gly Ile Asp Trp Val Gly         35 40 45 Asn Cys Asn Glu Leu Asn Ala Gly Tyr Ala Ala Asp Gly Tyr Ala Arg     50 55 60 Ile Asn Gly Ile Gly Ala Ile Leu Thr Thr Phe Gly Val Gly Glu Leu 65 70 75 80 Ser Ala Ile Asl Ale Ile Ala Gly Ala Tyr Ala Glu                 85 90 95 Val Lys Ile Thr Gly Ile Pro Thr Ala Lys Val Arg Asp Asn Gly Leu             100 105 110 Tyr Val His His Thr Leu Gly Asp Gly Arg Phe Asp His Phe Phe Glu         115 120 125 Met Phe Arg Glu Val Thr Val Ala Glu Ala Leu Leu Ser Glu Glu Asn     130 135 140 Ala Ala Gln Glu Ile Asp Arg Val Leu Ile Ser Cys Trp Arg Gln Lys 145 150 155 160 Arg Pro Val Leu Ile Asn Leu Pro Ile Asp Val Tyr Asp Lys Pro Ile                 165 170 175 Asn Lys Pro Leu Lys Pro Leu Leu Asp Tyr Thr Ile Ser Ser Asn Lys             180 185 190 Glu Ala Ala Cys Glu Phe Val Thr Glu Ile Val Pro Ile Ile Asn Arg         195 200 205 Ala Lys Lys Pro Val Ile Leu Ala Asp Tyr Gly Val Tyr Arg Tyr Gln     210 215 220 Val Gln His Val Leu Lys Asn Leu Ala Glu Lys Thr Gly Phe Pro Val 225 230 235 240 Ala Thr Leu Ser Met Gly Lys Gly Val Phe Asn Glu Ala His Pro Gln                 245 250 255 Phe Ile Gly Val Tyr Asn Gly Asp Val Ser Ser Pro Tyr Leu Arg Gln             260 265 270 Arg Val Asp Glu Ala Asp Cys Ile Ile Ser Val Gly Val Lys Leu Thr         275 280 285 Asp Ser Thr Thr Gly Gly Phe Ser His Gly Phe Ser Lys Arg Asn Val     290 295 300 Ile His Ile Asp Pro Phe Ser Ile Lys Ala Lys Gly Lys Lys Tyr Ala 305 310 315 320 Pro Ile Thr Met Lys Asp Ala Leu Thr Glu Leu Thr Ser Lys Ile Glu                 325 330 335 His Arg Asn Phe Glu Asp Leu Asp Ile Lys Pro Tyr Lys Ser Asp Asn             340 345 350 Gln Lys Tyr Phe Ala Lys Glu Lys Pro Ile Thr Gln Lys Arg Phe Phe         355 360 365 Glu Arg Ile Ala His Phe Ile Lys Glu Lys Asp Val Leu Leu Ala Glu     370 375 380 Gln Gly Thr Cys Phe Phe Gly Ala Ser Thr Ile Gln Leu Pro Lys Asp 385 390 395 400 Ala Thr Phe Ile Gly Gln Pro Leu Trp Gly Ser Ile Gly Tyr Thr Leu                 405 410 415 Pro Ala Leu Leu Gly Ser Gln Leu Ala Asp Gln Lys Arg Arg Asn Ile             420 425 430 Leu Leu Ile Gly Asp Gly Ala Phe Gln Met Thr Ala Gln Glu Ile Ser         435 440 445 Thr Met Leu Arg Leu Gln Ile Lys Pro Ile Ile Phe Leu Ile Asn Asn     450 455 460 Asp Gly Tyr Thr Ile Glu Arg Ala Ile His Gly Arg Glu Gln Val Tyr 465 470 475 480 Asn Asn Ile Gln Met Trp Arg Tyr His Asn Val Pro Lys Val Leu Gly                 485 490 495 Pro Lys Glu Cys Ser Leu Thr Phe Lys Val Gln Ser Glu Thr Glu Leu             500 505 510 Glu Lys Ala Leu Leu Val Ala Asp Lys Asp Cys Glu His Leu Ile Phe         515 520 525 Ile Glu Val Val Met Asp Arg Tyr Asp Lys Pro Glu Pro Leu Glu Arg     530 535 540 Leu Ser Lys Arg Phe Ala Asn Gln Asn Asn 545 550 <210> 32 <211> 1665 <212> DNA <213> Clostridium acetobutylicum <400> 32 ttgaagagtg aatacacaat tggaagatat ttgttagacc gtttatcaga gttgggtatt 60 cggcatatct ttggtgtacc tggagattac aatctatcct ttttagacta tataatggag 120 tacaaaggga tagattgggt tggaaattgc aatgaattga atgctgggta tgctgctgat 180 ggatatgcaa gaataaatgg aattggagcc atacttacaa catttggtgt tggagaatta 240 agtgccatta acgcaattgc tggggcatac gctgagcaag ttccagttgt taaaattaca 300 ggtatcccca cagcaaaagt tagggacaat ggattatatg tacaccacac attaggtgac 360 ggaaggtttg atcacttttt tgaaatgttt agagaagtaa cagttgctga ggcattacta 420 agcgaagaaa atgcagcaca agaaattgat cgtgttctta tttcatgctg gagacaaaaa 480 cgtcctgttc ttataaattt accgattgat gtatatgata aaccaattaa caaaccatta 540 aagccattac tcgattatac tatttcaagt aacaaagagg ctgcatgtga atttgttaca 600 gaaatagtac ctataataaa tagggcaaaa aagcctgtta ttcttgcaga ttatggagta 660 tatcgttacc aagttcaaca tgtgcttaaa aacttggccg aaaaaaccgg atttcctgtg 720 gctacactaa gtatgggaaa aggtgttttc aatgaagcac accctcaatt tattggtgtt 780 tataatggtg atgtaagttc tccttattta aggcagcgag ttgatgaagc agactgcatt 840 attagcgttg gtgtaaaatt gacggattca accacagggg gattttctca tggattttct 900 aaaaggaatg taattcacat tgatcctttt tcaataaagg caaaaggtaa aaaatatgca 960 cctattacga tgaaagatgc tttaacagaa ttaacaagta aaattgagca tagaaacttt 1020 gaggatttag atataaagcc ttacaaatca gataatcaaa agtattttgc aaaagagaag 1080 ccaattacac aaaaacgttt ttttgagcgt attgctcact ttataaaaga aaaagatgta 1140 ttattagcag aacagggtac atgctttttt ggtgcgtcaa ccatacaact acccaaagat 1200 gcaactttta ttggtcaacc tttatgggga tctattggat acacacttcc tgctttatta 1260 ggttcacaat tagctgatca aaaaaggcgt aatattcttt taattgggga tggtgcattt 1320 caaatgacag cacaagaaat ttcaacaatg cttcgtttac aaatcaaacc tattattttt 1380 ttaattaata acgatggtta tacaattgaa cgtgctattc atggtagaga acaagtatat 1440 aacaatattc aaatgtggcg atatcataat gttccaaagg ttttaggtcc taaagaatgc 1500 agcttaacct ttaaagtaca aagtgaaact gaacttgaaa aggctctttt agtggcagat 1560 aaggattgtg aacatttgat ttttatagaa gttgttatgg atcgttatga taaacccgag 1620 cctttagaac gtctttcgaa acgttttgca aatcaaaata attag 1665 <210> 33 <211> 1641 <212> DNA <213> Clostridium acetobutylicum <400> 33 atgaaacaac gtatcgggca atacttgatc gatgccctac acgttaatgg tgtcgataag 60 atctttggag tcccaggtga tttcacttta gcctttttgg acgatatcat aagacatgac 120 aacgtggaat gggtgggaaa tactaatgag ttgaacgccg cttacgccgc tgatggttac 180 gctagagtta atggattagc cgctgtatct accacttttg gggttggcga gttatctgct 240 gtgaatggta ttgctggaag ttacgcagag cgtgttcctg taatcaaaat ctcaggcggt 300 ccttcatcag ttgctcaaca agagggtaga tatgtccacc attcattggg tgaaggaatc 360 tttgattcat attcaaagat gtacgctcac ataaccgcaa caactacaat cttatccgtt 420 gacaacgcag tcgacgaaat tgatagagtt attcattgtg ctttgaagga aaagaggcca 480 gtgcatattc atttgcctat tgacgtagcc ttaactgaga ttgaaatccc tcatgcacca 540 aaagtttaca cacacgaatc ccagaacgtc gatgcttaca ttcaagctgt tgagaaaaag 600 ttaatgtctg caaaacaacc agtaatcata gcaggtcatg aaatcaattc attcaagttg 660 cacgaacaac tggaacagtt tgtcaatcag acaaacatcc ctgttgcaca actttccttg 720 ggtaagtctg ctttcaatga agagaatgaa cattaccttg gtatctacga tggcaaaatc 780 gcaaaggaaa atgtgagaga gtacgtcgac aatgctgatg tcatattgaa cataggtgcc 840 aaactgactg attctgctac agctggattt tcctacaagt tcgatacaaa caacataatc 900 tacattaacc ataatgactt caaagctgaa gatgtgattt ctgataatgt ttcactgatt 960 gatcttgtga atggcctgaa ttctattgac tatagaaatg aaacacacta cccatcttat 1020 caaagatctg atatgaaata cgaattgaat gacgcaccac ttacacaatc taactatttc 1080 aaaatgatga acgcttttct agaaaaagat gacatcctac tagctgaaca aggtacatcc 1140 tttttcggcg catatgactt atccctatac aagggaaatc agtttatcgg tcagccttta 1200 tgggggtcaa tagggtatac ttttccatct ttactaggaa gtcaactagc agacatgcat 1260 aggagaaaca ttttgcttat aggcgatggt agtttacaac ttactgttca agccctaagt 1320 acaatgatta gaaaggatat caaaccaatc attttcgtta tcaataacga cggttacacc 1380 gtcgaaagac ttatccacgg catggaagag ccatacaatg atatccaaat gtggaactac 1440 aagcaattgc cagaagtatt tggtggaaaa gatactgtaa aagttcatga tgctaaaacc 1500 tccaacgaac tgaaaactgt aatggattct gttaaagcag acaaagatca catgcatttc 1560 attgaagtgc atatggcagt agaggacgcc ccaaagaagt tgattgatat agctaaagcc 1620 tttagtgatg ctaacaagta a 1641 <210> 34 <211> 1647 <212> DNA <213> Listeria grayi <400> 34 atgtacaccg tcggccaata cttagtagac cgcttagaag agatcggcat cgataaggtt 60 tttggtgtcc cgggtgacta caacctgacc tttttggact acatccagaa ccacgaaggt 120 ctgagctggc aaggtaatac gaatgaactg aatgccgcgt acgcagctga tggctatgct 180 cgtgaacgcg gtgttagcgc tttggtcacg accttcggcg ttggtgagct gtccgcaatc 240 aatggcaccg caggtagctt cgcggagcaa gttccggtga ttcatatcgt gggcagcccg 300 accatgaatg ttcagagcaa caagaaactg gttcatcaca gcctgggtat gggcaacttt 360 cacaacttca gcgagatggc gaaagaagtc accgccgcaa ccacgatgct gacggaagag 420 aatgcggcgt cggagattga tcgtgttctg gaaaccgccc tgctggagaa acgcccagtg 480 tacatcaatc tgccgatcga cattgctcac aaggcgatcg tcaagccggc gaaagccctg 540 caaaccgaga agagctctgg cgagcgtgag gcacaactgg cggagatcat tctgagccat 600 ctggagaagg ctgcacagcc gattgtgatt gcgggtcacg agatcgcgcg cttccagatc 660 cgtgagcgtt tcgagaattg gattaatcaa acgaaactgc cggtgaccaa tctggcctac 720 ggcaagggta gcttcaacga agaaaacgag catttcattg gtacctatta tcctgcattt 780 agcgataaga acgtgctgga ctacgtggat aactccgact ttgtcctgca ctttggtggt 840 aaaatcattg ataacagcac ctccagcttc tcccaaggct tcaaaaccga gaacaccctg 900 actgcggcga acgatatcat tatgctgccg gacggtagca cgtattctgg tattagcctg 960 aatggcctgc tggccgagct ggaaaaactg aatttcacgt ttgccgacac cgcagcaaag 1020 caggcggagt tggcggtgtt tgagccgcag gctgaaaccc cgttgaaaca ggaccgtttt 1080 caccaggcgg tgatgaattt tctgcaagct gacgatgtcc tggttacgga acagggcacc 1140 tcttcttttg gcttgatgct ggcgcctctg aaaaagggta tgaacttgat ctcgcaaacg 1200 ctgtggggta gcattggtta cacgttgccg gcgatgattg gtagccaaat tgcggcaccg 1260 gagcgtcgtc atatcctgag cattggtgat ggtagctttc agctgactgc gcaggaaatg 1320 agcaccattt tccgtgagaa actgacccca gtcatcttca tcattaacaa tgatggctat 1380 accgttgagc gtgcgatcca tggcgaagat gaaagctata acgacattcc gacgtggaac 1440 ttgcaactgg tggcggaaac cttcggtggt gacgccgaaa ccgtcgacac tcacaatgtg 1500 ttcacggaga ctgatttcgc caacaccctg gcggcaattg acgcgacgcc gcagaaagca 1560 cacgttgtgg aagttcacat ggaacaaatg gatatgccgg agagcctgcg ccagatcggt 1620 ctggcactgt ccaagcagaa tagctaa 1647 <210> 35 <211> 312 <212> PRT <213> Saccharomyces cerevisiae <400> 35 Met Pro Ala Thr Leu Lys Asn Ser Ser Ala Thr Leu Lys Leu Asn Thr 1 5 10 15 Gly Ala Ser Ile Pro Val Leu Gly Phe Gly Thr Trp Arg Ser Val Asp             20 25 30 Asn Asn Gly Tyr His Ser Val Ile Ala Ala Leu Lys Ala Gly Tyr Arg         35 40 45 His Ile Asp Ala Ala Ile Tyr Leu Asn Glu Glu Glu Val Gly Arg     50 55 60 Ala Ile Lys Asp Ser Gly Val Pro Arg Glu Glu Ile Phe Ile Thr Thr 65 70 75 80 Lys Leu Trp Gly Thr Glu Gln Arg Asp Pro Glu Ala Ala Leu Asn Lys                 85 90 95 Ser Leu Lys Arg Leu Gly Leu Asp Tyr Val Asp Leu Tyr Leu Met His             100 105 110 Trp Pro Val Pro Leu Lys Thr Asp Arg Val Thr Asp Gly Asn Val Leu         115 120 125 Cys Ile Pro Thr Leu Glu Asp Gly Thr Val Asp Ile Asp Thr Lys Glu     130 135 140 Trp Asn Phe Ile Lys Thr Trp Glu Leu Met Gln Glu Leu Pro Lys Thr 145 150 155 160 Gly Lys Thr Lys Ala Val Gly Val Ser Asn Phe Ser Ile Asn Asn Ile                 165 170 175 Lys Glu Leu Leu Glu Ser Pro Asn Asn Lys Val Val Pro Ala Thr Asn             180 185 190 Gln Ile Glu Ile His Pro Leu Leu Pro Gln Asp Glu Leu Ile Ala Phe         195 200 205 Cys Lys Glu Lys Gly Ile Val Val Glu Ala Tyr Ser Pro Phe Gly Ser     210 215 220 Ala Asn Ala Pro Leu Leu Lys Glu Gln Ala Ile Asp Asp Met Ala Lys 225 230 235 240 Lys His Gly Val Glu Pro Ala Gln Leu Ile Ile Ser Trp Ser Ile Gln                 245 250 255 Arg Gly Tyr Val Val Leu Ala Lys Ser Val Asn Pro Glu Arg Ile Val             260 265 270 Ser Asn Phe Lys Ile Phe Thr Leu Pro Glu Asp Asp Phe Lys Thr Ile         275 280 285 Ser Asn Leu Ser Lys Val His Gly Thr Lys Arg Val Val Asp Met Lys     290 295 300 Trp Gly Ser Phe Pro Ile Phe Gln 305 310 <210> 36 <211> 939 <212> DNA <213> Saccharomyces cerevisiae <400> 36 atgcctgcta cgttaaagaa ttcttctgct acattaaaac taaatactgg tgcctccatt 60 ccagtgttgg gtttcggcac ttggcgttcc gttgacaata acggttacca ttctgtaatt 120 gcagctttga aagctggata cagacacatt gatgctgcgg ctatctattt gaatgaagaa 180 gaagttggca gggctattaa agattccgga gtccctcgtg aggaaatttt tattactact 240 aagctttggg gtacggaaca acgtgatccg gaagctgctc taaacaagtc tttgaaaaga 300 ctaggcttgg attatgttga cctatatctg atgcattggc cagtgccttt gaaaaccgac 360 agagttactg atggtaacgt tctgtgcatt ccaacattag aagatggcac tgttgacatc 420 gatactaagg aatggaattt tatcaagacg tgggagttga tgcaagagtt gccaaagacg 480 ggcaaaacta aagccgttgg tgtctctaat ttttctatta acaacattaa agaattatta 540 gaatctccaa ataacaaggt ggtaccagct actaatcaaa ttgaaattca tccattgcta 600 ccacaagacg aattgattgc cttttgtaag gaaaagggta ttgttgttga agcctactca 660 ccatttggga gtgctaatgc tcctttacta aaagagcaag caattattga tatggctaaa 720 aagcacggcg ttgagccagc acagcttatt atcagttgga gtattcaaag aggctacgtt 780 gttctggcca aatcggttaa tcctgaaaga attgtatcca attttaagat tttcactctg 840 cctgaggatg atttcaagac tattagtaac ctatccaaag tgcatggtac aaagagagtc 900 gttgatatga agtggggatc cttcccaatt ttccaatga 939 <210> 37 <211> 360 <212> PRT <213> Saccharomyces cerevisiae <400> 37 Met Ser Tyr Pro Glu Lys Phe Glu Gly Ile Ala Ile Gln Ser His Glu 1 5 10 15 Asp Trp Lys Asn Pro Lys Lys Thr Lys Tyr Asp Pro Lys Pro Phe Tyr             20 25 30 Asp His Asp Ile Asp Ile Lys Ile Glu Ala Cys Gly Val Cys Gly Ser         35 40 45 Asp Ile His Cys Ala Ala Gly His Trp Gly Asn Met Lys Met Pro Leu     50 55 60 Val Val Gly His Glu Ile Val Gly Lys Val Val Lys Leu Gly Pro Lys 65 70 75 80 Ser Asn Ser Gly Leu Lys Val Gly Gln Arg Val Gly Val Gly Ala Gln                 85 90 95 Val Phe Ser Cys Leu Glu Cys Asp Arg Cys Lys Asn Asp Asn Glu Pro             100 105 110 Tyr Cys Thr Lys Phe Val Thr Thr Tyr Ser Gln Pro Tyr Glu Asp Gly         115 120 125 Tyr Val Ser Gln Gly Gly Tyr Ala Asn Tyr Val Val Val His Glu His     130 135 140 Phe Val Val Pro Ile Pro Glu Asn Ile Pro Ser His Leu Ala Ala Pro 145 150 155 160 Leu Leu Cys Gly Gly Leu Thr Val Tyr Ser Pro Leu Val Arg Asn Gly                 165 170 175 Cys Gly Pro Gly Lys Lys Val Gly Ile Val Gly Leu Gly Gly Ile Gly             180 185 190 Ser Met Gly Thr Leu Ile Ser Lys Ala Met Gly Ala Glu Thr Tyr Val         195 200 205 Ile Ser Arg Ser Ser Arg Lys Arg Glu Asp Ala Met Lys Met Gly Ala     210 215 220 Asp His Tyr Ile Ala Thr Leu Glu Glu Gly Asp Trp Gly Glu Lys Tyr 225 230 235 240 Phe Asp Thr Phe Asp Leu Ile Val Val Cys Ala Ser Ser Leu Thr Asp                 245 250 255 Ile Asp Phe Asn Ile Met Pro Lys Ala Met Lys Val Gly Gly Arg Ile             260 265 270 Val Ser Ile Ser Ile Pro Glu Gln His Glu Met Leu Ser Leu Lys Pro         275 280 285 Tyr Gly Leu Lys Ala Val Ser Ile Ser Tyr Ser Ala Leu Gly Ser Ile     290 295 300 Lys Glu Leu Asn Gln Leu Leu Lys Leu Val Ser Glu Lys Asp Ile Lys 305 310 315 320 Ile Trp Val Glu Thr Leu Pro Val Gly Glu Ala Gly Val His Glu Ala                 325 330 335 Phe Glu Arg Met Glu Lys Gly Asp Val Arg Tyr Arg Phe Thr Leu Val             340 345 350 Gly Tyr Asp Lys Glu Phe Ser Asp         355 360 <210> 38 <211> 1083 <212> DNA <213> Saccharomyces cerevisiae <400> 38 ctagtctgaa aattctttgt cgtagccgac taaggtaaat ctatatctaa cgtcaccctt 60 ttccatcctt tcgaaggctt catggacgcc ggcttcacca acaggtaatg tttccaccca 120 aattttgata tctttttcag agactaattt caagagttgg ttcaattctt tgatggaacc 180 taaagcactg taagaaatgg agacagcctt taagccatat ggctttagcg ataacatttc 240 gtgttgttct ggtatagaga ttgagacaat tctaccacca accttcatag cctttggcat 300 aatgttgaag tcaatgtcgg taagggagga agcacagact acaatcaggt cgaaggtgtc 360 aaagtacttt tcaccccaat caccttcttc taatgtagca atgtagtgat cggcgcccat 420 cttcattgca tcttctcttt ttctcgaaga acgagaaata acatacgtct ctgcccccat 480 ggctttggaa atcaatgtac ccatactgcc gataccacca agaccaacta taccaacttt 540 tttacctgga ccgcaaccgt tacgaaccaa tggagagtac acagtcaaac caccacataa 600 tagtggagca gccaaatgtg atggaatatt ctctgggata ggcaccacaa aatgttcatg 660 aactctgacg tagtttgcat agccaccctg cgacacatag ccgtcttcat aaggctgact 720 gtatgtggta acaaacttgg tgcagtatgg ttcattatca ttcttacaac ggtcacattc 780 caagcatgaa aagacttgag cacctacacc aacacgttga ccgactttca acccactgtt 840 tgacttgggc cctagcttga caactttacc aacgatttca tgaccaacga ctagcggcat 900 cttcatattg ccccaatgac cagctgcaca atgaatatca ctaccgcaga caccacatgc 960 ttcgatctta atgtcaatgt catgatcgta aaatggtttt gggtcatact ttgtcttctt 1020 tgggtttttc caatcttcgt gtgattgaat agcgatacct tcaaatttct caggataaga 1080 cat 1083 <210> 39 <211> 387 <212> PRT <213> Escherichia coli <400> 39 Met Asn Asn Phe Asn Leu His Thr Pro Thr Arg Ile Leu Phe Gly Lys 1 5 10 15 Gly Ala Ile Ala Gly Leu Arg Glu Gln Ile Pro His Asp Ala Arg Val             20 25 30 Leu Ile Thr Tyr Gly Gly Gly Ser Val Lys Lys Thr Gly Val Leu Asp         35 40 45 Gln Val Leu Asp Ala Leu Lys Gly Met Asp Val Leu Glu Phe Gly Gly     50 55 60 Ile Glu Pro Asn Pro Ala Tyr Glu Thr Leu Met Asn Ala Val Lys Leu 65 70 75 80 Val Arg Glu Gln Lys Val Thr Phe Leu Leu Ala Val Gly Gly Gly Ser                 85 90 95 Val Leu Asp Gly Thr Lys Phe Ile Ala Ala Ala Ala Asn Tyr Pro Glu             100 105 110 Asn Ile Asp Pro Trp His Ile Leu Gln Thr Gly Gly Lys Glu Ile Lys         115 120 125 Ser Ala Ile Pro Met Gly Cys Val Leu Thr Leu Pro Ala Thr Gly Ser     130 135 140 Glu Ser Asn Ala Gly Ala Val Ile Ser Arg Lys Thr Thr Gly Asp Lys 145 150 155 160 Gln Ala Phe His Ser Ala His Val Gln Pro Val Phe Ala Val Leu Asp                 165 170 175 Pro Val Tyr Thr Tyr Thr Leu Pro Pro Arg Gln Val Ala Asn Gly Val             180 185 190 Val Asp Ala Phe Val His Thr Val Glu Gln Tyr Val Thr Lys Pro Val         195 200 205 Asp Ala Lys Ile Gln Asp Arg Phe Ala Glu Gly Ile Leu Leu Thr Leu     210 215 220 Ile Glu Asp Gly Pro Lys Ala Leu Lys Glu Pro Glu Asn Tyr Asp Val 225 230 235 240 Arg Ala Asn Val Met Trp Ala Ala Thr Gln Ala Leu Asn Gly Leu Ile                 245 250 255 Gly Ala Gly Val Pro Gln Asp Trp Ala Thr His Met Leu Gly His Glu             260 265 270 Leu Thr Ala Met His Gly Leu Asp His Ala Gln Thr Leu Ala Ile Val         275 280 285 Leu Pro Ala Leu Trp Asn Glu Lys Arg Asp Thr Lys Arg Ala Lys Leu     290 295 300 Leu Gln Tyr Ala Glu Arg Val Trp Asn Ile Thr Glu Gly Ser Asp Asp 305 310 315 320 Glu Arg Ile Asp Ala Ile Ala Ala Thr Arg Asn Phe Phe Glu Gln                 325 330 335 Leu Gly Val Pro Thr His Leu Ser Asp Tyr Gly Leu Asp Gly Ser Ser             340 345 350 Ile Pro Ala Leu Leu Lys Lys Leu Glu Glu His Gly Met Thr Gln Leu         355 360 365 Gly Glu Asn His Asp Ile Thr Leu Asp Val Ser Arg Arg Ile Tyr Glu     370 375 380 Ala Ala Arg 385 <210> 40 <211> 387 <212> PRT <213> Escherichia coli <400> 40 Met Asn Asn Phe Asn Leu His Thr Pro Thr Arg Ile Leu Phe Gly Lys 1 5 10 15 Gly Ala Ile Ala Gly Leu Arg Glu Gln Ile Pro His Asp Ala Arg Val             20 25 30 Leu Ile Thr Tyr Gly Gly Gly Ser Val Lys Lys Thr Gly Val Leu Asp         35 40 45 Gln Val Leu Asp Ala Leu Lys Gly Met Asp Val Leu Glu Phe Gly Gly     50 55 60 Ile Glu Pro Asn Pro Ala Tyr Glu Thr Leu Met Asn Ala Val Lys Leu 65 70 75 80 Val Arg Glu Gln Lys Val Thr Phe Leu Leu Ala Val Gly Gly Gly Ser                 85 90 95 Val Leu Asp Gly Thr Lys Phe Ile Ala Ala Ala Ala Asn Tyr Pro Glu             100 105 110 Asn Ile Asp Pro Trp His Ile Leu Gln Thr Gly Gly Lys Glu Ile Lys         115 120 125 Ser Ala Ile Pro Met Gly Cys Val Leu Thr Leu Pro Ala Thr Gly Ser     130 135 140 Glu Ser Asn Ala Gly Ala Val Ile Ser Arg Lys Thr Thr Gly Asp Lys 145 150 155 160 Gln Ala Phe His Ser Ala His Val Gln Pro Val Phe Ala Val Leu Asp                 165 170 175 Pro Val Tyr Thr Tyr Thr Leu Pro Pro Arg Gln Val Ala Asn Gly Val             180 185 190 Val Asp Ala Phe Val His Thr Val Glu Gln Tyr Val Thr Lys Pro Val         195 200 205 Asp Ala Lys Ile Gln Asp Arg Phe Ala Glu Gly Ile Leu Leu Thr Leu     210 215 220 Ile Glu Asp Gly Pro Lys Ala Leu Lys Glu Pro Glu Asn Tyr Asp Val 225 230 235 240 Arg Ala Asn Val Met Trp Ala Ala Thr Gln Ala Leu Asn Gly Leu Ile                 245 250 255 Gly Ala Gly Val Pro Gln Asp Trp Ala Thr His Met Leu Gly His Glu             260 265 270 Leu Thr Ala Met His Gly Leu Asp His Ala Gln Thr Leu Ala Ile Val         275 280 285 Leu Pro Ala Leu Trp Asn Glu Lys Arg Asp Thr Lys Arg Ala Lys Leu     290 295 300 Leu Gln Tyr Ala Glu Arg Val Trp Asn Ile Thr Glu Gly Ser Asp Asp 305 310 315 320 Glu Arg Ile Asp Ala Ile Ala Ala Thr Arg Asn Phe Phe Glu Gln                 325 330 335 Leu Gly Val Pro Thr His Leu Ser Asp Tyr Gly Leu Asp Gly Ser Ser             340 345 350 Ile Pro Ala Leu Leu Lys Lys Leu Glu Glu His Gly Met Thr Gln Leu         355 360 365 Gly Glu Asn His Asp Ile Thr Leu Asp Val Ser Arg Arg Ile Tyr Glu     370 375 380 Ala Ala Arg 385 <210> 41 <211> 389 <212> PRT <213> Clostridium acetobutylicum <400> 41 Met Leu Ser Phe Asp Tyr Ser Ile Pro Thr Lys Val Phe Phe Gly Lys 1 5 10 15 Gly Lys Ile Asp Val Ile Gly Glu Glu Ile Lys Lys Tyr Gly Ser Arg             20 25 30 Val Leu Ile Val Tyr Gly Gly Gly Ser Ile Lys Arg Asn Gly Ile Tyr         35 40 45 Asp Arg Ala Thr Ala Ile Leu Lys Glu Asn Asn Ile Ala Phe Tyr Glu     50 55 60 Leu Ser Gly Val Glu Pro Asn Pro Arg Ile Thr Thr Val Lys Lys Gly 65 70 75 80 Ile Glu Ile Cys Arg Glu Asn Asn Val Asp Leu Val Leu Ala Ile Gly                 85 90 95 Gly Gly Ser Ala Ile Asp Cys Ser Lys Val Ile Ala Ala Gly Val Tyr             100 105 110 Tyr Asp Gly Asp Thr Trp Asp Met Val Lys Asp Pro Ser Lys Ile Thr         115 120 125 Lys Val Leu Pro Ile Ala Ser Ile Leu Thr Leu Ser Ala Thr Gly Ser     130 135 140 Glu Met Asp Gln Ile Ala Val Ile Ser Asn Met Glu Thr Asn Glu Lys 145 150 155 160 Leu Gly Val Gly His Asp Asp Met Arg Pro Lys Phe Ser Val Leu Asp                 165 170 175 Pro Thr Tyr Thr Phe Thr Val Pro Lys Asn Gln Thr Ala Ala Gly Thr             180 185 190 Ala Asp Ile Met Ser His Thr Phe Glu Ser Tyr Phe Ser Gly Val Glu         195 200 205 Gly Ala Tyr Val Gln Asp Gly Ile Ala Glu Ala Ile Leu Arg Thr Cys     210 215 220 Ile Lys Tyr Gly Lys Ile Ala Met Glu Lys Thr Asp Asp Tyr Glu Ala 225 230 235 240 Arg Ala Asn Leu Met Trp Ala Ser Ser Leu Ala Ile Asn Gly Leu Leu                 245 250 255 Ser Leu Gly Lys Asp Arg Lys Trp Ser Cys His Pro Met Glu His Glu             260 265 270 Leu Ser Ala Tyr Tyr Asp Ile Thr His Gly Val Gly Leu Ala Ile Leu         275 280 285 Thr Pro Asn Trp Met Glu Tyr Ile Leu Asn Asp Asp Thr Leu His Lys     290 295 300 Phe Val Ser Tyr Gly Ile Asn Val Trp Gly Ile Asp Lys Asn Lys Asp 305 310 315 320 Asn Tyr Glu Ile Ala Arg Glu Ala Ile Lys Asn Thr Arg Glu Tyr Phe                 325 330 335 Asn Ser Leu Gly Ile Pro Ser Lys Leu Arg Glu Val Gly Ile Gly Lys             340 345 350 Asp Lys Leu Glu Leu Met Ala Lys Gln Ala Val Arg Asn Ser Gly Gly         355 360 365 Thr Ile Gly Ser Leu Arg Pro Ile Asn Ala Glu Asp Val Leu Glu Ile     370 375 380 Phe Lys Lys Ser Tyr 385 <210> 42 <211> 1170 <212> DNA <213> Clostridium acetobutylicum <400> 42 ttaataagat tttttaaata tctcaagaac atcctctgca tttattggtc ttaaacttcc 60 tattgttcct ccagaatttc taacagcttg ctttgccatt agttctagtt tatcttttcc 120 tattccaact tctctaagct ttgaaggaat acccaatgaa ttaaagtatt ctctcgtatt 180 tttaatagcc tctcgtgcta tttcatagtt atctttgttc ttgtctattc cccaaacatt 240 tattccataa gaaacaaatt tatgaagtgt atcgtcattt agaatatatt ccatccaatt 300 aggtgttaaa attgcaagtc ctacaccatg tgttatatca taatatgcac ttaactcgtg 360 ttccatagga tgacaactcc attttctatc cttaccaagt gataatagac catttatagc 420 taaacttgaa gcccacatca aattagctct agcctcgtaa tcatcagtct tctccattgc 480 tatttttcca tactttatac atgttcttaa gattgcttct gctataccgt cctgcacata 540 agcaccttca acaccactaa agtaagattc aaaggtgtga ctcataatgt cagctgttcc 600 cgctgctgtt tgatttttag gtactgtaaa agtatatgta ggatctaaca ctgaaaattt 660 aggtctcata tcatcatgtc ctactccaag cttttcatta gtctccatat ttgaaattac 720 tgcaatttga tccatttcag accctgttgc tgaaagagta agtatacttg caattggaag 780 aactttagtt attttagatg gatctttaac catgtcccat gtatcgccat cataataaac 840 tccagctgca attaccttag aacagtctat tgcacttcct ccccctattg ctaatactaa 900 atccacatta ttttctctac atatttctat gccttttttt actgttgtta tcctaggatt 960 tggctctact cctgaaagtt catagaaagc tatattgttt tcttttaata tagctgttgc 1020 tctatcatat ataccgttcc tttttatact tcctccgcca taaactataa gcactcttga 1080 gt; agttggtatt gaataatcaa aacttagcat 1170 <210> 43 <211> 390 <212> PRT <213> Clostridium acetobutylicum <400> 43 Met Val Asp Phe Glu Tyr Ser Ile Pro Thr Arg Ile Phe Phe Gly Lys 1 5 10 15 Asp Lys Ile Asn Val Leu Gly Arg Glu Leu Lys Lys Tyr Gly Ser Lys             20 25 30 Val Leu Ile Val Tyr Gly Gly Gly Ser Ile Lys Arg Asn Gly Ile Tyr         35 40 45 Asp Lys Ala Val Ser Ile Leu Glu Lys Asn Ser Ile Lys Phe Tyr Glu     50 55 60 Leu Ala Gly Val Glu Pro Asn Pro Arg Val Thr Thr Val Glu Lys Gly 65 70 75 80 Val Lys Ile Cys Arg Glu Asn Gly Val Glu Val Val Leu Ala Ile Gly                 85 90 95 Gly Gly Ser Ala Ile Asp Cys Ala Lys Val Ile Ala Ala Ala Cys Glu             100 105 110 Tyr Asp Gly Asn Pro Trp Asp Ile Val Leu Asp Gly Ser Lys Ile Lys         115 120 125 Arg Val Leu Pro Ile Ala Ser Ile Leu Thr Ile Ala Ala Thr Gly Ser     130 135 140 Glu Met Asp Thr Trp Ala Val Ile Asn Asn Met Asp Thr Asn Glu Lys 145 150 155 160 Leu Ile Ala Ala His Pro Asp Met Ala Pro Lys Phe Ser Ile Leu Asp                 165 170 175 Pro Thr Tyr Thr Thyr Thr Val Thr Asn Gln Thr Ala Ala Gly Thr             180 185 190 Ala Asp Ile Met Ser His Ile Phe Glu Val Tyr Phe Ser Asn Thr Lys         195 200 205 Thr Ala Tyr Leu Gln Asp Arg Met Ala Glu Ala Leu Leu Arg Thr Cys     210 215 220 Ile Lys Tyr Gly Gly Ile Ala Leu Glu Lys Pro Asp Asp Tyr Glu Ala 225 230 235 240 Arg Ala Asn Leu Met Trp Ala Ser Ser Leu Ala Ile Asn Gly Leu Leu                 245 250 255 Thr Tyr Gly Lys Asp Thr Asn Trp Ser Val His Leu Met Glu His Glu             260 265 270 Leu Ser Ala Tyr Tyr Asp Ile Thr His Gly Val Gly Leu Ala Ile Leu         275 280 285 Thr Pro Asn Trp Met Glu Tyr Ile Leu Asn Asn Asp Thr Val Tyr Lys     290 295 300 Phe Val Glu Tyr Gly Val Asn Val Trp Gly Ile Asp Lys Glu Lys Asn 305 310 315 320 His Tyr Asp Ile Ala His Gln Ala Ile Gln Lys Thr Arg Asp Tyr Phe                 325 330 335 Val Asn Val Leu Gly Leu Pro Ser Arg Leu Arg Asp Val Gly Ile Glu             340 345 350 Glu Glu Lys Leu Asp Ile Met Ala Lys Glu Ser Val Lys Leu Thr Gly         355 360 365 Gly Thr Ile Gly Asn Leu Arg Pro Val Asn Ala Ser Glu Val Leu Gln     370 375 380 Ile Phe Lys Lys Ser Val 385 390 <210> 44 <211> 1173 <212> DNA <213> Clostridium acetobutylicum <400> 44 gtggttgatt tcgaatattc aataccaact agaatttttt tcggtaaaga taagataaat 60 gtacttggaa gagagcttaa aaaatatggt tctaaagtgc ttatagttta tggtggagga 120 agtataaaga gaaatggaat atatgataaa gctgtaagta tacttgaaaa aaacagtatt 180 aaattttatg aacttgcagg agtagagcca aatccaagag taactacagt tgaaaaagga 240 gttaaaatat gtagagaaaa tggagttgaa gtagtactag ctataggtgg aggaagtgca 300 atagattgcg caaaggttat agcagcagca tgtgaatatg atggaaatcc atgggatatt 360 gtgttagatg gctcaaaaat aaaaagggtg cttcctatag ctagtatatt aaccattgct 420 gcaacaggat cagaaatgga tacgtgggca gtaataaata atatggatac aaacgaaaaa 480 ctaattgcgg cacatccaga tatggctcct aagttttcta tattagatcc aacgtatacg 540 tataccgtac ctaccaatca aacagcagca ggaacagctg atattatgag tcatatattt 600 gaggtgtatt ttagtaatac aaaaacagca tatttgcagg atagaatggc agaagcgtta 660 ttaagaactt gtattaaata tggaggaata gctcttgaga agccggatga ttatgaggca 720 agagccaatc taatgtgggc ttcaagtctt gcgataaatg gacttttaac atatggtaaa 780 gacactaatt ggagtgtaca cttaatggaa catgaattaa gtgcttatta cgacataaca 840 cacggcgtag ggcttgcaat tttaacacct aattggatgg agtatatttt aaataatgat 900 acagtgtaca agtttgttga atatggtgta aatgtttggg gaatagacaa agaaaaaaat 960 cactatgaca tagcacatca agcaatacaa aaaacaagag attactttgt aaatgtacta 1020 ggtttaccat ctagactgag agatgttgga attgaagaag aaaaattgga cataatggca 1080 aaggaatcag taaagcttac agagagacc ataggaaacc taagaccagt aaacgcctcc 1140 gaagtcctac aaatattcaa aaaatctgtg taa 1173 <210> 45 <211> 330 <212> PRT <213> Bacillus subtilis <400> 45 Met Ser Thr Asn Arg His Gln Ala Leu Gly Leu Thr Asp Gln Glu Ala 1 5 10 15 Val Asp Met Tyr Arg Thr Met Leu Leu Ala Arg Lys Ile Asp Glu Arg             20 25 30 Met Trp Leu Leu Asn Arg Ser Gly Lys Ile Pro Phe Val Ile Ser Cys         35 40 45 Gln Gly Gln Gly Ala Glad Val Gly Ala Ala Phe Ala Leu Asp Arg     50 55 60 Glu Met Asp Tyr Val Leu Pro Tyr Tyr Arg Asp Met Gly Val Val Leu 65 70 75 80 Ala Phe Gly Met Thr Ala Lys Asp Leu Met Met Ser Gly Phe Ala Lys                 85 90 95 Ala Ala Asp Pro Asn Ser Gly Gly Arg Gln Met Pro Gly His Phe Gly             100 105 110 Gln Lys Lys Asn Arg Ile Val Thr Gly Ser Ser Pro Val Thr Thr Gln         115 120 125 Val Pro His Ala Val Gly Ile Ala Leu Ala Gly Arg Met Glu Lys Lys     130 135 140 Asp Ile Ala Phe Val Thr Phe Gly Glu Gly Ser Ser Asn Gln Gly 145 150 155 160 Asp Phe His Glu Gly Ala Asn Phe Ala Ala Val His Lys Leu Pro Val                 165 170 175 Ile Phe Met Cys Glu Asn Asn Lys Tyr Ala Ile Ser Val Pro Tyr Asp             180 185 190 Lys Gln Val Ala Cys Glu Asn Ile Ser Asp Arg Ala Ile Gly Tyr Gly         195 200 205 Met Pro Gly Val Thr Val Asn Gly Asn Asp Pro Leu Glu Val Tyr Gln     210 215 220 Ala Val Lys Glu Ala Arg Glu Arg Ala Arg Arg Gly Glu Gly Pro Thr 225 230 235 240 Leu Ile Glu Thr Ile Ser Tyr Arg Leu Thr Pro His Ser Ser Asp Asp                 245 250 255 Asp Asp Ser Ser Tyr Arg Gly Arg Glu Glu Val Glu Glu Ala Lys Lys             260 265 270 Ser Asp Pro Leu Leu Thr Tyr Gln Ala Tyr Leu Lys Glu Thr Gly Leu         275 280 285 Leu Ser Asp Glu Ile Glu Gln Thr Met Leu Asp Glu Ile Met Ala Ile     290 295 300 Val Asn Glu Ala Thr Asp Glu Ala Glu Asn Ala Pro Tyr Ala Ala Pro 305 310 315 320 Glu Ser Ala Leu Asp Tyr Val Tyr Ala Lys                 325 330 <210> 46 <211> 993 <212> DNA <213> Bacillus subtilis <400> 46 atgagtacaa accgacatca agcactaggg ctgactgatc aggaagccgt tgatatgtat 60 agaaccatgc tgttagcaag aaaaatcgat gaaagaatgt ggctgttaaa ccgttctggc 120 aaaattccat ttgtaatctc ttgtcaagga caggaagcag cacaggtagg agcggctttc 180 gcacttgacc gtgaaatgga ttatgtattg ccgtactaca gagacatggg tgtcgtgctc 240 gcgtttggca tgacagcaaa ggacttaatg atgtccgggt ttgcaaaagc agcagatccg 300 aactcaggag gccgccagat gccgggacat ttcggacaaa agaaaaaccg cattgtgacg 360 gt; atggagaaaa aggatatcgc agcctttgtt acattcgggg aagggtcttc aaaccaaggc 480 gatttccatg aaggggcaaa ctttgccgct gtccataagc tgccggttat tttcatgtgt 540 gaaaacaaca aatacgcaat ctcagtgcct tacgataagc aagtcgcatg tgagaacatt 600 tccgaccgtg ccataggcta tgggatgcct ggcgtaactg tgaatggaaa tgatccgctg 660 gaagtttatc aagcggttaa agaagcacgc gaaagggcac gcagaggaga aggcccgaca 720 ttaattgaaa cgatttctta ccgccttaca ccacattcca gtgatgacga tgacagcagc 780 tacagaggcc gtgaagaagt agaggaagcg aaaaaaagtg atcccctgct tacttatcaa 840 gcttacttaa aggaaacagg cctgctgtcc gatgagatag aacaaaccat gctggatgaa 900 attatggcaa tcgtaaatga agcgacggat gaagcggaga acgccccata tgcagctcct 960 gagtcagcgc ttgattatgt ttatgcgaag tag 993 <210> 47 <211> 327 <212> PRT <213> Bacillus subtilis <400> 47 Met Ser Val Met Ser Tyr Ile Asp Ala Ile Asn Leu Ala Met Lys Glu 1 5 10 15 Glu Met Glu Arg Asp Ser Arg Val Phe Val Leu Gly Glu Asp Val Gly             20 25 30 Arg Lys Gly Gly Val Phe Lys Ala Thr Ala Gly Leu Tyr Glu Gln Phe         35 40 45 Gly Glu Glu Arg Val Met Asp Thr Pro Leu Ala Glu Ser Ala Ile Ala     50 55 60 Gly Val Gly Ile Gly Ala Ala Met Tyr Gly Met Arg Ile Ala Glu 65 70 75 80 Met Gln Phe Ala Asp Phe Ile Met Pro Ala Val Asn Gln Ile Ile Ser                 85 90 95 Glu Ala Ala Lys Ile Arg Tyr Arg Ser Asn Asn Asp Trp Ser Cys Pro             100 105 110 Ile Val Val Arg Ala Pro Tyr Gly Gly Gly Val His Gly Ala Leu Tyr         115 120 125 His Ser Gln Ser Val Glu Ala Ile Phe Ala Asn Gln Pro Gly Leu Lys     130 135 140 Ile Val Met Pro Ser Thr Pro Tyr Asp Ala Lys Gly Leu Leu Lys Ala 145 150 155 160 Ala Val Arg Asp Glu Asp Pro Val Leu Phe Phe Glu His Lys Arg Ala                 165 170 175 Tyr Arg Leu Ile Lys Gly Glu Val Pro Ala Asp Asp Tyr Val Leu Pro             180 185 190 Ile Gly Lys Ala Asp Val Lys Arg Glu Gly Asp Asp Ile Thr Val Ile         195 200 205 Thr Tyr Gly Leu Cys Val His Phe Ala Leu Gln Ala Ala Glu Arg Leu     210 215 220 Glu Lys Asp Gly Ile Ser Ala His Val Val Asp Leu Arg Thr Val Tyr 225 230 235 240 Pro Leu Asp Lys Glu Ala Ile Glu Ala Ala Ser Lys Thr Gly Lys                 245 250 255 Val Leu Leu Val Thr Glu Asp Thr Lys Glu Gly Ser Ile Met Ser Glu             260 265 270 Val Ala Ila Ile Ser Glu His Cys Leu Phe Asp Leu Asp Ala Pro         275 280 285 Ile Lys Arg Leu Ala Gly Pro Asp Ile Pro Ala Met Pro Tyr Ala Pro     290 295 300 Thr Met Glu Lys Tyr Phe Met Val Asn Pro Asp Lys Val Glu Ala Ala 305 310 315 320 Met Arg Glu Leu Ala Glu Phe                 325 <210> 48 <211> 984 <212> DNA <213> Bacillus subtilis <400> 48 atgtcagtaa tgtcatatat tgatgcaatc aatttggcga tgaaagaaga aatggaacga 60 gattctcgcg ttttcgtcct tggggaagat gtaggaagaa aaggcggtgt gtttaaagcg 120 acagcgggac tctatgaaca atttggggaa gagcgcgtta tggatacgcc gcttgctgaa 180 tctgcaatcg caggagtcgg tatcggagcg gcaatgtacg gaatgagacc gattgctgaa 240 atgcagtttg ctgatttcat tatgccggca gtcaaccaaa ttatttctga agcggctaaa 300 atccgctacc gcagcaacaa tgactggagc tgtccgattg tcgtcagagc gccatacggc 360 ggaggcgtgc acggagccct gtatcattct caatcagtcg aagcaatttt cgccaaccag 420 cccggactga aaattgtcat gccatcaaca ccatatgacg cgaaagggct cttaaaagcc 480 gcagttcgtg acgaagaccc cgtgctgttt tttgagcaca agcgggcata ccgtctgata 540 aagggcgagg ttccggctga tgattatgtc ctgccaatcg gcaaggcgga cgtaaaaagg 600 gaaggcgacg acatcacagt gatcacatac ggcctgtgtg tccacttcgc cttacaagct 660 gcagaacgtc tcgaaaaaga tggcatttca gcgcatgtgg tggatttaag aacagtttac 720 ccgcttgata aagaagccat catcgaagct gcgtccaaaa ctggaaaggt tcttttggtc 780 acagaagata caaaagaagg cagcatcatg agcgaagtag ccgcaattat atccgagcat 840 tgtctgttcg acttagacgc gccgatcaaa cggcttgcag gtcctgatat tccggctatg 900 ccttatgcgc cgacaatgga aaaatacttt atggtcaacc ctgataaagt ggaagcggcg 960 atgagagaat tagcggagtt ttaa 984 <210> 49 <211> 424 <212> PRT <213> Bacillus subtilis <400> 49 Met Ale Ile Glu Gln Met Thr Met Pro Gln Leu Gly Glu Ser Val Thr 1 5 10 15 Glu Gly Thr Ile Ser Lys Trp Leu Val Ala Pro Gly Asp Lys Val Asn             20 25 30 Lys Tyr Asp Pro Ile Ala Glu Val Met Thr Asp Lys Val Asn Ala Glu         35 40 45 Val Ser Ser Phe Thr Gly Thr Ile Thr Glu Leu Val Gly Glu Glu     50 55 60 Gly Gln Thr Leu Gln Val Gly Glu Met Ile Cys Lys Ile Glu Thr Glu 65 70 75 80 Gly Ala Asn Pro Ala Glu Gln Lys Gln Glu Gln Pro Ala Ala Ser Glu                 85 90 95 Ala Ala Glu Asn Pro Ala Lys Ser Ala Gly Ala Ala Asp Gln Pro             100 105 110 Asn Lys Lys Arg Tyr Ser Pro Ala Val Leu Arg Leu Ala Gly Glu His         115 120 125 Gly Ile Asp Leu Asp Gln Val Thr Gly Thr Gly Ala Gly Gly Arg Ile     130 135 140 Thr Arg Lys Asp Ile Gln Arg Leu Ile Glu Thr Gly Gly Val Gln Glu 145 150 155 160 Gln Asn Pro Glu Glu Leu Lys Thr Ala Ala Pro Ala Pro Lys Ser Ala                 165 170 175 Ser Lys Pro Glu Pro Lys Glu Glu Thr Ser Tyr Pro Ala Ser Ala Ala             180 185 190 Gly Asp Lys Glu Ile Pro Val Thr Gly Val Arg Lys Ala Ile Ala Ser         195 200 205 Asn Met Lys Arg Ser Lys Thr Glu Ile Pro His Ala Trp Thr Met Met     210 215 220 Glu Val Asp Val Thr Asn Met Val Ala Tyr Arg Asn Ser Ile Lys Asp 225 230 235 240 Ser Phe Lys Lys Thr Glu Gly Phe Asn Leu Thr Phe Phe Ala Phe Phe                 245 250 255 Val Lys Ala Val Ala Gln Ala Leu Lys Glu Phe Pro Gln Met Asn Ser             260 265 270 Met Trp Ala Gly Asp Lys Ile Ile Gln Lys Lys Asp Ile Asn Ile Ser         275 280 285 Ile Ala Val Ala Thr Glu Asp Ser Leu Phe Val Pro Ile Lys Asn     290 295 300 Ala Asp Glu Lys Thr Ile Lys Gly Ile Ala Lys Asp Ile Thr Gly Leu 305 310 315 320 Ala Lys Lys Val Arg Asp Gly Lys Leu Thr Ala Asp Asp Met Gln Gly                 325 330 335 Gly Thr Phe Thr Val Asn Asn Thr Gly Ser Phe Gly Ser Val Gln Ser             340 345 350 Met Gly Ile Ile Asn Tyr Pro Gln Ala Ile Leu Gln Val Glu Ser         355 360 365 Ile Val Lys Arg Pro Val Val Met Asp Asn Gly Met Ile Ala Val Arg     370 375 380 Asp Met Val Asn Leu Cys Leu Ser Leu Asp His Arg Val Leu Asp Gly 385 390 395 400 Leu Val Cys Gly Arg Phe Leu Gly Arg Val Lys Gln Ile Leu Glu Ser                 405 410 415 Ile Asp Glu Lys Thr Ser Val Tyr             420 <210> 50 <211> 1275 <212> DNA <213> Bacillus subtilis <400> 50 atggcaattg aacaaatgac gatgccgcag cttggagaaa gcgtaacaga ggggacgatc 60 agcaaatggc ttgtcgcccc cggtgataaa gtgaacaaat acgatccgat cgcggaagtc 120 atgacagata aggtaaatgc agaggttccg tcttctttta ctggtacgat aacagagctt 180 gtgggagaag aaggccaaac cctgcaagtc ggagaaatga tttgcaaaat tgaaacagaa 240 ggcgcgaatc cggctgaaca aaaacaagaa cagccagcag catcagaagc cgctgagaac 300 cctgttgcaa aaagtgctgg agcagccgat cagcccaata aaaagcgcta ctcgccagct 360 gttctccgtt tggccggaga gcacggcatt gacctcgatc aagtgacagg aactggtgcc 420 ggcgggcgca tcacacgaaa agatattcag cgcttaattg aaacaggcgg cgtgcaagaa 480 cagaatcctg aggagctgaa aacagcagct cctgcaccga agtctgcatc aaaacctgag 540 ccaaaagaag agacgtcata tcctgcgtct gcagccggtg ataaagaaat ccctgtcaca 600 ggtgtaagaa aagcaattgc ttccaatatg aagcgaagca aaacagaaat tccgcatgct 660 tggacgatga tggaagtcga cgtcacaaat atggttgcat atcgcaacag tataaaagat 720 tcttttaaga agacagaagg ctttaattta acgttcttcg ccttttttgt aaaagcggtc 780 gctcaggcgt taaaagaatt cccgcaaatg aatagcatgt gggcggggga caaaattatt 840 cagaaaaagg atatcaatat ttcaattgca gttgccacag aggattcttt atttgttccg 900 gtgattaaaa acgctgatga aaaaacaatt aaaggcattg cgaaagacat taccggccta 960 gctaaaaaag taagagacgg aaaactcact gcagatgaca tgcagggagg cacgtttacc 1020 gtcaacaaca caggttcgtt cgggtctgtt cagtcgatgg gcattatcaa ctaccctcag 1080 gctgcgattc ttcaagtaga atccatcgtc aaacgcccgg ttgtcatgga caatggcatg 1140 attgctgtca gagacatggt taatctgtgc ctgtcattag atcacagagt gcttgacggt 1200 ctcgtgtgcg gacgattcct cggacgagtg aaacaaattt tagaatcgat tgacgagaag 1260 acatctgttt actaa 1275 <210> 51 <211> 474 <212> PRT <213> Bacillus subtilis <400> 51 Met Ala Thr Glu Tyr Asp Val Valle Leu Gly Gly Gly Thr Gly Gly 1 5 10 15 Tyr Val Ala Ala Ile Arg Ala Ala Gln Leu Gly Leu Lys Thr Ala Val             20 25 30 Val Glu Lys Glu Lys Leu Gly Gly Thr Cys Leu His Lys Gly Cys Ile         35 40 45 Pro Ser Lys Ala Leu Leu Arg Ser Ala Glu Val Tyr Arg Thr Ala Arg     50 55 60 Glu Ala Asp Gln Phe Gly Val Glu Thr Ala Gly Val Ser Leu Asn Phe 65 70 75 80 Glu Lys Val Gln Gln Arg Lys Gln Ala Val Val Asp Lys Leu Ala Ala                 85 90 95 Gly Val Asn His Leu Met Lys Lys Gly Lys Ile Asp Val Tyr Thr Gly             100 105 110 Tyr Gly Arg Ile Leu Gly Pro Ser Ile Phe Ser Pro Leu Pro Gly Thr         115 120 125 Ile Ser Val Glu Arg Gly Asn Gly Glu Glu Asn Asp Met Leu Ile Pro     130 135 140 Lys Gln Val Ile Ile Ala Thr Gly Ser Arg Pro Arg Met Leu Pro Gly 145 150 155 160 Leu Glu Val Asp Gly Lys Ser Val Leu Thr Ser Asp Glu Ala Leu Gln                 165 170 175 Met Glu Glu Leu Pro Gln Ser Ile Ile Ile Val Gly Gly Gly Val Ile             180 185 190 Gly Ile Glu Trp Ala Ser Met Leu His Asp Phe Gly Val Lys Val Thr         195 200 205 Val Ile Glu Tyr Ala Asp Arg Ile Leu Pro Thr Glu Asp Leu Glu Ile     210 215 220 Ser Lys Glu Met Glu Ser Leu Leu Lys Lys Lys Gly Ile Gln Phe Ile 225 230 235 240 Thr Gly Ala Lys Val Leu Pro Asp Thr Met Thr Lys Thr Ser Asp Asp                 245 250 255 Ile Ser Ile Gln Ala Glu Lys Asp Gly Glu Thr Val Thr Tyr Ser Ala             260 265 270 Glu Lys Met Leu Val Ser Ile Gly Arg Gln Ala Asn Ile Glu Gly Ile         275 280 285 Gly Leu Glu Asn Thr Asp Ile Val Thr Glu Asn Gly Met Ile Ser Val     290 295 300 Asn Glu Ser Cys Gln Thr Lys Glu Ser His Ile Tyr Ala Ile Gly Asp 305 310 315 320 Val Ile Gly Gly Leu Gln Leu Ala His Val Ale Ser His Glu Gly Ile                 325 330 335 Ile Ala Val Glu His Phe Ala Gly Leu Asn Pro His Pro Leu Asp Pro             340 345 350 Thr Leu Val Pro Lys Cys Ile Tyr Ser Ser Pro Glu Ala Ala Ser Val         355 360 365 Gly Leu Thr Glu Asp Glu Ala Lys Ala Asn Gly His Asn Val Lys Ile     370 375 380 Gly Lys Phe Pro Phe Met Ala Ile Gly Lys Ala Leu Val Tyr Gly Glu 385 390 395 400 Ser Asp Gly Phe Val Lys Ile Val Ala Asp Arg Asp Thr Asp Asp Ile                 405 410 415 Leu Gly Val His Met Ile Gly Pro His Val Thr Asp Met Ile Ser Glu             420 425 430 Ala Gly Leu Ala Lys Val Leu Asp Ala Thr Pro Trp Glu Val Gly Gln         435 440 445 Thr Ile His Pro Th Pro Thr Leu Ser Glu Ala Ile Gly Glu Ala Ala     450 455 460 Leu Ala Ala Asp Gly Lys Ala Ile His Phe 465 470 <210> 52 <211> 1425 <212> DNA <213> Bacillus subtilis <400> 52 atggcaactg agtatgacgt agtcattctg ggcggcggta ccggcggtta tgttgcggcc 60 atcagagccg ctcagctcgg cttaaaaaca gccgttgtgg aaaaggaaaa actcggggga 120 acatgtctgc ataaaggctg tatcccgagt aaagcgctgc ttagaagcgc agaggtatac 180 cggacagctc gtgaagccga tcaattcgga gtggaaacgg ctggcgtgtc cctcaacttt 240 gaaaaagtgc agcagcgtaa gcaagccgtt gttgataagc ttgcagcggg tgtaaatcat 300 ttaatgaaaa aaggaaaaat tgacgtgtac accggatatg gacgtatcct tggaccgtca 360 atcttctctc cgctgccggg aacaatttct gttgagcggg gaaatggcga agaaaatgac 420 atgctgatcc cgaaacaagt gatcattgca acaggatcaa gaccgagaat gcttccgggt 480 cttgaagtgg acggtaagtc tgtactgact tcagatgagg cgctccaaat ggaggagctg 540 ccacagtcaa tcatcattgt cggcggaggg gttatcggta tcgaatgggc gtctatgctt 600 catgattttg gcgttaaggt aacggttatt gaatacgcgg atcgcatatt gccgactgaa 660 gatctagaga tttcaaaaga aatggaaagt cttcttaaga aaaaaggcat ccagttcata 720 acaggggcaa aagtgctgcc tgacacaatg acaaaaacat cagacgatat cagcatacaa 780 gcggaaaaag acggagaaac cgttacctat tctgctgaga aaatgcttgt ttccatcggc 840 agacaggcaa atatcgaagg catcggccta gagaacaccg atattgttac tgaaaatggc 900 atgatttcag tcaatgaaag ctgccaaacg aaggaatctc atatttatgc aatcggagac 960 gtaatcggtg gcctgcagtt agctcacgtt gcttcacatg agggaattat tgctgttgag 1020 cattttgcag gtctcaatcc gcatccgctt gatccgacgc ttgtgccgaa gtgcatttac 1080 tcaagccctg aagctgccag tgtcggctta accgaagacg aagcaaaggc gaacgggcat 1140 aatgtcaaaa tcggcaagtt cccatttatg gcgattggaa aagcgcttgt atacggtgaa 1200 agcgacggtt ttgtcaaaat cgtggctgac cgagatacag atgatattct cggcgttcat 1260 atgattggcc cgcatgtcac cgacatgatt tctgaagcgg gtcttgccaa agtgctggac 1320 gcaacaccgt gggaggtcgg gcaaacgatt cacccgcatc caacgctttc tgaagcaatt 1380 ggagaagctg cgcttgccgc agatggcaaa gccattcatt tttaa 1425 <210> 53 <211> 410 <212> PRT <213> Pseudomonas putida <400> 53 Met Asn Glu Tyr Ala Pro Leu Arg Leu His Val Pro Glu Pro Thr Gly 1 5 10 15 Arg Pro Gly Cys Gln Thr Asp Phe Ser Tyr Leu Arg Leu Asn Asp Ala             20 25 30 Gly Gln Ala Arg Lys Pro Pro Val Asp Val Asp Ala Ala Asp Thr Ala         35 40 45 Asp Leu Ser Tyr Ser Leu Val Arg Val Leu Asp Glu Gln Gly Asp Ala     50 55 60 Gln Gly Pro Trp Ala Glu Asp Ile Asp Pro Gln Ile Leu Arg Gln Gly 65 70 75 80 Met Arg Ala Met Leu Lys Thr Arg Ile Phe Asp Ser Arg Met Val Val                 85 90 95 Ala Gln Arg Gln Lys Lys Met Ser Phe Tyr Met Gln Ser Leu Gly Glu             100 105 110 Glu Ala Ile Gly Ser Gly Ale Leu Asn Arg Thr Asp Met         115 120 125 Cys Phe Pro Thr Tyr Arg Gln Gin Ser Ile Leu Met Ala Arg Asp Val     130 135 140 Ser Leu Val Glu Met Ile Cys Gln Leu Leu Ser Asn Glu Arg Asp Pro 145 150 155 160 Leu Lys Gly Arg Gln Leu Pro Ile Met Tyr Ser Val Arg Glu Ala Gly                 165 170 175 Phe Phe Thr Ile Ser Gly Asn Leu Ala Thr Gln Phe Val Gln Ala Val             180 185 190 Gly Trp Ala Met Ala Ser Ala Ile Lys Gly Asp Thr Lys Ile Ala Ser         195 200 205 Ala Trp Ile Gly Asp Gly Ala Thr Ala Glu Ser Asp Phe His Thr Ala     210 215 220 Leu Thr Phe Ala His Val Tyr Arg Ala Pro Val Ile Leu Asn Val Val 225 230 235 240 Asn Asn Gln Trp Ala Ile Ser Thr Phe Gln Ala Ile Ala Gly Gly Glu                 245 250 255 Ser Thr Thr Phe Ala Gly Arg Gly Val Gly Cys Gly Ile Ala Ser Leu             260 265 270 Arg Val Asp Gly Asn Asp Phe Val Ala Val Tyr Ala Ala Ser Arg Trp         275 280 285 Ala Ala Glu Arg Ala Arg Arg Gly Leu Gly Pro Ser Leu Ile Glu Trp     290 295 300 Val Thr Tyr Arg Ala Gly Pro His Ser Thr Ser Asp Ser Ser Ser 305 310 315 320 Tyr Arg Pro Ala Asp Asp Trp Ser His Phe Pro Leu Gly Asp Pro Ile                 325 330 335 Ala Arg Leu Lys Gln His Leu Ile Lys Ile Gly His Trp Ser Glu Glu             340 345 350 Glu His Gln Ala Thr Thr Ala Glu Phe Glu Ala Ala Val Ile Ala Ala         355 360 365 Gln Lys Glu Ala Glu Gln Tyr Gly Thr Leu Ala Asn Gly His Ile Pro     370 375 380 Ser Ala Ala Ser Met Phe Glu Asp Val Tyr Lys Glu Met Pro Asp His 385 390 395 400 Leu Arg Arg Gln Arg Gln Glu Leu Gly Val                 405 410 <210> 54 <211> 6643 <212> DNA <213> Pseudomonas putida <400> 54 gcatgcctgc aggccgccga tgaaatggtg gaaggtatcg gtaggctggc cctgctcatc 60 gctgaacacg ttacgcccgc tgccggtatc gaccaggctc tggtgaatat gcatggaact 120 gccaggcgtg cgcgccagcg gtttggccat gcacaccacg gtcagcccgt gcttgagtgc 180 cacttccttg agcaggtgtt tgaacaggaa ggtctggtcg gccagcagca gcgggtcgcc 240 atgtagcaag ttgatctcga actggctgac gcccatttcg tgcatgaagg tgtcgcgcgg 300 caggccgagc gcggccatgc actggtacac ctcattgaag aacgggcgca ggccgttgtt 360 ggaactgaca ctgaacgccg aatggcccag ctcgcggcgg ccgtcggtgc ccagcggtgg 420 ctggaacggc tgctgcgggt cactgttggg ggcaaacacg aagaactcaa gctcggtcgc 480 cactaccggt gccagaccca acgctgcgta gcgggcgatc acggccttca gctggccccg 540 ggtggacagt gccgagggcc ggccatccag ttcattggca tcgcagatgg ccagggcgcg 600 accgtcatcg ctccagggca agcgatgaac ctggctgggt tccgctacca acgccaggtc 660 gccgtcgtcg cagccgtaga atttcgccgg cgggtagccg cccatgatgc attgcagcag 720 caccccacgg gccatctgca ggcggcggcc ttcgagaaag ccttcggcgg tcatcacctt 780 gccgcgtggg acgccgttga ggtcgggggt gacgcattcg atttcatcga tgccctggag 840 ctgagcgatg ctcatgacgc ttgtccttgt tgttgtaggc tgacaacaac ataggctggg 900 ggtgtttaaa atatcaagca gcctctcgaa cgcctggggc ctcttctatt cgcgcaaggt 960 catgccattg gccggcaacg gcaaggctgt cttgtagcgc acctgtttca aggcaaaact 1020 cgagcggata ttcgccacac ccggcaaccg ggtcaggtaa tcgagaaacc gctccagcgc 1080 ctggatactc ggcagcagta cccgcaacag gtagtccggg tcgcccgtca tcaggtagca 1140 ctccatcacc tcgggccgtt cggcaatttc ttcctcgaag cggtgcagcg actgctctac 1200 ctgtttttcc aggctgacat ggatgaacac attcacatcc agccccaacg cctcgggcga 1260 caacaaggtc acctgctggc ggatcacccc cagttcttcc atggcccgca cccggttgaa 1320 acagggcgtg ggcgacaggt tgaccgagcg tgccagctcg gcgttggtga tgcgggcgtt 1380 ttcctgcagg ctgttgagaa tgccgatatc ggtacgatcg agtttgcgca tgagacaaaa 1440 tcaccggttt tttgtgttta tgcggaatgt ttatctgccc cgctcggcaa aggcaatcaa 1500 cttgagagaa aaattctcct gccggaccac taagatgtag gggacgctga cttaccagtc 1560 acaagccggt actcagcggc ggccgcttca gagctcacaa aaacaaatac ccgagcgagc 1620 gtaaaaagca tgaacgagta cgcccccctg cgtttgcatg tgcccgagcc caccggccgg 1680 ccaggctgcc agaccgattt ttcctacctg cgcctgaacg atgcaggtca agcccgtaaa 1740 ccccctgtcg atgtcgacgc tgccgacacc gccgacctgt cctacagcct ggtccgcgtg 1800 ctcgacgagc aaggcgacgc ccaaggcccg tgggctgaag acatcgaccc gcagatcctg 1860 cgccaaggca tgcgcgccat gctcaagacg cggatcttcg acagccgcat ggtggttgcc 1920 cagcgccaga agaagatgtc cttctacatg cagagcctgg gcgaagaagc catcggcagc 1980 ggccaggcgc tggcgcttaa ccgcaccgac atgtgcttcc ccacctaccg tcagcaaagc 2040 atcctgatgg cccgcgacgt gtcgctggtg gagatgatct gccagttgct gtccaacgaa 2100 cgcgaccccc tcaagggccg ccagctgccg atcatgtact cggtacgcga ggccggcttc 2160 ttcaccatca gcggcaacct ggcgacccag ttcgtgcagg cggtcggctg ggccatggcc 2220 tcggcgatca agggcgatac caagattgcc tcggcctgga tcggcgacgg cgccactgcc 2280 gaatcggact tccacaccgc cctcaccttt gcccacgttt accgcgcccc ggtgatcctc 2340 aacgtggtca acaaccagtg ggccatctca accttccagg ccatcgccgg tggcgagtcg 2400 accaccttcg ccggccgtgg cgtgggctgc ggcatcgctt cgctgcgggt ggacggcaac 2460 gacttcgtcg ccgtttacgc cgcttcgcgc tgggctgccg aacgtgcccg ccgtggtttg 2520 ggcccgagcc tgatcgagtg ggtcacctac cgtgccggcc cgcactcgac ctcggacgac 2580 ccgtccaagt accgccctgc cgatgactgg agccacttcc cgctgggtga cccgatcgcc 2640 cgcctgaagc agcacctgat caagatcggc cactggtccg aagaagaaca ccaggccacc 2700 acggccgagt tcgaagcggc cgtgattgct gcgcaaaaag aagccgagca gtacggcacc 2760 ctggccaacg gtcacatccc gagcgccgcc tcgatgttcg aggacgtgta caaggagatg 2820 cccgaccacc tgcgccgcca acgccaggaa ctgggggttt gagatgaacg accacaacaa 2880 cagcatcaac ccggaaaccg ccatggccac cactaccatg accatgatcc aggccctgcg 2940 ctcggccatg gatgtcatgc ttgagcgcga cgacaatgtg gtggtgtacg gccaggacgt 3000 cggctacttc ggcggcgtgt tccgctgcac cgaaggcctg cagaccaagt acggcaagtc 3060 ccgcgtgttc gacgcgccca tctctgaaag cggcatcgtc ggcaccgccg tgggcatggg 3120 tgcctacggc ctgcgcccgg tggtggaaat ccagttcgct gactacttct acccggcctc 3180 cgaccagatc gtttctgaaa tggcccgcct gcgctaccgt tcggccggcg agttcatcgc 3240 cccgctgacc ctgcgtatgc cctgcggtgg cggtatctat ggcggccaga cacacagcca 3300 gagcccggaa gcgatgttca ctcaggtgtg cggcctgcgc accgtaatgc catccaaccc 3360 gtacgacgcc aaaggcctgc tgattgcctc gatcgaatgc gacgacccgg tgatcttcct 3420 ggagcccaag cgcctgtaca acggcccgtt cgacggccac catgaccgcc cggttacgcc 3480 gtggtcgaaa cacccgcaca gcgccgtgcc cgatggctac tacaccgtgc cactggacaa 3540 ggccgccatc acccgccccg gcaatgacgt gagcgtgctc acctatggca ccaccgtgta 3600 cgtggcccag gtggccgccg aagaaagtgg cgtggatgcc gaagtgatcg acctgcgcag 3660 cctgtggccg ctagacctgg acaccatcgt cgagtcggtg aaaaagaccg gccgttgcgt 3720 ggtagtacac gaggccaccc gtacttgtgg ctttggcgca gaactggtgt cgctggtgca 3780 ggagcactgc ttccaccacc tggaggcgcc gatcgagcgc gtcaccggtt gggacacccc 3840 ctaccctcac gcgcaggaat gggcttactt cccagggcct tcgcgggtag gtgcggcatt 3900 gaaaaaggtc atggaggtct gaatgggcac gcacgtcatc aagatgccgg acattggcga 3960 aggcatcgcg caggtcgaat tggtggaatg gttcgtcaag gtgggcgaca tcatcgccga 4020 ggaccaagtg gtagccgacg tcatgaccga caaggccacc gtggaaatcc cgtcgccggt 4080 cagcggcaag gtgctggccc tgggtggcca gccaggtgaa gtgatggcgg tcggcagtga 4140 gctgatccgc atcgaagtgg aaggcagcgg caaccatgtg gatgtgccgc aagccaagcc 4200 ggccgaagtg cctgcggcac cggtagccgc taaacctgaa ccacagaaag acgttaaacc 4260 ggcggcgtac caggcgtcag ccagccacga ggcagcgccc atcgtgccgc gccagccggg 4320 cgacaagccg ctggcctcgc cggcggtgcg caaacgcgcc ctcgatgccg gcatcgaatt 4380 gcgttatgtg cacggcagcg gcccggccgg gcgcatcctg cacgaagacc tcgacgcgtt 4440 catgagcaaa ccgcaaagcg ctgccgggca aacccccaat ggctatgcca ggcgcaccga 4500 cagcgagcag gtgccggtga tcggcctgcg ccgcaagatc gcccagcgca tgcaggacgc 4560 caagcgccgg gtcgcgcact tcagctatgt ggaagaaatc gacgtcaccg ccctggaagc 4620 cctgcgccag cagctcaaca gcaagcacgg cgacagccgc ggcaagctga cactgctgcc 4680 gttcctggtg cgcgccctgg tcgtggcact gcgtgacttc ccgcagataa acgccaccta 4740 cgatgacgaa gcgcagatca tcacccgcca tggcgcggtg catgtgggca tcgccaccca 4800 aggtgacaac ggcctgatgg tacccgtgct gcgccacgcc gaagcgggca gcctgtgggc 4860 caatgccggt gagatttcac gcctggccaa cgctgcgcgc aacaacaagg ccagccgcga 4920 agagctgtcc ggttcgacca ttaccctgac cagcctcggc gccctgggcg gcatcgtcag 4980 cacgccggtg gtcaacaccc cggaagtggc gatcgtcggt gtcaaccgca tggttgagcg 5040 gcccgtggtg atcgacggcc agatcgtcgt gcgcaagatg atgaacctgt ccagctcgtt 5100 cgaccaccgc gtggtcgatg gcatggacgc cgccctgttc atccaggccg tgcgtggcct 5160 gctcgaacaa cccgcctgcc tgttcgtgga gtgagcatgc aacagactat ccagacaacc 5220 ctgttgatca tcggcggcgg ccctggcggc tatgtggcgg ccatccgcgc cgggcaactg 5280 ggcatcccta ccgtgctggt ggaaggccag gcgctgggcg gtacctgcct gaacatcggc 5340 tgcattccgt ccaaggcgct gatccatgtg gccgagcagt tccaccaggc ctcgcgcttt 5400 accgaaccct cgccgctggg catcagcgtg gcttcgccac gcctggacat cggccagagc 5460 gtggcctgga aagacggcat cgtcgatcgc ctgaccactg gtgtcgccgc cctgctgaaa 5520 aagcacgggg tgaaggtggt gcacggctgg gccaaggtgc ttgatggcaa gcaggtcgag 5580 gtggatggcc agcgcatcca gtgcgagcac ctgttgctgg ccacgggctc cagcagtgtc 5640 gaactgccga tgctgccgtt gggtgggccg gtgatttcct cgaccgaggc cctggcaccg 5700 aaagccctgc cgcaacacct ggtggtggtg ggcggtggct acatcggcct ggagctgggt 5760 atcgcctacc gcaagctcgg cgcgcaggtc agcgtggtgg aagcgcgcga gcgcatcctg 5820 ccgacttacg acagcgaact gaccgccccg gtggccgagt cgctgaaaaa gctgggtatc 5880 gccctgcacc ttggccacag cgtcgaaggt tacgaaaatg gctgcctgct ggccaacgat 5940 ggcaagggcg gacaactgcg cctggaagcc gaccgggtgc tggtggccgt gggccgccgc 6000 ccacgcacca agggcttcaa cctggaatgc ctggacctga agatgaatgg tgccgcgatt 6060 gccatcgacg agcgctgcca gaccagcatg cacaacgtct gggccatcgg cgacgtggcc 6120 ggcgaaccga tgctggcgca ccgggccatg gcccagggcg agatggtggc cgagatcatc 6180 gccggcaagg cacgccgctt cgaacccgct gcgatagccg ccgtgtgctt caccgacccg 6240 gaagtggtcg tggtcggcaa gacgccggaa caggccagtc agcaaggcct ggactgcatc 6300 gtcgcgcagt tcccgttcgc cgccaacggc cgggccatga gcctggagtc gaaaagcggt 6360 ttcgtgcgcg tggtcgcgcg gcgtgacaac cacctgatcc tgggctggca agcggttggc 6420 gtggcggttt ccgagctgtc cacggcgttt gcccagtcgc tggagatggg tgcctgcctg 6480 gaggatgtgg ccggtaccat ccatgcccac ccgaccctgg gtgaagcggt acaggaagcg 6540 gcactgcgtg ccctgggcca cgccctgcat atctgacact gaagcggccg aggccgattt 6600 ggcccgccgc gccgagaggc gctgcgggtc ttttttatac ctg 6643 <210> 55 <211> 352 <212> PRT <213> Pseudomonas putida <400> 55 Met Asn Asp His Asn Asn Ser Ile Asn Pro Glu Thr Ala Met Ala Thr 1 5 10 15 Thr Thr Met Thr Met Ile Gln Ala Leu Arg Ser Ala Met Asp Val Met             20 25 30 Leu Glu Arg Asp Asp Val Val Val Tyr Gly Gln Asp Val Gly Tyr         35 40 45 Phe Gly Gly Val Phe Arg Cys Thr Glu Gly Leu Gln Thr Lys Tyr Gly     50 55 60 Lys Ser Arg Val Phe Asp Ala Pro Ile Ser Glu Ser Gly Ile Val Gly 65 70 75 80 Thr Ala Val Gly Met Gly Ala Tyr Gly Leu Arg Pro Val Val Glu Ile                 85 90 95 Gln Phe Ala Asp Tyr Phe Tyr Pro Ala Ser Asp Gln Ile Val Ser Glu             100 105 110 Met Ala Arg Leu Arg Tyr Arg Ser Ala Gly Glu Phe Ile Ala Pro Leu         115 120 125 Thr Leu Arg Met Pro Cys Gly Gly Gly Ile Tyr Gly Gly Gln Thr His     130 135 140 Ser Gln Ser Pro Glu Ala Met Phe Thr Gln Val Cys Gly Leu Arg Thr 145 150 155 160 Val Met Pro Ser Asn Pro Tyr Asp Ala Lys Gly Leu Leu Ile Ala Ser                 165 170 175 Ile Glu Cys Asp Asp Pro Val Ile Phe Leu Glu Pro Lys Arg Leu Tyr             180 185 190 Asn Gly Pro Phe Asp Gly His His Asp Arg Pro Val Thr Pro Trp Ser         195 200 205 Lys His Pro His Ser Ala Val Pro Asp Gly Tyr Tyr Thr Val Pro Leu     210 215 220 Asp Lys Ala Ala Ile Thr Arg Pro Gly Asn Asp Val Ser Val Leu Thr 225 230 235 240 Tyr Gly Thr Thr Val Tyr Val Ala Gln Val Ala Ala Glu Glu Ser Gly                 245 250 255 Val Asp Ala Glu Val Ile Asp Leu Arg Ser Leu Trp Pro Leu Asp Leu             260 265 270 Asp Thr Ile Val Glu Ser Val Lys Lys Thr Gly Arg Cys Val Val Val         275 280 285 His Glu Ala Thr Arg Thr Cys Gly Phe Gly Ala Glu Leu Val Ser Leu     290 295 300 Val Glu Glu His Cys Phe His His Leu Glu Ala Pro Ile Glu Arg Val 305 310 315 320 Thr Gly Trp Asp Thr Pro Tyr Pro His Ala Gln Glu Trp Ala Tyr Phe                 325 330 335 Pro Gly Pro Ser Arg Val Gly Ala Ala Leu Lys Lys Val Met Glu Val             340 345 350 <210> 56 <211> 6643 <212> DNA <213> Pseudomonas putida <400> 56 gcatgcctgc aggccgccga tgaaatggtg gaaggtatcg gtaggctggc cctgctcatc 60 gctgaacacg ttacgcccgc tgccggtatc gaccaggctc tggtgaatat gcatggaact 120 gccaggcgtg cgcgccagcg gtttggccat gcacaccacg gtcagcccgt gcttgagtgc 180 cacttccttg agcaggtgtt tgaacaggaa ggtctggtcg gccagcagca gcgggtcgcc 240 atgtagcaag ttgatctcga actggctgac gcccatttcg tgcatgaagg tgtcgcgcgg 300 caggccgagc gcggccatgc actggtacac ctcattgaag aacgggcgca ggccgttgtt 360 ggaactgaca ctgaacgccg aatggcccag ctcgcggcgg ccgtcggtgc ccagcggtgg 420 ctggaacggc tgctgcgggt cactgttggg ggcaaacacg aagaactcaa gctcggtcgc 480 cactaccggt gccagaccca acgctgcgta gcgggcgatc acggccttca gctggccccg 540 ggtggacagt gccgagggcc ggccatccag ttcattggca tcgcagatgg ccagggcgcg 600 accgtcatcg ctccagggca agcgatgaac ctggctgggt tccgctacca acgccaggtc 660 gccgtcgtcg cagccgtaga atttcgccgg cgggtagccg cccatgatgc attgcagcag 720 caccccacgg gccatctgca ggcggcggcc ttcgagaaag ccttcggcgg tcatcacctt 780 gccgcgtggg acgccgttga ggtcgggggt gacgcattcg atttcatcga tgccctggag 840 ctgagcgatg ctcatgacgc ttgtccttgt tgttgtaggc tgacaacaac ataggctggg 900 ggtgtttaaa atatcaagca gcctctcgaa cgcctggggc ctcttctatt cgcgcaaggt 960 catgccattg gccggcaacg gcaaggctgt cttgtagcgc acctgtttca aggcaaaact 1020 cgagcggata ttcgccacac ccggcaaccg ggtcaggtaa tcgagaaacc gctccagcgc 1080 ctggatactc ggcagcagta cccgcaacag gtagtccggg tcgcccgtca tcaggtagca 1140 ctccatcacc tcgggccgtt cggcaatttc ttcctcgaag cggtgcagcg actgctctac 1200 ctgtttttcc aggctgacat ggatgaacac attcacatcc agccccaacg cctcgggcga 1260 caacaaggtc acctgctggc ggatcacccc cagttcttcc atggcccgca cccggttgaa 1320 acagggcgtg ggcgacaggt tgaccgagcg tgccagctcg gcgttggtga tgcgggcgtt 1380 ttcctgcagg ctgttgagaa tgccgatatc ggtacgatcg agtttgcgca tgagacaaaa 1440 tcaccggttt tttgtgttta tgcggaatgt ttatctgccc cgctcggcaa aggcaatcaa 1500 cttgagagaa aaattctcct gccggaccac taagatgtag gggacgctga cttaccagtc 1560 acaagccggt actcagcggc ggccgcttca gagctcacaa aaacaaatac ccgagcgagc 1620 gtaaaaagca tgaacgagta cgcccccctg cgtttgcatg tgcccgagcc caccggccgg 1680 ccaggctgcc agaccgattt ttcctacctg cgcctgaacg atgcaggtca agcccgtaaa 1740 ccccctgtcg atgtcgacgc tgccgacacc gccgacctgt cctacagcct ggtccgcgtg 1800 ctcgacgagc aaggcgacgc ccaaggcccg tgggctgaag acatcgaccc gcagatcctg 1860 cgccaaggca tgcgcgccat gctcaagacg cggatcttcg acagccgcat ggtggttgcc 1920 cagcgccaga agaagatgtc cttctacatg cagagcctgg gcgaagaagc catcggcagc 1980 ggccaggcgc tggcgcttaa ccgcaccgac atgtgcttcc ccacctaccg tcagcaaagc 2040 atcctgatgg cccgcgacgt gtcgctggtg gagatgatct gccagttgct gtccaacgaa 2100 cgcgaccccc tcaagggccg ccagctgccg atcatgtact cggtacgcga ggccggcttc 2160 ttcaccatca gcggcaacct ggcgacccag ttcgtgcagg cggtcggctg ggccatggcc 2220 tcggcgatca agggcgatac caagattgcc tcggcctgga tcggcgacgg cgccactgcc 2280 gaatcggact tccacaccgc cctcaccttt gcccacgttt accgcgcccc ggtgatcctc 2340 aacgtggtca acaaccagtg ggccatctca accttccagg ccatcgccgg tggcgagtcg 2400 accaccttcg ccggccgtgg cgtgggctgc ggcatcgctt cgctgcgggt ggacggcaac 2460 gacttcgtcg ccgtttacgc cgcttcgcgc tgggctgccg aacgtgcccg ccgtggtttg 2520 ggcccgagcc tgatcgagtg ggtcacctac cgtgccggcc cgcactcgac ctcggacgac 2580 ccgtccaagt accgccctgc cgatgactgg agccacttcc cgctgggtga cccgatcgcc 2640 cgcctgaagc agcacctgat caagatcggc cactggtccg aagaagaaca ccaggccacc 2700 acggccgagt tcgaagcggc cgtgattgct gcgcaaaaag aagccgagca gtacggcacc 2760 ctggccaacg gtcacatccc gagcgccgcc tcgatgttcg aggacgtgta caaggagatg 2820 cccgaccacc tgcgccgcca acgccaggaa ctgggggttt gagatgaacg accacaacaa 2880 cagcatcaac ccggaaaccg ccatggccac cactaccatg accatgatcc aggccctgcg 2940 ctcggccatg gatgtcatgc ttgagcgcga cgacaatgtg gtggtgtacg gccaggacgt 3000 cggctacttc ggcggcgtgt tccgctgcac cgaaggcctg cagaccaagt acggcaagtc 3060 ccgcgtgttc gacgcgccca tctctgaaag cggcatcgtc ggcaccgccg tgggcatggg 3120 tgcctacggc ctgcgcccgg tggtggaaat ccagttcgct gactacttct acccggcctc 3180 cgaccagatc gtttctgaaa tggcccgcct gcgctaccgt tcggccggcg agttcatcgc 3240 cccgctgacc ctgcgtatgc cctgcggtgg cggtatctat ggcggccaga cacacagcca 3300 gagcccggaa gcgatgttca ctcaggtgtg cggcctgcgc accgtaatgc catccaaccc 3360 gtacgacgcc aaaggcctgc tgattgcctc gatcgaatgc gacgacccgg tgatcttcct 3420 ggagcccaag cgcctgtaca acggcccgtt cgacggccac catgaccgcc cggttacgcc 3480 gtggtcgaaa cacccgcaca gcgccgtgcc cgatggctac tacaccgtgc cactggacaa 3540 ggccgccatc acccgccccg gcaatgacgt gagcgtgctc acctatggca ccaccgtgta 3600 cgtggcccag gtggccgccg aagaaagtgg cgtggatgcc gaagtgatcg acctgcgcag 3660 cctgtggccg ctagacctgg acaccatcgt cgagtcggtg aaaaagaccg gccgttgcgt 3720 ggtagtacac gaggccaccc gtacttgtgg ctttggcgca gaactggtgt cgctggtgca 3780 ggagcactgc ttccaccacc tggaggcgcc gatcgagcgc gtcaccggtt gggacacccc 3840 ctaccctcac gcgcaggaat gggcttactt cccagggcct tcgcgggtag gtgcggcatt 3900 gaaaaaggtc atggaggtct gaatgggcac gcacgtcatc aagatgccgg acattggcga 3960 aggcatcgcg caggtcgaat tggtggaatg gttcgtcaag gtgggcgaca tcatcgccga 4020 ggaccaagtg gtagccgacg tcatgaccga caaggccacc gtggaaatcc cgtcgccggt 4080 cagcggcaag gtgctggccc tgggtggcca gccaggtgaa gtgatggcgg tcggcagtga 4140 gctgatccgc atcgaagtgg aaggcagcgg caaccatgtg gatgtgccgc aagccaagcc 4200 ggccgaagtg cctgcggcac cggtagccgc taaacctgaa ccacagaaag acgttaaacc 4260 ggcggcgtac caggcgtcag ccagccacga ggcagcgccc atcgtgccgc gccagccggg 4320 cgacaagccg ctggcctcgc cggcggtgcg caaacgcgcc ctcgatgccg gcatcgaatt 4380 gcgttatgtg cacggcagcg gcccggccgg gcgcatcctg cacgaagacc tcgacgcgtt 4440 catgagcaaa ccgcaaagcg ctgccgggca aacccccaat ggctatgcca ggcgcaccga 4500 cagcgagcag gtgccggtga tcggcctgcg ccgcaagatc gcccagcgca tgcaggacgc 4560 caagcgccgg gtcgcgcact tcagctatgt ggaagaaatc gacgtcaccg ccctggaagc 4620 cctgcgccag cagctcaaca gcaagcacgg cgacagccgc ggcaagctga cactgctgcc 4680 gttcctggtg cgcgccctgg tcgtggcact gcgtgacttc ccgcagataa acgccaccta 4740 cgatgacgaa gcgcagatca tcacccgcca tggcgcggtg catgtgggca tcgccaccca 4800 aggtgacaac ggcctgatgg tacccgtgct gcgccacgcc gaagcgggca gcctgtgggc 4860 caatgccggt gagatttcac gcctggccaa cgctgcgcgc aacaacaagg ccagccgcga 4920 agagctgtcc ggttcgacca ttaccctgac cagcctcggc gccctgggcg gcatcgtcag 4980 cacgccggtg gtcaacaccc cggaagtggc gatcgtcggt gtcaaccgca tggttgagcg 5040 gcccgtggtg atcgacggcc agatcgtcgt gcgcaagatg atgaacctgt ccagctcgtt 5100 cgaccaccgc gtggtcgatg gcatggacgc cgccctgttc atccaggccg tgcgtggcct 5160 gctcgaacaa cccgcctgcc tgttcgtgga gtgagcatgc aacagactat ccagacaacc 5220 ctgttgatca tcggcggcgg ccctggcggc tatgtggcgg ccatccgcgc cgggcaactg 5280 ggcatcccta ccgtgctggt ggaaggccag gcgctgggcg gtacctgcct gaacatcggc 5340 tgcattccgt ccaaggcgct gatccatgtg gccgagcagt tccaccaggc ctcgcgcttt 5400 accgaaccct cgccgctggg catcagcgtg gcttcgccac gcctggacat cggccagagc 5460 gtggcctgga aagacggcat cgtcgatcgc ctgaccactg gtgtcgccgc cctgctgaaa 5520 aagcacgggg tgaaggtggt gcacggctgg gccaaggtgc ttgatggcaa gcaggtcgag 5580 gtggatggcc agcgcatcca gtgcgagcac ctgttgctgg ccacgggctc cagcagtgtc 5640 gaactgccga tgctgccgtt gggtgggccg gtgatttcct cgaccgaggc cctggcaccg 5700 aaagccctgc cgcaacacct ggtggtggtg ggcggtggct acatcggcct ggagctgggt 5760 atcgcctacc gcaagctcgg cgcgcaggtc agcgtggtgg aagcgcgcga gcgcatcctg 5820 ccgacttacg acagcgaact gaccgccccg gtggccgagt cgctgaaaaa gctgggtatc 5880 gccctgcacc ttggccacag cgtcgaaggt tacgaaaatg gctgcctgct ggccaacgat 5940 ggcaagggcg gacaactgcg cctggaagcc gaccgggtgc tggtggccgt gggccgccgc 6000 ccacgcacca agggcttcaa cctggaatgc ctggacctga agatgaatgg tgccgcgatt 6060 gccatcgacg agcgctgcca gaccagcatg cacaacgtct gggccatcgg cgacgtggcc 6120 ggcgaaccga tgctggcgca ccgggccatg gcccagggcg agatggtggc cgagatcatc 6180 gccggcaagg cacgccgctt cgaacccgct gcgatagccg ccgtgtgctt caccgacccg 6240 gaagtggtcg tggtcggcaa gacgccggaa caggccagtc agcaaggcct ggactgcatc 6300 gtcgcgcagt tcccgttcgc cgccaacggc cgggccatga gcctggagtc gaaaagcggt 6360 ttcgtgcgcg tggtcgcgcg gcgtgacaac cacctgatcc tgggctggca agcggttggc 6420 gtggcggttt ccgagctgtc cacggcgttt gcccagtcgc tggagatggg tgcctgcctg 6480 gaggatgtgg ccggtaccat ccatgcccac ccgaccctgg gtgaagcggt acaggaagcg 6540 gcactgcgtg ccctgggcca cgccctgcat atctgacact gaagcggccg aggccgattt 6600 ggcccgccgc gccgagaggc gctgcgggtc ttttttatac ctg 6643 <210> 57 <211> 423 <212> PRT <213> Pseudomonas putida <400> 57 Met Gly Thr His Val Ile Lys Met Pro Asp Ile Gly Glu Gly Ile Ala 1 5 10 15 Gln Val Glu Leu Val Glu Trp Phe Val Lys Val Gly Asp Ile Ile Ala             20 25 30 Glu Asp Gln Val Val Ala Asp Val Met Thr Asp Lys Ala Thr Val Glu         35 40 45 Ile Pro Ser Ser Val Gly Lys Val Leu Ala Leu Gly Gly Gln Pro     50 55 60 Gly Glu Val Met Ala Val Gly Ser Glu Leu Ile Arg Ile Glu Val Glu 65 70 75 80 Gly Ser Gly Asn His Val Asp Val Pro Gln Ala Lys Pro Ala Glu Val                 85 90 95 Pro Ala Ala Pro Val Ala Lys Pro Glu Pro Gln Lys Asp Val Lys             100 105 110 Pro Ala Ala Tyr Gln Ala Ser Ala Ser His Glu Ala Ala Pro Ile Val         115 120 125 Pro Arg Gln Pro Gly Asp Lys Pro Leu Ala Ser Pro Ala Val Arg Lys     130 135 140 Arg Ala Leu Asp Ala Gly Ile Glu Leu Arg Tyr Val His Gly Ser Gly 145 150 155 160 Pro Ala Gly Arg Ile Leu His Glu Asp Leu Asp Ala Phe Met Ser Lys                 165 170 175 Pro Gln Ser Ala Ala Gly Gln Thr Pro Asn Gly Tyr Ala Arg Arg Thr             180 185 190 Asp Ser Glu Gln Val Pro Val Ile Gly Leu Arg Arg Lys Ile Ala Gln         195 200 205 Arg Met Gln Asp Ala Lys Arg Arg Val Ala His Phe Ser Tyr Val Glu     210 215 220 Glu Ile Asp Val Thr Ala Leu Glu Ala Leu Arg Gln Gln Leu Asn Ser 225 230 235 240 Lys His Gly Asp Ser Arg Gly Lys Leu Thr Leu Leu Pro Phe Leu Val                 245 250 255 Arg Ala Leu Val Val Ala Leu Arg Asp Phe Pro Gln Ile Asn Ala Thr             260 265 270 Tyr Asp Asp Glu Ala Gln Ile Ile Thr Arg His Gly Ala Val His Val         275 280 285 Gly Ile Ala Thr Gln Gly Asp Asn Gly Leu Met Val Val Val Leu Arg     290 295 300 His Ala Glu Ala Gly Ser Leu Trp Ala Asn Ala Gly Glu Ile Ser Arg 305 310 315 320 Leu Ala Asn Ala Ala Arg Asn Asn Lys Ala Ser Arg Glu Glu Leu Ser                 325 330 335 Gly Ser Thr Ile Thr Leu Thr Ser Leu Gly Ala Leu Gly Gly Ile Val             340 345 350 Ser Thr Pro Val Val Asn Thr Pro Glu Val Ala Val Val Gly Val Asn         355 360 365 Arg Met Val Glu Arg Pro Val Val Ile Asp Gly Gln Ile Val Val Arg     370 375 380 Lys Met Met Asn Leu Ser Ser Ser Phe Asp His Arg Val Val Asp Gly 385 390 395 400 Met Asp Ala Ala Leu Phe Ile Gln Ala Val Arg Gly Leu Leu Glu Gln                 405 410 415 Pro Ala Cys Leu Phe Val Glu             420 <210> 58 <211> 6643 <212> DNA <213> Pseudomonas putida <400> 58 gcatgcctgc aggccgccga tgaaatggtg gaaggtatcg gtaggctggc cctgctcatc 60 gctgaacacg ttacgcccgc tgccggtatc gaccaggctc tggtgaatat gcatggaact 120 gccaggcgtg cgcgccagcg gtttggccat gcacaccacg gtcagcccgt gcttgagtgc 180 cacttccttg agcaggtgtt tgaacaggaa ggtctggtcg gccagcagca gcgggtcgcc 240 atgtagcaag ttgatctcga actggctgac gcccatttcg tgcatgaagg tgtcgcgcgg 300 caggccgagc gcggccatgc actggtacac ctcattgaag aacgggcgca ggccgttgtt 360 ggaactgaca ctgaacgccg aatggcccag ctcgcggcgg ccgtcggtgc ccagcggtgg 420 ctggaacggc tgctgcgggt cactgttggg ggcaaacacg aagaactcaa gctcggtcgc 480 cactaccggt gccagaccca acgctgcgta gcgggcgatc acggccttca gctggccccg 540 ggtggacagt gccgagggcc ggccatccag ttcattggca tcgcagatgg ccagggcgcg 600 accgtcatcg ctccagggca agcgatgaac ctggctgggt tccgctacca acgccaggtc 660 gccgtcgtcg cagccgtaga atttcgccgg cgggtagccg cccatgatgc attgcagcag 720 caccccacgg gccatctgca ggcggcggcc ttcgagaaag ccttcggcgg tcatcacctt 780 gccgcgtggg acgccgttga ggtcgggggt gacgcattcg atttcatcga tgccctggag 840 ctgagcgatg ctcatgacgc ttgtccttgt tgttgtaggc tgacaacaac ataggctggg 900 ggtgtttaaa atatcaagca gcctctcgaa cgcctggggc ctcttctatt cgcgcaaggt 960 catgccattg gccggcaacg gcaaggctgt cttgtagcgc acctgtttca aggcaaaact 1020 cgagcggata ttcgccacac ccggcaaccg ggtcaggtaa tcgagaaacc gctccagcgc 1080 ctggatactc ggcagcagta cccgcaacag gtagtccggg tcgcccgtca tcaggtagca 1140 ctccatcacc tcgggccgtt cggcaatttc ttcctcgaag cggtgcagcg actgctctac 1200 ctgtttttcc aggctgacat ggatgaacac attcacatcc agccccaacg cctcgggcga 1260 caacaaggtc acctgctggc ggatcacccc cagttcttcc atggcccgca cccggttgaa 1320 acagggcgtg ggcgacaggt tgaccgagcg tgccagctcg gcgttggtga tgcgggcgtt 1380 ttcctgcagg ctgttgagaa tgccgatatc ggtacgatcg agtttgcgca tgagacaaaa 1440 tcaccggttt tttgtgttta tgcggaatgt ttatctgccc cgctcggcaa aggcaatcaa 1500 cttgagagaa aaattctcct gccggaccac taagatgtag gggacgctga cttaccagtc 1560 acaagccggt actcagcggc ggccgcttca gagctcacaa aaacaaatac ccgagcgagc 1620 gtaaaaagca tgaacgagta cgcccccctg cgtttgcatg tgcccgagcc caccggccgg 1680 ccaggctgcc agaccgattt ttcctacctg cgcctgaacg atgcaggtca agcccgtaaa 1740 ccccctgtcg atgtcgacgc tgccgacacc gccgacctgt cctacagcct ggtccgcgtg 1800 ctcgacgagc aaggcgacgc ccaaggcccg tgggctgaag acatcgaccc gcagatcctg 1860 cgccaaggca tgcgcgccat gctcaagacg cggatcttcg acagccgcat ggtggttgcc 1920 cagcgccaga agaagatgtc cttctacatg cagagcctgg gcgaagaagc catcggcagc 1980 ggccaggcgc tggcgcttaa ccgcaccgac atgtgcttcc ccacctaccg tcagcaaagc 2040 atcctgatgg cccgcgacgt gtcgctggtg gagatgatct gccagttgct gtccaacgaa 2100 cgcgaccccc tcaagggccg ccagctgccg atcatgtact cggtacgcga ggccggcttc 2160 ttcaccatca gcggcaacct ggcgacccag ttcgtgcagg cggtcggctg ggccatggcc 2220 tcggcgatca agggcgatac caagattgcc tcggcctgga tcggcgacgg cgccactgcc 2280 gaatcggact tccacaccgc cctcaccttt gcccacgttt accgcgcccc ggtgatcctc 2340 aacgtggtca acaaccagtg ggccatctca accttccagg ccatcgccgg tggcgagtcg 2400 accaccttcg ccggccgtgg cgtgggctgc ggcatcgctt cgctgcgggt ggacggcaac 2460 gacttcgtcg ccgtttacgc cgcttcgcgc tgggctgccg aacgtgcccg ccgtggtttg 2520 ggcccgagcc tgatcgagtg ggtcacctac cgtgccggcc cgcactcgac ctcggacgac 2580 ccgtccaagt accgccctgc cgatgactgg agccacttcc cgctgggtga cccgatcgcc 2640 cgcctgaagc agcacctgat caagatcggc cactggtccg aagaagaaca ccaggccacc 2700 acggccgagt tcgaagcggc cgtgattgct gcgcaaaaag aagccgagca gtacggcacc 2760 ctggccaacg gtcacatccc gagcgccgcc tcgatgttcg aggacgtgta caaggagatg 2820 cccgaccacc tgcgccgcca acgccaggaa ctgggggttt gagatgaacg accacaacaa 2880 cagcatcaac ccggaaaccg ccatggccac cactaccatg accatgatcc aggccctgcg 2940 ctcggccatg gatgtcatgc ttgagcgcga cgacaatgtg gtggtgtacg gccaggacgt 3000 cggctacttc ggcggcgtgt tccgctgcac cgaaggcctg cagaccaagt acggcaagtc 3060 ccgcgtgttc gacgcgccca tctctgaaag cggcatcgtc ggcaccgccg tgggcatggg 3120 tgcctacggc ctgcgcccgg tggtggaaat ccagttcgct gactacttct acccggcctc 3180 cgaccagatc gtttctgaaa tggcccgcct gcgctaccgt tcggccggcg agttcatcgc 3240 cccgctgacc ctgcgtatgc cctgcggtgg cggtatctat ggcggccaga cacacagcca 3300 gagcccggaa gcgatgttca ctcaggtgtg cggcctgcgc accgtaatgc catccaaccc 3360 gtacgacgcc aaaggcctgc tgattgcctc gatcgaatgc gacgacccgg tgatcttcct 3420 ggagcccaag cgcctgtaca acggcccgtt cgacggccac catgaccgcc cggttacgcc 3480 gtggtcgaaa cacccgcaca gcgccgtgcc cgatggctac tacaccgtgc cactggacaa 3540 ggccgccatc acccgccccg gcaatgacgt gagcgtgctc acctatggca ccaccgtgta 3600 cgtggcccag gtggccgccg aagaaagtgg cgtggatgcc gaagtgatcg acctgcgcag 3660 cctgtggccg ctagacctgg acaccatcgt cgagtcggtg aaaaagaccg gccgttgcgt 3720 ggtagtacac gaggccaccc gtacttgtgg ctttggcgca gaactggtgt cgctggtgca 3780 ggagcactgc ttccaccacc tggaggcgcc gatcgagcgc gtcaccggtt gggacacccc 3840 ctaccctcac gcgcaggaat gggcttactt cccagggcct tcgcgggtag gtgcggcatt 3900 gaaaaaggtc atggaggtct gaatgggcac gcacgtcatc aagatgccgg acattggcga 3960 aggcatcgcg caggtcgaat tggtggaatg gttcgtcaag gtgggcgaca tcatcgccga 4020 ggaccaagtg gtagccgacg tcatgaccga caaggccacc gtggaaatcc cgtcgccggt 4080 cagcggcaag gtgctggccc tgggtggcca gccaggtgaa gtgatggcgg tcggcagtga 4140 gctgatccgc atcgaagtgg aaggcagcgg caaccatgtg gatgtgccgc aagccaagcc 4200 ggccgaagtg cctgcggcac cggtagccgc taaacctgaa ccacagaaag acgttaaacc 4260 ggcggcgtac caggcgtcag ccagccacga ggcagcgccc atcgtgccgc gccagccggg 4320 cgacaagccg ctggcctcgc cggcggtgcg caaacgcgcc ctcgatgccg gcatcgaatt 4380 gcgttatgtg cacggcagcg gcccggccgg gcgcatcctg cacgaagacc tcgacgcgtt 4440 catgagcaaa ccgcaaagcg ctgccgggca aacccccaat ggctatgcca ggcgcaccga 4500 cagcgagcag gtgccggtga tcggcctgcg ccgcaagatc gcccagcgca tgcaggacgc 4560 caagcgccgg gtcgcgcact tcagctatgt ggaagaaatc gacgtcaccg ccctggaagc 4620 cctgcgccag cagctcaaca gcaagcacgg cgacagccgc ggcaagctga cactgctgcc 4680 gttcctggtg cgcgccctgg tcgtggcact gcgtgacttc ccgcagataa acgccaccta 4740 cgatgacgaa gcgcagatca tcacccgcca tggcgcggtg catgtgggca tcgccaccca 4800 aggtgacaac ggcctgatgg tacccgtgct gcgccacgcc gaagcgggca gcctgtgggc 4860 caatgccggt gagatttcac gcctggccaa cgctgcgcgc aacaacaagg ccagccgcga 4920 agagctgtcc ggttcgacca ttaccctgac cagcctcggc gccctgggcg gcatcgtcag 4980 cacgccggtg gtcaacaccc cggaagtggc gatcgtcggt gtcaaccgca tggttgagcg 5040 gcccgtggtg atcgacggcc agatcgtcgt gcgcaagatg atgaacctgt ccagctcgtt 5100 cgaccaccgc gtggtcgatg gcatggacgc cgccctgttc atccaggccg tgcgtggcct 5160 gctcgaacaa cccgcctgcc tgttcgtgga gtgagcatgc aacagactat ccagacaacc 5220 ctgttgatca tcggcggcgg ccctggcggc tatgtggcgg ccatccgcgc cgggcaactg 5280 ggcatcccta ccgtgctggt ggaaggccag gcgctgggcg gtacctgcct gaacatcggc 5340 tgcattccgt ccaaggcgct gatccatgtg gccgagcagt tccaccaggc ctcgcgcttt 5400 accgaaccct cgccgctggg catcagcgtg gcttcgccac gcctggacat cggccagagc 5460 gtggcctgga aagacggcat cgtcgatcgc ctgaccactg gtgtcgccgc cctgctgaaa 5520 aagcacgggg tgaaggtggt gcacggctgg gccaaggtgc ttgatggcaa gcaggtcgag 5580 gtggatggcc agcgcatcca gtgcgagcac ctgttgctgg ccacgggctc cagcagtgtc 5640 gaactgccga tgctgccgtt gggtgggccg gtgatttcct cgaccgaggc cctggcaccg 5700 aaagccctgc cgcaacacct ggtggtggtg ggcggtggct acatcggcct ggagctgggt 5760 atcgcctacc gcaagctcgg cgcgcaggtc agcgtggtgg aagcgcgcga gcgcatcctg 5820 ccgacttacg acagcgaact gaccgccccg gtggccgagt cgctgaaaaa gctgggtatc 5880 gccctgcacc ttggccacag cgtcgaaggt tacgaaaatg gctgcctgct ggccaacgat 5940 ggcaagggcg gacaactgcg cctggaagcc gaccgggtgc tggtggccgt gggccgccgc 6000 ccacgcacca agggcttcaa cctggaatgc ctggacctga agatgaatgg tgccgcgatt 6060 gccatcgacg agcgctgcca gaccagcatg cacaacgtct gggccatcgg cgacgtggcc 6120 ggcgaaccga tgctggcgca ccgggccatg gcccagggcg agatggtggc cgagatcatc 6180 gccggcaagg cacgccgctt cgaacccgct gcgatagccg ccgtgtgctt caccgacccg 6240 gaagtggtcg tggtcggcaa gacgccggaa caggccagtc agcaaggcct ggactgcatc 6300 gtcgcgcagt tcccgttcgc cgccaacggc cgggccatga gcctggagtc gaaaagcggt 6360 ttcgtgcgcg tggtcgcgcg gcgtgacaac cacctgatcc tgggctggca agcggttggc 6420 gtggcggttt ccgagctgtc cacggcgttt gcccagtcgc tggagatggg tgcctgcctg 6480 gaggatgtgg ccggtaccat ccatgcccac ccgaccctgg gtgaagcggt acaggaagcg 6540 gcactgcgtg ccctgggcca cgccctgcat atctgacact gaagcggccg aggccgattt 6600 ggcccgccgc gccgagaggc gctgcgggtc ttttttatac ctg 6643 <210> 59 <211> 459 <212> PRT <213> Pseudomonas putida <400> 59 Met Gln Gln Thr Ile Gln Thr Thr Leu Leu Ile Ile Gly Gly Gly Pro 1 5 10 15 Gly Gly Tyr Val Ala Ala Ile Arg Ala Gly Gln Leu Gly Ile Pro Thr             20 25 30 Val Leu Val Glu Gly Gln Ala Leu Gly Gly Thr Cys Leu Asn Ile Gly         35 40 45 Cys Ile Pro Ser Lys Ala Leu Ile His Val Ala Glu Gln Phe His Gln     50 55 60 Ala Ser Arg Phe Thr Glu Pro Ser Pro Leu Gly Ile Ser Val Ala Ser 65 70 75 80 Pro Arg Leu Asp Ile Gly Gln Ser Val Ala Trp Lys Asp Gly Ile Val                 85 90 95 Asp Arg Leu Thr Thr Gly Val Ala Leu Leu Lys Lys His Gly Val             100 105 110 Lys Val Val His Gly Trp Ala Lys Val Leu Asp Gly Lys Gln Val Glu         115 120 125 Val Asp Gly Gln Arg Ile Gln Cys Glu His Leu Leu Leu Ala Thr Gly     130 135 140 Ser Ser Ser Val Glu Leu Pro Met Leu Pro Leu Gly Gly Pro Val Ile 145 150 155 160 Ser Ser Thr Glu Ala Leu Ala Pro Lys Ala Leu Pro Gln His Leu Val                 165 170 175 Val Val Gly Gly Gly Tyr Ile Gly Leu Glu Leu Gly Ile Ala Tyr Arg             180 185 190 Lys Leu Gly Ala Gln Val Ser Val Val Glu Ala Arg Glu Arg Ile Leu         195 200 205 Pro Thr Tyr Asp Ser Glu Leu Thr Ala Pro Val Ala Glu Ser Leu Lys     210 215 220 Lys Leu Gly Ile Ala Leu His Leu Gly His Ser Val Glu Gly Tyr Glu 225 230 235 240 Asn Gly Cys Leu Leu Ala Asn Asp Gly Lys Gly Gly Gln Leu Arg Leu                 245 250 255 Glu Ala Asp Arg Val Leu Val Ala Val Gly Arg Arg Pro Arg Thr Lys             260 265 270 Gly Phe Asn Leu Glu Cys Leu Asp Leu Lys Met Asn Gly Ala Ala Ile         275 280 285 Ala Ile Asp Glu Arg Cys Gln Thr Ser Met His Asn Val Trp Ala Ile     290 295 300 Gly Asp Val Ala Gly Glu Pro Met Leu Ala His Arg Ala Met Ala Gln 305 310 315 320 Gly Glu Met Val Ala Glu Ile Ile Ala Gly Lys Ala Arg Arg Phe Glu                 325 330 335 Pro Ala Ala Ile Ala Ala Val Cys Phe Thr Asp Pro Glu Val Val Val             340 345 350 Val Gly Lys Thr Pro Glu Gln Ala Ser Gln Gln Gly Leu Asp Cys Ile         355 360 365 Val Ala Gln Phe Pro Phe Ala Ala Asn Gly Arg Ala Met Ser Leu Glu     370 375 380 Ser Lys Ser Gly Phe Val Arg Val Val Ala Arg Arg Asp Asn His Leu 385 390 395 400 Ile Leu Gly Trp Gln Ala Val Gly Val Ala Val Ser Glu Leu Ser Thr                 405 410 415 Ala Phe Ala Gln Ser Leu Glu Met Gly Ala Cys Leu Glu Asp Val Ala             420 425 430 Gly Thr Ile His Ala His Pro Thr Leu Gly Glu Ala Val Gln Glu Ala         435 440 445 Ala Leu Arg Ala Leu Gly His Ala Leu His Ile     450 455 <210> 60 <211> 6643 <212> DNA <213> Pseudomonas putida <400> 60 gcatgcctgc aggccgccga tgaaatggtg gaaggtatcg gtaggctggc cctgctcatc 60 gctgaacacg ttacgcccgc tgccggtatc gaccaggctc tggtgaatat gcatggaact 120 gccaggcgtg cgcgccagcg gtttggccat gcacaccacg gtcagcccgt gcttgagtgc 180 cacttccttg agcaggtgtt tgaacaggaa ggtctggtcg gccagcagca gcgggtcgcc 240 atgtagcaag ttgatctcga actggctgac gcccatttcg tgcatgaagg tgtcgcgcgg 300 caggccgagc gcggccatgc actggtacac ctcattgaag aacgggcgca ggccgttgtt 360 ggaactgaca ctgaacgccg aatggcccag ctcgcggcgg ccgtcggtgc ccagcggtgg 420 ctggaacggc tgctgcgggt cactgttggg ggcaaacacg aagaactcaa gctcggtcgc 480 cactaccggt gccagaccca acgctgcgta gcgggcgatc acggccttca gctggccccg 540 ggtggacagt gccgagggcc ggccatccag ttcattggca tcgcagatgg ccagggcgcg 600 accgtcatcg ctccagggca agcgatgaac ctggctgggt tccgctacca acgccaggtc 660 gccgtcgtcg cagccgtaga atttcgccgg cgggtagccg cccatgatgc attgcagcag 720 caccccacgg gccatctgca ggcggcggcc ttcgagaaag ccttcggcgg tcatcacctt 780 gccgcgtggg acgccgttga ggtcgggggt gacgcattcg atttcatcga tgccctggag 840 ctgagcgatg ctcatgacgc ttgtccttgt tgttgtaggc tgacaacaac ataggctggg 900 ggtgtttaaa atatcaagca gcctctcgaa cgcctggggc ctcttctatt cgcgcaaggt 960 catgccattg gccggcaacg gcaaggctgt cttgtagcgc acctgtttca aggcaaaact 1020 cgagcggata ttcgccacac ccggcaaccg ggtcaggtaa tcgagaaacc gctccagcgc 1080 ctggatactc ggcagcagta cccgcaacag gtagtccggg tcgcccgtca tcaggtagca 1140 ctccatcacc tcgggccgtt cggcaatttc ttcctcgaag cggtgcagcg actgctctac 1200 ctgtttttcc aggctgacat ggatgaacac attcacatcc agccccaacg cctcgggcga 1260 caacaaggtc acctgctggc ggatcacccc cagttcttcc atggcccgca cccggttgaa 1320 acagggcgtg ggcgacaggt tgaccgagcg tgccagctcg gcgttggtga tgcgggcgtt 1380 ttcctgcagg ctgttgagaa tgccgatatc ggtacgatcg agtttgcgca tgagacaaaa 1440 tcaccggttt tttgtgttta tgcggaatgt ttatctgccc cgctcggcaa aggcaatcaa 1500 cttgagagaa aaattctcct gccggaccac taagatgtag gggacgctga cttaccagtc 1560 acaagccggt actcagcggc ggccgcttca gagctcacaa aaacaaatac ccgagcgagc 1620 gtaaaaagca tgaacgagta cgcccccctg cgtttgcatg tgcccgagcc caccggccgg 1680 ccaggctgcc agaccgattt ttcctacctg cgcctgaacg atgcaggtca agcccgtaaa 1740 ccccctgtcg atgtcgacgc tgccgacacc gccgacctgt cctacagcct ggtccgcgtg 1800 ctcgacgagc aaggcgacgc ccaaggcccg tgggctgaag acatcgaccc gcagatcctg 1860 cgccaaggca tgcgcgccat gctcaagacg cggatcttcg acagccgcat ggtggttgcc 1920 cagcgccaga agaagatgtc cttctacatg cagagcctgg gcgaagaagc catcggcagc 1980 ggccaggcgc tggcgcttaa ccgcaccgac atgtgcttcc ccacctaccg tcagcaaagc 2040 atcctgatgg cccgcgacgt gtcgctggtg gagatgatct gccagttgct gtccaacgaa 2100 cgcgaccccc tcaagggccg ccagctgccg atcatgtact cggtacgcga ggccggcttc 2160 ttcaccatca gcggcaacct ggcgacccag ttcgtgcagg cggtcggctg ggccatggcc 2220 tcggcgatca agggcgatac caagattgcc tcggcctgga tcggcgacgg cgccactgcc 2280 gaatcggact tccacaccgc cctcaccttt gcccacgttt accgcgcccc ggtgatcctc 2340 aacgtggtca acaaccagtg ggccatctca accttccagg ccatcgccgg tggcgagtcg 2400 accaccttcg ccggccgtgg cgtgggctgc ggcatcgctt cgctgcgggt ggacggcaac 2460 gacttcgtcg ccgtttacgc cgcttcgcgc tgggctgccg aacgtgcccg ccgtggtttg 2520 ggcccgagcc tgatcgagtg ggtcacctac cgtgccggcc cgcactcgac ctcggacgac 2580 ccgtccaagt accgccctgc cgatgactgg agccacttcc cgctgggtga cccgatcgcc 2640 cgcctgaagc agcacctgat caagatcggc cactggtccg aagaagaaca ccaggccacc 2700 acggccgagt tcgaagcggc cgtgattgct gcgcaaaaag aagccgagca gtacggcacc 2760 ctggccaacg gtcacatccc gagcgccgcc tcgatgttcg aggacgtgta caaggagatg 2820 cccgaccacc tgcgccgcca acgccaggaa ctgggggttt gagatgaacg accacaacaa 2880 cagcatcaac ccggaaaccg ccatggccac cactaccatg accatgatcc aggccctgcg 2940 ctcggccatg gatgtcatgc ttgagcgcga cgacaatgtg gtggtgtacg gccaggacgt 3000 cggctacttc ggcggcgtgt tccgctgcac cgaaggcctg cagaccaagt acggcaagtc 3060 ccgcgtgttc gacgcgccca tctctgaaag cggcatcgtc ggcaccgccg tgggcatggg 3120 tgcctacggc ctgcgcccgg tggtggaaat ccagttcgct gactacttct acccggcctc 3180 cgaccagatc gtttctgaaa tggcccgcct gcgctaccgt tcggccggcg agttcatcgc 3240 cccgctgacc ctgcgtatgc cctgcggtgg cggtatctat ggcggccaga cacacagcca 3300 gagcccggaa gcgatgttca ctcaggtgtg cggcctgcgc accgtaatgc catccaaccc 3360 gtacgacgcc aaaggcctgc tgattgcctc gatcgaatgc gacgacccgg tgatcttcct 3420 ggagcccaag cgcctgtaca acggcccgtt cgacggccac catgaccgcc cggttacgcc 3480 gtggtcgaaa cacccgcaca gcgccgtgcc cgatggctac tacaccgtgc cactggacaa 3540 ggccgccatc acccgccccg gcaatgacgt gagcgtgctc acctatggca ccaccgtgta 3600 cgtggcccag gtggccgccg aagaaagtgg cgtggatgcc gaagtgatcg acctgcgcag 3660 cctgtggccg ctagacctgg acaccatcgt cgagtcggtg aaaaagaccg gccgttgcgt 3720 ggtagtacac gaggccaccc gtacttgtgg ctttggcgca gaactggtgt cgctggtgca 3780 ggagcactgc ttccaccacc tggaggcgcc gatcgagcgc gtcaccggtt gggacacccc 3840 ctaccctcac gcgcaggaat gggcttactt cccagggcct tcgcgggtag gtgcggcatt 3900 gaaaaaggtc atggaggtct gaatgggcac gcacgtcatc aagatgccgg acattggcga 3960 aggcatcgcg caggtcgaat tggtggaatg gttcgtcaag gtgggcgaca tcatcgccga 4020 ggaccaagtg gtagccgacg tcatgaccga caaggccacc gtggaaatcc cgtcgccggt 4080 cagcggcaag gtgctggccc tgggtggcca gccaggtgaa gtgatggcgg tcggcagtga 4140 gctgatccgc atcgaagtgg aaggcagcgg caaccatgtg gatgtgccgc aagccaagcc 4200 ggccgaagtg cctgcggcac cggtagccgc taaacctgaa ccacagaaag acgttaaacc 4260 ggcggcgtac caggcgtcag ccagccacga ggcagcgccc atcgtgccgc gccagccggg 4320 cgacaagccg ctggcctcgc cggcggtgcg caaacgcgcc ctcgatgccg gcatcgaatt 4380 gcgttatgtg cacggcagcg gcccggccgg gcgcatcctg cacgaagacc tcgacgcgtt 4440 catgagcaaa ccgcaaagcg ctgccgggca aacccccaat ggctatgcca ggcgcaccga 4500 cagcgagcag gtgccggtga tcggcctgcg ccgcaagatc gcccagcgca tgcaggacgc 4560 caagcgccgg gtcgcgcact tcagctatgt ggaagaaatc gacgtcaccg ccctggaagc 4620 cctgcgccag cagctcaaca gcaagcacgg cgacagccgc ggcaagctga cactgctgcc 4680 gttcctggtg cgcgccctgg tcgtggcact gcgtgacttc ccgcagataa acgccaccta 4740 cgatgacgaa gcgcagatca tcacccgcca tggcgcggtg catgtgggca tcgccaccca 4800 aggtgacaac ggcctgatgg tacccgtgct gcgccacgcc gaagcgggca gcctgtgggc 4860 caatgccggt gagatttcac gcctggccaa cgctgcgcgc aacaacaagg ccagccgcga 4920 agagctgtcc ggttcgacca ttaccctgac cagcctcggc gccctgggcg gcatcgtcag 4980 cacgccggtg gtcaacaccc cggaagtggc gatcgtcggt gtcaaccgca tggttgagcg 5040 gcccgtggtg atcgacggcc agatcgtcgt gcgcaagatg atgaacctgt ccagctcgtt 5100 cgaccaccgc gtggtcgatg gcatggacgc cgccctgttc atccaggccg tgcgtggcct 5160 gctcgaacaa cccgcctgcc tgttcgtgga gtgagcatgc aacagactat ccagacaacc 5220 ctgttgatca tcggcggcgg ccctggcggc tatgtggcgg ccatccgcgc cgggcaactg 5280 ggcatcccta ccgtgctggt ggaaggccag gcgctgggcg gtacctgcct gaacatcggc 5340 tgcattccgt ccaaggcgct gatccatgtg gccgagcagt tccaccaggc ctcgcgcttt 5400 accgaaccct cgccgctggg catcagcgtg gcttcgccac gcctggacat cggccagagc 5460 gtggcctgga aagacggcat cgtcgatcgc ctgaccactg gtgtcgccgc cctgctgaaa 5520 aagcacgggg tgaaggtggt gcacggctgg gccaaggtgc ttgatggcaa gcaggtcgag 5580 gtggatggcc agcgcatcca gtgcgagcac ctgttgctgg ccacgggctc cagcagtgtc 5640 gaactgccga tgctgccgtt gggtgggccg gtgatttcct cgaccgaggc cctggcaccg 5700 aaagccctgc cgcaacacct ggtggtggtg ggcggtggct acatcggcct ggagctgggt 5760 atcgcctacc gcaagctcgg cgcgcaggtc agcgtggtgg aagcgcgcga gcgcatcctg 5820 ccgacttacg acagcgaact gaccgccccg gtggccgagt cgctgaaaaa gctgggtatc 5880 gccctgcacc ttggccacag cgtcgaaggt tacgaaaatg gctgcctgct ggccaacgat 5940 ggcaagggcg gacaactgcg cctggaagcc gaccgggtgc tggtggccgt gggccgccgc 6000 ccacgcacca agggcttcaa cctggaatgc ctggacctga agatgaatgg tgccgcgatt 6060 gccatcgacg agcgctgcca gaccagcatg cacaacgtct gggccatcgg cgacgtggcc 6120 ggcgaaccga tgctggcgca ccgggccatg gcccagggcg agatggtggc cgagatcatc 6180 gccggcaagg cacgccgctt cgaacccgct gcgatagccg ccgtgtgctt caccgacccg 6240 gaagtggtcg tggtcggcaa gacgccggaa caggccagtc agcaaggcct ggactgcatc 6300 gtcgcgcagt tcccgttcgc cgccaacggc cgggccatga gcctggagtc gaaaagcggt 6360 ttcgtgcgcg tggtcgcgcg gcgtgacaac cacctgatcc tgggctggca agcggttggc 6420 gtggcggttt ccgagctgtc cacggcgttt gcccagtcgc tggagatggg tgcctgcctg 6480 gaggatgtgg ccggtaccat ccatgcccac ccgaccctgg gtgaagcggt acaggaagcg 6540 gcactgcgtg ccctgggcca cgccctgcat atctgacact gaagcggccg aggccgattt 6600 ggcccgccgc gccgagaggc gctgcgggtc ttttttatac ctg 6643 <210> 61 <211> 468 <212> PRT <213> Clostridium beijerinckii <400> 61 Met Asn Lys Asp Thr Leu Ile Pro Thr Thr Lys Asp Leu Lys Leu Lys 1 5 10 15 Thr Asn Val Glu Asn Ile Asn Leu Lys Asn Tyr Lys Asp Asn Ser Ser             20 25 30 Cys Phe Gly Val Phe Glu Asn Val Glu Asn Ala Ile Asn Ser Ala Val         35 40 45 His Ala Gln Lys Ile Leu Ser Leu His Tyr Thr Lys Glu Gln Arg Glu     50 55 60 Lys Ile Ile Thr Glu Ile Arg Lys Ala Ala Leu Glu Asn Lys Glu Val 65 70 75 80 Leu Ala Thr Met Ile Leu Glu Glu Thr His Met Gly Arg Tyr Glu Asp                 85 90 95 Lys Ile Leu Lys His Glu Leu Val Ala Lys Tyr Thr Pro Gly Thr Glu             100 105 110 Asp Leu Thr Thr Thr Ala Trp Ser Gly Asp Asn Gly Leu Thr Val Val         115 120 125 Glu Met Ser Pro Tyr Gly Val Ile Gly Ala Ile Thr Pro Ser Thr Asn     130 135 140 Pro Thr Glu Thr Val Ile Cys Asn Ser Ile Gly Met Ile Ala Ala Gly 145 150 155 160 Asn Ala Val Val Phe Asn Gly His Pro Gly Ala Lys Lys Cys Val Ala                 165 170 175 Phe Ala Ile Glu Met Ile Asn Lys Ala Ile Ser Ser Cys Gly Gly Pro             180 185 190 Glu Asn Leu Val Thr Thr Ile Lys Asn Pro Thr Met Glu Ser Leu Asp         195 200 205 Ala Ile Ile Lys His Pro Leu Ile Lys Leu Leu Cys Gly Thr Gly Gly     210 215 220 Pro Gly Met Val Lys Thr Leu Leu Asn Ser Gly Lys Lys Ala Ile Gly 225 230 235 240 Ala Gly Ala Gly Asn Pro Pro Val Ile Val Asp Asp Thr Ala Asp Ile                 245 250 255 Glu Lys Ala Gly Lys Ser Ile Glu Gly Cys Ser Phe Asp Asn Asn             260 265 270 Leu Pro Cys Ile Ala Glu Lys Glu Val Phe Val Phe Glu Asn Val Ala         275 280 285 Asp Asp Leu Ile Ser Asn Met Leu Lys Asn Asn Ala Val Ile Ile Asn     290 295 300 Glu Asp Gln Val Ser Lys Leu Ile Asp Leu Val Leu Gln Lys Asn Asn 305 310 315 320 Glu Thr Gln Glu Tyr Phe Ile Asn Lys Lys Trp Val Gly Lys Asp Ala                 325 330 335 Lys Leu Phe Ser Asp Glu Ile Asp Val Glu Ser Pro Ser Asn Ile Lys             340 345 350 Cys Ile Val Cys Glu Val Asn Ala Asn His Pro Phe Val Met Thr Glu         355 360 365 Leu Met Met Pro Ile Leu Pro Ile Val Arg Val Lys Asp Ile Asp Glu     370 375 380 Ala Val Lys Tyr Thr Lys Ile Ala Glu Gln Asn Arg Lys His Ser Ala 385 390 395 400 Tyr Ile Tyr Ser Lys Asn Ile Asp Asn Leu Asn Arg Phe Glu Arg Glu                 405 410 415 Ile Asp Thr Thr Ile Phe Val Lys Asn Ala Lys Ser Phe Ala Gly Val             420 425 430 Gly Tyr Glu Ala Glu Gly Phe Thr Thr Phe Thr Ile Ala Gly Ser Thr         435 440 445 Gly Glu Ile Thr Ser Ala Arg Asn Phe Thr Arg Gln Arg Arg Cys     450 455 460 Val Leu Ala Gly 465 <210> 62 <211> 6558 <212> DNA <213> Clostridium beijerinckii <400> 62 aagcttaaaa tatccatagg ctattgttaa taagactata gcgcttaata ctctaagcgc 60 accatctaaa aaattataca taggaattgg ataaactcca atcttctcca taatactttt 120 cataggtgaa attgatatta taattaaggc tgcataaagc aaactcatat ctccaataaa 180 tgtcactatc ataggtaatt tccttttcat gttcacatac tcccccgtat tctataataa 240 tttacaataa acttccatca caaataaatt ataacatata ttgtaaatat agttttatta 300 ttcgcatatt tatagataaa caatatataa cttagactta tgcaataacc taccgaaagt 360 aaaaacattg ttatttcaca ggactatgaa aatttcgctg aaagtactaa attgcaggtt 420 gcaccactaa tgcttgctcc caatttcatt gtgacaagca ttagttgaac aacctacaat 480 taagagcctt taacagctca tttccaatgc ctgctacata aaaatgtttc tactttctaa 540 tatggtattt acttcaaagt gtaaatcaaa ttcttaagtt gtttatctat atagggttcc 600 atattgataa caatacatat ctactgtttc aatttcatga ataccagcga tattgaaatt 660 ttgtaagttt gaatatcatt gtgaaaccct atatatcaaa tacaatctca aaattataca 720 aaaagatccc aacttcacaa tatgaatttg agatcttcta tcttaacttc ttcaatattt 780 ttaagattat ttatactgcg tgcaaatctt ctataagtat caattatcag ctatgtacat 840 tgatagtgga cttgtaatct gaacagctta tatatttaca cttttaagtt ctcttccact 900 aacccctgct ttgaaacttc tcataaacaa atcgaaagta cctttaatta gctgtgcatt 960 ctcaaactca gaatttaact taagtacttc aattgccgct tcgatagtat agagctctcc 1020 ttctgaagca ccttttctta aagtatattc tgatttatta attggattta atgaaattct 1080 tggaagcttc tttaagtagt cgctctttct tagtatcttc tctgcttctt tccatgtgcc 1140 atctaagata ataaatgctg gaattttttc tgaatcttta catttagact ttctttctag 1200 aggttcatca tcatccatag gaaataatac acgtatttca taatcatcgc tattaatata 1260 ttcaattaat ttttcaggag tctttactct ctcccaaaga attaactcag ttgattctgg 1320 attcaccaat ttcaataatc tagcggtatt tgaaggccta ctaaattctc tttctgttga 1380 taatatcaat atctttgctt ttgtctctat tttaggcaca atatcgcaga tacaatttat 1440 tattggcaac ccacatttat tgcagctctc atataactta gtaatttgct taactttaaa 1500 ttcagactcc attttacctc cattattagt tggttagtgt gtcatatctt cttgctatta 1560 ctaactgatt ataacatatg tattcaatat atcactccta gttttcaaag cactggcaat 1620 acgaattaca aattaatttc tggatttatg tcagtatttc attaataaaa ggtcggactt 1680 ttaagatact tgttttagct attgatcata tttattaaag actatgcatt taatgtataa 1740 ttataatgaa tattatcaat aatatttatt ttatattaca atcttacagt ctttattcta 1800 aatttcactc aaataccaaa cgagctttat tcataaacaa tatataacaa taattccaaa 1860 ataatacgat attttatctg taacagccat ataaaaaaaa tatcatatag tcttgtcatt 1920 tgataacgtt ttgtcttcct tatatttact ttttcggttt aataggttga ttctgtaaat 1980 tttagtgata acatatattt gatgacatta aaaatttaat atttcatata aatttttaat 2040 gtctattaat ttttaaatca caaggaggaa tagttcatga ataaagacac actaatacct 2100 acaactaaag atttaaaatt aaaaacaaat gttgaaaaca ttaatttaaa gaactacaag 2160 gataattctt catgtttcgg agtattcgaa aatgttgaaa atgctataaa cagcgctgta 2220 cacgcgcaaa agatattatc ccttcattat acaaaagaac aaagagaaaa aatcataact 2280 gagataagaa aggccgcatt agaaaataaa gaggttttag ctaccatgat tctggaagaa 2340 acacatatgg gaaggtatga agataaaata ttaaagcatg aattagtagc taaatatact 2400 cctggtacag aagatttaac tactactgct tggtcaggtg ataatggtct tacagttgta 2460 gaaatgtctc catatggcgt tataggtgca ataactcctt ctacgaatcc aactgaaact 2520 gtaatatgta atagcatcgg catgatagct gctggaaatg ctgtagtatt taacggacac 2580 ccaggcgcta aaaaatgtgt tgcttttgct attgaaatga taaataaagc aattatttca 2640 tgtggcggtc ctgagaattt agtaacaact ataaaaaatc caactatgga atccctagat 2700 gcaattatta agcatccttt aataaaactt ctttgcggaa ctggaggtcc aggaatggta 2760 aaaaccctct taaattctgg caagaaagct ataggtgctg gtgctggaaa tccaccagtt 2820 attgtagatg ataccgctga tatagaaaag gctggtaaga gtatcattga aggctgttct 2880 tttgataata atttaccttg tattgcagaa aaagaagtat ttgtttttga gaatgttgca 2940 gatgatttaa tatctaacat gctaaaaaat aatgctgtaa ttataaatga agatcaagta 3000 tcaaaattaa tagatttagt attacaaaaa aataatgaaa ctcaagaata ctttataaac 3060 aaaaaatggg taggaaaaga tgcaaaatta ttctcagatg aaatagatgt tgagtctcct 3120 tcaaatatta aatgcatagt ctgcgaagta aatgcaaatc atccatttgt catgacagaa 3180 ctcatgatgc caatattacc aattgtaaga gttaaagata tagatgaagc tgttaaatat 3240 acaaagatag cagaacaaaa tagaaaacat agtgcctata tttattctaa aaatatagac 3300 aacctaaata gatttgaaag agaaattgat actactattt ttgtaaagaa tgctaaatct 3360 tttgctggtg ttggttatga agctgaagga tttacaactt tcactattgc tggatctact 3420 ggtgaaggca taacctctgc aagaaatttt acaagacaaa gaagatgtgt acttgccggc 3480 taacttcttg ctaaatttat acatttattc acataacttt aatatgcaat gttcccacaa 3540 aatattaaaa actatttaga agggagatat taaatgaata aattagtaaa attaacagat 3600 ttaaagcgca ttttcaaaga tggtatgaca attatggttg ggggtttttt agattgtgga 3660 actcctgaaa atattataga tatgctagtt gatttaaata taaaaaatct gactattata 3720 agcaatgata cagcttttcc taataaagga ataggaaaac ttattgtaaa tggtcaagtt 3780 tctaaagtaa ttgcttcaca tattggaact aatcctgaaa ctgggaaaaa aatgagctct 3840 ggtgaactta aagttgagct ttctccacaa ggaacactga tcgaaagaat tcgtgcagct 3900 ggatctggac tcggaggtgt attaactcca accggacttg ggactatcgt tgaagaaggt 3960 aagaaaaaag ttactatcgg tggcaaagaa tatctattag aacttccttt atccgctgat 4020 gtttcattaa taaaaggtag cattgtagat gaatttggaa ataccttcta tagagctgct 4080 actaaaaatt tcaatccata tatggcaatg gctgcaaaaa cagttatagt tgaagcagaa 4140 aatttagtta aatgtgaaga tttaaaaaga gatgccataa tgactcctgg cgtattagta 4200 gattatatcg ttaaggaggc ggcttaattg attgtagata aagttttagc aaaagagata 4260 attgccaaaa gagttgcaaa agaactaaaa aaaggccaac tcgtaaacct tggaatagga 4320 cttccaactt tagtagctaa ttatgtgcca aaagaaatga acattacttt cgaatcagaa 4380 aatggcatgg ttggcatggc acaaatggcc tcatcaggtg aaaatgaccc agatataata 4440 aatgctggtg gggaatatgt aacattatta cctcaaggtg cattttttga tagttcaacg 4500 tcttttgcac taataagagg aggacatgtt gatgttgctg ttcttggtgc tctagaagtt 4560 gatgaagaag gtaatttagc taactggatt gttccaaata aaattgtccc aggtatggga 4620 ggcgccatgg atttggcaat aggcgcaaaa aaaataatag tggcaatgca acatacakga 4680 aaaggtaaac ctaaaatcgt aaaaaaatgt actctcccac ttactgctaa ggctcaggta 4740 gatttaattg ttacagaact ttgtgtaatt gatgtaacaa atgatggttt acttttcaga 4800 gaaattcata aagatacaac tattgatgaa ataaaatttt taacagatgc agatttaatt 4860 tattoo aaaaatctta tgtattaaaa actaagaaaa gaggttgatt attttatgtt agaaagtgaa 4980 gtatctaaac aaattacaac tccacttgct gctccagcgt ttcctagagg accatataga 5040 tttcacaata gagaatatct aaacattatt tatcgaactg atttagatgc tcttcgaaaa 5100 atagtaccag agccacttga attagatgga gcatatgtta ggtttgagat gatggctatg 5160 cctgatacaa ccggactagg ctcatatact gagtgtggtc aagccattcc agtaaaatat 5220 aatgaggtta aaggtgacta cttgcatatg atgtacctag ataatgaacc tgctattgct 5280 gttggaagag aaagcagtgc ttatcccaaa aagttcggct atccaaagct atttgttgat 5340 tcagacgccc tagttggcgc ccttaagtat ggtgcattac cggtagttac tgcgacgatg 5400 ggatataagc atgagcccct agatcttaaa gaagcctata ctcaaattgc aagacccaat 5460 ttcatgctaa aaatcattca aggttatgat ggtaagccaa gaatttgtga actcatctgt 5520 gcagaaaata ctgatataac tatccacggt gcttggactg gaagtgcacg cctacaatta 5580 tttagccatg cactagctcc tcttgctgat ttacctgtat tagagatcgt atcagcatct 5640 catatcctaa cagatttaac tcttggaaca cctaaggttg tacatgatta tctttcagta 5700 aaataaaagc aatatagaat aaccactaca aaagtagtgg ttattctata ttttaaatca 5760 aactgtaaaa cttaagtttt atagtaccta ataatatttt actaccagca ttagattagt 5820 taaaatacaa agtttgtggt aaaagtattt tagattgcat aatagccttc tatactttta 5880 acaatataac caattgctca ccatctgctt agaatatgct tctttaagct ctaaaataca 5940 tataaaaaag taggaatttc ttattaaaat tcctacttat attatatata aatttaatcg 6000 ttaggtttta ttcgcattgt tcctctttaa tttatctctt ataacatttt attataattg 6060 ttcatataat taattcaata tactattata tattttcaag cattaataat tattcagcat 6120 ctgtcattac atatgcttcc atactttgac ttcttattaa atcatagcta atccatccat 6180 agccattgat tccccagtct ttaccccatg aatttattat ttttacagct tttttactat 6240 catcataacc aactacgcaa actgcatgac cacctctatt ttctccatca atctggtcat 6300 aaattggatt atcagaattt aaattatcaa aatctggata tactgatatt ccaataacta 6360 ctggatttcc agctgctatt tgtgccttta ttgcattata gtcaccatct ggaagttgac 6420 tccaactttt tgctttatat ttggctgcat tagccttttg ttcatctgta ggtgtaacct 6480 cccaactata ttcactacca tcataaggca tatcagataa tgtagtacaa ccttgttctt 6540 ctaataattt aaatgcat 6558 <210> 63 <211> 862 <212> PRT <213> Clostridium acetobutylicum <400> 63 Met Lys Val Thr Thr Val Lys Glu Leu Asp Glu Lys Leu Lys Val Ile 1 5 10 15 Lys Glu Ala Gln Lys Lys Phe Ser Cys Tyr Ser Gln Glu Met Val Asp             20 25 30 Glu Ile Phe Arg Asn Ala Ala Met Ala Ala Ile Asp Ala Arg Ile Glu         35 40 45 Leu Ala Lys Ala Ala Val Leu Glu Thr Gly Met Gly Leu Val Glu Asp     50 55 60 Lys Val Ile Lys Asn His Phe Ala Gly Glu Tyr Ile Tyr Asn Lys Tyr 65 70 75 80 Lys Asp Glu Lys Thr Cys Gly Ile Ile Glu Arg Asn Glu Pro Tyr Gly                 85 90 95 Ile Thr Lys Ile Ala Glu Pro Ile Gly Val Val Ala Ala Ile Ile Pro             100 105 110 Val Thr Asn Pro Thr Ser Thr Thr Ile Phe Lys Ser Leu Ile Ser Leu         115 120 125 Lys Thr Arg Asn Gly Ile Phe Phe Ser Pro His Pro Arg Ala Lys Lys     130 135 140 Ser Thr Ile Leu Ala Ala Lys Thr Ile Leu Asp Ala Ala Val Lys Ser 145 150 155 160 Gly Ala Pro Glu Asn Ile Ile Gly Trp Ile Asp Glu Pro Ser Ile Glu                 165 170 175 Leu Thr Gln Tyr Leu Met Gln Lys Ala Asp Ile Thr Leu Ala Thr Gly             180 185 190 Gly Pro Ser Leu Val Lys Ser Ala Tyr Ser Ser Gly Lys Pro Ala Ile         195 200 205 Gly Val Gly Pro Gly Asn Thr Pro Val Ile Ile Asp Glu Ser Ala His     210 215 220 Ile Lys Met Ala Val Ser Ser Ile Ile Leu Ser Lys Thr Tyr Asp Asn 225 230 235 240 Gly Val Ile Cys Ala Ser Glu Gln Ser Val Ile Val Leu Lys Ser Ile                 245 250 255 Tyr Asn Lys Val Lys Asp Glu Phe Gln Glu Arg Gly Ala Tyr Ile Ile             260 265 270 Lys Lys Asn Glu Leu Asp Lys Val Arg Glu Val Ile Phe Lys Asp Gly         275 280 285 Ser Val Asn Pro Lys Ile Val Gly Gln Ser Ala Tyr Thr Ile Ala Ala     290 295 300 Met Ala Gly Ile Lys Val Lys Thr Thr Arg Ile Leu Ile Gly Glu 305 310 315 320 Val Thr Ser Leu Gly Glu Glu Glu Pro Phe Ala His Glu Lys Leu Ser                 325 330 335 Pro Val Leu Ala Met Tyr Glu Ala Asp Asn Phe Asp Asp Ala Leu Lys             340 345 350 Lys Ala Val Thr Leu Ile Asn Leu Gly Gly Leu Gly His Thr Ser Gly         355 360 365 Ile Tyr Ala Asp Glu Ile Lys Ala Arg Asp Lys Ile Asp Arg Phe Ser     370 375 380 Ser Ala Met Lys Thr Val Arg Thr Phe Val Asn Ile Pro Thr Ser Gln 385 390 395 400 Gly Ala Ser Gly Asp Leu Tyr Asn Phe Arg Ile Pro Pro Ser Phe Thr                 405 410 415 Leu Gly Cys Gly Phe Trp Gly Gly Asn Ser Val Ser Glu Asn Val Gly             420 425 430 Pro Lys His Leu Leu Asn Ile Lys Thr Val Ala Glu Arg Arg Glu Asn         435 440 445 Met Leu Trp Phe Arg Val Pro His Lys Val Tyr Phe Lys Phe Gly Cys     450 455 460 Leu Gln Phe Ala Leu Lys Asp Leu Lys Asp Leu Lys Lys Lys Arg Ala 465 470 475 480 Phe Ile Val Thr Asp Ser Asp Pro Tyr Asn Leu Asn Tyr Val Asp Ser                 485 490 495 Ile Ile Lys Ile Leu Glu His Leu Asp Ile Asp Phe Lys Val Phe Asn             500 505 510 Lys Val Gly Arg Glu Ala Asp Leu Lys Thr Ile Lys Lys Ala Thr Glu         515 520 525 Glu Met Ser Ser Phe Met Pro Asp Thr Ile Ile Ala Leu Gly Gly Thr     530 535 540 Pro Glu Met Ser Ser Ala Lys Leu Met Trp Val Leu Tyr Glu His Pro 545 550 555 560 Glu Val Lys Phe Glu Asp Leu Ala Ile Lys Phe Met Asp Ile Arg Lys                 565 570 575 Arg Ile Tyr Thr Phe Pro Lys Leu Gly Lys Lys Ala Met Leu Val Ala             580 585 590 Ile Thr Thr Ser Ala Gly Ser Gly Ser Glu Val Thr Pro Phe Ala Leu         595 600 605 Val Thr Asp Asn Asn Thr Gly Asn Lys Tyr Met Leu Ala Asp Tyr Glu     610 615 620 Met Thr Pro Asn Met Ala Ile Val Asp Ala Glu Leu Met Met Lys Met 625 630 635 640 Pro Lys Gly Leu Thr Ala Tyr Ser Gly Ile Asp Ala Leu Val Asn Ser                 645 650 655 Ile Glu Ala Tyr Thr Ser Val Tyr Ala Ser Glu Tyr Thr Asn Gly Leu             660 665 670 Ala Leu Glu Ala Ile Arg Leu Ile Phe Lys Tyr Leu Pro Glu Ala Tyr         675 680 685 Lys Asn Gly Arg Thr Asn Glu Lys Ala Arg Glu Lys Met Ala His Ala     690 695 700 Ser Thr Met Ala Gly Met Ala Ser Ala Asn Ala Phe Leu Gly Leu Cys 705 710 715 720 His Ser Met Ala Ile Lys Leu Ser Ser Glu His Asn Ile Pro Ser Gly                 725 730 735 Ile Ala Asn Ala Leu Leu Ile Glu Glu Val Ile Lys Phe Asn Ala Val             740 745 750 Asp Asn Pro Val Lys Gln Ala Pro Cys Pro Gln Tyr Lys Tyr Pro Asn         755 760 765 Thr Ile Phe Arg Tyr Ala Arg Ile Asp Tyr Ile Lys Leu Gly Gly     770 775 780 Asn Thr Asp Glu Glu Lys Val Asp Leu Leu Ile Asn Lys Ile His Glu 785 790 795 800 Leu Lys Lys Ala Leu Asn Ile Pro Thr Ser Ile Lys Asp Ala Gly Val                 805 810 815 Leu Glu Glu Asn Phe Tyr Ser Ser Leu Asp Arg Ile Ser Glu Leu Ala             820 825 830 Leu Asp Asp Gln Cys Thr Gly Ala Asn Pro Arg Phe Pro Leu Thr Ser         835 840 845 Glu Ile Lys Glu Met Tyr Ile Asn Cys Phe Lys Lys Gln Pro     850 855 860 <210> 64 <211> 1665 <212> DNA <213> Clostridium acetobutylicum <400> 64 ttgaagagtg aatacacaat tggaagatat ttgttagacc gtttatcaga gttgggtatt 60 cggcatatct ttggtgtacc tggagattac aatctatcct ttttagacta tataatggag 120 tacaaaggga tagattgggt tggaaattgc aatgaattga atgctgggta tgctgctgat 180 ggatatgcaa gaataaatgg aattggagcc atacttacaa catttggtgt tggagaatta 240 agtgccatta acgcaattgc tggggcatac gctgagcaag ttccagttgt taaaattaca 300 ggtatcccca cagcaaaagt tagggacaat ggattatatg tacaccacac attaggtgac 360 ggaaggtttg atcacttttt tgaaatgttt agagaagtaa cagttgctga ggcattacta 420 agcgaagaaa atgcagcaca agaaattgat cgtgttctta tttcatgctg gagacaaaaa 480 cgtcctgttc ttataaattt accgattgat gtatatgata aaccaattaa caaaccatta 540 aagccattac tcgattatac tatttcaagt aacaaagagg ctgcatgtga atttgttaca 600 gaaatagtac ctataataaa tagggcaaaa aagcctgtta ttcttgcaga ttatggagta 660 tatcgttacc aagttcaaca tgtgcttaaa aacttggccg aaaaaaccgg atttcctgtg 720 gctacactaa gtatgggaaa aggtgttttc aatgaagcac accctcaatt tattggtgtt 780 tataatggtg atgtaagttc tccttattta aggcagcgag ttgatgaagc agactgcatt 840 attagcgttg gtgtaaaatt gacggattca accacagggg gattttctca tggattttct 900 aaaaggaatg taattcacat tgatcctttt tcaataaagg caaaaggtaa aaaatatgca 960 cctattacga tgaaagatgc tttaacagaa ttaacaagta aaattgagca tagaaacttt 1020 gaggatttag atataaagcc ttacaaatca gataatcaaa agtattttgc aaaagagaag 1080 ccaattacac aaaaacgttt ttttgagcgt attgctcact ttataaaaga aaaagatgta 1140 ttattagcag aacagggtac atgctttttt ggtgcgtcaa ccatacaact acccaaagat 1200 gcaactttta ttggtcaacc tttatgggga tctattggat acacacttcc tgctttatta 1260 ggttcacaat tagctgatca aaaaaggcgt aatattcttt taattgggga tggtgcattt 1320 caaatgacag cacaagaaat ttcaacaatg cttcgtttac aaatcaaacc tattattttt 1380 ttaattaata acgatggtta tacaattgaa cgtgctattc atggtagaga acaagtatat 1440 aacaatattc aaatgtggcg atatcataat gttccaaagg ttttaggtcc taaagaatgc 1500 agcttaacct ttaaagtaca aagtgaaact gaacttgaaa aggctctttt agtggcagat 1560 aaggattgtg aacatttgat ttttatagaa gttgttatgg atcgttatga taaacccgag 1620 cctttagaac gtctttcgaa acgttttgca aatcaaaata attag 1665 <210> 65 <211> 858 <212> PRT <213> Clostridium acetobutylicum <400> 65 Met Lys Val Thr Asn Gln Lys Glu Leu Lys Gln Lys Leu Asn Glu Leu 1 5 10 15 Arg Glu Ala Gln Lys Lys Phe Ala Thr Tyr Thr Gln Glu Gln Val Asp             20 25 30 Lys Ile Phe Lys Gln Cys Ala Ile Ala Ala Ala Lys Glu Arg Ile Asn         35 40 45 Leu Ala Lys Leu Ala Val Glu Glu Thr Gly Ile Gly Leu Val Glu Asp     50 55 60 Lys Ile Ile Lys Asn His Phe Ala Ala Glu Tyr Ile Tyr Asn Lys Tyr 65 70 75 80 Lys Asn Glu Lys Thr Cys Gly Ile Ile Asp His Asp Asp Ser Leu Gly                 85 90 95 Ile Thr Lys Val Ala Glu Pro Ile Gly Ile Val Ala Ala Ile Val Pro             100 105 110 Thr Asn Pro Thr Ser Thr Ala Ile Phe Lys Ser Leu Ile Ser Leu         115 120 125 Lys Thr Arg Asn Ala Ile Phe Phe Ser Pro His Pro Arg Ala Lys Lys     130 135 140 Ser Thr Ile Ala Ala Lys Leu Ile Leu Asp Ala Ala Val Lys Ala 145 150 155 160 Gly Ala Pro Lys Asn Ile Ile Gly Trp Ile Asp Glu Pro Ser Ile Glu                 165 170 175 Leu Ser Gln Asp Leu Met Ser Glu Ala Asp Ile Ile Leu Ala Thr Gly             180 185 190 Gly Pro Ser Met Val Lys Ala Ala Tyr Ser Ser Gly Lys Pro Ala Ile         195 200 205 Gly Val Gly Ala Gly Asn Thr Pro Ala Ile Ile Asp Glu Ser Ala Asp     210 215 220 Ile Asp Met Ala Val Ser Ser Ile Ile Leu Ser Lys Thr Tyr Asp Asn 225 230 235 240 Gly Val Ile Cys Ala Ser Glu Gln Ser Ile Leu Val Met Asn Ser Ile                 245 250 255 Tyr Glu Lys Val Lys Glu Glu Phe Val Lys Arg Gly Ser Tyr Ile Leu             260 265 270 Asn Gln Asn Glu Ile Ala Lys Ile Lys Glu Thr Met Phe Lys Asn Gly         275 280 285 Ala Ile Asl Ala Asp Ile Val Gly Lys Ser Ala Tyr Ile Ile Ala Lys     290 295 300 Met Ala Gly Ile Glu Val Pro Gln Thr Thr Lys Ile Leu Ile Gly Glu 305 310 315 320 Val Gln Ser Val Glu Lys Ser Glu Leu Phe Ser His Glu Lys Leu Ser                 325 330 335 Pro Val Leu Ala Met Tyr Lys Val Lys Asp Phe Asp Glu Ala Leu Lys             340 345 350 Lys Ala Gln Arg Leu Ile Glu Leu Gly Gly Ser Gly His Thr Ser Ser         355 360 365 Leu Tyr Ile Asp Ser Gln Asn Asn Lys Asp Lys Val Lys Glu Phe Gly     370 375 380 Leu Ala Met Lys Thr Ser Arg Thr Phe Ile Asn Met Pro Ser Ser Gln 385 390 395 400 Gly Ala Ser Gly Asp Leu Tyr Asn Phe Ala Ile Ala Pro Ser Phe Thr                 405 410 415 Leu Gly Cys Gly Thr Trp Gly Gly Asn Ser Val Ser Gln Asn Val Glu             420 425 430 Pro Lys His Leu Leu Asn Ile Lys Ser Val Ala Glu Arg Arg Glu Asn         435 440 445 Met Leu Trp Phe Lys Val Pro Gln Lys Ile Tyr Phe Lys Tyr Gly Cys     450 455 460 Leu Arg Phe Ala Leu Lys Glu Leu Lys Asp Met Asn Lys Lys Arg Ala 465 470 475 480 Phe Ile Val Thr Asp Lys Asp Leu Phe Lys Leu Gly Tyr Val Asn Lys                 485 490 495 Ile Thr Lys Val Leu Asp Glu Ile Asp Ile Lys Tyr Ser Ile Phe Thr             500 505 510 Asp Ile Lys Ser Asp Pro Thr Ile Asp Ser Val Lys Lys Gly Ala Lys         515 520 525 Glu Met Leu Asn Phe Glu Pro Asp Thr Ile Ile Ser Ile Gly Gly Gly     530 535 540 Ser Pro Met Asp Ala Ala Lys Val Met His Leu Leu Tyr Glu Tyr Pro 545 550 555 560 Glu Ala Glu Ile Glu Asn Leu Ala Ile Asn Phe Met Asp Ile Arg Lys                 565 570 575 Arg Ile Cys Asn Phe Pro Lys Leu Gly Thr Lys Ala Ile Ser Val Ala             580 585 590 Ile Pro Thr Thr Ala Gly Thr Gly Ser Glu Ala Thr Pro Phe Ala Val         595 600 605 Ile Thr Asn Asp Glu Thr Gly Met Lys Tyr Pro Leu Thr Ser Tyr Glu     610 615 620 Leu Thr Pro As Met Ale Ile Asle Asp Thr Glu Leu Met Leu Asn Met 625 630 635 640 Pro Arg Lys Leu Thr Ala Ala Thr Gly Ile Asp Ala Leu Val His Ala                 645 650 655 Ile Glu Ala Tyr Val Ser Val Ala Thr Asp Tyr Thr Asp Glu Leu             660 665 670 Ala Leu Arg Ala Ile Lys Met Ile Phe Lys Tyr Leu Pro Arg Ala Tyr         675 680 685 Lys Asn Gly Thr Asn Asp Ile Glu Ala Arg Glu Lys Met Ala His Ala     690 695 700 Ser Asn Ile Ala Gly Met Ala Phe Ala Asn Ala Phe Leu Gly Val Cys 705 710 715 720 His Ser Met Ala His Lys Leu Gly Ala Met His His Val Pro His Gly                 725 730 735 Ile Ala Cys Ala Val Leu Ile Glu Glu Val Ile Lys Tyr Asn Ala Thr             740 745 750 Asp Cys Pro Thr Lys Gln Thr Ala Phe Pro Gln Tyr Lys Ser Pro Asn         755 760 765 Ala Lys Arg Lys Tyr Ala Glu Ile Ala Glu Tyr Leu Asn Leu Lys Gly     770 775 780 Thr Ser Asp Thr Glu Lys Val Thr Ala Leu Ile Glu Ala Ile Ser Lys 785 790 795 800 Leu Lys Ile Asp Leu Ser Ile Pro Gln Asn Ile Ser Ala Ala Gly Ile                 805 810 815 Asn Lys Lys Asp Phe Tyr Asn Thr Leu Asp Lys Met Ser Glu Leu Ala             820 825 830 Phe Asp Gln Cys Thr Thr Ala Asn Pro Arg Tyr Pro Leu Ile Ser         835 840 845 Glu Leu Lys Asp Ile Tyr Ile Lys Ser Phe     850 855 <210> 66 <211> 2589 <212> DNA <213> Clostridium acetobutylicum <400> 66 atgaaagtca caacagtaaa ggaattagat gaaaaactca aggtaattaa agaagctcaa 60 aaaaaattct cttgttactc gcaagaaatg gttgatgaaa tctttagaaa tgcagcaatg 120 gcagcaatcg acgcaaggat agagctagca aaagcagctg ttttggaaac cggtatgggc 180 ttagttgaag acaaggttat aaaaaatcat tttgcaggcg aatacatcta taacaaatat 240 aaggatgaaa aaacctgcgg tataattgaa cgaaatgaac cctacggaat tacaaaaata 300 gcagaaccta taggagttgt agctgctata atccctgtaa caaaccccac atcaacaaca 360 atatttaaat ccttaatatc ccttaaaact agaaatggaa ttttcttttc gcctcaccca 420 agggcaaaaa aatccacaat actagcagct aaaacaatac ttgatgcagc cgttaagagt 480 ggtgccccgg aaaatataat aggttggata gatgaacctt caattgaact aactcaatat 540 ttaatgcaaa aagcagatat aacccttgca actggtggtc cctcactagt taaatctgct 600 tattcttccg gaaaaccagc aataggtgtt ggtccgggta acaccccagt aataattgat 660 gaatctgctc atataaaaat ggcagtaagt tcaattatat tatccaaaac ctatgataat 720 gt; aaagatgagt tccaagaaag aggagcttat ataataaaga aaaacgaatt ggataaagtc 840 cgtgaagtga tttttaaaga tggatccgta aaccctaaaa tagtcggaca gtcagcttat 900 actatagcag ctatggctgg cataaaagta cctaaaacca caagaatatt aataggagaa 960 gttacctcct taggtgaaga agaacctttt gcccacgaaa aactatctcc tgttttggct 1020 atgtatgagg ctgacaattt tgatgatgct ttaaaaaaag cagtaactct aataaactta 1080 ggaggcctcg gccatacctc aggaatatat gcagatgaaa taaaagcacg agataaaata 1140 gatagattta gtagtgccat gaaaaccgta agaacctttg taaatatccc aacctcacaa 1200 ggtgcaagtg gagatctata taattttaga ataccacctt ctttcacgct tggctgcgga 1260 ttttggggag gaaattctgt ttccgagaat gttggtccaa aacatctttt gaatattaaa 1320 accgtagctg aaaggagaga aaacatgctt tggtttagag ttccacataa agtatatttt 1380 aagttcggtt gtcttcaatt tgctttaaaa gatttaaaag atctaaagaa aaaaagagcc 1440 tttatagtta ctgatagtga cccctataat ttaaactatg ttgattcaat aataaaaata 1500 cttgagcacc tagatattga ttttaaagta tttaataagg ttggaagaga agctgatctt 1560 aaaaccataa aaaaagcaac tgaagaaatg tcctccttta tgccagacac tataatagct 1620 ttaggtggta cccctgaaat gagctctgca aagctaatgt gggtactata tgaacatcca 1680 gaagtaaaat ttgaagatct tgcaataaaa tttatggaca taagaaagag aatatatact 1740 ttcccaaaac tcggtaaaaa ggctatgtta gttgcaatta caacttctgc tggttccggt 1800 tctgaggtta ctccttttgc tttagtaact gacaataaca ctggaaataa gtacatgtta 1860 gcagattatg aaatgacacc aaatatggca attgtagatg cagaacttat gatgaaaatg 1920 ccaaagggat taaccgctta ttcaggtata gatgcactag taaatagtat agaagcatac 1980 acatccgtat atgcttcaga atacacaaac ggactagcac tagaggcaat acgattaata 2040 tttaaatatt tgcctgaggc ttacaaaaac ggaagaacca atgaaaaagc aagagagaaa 2100 atggctcacg cttcaactat ggcaggtatg gcatccgcta atgcatttct aggtctatgt 2160 cattccatgg caataaaatt aagttcagaa cacaatattc ctagtggcat tgccaatgca 2220 ttactaatag aagaagtaat aaaatttaac gcagttgata atcctgtaaa acaagcccct 2280 tgcccacaat ataagtatcc aaacaccata tttagatatg ctcgaattgc agattatata 2340 aagcttggag gaaatactga tgaggaaaag gtagatctct taattaacaa aatacatgaa 2400 ctaaaaaaag ctttaaatat accaacttca ataaaggatg caggtgtttt ggaggaaaac 2460 ttctattcct cccttgatag aatatctgaa cttgcactag atgatcaatg cacaggcgct 2520 aatcctagat ttcctcttac aagtgagata aaagaaatgt atataaattg ttttaaaaaa 2580 caaccttaa 2589 <210> 67 <211> 307 <212> PRT <213> Pseudomonas putida <400> 67 Met Ser Lys Lys Leu Lys Ala Ala Ile Ile Gly Pro Gly Asn Ile Gly 1 5 10 15 Thr Asp Leu Val Met Lys Met Leu Arg Ser Glu Trp Ile Glu Pro Val             20 25 30 Trp Met Val Gly Ile Asp Pro Asn Ser Asp Gly Leu Lys Arg Ala Arg         35 40 45 Asp Phe Gly Met Lys Thr Thr Ala Glu Gly Val Asp Gly Leu Leu Pro     50 55 60 His Val Leu Asp Asp Asp Ile Arg Ile Ala Phe Asp Ala Thr Ser Ala 65 70 75 80 Tyr Val His Ala Glu Asn Ser Arg Lys Leu Asn Ala Leu Gly Val Leu                 85 90 95 Met Val Asp Leu Thr Pro Ala Ala Ile Gly Pro Tyr Cys Val Pro Pro             100 105 110 Val Asn Leu Lys Gln His Val Gly Arg Leu Glu Met Asn Val Asn Met         115 120 125 Val Thr Cys Gly Gly Gln Ala Thr Ile Pro Met Val Ala Ala Val Ser     130 135 140 Arg Val Gln Pro Val Ala Tyr Ala Glu Ile Val Ala Thr Val Ser Ser 145 150 155 160 Arg Ser Val Gly Pro Gly Thr Arg Lys Asn Ile Asp Glu Phe Thr Arg                 165 170 175 Thr Thr Ala Gly Ala Ile Glu Gln Val Gly Gly Ala Arg Glu Gly Lys             180 185 190 Ala Ile Ile Val Ile Asn Pro Ala Glu Pro Pro Leu Met Met Arg Asp         195 200 205 Thr Ile His Cys Leu Thr Asp Ser Glu Pro Asp Gln Ala Ala Ile Thr     210 215 220 Ala Ser Val His Ala Met Ile Ala Glu Val Gln Lys Tyr Val Pro Gly 225 230 235 240 Tyr Arg Leu Lys Asn Gly Pro Val Phe Asp Gly Asn Arg Val Ser Ile                 245 250 255 Phe Met Glu Val Glu Gly Leu Gly Asp Tyr Leu Pro Lys Tyr Ala Gly             260 265 270 Asn Leu Asp Ile Met Thr Ala Ala Ala Leu Arg Thr Gly Glu Met Phe         275 280 285 Ala Glu Glu Ile Ala Ala Gly Thr Ile Gln Leu Pro Arg Arg Asp Ile     290 295 300 Ala Leu Ala 305 <210> 68 <211> 2180 <212> DNA <213> Pseudomonas putida <400> 68 ggtacccctg gagccggtca aggccggcga cttcatgcgc gtcgagatcg gcggcatcgg 60 cagcgcctcc gtgcgcttca cctgatcgaa cagaggacaa acccatgagc aagaaactca 120 aggcggccat cataggcccc ggcaatatcg gtaccgatct ggtgatgaag atgctccgtt 180 ccgagtggat tgagccggtg tggatggtcg gcatcgaccc caactccgac ggcctcaaac 240 gcgcccgcga tttcggcatg aagaccacag ccgaaggcgt cgacggcctg ctcccgcacg 300 tgctggacga cgacatccgc atcgccttcg acgccacctc ggcctatgtg catgccgaga 360 atagccgcaa gctcaacgcg cttggcgtgc tgatggtcga cctgaccccg gcggccatcg 420 gcccctactg cgtgccgccg gtcaacctca agcagcatgt cggccgcctg gaaatgaacg 480 tcaacatggt cacctgcggc ggccaggcca ccatccccat ggtcgccgcg gtgtcccgcg 540 tgcagccggt ggcctacgcc gagatcgtcg ccaccgtctc ctcgcgctcg gtcggcccgg 600 gcacgcgcaa gaacatcgac gagttcaccc gcaccaccgc cggcgccatc gagcaggtcg 660 gcggcgccag ggaaggcaag gcgatcatcg tcatcaaccc ggccgagccg ccgctgatga 720 tgcgcgacac catccactgc ctgaccgaca gcgagccgga ccaggctgcg atcaccgctt 780 cggttcacgc gatgatcgcc gaggtgcaga aatacgtgcc cggctaccgc ctgaagaacg 840 gcccggtgtt cgacggcaac cgcgtgtcga tcttcatgga agtcgaaggc ctgggcgact 900 acctgcccaa gtacgccggc aacctcgaca tcatgaccgc cgccgcgctg cgtaccggcg 960 agatgttcgc cgaggaaatc gccgccggca ccattcaact gccgcgtcgc gacatcgcgc 1020 tggcttgagg agtagcacca tgaatttgca cggcaagagc gtcatcctgc acgacatgag 1080 cctgcgcgac ggcatgcacg ccaagcgcca ccagatcagc ctggagcaga tggtcgcggt 1140 cgccaccggc ctcgatcaag ccggtatgcc gctgatcgag atcacccacg gcgacggcct 1200 cggcggtcgt tcgatcaact acggcttccc ggcccacagt gacgaggagt acctgcgcgc 1260 ggtgatcccg cagctcaagc aggccaaagt ctcggcgctg ctgctgcccg gcatcggcac 1320 cgtcgaccac ctgaagatgg ccctggactg cggcgtctcg actattcgcg tggccaccca 1380 ctgtaccgag gcggatgtct ccgagcagca catcggcatg gcgcgcaagc tgggggtcga 1440 caccgtcggc ttcctgatga tggcgcacat gatcagcgcc gagaaagtcc tggagcaggc 1500 caagctgatg gaaagctatg gtgccaactg catctactgc accgactcgg ccggctacat 1560 gctgcctgat gaagtcagcg agaaaatcgg cctcctgcgc gccgagctga acccggccac 1620 cgaagtcggc ttccacggcc accacaacat gggcatggct atcgccaact cgctggccgc 1680 catcgaagcc ggtgccgcgc gcatcgacgg ctcggtcgcc ggcctcggcg ccggtgccgg 1740 caacaccccg ctggaagtgt tcgtcgcagt gtgcaaacgc atgggcgtgg agaccggcat 1800 cgacctgtac aagatcatgg acgtggccga ggacctggtg gtgccgatga tggatcagcc 1860 gatccgcgtc gaccgcgacg ccctgaccct gggctacgcc ggggtgtaca gctcgttcct 1920 gctgttcgcc cagcgcgccg agaagaaata tggcgtgtcg gcccgcgaca tcctggtcga 1980 actgggccgg cgcggcaccg tcggtggcca ggaagacatg atcgaagacc tcgccctgga 2040 catggcccgg gcccgtcagc agcagaaggt gagcgcatga accgtaccct gacccgcgaa 2100 caggtgctgg ccctggccga gcacatcgaa aacgccgagc tgaatgtcca cgacatcggc 2160 aaggtgacca acgattttcc 2180 <210> 69 <211> 307 <212> PRT <213> Thermus thermophilus <400> 69 Met Ser Glu Arg Val Lys Val Ala Leu Gly Ser Gly Asn Ile Gly 1 5 10 15 Thr Asp Leu Met Tyr Lys Leu Leu Lys Asn Pro Gly His Met Glu Leu             20 25 30 Val Ala Val Val Gly Ile Asp Pro Lys Ser Glu Gly Leu Ala Arg Ala         35 40 45 Arg Ala Leu Gly Leu Glu Ala Ser His Glu Gly Ile Ala Tyr Ile Leu     50 55 60 Glu Arg Pro Glu Ile Lys Ile Val Phe Asp Ala Thr Ser Ala Lys Ala 65 70 75 80 His Val Arg His Ala Lys Leu Leu Arg Glu Ala Gly Lys Ile Ala Ile                 85 90 95 Asp Leu Thr Pro Ala Ala Arg Gly Pro Tyr Val Val Pro Pro Val Asn             100 105 110 Leu Lys Glu His Leu Asp Lys Asp Asn Val Asn Leu Ile Thr Cys Gly         115 120 125 Gly Gln Ala Thr Ile Pro Leu Val Tyr Ala Val His Arg Val Ala Pro     130 135 140 Val Leu Tyr Ala Glu Met Val Ser Thr Val Ala Ser Arg Ser Ala Gly 145 150 155 160 Pro Gly Thr Arg Gln Asn Ile Asp Glu Phe Thr Phe Thr Thr Ala Arg                 165 170 175 Gly Leu Gly Ala Ile Gly Aly Lys Aly Ily Ily Ily             180 185 190 Leu Asn Pro Ala Glu Pro Pro Ile Leu Met Thr Asn Thr Val Arg Cys         195 200 205 Ile Pro Glu Asp Glu Gly Phe Asp Arg Glu Ala Val Val Ala Ser Val     210 215 220 Arg Ala Met Glu Arg Glu Val Gln Ala Tyr Val Pro Gly Tyr Arg Leu 225 230 235 240 Lys Ala Asp Pro Val Phe Glu Arg Leu Pro Thr Pro Trp Gly Glu Arg                 245 250 255 Thr Val Val Ser Met Leu Leu Glu Val Glu Gly Ala Gly Asp Tyr Leu             260 265 270 Pro Lys Tyr Ala Gly Asn Leu Asp Ile Met Thr Ala Ser Ala Arg Arg         275 280 285 Val Gly Glu Val Phe Ala Gln His Leu Leu Gly Lys Pro Val Glu Glu     290 295 300 Val Val Ala 305 <210> 70 <211> 924 <212> DNA <213> Thermus thermophilus <400> 70 atgtccgaaa gggttaaggt agccatcctg ggctccggca acatcgggac ggacctgatg 60 tacaagctcc tgaagaaccc gggccacatg gagcttgtgg cggtggtggg gatagacccc 120 aagtccgagg gcctggcccg ggcgcgggcc ttagggttag aggcgagcca cgaagggatc 180 gcctacatcc tggagaggcc ggagatcaag atcgtctttg acgccaccag cgccaaggcc 240 cacgtgcgcc acgccaagct cctgagggag gcggggaaga tcgccataga cctcacgccg 300 gcggcccggg gcccttacgt ggtgcccccg gtgaacctga aggaacacct ggacaaggac 360 aacgtgaacc tcatcacctg cggggggcag gccaccatcc ccctggtcta cgcggtgcac 420 cgggtggccc ccgtgctcta cgcggagatg gtctccacgg tggcctcccg ctccgcgggc 480 cccggcaccc ggcagaacat cgacgagttc accttcacca ccgcccgggg cctggaggcc 540 atcggggggg ccaagaaggg gaaggccatc atcatcctga acccggcgga accccccatc 600 ctcatgacca acaccgtgcg ctgcatcccc gaggacgagg gctttgaccg ggaggccgtg 660 gtggcgagcg tccgggccat ggagcgggag gtccaggcct acgtgcccgg ctaccgcctg 720 aaggcggacc cggtgtttga gaggcttccc accccctggg gggagcgcac cgtggtctcc 780 atgctcctgg aggtggaggg ggcgggggac tatttgccca aatacgccgg caacctggac 840 atcatgacgg cttctgcccg gagggtgggg gaggtcttcg cccagcacct cctggggaag 900 cccgtggagg aggtggtggc gtga 924 <210> 71 <211> 417 <212> PRT <213> Escherichia coli <400> 71 Met Thr Phe Ser Leu Phe Gly Asp Lys Phe Thr Arg His Ser Gly Ile 1 5 10 15 Thr Leu Leu Met Glu Asp Leu Asn Asp Gly Leu Arg Thr Pro Gly Ala             20 25 30 Ile Met Leu Gly Gly Gly Asn Pro Ala Gln Ile Pro Glu Met Gln Asp         35 40 45 Tyr Phe Gln Thr Leu Leu Thr Asp Met Leu Glu Ser Gly Lys Ala Thr     50 55 60 Asp Ala Leu Cys Asn Tyr Asp Gly Pro Gln Gly Lys Thr Glu Leu Leu 65 70 75 80 Thr Leu Leu Ala Gly Met Leu Arg Glu Lys Leu Gly Trp Asp Ile Glu                 85 90 95 Pro Gln Asn Ile Ala Leu Thr Asn Gly Ser Gln Ser Ala Phe Phe Tyr             100 105 110 Leu Phe Asn Leu Phe Ala Gly Arg Arg Ala Asp Gly Arg Val Lys Lys         115 120 125 Val Leu Phe Pro Leu Ala Pro Glu Tyr Ile Gly Tyr Ala Asp Ala Gly     130 135 140 Leu Glu Glu Asp Leu Phe Val Ser Ala Arg Pro Asn Ile Glu Leu Leu 145 150 155 160 Pro Glu Gly Gln Phe Lys Tyr His Val Asp Phe Glu His Leu His Ile                 165 170 175 Gly Glu Glu Thr Gly Met Ile Cys Val Ser Arg Pro Thr Asn Pro Thr             180 185 190 Gly Asn Val Ile Thr Asp Glu Glu Leu Leu Lys Leu Asp Ala Leu Ala         195 200 205 Asn Gln His Gly Ile Pro Leu Val Ile Asp Asn Ala Tyr Gly Val Pro     210 215 220 Phe Pro Gly Ile Ile Phe Ser Glu Ala Arg Pro Leu Trp Asn Pro Asn 225 230 235 240 Ile Val Leu Cys Met Ser Leu Ser Lys Leu Gly Leu Pro Gly Ser Arg                 245 250 255 Cys Gly Ile Ile Ile Ala Asn Glu Lys Ile Ile Thr Ala Ile Thr Asn             260 265 270 Met Asn Gly Ile Ser Ser Leu Ala Pro Gly Gly Ile Gly Pro Ala Met         275 280 285 Met Cys Glu Met Ile Lys Arg Asn Asp Leu Leu Arg Leu Ser Glu Thr     290 295 300 Val Ile Lys Pro Phe Tyr Tyr Gln Arg Val Gln Glu Thr Ile Ala Ile 305 310 315 320 Ile Arg Arg Tyr Leu Pro Glu Asn Arg Cys Leu Ile His Lys Pro Glu                 325 330 335 Gly Ala Ile Phe Leu Trp Leu Trp Phe Lys Asp Leu Pro Ile Thr Thr             340 345 350 Lys Gln Leu Tyr Gln Arg Leu Lys Ala Arg Gly Val Leu Met Val Pro         355 360 365 Gly His Asn Phe Phe Pro Gly Leu Asp Lys Pro Trp Pro His Thr His     370 375 380 Gln Cys Met Arg Met Met Asn Tyr Val Pro Glu Pro Glu Lys Ile Glu Ala 385 390 395 400 Gly Val Lys Ile Leu Ala Glu Glu Ile Glu Arg Ala Trp Ala Glu Ser                 405 410 415 His      <210> 72 <211> 417 <212> PRT <213> Escherichia coli <400> 72 Met Thr Phe Ser Leu Phe Gly Asp Lys Phe Thr Arg His Ser Gly Ile 1 5 10 15 Thr Leu Leu Met Glu Asp Leu Asn Asp Gly Leu Arg Thr Pro Gly Ala             20 25 30 Ile Met Leu Gly Gly Gly Asn Pro Ala Gln Ile Pro Glu Met Gln Asp         35 40 45 Tyr Phe Gln Thr Leu Leu Thr Asp Met Leu Glu Ser Gly Lys Ala Thr     50 55 60 Asp Ala Leu Cys Asn Tyr Asp Gly Pro Gln Gly Lys Thr Glu Leu Leu 65 70 75 80 Thr Leu Leu Ala Gly Met Leu Arg Glu Lys Leu Gly Trp Asp Ile Glu                 85 90 95 Pro Gln Asn Ile Ala Leu Thr Asn Gly Ser Gln Ser Ala Phe Phe Tyr             100 105 110 Leu Phe Asn Leu Phe Ala Gly Arg Arg Ala Asp Gly Arg Val Lys Lys         115 120 125 Val Leu Phe Pro Leu Ala Pro Glu Tyr Ile Gly Tyr Ala Asp Ala Gly     130 135 140 Leu Glu Glu Asp Leu Phe Val Ser Ala Arg Pro Asn Ile Glu Leu Leu 145 150 155 160 Pro Glu Gly Gln Phe Lys Tyr His Val Asp Phe Glu His Leu His Ile                 165 170 175 Gly Glu Glu Thr Gly Met Ile Cys Val Ser Arg Pro Thr Asn Pro Thr             180 185 190 Gly Asn Val Ile Thr Asp Glu Glu Leu Leu Lys Leu Asp Ala Leu Ala         195 200 205 Asn Gln His Gly Ile Pro Leu Val Ile Asp Asn Ala Tyr Gly Val Pro     210 215 220 Phe Pro Gly Ile Ile Phe Ser Glu Ala Arg Pro Leu Trp Asn Pro Asn 225 230 235 240 Ile Val Leu Cys Met Ser Leu Ser Lys Leu Gly Leu Pro Gly Ser Arg                 245 250 255 Cys Gly Ile Ile Ile Ala Asn Glu Lys Ile Ile Thr Ala Ile Thr Asn             260 265 270 Met Asn Gly Ile Ser Ser Leu Ala Pro Gly Gly Ile Gly Pro Ala Met         275 280 285 Met Cys Glu Met Ile Lys Arg Asn Asp Leu Leu Arg Leu Ser Glu Thr     290 295 300 Val Ile Lys Pro Phe Tyr Tyr Gln Arg Val Gln Glu Thr Ile Ala Ile 305 310 315 320 Ile Arg Arg Tyr Leu Pro Glu Asn Arg Cys Leu Ile His Lys Pro Glu                 325 330 335 Gly Ala Ile Phe Leu Trp Leu Trp Phe Lys Asp Leu Pro Ile Thr Thr             340 345 350 Lys Gln Leu Tyr Gln Arg Leu Lys Ala Arg Gly Val Leu Met Val Pro         355 360 365 Gly His Asn Phe Phe Pro Gly Leu Asp Lys Pro Trp Pro His Thr His     370 375 380 Gln Cys Met Arg Met Met Asn Tyr Val Pro Glu Pro Glu Lys Ile Glu Ala 385 390 395 400 Gly Val Lys Ile Leu Ala Glu Glu Ile Glu Arg Ala Trp Ala Glu Ser                 405 410 415 His      <210> 73 <211> 425 <212> PRT <213> Bacillus licheniformis <400> 73 Met Lys Pro Pro Leu Ser Lys Ile Gly Glu Lys Met Ile Glu Lys Thr 1 5 10 15 Gly Val Arg Ala Val Met Ser Asp Ile Gln Glu Val Leu Ala Gly Gly             20 25 30 Glu Arg Ser Tyr Ile Asn Leu Ser Ala Gly Asn Pro Met Ile Leu Pro         35 40 45 Gly Val Ser Ala Met Trp Lys Ser Ala Leu Ala Asp Leu Leu Asp Asp     50 55 60 Asp Arg Phe Ser Ser Val Ile Gly Gln Tyr Gly Ser Ser Tyr Gly Thr 65 70 75 80 Asp Glu Leu Ile Ala Ser Val Val Arg Phe Phe Ser Glu Arg Tyr Ser                 85 90 95 Ala Gly Ile Arg Lys Glu Asn Val Leu Ile Thr Ala Gly Ser Gln Gln             100 105 110 Leu Phe Phe Leu Ala Ile Asn Ser Phe Cys Gly Met Gly Ser Gly Ser         115 120 125 Val Met Lys Lys Ala Leu Ile Pro Met Leu Pro Asp Tyr Ser Gly Tyr     130 135 140 Ser Gly Ala Ala Leu Glu Glu Ile Pro Pro Leu 145 150 155 160 Ile Ser Lys Leu Asp Asp His Thr Phe Arg Tyr Glu Leu Asp Arg Lys                 165 170 175 Gly Phe Leu Glu Arg Met Ile Gly Ala Val Leu Leu Ser Arg Pro             180 185 190 Asn Asn Pro Cys Gly Asn Ile Leu Pro Lys Glu Asp Val Ala Phe Ile         195 200 205 Ser Asp Ala Cys Arg Glu Ala Asn Val Pro Leu Phe Ile Asp Ser Ala     210 215 220 Tyr Ala Pro Pro Phe Pro Ala Ile His Phe Ile Asp Met Glu Pro Ile 225 230 235 240 Phe Asn Glu Gln Ile Ile His Cys Met Ser Leu Ser Lys Ala Gly Leu                 245 250 255 Pro Gly Glu Arg Ile Gly Ile Ala Ile Gly Pro Ser Arg Tyr Ile Gln             260 265 270 Ala Met Glu Ala Phe Gln Ser Asn Ala Ala Ile His Ser Ser Arg         275 280 285 Gly Gln Tyr Met Ala Ala Ser Val Leu Asn Asp Gly Arg Leu Ala Asp     290 295 300 Val Ser Leu Asn Glu Val Arg Pro Tyr Tyr Arg Asn Lys Phe Met Leu 305 310 315 320 Leu Lys Glu Thr Leu Leu Cys Lys Met Pro Glu Asp Ile Lys Trp Tyr                 325 330 335 Leu His Gln Gly Glu Gly Ser Leu Phe Gly Trp Leu Trp Phe Glu Asp             340 345 350 Leu Pro Val Thr Asp Ala Leu Tyr Glu Tyr Met Lys Ala Asp Gly         355 360 365 Val Ile Ile Val Pro Gly Ser Ser Phe Phe His Arg Gln Ser Arg Arg     370 375 380 Leu Ala His Ser His Gln Cys Ile Arg Ile Ser Leu Thr Ala Ala Asp 385 390 395 400 Glu Asp Ile Ile Arg Gly Ile Asp Val Leu Ala Lys Ile Ala Lys Gly                 405 410 415 Val Tyr Glu Lys Gln Val Glu Tyr Leu             420 425 <210> 74 <211> 1278 <212> DNA <213> Bacillus licheniformis <400> 74 ttataagtat tcaacctgtt tctcatatac acccttcgca attttagcta aaacatcgat 60 tccccttata atatcttcat ccgccgcggt taggctgatt cgtatacact ggtgtgaatg 120 cgccaggcgc cgggattgac ggtgaaagaa agatgatccg ggaacgataa tgactccatc 180 cgctttcata tactcataca gcgctgcatc ggtcaccggc aggtcttcaa accacagcca 240 tccgaaaagc gatccttccc cttgatgcag ataccatttg atgtcttcag gcatcttgca 300 taaaagcgtt tccttgagca gcatgaattt attgcggtaa tatggcctga cttcattcag 360 cgacacgtcg gcgaggcgcc cgtcattcaa tactgatgca gccatatact gccccagcct 420 tgaagaatgg atcgccgcat tcgactgaaa agcttccatt gcctgaatat accgggacgg 480 cccgatggcg attccgatcc tttcgccagg caggccggct tttgaaaggc tcatacagtg 540 aatgatctgc tcgttgaaaa tcggttccat gtcgataaag tgaatcgccg gaaaaggcgg 600 agcatatgcg gaatcaatga acagcggaac attcgcttct cggcatgcgt ctgaaatgaa 660 tgctacatct tctttaggca agatgtttcc gcaaggattg ttcgggcgcg atagcaagac 720 agcaccgatg cgcatcctct ctaaaaaccc cttacggtcg agctcatatc gaaacgtatg 780 atcatccaat ttcgatatga gcggagggat cccctcaatc atctcccgct ccagtgccgc 840 cccgctgtat cccgaatagt caggcagcat cgggatcaag gcttttttca tcacagatcc 900 gcttcccatt ccgcaaaacg aattgatcgc cagaaaaaac agctgctggc ttccggctgt 960 aatcaacacg ttctcttttc gaatgccggc gctataccgc tctgaaaaga agcggacaac 1020 acttgcaatc agttcatcgg ttccatagct cgatccgtat tggccgatca ccgaagaaaa 1080 cctgtcatcg tcaaggagat cggcaagagc cgacttccac atggctgaca cgccgggcaa 1140 aatcatcgga ttgcccgcac ttaaattaat gtatgaccgt tcaccgccgg ccaggacttc 1200 ctgaatatcg ctcatcacag ccctgacccc tgttttctca atcattttct ctccgatttt 1260 gcttaatggc ggcttcac 1278 <210> 75 <211> 309 <212> PRT <213> Escherichia coli <400> 75 Met Thr Thr Lys Lys Ala Asp Tyr Ile Trp Phe Asn Gly Glu Met Val 1 5 10 15 Arg Trp Glu Asp Ala Lys Val His Val Met Ser His Ala Leu His Tyr             20 25 30 Gly Thr Ser Val Phe Glu Gly Ile Arg Cys Tyr Asp Ser His Lys Gly         35 40 45 Pro Val Val Phe Arg His Arg Glu His Met Gln Arg Leu His Asp Ser     50 55 60 Ala Lys Ile Tyr Arg Phe Pro Val Ser Gln Ser Ile Asp Glu Leu Met 65 70 75 80 Glu Ala Cys Arg Asp Val Ile Arg Lys Asn Asn Leu Thr Ser Ala Tyr                 85 90 95 Ile Arg Pro Leu Ile Phe Val Gly Asp Val Gly Met Gly Val Asn Pro             100 105 110 Pro Ala Gly Tyr Ser Thr Asp Val Ile Ile Ala Ala Phe Pro Trp Gly         115 120 125 Ala Tyr Leu Gly Ala Glu Ala Leu Glu Gln Gly Ile Asp Ala Met Val     130 135 140 Ser Ser Trp Asn Arg Ala Ala Pro Asn Thr Ile Pro Thr Ala Ala Lys 145 150 155 160 Ala Gly Gly Asn Tyr Leu Ser Ser Leu Leu Val Gly Ser Glu Ala Arg                 165 170 175 Arg His Gly Tyr Gln Glu Gly Ile Ala Leu Asp Val Asn Gly Tyr Ile             180 185 190 Ser Glu Gly Ala Gly Glu Asn Leu Phe Glu Val Lys Asp Gly Val Leu         195 200 205 Phe Thr Pro Pro Phe Thr Ser Ser Ala Leu Pro Gly Ile Thr Arg Asp     210 215 220 Ala Ile Ile Lys Leu Ala Lys Glu Leu Gly Ile Glu Val Arg Glu Gln 225 230 235 240 Val Leu Ser Arg Glu Ser Leu Tyr Leu Ala Asp Glu Val Phe Met Ser                 245 250 255 Gly Thr Ala Ala Glu Ile Thr Pro Val Arg Ser Val Asp Gly Ile Gln             260 265 270 Val Gly Glu Gly Arg Cys Gly Pro Val Thr Lys Arg Ile Gln Gln Ala         275 280 285 Phe Phe Gly Leu Phe Thr Gly Glu Thr Glu Asp Lys Trp Gly Trp Leu     290 295 300 Asp Gln Val Asn Gln 305 <210> 76 <211> 1476 <212> DNA <213> Escherichia coli <400> 76 atggctaact acttcaatac actgaatctg cgccagcagc tggcacagct gggcaaatgt 60 cgctttatgg gccgcgatga attcgccgat ggcgcgagct accttcaggg taaaaaagta 120 gtcatcgtcg gctgtggcgc acagggtctg aaccagggcc tgaacatgcg tgattctggt 180 ctcgatatct cctacgctct gcgtaaagaa gcgattgccg agaagcgcgc gtcctggcgt 240 aaagcgaccg aaaatggttt taaagtgggt acttacgaag aactgatccc acaggcggat 300 ctggtgatta acctgacgcc ggacaagcag cactctgatg tagtgcgcac cgtacagcca 360 ctgatgaaag acggcgcggc gctgggctac tcgcacggtt tcaacatcgt cgaagtgggc 420 gagcagatcc gtaaagatat caccgtagtg atggttgcgc cgaaatgccc aggcaccgaa 480 gtgcgtgaag agtacaaacg tgggttcggc gtaccgacgc tgattgccgt tcacccggaa 540 aacgatccga aaggcgaagg catggcgatt gccaaagcct gggcggctgc aaccggtggt 600 caccgtgcgg gtgtgctgga atcgtccttc gttgcggaag tgaaatctga cctgatgggc 660 gagcaaacca tcctgtgcgg tatgttgcag gctggctctc tgctgtgctt cgacaagctg 720 gtggaagaag gtaccgatcc agcatacgca gaaaaactga ttcagttcgg ttgggaaacc 780 atcaccgaag cactgaaaca gggcggcatc accctgatga tggaccgtct ctctaacccg 840 gcgaaactgc gtgcttatgc gctttctgaa cagctgaaag agatcatggc acccctgttc 900 cagaaacata tggacgacat catctccggc gaattctctt ccggtatgat ggcggactgg 960 gccaacgatg ataagaaact gctgacctgg cgtgaagaga ccggcaaaac cgcgtttgaa 1020 accgcgccgc agtatgaagg caaaatcggc gagcaggagt acttcgataa aggcgtactg 1080 atgattgcga tggtgaaagc gggcgttgaa ctggcgttcg aaaccatggt cgattccggc 1140 atcattgaag agtctgcata ttatgaatca ctgcacgagc tgccgctgat tgccaacacc 1200 atcgcccgta agcgtctgta cgaaatgaac gtggttatct ctgataccgc tgagtacggt 1260 aactatctgt tctcttacgc ttgtgtgccg ttgctgaaac cgtttatggc agagctgcaa 1320 ccgggcgacc tgggtaaagc tattccggaa ggcgcggtag ataacgggca actgcgtgat 1380 gtgaacgaag cgattcgcag ccatgcgatt gagcaggtag gtaagaaact gcgcggctat 1440 atgacagata tgaaacgtat tgctgttgcg ggttaa 1476 <210> 77 <211> 376 <212> PRT <213> Saccharomyces cerevisiae <400> 77 Met Thr Leu Ala Pro Leu Asp Ala Ser Lys Val Lys Ile Thr Thr Thr 1 5 10 15 Gln His Ala Ser Lys Pro Lys Pro Asn Ser Glu Leu Val Phe Gly Lys             20 25 30 Ser Phe Thr Asp His Met Leu Thr Ala Glu Trp Thr Ala Glu Lys Gly         35 40 45 Trp Gly Thr Pro Glu Ile Lys Pro Tyr Gln Asn Leu Ser Leu Asp Pro     50 55 60 Ser Ala Val Val Phe His Tyr Ala Phe Glu Leu Phe Glu Gly Met Lys 65 70 75 80 Ala Tyr Arg Thr Val Asp Asn Lys Ile Thr Met Phe Arg Pro Asp Met                 85 90 95 Asn Met Lys Arg Met Asn Lys Ser Ala Gln Arg Ile Cys Leu Pro Thr             100 105 110 Phe Asp Pro Glu Glu Leu Ile Thr Leu Ile Gly Lys Leu Ile Gln Gln         115 120 125 Asp Lys Cys Leu Val Pro Glu Gly Lys Gly Tyr Ser Leu Tyr Ile Arg     130 135 140 Pro Thr Leu Ile Gly Thr Thr Ala Gly Leu Gly Val Ser Thr Pro Asp 145 150 155 160 Arg Ala Leu Leu Tyr Val Ile Cys Cys Pro Val Gly Pro Tyr Tyr Lys                 165 170 175 Thr Gly Phe Lys Ala Val Arg Leu Glu Ala Thr Asp Tyr Ala Thr Arg             180 185 190 Ala Trp Pro Gly Gly Cys Gly Asp Lys Lys Leu Gly Ala Asn Tyr Ala         195 200 205 Pro Cys Val Leu Pro Gln Leu Gln Ala Ala Ser Arg Gly Tyr Gln Gln     210 215 220 Asn Leu Trp Leu Phe Gly Pro Asn Asn Ile Thr Glu Val Gly Thr 225 230 235 240 Met Asn Ala Phe Phe Val Phe Lys Asp Ser Lys Thr Gly Lys Lys Glu                 245 250 255 Leu Val Thr Ala Pro Leu Asp Gly Thr Ile Leu Glu Gly Val Thr Arg             260 265 270 Asp Ser Ile Leu Asn Leu Ala Lys Glu Arg Leu Glu Pro Ser Glu Trp         275 280 285 Thr Ile Ser Glu Arg Tyr Phe Thr Ile Gly Glu Val Thr Glu Arg Ser     290 295 300 Lys Asn Gly Glu Leu Leu Glu Ala Phe Gly Ser Gly Thr Ala Ala Ile 305 310 315 320 Val Ser Pro Ile Lys Glu Ile Gly Trp Lys Gly Glu Gln Ile Asn Ile                 325 330 335 Pro Leu Leu Pro Gly Glu Gln Thr Gly Pro Leu Ala Lys Glu Val Ala             340 345 350 Gln Trp Ile Asn Gly Ile Gln Tyr Gly Glu Thr Glu His Gly Asn Trp         355 360 365 Ser Arg Val Val Thr Asp Leu Asn     370 375 <210> 78 <211> 376 <212> PRT <213> Saccharomyces cerevisiae <400> 78 Met Thr Leu Ala Pro Leu Asp Ala Ser Lys Val Lys Ile Thr Thr Thr 1 5 10 15 Gln His Ala Ser Lys Pro Lys Pro Asn Ser Glu Leu Val Phe Gly Lys             20 25 30 Ser Phe Thr Asp His Met Leu Thr Ala Glu Trp Thr Ala Glu Lys Gly         35 40 45 Trp Gly Thr Pro Glu Ile Lys Pro Tyr Gln Asn Leu Ser Leu Asp Pro     50 55 60 Ser Ala Val Val Phe His Tyr Ala Phe Glu Leu Phe Glu Gly Met Lys 65 70 75 80 Ala Tyr Arg Thr Val Asp Asn Lys Ile Thr Met Phe Arg Pro Asp Met                 85 90 95 Asn Met Lys Arg Met Asn Lys Ser Ala Gln Arg Ile Cys Leu Pro Thr             100 105 110 Phe Asp Pro Glu Glu Leu Ile Thr Leu Ile Gly Lys Leu Ile Gln Gln         115 120 125 Asp Lys Cys Leu Val Pro Glu Gly Lys Gly Tyr Ser Leu Tyr Ile Arg     130 135 140 Pro Thr Leu Ile Gly Thr Thr Ala Gly Leu Gly Val Ser Thr Pro Asp 145 150 155 160 Arg Ala Leu Leu Tyr Val Ile Cys Cys Pro Val Gly Pro Tyr Tyr Lys                 165 170 175 Thr Gly Phe Lys Ala Val Arg Leu Glu Ala Thr Asp Tyr Ala Thr Arg             180 185 190 Ala Trp Pro Gly Gly Cys Gly Asp Lys Lys Leu Gly Ala Asn Tyr Ala         195 200 205 Pro Cys Val Leu Pro Gln Leu Gln Ala Ala Ser Arg Gly Tyr Gln Gln     210 215 220 Asn Leu Trp Leu Phe Gly Pro Asn Asn Ile Thr Glu Val Gly Thr 225 230 235 240 Met Asn Ala Phe Phe Val Phe Lys Asp Ser Lys Thr Gly Lys Lys Glu                 245 250 255 Leu Val Thr Ala Pro Leu Asp Gly Thr Ile Leu Glu Gly Val Thr Arg             260 265 270 Asp Ser Ile Leu Asn Leu Ala Lys Glu Arg Leu Glu Pro Ser Glu Trp         275 280 285 Thr Ile Ser Glu Arg Tyr Phe Thr Ile Gly Glu Val Thr Glu Arg Ser     290 295 300 Lys Asn Gly Glu Leu Leu Glu Ala Phe Gly Ser Gly Thr Ala Ala Ile 305 310 315 320 Val Ser Pro Ile Lys Glu Ile Gly Trp Lys Gly Glu Gln Ile Asn Ile                 325 330 335 Pro Leu Leu Pro Gly Glu Gln Thr Gly Pro Leu Ala Lys Glu Val Ala             340 345 350 Gln Trp Ile Asn Gly Ile Gln Tyr Gly Glu Thr Glu His Gly Asn Trp         355 360 365 Ser Arg Val Val Thr Asp Leu Asn     370 375 <210> 79 <211> 330 <212> PRT <213> Methanobacterium thermoautotrophicum <400> 79 Met Arg Leu Trp Arg Ala Leu Tyr Arg Pro Pro Thr Ile Thr Tyr Pro 1 5 10 15 Ser Lys Ser Pro Glu Val Ile Ile Met Ser Cys Glu Ala Ser Gly Lys             20 25 30 Ile Trp Leu Asn Gly Glu Met Val Glu Trp Glu Glu Ala Thr Val His         35 40 45 Val Leu Ser His Val Val His Tyr Gly Ser Ser Val Phe Glu Gly Ile     50 55 60 Arg Cys Tyr Arg Asn Ser Lys Gly Ser Ala Ile Phe Arg Leu Arg Glu 65 70 75 80 His Val Lys Arg Leu Phe Asp Ser Ala Lys Ile Tyr Arg Met Asp Ile                 85 90 95 Pro Tyr Thr Gln Glu Gln Ile Cys Asp Ala Ile Val Glu Thr Val Arg             100 105 110 Glu Asn Gly Leu Glu Glu Cys Tyr Ile Arg Pro Val Val Phe Arg Gly         115 120 125 Tyr Gly Glu Met Gly Val His Pro Val Asn Cys Pro Val Asp Val Ala     130 135 140 Val Ala Ala Trp Glu Trp Gly Ala Tyr Leu Gly Ala Glu Ala Leu Glu 145 150 155 160 Val Gly Val Asp Ala Gly Val Ser Thr Trp Arg Arg Met Ala Pro Asn                 165 170 175 Thr Met Pro Asn Met Ala Lys Ala Gly Gly Asn Tyr Leu Asn Ser Gln             180 185 190 Leu Ala Lys Met Glu Ala Val Arg His Gly Tyr Asp Glu Ala Ile Met         195 200 205 Leu Asp Tyr His Gly Tyr Ile Ser Glu Gly Ser Gly Glu Asn Ile Phe     210 215 220 Leu Val Ser Glu Gly Glu Ile Tyr Thr Pro Ser Val Ser Ser Leu 225 230 235 240 Leu Arg Gly Ile Thr Arg Asp Ser Val Ile Lys Ile Ala Arg Thr Glu                 245 250 255 Gly Val Thr Val His Glu Glu Pro Ile Thr Arg Glu Met Leu Tyr Ile             260 265 270 Ala Asp Glu Ala Phe Phe Thr Gly Thr Ala Ala Glu Ile Thr Pro Ile         275 280 285 Arg Ser Val Asp Gly Ile Glu Ile Gly Ala Gly Arg Arg Gly Pro Val     290 295 300 Thr Lys Leu Leu Gln Asp Glu Phe Phe Arg Ile Ile Arg Ala Glu Thr 305 310 315 320 Glu Asp Ser Phe Gly Trp Leu Thr Tyr Ile                 325 330 <210> 80 <211> 993 <212> DNA <213> Methanobacterium thermoautotrophicum <400> 80 tcagatgtag gtgagccatc cgaagctgtc ctctgtctct gccctgatta tcctgaagaa 60 ctcatcctgc agcagctttg taacgggacc ccttcgcccg gcacctatct ctataccatc 120 aactgatctg atgggtgtta tctctgcggc tgtacctgtg aagaaggcct catctgcgat 180 gtagagcatc tccctggtta tgggttcctc atgcacggta acaccctcgg tcctggctat 240 ctttattacg gagtcccttg ttatccccct cagaagggat gatgaaacag ggggggtgta 300 aatttcaccc tcactgacga ggaatatgtt ctccccgcta ccctcactta tgtagccatg 360 gtagtccagc attatggcct catcatagcc gtgtctcaca gcctccatct tggcaagctg 420 tgagttgagg tagttaccgc cggcctttgc catgttgggc attgtgtttg gtgccatcct 480 ccgccaggtt gaaacaccag catcgacacc aacctcaagg gcctctgcac ccagataggc 540 cccccattcc caggcagcca cagcgacgtc cactgggcag ttcaccgggt gaacacccat 600 ctcaccgtat cccctgaata ccacgggtct tatatagcac tcctcaagtc cgttctccct 660 gacggtctca actatggcat cacatatctg ctcctgggtg tagggtatgt ccatccggta 720 tatctttgca gaatcaaaaa ggcgtttaac atgctcccgc aaacggaaga tggctgaccc 780 cttactgttc ctgtagcacc ttattccctc aaagacagat gatccataat gcacaacatg 840 tgagagtacg tggacggtgg cttcttccca ttcaaccatt tcaccgttta accatatctt 900 tccactggct tcgcatgaca tgataataac ctcaggtgat ttactaggat aggttatggt 960 tggaggccta tataatgctc tccataaccg caa 993 <210> 81 <211> 364 <212> PRT <213> Streptomyces coelicolor <400> 81 Met Thr Asp Val Asn Gly Ala Pro Ala Asp Val Leu His Thr Leu Phe 1 5 10 15 His Ser Asp Gln Gly Gly His Glu Gln Val Val Leu Cys Gln Asp Arg             20 25 30 Ala Ser Gly Leu Lys Ala Le         35 40 45 Pro Ala Leu Gly Gly Thr Arg Phe Tyr Pro Tyr Ala Ser Glu Ala Glu     50 55 60 Ala Val Ala Asp Ala Leu Asn Leu Ala Arg Gly Met Ser Tyr Lys Asn 65 70 75 80 Ala Met Ala Gly Leu Asp His Gly Gly Gly Lys Ala Val Ile Ile Gly                 85 90 95 Asp Pro Glu Gln Ile Lys Ser Glu Glu Leu Leu Leu Ala Tyr Gly Arg             100 105 110 Phe Val Ala Ser Leu Gly Gly Arg Tyr Val Thr Ala Cys Asp Val Gly         115 120 125 Thr Tyr Val Ala Asp Met Asp Val Val Ala Arg Glu Cys Arg Trp Thr     130 135 140 Thr Gly Arg Ser Pro Glu Asn Gly Gly Ala Gly Asp Ser Ser Val Leu 145 150 155 160 Thr Ser Phe Gly Val Tyr Gln Gly Met Arg Ala Ala Gln His Leu                 165 170 175 Trp Gly Asp Pro Thr Leu Arg Asp Arg Thr Val Gly Ile Ala Gly Val             180 185 190 Gly Lys Val Gly His His Leu Val Glu His Leu Leu Ala Glu Gly Ala         195 200 205 His Val Val Thr Asp Val Arg Lys Asp Val Val Arg Gly Ile Thr     210 215 220 Glu Arg His Pro Ser Val Val Ala Val Ala Asp Thr Asp Ala Leu Ile 225 230 235 240 Arg Val Glu Asn Leu Asp Ile Tyr Ala Pro Cys Ala Leu Gly Gly Ala                 245 250 255 Leu Asn Asp Asp Thr Val Pro Val Leu Thr Ala Lys Val Val Cys Gly             260 265 270 Ala Ala Asn Asn Gln Leu Ala His Pro Gly Val Glu Lys Asp Leu Ala         275 280 285 Asp Arg Gly Ile Leu Tyr Ala Pro Asp Tyr Val Val Asn Ala Gly Gly     290 295 300 Val Ile Gln Val Ala Asp Glu Leu His Gly Phe Asp Phe Asp Arg Cys 305 310 315 320 Lys Ala Lys Ala Ser Lys Ile Tyr Asp Thr Thr Leu Ala Ile Phe Ala                 325 330 335 Arg Ala Lys Glu Asp Gly Ile Pro Pro Ala Ala Ala Ala Asp Arg Ile             340 345 350 Ala Glu Gln Arg Met Ala Glu Ala Arg Pro Arg Pro         355 360 <210> 82 <211> 1095 <212> DNA <213> Streptomyces coelicolor <400> 82 tcacggccgg ggacgggcct ccgccatccg ctgctcggcg atccggtcgg ccgccgcggc 60 cggcggaata ccgtcctcct tcgcacgtgc gaatatggcc agcgtggtgt cgtagatctt 120 cgaggccttc gccttgcacc ggtcgaagtc gaacccgtgc agctcgtcgg cgacctggat 180 gacaccgccg gcgttcacca catagtccgg cgcgtagagg atcccgcggt cggcgaggtc 240 cttctcgacg cccgggtggg cgagctggtt gttggccgcg ccgcacacca ccttggcggt 300 cagcaccggc acggtgtcgt cgttcagcgc gccgccgagc gcgcagggcg cgtagatgtc 360 caggttctcc acccggatca gcgcgtcggt gtcggcgacg gcgaccaccg acgggtgccg 420 ctccgtgatc ccgcgcacca cgtccttgcg cacgtccgtg acgacgacgt gggcgccctc 480 ggcgagcagg tgctcgacca ggtggtggcc gaccttgccg acgcccgcga tgccgacggt 540 gcggtcgcgc agcgtcgggt cgccccacag gtgctgggcg gcggcccgca tgccctggta 600 gacgccgaag gaggtgagca cggaggagtc gcccgcgccg ccgttctccg gggaacgccc 660 ggtcgtccag cggcactcgc gggccacgac gtccatgtcg gcgacgtagg tgccgacgtc 720 gcacgcggtg acgtagcggc cgcccagcga ggcgacgaac cggccgtagg cgaggagcag 780 ctcctcgctc ttgatctgct ccggatcgcc gatgatcacg gccttgccgc caccgtggtc 840 cagaccggcc atggcgttct tgtacgacat cccgcgggcg aggttcagcg cgtcggcgac 900 ggcctccgcc tcgctcgcgt acgggtagaa gcgggtaccg ccgagcgccg ggcccagggc 960 ggtggagtgg agggcgatca cggccttgag gccgctggca cggtcctggc agagcacgac 1020 ttgctcatgt cccccctgat ccgagtggaa cagggtgtgc agtacatcag caggtgcgcc 1080 gtttacgtcg gtcac 1095 <210> 83 <211> 364 <212> PRT <213> Bacillus subtilis <400> 83 Met Glu Leu Phe Lys Tyr Met Glu Lys Tyr Asp Tyr Glu Gln Leu Val 1 5 10 15 Phe Cys Gln Asp Glu Gln Ser Gly Leu Lys Ala Ile Ala Ile His             20 25 30 Asp Thr Thr Leu Gly Pro Ala Leu Gly Gly Thr Arg Met Trp Thr Tyr         35 40 45 Glu Asn Glu Glu Ala Glu Asp Ala Leu Arg Leu Ala Arg Gly     50 55 60 Met Thr Tyr Lys Asn Ala Ala Gly Leu Asn Leu Gly Gly Gly Lys 65 70 75 80 Thr Val Ile Ile Gly Asp Pro Arg Lys Asp Lys Asn Glu Glu Met Phe                 85 90 95 Arg Ala Phe Gly Arg Tyr Ile Gln Gly Leu Asn Gly Arg Tyr Ile Thr             100 105 110 Ala Glu Asp Val Gly Thr Thr Val Asp Met Asp Ile Ile His Asp         115 120 125 Glu Thr Asp Tyr Val Thr Gly Ile Ser Pro Ala Phe Gly Ser Ser Gly     130 135 140 Asn Pro Ser Pro Val Thr Ala Tyr Gly Val Tyr Arg Gly Met Lys Ala 145 150 155 160 Ala Ala Lys Ala Ala Phe Gly Thr Asp Ser Leu Glu Gly Lys Thr Ile                 165 170 175 Ala Val Gln Gly Val Gly Asn Val Ala Tyr Asn Leu Cys Arg His Leu             180 185 190 His Glu Glu Gly Ala Asn Leu Ile Val Thr Asp Ile Asn Lys Gln Ser         195 200 205 Val Gln Arg Ala Val Glu Asp Phe Gly Ala Arg Ala Val Asp Pro Asp     210 215 220 Asp Ile Tyr Ser Gln Asp Cys Asp Ile Tyr Ala Pro Cys Ala Leu Gly 225 230 235 240 Ala Thr Ile Asn Asp Asp Thr Ile Lys Gln Leu Lys Ala Lys Val Ile                 245 250 255 Ala Gly Ala Ala Asn Asn Gln Leu Lys Glu Thr Arg His Gly Asp Gln             260 265 270 Ile His Glu Met Gly Ile Val Tyr Ala Pro Asp Tyr Val Ile Asn Ala         275 280 285 Gly Gly Val Ile Asn Val Ala Asp Glu Leu Tyr Gly Tyr Asn Ala Glu     290 295 300 Arg Ala Leu Lys Lys Val Glu Gly Ile Tyr Gly Asn Ile Glu Arg Val 305 310 315 320 Leu Glu Ile Ser Gln Arg Asp Gly Ile Pro Ala Tyr Leu Ala Ala Asp                 325 330 335 Arg Leu Ala Glu Glu Arg Ile Glu Arg Met Arg Arg Ser Ser Arg Ser Gln             340 345 350 Phe Leu Gln Asn Gly His Ser Val Leu Ser Arg Arg         355 360 <210> 84 <211> 364 <212> PRT <213> Bacillus subtilis <400> 84 Met Glu Leu Phe Lys Tyr Met Glu Lys Tyr Asp Tyr Glu Gln Leu Val 1 5 10 15 Phe Cys Gln Asp Glu Gln Ser Gly Leu Lys Ala Ile Ala Ile His             20 25 30 Asp Thr Thr Leu Gly Pro Ala Leu Gly Gly Thr Arg Met Trp Thr Tyr         35 40 45 Glu Asn Glu Glu Ala Glu Asp Ala Leu Arg Leu Ala Arg Gly     50 55 60 Met Thr Tyr Lys Asn Ala Ala Gly Leu Asn Leu Gly Gly Gly Lys 65 70 75 80 Thr Val Ile Ile Gly Asp Pro Arg Lys Asp Lys Asn Glu Glu Met Phe                 85 90 95 Arg Ala Phe Gly Arg Tyr Ile Gln Gly Leu Asn Gly Arg Tyr Ile Thr             100 105 110 Ala Glu Asp Val Gly Thr Thr Val Asp Met Asp Ile Ile His Asp         115 120 125 Glu Thr Asp Tyr Val Thr Gly Ile Ser Pro Ala Phe Gly Ser Ser Gly     130 135 140 Asn Pro Ser Pro Val Thr Ala Tyr Gly Val Tyr Arg Gly Met Lys Ala 145 150 155 160 Ala Ala Lys Ala Ala Phe Gly Thr Asp Ser Leu Glu Gly Lys Thr Ile                 165 170 175 Ala Val Gln Gly Val Gly Asn Val Ala Tyr Asn Leu Cys Arg His Leu             180 185 190 His Glu Glu Gly Ala Asn Leu Ile Val Thr Asp Ile Asn Lys Gln Ser         195 200 205 Val Gln Arg Ala Val Glu Asp Phe Gly Ala Arg Ala Val Asp Pro Asp     210 215 220 Asp Ile Tyr Ser Gln Asp Cys Asp Ile Tyr Ala Pro Cys Ala Leu Gly 225 230 235 240 Ala Thr Ile Asn Asp Asp Thr Ile Lys Gln Leu Lys Ala Lys Val Ile                 245 250 255 Ala Gly Ala Ala Asn Asn Gln Leu Lys Glu Thr Arg His Gly Asp Gln             260 265 270 Ile His Glu Met Gly Ile Val Tyr Ala Pro Asp Tyr Val Ile Asn Ala         275 280 285 Gly Gly Val Ile Asn Val Ala Asp Glu Leu Tyr Gly Tyr Asn Ala Glu     290 295 300 Arg Ala Leu Lys Lys Val Glu Gly Ile Tyr Gly Asn Ile Glu Arg Val 305 310 315 320 Leu Glu Ile Ser Gln Arg Asp Gly Ile Pro Ala Tyr Leu Ala Ala Asp                 325 330 335 Arg Leu Ala Glu Glu Arg Ile Glu Arg Met Arg Arg Ser Ser Arg Ser Gln             340 345 350 Phe Leu Gln Asn Gly His Ser Val Leu Ser Arg Arg         355 360 <210> 85 <211> 594 <212> PRT <213> Streptomyces viridifaciens <400> 85 Met Ser Thr Ser Ser Ala Ser Ser Gly Pro Asp Leu Pro Phe Gly Pro 1 5 10 15 Glu Asp Thr Pro Trp Gln Lys Ala Phe Ser Arg Leu Arg Ala Val Asp             20 25 30 Gly Val Pro Arg Val Thr Ala Pro Ser Ser Asp Pro Arg Glu Val Tyr         35 40 45 Met Asp Ile Pro Glu Ile Pro Phe Ser Lys Val Gln Ile Pro Pro Asp     50 55 60 Gly Met Asp Glu Gln Gln Tyr Ala Glu Ala Glu Ser Leu Phe Arg Arg 65 70 75 80 Tyr Val Asp Ala Gln Thr Arg Asn Phe Ala Gly Tyr Gln Val Thr Ser                 85 90 95 Asp Leu Asp Tyr Gln His Leu Ser His Tyr Leu Asn Arg His Leu Asn             100 105 110 Asn Val Gly Asp Pro Tyr Glu Ser Ser Ser Tyr Thr Leu Asn Ser Lys         115 120 125 Val Leu Glu Arg Ala Val Leu Asp Tyr Phe Ala Ser Leu Trp Asn Ala     130 135 140 Lys Trp Pro His Asp Ala Ser Asp Pro Glu Thr Tyr Trp Gly Tyr Val 145 150 155 160 Leu Thr Met Gly Ser Ser Glu Gly Asn Leu Tyr Gly Leu Trp Asn Ala                 165 170 175 Arg Asp Tyr Leu Ser Gly Lys Leu Leu Arg Arg Gln His Arg Glu Ala             180 185 190 Gly Gly Asp Lys Ala Ser Val Val Tyr Thr Gln Ala Leu Arg His Glu         195 200 205 Gly Gln Ser Pro His Ala Tyr Glu Pro Val Ala Phe Ser Ser Gln Asp     210 215 220 Thr His Tyr Ser Leu Thr Lys Ala Val Arg Val Leu Gly Ile Asp Thr 225 230 235 240 Phe His Ser Ile Gly Ser Ser Arg Tyr Pro Asp Glu Asn Pro Leu Gly                 245 250 255 Pro Gly Thr Pro Trp Pro Thr Gly Val Pro Ser Val Asp Gly Ala Ile             260 265 270 Asp Val Asp Lys Leu Ala Ser Leu Val Arg Phe Phe Ala Ser Lys Gly         275 280 285 Tyr Pro Ile Leu Val Ser Leu Asn Tyr Gly Ser Thr Phe Lys Gly Ala     290 295 300 Tyr Asp Asp Val Pro Ala Val Ala Gln Ala Val Arg Asp Ile Cys Thr 305 310 315 320 Glu Tyr Gly Leu Asp Arg Arg Arg Val Tyr His Asp Arg Ser Lys Asp                 325 330 335 Ser Asp Phe Asp Glu Arg Ser Gly Phe Trp Ile His Ile Asp Ala Ala             340 345 350 Leu Gly Ala Gly Tyr Ala Pro Tyr Leu Gln Met Ala Arg Asp Ala Gly         355 360 365 Met Val Glu Glu Ala Pro Pro Val Phe Asp Phe Arg Leu Pro Glu Val     370 375 380 His Ser Leu Thr Met Ser Gly His Lys Trp Met Gly Thr Pro Trp Ala 385 390 395 400 Cys Gly Val Tyr Met Thr Arg Thr Gly Leu Gln Met Thr Pro Pro Lys                 405 410 415 Ser Ser Glu Tyr Ile Gly Ala Ala Asp Thr Thr Phe Ala Gly Ser Arg             420 425 430 Asn Gly Phe Ser Leu Leu Leu Trp Asp Tyr Leu Ser Arg His Ser         435 440 445 Tyr Asp Asp Leu Val Arg Leu Ala Ala Asp Cys Asp Arg Leu Ala Gly     450 455 460 Tyr Ala His Asp Arg Leu Leu Thr Leu Gln Asp Lys Leu Gly Met Asp 465 470 475 480 Leu Trp Val Ala Arg Ser Pro Gln Ser Leu Thr Val Arg Phe Arg Gln                 485 490 495 Pro Cys Ala Asp Ile Val Arg Lys Tyr Ser Leu Ser Cys Glu Thr Val             500 505 510 Tyr Glu Asp Asn Glu Gln Arg Thr Tyr Val His Leu Tyr Ala Val Pro         515 520 525 His Leu Thr Arg Glu Leu Val Asp Glu Leu Val Arg Asp Leu Arg Gln     530 535 540 Pro Gly Ala Phe Thr Asn Ala Glu Ala Leu Glu Gly Glu Ala Trp Ala 545 550 555 560 Gly Val Ile Asp Ala Leu Gly Arg Pro Asp Pro Asp Gly Thr Tyr Ala                 565 570 575 Gly Ala Leu Ser Ala Pro Ala Ser Gly Pro Arg Ser Glu Asp Gly Gly             580 585 590 Gly Ser          <210> 86 <211> 1785 <212> DNA <213> Streptomyces viridifaciens <400> 86 gtgtcaactt cctccgcttc ttccgggccg gacctcccct tcgggcccga ggacacgcca 60 tggcagaagg ccttcagcag gctgcgggcg gtggatggcg tgccgcgcgt caccgcgccg 120 tccagtgatc cgcgtgaggt ctacatggac atcccggaga tccccttctc caaggtccag 180 atccccccgg acggaatgga cgagcagcag tacgcagagg ccgagagcct cttccgccgc 240 tacgtagacg cccagacccg caacttcgcg ggataccagg tcaccagcga cctcgactac 300 cagcacctca gtcactatct caaccggcat ctgaacaacg tcggcgatcc ctatgagtcc 360 agctcctaca cgctgaactc caaggtcctt gagcgagccg ttctcgacta cttcgcctcc 420 ctgtggaacg ccaagtggcc ccatgacgca agcgatccgg aaacgtactg gggttacgtg 480 ctgaccatgg gctccagcga aggcaacctg tacgggttgt ggaacgcacg ggactatctg 540 tcgggcaagc tgctgcggcg ccagcaccgg gaggccggcg gcgacaaggc ctcggtcgtc 600 tacacgcaag cgctgcgaca cgaagggcag agtccgcatg cctacgagcc ggtggcgttc 660 ttctcgcagg acacgcacta ctcgctcacg aaggccgtgc gggttctggg catcgacacc 720 ttccacagca tcggcagcag tcggtatccg gacgagaacc cgctgggccc cggcactccg 780 tggccgaccg aagtgccctc ggttgacggt gccatcgatg tcgacaaact cgcctcgttg 840 gtccgcttct tcgccagcaa gggctacccg atactggtca gcctcaacta cgggtcaacg 900 ttcaagggcg cctacgacga cgtcccggcc gtggcacagg ccgtgcggga catctgcacg 960 gaatacggtc tggatcggcg gcgggtatac cacgaccgca gtaaggacag tgacttcgac 1020 gagcgcagcg gcttctggat ccacatcgat gccgccctgg gggcgggcta cgctccctac 1080 ctgcagatgg cccgggatgc cggcatggtc gaggaggcgc cgcccgtttt cgacttccgg 1140 ctcccggagg tgcactcgct gaccatgagc ggccacaagt ggatgggaac accgtgggca 1200 tgcggtgtct acatgacacg gaccgggctg cagatgaccc cgccgaagtc gtccgagtac 1260 atcggggcgg ccgacaccac cttcgcgggc tcccgcaacg gcttctcgtc actgctgctg 1320 tgggactacc tgtcccggca ttcgtatgac gatctggtgc gcctggccgc cgactgcgac 1380 cggctggccg gctacgccca cgaccggttg ctgaccttgc aggacaaact cggcatggat 1440 ctgtgggtcg cccgcagccc gcagtccctc acggtgcgct tccgtcagcc atgtgcagac 1500 atcgtccgca agtactcgct gtcgtgtgag acggtctacg aagacaacga gcaacggacc 1560 tacgtacatc tctacgccgt tccccacctc actcgggaac tcgtggatga gctcgtgcgc 1620 gatctgcgcc agcccggagc cttcaccaac gctggtgcac tggaggggga ggcctgggcc 1680 ggggtgatcg atgccctcgg ccgcccggac cccgacggaa cctatgccgg cgccttgagc 1740 gctccggctt ccggcccccg ctccgaggac ggcggcggga gctga 1785 <210> 87 <211> 440 <212> PRT <213> Alcaligenes denitrificans <400> 87 Met Ser Ala Ala Lys Leu Pro Asp Leu Ser His Leu Trp Met Pro Phe 1 5 10 15 Thr Ala Asn Arg Gln Phe Lys Ala Asn Pro Arg Leu Leu Ala Ser Ala             20 25 30 Lys Gly Met Tyr Tyr Thr Ser Phe Asp Gly Arg Gln Ile Leu Asp Gly         35 40 45 Thr Ala Gly Leu Trp Cys Val Asn Ala Gly His Cys Arg Glu Glu Ile     50 55 60 Val Ser Ala Ile Ala Ser Gln Ala Gly Val Met Asp Tyr Ala Pro Gly 65 70 75 80 Phe Gln Leu Gly His Pro Leu Ala Phe Glu Ala Ala Thr Ala Val Ala                 85 90 95 Gly Leu Met Pro Gln Gly Leu Asp Arg Val Phe Phe Thr Asn Ser Gly             100 105 110 Ser Glu Ser Val Asp Thr Ala Leu Lys Ile Ala Leu Ala Tyr His Arg         115 120 125 Ala Arg Gly Glu Ala Gln Arg Thr Arg Leu Ile Gly Arg Glu Arg Gly     130 135 140 Tyr His Gly Val Gly Phe Gly Gly Ile Ser Val Gly Gly Ile Ser Pro 145 150 155 160 Asn Arg Lys Thr Phe Ser Gly Ala Leu Leu Pro Ala Val Asp His Leu                 165 170 175 Pro His Thr His Ser Leu Glu His Asn Ala Phe Thr Arg Gly Gln Pro             180 185 190 Glu Trp Gly Ala His Leu Ala Asp Glu Leu Glu Arg Ile Ile Ala Leu         195 200 205 His Asp Ala Ser Thr Ile Ala Ala Val Ile Val Glu Pro Met Ala Gly     210 215 220 Ser Thr Gly Val Leu Val Pro Lys Gly Tyr Leu Glu Lys Leu Arg 225 230 235 240 Glu Ile Thr Ala Arg His Gly Ile Leu Leu Ile Phe Asp Glu Val Ile                 245 250 255 Thr Ala Tyr Gly Arg Glu Aly Ala Ala Tyr Phe Gly             260 265 270 Val Thr Pro Asp Leu Ile Thr Met Ala Lys Gly Val Ser Asn Ala Ala         275 280 285 Val Pro Ala Gly Ala Val Ala Val Arg Arg Glu Val His Asp Ala Ile     290 295 300 Val Asn Gly Pro Gln Gly Gly Ile Glu Phe Phe His Gly Tyr Thr Tyr 305 310 315 320 Ser Ala His Pro Leu Ala Ala Ala Val Leu Ala Thr Leu Asp Ile                 325 330 335 Tyr Arg Arg Glu Asp Leu Phe Ala Arg Ala Arg Lys Leu Ser Ala Ala             340 345 350 Phe Glu Glu Ala Ala His Ser Leu Lys Gly Ala Pro His Val Ile Asp         355 360 365 Val Arg Asn Ile Gly Leu Val Ala Gly Ile Glu Leu Ser Pro Arg Glu     370 375 380 Gly Ala Pro Gly Ala Arg Ala Ala Glu Ala Phe Gln Lys Cys Phe Asp 385 390 395 400 Thr Gly Leu Met Val Arg Tyr Thr Gly Asp Ile Leu Ala Val Ser Pro                 405 410 415 Pro Leu Ile Val Asp Glu Asn Gln Ile Gly Gln Ile Phe Glu Gly Ile             420 425 430 Gly Lys Val Leu Lys Glu Val Ala         435 440 <210> 88 <211> 1947 <212> DNA <213> Alcaligenes denitrificans <400> 88 ttcgatggcg cgctgcacgg cggccaccag ctgctccacc aggggtgggc gcctgcccgc 60 gcgcgcggtc gggctggaaa tcgatcatgg atgaatctat acagttgtca tgattgcaac 120 tatacagtta gcccgttttg cggcaattgt atattttcat tcgctcgtgg acgtccgaga 180 atcggtttga tcgcgccgcc cgcccctttc cgcgcagcgg cgtttctttt cctccggagt 240 ctccccatga gcgctgccaa actgcccgac ctgtcccacc tctggatgcc ctttaccgcc 300 aaccggcagt tcaaggcgaa cccccgcctg ctggcctcgg ccaagggcat gtactacacg 360 tctttcgacg gccgccagat cctggacggc acggccggcc tgtggtgcgt gaacgccggc 420 cactgccgcg aagaaatcgt ctccgccatc gccagccagg ccggcgtcat ggactacgcg 480 ccggggttcc agctcggcca cccgctggcc ttcgaggccg ccaccgccgt ggccggcctg 540 atgccgcagg gcctggaccg cgtgttcttc accaattcgg gctccgaatc ggtggacacc 600 gcgctgaaga tcgccctggc ctaccaccgc gcgcgcggcg aggcgcagcg cacccgcctc 660 atcgggcgcg agcgcggcta ccacggcgtg ggcttcggcg gcatttccgt gggcggcatc 720 tcgcccaacc gcaagacctt ctccggcgcg ctgctgccgg ccgtggacca cctgccgcac 780 acccacagcc tggaacacaa cgccttcacg cgcggccagc ccgagtgggg cgcgcacctg 840 gccgacgagt tggaacgcat catcgccctg cacgacgcct ccaccatcgc ggccgtgatc 900 gtcgagccca tggccggctc caccggcgtg ctcgtcccgc ccaagggcta tctcgaaaaa 960 ctgcgcgaaa tcaccgcccg ccacggcatt ctgctgatct tcgacgaagt catcaccgcg 1020 tacggccgcc tgggcgaggc caccgccgcg gcctatttcg gcgtaacgcc cgacctcatc 1080 accatggcca agggcgtgag caacgccgcc gttccggccg gcgccgtcgc ggtgcgccgc 1140 gaagtgcatg acgccatcgt caacggaccg caaggcggca tcgagttctt ccacggctac 1200 acctactcgg cccacccgct ggccgccgcc gccgtgctcg ccacgctgga catctaccgc 1260 cgcgaagacc tgttcgcccg cgcccgcaag ctgtcggccg cgttcgagga agccgcccac 1320 agcctcaagg gcgcgccgca cgtcatcgac gtgcgcaaca tcggcctggt ggccggcatc 1380 gagctgtcgc cgcgcgaagg cgccccgggc gcgcgcgccg ccgaagcctt ccagaaatgc 1440 ttcgacaccg gcctcatggt gcgctacacg ggcgacatcc tcgcggtgtc gcctccgctc 1500 atcgtcgacg aaaaccagat cggccagatc ttcgagggca tcggcaaggt gctcaaggaa 1560 gtggcttagg gtgaacacgc cctgagccgg ccccggcagg aaacgcgccg ccgcgcggcg 1620 gcgcgtccat cgaactcccg catcgagctt ttgcattcat gaagaaaatc acgcatttca 1680 tcaacggcca gccccacgaa ggccgcagca accgctacac cgagggcttc aacccggcca 1740 cgggcgagtc gtctcctcga tctgcctggg cggggccgaa gaagtggacc tggccgtggc 1800 ggccgcccgc gcggcctttc ccgcctggtc cgaaacgccg gcgctcaagc gcgcgcgcgt 1860 gctgttcaac ttcaaggcgc tgctggacaa gcaccaggac gagctggccg cgctcatcac 1920 gcgcgagcac ggcaaggtgt tttccga 1947 <210> 89 <211> 443 <212> PRT <213> Ralstonia eutropha <400> 89 Met Asp Ala Ala Lys Thr Val Ile Pro Asp Leu Asp Ala Leu Trp Met 1 5 10 15 Pro Phe Thr Ala Asn Arg Gln Tyr Lys Ala Ala Pro Arg Leu Leu Ala             20 25 30 Ser Ala Ser Gly Met Tyr Tyr Thr Thr His Asp Gly Arg Gln Ile Leu         35 40 45 Asp Gly Cys Ala Gly Leu Trp Cys Val Ala Gly His Cys Arg Lys     50 55 60 Glu Ile Ala Glu Ala Val Ala Arg Gln Ala Ala Thr Leu Asp Tyr Ala 65 70 75 80 Pro Pro Phe Gln Met Gly His Pro Leu Ser Phe Glu Ala Ala Thr Lys                 85 90 95 Val Ala Ile Met Pro Gln Gly Leu Asp Arg Ile Phe Phe Thr Asn             100 105 110 Ser Gly Ser Glu Ser Val Asp Thr Ala Leu Lys Ile Ala Leu Ala Tyr         115 120 125 His Arg Ala Arg Gly Glu Gly Gln Arg Thr Arg Phe Ile Gly Arg Glu     130 135 140 Arg Gly Tyr His Gly Val Gly Phe Gly Gly Met Ala Val Gly Gly Ile 145 150 155 160 Gly Pro Asn Arg Lys Ala Phe Ser Ala Asn Leu Met Pro Gly Thr Asp                 165 170 175 His Leu Pro Ala Thr Leu Asn Ile Ala Glu Ala Ala Phe Ser Lys Gly             180 185 190 Gln Pro Thr Trp Gly Ala His Leu Ala Asp Glu Leu Glu Arg Ile Val         195 200 205 Ala Leu His Asp Pro Ser Thr Ile Ala Ala Val Ile Val Glu Pro Leu     210 215 220 Ala Gly Ser Ala Gly Val Leu Val Pro Pro Val Gly Tyr Leu Asp Lys 225 230 235 240 Leu Arg Glu Ile Thr Thr Lys His Gly Ile Leu Leu Ile Phe Asp Glu                 245 250 255 Val Ile Thr Ala Phe Gly Arg Leu Gly Thr Ala Thr Ala Ala Glu Arg             260 265 270 Phe Lys Val Thr Pro Asp Leu Ile Thr Met Ala Lys Ala Ile Asn Asn         275 280 285 Ala Ala Val Met Gly Ala Val Ala Val Arg Arg Glu Val His Asp     290 295 300 Thr Val Val Asn Ser Ala Ala Pro Gly Ala Ile Glu Leu Ala His Gly 305 310 315 320 Tyr Thr Tyr Ser Gly His Pro Leu Ala Ala Ala Ala Ile Ala Thr                 325 330 335 Leu Asp Leu Tyr Gln Arg Glu Asn Leu Phe Gly Arg Ala Ala Glu Leu             340 345 350 Ser Pro Val Phe Glu Ala Ala Val His Ser Val Arg Ser Ala Pro His         355 360 365 Val Lys Asp Ile Arg Asn Leu Gly Met Val Ala Gly Ile Glu Leu Glu     370 375 380 Pro Arg Pro Gly Gln Pro Gly Ala Arg Ala Tyr Glu Ala Phe Leu Lys 385 390 395 400 Cys Leu Glu Arg Gly Val Leu Val Arg Tyr Thr Gly Asp Ile Leu Ala                 405 410 415 Phe Ser Pro Pro Leu Ile Ile Ser Glu Ala Gln Ile Ala Glu Leu Phe             420 425 430 Asp Thr Val Lys Gln Ala Leu Gln Glu Val Gln         435 440 <210> 90 <211> 1341 <212> DNA <213> Ralstonia eutropha <400> 90 atggccgact cacccaacaa cctcgctcac gaacatcctt cacttgaaca ctattggatg 60 ccttttaccg ccaatcgcca attcaaagcg agccctcgtt tactcgccca agctgaaggt 120 atgtattaca cagatatcaa tggcaacaag gtattagact ctacagcggg cttatggtgt 180 tgtaatgctg gccatggtcg ccgtgagatc agtgaagccg tcagcaaaca aattcggcag 240 atggattacg ctccctcctt ccaaatgggc catcccatcg cttttgaact ggccgaacgt 300 ttaaccgaac tcagcccaga aggactcaac aaagtattct ttaccaactc aggctctgag 360 tcggttgata ccgcgctaaa aatggctctt tgctaccata gagccaatgg ccaagcgtca 420 cgcacccgct ttattggccg tgaaatgggt taccatggcg taggatttgg tgggatctcg 480 gtgggtggtt taagcaataa ccgtaaagcc ttcagcggcc agctattgca aggcgtggat 540 cacctgcccc acaccttaga cattcaacat gccgccttta gtcgtggctt accgagcctc 600 ggtgctgaaa aagctgaggt attagaacaa ttagtcacac tccatggcgc cgaaaatatt 660 gccgccgtta ttgttgaacc catgtcaggt tctgcagggg taattttacc acctcaaggc 720 tacttaaaac gcttacgtga aatcactaaa aaacacggca tcttattgat tttcgatgaa 780 gtcattaccg catttggccg tgtaggtgca gcattcgcca gccaacgttg gggcgttatt 840 ccagacataa tcaccacggc taaagccatt aataatggcg ccatccccat gggcgcagtg 900 tttgtacagg attatatcca cgatacttgc atgcaagggc caaccgaact gattgaattt 960 ttccacggtt atacctattc gggccaccca gtcgccgcag cagcagcact cgccacgctc 1020 tccatctacc aaaacgagca actgtttgag cgcagttttg agcttgagcg gtatttcgaa 1080 gaagccgttc atagcctcaa agggttaccg aatgtgattg atattcgcaa caccggatta 1140 gtcgcgggtt tccagctagc accgaatagc caaggtgttg gtaaacgcgg atacagcgtg 1200 ttcgagcatt gtttccatca aggcacactc gtgcgggcaa cgggcgatat tatcgccatg 1260 tccccaccac tcattgttga gaaacatcag attgaccaaa tggtaaatag ccttagcgat 1320 gcaattcacg ccgttggatg a 1341 <210> 91 <211> 446 <212> PRT <213> Shewanella oneidensis <400> 91 Met Ala Asp Ser Pro Asn Asn Leu Ala His Glu His Pro Ser Leu Glu 1 5 10 15 His Tyr Trp Met Pro Phe Thr Ala Asn Arg Gln Phe Lys Ala Ser Pro             20 25 30 Arg Leu Leu Ala Gln Ala Glu Gly Met Tyr Tyr Thr Asp Ile Asn Gly         35 40 45 Asn Lys Val Leu Asp Ser Thr Ala Gly Leu Trp Cys Cys Asn Ala Gly     50 55 60 His Gly Arg Arg Glu Ile Ser Glu Ala Val Ser Lys Gln Ile Arg Gln 65 70 75 80 Met Asp Tyr Ala Pro Ser Phe Gln Met Gly His Pro Ile Ala Phe Glu                 85 90 95 Leu Ala Glu Arg Leu Thr Glu Leu Ser Pro Glu Gly Leu Asn Lys Val             100 105 110 Phe Phe Thr Asn Ser Gly Ser Glu Ser Val Asp Thr Ala Leu Lys Met         115 120 125 Ala Leu Cys Tyr His Arg Ala Asn Gly Gln Ala Ser Arg Thr Arg Phe     130 135 140 Ile Gly Arg Glu Met Gly Tyr His Gly Val Gly Phe Gly Gly Ile Ser 145 150 155 160 Val Gly Gly Leu Ser Asn Asn Arg Lys Ala Phe Ser Gly Gln Leu Leu                 165 170 175 Gln Gly Val Asp His Leu Pro His Thr Leu Asp Ile Gln His Ala Ala             180 185 190 Phe Ser Arg Gly Leu Pro Ser Leu Gly Ala Glu Lys Ala Glu Val Leu         195 200 205 Glu Gln Leu Val Thr Leu His Gly Ala Glu Asn Ile Ala Ala Val Ile     210 215 220 Val Glu Pro Met Ser Gly Ser Ala Gly Val Ile Leu Pro Pro Gln Gly 225 230 235 240 Tyr Leu Lys Arg Leu Arg Glu Ile Thr Lys Lys His Gly Ile Leu Leu                 245 250 255 Ile Phe Asp Glu Val Ile Thr Ala Phe Gly             260 265 270 Ala Ser Gln Arg Trp Gly Val Ile Pro Asp Ile Ile Thr Thr Ala Lys         275 280 285 Ala Ile Asn Asn Gly Ala Ile Pro Met Gly Ala Val Phe Val Gln Asp     290 295 300 Tyr Ile His Asp Thr Cys Met Gln Gly Pro Thr Glu Leu Ile Glu Phe 305 310 315 320 Phe His Gly Tyr Thr Tyr Ser Gly His Pro Val Ala Ala Ala Ala Ala                 325 330 335 Leu Ala Thr Leu Ser Ile Tyr Gln Asn Glu Gln Leu Phe Glu Arg Ser             340 345 350 Phe Glu Leu Glu Arg Tyr Phe Glu Glu Ala Val His Ser Leu Lys Gly         355 360 365 Leu Pro Asn Val Ile Asp Ile Arg Asn Thr Gly Leu Val Ala Gly Phe     370 375 380 Gln Leu Ala Pro Asn Ser Gln Gly Val Gly Lys Arg Gly Tyr Ser Val 385 390 395 400 Phe Glu His Cys Phe His Gln Gly Thr Leu Val Arg Ala Thr Gly Asp                 405 410 415 Ile Ile Ala Met Ser Pro Pro Leu Ile Val Glu Lys His Gln Ile Asp             420 425 430 Gln Met Val Asn Ser Leu Ser Asp Ala Ile His Ala Val Gly         435 440 445 <210> 92 <211> 1341 <212> DNA <213> Shewanella oneidensis <400> 92 atggccgact cacccaacaa cctcgctcac gaacatcctt cacttgaaca ctattggatg 60 ccttttaccg ccaatcgcca attcaaagcg agccctcgtt tactcgccca agctgaaggt 120 atgtattaca cagatatcaa tggcaacaag gtattagact ctacagcggg cttatggtgt 180 tgtaatgctg gccatggtcg ccgtgagatc agtgaagccg tcagcaaaca aattcggcag 240 atggattacg ctccctcctt ccaaatgggc catcccatcg cttttgaact ggccgaacgt 300 ttaaccgaac tcagcccaga aggactcaac aaagtattct ttaccaactc aggctctgag 360 tcggttgata ccgcgctaaa aatggctctt tgctaccata gagccaatgg ccaagcgtca 420 cgcacccgct ttattggccg tgaaatgggt taccatggcg taggatttgg tgggatctcg 480 gtgggtggtt taagcaataa ccgtaaagcc ttcagcggcc agctattgca aggcgtggat 540 cacctgcccc acaccttaga cattcaacat gccgccttta gtcgtggctt accgagcctc 600 ggtgctgaaa aagctgaggt attagaacaa ttagtcacac tccatggcgc cgaaaatatt 660 gccgccgtta ttgttgaacc catgtcaggt tctgcagggg taattttacc acctcaaggc 720 tacttaaaac gcttacgtga aatcactaaa aaacacggca tcttattgat tttcgatgaa 780 gtcattaccg catttggccg tgtaggtgca gcattcgcca gccaacgttg gggcgttatt 840 ccagacataa tcaccacggc taaagccatt aataatggcg ccatccccat gggcgcagtg 900 tttgtacagg attatatcca cgatacttgc atgcaagggc caaccgaact gattgaattt 960 ttccacggtt atacctattc gggccaccca gtcgccgcag cagcagcact cgccacgctc 1020 tccatctacc aaaacgagca actgtttgag cgcagttttg agcttgagcg gtatttcgaa 1080 gaagccgttc atagcctcaa agggttaccg aatgtgattg atattcgcaa caccggatta 1140 gtcgcgggtt tccagctagc accgaatagc caaggtgttg gtaaacgcgg atacagcgtg 1200 ttcgagcatt gtttccatca aggcacactc gtgcgggcaa cgggcgatat tatcgccatg 1260 tccccaccac tcattgttga gaaacatcag attgaccaaa tggtaaatag ccttagcgat 1320 gcaattcacg ccgttggatg a 1341 <210> 93 <211> 448 <212> PRT <213> Pseudomonas putida <400> 93 Met Asn Met Pro Glu Thr Gly Pro Ala Gly Ile Ala Ser Gln Leu Lys 1 5 10 15 Leu Asp Ala His Trp Met Pro Tyr Thr Ala Asn Arg Asn Phe Gln Arg             20 25 30 Asp Pro Arg Leu Ile Val Ala Ala Glu Gly Asn Tyr Leu Val Asp Asp         35 40 45 His Gly Arg Lys Ile Phe Asp Ala Leu Ser Gly Leu Trp Thr Cys Gly     50 55 60 Ala Gly His Thr Arg Lys Glu Ile Ala Asp Ala Val Thr Arg Gln Leu 65 70 75 80 Ser Thr Leu Asp Tyr Ser Pro Ala Phe Gln Phe Gly His Pro Leu Ser                 85 90 95 Phe Gln Leu Ala Glu Lys Ile Ala Glu Leu Val Pro Gly Asn Leu Asn             100 105 110 His Val Phe Tyr Thr Asn Ser Gly Ser Glu Cys Ala Asp Thr Ala Leu         115 120 125 Lys Met Val Arg Ala Tyr Trp Arg Leu Lys Gly Gln Ala Thr Lys Thr     130 135 140 Lys Ile Ile Gly Arg Ala Arg Gly Tyr His Gly Val Asn Ile Ala Gly 145 150 155 160 Thr Ser Leu Gly Gly Val Asn Gly Asn Arg Lys Met Phe Gly Gln Leu                 165 170 175 Leu Asp Val Asp His Leu Pro His Thr Val Leu Pro Val Asn Ala Phe             180 185 190 Ser Lys Gly Leu Pro Glu Glu Gly Gly Ile Ala Leu Ala Asp Glu Met         195 200 205 Leu Lys Leu Ile Glu Leu His Asp Ala Ser Asn Ile Ala Ala Val Ile     210 215 220 Val Glu Pro Leu Ala Gly Ser Ala Gly Val Leu Pro Pro Pro Lys Gly 225 230 235 240 Tyr Leu Lys Arg Leu Arg Glu Ile Cys Thr Gln His Asn Ile Leu Leu                 245 250 255 Ile Phe Asp Glu Val Ile Thr Gly Phe Gly Arg Met Gly Ala Met Thr             260 265 270 Gly Ser Glu Ala Phe Gly Val Thr Pro Asp Leu Met Cys Ile Ala Lys         275 280 285 Gln Val Thr Asn Gly Ala Ile Pro Gly Ala Val Ile Ala Ser Ser     290 295 300 Glu Ile Tyr Gln Thr Phe Met Asn Gln Pro Thr Pro Glu Tyr Ala Val 305 310 315 320 Glu Phe Pro His Gly Tyr Thr Tyr Ser Ala His Pro Val Ala Cys Ala                 325 330 335 Ala Gly Leu Ala Ala Leu Asp Leu Leu Gln Lys Glu Asn Leu Val Gln             340 345 350 Ser Ala Ala Glu Leu Ala Pro His Phe Glu Lys Leu Leu His Gly Val         355 360 365 Lys Gly Thr Lys Asn Ile Val Asp Ile Arg Asn Tyr Gly Leu Ala Gly     370 375 380 Ala Ile Gln Ile Ala Ala Arg Asp Gly Asp Ala Ile Val Arg Pro Tyr 385 390 395 400 Glu Ala Ala Met Lys Leu Trp Lys Ala Gly Phe Tyr Val Arg Phe Gly                 405 410 415 Gly Asp Thr Leu Gln Phe Gly Pro Thr Phe Asn Thr Lys Pro Gln Glu             420 425 430 Leu Asp Arg Leu Phe Asp Ala Val Gly Glu Thr Leu Asn Leu Ile Asp         435 440 445 <210> 94 <211> 930 <212> DNA <213> Pseudomonas putida <400> 94 atgaccacga agaaagctga ttacatttgg ttcaatgggg agatggttcg ctgggaagac 60 gcgaaggtgc atgtgatgtc gcacgcgctg cactatggca cttcggtttt tgaaggcatc 120 cgttgctacg actcgcacaa aggaccggtt gtattccgcc atcgtgagca tatgcagcgt 180 ctgcatgact ccgccaaaat ctatcgcttc ccggtttcgc agagcattga tgagctgatg 240 gt; atcttcgtcg gtgatgttgg catgggagta aacccgccag cgggatactc aaccgacgtg 360 attatcgctg ctttcccgtg gggagcgtat ctgggcgcag aagcgctgga gcaggggatc 420 gatgcgatgg tttcctcctg gaaccgcgca gcaccaaaca ccatcccgac ggcggcaaaa 480 gccggtggta actacctctc ttccctgctg gtgggtagcg aagcgcgccg ccacggttat 540 caggaaggta tcgcgctgga tgtgaacggt tatatctctg aaggcgcagg cgaaaacctg 600 tttgaagtga aagatggtgt gctgttcacc ccaccgttca cctcctccgc gctgccgggt 660 attacccgtg atgccatcat caaactggcg aaagagctgg gaattgaagt acgtgagcag 720 gtgctgtcgc gcgaatccct gtacctggcg gatgaagtgt ttatgtccgg tacggcggca 780 gaaatcacgc cagtgcgcag cgtagacggt attcaggttg gcgaaggccg ttgtggcccg 840 gttaccaaac gcattcagca agccttcttc ggcctcttca ctggcgaaac cgaagataaa 900 tggggctggt tagatcaagt taatcaataa 930 <210> 95 <211> 566 <212> PRT <213> Streptomyces cinnamonensis <400> 95 Met Asp Ala Asp Ala Ile Glu Glu Gly Arg Arg Arg Trp Gln Ala Arg 1 5 10 15 Tyr Asp Lys Ala Arg Lys Arg Asp Ala Asp Phe Thr Thr Leu Ser Gly             20 25 30 Asp Pro Val Asp Pro Val Tyr Gly Pro Arg Gly Asp Thr Tyr Asp         35 40 45 Gly Phe Glu Arg Ile Gly Trp Pro Gly Glu Tyr Pro Phe Thr Arg Gly     50 55 60 Leu Tyr Ala Thr Gly Tyr Arg Gly Arg Thr Trp Thr Ile Arg Gln Phe 65 70 75 80 Ala Gly Phe Gly Asn Ala Glu Gln Thr Asn Glu Arg Tyr Lys Met Ile                 85 90 95 Leu Ala Asn Gly Gly Gly Gly Leu Ser Val Ala Phe Asp Met Pro Thr             100 105 110 Leu Met Gly Arg Asp Ser Asp Asp Pro Arg Ser Leu Gly Glu Val Gly         115 120 125 His Cys Gly Val Ala Ile Asp Ser Ala Ala Asp Met Glu Val Leu Phe     130 135 140 Lys Asp Ile Pro Leu Gly Asp Val Thr Thr Ser Met Thr Ile Ser Gly 145 150 155 160 Pro Ala Val Pro Val Phe Cys Met Tyr Leu Val Ala Ala Glu Arg Gln                 165 170 175 Gly Val Asp Pro Ala Val Leu Asn Gly Thr Leu Gln Thr Asp Ile Phe             180 185 190 Lys Glu Tyr Ile Ala Gln Lys Glu Trp Leu Phe Gln Pro Glu Pro His         195 200 205 Leu Arg Leu Ile Gly Asp Leu Met Glu His Cys Ala Arg Asp Ile Pro     210 215 220 Ala Tyr Lys Pro Leu Ser Val Ser Gly Tyr His Ile Arg Glu Ala Gly 225 230 235 240 Ala Thr Ala Ala Gln Glu Leu Ala Tyr Thr Leu Ala Asp Gly Phe Gly                 245 250 255 Tyr Val Glu Leu Gly Leu Ser Arg Gly Leu Asp Val Asp Val Phe Ala             260 265 270 Pro Gly Leu Ser Phe Phe Phe Asp Ala His Val Asp Phe Phe Glu Glu         275 280 285 Ile Ala Lys Phe Arg Ala Arg Arg Ile Trp Ala Arg Trp Leu Arg     290 295 300 Asp Glu Tyr Gly Ala Lys Thr Glu Lys Ala Gln Trp Leu Arg Phe His 305 310 315 320 Thr Gln Thr Ala Gly Val Ser Leu Thr Ala Gln Gln Pro Tyr Asn Asn                 325 330 335 Val Val Arg Thr Ala Val Glu Ala Leu Ala Ala Val Leu Gly Gly Thr             340 345 350 Asn Ser Leu His Thr Asn Ala Leu Asp Glu Thr Leu Ala Leu Pro Ser         355 360 365 Glu Gln Ala Ala Glu Ile Ala Leu Arg Thr Gln Gln Val Leu Met Glu     370 375 380 Glu Thr Gly Val Ala Asn Val Ala Asp Pro Leu Gly Gly Ser Trp Tyr 385 390 395 400 Ile Glu Gln Leu Thr Asp Arg Ile Glu Ala Asp Ala Glu Lys Ile Phe                 405 410 415 Glu Gln Ile Arg Glu Arg Gly Arg Arg Ala Cys Pro Asp Gly Gln His             420 425 430 Pro Ile Gly Pro Ile Thr Ser Gly Ile Leu Arg Gly Ile Glu Asp Gly         435 440 445 Trp Phe Thr Gly Glu Ile Ala Glu Ser Ala Phe Gln Tyr Gln Arg Ser     450 455 460 Leu Glu Lys Gly Asp Lys Arg Val Val Gly Val Asn Cys Leu Glu Gly 465 470 475 480 Ser Val Thr Gly Asp Leu Glu Ile Leu Arg Val Ser His Glu Val Glu                 485 490 495 Arg Glu Gln Val Arg Glu Leu Ala Gly Arg Lys Gly Arg Arg Asp Asp             500 505 510 Ala Arg Val Ala Ala Ala Arg Asp Ala Met Leu Ala Ala Arg Asp         515 520 525 Gly Ser Asn Met Ile Ala Pro Met Leu Glu Ala Val Arg Ala Glu Ala     530 535 540 Thr Leu Gly Glu Ile Cys Gly Val Leu Arg Asp Glu Trp Gly Val Tyr 545 550 555 560 Val Glu Pro Pro Gly Phe                 565 <210> 96 <211> 4362 <212> DNA <213> Streptomyces cinnamonensis <400> 96 tgaggcgctg gatcgcctcg gagagcagct ggtaacggtc cgcgtggtac tcggccgggg 60 tgcagccgtc cacgatgtgc gggatcgcgt cgggctcgag gatcaccagg gcgggggcgt 120 cgccgatcgc gtcggcgaac gtgtccaccc agctccggta ggcctccgca ctggccgcgc 180 cgcccgcgga gtgctgaccg cagtcgcggt gcgggatgtt gtacgcgacg agtacggcgg 240 tgcggtcctc cttgaccgcg ccccgcgtcg ccttcgcgac gtcgggcgcc ggatcgtccc 300 cggccggcca cacggccatg gcccgttcgg agatgcgcct gagcgtctcg gcgtcctcgg 360 cgcggccctg ttcctcccac tgcctgacct ggcgcgcggc ggggctgtcg gggtcgaccc 420 agaaggtgcc ggcggggggc ccggcgctcg cggtggcggg cttgcgcacg gccgcctcct 480 ccttcgtgcc gtcggacccc gggtctgagg aggagcagcc tgccgggagc ccgagggcgg 540 cgagggccgc gagtgccgtg aacgtgcgga gcagccggtg catccagccc ccttgggcga 600 tggtgacagt gacggtcagt cagcccggca atcgttacat aaaggactat tcaagctctt 660 gtgccacacc gcctccggtg ccgagcgcga acccggcggg caccagagcc ccgccgcggc 720 cgcggagccg tacgtacgac cgaattgcga gacggggctg accaccatat gaccggcggg 780 taaggtcgat gccgtgccga agccgctcag cctccccttc gatcccatcg cccgcgccga 840 cgagctctgg aagcagcgct ggggatcggt cccggccatg ggcgcgatca cctcgatcat 900 gcgggcgcac cagatcctgc tcgccgaggt cgacgcggtc gtcaagccgt acggactgac 960 cttcgcgcgc tacgaggcgc tggtgctcct caccttctcg caggccggcg agttgccgat 1020 gtcgaagatc ggcgagcggc tcatggtgca cccgacctcg gtcacgaaca ccgtggaccg 1080 cctggtgaag tccggcctgg tcgacaagcg cccgaacccc aacgacggcc gcggcacgct 1140 cgcctccatc acggagaagg gccgcgaggt cgtcgaggcg gccacccgcg agctgatggc 1200 ggggacttc gggctcgggg tgtacgacgc ggaggagtgc ggggagatct tcgcgatgct 1260 gcggcccctg cgggtggcgg cgcgcgattt cgaggagcag tagggcccgc ccggtgagaa 1320 gtgggatcgg gtcgtcccgg tacgggcggg ggcggcgaag atcgcgtgaa aagggcggtt 1380 acgctcgtag ccatgaaacg cagcgtgctg acccgctacc gggtgatggc ctacgtcacc 1440 gccgtcatgc tcctcatcct gtgcgcctgc atggtggcca agtacggctt cgacaagggc 1500 gagggtctga ccctcgtcgt gtcgcaggtg cacggcgtgc tctacatcat ctacctgatc 1560 ttcgccttcg acctgggctc caaggcgaag tggccgttcg gcaagctgct ctgggtgctg 1620 gtctcgggca cgatcccgac cgccgccttc ttcgtcgagc gcaaggtcgc ccgtgacgtc 1680 gagccgctga tcgccgacgg ctccccggtc accgcgaagg cgtaacccgc accgccacgg 1740 acaggtccgt ggcggttggc catcgacttt tactaggacg tcctagtaaa ttcgatggta 1800 tggacgctga cgcgatcgag gaaggccgcc gacgctggca ggcccgttac gacaaggccc 1860 gcaagcgcga cgcggacttc accacgctct ccggggaccc cgtcgacccc gtctacggcc 1920 cccggcccgg ggacacgtac gacgggttcg agcggatcgg ctggccgggg gagtacccct 1980 tcacccgcgg gctctacgcc accgggtacc gcggccgcac ctggaccatc cgccagttcg 2040 ccggcttcgg caacgccgag cagacgaacg agcgctacaa gatgatcctg gccaacggcg 2100 gcggcggcct ctccgtcgcc ttcgacatgc cgaccctcat gggccgcgac tccgacgacc 2160 cgcgctcgct cggcgaggtc ggccactgcg gtgtcgccat cgactccgcc gccgacatgg 2220 aggtcctctt caaggacatc ccgctcggcg acgtcacgac gtccatgacc atcagcgggc 2280 ccgccgtgcc cgtcttctgc atgtacctcg tcgcggccga gcgccagggc gtcgacccgg 2340 ccgtcctcaa cggcacgctg cagaccgaca tcttcaagga gtacatcgcc cagaaggagt 2400 ggctcttcca gcccgagccg cacctgcgcc tcatcggcga cctgatggag cactgcgcgc 2460 gcgacatccc cgcgtacaag ccgctctcgg tctccggcta ccacatccgc gaggccgggg 2520 cgacggccgc gcaggagctc gcgtacaccc tcgcggacgg cttcgggtac gtggaactgg 2580 gcctctcgcg cggcctggac gtggacgtct tcgcgcccgg cctctccttc ttcttcgacg 2640 cgcacgtcga cttcttcgag gagatcgcga agttccgcgc cgcacgccgc atctgggcgc 2700 gctggctccg ggacgagtac ggagcgaaga ccgagaaggc acagtggctg cgcttccaca 2760 cgcagaccgc gggggtctcg ctcacggccc agcagccgta caacaacgtg gtgcggacgg 2820 cggtggaggc cctcgccgcg gtgctcggcg gcacgaactc cctgcacacc aacgctctcg 2880 acgagaccct tgccctcccc agcgagcagg ccgcggagat cgcgctgcgc acccagcagg 2940 tgctgatgga ggagaccggc gtcgccaacg tcgcggaccc gctgggcggc tcctggtaca 3000 tcgagcagct caccgaccgc atcgaggccg acgccgagaa gatcttcgag cagatcaggg 3060 agcgggggcg gcgggcctgc cccgacgggc agcacccgat cgggccgatc acctccggca 3120 tcctgcgcgg catcgaggac ggctggttca ccggcgagat cgccgagtcc gccttccagt 3180 accagcggtc cctggagaag ggcgacaagc gggtcgtcgg cgtcaactgc ctcgaaggct 3240 ccgtcaccgg cgacctggag atcctgcgcg tcagccacga ggtcgagcgc gagcaggtgc 3300 gggagcttgc ggggcgcaag gggcggcgtg acgatgcgcg ggtgcgggcc tcgctcgacg 3360 cgatgctcgc cgctgcgcgg gacgggtcga acatgattgc ccccatgctg gaggcggtgc 3420 gggccgaggc gaccctcggg gagatctgcg gggtgcttcg cgatgagtgg ggggtctacg 3480 tggagccgcc cgggttctga gggcgcgctc cctttgcctg cgggtctgct gtggctggtc 3540 gcgcagttcc ccgcacccct gaaagacccc ggcgctttcc cttcctggct cgcctcgtcg 3600 ctgtctgcgg ggccgtgggg gctggtcgcg cagttccccg cgcccctgcc cgcacctgcg 3660 ccccgccgcc tgcatgccgc ccccaccctg acgggggcgt tcggggccca ccctgacggg 3720 tgcggtcggg gcgtgccggg gtcttttagg ggcgcgggga actgcgcgag caacccccac 3780 ccacccgcag gtgcacgcgg agcggcggac gccccgcaga cgggggcaaa acgggcggag 3840 tgcccccgcc cgccgggcgg cgcgaattcg taggtttaag gggcaggggt cagggcaggc 3900 gccgagccgg tcaaccgccc ccgtcccagg agaccccgtg acctcgaccg gccacgcccg 3960 caccgccgcc atcgccatcg gagccgccac cgccaccgtc ctcggcgcgc tgctggtcgg 4020 cggctccggc gaggtgagtg cgagcccgcc gcccgagccc aaggtccagg acgacttcga 4080 ctccctcggc cccgaggtgc gcgccgcgaa gctctccgac gggcggacgg cccactactc 4140 ggacacgggc gacaaggacg gcaagccggc cctgttcatc ggcggcaccg gcacgagcgc 4200 ccgcgcctcc cacatgaccg acttcttccg ctcgacgcgc gaggacctgg gcctgcgcct 4260 catctccgtg gagcgcaacg gcttcggcga caccgcgttc gacgagaagc tgggcaccgc 4320 cgacttcgcg aaggacgccc tcgaagtcct cgaccggctc gg 4362 <210> 97 <211> 136 <212> PRT <213> Streptomyces cinnamonensis <400> 97 Met Gly Val Ala Ala Gly Pro Ile Arg Val Val Val Ala Lys Pro Gly 1 5 10 15 Leu Asp Gly His Asp Arg Gly Ala Lys Val Ile Ala Arg Ala Leu Arg             20 25 30 Asp Ala Gly Met Glu Val Ile Tyr Thr Gly Leu His Gln Thr Pro Glu         35 40 45 Gln Val Val Asp Thr Ala Ile Glu Glu Asp Ala Asp Ala Ile Gly Leu     50 55 60 Ser Ile Leu Ser Gly Ala His Asn Thr Leu Phe Ala Arg Val Leu Glu 65 70 75 80 Leu Leu Lys Glu Arg Asp Ala Glu Asp Ile Lys Val Phe Gly Gly Gly                 85 90 95 Ile Ile Pro Glu Ala Asp Ile Ala Pro Leu Lys Glu Lys Gly Val Ala             100 105 110 Glu Ile Phe Thr Pro Gly Ala Thr Thr Thr Ser Ile Val Glu Trp Val         115 120 125 Arg Gly Asn Val Arg Gln Ala Val     130 135 <210> 98 <211> 1643 <212> DNA <213> Streptomyces cinnamonensis <400> 98 gtcgacctcc cgtttggcgc acggaaggga ggctctgtcc cccgtgtgcc ctagggggag 60 tcgtggtcga ggagtcggct gtgcgatggc gatcccggcc accgccctgc ggtgactccg 120 tgcccccgtt gcatcgccga tgcgcggtgt caccacgccg tgcggctgcc ggcgcggtgg 180 cccggcgtct cgttgcggct cccctcgcgc ctggtccgga tgcggagcgt gaacccctgg 240 gttacggacg ggcgcgcagc gaacgtgtcc cacgtgtgat ttccccctcg ctctccaccg 300 cgaaactgcc gcttgcgcga tgctggggat aacgttcgtt cacttccccg gccggtgcgg 360 tgcggggtat ctgtgccggg acagactttg tcggtacgga tatcggtaca tggaggcagt 420 gatgggtgtg gcagccgggc cgatccgcgt ggtggtcgcc aagccggggc tcgacgggca 480 cgatcgcggg gccaaggtga tcgcgcgggc gttgcgtgac gcgggtatgg aggtcatcta 540 caccgggctg caccagacgc ccgagcaggt ggtggacacc gcgatccagg aggacgccga 600 cgcgatcggc ctctccatcc tctccggagc gcacaacacg ctgttcgcgc gcgtgttgga 660 gctcttgaag gagcgggacg cggaggacat caaggtgttt ggtggcggca tcatcccgga 720 ggcggacatc gcgccgctga aggagaaggg cgtcgcggag atcttcacgc ccggggccac 780 caccacgtcg atcgtggagt gggttcgggg gaacgtgcga caggccgtct gaggcattcc 840 ccgtcgcccg tctgccgtgg tcggcgtcat atcggcggac atcgtctcgg tggacgtcat 900 ggcggcgggg ggagttcgtc gcgtatcgcc gcgcggaggc gcagggtggt gaccaggcgc 960 tggaacgctt ccgaccagta gctgcccgcg ccgggtgacg cgtcctccgc ttcgtcgggg 1020 accgcggtga gcgcttccag gcggaccgcc tcggccgggt ccagacagcg ttccgccagg 1080 cccatcactc cgctgaagct ccatgggtaa ctgcccgcgt cgcgcgcgat gttcagggcg 1140 tccaccacgg cccggccgag agggccggcc cagggcaccg cgcagacgcc gagcagttgg 1200 aacgcctccg acaggccgtg tgccgctatg aaccccgcca cccagtccgc gcgctcggcg 1260 gcaggcatgg aggcgagcag tttggcccgc tcggcgaggg acacggcgcc aggccccgcc 1320 gcgtcgggtg aggcgggggc gccgagcagc gctctggacc aggcgacgtc acgctggcgt 1380 acggccgcgc ggcaccatgc ggcgtgcagt tcgccccgcc agtcgtcggc caccgggagc 1440 gccacgatc ccgccggggt gcggttgccg agccggggcg gccaggtggc gagcggggcc 1500 gattccacga gctggccgag ccaccaggag cgctcgcccc ggccggtggg gggcttcggg 1560 acgacgccgt cccgctccat gcccgcgtcg cactcgtgcg gcgcctcgac ggtgagggtc 1620 ggcgtgctcg atgtgtggtc gac 1643 <210> 99 <211> 566 <212> PRT <213> Streptomyces coelicolor <400> 99 Met Asp Ala His Ala Ile Glu Glu Gly Arg Leu Arg Trp Gln Ala Arg 1 5 10 15 Tyr Asp Ala Ala Arg Lys Arg Asp Ala Asp Phe Thr Thr Leu Ser Gly             20 25 30 Asp Pro Val Glu Pro Val Tyr Gly Pro Arg Pro Gly Asp Glu Tyr Glu         35 40 45 Gly Phe Glu Arg Ile Gly Trp Pro Gly Glu Tyr Pro Phe Thr Arg Gly     50 55 60 Leu Tyr Pro Thr Gly Tyr Arg Gly Arg Thr Trp Thr Ile Arg Gln Phe 65 70 75 80 Ala Gly Phe Gly Asn Ala Glu Gln Thr Asn Glu Arg Tyr Lys Met Ile                 85 90 95 Leu Arg Asn Gly Gly Gly Gly Leu Ser Val Ala Phe Asp Met Pro Thr             100 105 110 Leu Met Gly Arg Asp Ser Asp Asp Pro Arg Ser Leu Gly Glu Val Gly         115 120 125 His Cys Gly Val Ala Ile Asp Ser Ala Ala Asp Met Glu Val Leu Phe     130 135 140 Lys Asp Ile Pro Leu Gly Asp Val Thr Thr Ser Met Thr Ile Ser Gly 145 150 155 160 Pro Ala Val Pro Val Phe Cys Met Tyr Leu Val Ala Ala Glu Arg Gln                 165 170 175 Gly Val Asp Ala Ser Val Leu Asn Gly Thr Leu Gln Thr Asp Ile Phe             180 185 190 Lys Glu Tyr Ile Ala Gln Lys Glu Trp Leu Phe Gln Pro Glu Pro His         195 200 205 Leu Arg Leu Ile Gly Asp Leu Met Glu Tyr Cys Ala Ala Gly Ile Pro     210 215 220 Ala Tyr Lys Pro Leu Ser Val Ser Gly Tyr His Ile Arg Glu Ala Gly 225 230 235 240 Ala Thr Ala Ala Gln Glu Leu Ala Tyr Thr Leu Ala Asp Gly Phe Gly                 245 250 255 Tyr Val Glu Leu Gly Leu Ser Arg Gly Leu Asp Val Asp Val Phe Ala             260 265 270 Pro Gly Leu Ser Phe Phe Phe Asp Ala His Leu Asp Phe Phe Glu Glu         275 280 285 Ile Ala Lys Phe Arg Ala Arg Arg Ile Trp Ala Arg Trp Met Arg     290 295 300 Asp Val Tyr Gly Ala Arg Thr Asp Lys Ala Gln Trp Leu Arg Phe His 305 310 315 320 Thr Gln Thr Ala Gly Val Ser Leu Thr Ala Gln Gln Pro Tyr Asn Asn                 325 330 335 Val Val Arg Thr Ala Val Glu Ala Leu Ala Ala Val Leu Gly Gly Thr             340 345 350 Asn Ser Leu His Thr Asn Ala Leu Asp Glu Thr Leu Ala Leu Pro Ser         355 360 365 Glu Gln Ala Ala Glu Ile Ala Leu Arg Thr Gln Gln Val Leu Met Glu     370 375 380 Glu Thr Gly Val Ala Asn Val Ala Asp Pro Leu Gly Gly Ser Trp Phe 385 390 395 400 Ile Glu Gln Leu Thr Asp Arg Ile Glu Ala Asp Ala Glu Lys Ile Phe                 405 410 415 Glu Gln Ile Lys Glu Arg Gly Leu Arg Ala His Pro Asp Gly Gln His             420 425 430 Pro Val Gly Pro Ile Thr Ser Gly Leu Leu Arg Gly Ile Glu Asp Gly         435 440 445 Trp Phe Thr Gly Glu Ile Ala Glu Ser Ala Phe Arg Tyr Gln Gln Ser     450 455 460 Leu Glu Lys Asp Asp Lys Lys Val Val Gly Val Asn Val His Thr Gly 465 470 475 480 Ser Val Thr Gly Asp Leu Glu Ile Leu Arg Val Ser His Glu Val Glu                 485 490 495 Arg Glu Gln Val Arg Val Leu Gly Glu Arg Lys Asp Ala Arg Asp Asp             500 505 510 Ala Ala Val Ala Ala Leu Asp Ala         515 520 525 Gly Gly Asn Met Ile Gly Pro Met Leu Asp Ala Val Arg Ala Glu Ala     530 535 540 Thr Leu Gly Glu Ile Cys Gly Val Leu Arg Asp Glu Trp Gly Val Tyr 545 550 555 560 Thr Glu Pro Ala Gly Phe                 565 <210> 100 <211> 1701 <212> DNA <213> Streptomyces coelicolor <400> 100 atggacgctc atgccataga ggagggccgc cttcgctggc aggcccggta cgacgcggcg 60 cgcaagcgcg acgcggactt caccacgctc tccggagacc ccgtggagcc ggtgtacggg 120 ccccgccccg gggacgagta cgagggcttc gagcggatcg gctggccggg cgagtacccc 180 ttcacccgcg gcctgtatcc gaccgggtac cgggggcgta cgtggaccat ccggcagttc 240 gccgggttcg gcaacgccga gcagaccaac gagcgctaca agatgatcct ccgcaacggc 300 ggcggcgggc tctcggtcgc cttcgacatg ccgaccctga tgggccgcga ctccgacgac 360 ccgcgctcgc tgggcgaggt cgggcactgc ggggtggcca tcgactcggc cgccgacatg 420 gaagtgctgt tcaaggacat cccgctcggg gacgtgacga cctccatgac gatcagcggg 480 cccgccgtgc ccgtgttctg catgtacctc gtcgccgccg agcgccaggg cgtcgacgca 540 tccgtgctca acggcacgct gcagaccgac atcttcaagg agtacatcgc ccagaaggag 600 tggctcttcc agcccgagcc ccacctccgg ctcatcggcg acctcatgga gtactgcgcg 660 gccggcatcc ccgcctacaa gccgctctcc gtctccggct accacatccg cgaggcgggc 720 gcgacggccg cgcaggagct ggcgtacacg ctcgccgacg gcttcggata cgtggagctg 780 ggcctcagcc gcgggctcga cgtggacgtc ttcgcgcccg gcctctcctt cttcttcgac 840 gcgcacctcg acttcttcga ggagatcgcc aagttccgcg cggcccgcag gatctgggcc 900 cgctggatgc gcgacgtgta cggcgcgcgg accgacaagg cccagtggct gcggttccac 960 acccagaccg ccggagtctc gctcaccgcg cagcagccgt acaacaacgt cgtacgcacc 1020 gcggtggagg cgctggcggc cgtgctcggc ggcaccaact ccctgcacac caacgcgctc 1080 gacgagaccc tcgccctgcc cagcgagcag gccgccgaga tcgccctgcg cacccagcag 1140 gtgctgatgg aggagaccgg cgtcgccaac gtcgccgacc cgctgggcgg ttcctggttc 1200 atcgagcagc tgaccgaccg catcgaggcc gacgccgaga agatcttcga gcagatcaag 1260 gagcgggggc tgcgcgccca ccccgacggg cagcaccccg tcggaccgat cacctccggc 1320 ctgctgcgcg gcatcgagga cggctggttc accggcgaga tcgccgagtc cgccttccgc 1380 taccagcagt ccttggagaa ggacgacaag aaggtggtcg gcgtcaacgt ccacaccggc 1440 tccgtcaccg gcgacctgga gatcctgcgg gtcagccacg aggtcgagcg cgagcaggtg 1500 cgggtcctgg gcgagcgcaa ggacgcccgg gacgacgccg ccgtgcgcgg cgccctggac 1560 gccatgctgg ccgcggcccg ctccggcggc aacatgatcg ggccgatgct ggacgcggtg 1620 cgcgcggagg cgacgctggg cgagatctgc ggtgtgctgc gcgacgagtg gggggtgtac 1680 acggaaccgg cggggttctg a 1701 <210> 101 <211> 138 <212> PRT <213> Streptomyces coelicolor <400> 101 Met Gly Val Ala Ala Gly Pro Ile Arg Val Val Val Ala Lys Pro Gly 1 5 10 15 Leu Asp Gly His Asp Arg Gly Ala Lys Val Ile Ala Arg Ala Leu Arg             20 25 30 Asp Ala Gly Met Glu Val Ile Tyr Thr Gly Leu His Gln Thr Pro Glu         35 40 45 Gln Ile Val Asp Thr Ala Ile Gln Glu Asp Ala Asp Ala Ile Gly Leu     50 55 60 Ser Ile Leu Ser Gly Ala His Asn Thr Leu Phe Ala Ala Val Ile Glu 65 70 75 80 Leu Leu Arg Glu Arg Asp Ala Asp Ile Leu Val Phe Gly Gly Gly                 85 90 95 Ile Ile Pro Glu Ala Asp Ile Ala Pro Leu Lys Glu Lys Gly Val Ala             100 105 110 Glu Ile Phe Thr Pro Gly Ala Thr Thr Ala Ser Ile Val Asp Trp Val         115 120 125 Arg Ala Asn Val Arg Glu Pro Ala Gly Ala     130 135 <210> 102 <211> 417 <212> DNA <213> Streptomyces coelicolor <400> 102 atgggtgtgg cagccggtcc gatccgcgtg gtggtggcca agccggggct cgacggccac 60 gatcgcgggg ccaaggtgat cgcgagggcc ctgcgtgacg ccggtatgga ggtgatctac 120 accgggctcc accagacgcc cgagcagatc gtcgacaccg cgatccagga ggacgccgac 180 gcgatcgggc tgtccatcct ctccggtgcg cacaacacgc tcttcgccgc cgtgatcgag 240 ctgctccggg agcgggacgc cgcggacatc ctggtcttcg gcggcgggat catccccgag 300 gcggacatcg ccccgctgaa ggagaagggc gtcgcggaga tcttcacgcc cggcgccacc 360 acggcgtcca tcgtggactg ggtccgggcg aacgtgcggg agcccgcggg agcatag 417 <210> 103 <211> 566 <212> PRT <213> Streptomyces avermitilis <400> 103 Met Asp Ala Asp Ala Ile Glu Glu Gly Arg Arg Arg Trp Gln Ala Arg 1 5 10 15 Tyr Asp Ala Ser Arg Lys Arg Glu Ala Asp Phe Thr Thr Leu Ser Gly             20 25 30 Asp Pro Val Glu Pro Ala Tyr Gly Pro Arg Pro Gly Asp Ala Tyr Glu         35 40 45 Gly Phe Glu Arg Ile Gly Trp Pro Gly Glu Tyr Pro Phe Thr Arg Gly     50 55 60 Leu Tyr Pro Thr Gly Tyr Arg Gly Arg Thr Trp Thr Ile Arg Gln Phe 65 70 75 80 Ala Gly Phe Gly Asn Ala Glu Gln Thr Asn Glu Arg Tyr Lys Lys Ile                 85 90 95 Leu Ala Asn Gly Gly Gly Gly Leu Ser Val Ala Phe Asp Met Pro Thr             100 105 110 Leu Met Gly Arg Asp Ser Asp Asp Arg Arg Ala Leu Gly Glu Val Gly         115 120 125 His Cys Gly Val Ala Ile Asp Ser Ala Ala Asp Met Glu Val Leu Phe     130 135 140 Lys Asp Ile Pro Leu Gly Asp Val Thr Thr Ser Met Thr Ile Ser Gly 145 150 155 160 Pro Ala Val Pro Val Phe Cys Met Tyr Leu Val Ala Ala Glu Arg Gln                 165 170 175 Gly Val Asp Pro Ser Val Leu Asn Gly Thr Leu Gln Thr Asp Ile Phe             180 185 190 Lys Glu Tyr Ile Ala Gln Lys Glu Trp Leu Phe Gln Pro Glu Pro His         195 200 205 Leu Arg Leu Ile Gly Asp Leu Met Glu His Cys Ala Ser Lys Ile Pro     210 215 220 Ala Tyr Lys Pro Leu Ser Val Ser Gly Tyr His Ile Arg Glu Ala Gly 225 230 235 240 Ala Thr Ala Ala Gln Glu Leu Ala Tyr Thr Leu Ala Asp Gly Phe Gly                 245 250 255 Tyr Val Glu Leu Gly Leu Ser Arg Gly Leu Asp Val Asp Val Phe Ala             260 265 270 Pro Gly Leu Ser Phe Phe Phe Asp Ala His Val Asp Phe Phe Glu Glu         275 280 285 Ile Ala Lys Phe Arg Ala Arg Arg Ile Trp Ala Arg Trp Leu Arg     290 295 300 Asp Val Tyr Gly Ala Lys Ser Glu Lys Ala Gln Trp Leu Arg Phe His 305 310 315 320 Thr Gln Thr Ala Gly Val Ser Leu Thr Ala Gln Gln Pro Tyr Asn Asn                 325 330 335 Val Val Arg Thr Ala Val Glu Ala Leu Ala Ala Val Leu Gly Gly Thr             340 345 350 Asn Ser Leu His Thr Asn Ala Leu Asp Glu Thr Leu Ala Leu Pro Ser         355 360 365 Glu Gln Ala Ala Glu Ile Ala Leu Arg Thr Gln Gln Val Leu Met Glu     370 375 380 Glu Thr Gly Val Ala Asn Val Ala Asp Pro Leu Gly Gly Ser Trp Tyr 385 390 395 400 Val Glu Gln Leu Thr Asp Arg Ile Glu Ala Asp Ala Glu Lys Ile Phe                 405 410 415 Glu Gln Ile Arg Glu Arg Gly Leu Arg Ala His Pro Asp Gly Arg His             420 425 430 Pro Ile Gly Pro Ile Thr Ser Gly Ile Leu Arg Gly Ile Glu Asp Gly         435 440 445 Trp Phe Thr Gly Glu Ile Ala Glu Ser Ala Phe Gln Tyr Gln Gln Ala     450 455 460 Leu Glu Lys Gly Asp Lys Arg Val Val Gly Val Asn Val His His Gly 465 470 475 480 Ser Val Thr Gly Asp Leu Glu Ile Leu Arg Val Ser His Glu Val Glu                 485 490 495 Arg Glu Gln Val Arg Val Leu Gly Glu Arg Lys Ser Gly Arg Asp Asp             500 505 510 Thr Ala Val Thr Ala Ala Leu Asp Ala Met Leu Ala Ala Ala Arg Asp         515 520 525 Gly Ser Asn Met Ile Ala Pro Met Leu Asp Ala Val Arg Ala Glu Ala     530 535 540 Thr Leu Gly Glu Ile Cys Asp Val Leu Arg Glu Glu Trp Gly Val Tyr 545 550 555 560 Thr Glu Pro Ala Gly Phe                 565 <210> 104 <211> 1701 <212> DNA <213> Streptomyces avermitilis <400> 104 tcagaaaccg gcgggctccg tgtagacccc ccactcctcc cggaggacat cgcagatctc 60 gcccagcgtg gcctccgcgc ggaccgcgtc cagcatcggg gcgatcatgt tcgacccgtc 120 gcgcgcggcg gcgagcatcg cgtccagggc cgcggttacg gccgtgtcgt cgcgccccga 180 cttccgctcg cccagcaccc gcacctgctc gcgctccacc tcgtggctga cgcgcaggat 240 ctccaggtcg cccgtcacgg acccgtggtg gacgttgacg ccgacgaccc gcttgtcgcc 300 cttctccagc gcctgctggt actggaaggc cgactcggcg atctccccgg tgaaccagcc 360 gtcctcgatg ccgcgcagga tgccggaggt gatgggcccg atcgggtgcc gcccgtccgg 420 gtgggcccgc agcccgcgct ccctgatctg ttcgaagatc ttctcggcgt cggcctcgat 480 ccggtcggtc agctgctcca cgtaccagga accgcccagc ggatcggcca cgttggcgac 540 gcccgtctcc tccatcagca cctgctgggt gcgcagggcg atctcggccg cctgctcgga 600 cggcagggcg agggtctcgt cgagggcgtt ggtgtgcagc gagttcgtcc cgccgagcac 660 cgcggcgagg gcctccacgg ccgtccgtac gacgttgttg tacggctgct gcgcggtgag 720 cgagacgccc gcggtctggg tgtggaagcg cagccactgc gccttctccg acttcgcccc 780 gtacacgtcc cgcagccagc gcgcccagat gcgccgcgcc gcacggaact tggcgatctc 840 ctcgaagaag tcgacgtgcg cgtcgaagaa gaaggagagc ccgggcgcga acacgtccac 900 gtccaggccg cggctcagcc ccagctccac gtatccgaaa ccgtcggcga gggtgtacgc 960 cagctcctgg gcggccgtgg caccggcctc ccggatgtgg tacccggaga cggacagcgg 1020 cttgtacgcg gggatcttcg aggcgcagtg ctccatcagg tcgccgatga gccgcagatg 1080 gggctcgggc tggaagagcc actccttctg cgcgatgtac tccttgaaga tgtcggtctg 1140 gagggtgccg ttgaggacgg aggggtcgac gccctgccgc tcggccgcga ccaggtacat 1200 gcgaagacg ggcacggcgg gcccgctgat cgtcatcgac gtcgtcacgt cacccagcgg 1260 gatgtccttg aacaggacct ccatgtcggc cgccgagtcg atcgcgaccc cgcagtgccc 1320 gacctcgccg agcgcgcggc ggtcgtcgga gtcgcgcccc atgagcgtcg gcatgtcgaa 1380 ggccacggac agcccaccgc cgccgttggc gaggatcttc ttgtagcgct cgttggtctg 1440 ctcggcgttg ccgaacccgg cgaactgccg gatggtccag gtccggcccc ggtagccggt 1500 cggatacaga ccgcgcgtga aggggtactc acccggccag ccgatccgct cgaaaccctc 1560 gtacgcgtcc ccgggccggg gcccgtacgc cggctccacg ggatcgccgg agagcgtggt 1620 gaaatcggcc tcgcgcttgc gtgaggcgtc gtagcgggcc tgccagcgtc ggcggccttc 1680 ctcgatggcg tcagcgtcca t 1701 <210> 105 <211> 138 <212> PRT <213> Streptomyces avermitilis <400> 105 Met Gly Val Ala Ala Gly Pro Ile Arg Val Val Val Ala Lys Pro Gly 1 5 10 15 Leu Asp Gly His Asp Arg Gly Ala Lys Val Ile Ala Arg Ala Leu Arg             20 25 30 Asp Ala Gly Met Glu Val Ile Tyr Thr Gly Leu His Gln Thr Pro Glu         35 40 45 Gln Ile Val Gly Thr Ala Ile Gln Glu Asp Ala Asp Ala Ile Gly Leu     50 55 60 Ser Ile Leu Ser Gly Ala His Asn Thr Leu Phe Ala Ala Val Ile Asp 65 70 75 80 Leu Leu Lys Glu Arg Asp Ala Glu Asp Ile Lys Val Phe Gly Gly Gly                 85 90 95 Ile Ile Pro Glu Ala Asp Ile Ala Pro Leu Lys Glu Lys Gly Val Ala             100 105 110 Glu Ile Phe Thr Pro Gly Ala Thr Thr Ala Ser Ile Val Glu Trp Val         115 120 125 Arg Ala Asn Val Arg Gln Pro Ala Gly Ala     130 135 <210> 106 <211> 1701 <212> DNA <213> Streptomyces avermitilis <400> 106 tcagaaaccg gcgggctccg tgtagacccc ccactcctcc cggaggacat cgcagatctc 60 gcccagcgtg gcctccgcgc ggaccgcgtc cagcatcggg gcgatcatgt tcgacccgtc 120 gcgcgcggcg gcgagcatcg cgtccagggc cgcggttacg gccgtgtcgt cgcgccccga 180 cttccgctcg cccagcaccc gcacctgctc gcgctccacc tcgtggctga cgcgcaggat 240 ctccaggtcg cccgtcacgg acccgtggtg gacgttgacg ccgacgaccc gcttgtcgcc 300 cttctccagc gcctgctggt actggaaggc cgactcggcg atctccccgg tgaaccagcc 360 gtcctcgatg ccgcgcagga tgccggaggt gatgggcccg atcgggtgcc gcccgtccgg 420 gtgggcccgc agcccgcgct ccctgatctg ttcgaagatc ttctcggcgt cggcctcgat 480 ccggtcggtc agctgctcca cgtaccagga accgcccagc ggatcggcca cgttggcgac 540 gcccgtctcc tccatcagca cctgctgggt gcgcagggcg atctcggccg cctgctcgga 600 cggcagggcg agggtctcgt cgagggcgtt ggtgtgcagc gagttcgtcc cgccgagcac 660 cgcggcgagg gcctccacgg ccgtccgtac gacgttgttg tacggctgct gcgcggtgag 720 cgagacgccc gcggtctggg tgtggaagcg cagccactgc gccttctccg acttcgcccc 780 gtacacgtcc cgcagccagc gcgcccagat gcgccgcgcc gcacggaact tggcgatctc 840 ctcgaagaag tcgacgtgcg cgtcgaagaa gaaggagagc ccgggcgcga acacgtccac 900 gtccaggccg cggctcagcc ccagctccac gtatccgaaa ccgtcggcga gggtgtacgc 960 cagctcctgg gcggccgtgg caccggcctc ccggatgtgg tacccggaga cggacagcgg 1020 cttgtacgcg gggatcttcg aggcgcagtg ctccatcagg tcgccgatga gccgcagatg 1080 gggctcgggc tggaagagcc actccttctg cgcgatgtac tccttgaaga tgtcggtctg 1140 gagggtgccg ttgaggacgg aggggtcgac gccctgccgc tcggccgcga ccaggtacat 1200 gcgaagacg ggcacggcgg gcccgctgat cgtcatcgac gtcgtcacgt cacccagcgg 1260 gatgtccttg aacaggacct ccatgtcggc cgccgagtcg atcgcgaccc cgcagtgccc 1320 gacctcgccg agcgcgcggc ggtcgtcgga gtcgcgcccc atgagcgtcg gcatgtcgaa 1380 ggccacggac agcccaccgc cgccgttggc gaggatcttc ttgtagcgct cgttggtctg 1440 ctcggcgttg ccgaacccgg cgaactgccg gatggtccag gtccggcccc ggtagccggt 1500 cggatacaga ccgcgcgtga aggggtactc acccggccag ccgatccgct cgaaaccctc 1560 gtacgcgtcc ccgggccggg gcccgtacgc cggctccacg ggatcgccgg agagcgtggt 1620 gaaatcggcc tcgcgcttgc gtgaggcgtc gtagcgggcc tgccagcgtc ggcggccttc 1680 ctcgatggcg tcagcgtcca t 1701 <210> 107 <211> 139 <212> PRT <213> Saccharomyces cerevisiae <400> 107 Met Ser Glu Ile Thr Leu Gly Lys Tyr Leu Phe Glu Arg Leu Lys Gln 1 5 10 15 Val Asn Val Asn Thr Val Phe Gly Leu Pro Gly Asp Phe Asn Leu Ser             20 25 30 Leu Leu Asp Lys Ile Tyr Glu Val Glu Gly Met Arg Trp Ala Gly Asn         35 40 45 Ala Asn Glu Leu Asn Ala Ala Tyr Ala Ala Asp Gly Tyr Ala Arg Ile     50 55 60 Lys Gly Met Ser Cys Ile Ile Thr Thr Phe Gly Val Gly Glu Leu Ser 65 70 75 80 Ala Leu Asn Gly Ile Ala Gly Ser Tyr Ala Glu His Val Gly Val Leu                 85 90 95 His Val Val Gly Val Ser Ser Ser Ser Ala Gln Ala Lys Gln Leu Leu             100 105 110 Leu His His Thr Leu Gly Asn Gly Asp Phe Thr Val Phe His Arg Met         115 120 125 Ser Ala Asn Ile Ser Glu Thr Thr Ala Met Ile     130 135 <210> 108 <211> 1689 <212> DNA <213> Saccharomyces cerevisiae <400> 108 atgtctgaaa ttactttggg taaatatttg ttcgaaagat taaagcaagt caacgttaac 60 accgttttcg gtttgccagg tgacttcaac ttgtccttgt tggacaagat ctacgaagtt 120 gaaggtatga gatgggctgg taacgccaac gaattgaacg ctgcttacgc cgctgatggt 180 tacgctcgta tcaagggtat gtcttgtatc atcaccacct tcggtgtcgg tgaattgtct 240 gctttgaacg gtattgccgg ttcttacgct gaacacgtcg gtgttttgca cgttgttggt 300 gtcccatcca tctctgctca agctaagcaa ttgttgttgc accacacctt gggtaacggt 360 gacttcactg ttttccacag aatgtctgcc aacatttctg aaaccactgc tatgatcact 420 gacattgcta ccgccccagc tgaaattgac agatgtatca gaaccactta cgtcacccaa 480 agaccagtct acttaggttt gccagctaac ttggtcgact tgaacgtccc agctaagttg 540 ttgcaaactc caattgacat gtctttgaag ccaaacgatg ctgaatccga aaaggaagtc 600 attgacacca tcttggcttt ggtcaaggat gctaagaacc cagttatctt ggctgatgct 660 tgttgttcca gacacgacgt caaggctgaa actaagaagt tgattgactt gactcaattc 720 ccagctttcg tcaccccaat gggtaagggt tccattgacg aacaacaccc aagatacggt 780 ggtgtttacg tcggtacctt gtccaagcca gaagttaagg aagccgttga atctgctgac 840 ttgattttgt ctgtcggtgc tttgttgtct gatttcaaca ccggttcttt ctcttactct 900 tacaagacca agaacattgt cgaattccac tccgaccaca tgaagatcag aaacgccact 960 ttcccaggtg tccaaatgaa attcgttttg caaaagttgt tgaccactat tgctgacgcc 1020 gctaagggtt acaagccagt tgctgtccca gctagaactc cagctaacgc tgctgtccca 1080 gcttctaccc cattgaagca agaatggatg tggaaccaat tgggtaactt cttgcaagaa 1140 gt; ccaaacaaca cctacggtat ctctcaagtc ttatggggtt ccattggttt caccactggt 1260 gctaccttgg gtgctgcttt cgctgctgaa gaaattgatc caaagaagag agttatctta 1320 ttcattggtg acggttcttt gcaattgact gttcaagaaa tctccaccat gatcagatgg 1380 ggcttgaagc catacttgtt cgtcttgaac aacgatggtt acaccattga aaagttgatt 1440 cacggtccaa aggctcaata caacgaaatt caaggttggg accacctatc cttgttgcca 1500 actttcggtg ctaaggacta tgaaacccac agagtcgcta ccaccggtga atgggacaag 1560 ttgacccaag acaagtcttt caacgacaac tctaagatca gaatgattga aatcatgttg 1620 ccagtcttcg atgctccaca aaacttggtt gaacaagcta agttgactgc tgctaccaac 1680 gctaagcaa 1689 <210> 109 <211> 563 <212> PRT <213> Saccharomyces cerevisiae <400> 109 Met Ser Glu Ile Thr Leu Gly Lys Tyr Leu Phe Glu Arg Leu Ser Gln 1 5 10 15 Val Asn Cys Asn Thr Val Phe Gly Leu Pro Gly Asp Phe Asn Leu Ser             20 25 30 Leu Leu Asp Lys Leu Tyr Glu Val Lys Gly Met Arg Trp Ala Gly Asn         35 40 45 Ala Asn Glu Leu Asn Ala Ala Tyr Ala Ala Asp Gly Tyr Ala Arg Ile     50 55 60 Lys Gly Met Ser Cys Ile Ile Thr Thr Phe Gly Val Gly Glu Leu Ser 65 70 75 80 Ala Leu Asn Gly Ile Ala Gly Ser Tyr Ala Glu His Val Gly Val Leu                 85 90 95 His Val Val Gly Val Ser Ser Ser Ser Gln Ala Lys Gln Leu Leu             100 105 110 Leu His His Thr Leu Gly Asn Gly Asp Phe Thr Val Phe His Arg Met         115 120 125 Ser Ala Asn Ile Ser Glu Thr Thr Ala Met Ile Thr Asp Ile Ala Asn     130 135 140 Ala Pro Ala Glu Ile Asp Arg Cys Ile Arg Thr Thr Tyr Thr Thr Gln 145 150 155 160 Arg Pro Val Tyr Leu Gly Leu Pro Ala Asn Leu Val Asp Leu Asn Val                 165 170 175 Pro Ala Lys Leu Leu Glu Thr Pro Ile Asp Leu Ser Leu Lys Pro Asn             180 185 190 Asp Ala Glu Ala Glu Ala Glu Val Val Arg Thr Val Val Glu Leu Ile         195 200 205 Lys Asp Ala Lys Asn Pro Val Ile Leu Ala Asp Ala Cys Ala Ser Arg     210 215 220 His Asp Val Lys Ala Glu Thr Lys Lys Leu Met Asp Leu Thr Gln Phe 225 230 235 240 Pro Val Tyr Val Thr Pro Met Gly Lys Gly Ala Ile Asp Glu Gln His                 245 250 255 Pro Arg Tyr Gly Gly Val Tyr Val Gly Thr Leu Ser Arg Pro Glu Val             260 265 270 Lys Lys Ala Val Glu Ser Ala Asp Leu Ile Leu Ser Ile Gly Ala Leu         275 280 285 Leu Ser Asp Phe Asn Thr Gly Ser Phe Ser Tyr Ser Tyr Lys Thr Lys     290 295 300 Asn Ile Val Glu Phe His Ser Asp His Ile Lys Ile Arg Asn Ala Thr 305 310 315 320 Phe Pro Gly Val Gln Met Lys Phe Ala Leu Gln Lys Leu Leu Asp Ala                 325 330 335 Ile Pro Glu Val Val Lys Asp Tyr Lys Pro Val Ala Val Pro Ala Arg             340 345 350 Val Pro Ile Thr Lys Ser Thr Pro Ala Asn Thr Pro Met Lys Gln Glu         355 360 365 Trp Met Trp Asn His Leu Gly Asn Phe Leu Arg Glu Gly Asp Ile Val     370 375 380 Ile Ala Glu Thr Gly Thr Ser Ala Phe Gly Ile Asn Gln Thr Thr Phe 385 390 395 400 Pro Thr Asp Val Tyr Ala Ile Val Gln Val Leu Trp Gly Ser Ile Gly                 405 410 415 Phe Thr Val Gly Ala Leu Leu Gly Ala Thr Met Ala Ala Glu Glu Leu             420 425 430 Asp Pro Lys Lys Arg Val Ile Leu Phe Ile Gly Asp Gly Ser Leu Gln         435 440 445 Leu Thr Val Gln Glu Ile Ser Thr Met Ile Arg Trp Gly Leu Lys Pro     450 455 460 Tyr Ile Phe Val Leu Asn Asn Asn Gly Tyr Thr Ile Glu Lys Leu Ile 465 470 475 480 His Gly Pro His Ala Glu Tyr Asn Glu Ile Gln Gly Trp Asp His Leu                 485 490 495 Ala Leu Leu Pro Thr Phe Gly Ala Arg Asn Tyr Glu Thr His Arg Val             500 505 510 Ala Thr Thr Gly Glu Trp Glu Lys Leu Thr Gln Asp Lys Asp Phe Gln         515 520 525 Asp Asn Ser Lys Ile Arg Met Ile Glu Val Met Leu Pro Val Phe Asp     530 535 540 Ala Pro Gln Asn Leu Val Lys Gln Ala Gln Leu Thr Ala Ala Thr Asn 545 550 555 560 Ala Lys Gln              <210> 110 <211> 1689 <212> DNA <213> Saccharomyces cerevisiae <400> 110 atgtctgaaa taaccttagg taaatattta tttgaaagat tgagccaagt caactgtaac 60 accgtcttcg gtttgccagg tgactttaac ttgtctcttt tggataagct ttatgaagtc 120 aaaggtatga gatgggctgg taacgctaac gaattgaacg ctgcctatgc tgctgatggt 180 tacgctcgta tcaagggtat gtcctgtatt attaccacct tcggtgttgg tgaattgtct 240 gctttgaatg gtattgccgg ttcttacgct gaacatgtcg gtgttttgca cgttgttggt 300 gttccatcca tctcttctca agctaagcaa ttgttgttgc atcatacctt gggtaacggt 360 gacttcactg ttttccacag aatgtctgcc aacatttctg aaaccactgc catgatcact 420 gatattgcta acgctccagc tgaaattgac agatgtatca gaaccaccta cactacccaa 480 agaccagtct acttgggttt gccagctaac ttggttgact tgaacgtccc agccaagtta 540 ttggaaactc caattgactt gtctttgaag ccaaacgacg ctgaagctga agctgaagtt 600 gttagaactg ttgttgaatt gatcaaggat gctaagaacc cagttatctt ggctgatgct 660 tgtgcttcta gacatgatgt caaggctgaa actaagaagt tgatggactt gactcaattc 720 ccagtttacg tcaccccaat gggtaagggt gctattgacg aacaacaccc aagatacggt 780 gt; ttgatattgt ctatcggtgc tttgttgtct gatttcaata ccggttcttt ctcttactcc 900 tacaagacca aaaatatcgt tgaattccac tctgaccaca tcaagatcag aaacgccacc 960 ttcccaggtg ttcaaatgaa atttgccttg caaaaattgt tggatgctat tccagaagtc 1020 gtcaaggact acaaacctgt tgctgtccca gctagagttc caattaccaa gtctactcca 1080 gctaacactc caatgaagca agaatggatg tggaaccatt tgggtaactt cttgagagaa 1140 ggtgatattg ttattgctga aaccggtact tccgccttcg gtattaacca aactactttc 1200 ccaacagatg tatacgctat cgtccaagtc ttgtggggtt ccattggttt cacagtcggc 1260 gctctattgg gtgctactat ggccgctgaa gaacttgatc caaagaagag agttatttta 1320 ttcattggtg acggttctct acaattgact gttcaagaaa tctctaccat gattagatgg 1380 ggtttgaagc catacatttt tgtcttgaat aacaacggtt acaccattga aaaattgatt 1440 cacggtcctc atgccgaata taatgaaatt caaggttggg accacttggc cttattgcca 1500 acttttggtg ctagaaacta cgaaacccac agagttgcta ccactggtga atgggaaaag 1560 ttgactcaag acaaggactt ccaagacaac tctaagatta gaatgattga agttatgttg 1620 ccagtctttg atgctccaca aaacttggtt aaacaagctc aattgactgc cgctactaac 1680 gctaaacaa 1689 <210> 111 <211> 533 <212> PRT <213> Saccharomyces cerevisiae <400> 111 Met Ser Glu Ile Thr Leu Gly Lys Tyr Leu Phe Glu Arg Leu Lys Gln 1 5 10 15 Val Asn Val Asn Thr Ile Phe Gly Leu Pro Gly Asp Phe Asn Leu Ser             20 25 30 Leu Leu Asp Lys Ile Tyr Glu Val Asp Gly Leu Arg Trp Ala Gly Asn         35 40 45 Ala Asn Glu Leu Asn Ala Ala Tyr Ala Ala Asp Gly Tyr Ala Arg Ile     50 55 60 Lys Gly Leu Ser Val Leu Val Thr Thr Phe Gly Val Gly Glu Leu Ser 65 70 75 80 Ala Leu Asn Gly Ile Ala Gly Ser Tyr Ala Glu His Val Gly Val Leu                 85 90 95 His Val Val Gly Val Ser Ser Ser Ser Ala Gln Ala Lys Gln Leu Leu             100 105 110 Leu His His Thr Leu Gly Asn Gly Asp Phe Thr Val Phe His Arg Met         115 120 125 Ser Ala Asn Ile Ser Glu Thr Thr Ser Met Ile Thr Asp Ile Ala Thr     130 135 140 Ala Pro Ser Glu Ile Asp Arg Leu Ile Arg Thr Thr Phe Ile Thr Gln 145 150 155 160 Arg Pro Ser Tyr Leu Gly Leu Pro Ala Asn Leu Val Asp Leu Lys Val                 165 170 175 Pro Gly Ser Leu Leu Glu Lys Pro Ile Asp Leu Ser Leu Lys Pro Asn             180 185 190 Asp Pro Glu Ala Glu Lys Glu Val Ile Asp Thr Val Leu Glu Leu Ile         195 200 205 Gln Asn Ser Lys Asn Pro Val Ile Leu Ser Asp Ala Cys Ala Ser Arg     210 215 220 His Asn Val Lys Lys Glu Thr Gln Lys Leu Ile Asp Leu Thr Gln Phe 225 230 235 240 Pro Ala Phe Val Thr Pro Leu Gly Lys Gly Ser Ile Asp Glu Gln His                 245 250 255 Pro Arg Tyr Gly Gly Val Tyr Val Gly Thr Leu Ser Lys Gln Asp Val             260 265 270 Lys Gln Ala Val Glu Ser Ala Asp Leu Ile Leu Ser Val Gly Ala Leu         275 280 285 Leu Ser Asp Phe Asn Thr Gly Ser Phe Ser Tyr Ser Tyr Lys Thr Lys     290 295 300 Asn Val Val Glu Phe His Ser Asp Tyr Val Lys Val Lys Asn Ala Thr 305 310 315 320 Phe Leu Gly Val Gln Met Lys Phe Ala Leu Gln Asn Leu Leu Lys Val                 325 330 335 Ile Pro Asp Val Val Lys Gly Tyr Lys Ser Val Pro Val Thr Lys             340 345 350 Thr Pro Ala Asn Lys Gly Val Pro Ala Ser Thr Pro Leu Lys Gln Glu         355 360 365 Trp Leu Trp Asn Glu Leu Ser Lys Phe Leu Gln Glu Gly Asp Val Ile     370 375 380 Ile Ser Glu Thr Gly Thr Ser Ala Phe Gly Ile Asn Gln Thr Ile Phe 385 390 395 400 Pro Lys Asp Ala Tyr Gly Ile Ser Gln Val Leu Trp Gly Ser Ile Gly                 405 410 415 Phe Thr Thr Gly Ala Thr Leu Gly Ala Ala Phe Ala Ala Glu Glu Ile             420 425 430 Asp Pro Asn Lys Arg Val Ile Leu Phe Ile Gly Asp Gly Ser Leu Gln         435 440 445 Leu Thr Val Gln Glu Ile Ser Thr Met Ile Arg Trp Gly Leu Lys Pro     450 455 460 Tyr Leu Phe Val Leu Asn Asn Asp Gly Tyr Thr Ile Glu Lys Leu Ile 465 470 475 480 His Gly Pro His Ala Glu Tyr Asn Glu Ile Gln Thr Trp Asp His Leu                 485 490 495 Ala Leu Leu Pro Ala Phe Gly Ala Lys Lys Tyr Glu Asn His Lys Ile             500 505 510 Ala Thr Thr Gly Glu Trp Asp Ala Leu Thr Thr Asp Ser Glu Phe Gln         515 520 525 Lys Asn Ser Val Ile     530 <210> 112 <211> 1599 <212> DNA <213> Saccharomyces cerevisiae <400> 112 atgtctgaaa ttactcttgg aaaatactta tttgaaagat tgaagcaagt taatgttaac 60 accatttttg ggctaccagg cgacttcaac ttgtccctat tggacaagat ttacgaggta 120 gatggattga gatgggctgg taatgcaaat gagctgaacg ccgcctatgc cgccgatggt 180 tacgcacgca tcaagggttt atctgtgctg gtaactactt ttggcgtagg tgaattatcc 240 gccttgaatg gtattgcagg atcgtatgca gaacacgtcg gtgtactgca tgttgttggt 300 gtcccctcta tctccgctca ggctaagcaa ttgttgttgc atcatacctt gggtaacggt 360 gattttaccg tttttcacag aatgtccgcc aatatctcag aaactacatc aatgattaca 420 gacattgcta cagccccttc agaaatcgat aggttgatca ggacaacatt tataacacaa 480 aggcctagct acttggggtt gccagcgaat ttggtagatc taaaggttcc tggttctctt 540 ttggaaaaac cgattgatct atcattaaaa cctaacgatc ccgaagctga aaaggaagtt 600 attgataccg tactagaatt gatccagaat tcgaaaaacc ctgttatact atcggatgcc 660 tgtgcttcta ggcacaacgt taaaaaagaa acccagaagt taattgattt gacgcaattc 720 ccagcttttg tgacacctct aggtaaaggg tcaatagatg aacagcatcc cagatatggc 780 ggtgtttatg tgggaacgct gtccaaacaa gacgtgaaac aggccgttga gtcggctgat 840 ttgatccttt cggtcggtgc tttgctctct gattttaaca caggttcgtt ttcctactcc 900 tacaagacta aaaatgtagt ggagtttcat tccgattacg taaaggtgaa gaacgctacg 960 ttcctcggtg tacaaatgaa atttgcacta caaaacttac tgaaggttat tcccgatgtt 1020 gttaagggct acaagagcgt tcccgtacca accaaaactc ccgcaaacaa aggtgtacct 1080 gctagcacgc ccttgaaaca agagtggttg tggaacgaat tgtccaaatt cttgcaagaa 1140 ggtgatgtta tcatttccga gaccggcacg tctgccttcg gtatcaatca aactatcttt 1200 cctaaggacg cctacggtat ctcgcaggtg ttgtgggggt ccatcggttt tacaacagga 1260 gcaactttag gtgctgcctt tgccgctgag gagattgacc ccaacaagag agtcatctta 1320 ttcataggtg acgggtcttt gcagttaacc gtccaagaaa tctccaccat gatcagatgg 1380 gggttaaagc cgtatctttt tgtccttaac aacgacggct acactatcga aaagctgatt 1440 catgggcctc acgcagagta caacgaaatc cagacctggg atcacctcgc cctgttgccc 1500 gcatttggtg cgaaaaagta cgaaaatcac aagatcgcca ctacgggtga gtgggatgcc 1560 ttaaccactg attcagagtt ccagaaaaac tcggtgatc 1599 <210> 113 <211> 564 <212> PRT <213> Candida glabrata <400> 113 Met Ser Glu Ile Thr Leu Gly Arg Tyr Leu Phe Glu Arg Leu Asn Gln 1 5 10 15 Val Asp Val Lys Thr Ile Phe Gly Leu Pro Gly Asp Phe Asn Leu Ser             20 25 30 Leu Leu Asp Lys Ile Tyr Glu Val Glu Gly Met Arg Trp Ala Gly Asn         35 40 45 Ala Asn Glu Leu Asn Ala Ala Tyr Ala Ala Asp Gly Tyr Ala Arg Ile     50 55 60 Lys Gly Met Ser Cys Ile Ile Thr Thr Phe Gly Val Gly Glu Leu Ser 65 70 75 80 Ala Leu Asn Gly Ile Ala Gly Ser Tyr Ala Glu His Val Gly Val Leu                 85 90 95 His Val Val Gly Val Ser Ser Ser Ser Gln Ala Lys Gln Leu Leu             100 105 110 Leu His His Thr Leu Gly Asn Gly Asp Phe Thr Val Phe His Arg Met         115 120 125 Ser Ala Asn Ile Ser Glu Thr Thr Ala Met Val Thr Asp Ile Ala Thr     130 135 140 Ala Pro Ala Glu Ile Asp Arg Cys Ile Arg Thr Thr Tyr Ile Thr Gln 145 150 155 160 Arg Pro Val Tyr Leu Gly Leu Pro Ala Asn Leu Val Asp Leu Lys Val                 165 170 175 Pro Ala Lys Leu Leu Glu Thr Pro Ile Asp Leu Ser Leu Lys Pro Asn             180 185 190 Asp Pro Glu Ala Glu Thr Glu Val Val Asp Thr Val Leu Glu Leu Ile         195 200 205 Lys Ala Ala Lys Asn Pro Val Ile Leu Ala Asp Ala Cys Ala Ser Arg     210 215 220 His Asp Val Lys Ala Glu Thr Lys Lys Leu Ile Asp Ala Thr Gln Phe 225 230 235 240 Pro Ser Phe Val Thr Pro Met Gly Lys Gly Ser Ile Asp Glu Gln His                 245 250 255 Pro Arg Phe Gly Gly Val Tyr Val Gly Thr Leu Ser Arg Pro Glu Val             260 265 270 Lys Glu Ala Val Glu Ser Ala Asp Leu Ile Leu Ser Val Gly Ala Leu         275 280 285 Leu Ser Asp Phe Asn Thr Gly Ser Phe Ser Tyr Ser Tyr Lys Thr Lys     290 295 300 Asn Ile Val Glu Phe His Ser Asp Tyr Ile Lys Ile Arg Asn Ala Thr 305 310 315 320 Phe Pro Gly Val Gln Met Lys Phe Ala Leu Gln Lys Leu Leu Asn Ala                 325 330 335 Val Pro Glu Ala Ile Lys Gly Tyr Lys Pro Val Val Pro Ala Arg             340 345 350 Val Pro Glu Asn Lys Ser Cys Asp Pro Ala Thr Pro Leu Lys Gln Glu         355 360 365 Trp Met Trp Asn Gln Val Ser Lys Phe Leu Gln Glu Gly Asp Val Val     370 375 380 Ile Thr Glu Thr Gly Thr Ser Ala Phe Gly Ile Asn Gln Thr Pro Phe 385 390 395 400 Pro Asn Asn Ala Tyr Gly Ile Ser Gln Val Leu Trp Gly Ser Ile Gly                 405 410 415 Phe Thr Thr Gly Ala Cys Leu Gly Ala Ala Phe Ala Ala Glu Glu Ile             420 425 430 Asp Pro Lys Lys Arg Val Ile Leu Phe Ile Gly Asp Gly Ser Leu Gln         435 440 445 Leu Thr Val Gln Glu Ile Ser Thr Met Ile Arg Trp Gly Leu Lys Pro     450 455 460 Tyr Leu Phe Val Leu Asn Asn Asp Gly Tyr Thr Ile Glu Arg Leu Ile 465 470 475 480 His Gly Glu Lys Ala Gly Tyr Asn Asp Ile Gln Asn Trp Asp His Leu                 485 490 495 Ala Leu Leu Pro Thr Phe Gly Ala Lys Asp Tyr Glu Asn His Arg             500 505 510 Ala Thr Thr Gly Glu Trp Asp Lys Leu Thr Gln Asp Lys Glu Phe Asn         515 520 525 Lys Asn Ser Lys Ile Arg Met Ile Glu Val Met Leu Pro Val Met Asp     530 535 540 Ala Pro Thr Ser Leu Ile Glu Gln Ala Lys Leu Thr Ala Ser Ile Asn 545 550 555 560 Ala Lys Gln Glu                  <210> 114 <211> 1692 <212> DNA <213> Candida glabrata <400> 114 atgtctgaga ttactttggg tagatacttg ttcgagagat tgaaccaagt cgacgttaag 60 accatcttcg gtttgccagg tgacttcaac ttgtccctat tggacaagat ctacgaagtt 120 gaaggtatga gatgggctgg taacgctaac gaattgaacg ctgcttacgc tgctgacggt 180 tacgctagaa tcaagggtat gtcctgtatc atcaccacct tcggtgtcgg tgaattgtct 240 gccttgaacg gtattgccgg ttcttacgct gaacacgtcg gtgtcttgca cgtcgtcggt 300 gtcccatcca tctcctctca agctaagcaa ttgttgttgc accacacctt gggtaacggt 360 gacttcactg tcttccacag aatgtccgct aacatctctg agaccaccgc tatggtcact 420 gacatcgcta ccgctccagc tgagatcgac agatgtatca gaaccaccta catcacccaa 480 agaccagtct acttgggtct accagctaac ttggtcgacc taaaggtccc agccaagctt 540 ttggaaaccc caattgactt gtccttgaag ccaaacgacc cagaagccga aactgaagtc 600 gttgacaccg tcttggaatt gatcaaggct gctaagaacc cagttatctt ggctgatgct 660 tgtgcttcca gacacgacgt caaggctgaa accaagaagt tgattgacgc cactcaattc 720 ccatccttcg ttaccccaat gggtaagggt tccatcgacg aacaacaccc aagattcggt 780 ggtgtctacg tcggtacctt gtccagacca gaagttaagg aagctgttga atccgctgac 840 ttgatcttgt ctgtcggtgc tttgttgtcc gatttcaaca ctggttcttt ctcttactct 900 tacaagacca agaacatcgt cgaattccac tctgactaca tcaagatcag aaacgctacc 960 ttcccaggtg tccaaatgaa gttcgctttg caaaagttgt tgaacgccgt cccagaagct 1020 atcaagggtt acaagccagt ccctgtccca gctagagtcc cagaaaacaa gtcctgtgac 1080 ccagctaccc cattgaagca agaatggatg tggaaccaag tttccaagtt cttgcaagaa 1140 ggtgatgttg ttatcactga aaccggtacc tccgcttttg gtatcaacca aaccccattc 1200 ccaaacaacg cttacggtat ctcccaagtt ctatggggtt ccatcggttt caccaccggt 1260 gcttgtttgg gtgccgcttt cgctgctgaa gaaatcgacc caaagaagag agttatcttg 1320 ttcattggtg acggttcttt gcaattgact gtccaagaaa tctccaccat gatcagatgg 1380 ggcttgaagc catacttgtt cgtcttgaac aacgacggtt acaccatcga aagattgatt 1440 cacggtgaaa aggctggtta caacgacatc caaaactggg accacttggc tctattgcca 1500 accttcggtg ctaaggacta cgaaaaccac agagtcgcca ccaccggtga atgggacaag 1560 ttgacccaag acaaggaatt caacaagaac tccaagatca gaatgatcga agttatgttg 1620 ccagttatgg acgctccaac ttccttgatt gaacaagcta agttgaccgc ttccatcaac 1680 gctaagcaag aa 1692 <210> 115 <211> 596 <212> PRT <213> Pichia stipitis <400> 115 Met Ala Glu Val Ser Leu Gly Arg Tyr Leu Phe Glu Arg Leu Tyr Gln 1 5 10 15 Leu Gln Val Gln Thr Ile Phe Gly Val Pro Gly Asp Phe Asn Leu Ser             20 25 30 Leu Leu Asp Lys Ile Tyr Glu Val Glu Asp Ala His Gly Lys Asn Ser         35 40 45 Phe Arg Trp Ala Gly Asn Ala Asn Glu Leu Asn Ala Ser Tyr Ala Ala     50 55 60 Asp Gly Tyr Ser Arg Val Lys Arg Leu Gly Cys Leu Val Thr Thr Phe 65 70 75 80 Gly Val Gly Glu Leu Ser Ala Leu Asn Gly Ile Ala Gly Ser Tyr Ala                 85 90 95 Glu His Val Gly Leu Leu His Val Val Gly Val Ser Ser Ser Ser             100 105 110 Gln Ala Lys Gln Leu Leu Leu His His Thr Leu Gly Asn Gly Asp Phe         115 120 125 Thr Val Phe His Arg Met Ser Asn Asn Ile Ser Gln Thr Thr Ala Phe     130 135 140 Ile Ser Asp Ile Asn Ser Ala Pro Ala Glu Ile Asp Arg Cys Ile Arg 145 150 155 160 Glu Ala Tyr Val Lys Gln Arg Pro Val Tyr Ile Gly Leu Pro Ala Asn                 165 170 175 Leu Val Asp Leu Asn Val Pro Ala Ser Leu Leu Glu Ser Pro Ile Asn             180 185 190 Leu Ser Leu Glu Lys Asn Asp Pro Glu Ala Gln Asp Glu Val Ile Asp         195 200 205 Ser Val Leu Asp Leu Ile Lys Lys Ser Ser Asn Pro Ile Ile Leu Val     210 215 220 Asp Ala Cys Ala Ser Arg His Asp Cys Lys Ala Glu Val Thr Gln Leu 225 230 235 240 Ile Glu Gln Thr Gln Phe Pro Val Phe Val Thr Pro Met Gly Lys Gly                 245 250 255 Thr Val Asp Glu Gly Gly Val Asp Gly Glu Leu Leu Glu Asp Asp Pro             260 265 270 His Leu Ile Ala Lys Val Ala Ala Arg Leu Ser Ala Gly Lys Asn Ala         275 280 285 Ala Ser Arg Phe Gly Gly Val Tyr Val Gly Thr Leu Ser Lys Pro Glu     290 295 300 Val Lys Asp Ala Val Glu Ser Ala Asp Leu Ile Leu Ser Val Gly Ala 305 310 315 320 Leu Leu Ser Asp Phe Asn Thr Gly Ser Phe Ser Tyr Ser Tyr Arg Thr                 325 330 335 Lys Asn Ile Val Glu Phe His Ser Asp Tyr Thr Lys Ile Arg Gln Ala             340 345 350 Thr Phe Pro Gly Val Gln Met Lys Glu Ala Leu Gln Glu Leu Asn Lys         355 360 365 Lys Val Ser Ser Ala Ser Ser His Tyr Glu Val Lys Pro Val Pro Lys     370 375 380 Ile Lys Leu Ala Asn Thr Pro Ala Thr Arg Glu Val Lys Leu Thr Gln 385 390 395 400 Glu Trp Leu Trp Thr Arg Val Ser Ser Trp Phe Arg Glu Gly Asp Ile                 405 410 415 Ile Ile Thr Glu Thr Gly Thr Ser Ser Phe Gly Ile Val Gln Ser Arg             420 425 430 Phe Pro Asn Asn Thr Ile Gly Ile Ser Gln Val Leu Trp Gly Ser Ile         435 440 445 Gly Phe Ser Val Gly Ala Thr Leu Gly Ala Ala Met Ala Ala Gln Glu     450 455 460 Leu Asp Pro Asn Lys Arg Thr Ile Leu Phe Val Gly Asp Gly Ser Leu 465 470 475 480 Gln Leu Thr Val Gln Glu Ile Ser Thr Ile Ile Arg Trp Gly Thr Thr                 485 490 495 Pro Tyr Leu Phe Val Leu Asn Asn Asp Gly Tyr Thr Ile Glu Arg Leu             500 505 510 Ile His Gly Val Asn Ala Ser Tyr Asn Asp Ile Gln Pro Trp Gln Asn         515 520 525 Leu Glu Ile Leu Pro Thr Phe Ser Ala Lys Asn Tyr Asp Ala Val Arg     530 535 540 Ile Ser Asn Ile Gly Glu Ala Glu Asp Ile Leu Lys Asp Lys Glu Phe 545 550 555 560 Gly Lys Asn Ser Lys Ile Arg Leu Ile Glu Val Met Leu Pro Arg Leu                 565 570 575 Asp Ala Pro Ser Asn Leu Ala Lys Gln Ala Ala Ile Thr Ala Ala Thr             580 585 590 Asn Ala Glu Ala         595 <210> 116 <211> 1788 <212> DNA <213> Pichia stipitis <400> 116 atggctgaag tctcattagg aagatatctc ttcgagagat tgtaccaatt gcaagtgcag 60 accatcttcg gtgtccctgg tgatttcaac ttgtcgcttt tggacaagat ctacgaagtg 120 gaagatgccc atggcaagaa ttcgtttaga tgggctggta atgccaacga attgaatgca 180 tcgtacgctg ctgacggtta ctcgagagtc aagcgtttag ggtgtttggt cactaccttt 240 ggtgtcggtg aattgtctgc tttgaatggt attgccggtt cttatgccga acatgttggt 300 ttgcttcatg tcgtaggtgt tccatcgatt tcctcgcaag ctaagcaatt gttacttcac 360 cacactttgg gtaatggtga tttcactgtt ttccatagaa tgtccaacaa catttctcag 420 accacagcct ttatctccga tatcaactcg gctccagctg aaattgatag atgatatcaga 480 gaggcctacg tcaaacaaag accagtttat atcgggttac cagctaactt agttgatttg 540 aatgttccgg cctctttgct tgagtctcca atcaacttgt cgttggaaaa gaacgaccca 600 gaggctcaag atgaagtcat tgactctgtc ttagacttga tcaaaaagtc gctgaaccca 660 atcatcttgg tcgatgcctg tgcctcgaga catgactgta aggctgaagt tactcagttg 720 attgaacaaa cccaattccc agtatttgtc actccaatgg gtaaaggtac cgttgatgag 780 ggtggtgtag acggagaatt gttagaagat gatcctcatt tgattgccaa ggtcgctgct 840 aggttgtctg ctggcaagaa cgctgcctct agattcggag gtgtttatgt cggaaccttg 900 tcgaagcccg aagtcaagga cgctgtagag agtgcagatt tgattttgtc tgtcggtgcc 960 cttttgtctg atttcaacac tggttcattt tcctactcct acagaaccaa gaacatcgtc 1020 gaattccatt ctgattacac taagattaga caagccactt tcccaggtgt gcagatgaag 1080 gaagccttgc aagaattgaa caagaaagtt tcatctgctg ctagtcacta tgaagtcaag 1140 cctgtgccca agatcaagtt ggccaataca ccagccacca gagaagtcaa gttaactcag 1200 gaatggttgt ggaccagagt gtcttcgtgg ttcagagaag gtgatattat tatcaccgaa 1260 accggtacat cctccttcgg tatagttcaa tccagattcc caaacaacac catcggtatc 1320 tcccaagtat tgtggggttc tattggtttc tctgttggtg ccactttggg tgctgccatg 1380 gctgcccaag aactcgaccc taacaagaga accatcttgt ttgttggaga tggttctttg 1440 caattgaccg ttcaggaaat ctccaccata atcagatggg gtaccacacc ttaccttttc 1500 gtgttgaaca atgacggtta caccatcgag cgtttgatcc acggtgtaaa tgcctcatat 1560 aatgacatcc aaccatggca aaacttggaa atcttgccta ctttctcggc caagaactac 1620 gacgctgtga gaatctccaa catcggagaa gcagaagata tcttgaaaga caaggaattc 1680 ggaaagaact ccaagattag attgatagaa gtcatgttac caagattgga tgcaccatct 1740 aaccttgcca aacaagctgc cattacagct gccaccaacg ccgaagct 1788 <210> 117 <211> 569 <212> PRT <213> Pichia stipitis <400> 117 Met Val Ser Thr Tyr Pro Glu Ser Glu Val Thr Leu Gly Arg Tyr Leu 1 5 10 15 Phe Glu Arg Leu His Gln Leu Lys Val Asp Thr Ile Phe Gly Leu Pro             20 25 30 Gly Asp Phe Asn Leu Ser Leu Leu Asp Lys Val Tyr Glu Val Pro Asp         35 40 45 Met Arg Trp Ala Gly Asn Ala Asn Glu Leu Asn Ala Ala Tyr Ala Ala     50 55 60 Asp Gly Tyr Ser Arg Ile Lys Gly Leu Ser Cys Leu Val Thr Thr Phe 65 70 75 80 Gly Val Gly Gly Leu Ser Ala Leu Asn Gly Val Gly Gly Ala Tyr Ala                 85 90 95 Glu His Val Gly Leu Leu His Val Val Gly Val Ser Ser Ser Ser             100 105 110 Gln Ala Lys Gln Leu Leu Leu His His Thr Leu Gly Asn Gly Asp Phe         115 120 125 Thr Val Phe His Arg Met Ser Asn Ser Ile Ser Gln Thr Thr Ala Phe     130 135 140 Leu Ser Asp Ile Ser Ile Pro Gly Gln Ile Asp Arg Cys Ile Arg 145 150 155 160 Glu Ala Tyr Val His Gln Arg Pro Val Tyr Val Gly Leu Pro Ala Asn                 165 170 175 Met Val Asp Leu Lys Val Ser Ser Leu Leu Glu Thr Pro Ile Asp             180 185 190 Leu Lys Leu Lys Gln Asn Asp Pro Glu Ala Gln Glu Val Val Glu Thr         195 200 205 Val Leu Lys Leu Val Ser Gln Ala Thr Asn Pro Ile Ile Leu Val Asp     210 215 220 Ala Cys Ala Leu Arg His His Cys Lys Glu Glu Val Lys Gln Leu Val 225 230 235 240 Asp Ala Thr Asn Phe Gln Val Phe Thr Thr Pro Met Gly Lys Ser Gly                 245 250 255 Ile Ser Glu Ser His Pro Arg Leu Gly Gly Val Tyr Val Gly Thr Met             260 265 270 Ser Ser Pro Gln Val Lys Lys Ala Val Glu Asn Ala Asp Leu Ile Leu         275 280 285 Ser Val Gly Ser Leu Leu Ser Asp Phe Asn Thr Gly Ser Phe Ser Tyr     290 295 300 Ser Tyr Lys Thr Lys Asn Val Val Glu Phe His Ser Asp Tyr Met Lys 305 310 315 320 Ile Arg Gln Ala Thr Phe Pro Gly Val Gln Met Lys Glu Ala Leu Gln                 325 330 335 Gln Leu Ile Lys Arg Val Ser Ser Tyr Ile Asn Pro Ser Tyr Ile Pro             340 345 350 Thr Arg Val Pro Lys Arg Lys Gln Pro Leu Lys Ala Pro Ser Glu Ala         355 360 365 Pro Leu Thr Gln Glu Tyr Leu Trp Ser Lys Val Ser Gly Trp Phe Arg     370 375 380 Glu Gly Asp Ile Ile Val Thr Glu Thr Gly Thr Ser Ala Phe Gly Ile 385 390 395 400 Ile Gln Ser His Phe Pro Ser Asn Thr Ile Gly Ile Ser Gln Val Leu                 405 410 415 Trp Gly Ser Ile Gly Phe Thr Val Gly Ala Thr Val Gly Ala Ala Met             420 425 430 Ala Ala Gln Glu Ile Asp Pro Ser Arg Arg Val Ile Leu Phe Val Gly         435 440 445 Asp Gly Ser Leu Gln Leu Thr Val Gln Glu Ile Ser Thr Leu Cys Lys     450 455 460 Trp Asp Cys Asn Asn Thr Tyr Leu Tyr Val Leu Asn Asn Asp Gly Tyr 465 470 475 480 Thr Ile Glu Arg Leu Ile His Gly Lys Ser Ala Ser Tyr Asn Asp Ile                 485 490 495 Gln Pro Trp Asn His Leu Ser Leu Leu Arg Leu Phe Asn Ala Lys Lys             500 505 510 Tyr Gln Asn Val Arg Ser Ser Thr Ala Gly Glu Leu Asp Ser Leu Phe         515 520 525 Ser Asp Lys Lys Phe Ala Ser Pro Asp Arg Ile Arg Met Ile Glu Val     530 535 540 Met Leu Ser Arg Leu Asp Ala Pro Ala Asn Leu Val Ala Gln Ala Lys 545 550 555 560 Leu Ser Glu Arg Val Asn Leu Glu Asn                 565 <210> 118 <211> 1707 <212> DNA <213> Pichia stipitis <400> 118 atggtatcaa cctacccaga atcagaggtt actctaggaa ggtacctctt tgagcgactc 60 caccaattga aagtggacac cattttcggc ttgccgggtg acttcaacct ttccttattg 120 gacaaagtgt atgaagttcc ggatatgagg tgggctggaa atgccaacga attgaatgct 180 gcctatgctg ccgatggtta ctccagaata aagggattgt cttgcttggt cacaactttt 240 ggtgttggtg aattgtctgc tttaaacgga gttggtggtg cctatgctga acacgtagga 300 cttctacatg tcgttggagt tccatccata tcgtcacagg ctaaacagtt gttgctccac 360 cataccttgg gtaatggtga cttcactgtt tttcacagaa tgtccaatag catttctcaa 420 actacagcat ttctctcaga tatctctatt gcaccaggtc aaatagatag atgcatcaga 480 gaagcatatg ttcatcagag accagtttat gttggtttac cggcaaatat ggttgatctc 540 aaggttcctt ctagtctctt agaaactcca attgatttga aattgaaaca aaatgatcct 600 gaagctcaag aagttgttga aacagtcctg aagttggtgt cccaagctac aaaccccatt 660 atcttggtag acgcttgtgc cctcagacac aattgcaaag aggaagtcaa acaattggtt 720 gatgccacta attttcaagt ctttacaact ccaatgggta aatctggtat ctccgaatct 780 catccaagat tgggcggtgt ctatgtcggg acaatgtcga gtcctcaagt caaaaaagcc 840 gttgaaaatg ccgatcttat actatctgtt ggttcgttgt tatcggactt caatacaggt 900 tcattttcat actcctacaa gacgaagaat gttgttgaat tccactctga ctatatgaaa 960 atcagacagg ccaccttccc aggagttcaa atgaaagaag ccttgcaaca gttgataaaa 1020 agggtctctt cttacatcaa tccaagctac attcctactc gagttcctaa aaggaaacag 1080 ccattgaaag ctccatcaga agctcctttg acccaagaat atttgtggtc taaagtatcc 1140 ggctggttta gagagggtga tattatcgta accgaaactg gtacatctgc tttcggaatt 1200 attcaatccc attttcccag caacactatc ggtatatccc aagtcttgtg gggctcaatt 1260 ggtttcacag taggtgcaac agttggtgct gccatggcag cccaggaaat cgaccctagc 1320 aggagagtaa ttttgttcgt cggtgatggt tcattgcagt tgacggttca ggaaatctct 1380 acgttgtgta aatgggattg taacaatact tatctttacg tgttgaacaa tgatggttac 1440 actatagaaa ggttgatcca cggcaaaagt gccagctaca acgatataca gccttggaac 1500 catttatcct tgcttcgctt attcaatgct aagaaatacc aaaatgtcag agtatcgact 1560 gctggagaat tggactcttt gttctctgat aagaaatttg cttctccaga taggataaga 1620 atgattgagg tgatgttatc gagattggat gcaccagcaa atcttgttgc tcaagcaaag 1680 ttgtctgaac gggtaaacct tgaaaat 1707 <210> 119 <211> 563 <212> PRT <213> Kluyveromyces lactis <400> 119 Met Ser Glu Ile Thr Leu Gly Arg Tyr Leu Phe Glu Arg Leu Lys Gln 1 5 10 15 Val Glu Val Gln Thr Ile Phe Gly Leu Pro Gly Asp Phe Asn Leu Ser             20 25 30 Leu Leu Asp Asn Ile Tyr Glu Val Pro Gly Met Arg Trp Ala Gly Asn         35 40 45 Ala Asn Glu Leu Asn Ala Ala Tyr Ala Ala Asp Gly Tyr Ala Arg Leu     50 55 60 Lys Gly Met Ser Cys Ile Ile Thr Thr Phe Gly Val Gly Glu Leu Ser 65 70 75 80 Ala Leu Asn Gly Ile Ala Gly Ser Tyr Ala Glu His Val Gly Val Leu                 85 90 95 His Val Val Gly Val Ser Ser Val Ser Ser Gln Ala Lys Gln Leu Leu             100 105 110 Leu His His Thr Leu Gly Asn Gly Asp Phe Thr Val Phe His Arg Met         115 120 125 Ser Ser Asn Ile Ser Glu Thr Thr Ala Met Ile Thr Asp Ile Asn Thr     130 135 140 Ala Pro Ala Glu Ile Asp Arg Cys Ile Arg Thr Thr Tyr Val Ser Gln 145 150 155 160 Arg Pro Val Tyr Leu Gly Leu Pro Ala Asn Leu Val Asp Leu Thr Val                 165 170 175 Pro Ala Ser Leu Leu Asp Thr Pro Ile Asp Leu Ser Leu Lys Pro Asn             180 185 190 Asp Pro Glu Ala Glu Glu Glu Val Ile Glu Asn Val Leu Gln Leu Ile         195 200 205 Lys Glu Ala Lys Asn Pro Val Ile Leu Ala Asp Ala Cys Cys Ser Arg     210 215 220 His Asp Ala Lys Ala Glu Thr Lys Lys Leu Ile Asp Leu Thr Gln Phe 225 230 235 240 Pro Ala Phe Val Thr Pro Met Gly Lys Gly Ser Ile Asp Glu Lys His                 245 250 255 Pro Arg Phe Gly Gly Val Tyr Val Gly Thr Leu Ser Ser Pro Ala Val             260 265 270 Lys Glu Ala Val Glu Ser Ala Asp Leu Val Leu Ser Val Gly Ala Leu         275 280 285 Leu Ser Asp Phe Asn Thr Gly Ser Phe Ser Tyr Ser Tyr Lys Thr Lys     290 295 300 Asn Ile Val Glu Phe His Ser Asp Tyr Thr Lys Ile Arg Ser Ala Thr 305 310 315 320 Phe Pro Gly Val Gln Met Lys Phe Ala Leu Gln Lys Leu Leu Thr Lys                 325 330 335 Val Ala Asp Ala Ala Lys Gly Tyr Lys Pro Val Val Ser Ser Glu             340 345 350 Pro Glu His Asn Glu Ala Val Ala Asp Ser Thr Pro Leu Lys Gln Glu         355 360 365 Trp Val Trp Thr Gln Val Gly Glu Phe Leu Arg Glu Gly Asp Val Val     370 375 380 Ile Thr Glu Thr Gly Thr Ser Ala Phe Gly Ile Asn Gln Thr His Phe 385 390 395 400 Pro Asn Asn Thr Tyr Gly Ile Ser Gln Val Leu Trp Gly Ser Ile Gly                 405 410 415 Phe Thr Thr Gly Ala Thr Leu Gly Ala Ala Phe Ala Ala Glu Glu Ile             420 425 430 Asp Pro Lys Lys Arg Val Ile Leu Phe Ile Gly Asp Gly Ser Leu Gln         435 440 445 Leu Thr Val Gln Glu Ile Ser Thr Met Ile Arg Trp Gly Leu Lys Pro     450 455 460 Tyr Leu Phe Val Leu Asn Asn Asp Gly Tyr Thr Ile Glu Arg Leu Ile 465 470 475 480 His Gly Glu Thr Ala Gln Tyr Asn Cys Ile Gln Asn Trp Gln His Leu                 485 490 495 Glu Leu Leu Pro Thr Ply Gly Ala Lys Asp Tyr Glu Ala Val Val Arg             500 505 510 Ser Thr Thr Gly Glu Trp Asn Lys Leu Thr Thr Asp Glu Lys Phe Gln         515 520 525 Asp Asn Thr Arg Ile Arg Leu Ile Glu Val Met Leu Pro Thr Met Asp     530 535 540 Ala Pro Ser Asn Leu Val Lys Gln Ala Gln Leu Thr Ala Ala Thr Asn 545 550 555 560 Ala Lys Asn              <210> 120 <211> 1689 <212> DNA <213> Kluyveromyces lactis <400> 120 atgtctgaaa ttacattagg tcgttacttg ttcgaaagat taaagcaagt cgaagttcaa 60 accatctttg gtctaccagg tgatttcaac ttgtccctat tggacaatat ctacgaagtc 120 ccaggtatga gatgggctgg taatgccaac gaattgaacg ctgcttacgc tgctgatggt 180 tacgccagat taaagggtat gtcctgtatc atcaccacct tcggtgtcgg tgaattgtct 240 gctttgaacg gtattgccgg ttcttacgct gaacacgttg gtgtcttgca cgttgtcggt 300 gttccatccg tctcttctca agctaagcaa ttgttgttgc accacacctt gggtaacggt 360 gacttcactg ttttccacag aatgtcctcc aacatttctg aaaccactgc tatgatcacc 420 gatatcaaca ctgccccagc tgaaatcgac agatgtatca gaaccactta cgtttcccaa 480 agaccagtct acttgggttt gccagctaac ttggtcgact tgactgtccc agcttctttg 540 ttggacactc caattgattt gagcttgaag ccaaatgacc cagaagccga agaagaagtc 600 atcgaaaacg tcttgcaact gatcaaggaa gctaagaacc cagttatctt ggctgatgct 660 tgttgttcca gacacgatgc caaggctgag accaagaagt tgatcgactt gactcaattc 720 ccagccttcg ttaccccaat gggtaagggt tccattgacg aaaagcaccc aagattcggt 780 ggtgtctacg tcggtaccct atcttctcca gctgtcaagg aagccgttga atctgctgac 840 ttggttctat cggtcggtgc tctattgtcc gatttcaaca ctggttcttt ctcttactct 900 tacaagacca agaacattgt cgaattccac tctgactaca ccaagatcag aagcgctacc 960 ttcccaggtg tccaaatgaa gttcgcttta caaaaattgt tgactaaggt tgccgatgct 1020 gctaagggtt acaagccagt tccagttcca tctgaaccag aacacaacga agctgtcgct 1080 gactccactc cattgaagca agaatgggtc tggactcaag tcggtgaatt cttgagagaa 1140 ggtgatgttg ttatcactga aaccggtacc tctgccttcg gtatcaacca aactcatttc 1200 ccaaacaaca catacggtat ctctcaagtt ttatggggtt ccattggttt caccactggt 1260 gctaccttgg gtgctgcctt cgctgccgaa gaaattgatc caaagaagag agttatctta 1320 ttcattggtg acggttcttt gcaattgact gttcaagaaa tctccaccat gatcagatgg 1380 ggcttgaagc catacttgtt cgtattgaac aacgacggtt acaccattga aagattgatt 1440 cacggtgaaa ccgctcaata caactgtatc caaaactggc aacacttgga attattgcca 1500 actttcggtg ccaaggacta cgaagctgtc agagtttcca ccactggtga atggaacaag 1560 ttgaccactg acgaaaagtt ccaagacaac accagaatca gattgatcga agttatgttg 1620 ccaactatgg atgctccatc taacttggtt aagcaagctc aattgactgc tgctaccaac 1680 gctaagaac 1689 <210> 121 <211> 571 <212> PRT <213> Yarrowia lipolytica <400> 121 Met Ser Asp Ser Glu Pro Gln Met Val Asp Leu Gly Asp Tyr Leu Phe 1 5 10 15 Ala Arg Phe Lys Gln Leu Gly Val Asp Ser Val Phe Gly Val Pro Gly             20 25 30 Asp Phe Asn Leu Thr Leu Leu Asp His Val Tyr Asn Val Asp Met Arg         35 40 45 Trp Val Gly Asn Thr Asn Glu Leu Asn Ala Gly Tyr Ser Ala Asp Gly     50 55 60 Tyr Ser Arg Val Lys Arg Leu Ala Cys Leu Val Thr Thr Phe Gly Val 65 70 75 80 Gly Glu Leu Ser Ala Val Ala Ala Val Ala Gly Ser Tyr Ala Glu His                 85 90 95 Val Gly Val Val His Val Val Gly Val Ser Ser Ser Ser Ala Glu Asn             100 105 110 Lys His Leu Leu Leu His His Thr Leu Gly Asn Gly Asp Phe Arg Val         115 120 125 Phe Ala Gln Met Ser Lys Leu Ile Ser Glu Tyr Thr His His Ile Glu     130 135 140 Asp Pro Ser Glu Ala Ala Asp Val Ile Asp Thr Ala Ile Arg Ile Ala 145 150 155 160 Tyr Thr His Gln Arg Pro Val Tyr Ile Ala Val Ser Ser Asn Phe Ser                 165 170 175 Glu Val Asp Ile Ala Asp Gln Ala Arg Leu Asp Thr Pro Leu Asp Leu             180 185 190 Ser Leu Gln Pro Asn Asp Pro Glu Ser Gln Tyr Glu Val Ile Glu Glu         195 200 205 Ile Cys Ser Arg Ile Lys Ala Ala Lys Lys Pro Val Ile Leu Val Asp     210 215 220 Ala Cys Ala Ser Arg Tyr Arg Cys Val Asp Glu Thr Lys Glu Leu Ala 225 230 235 240 Lys Ile Thr Asn Phe Ala Tyr Phe Val Thr Pro Met Gly Lys Gly Ser                 245 250 255 Val Asp Glu Asp Thr Asp Arg Tyr Gly Gly Thr Tyr Val Gly Ser Leu             260 265 270 Thr Ala Pro Ala Thr Ala Glu Val Val Glu Thr Ala Asp Leu Ile Ile         275 280 285 Ser Val Gly Ala Leu Leu Ser Asp Phe Asn Thr Gly Ser Phe Ser Tyr     290 295 300 Ser Tyr Ser Thr Lys Asn Val Val Glu Leu His Ser Asp His Val Lys 305 310 315 320 Ile Lys Ser Ala Thr Tyr Asn Asn Val Gly Met Lys Met Leu Phe Pro                 325 330 335 Pro Leu Leu Glu Ala Val Lys Lys Leu Val Ala Glu Thr Pro Asp Phe             340 345 350 Ala Ser Lys Ala Leu Ala Val Pro Asp Thr Thr Pro Lys Ile Pro Glu         355 360 365 Val Pro Asp Asp His Ile Thr Thr Gln Ala Trp Leu Trp Gln Arg Leu     370 375 380 Ser Tyr Phe Leu Arg Pro Thr Asp Ile Val Val Thr Glu Thr Gly Thr 385 390 395 400 Ser Ser Phe Gly Ile Ile Gln Thr Lys Phe Pro His Asn Val Arg Gly                 405 410 415 Ile Ser Gln Val Leu Trp Gly Ser Ile Gly Tyr Ser Val Gly Ala Ala             420 425 430 Cys Gly Ala Ser Ile Ala Gln Glu Ile Asp Pro Gln Gln Arg Val         435 440 445 Ile Leu Phe Val Gly Asp Gly Ser Leu Gln Leu Thr Val Thr Glu Ile     450 455 460 Ser Cys Met Ile Arg Asn Asn Val Lys Pro Tyr Ile Phe Val Leu Asn 465 470 475 480 Asn Asp Gly Tyr Thr Ile Glu Arg Leu Ile His Gly Glu Asn Ala Ser                 485 490 495 Tyr Asn Asp Val His Met Trp Lys Tyr Ser Lys Ile Leu Asp Thr Phe             500 505 510 Asn Ala Lys Ala His Glu Ser Ile Val Val Asn Thr Lys Gly Glu Met         515 520 525 Asp Ala Leu Phe Asp Asn Glu Glu Phe Ala Lys Pro Asp Lys Ile Arg     530 535 540 Leu Ile Glu Val Met Cys Asp Lys Met Asp Ala Pro Ala Ser Leu Ile 545 550 555 560 Lys Gln Ala Glu Leu Ser Ala Lys Thr Asn Val                 565 570 <210> 122 <211> 1713 <212> DNA <213> Yarrowia lipolytica <400> 122 atgagcgact ccgaacccca aatggtcgac ctgggcgact atctctttgc ccgattcaag 60 cagctaggcg tggactccgt ctttggagtg cccggcgact tcaacctcac cctgttggac 120 cacgtgtaca atgtcgacat gcggtgggtt gggaacacaa acgagctgaa tgccggctac 180 tcggccgacg gctactcccg ggtcaagcgg ctggcatgtc ttgtcaccac ctttggcgtg 240 ggagagctgt ctgccgtggc tgctgtggca ggctcgtacg ccgagcatgt gggcgtggtg 300 catgttgtgg gcgttcccag cacctctgct gagaacaagc atctgctgct gcaccacaca 360 ctcggtaacg gcgacttccg ggtctttgcc cagatgtcca aactcatctc cgagtacacc 420 caccatattg aggaccccag cgaggctgcc gacgtaatcg acaccgccat ccgaatcgcc 480 tacacccacc agcggcccgt ttacattgct gtgccctcca acttctccga ggtcgatatt 540 gccgaccagg ctagactgga tacccccctg gacctttcgc tgcagcccaa cgaccccgag 600 agccagtacg aggtgattga ggagatttgc tcgcgtatca aggccgccaa gaagcccgtg 660 attctcgtcg acgcctgcgc ttcgcgatac agatgtgtgg acgagaccaa ggagctggcc 720 aagatcacca actttgccta ctttgtcact cccatgggta agggttctgt ggacgaggat 780 actgaccggt acggaggaac atacgtcgga tcgctgactg ctcctgctac tgccgaggtg 840 gttgagacag ctgatctcat catctccgta ggagctcttc tgtcggactt caacaccggt 900 tccttctcgt actcctactc caccaaaaac gtggtggaat tgcattcgga ccacgtcaaa 960 atcaagtccg ccacctacaa caacgtcggc atgaaatgc tgttcccgcc cctgctcgaa 1020 gccgtcaaga aactggttgc cgagacccct gactttgcat ccaaggctct ggctgttccc 1080 gacaccactc ccaagatccc cgaggtaccc gatgatcaca ttacgaccca ggcatggctg 1140 tggcagcgtc tcagttactt tctgaggccc accgacatcg tggtcaccga gaccggaacc 1200 tcgtcctttg gaatcatcca gaccaagttc ccccacaacg tccgaggtat ctcgcaggtg 1260 ctgtggggct ctattggata ctcggtggga gcagcctgtg gagcctccat tgctgcacag 1320 gagattgacc cccagcagcg agtgattctg tttgtgggcg acggctctct tcagctgacg 1380 gtgaccgaga tctcgtgcat gatccgcaac aacgtcaagc cgtacatttt tgtgctcaac 1440 aacgacggct acaccatcga gaggctcatt cacggcgaaa acgcctcgta caacgatgtg 1500 cacatgtgga agtactccaa gattctcgac acgttcaacg ccaaggccca cgagtcgatt 1560 gtggtcaaca ccaagggcga gatggacgct ctgttcgaca acgaagagtt tgccaagccc 1620 gacaagatcc ggctcattga ggtcatgtgc gacaagatgg acgcgcctgc ctcgttgatc 1680 aagcaggctg agctctctgc caagaccaac gtt 1713 <210> 123 <211> 571 <212> PRT <213> Schizosaccharomyces pombe <400> 123 Met Ser Gly Asp Ile Leu Val Gly Glu Tyr Leu Phe Lys Arg Leu Glu 1 5 10 15 Gln Leu Gly Val Lys Ser Ile Leu Gly Val Pro Gly Asp Phe Asn Leu             20 25 30 Ala Leu Leu Asp Leu Ile Glu Lys Val Gly Asp Glu Lys Phe Arg Trp         35 40 45 Val Gly Asn Thr Asn Glu Leu Asn Gly Ala Tyr Ala Ala Asp Gly Tyr     50 55 60 Ala Arg Val Asn Gly Leu Ser Ala Ile Val Thr Thr Phe Gly Val Gly 65 70 75 80 Glu Leu Ser Ala Ile Asn Gly Val Ala Gly Ser Tyr Ala Glu His Val                 85 90 95 Pro Val Val His Ile Val Gly Met Pro Ser Thr Lys Val Gln Asp Thr             100 105 110 Gly Ala Leu Leu His His Thr Leu Gly Asp Gly Asp Phe Arg Thr Phe         115 120 125 Met Asp Met Phe Lys Lys Val Ser Ala Tyr Ser Ile Met Ile Asp Asn     130 135 140 Gly Asn Asp Ala Glu Lys Ile Asp Glu Ala Leu Ser Ile Cys Tyr 145 150 155 160 Lys Lys Ala Arg Pro Val Tyr Ile Gly Ile Pro Ser Asp Ala Gly Tyr                 165 170 175 Phe Lys Ala Ser Ser Ser Asn Leu Gly Lys Arg Leu Lys Leu Glu Glu             180 185 190 Asp Thr Asn Asp Pro Ala Val Glu Gln Glu Val Ile Asn His Ile Ser         195 200 205 Glu Met Val Val Asn Ala Lys Lys Pro Val Ile Leu Ile Asp Ala Cys     210 215 220 Ala Val Arg His Arg Val Val Pro Glu Val His Glu Leu Ile Lys Leu 225 230 235 240 Thr His Phe Pro Thr Tyr Val Thr Pro Met Gly Lys Ser Ala Ile Asp                 245 250 255 Glu Thr Ser Gln Phe Phe Asp Gly Val Tyr Val Gly Ser Ser Ser Asp             260 265 270 Pro Glu Val Lys Asp Arg Ile Glu Ser Thr Asp Leu Leu Leu Ser Ile         275 280 285 Gly Ala Leu Lys Ser Asp Phe Asn Thr Gly Ser Phe Ser Tyr His Leu     290 295 300 Ser Gln Lys Asn Ala Val Glu Phe His Ser Asp His Met Arg Ile Arg 305 310 315 320 Tyr Ala Leu Tyr Pro Asn Val Ala Met Lys Tyr Ile Leu Arg Lys Leu                 325 330 335 Leu Lys Val Leu Asp Ala Ser Met Cys His Ser Lys Ala Ala Pro Thr             340 345 350 Ile Gly Tyr Asn Ile Lys Pro Lys His Ala Glu Gly Tyr Ser Ser Asn         355 360 365 Glu Ile Thr His Cys Trp Phe Trp Pro Lys Phe Ser Glu Phe Leu Lys     370 375 380 Pro Arg Asp Val Leu Ile Thr Glu Thr Gly Thr Ala Asn Phe Gly Val 385 390 395 400 Leu Asp Cys Arg Phe Pro Lys Asp Val Thr Ala Ile Ser Gln Val Leu                 405 410 415 Trp Gly Ser Ile Gly Tyr Ser Val Gly Ala Met Phe Gly Ala Val Leu             420 425 430 Ala Val His Asp Ser Lys Glu Pro Asp Arg Arg Thr Ile Leu Val Val         435 440 445 Gly Asp Gly Ser Leu Gln Leu Thr Ile Thr Glu Ile Ser Thr Cys Ile     450 455 460 Arg His Asn Leu Lys Pro Ile Ile Phe Ile Ile Asn Asn Asp Gly Tyr 465 470 475 480 Thr Ile Glu Arg Leu Ile His Gly Leu His Ala Ser Tyr Asn Glu Ile                 485 490 495 Asn Thr Lys Trp Gly Tyr Gln Gln Ile Pro Lys Phe Phe Gly Ala Ala             500 505 510 Glu Asn His Phe Arg Thr Tyr Cys Val Lys Thr Pro Thr Asp Val Glu         515 520 525 Lys Leu Phe Ser Asp Lys Glu Phe Ala Asn Ala Asp Val Ile Gln Val     530 535 540 Val Glu Leu Val Met Met Leu Asp Ala Pro Arg Val Leu Val Glu 545 550 555 560 Gln Ala Lys Leu Thr Ser Lys Ile Asn Lys Gln                 565 570 <210> 124 <211> 1713 <212> DNA <213> Schizosaccharomyces pombe <400> 124 atgagtgggg atattttagt cggtgaatat ctattcaaaa ggcttgaaca attaggggtc 60 aagtccattc ttggtgttcc aggagatttc aatttagctc tacttgactt aattgagaaa 120 gttggagatg agaaatttcg ttgggttggc aataccaatg agttgaatgg tgcttatgcc 180 gctgatggtt atgctcgtgt taatggtctt tcagccattg ttacaacgtt cggcgtggga 240 gagctttccg ctattaatgg agtggcaggt tcttatgcgg agcatgtccc agtagttcat 300 attgttggaa tgccttccac aaaggtgcaa gatactggag ctttgcttca tcatacttta 360 ggagatggag actttcgcac tttcatggat atgtttaaga aagtttctgc ctacagtata 420 atgatcgata acggaaacga tgcagctgaa aagatcgatg aagccttgtc gatttgttat 480 aaaaaggcta ggcctgttta cattggtatt ccttctgatg ctggctactt caaagcatct 540 tcatcaaatc ttgggaaaag actaaagctc gaggaggata ctaacgatcc agcagttgag 600 caagaagtca tcaatcatat ctcggaaatg gttgtcaatg caaagaaacc agtgatttta 660 attgacgctt gtgctgtaag acatcgtgtc gttccagaag tacatgagct gattaaattg 720 acccatttcc ctacatatgt aactcccatg ggtaaatctg caattgacga aacttcgcaa 780 ttttttggg gcgtttatgt tggttcaatt tcagatcctg aagttaaaga cagaattgaa 840 tccactgatc tgttgctatc catcggtgct ctcaaatcag actttaacac gggttccttc 900 tcttaccacc tcagccaaaa gaatgccgtt gagtttcatt cagaccacat gcgcattcga 960 tatgctcttt atccaaatgt agccatgaag tatattcttc gcaaactgtt gaaagtactt 1020 gatgcttcta tgtgtcattc caaggctgct cctaccattg gctacaacat caagcctaag 1080 catgcggaag gatattcttc caacgagatt actcattgct ggttttggcc taaatttagt 1140 gaatttttga agccccgaga tgttttgatc accgagactg gaactgcaaa ctttggtgtc 1200 cttgattgca ggtttccaaa ggatgtaaca gccatttccc aggtattatg gggatctatt 1260 ggatactccg ttggtgcaat gtttggtgct gttttggccg tccacgattc taaagagccc 1320 gatcgtcgta ccattcttgt agtaggtgat ggatccttac aactgacgat tacagagatt 1380 tcaacctgca ttcgccataa cctcaaacca attattttca taattaacaa cgacggttac 1440 accattgagc gtttaattca tggtttgcat gctagctata acgaaattaa cactaaatgg 1500 ggctaccaac agattcccaa gtttttcgga gctgctgaaa accacttccg cacttactgt 1560 gttaaaactc ctactgacgt tgaaaagttg tttagcgaca aggagtttgc aaatgcagat 1620 gtcattcaag tagttgagct tgtaatgcct atgttggatg cacctcgtgt cctagttgag 1680 caagccaagt tgacgtctaa gatcaataag caa 1713 <210> 125 <211> 563 <212> PRT <213> Zygosaccharomyces rouxii <400> 125 Met Ser Glu Ile Thr Leu Gly Arg Tyr Leu Phe Glu Arg Leu Lys Gln 1 5 10 15 Val Asp Thr Asn Thr Ile Phe Gly Val Pro Gly Asp Phe Asn Leu Ser             20 25 30 Leu Leu Asp Lys Val Tyr Glu Val Gln Gly Leu Arg Trp Ala Gly Asn         35 40 45 Ala Asn Glu Leu Asn Ala Ala Tyr Ala Ala Asp Gly Tyr Ala Arg Val     50 55 60 Lys Gly Leu Ala Leu Ile Thr Thr Phe Gly Val Gly Glu Leu Ser 65 70 75 80 Ala Leu Asn Gly Ile Ala Gly Ser Tyr Ala Glu His Val Gly Val Leu                 85 90 95 His Ile Val Gly Val Ser Ser Val Ser Ser Gln Ala Lys Gln Leu Leu             100 105 110 Leu His His Thr Leu Gly Asn Gly Asp Phe Thr Val Phe His Arg Met         115 120 125 Ser Ala Asn Ile Ser Glu Thr Thr Ala Met Leu Thr Asp Ile Thr Ala     130 135 140 Ala Pro Ala Glu Ile Asp Arg Cys Ile Arg Val Ala Tyr Val Asn Gln 145 150 155 160 Arg Pro Val Tyr Leu Gly Leu Pro Ala Asn Leu Val Asp Gln Lys Val                 165 170 175 Pro Ala Ser Leu Leu Asn Thr Pro Ile Asp Leu Ser Leu Lys Glu Asn             180 185 190 Asp Pro Glu Ala Glu Thr Glu Val Val Asp Thr Val Leu Glu Leu Ile         195 200 205 Lys Glu Ala Lys Asn Pro Val Ile Leu Ala Asp Ala Cys Cys Ser Arg     210 215 220 His Asp Val Lys Ala Glu Thr Lys Lys Leu Ile Asp Leu Thr Gln Phe 225 230 235 240 Pro Ser Phe Val Thr Pro Met Gly Lys Gly Ser Ile Asp Glu Gln Asn                 245 250 255 Pro Arg Phe Gly Gly Val Tyr Val Gly Thr Leu Ser Ser Pro Glu Val             260 265 270 Lys Glu Ala Val Glu Ser Ala Asp Leu Val Leu Ser Val Gly Ala Leu         275 280 285 Leu Ser Asp Phe Asn Thr Gly Ser Phe Ser Tyr Ser Tyr Lys Thr Lys     290 295 300 Asn Val Val Glu Phe His Ser Asp His Ile Lys Ile Arg Asn Ala Thr 305 310 315 320 Phe Pro Gly Val Gln Met Lys Phe Val Leu Lys Lys Leu Leu Gln Ala                 325 330 335 Val Pro Glu Ala Val Lys Asn Tyr Lys Pro Gly Pro Val Pro Ala Pro             340 345 350 Pro Ser Pro Asn Ala Glu Val Ala Asp Ser Thr Thr Leu Lys Gln Glu         355 360 365 Trp Leu Trp Arg Gln Val Gly Ser Phe Leu Arg Glu Gly Asp Val Val     370 375 380 Ile Thr Glu Thr Gly Thr Ser Ala Phe Gly Ile Asn Gln Thr His Phe 385 390 395 400 Pro Asn Gln Thr Tyr Gly Ile Ser Gln Val Leu Trp Gly Ser Ile Gly                 405 410 415 Tyr Thr Thr Gly Ser Thr Leu Gly Ala Ala Phe Ala Ala Glu Glu Ile             420 425 430 Asp Pro Lys Lys Arg Val Ile Leu Phe Ile Gly Asp Gly Ser Leu Gln         435 440 445 Leu Thr Val Gln Glu Ile Ser Thr Met Ile Arg Trp Gly Leu Lys Pro     450 455 460 Tyr Leu Phe Val Leu Asn Asn Asp Gly Tyr Thr Ile Glu Arg Leu Ile 465 470 475 480 His Gly Glu Thr Ala Glu Tyr Asn Cys Ile Gln Pro Trp Lys His Leu                 485 490 495 Glu Leu Leu Asn Thr Phe Gly Ala Lys Asp Tyr Glu Asn His Arg Val             500 505 510 Ser Thr Val Gly Glu Trp Asn Lys Leu Thr Gln Asp Pro Lys Phe Asn         515 520 525 Glu Asn Ser Arg Ile Arg Met Ile Glu Val Met Leu Glu Val Met Asp     530 535 540 Ala Pro Ser Ser Leu Val Ala Gln Ala Gln Leu Thr Ala Ala Thr Asn 545 550 555 560 Ala Lys Gln              <210> 126 <211> 1689 <212> DNA <213> Zygosaccharomyces rouxii <400> 126 atgtctgaaa ttactctagg tcgttacttg ttcgaaagat taaagcaagt tgacactaac 60 accatcttcg gtgttccagg tgacttcaac ttgtccttgt tggacaaggt ctacgaagtg 120 caaggtctaa gatgggctgg taacgctaac gaattgaacg ctgcctacgc tgctgacggt 180 tacgccagag ttaagggttt ggctgctttg atcaccacct tcggtgtcgg tgaattgtct 240 gctttgaacg gtattgcagg ttcttacgct gaacacgttg gtgttttgca cattgttggt 300 gttccatctg tctcttctca agctaagcaa ttgttgttgc accacacctt gggtaacggt 360 gacttcactg ttttccacag aatgtccgcc aacatctctg aaaccaccgc tatgttgacc 420 gacatcactg ctgctccagc tgaaattgac cgttgcatca gagttgctta cgtcaaccaa 480 agaccagtct acttgggtct accagctaac ttggttgacc aaaaggtccc agcttctttg 540 ttgaacactc caattgatct atctctaaag gagaacgacc cagaagctga aaccgaagtt 600 gttgacaccg ttttggaatt gatcaaggaa gctaagaacc cagttatctt ggctgatgct 660 tgctgctcca gacacgacgt caaggctgaa accaagaagt tgatcgactt gactcaattc 720 ccatctttcg ttactcctat gggtaagggt tccatcgacg aacaaaaccc aagattcggt 780 ggtgtctacg tcggtactct atccagccca gaagttaagg aagctgttga atctgctgac 840 ttggttctat ctgtcggtgc tctattgtcc gatttcaaca ctggttcttt ctcttactct 900 tacaagacca agaacgttgt tgaattccac tctgaccaca tcaagatcag aaacgctacc 960 ttcccaggtg ttcaaatgaa attcgttttg aagaaactat tgcaagctgt cccagaagct 1020 gtcaagaact acaagccagg tccagtccca gctccgccat ctccaaacgc tgaagttgct 1080 gactctacca ccttgaagca agaatggtta tggagacaag tcggtagctt cttgagagaa 1140 ggtgatgttg ttattaccga aactggtacc tctgctttcg gtatcaacca aactcacttc 1200 cctaaccaaa cttacggtat ctctcaagtc ttgtggggtt ctattggtta caccactggt 1260 tccactttgg gtgctgcctt cgctgctgaa gaaattgacc ctaagaagag agttatcttg 1320 ttcattggtg acggttctct acaattgacc gttcaagaaa tctccaccat gatcagatgg 1380 ggtctaaagc catacttgtt cgttttgaac aacgatggtt acaccattga aagattgatt 1440 cacggtgaaa ccgctgaata caactgtatc caaccatgga agcacttgga attgttgaac 1500 accttcggtg ccaaggacta cgaaaaccac agagtctcca ctgtcggtga atggaacaag 1560 ttgactcaag atccaaaatt caacgaaaac tctagaatta gaatgatcga agttatgctt 1620 gaagtcatgg acgctccatc ttctttggtc gctcaagctc aattgaccgc tgctactaac 1680 gctaagcaa 1689 <210> 127 <211> 267 <212> PRT <213> Saccharomyces cerevisiae <400> 127 Met Ser Gln Gly Arg Lys Ala Ala Glu Arg Leu Ala Lys Lys Thr Val 1 5 10 15 Leu Ile Thr Gly Ala Ser Ala Gly Ile Gly Lys Ala Thr Ala Leu Glu             20 25 30 Tyr Leu Glu Ala Ser Asn Gly Asp Met Lys Leu Ile Leu Ala Ala Arg         35 40 45 Arg Leu Glu Lys Leu Glu Glu Leu Lys Lys Thr Ile Asp Gln Glu Phe     50 55 60 Pro Asn Ala Lys Val Val Ala Gln Leu Asp Ile Thr Gln Ala Glu 65 70 75 80 Lys Ile Lys Pro Phe Ile Glu Asn Leu Pro Gln Glu Phe Lys Asp Ile                 85 90 95 Asp Ile Leu Val Asn Asn Ala Gly Lys Ala Leu Gly Ser Asp Arg Val             100 105 110 Gly Gln Ile Ala Thr Glu Asp Ile Gln Asp Val Phe Asp Thr Asn Val         115 120 125 Thr Ala Leu Ile Asn Ile Thr Gln     130 135 140 Lys Asn Ser Gly Asp Ile Val Asn Leu Gly Ser Ile Ala Gly Arg Asp 145 150 155 160 Ala Tyr Pro Thr Gly Ser Ile Tyr Cys Ala Ser Lys Phe Ala Val Gly                 165 170 175 Ala Phe Thr Asp Ser Leu Arg Lys Glu Leu Ile Asn Thr Lys Ile Arg             180 185 190 Val Ile Leu Ile Ala Pro Gly Leu Val Glu Thr Glu Phe Ser Leu Val         195 200 205 Arg Tyr Arg Gly Asn Glu Glu Gln Ala Lys Asn Val Tyr Lys Asp Thr     210 215 220 Thr Pro Leu Met Ala Asp Asp Val Ala Asp Leu Ile Val Tyr Ala Thr 225 230 235 240 Ser Arg Lys Gln Asn Thr Val Ile Ala Asp Thr Leu Ile Phe Pro Thr                 245 250 255 Asn Gln Ala Ser Pro His His Ile Phe Arg Gly             260 265 <210> 128 <211> 804 <212> DNA <213> Saccharomyces cerevisiae <400> 128 atgtcccaag gtagaaaagc tgcagaaaga ttggctaaga agactgtcct cattacaggt 60 gcatctgctg gtattggtaa ggcgaccgca ttagagtact tggaggcatc caatggtgat 120 atgaaactga tcttggctgc tagaagatta gaaaagctcg aggaattgaa gaagaccatt 180 gatcaagagt ttccaaacgc aaaagttcat gtggcccagc tggatatcac tcaagcagaa 240 aaaatcaagc ccttcattga aaacttgcca caagagttca aggatattga cattctggtg 300 aacaatgccg gaaaggctct tggcagtgac cgtgtgggcc agatcgcaac ggaggatatc 360 caggacgtgt ttgacaccaa cgtcacggct ttaatcaata tcacacaagc tgtactgccc 420 atattccaag ccaagaattc aggagatatt gtaaatttgg gttcaatcgc tggcagagac 480 gcatacccaa caggttctat ctattgtgcc tctaagtttg ccgtgggggc gttcactgat 540 agtttgagaa aggagctcat caacactaaa attagagtca ttctaattgc accagggcta 600 gtcgagactg aattttcact agttagatac agaggtaacg aggaacaagc caagaatgtt 660 tacaaggata ctaccccatt gatggctgat gacgtggctg atctgatcgt ctatgcaact 720 tccagaaaac aaaatactgt aattgcagac actttaatct ttccaacaaa ccaagcgtca 780 cctcatcata tcttccgtgg ataa 804

Claims (39)

발효 브로쓰(fermentation broth)로부터 생성물 알코올을 회수하는 방법으로서,
생성물 알코올을 생성하는 미생물을 포함하는 발효 브로쓰를 제공하는 단계;
발효 브로쓰를 적어도 하나의 추출제와 접촉시키는 단계; 및
생성물 알코올을 회수하는 단계를 포함하는, 방법.
A method of recovering product alcohol from a fermentation broth,
Providing a fermentation broth comprising a microorganism producing a product alcohol;
Contacting the fermentation broth with at least one extraction agent; And
And recovering the product alcohol.
제1항에 있어서, 발효 브로쓰를 적어도 하나의 추출제와 접촉시키는 단계는 발효기, 외부 유닛, 또는 둘 모두에서 일어나는, 방법.2. The method of claim 1, wherein contacting the fermentation broth with at least one extraction agent occurs in a fermenter, an external unit, or both. 제2항에 있어서, 외부 유닛은 추출기인, 방법.3. The method of claim 2, wherein the external unit is an extractor. 제3항에 있어서, 추출기는 사이펀(siphon), 디캔터(decanter), 원심분리기, 중력 침강기(gravity settler), 상분리기(phase splitter), 혼합-침강기(mixer-settler), 컬럼 추출기, 원심 추출기, 교반 추출기, 하이드로사이클론(hydrocyclone), 분무탑(spray tower), 또는 이들의 조합으로부터 선택되는, 방법.4. The method of claim 3, wherein the extractor is selected from the group consisting of a siphon, a decanter, a centrifuge, a gravity settler, a phase splitter, a mixer-settler, a column extractor, An extractor, a stirred extractor, a hydrocyclone, a spray tower, or a combination thereof. 제1항에 있어서, 적어도 하나의 추출제는 C7 내지 C22 지방 알코올, C7 내지 C22 지방산, C7 내지 C22 지방산의 에스테르, C7 내지 C22 지방 알데하이드, C7 내지 C22 지방 아미드, 및 이들의 혼합물로부터 선택되는, 방법.The method of claim 1 wherein at least one of the extractant is C 7 to C 22 fatty alcohols, C 7 to C 22 fatty acid, C 7 to C 22 fatty acid esters, C 7 to C 22 fat aldehyde, C 7 to C 22 fat Amides, and mixtures thereof. 제1항에 있어서, 적어도 하나의 추출제는 올레일 알코올, 베헤닐 알코올, 세틸 알코올, 라우릴 알코올, 미리스틸 알코올, 스테아릴 알코올, 올레산, 라우르산, 리놀레산, 리놀렌산, 미리스트산, 스테아르산, 옥탄산, 데칸산, 운데칸산, 메틸 미리스테이트, 메틸 올레에이트, 1-노난올, 1-데칸올, 2-운데칸올, 1-노난알, 1-운데칸올, 운데칸알, 라우릭 알데하이드, 2-메틸운데칸알, 올레아미드, 리놀레아미드, 팔미트아미드, 스테아릴아미드, 2-에틸-1-헥산올, 2-헥실-1-데칸올, 2-옥틸-1-도데칸올, 및 이들의 혼합물로부터 선택되는, 방법.The composition of claim 1, wherein the at least one extractant is selected from the group consisting of oleyl alcohol, behenyl alcohol, cetyl alcohol, lauryl alcohol, myristyl alcohol, stearyl alcohol, oleic acid, lauric acid, linoleic acid, linolenic acid, myristic acid, But are not limited to, an acid, an octanoic acid, a decanoic acid, an undecanoic acid, a methyl myristate, a methyl oleate, a 1-nonanol, , 2-methylundecanol, oleamide, linoleamide, palmitamide, stearylamide, 2-ethyl-1-hexanol, 2-hexyl-1-decanol, And mixtures thereof. 제6항에 있어서, 친수성 용질이 발효 브로쓰에 첨가되는, 방법.7. The method of claim 6, wherein a hydrophilic solute is added to the fermentation broth. 제7항에 있어서, 친수성 용질은 폴리하이드록실화 화합물, 폴리카르복실산, 폴리올 화합물, 이온성 염, 또는 이들의 혼합물로 이루어진 군으로부터 선택되는, 방법.8. The method of claim 7, wherein the hydrophilic solute is selected from the group consisting of polyhydroxylated compounds, polycarboxylic acids, polyol compounds, ionic salts, or mixtures thereof. 제1항에 있어서, 발효 브로쓰를 적어도 하나의 추출제와 접촉시키는 단계는 둘 이상의 외부 유닛에서 일어나는, 방법.The method of claim 1, wherein contacting the fermentation broth with at least one extraction agent occurs in two or more external units. 제1항에 있어서, 발효 브로쓰를 적어도 하나의 추출제와 접촉시키는 단계는 둘 이상의 발효기에서 일어나는, 방법.2. The method of claim 1 wherein contacting the fermentation broth with at least one extraction agent occurs in two or more fermentors. 제10항에 있어서, 발효기는 상분리를 개선하기 위한 내부구조물(internal) 또는 장치를 포함하는, 방법.11. The method of claim 10, wherein the fermenter comprises an internal structure or device for improving phase separation. 제11항에 있어서, 내부구조물 또는 장치는 코어레서(coalescer), 배플(baffle), 천공판, 웰(well), 라멜라 분리기, 콘(cone), 또는 이들의 조합으로 이루어진 군으로부터 선택되는, 방법.12. The method of claim 11, wherein the internal structure or device is selected from the group consisting of a coalescer, a baffle, a perforated plate, a well, a lamella separator, a cone, or a combination thereof. 제1항에 있어서, 실시간 측정이 생성물 알코올의 추출을 감시하는 데 사용되는, 방법.The method of claim 1, wherein real-time measurements are used to monitor the extraction of the product alcohol. 제13항에 있어서, 생성물 알코올의 추출은 상분리의 실시간 측정에 의해 감시되는, 방법.14. The method of claim 13, wherein the extraction of the product alcohol is monitored by real-time measurement of phase separation. 제14항에 있어서, 상분리는 상분리 속도, 추출제 소적 크기, 및/또는 발효 브로쓰의 조성을 측정함으로써 감시되는, 방법.15. The method of claim 14, wherein the phase separation is monitored by measuring the phase separation rate, the extraction droplet size, and / or the composition of the fermentation broth. 제15항에 있어서, 상분리는 전도율 측정, 유전율 측정(dielectric measurement), 점탄성 측정, 또는 초음파 측정에 의해 감시되는, 방법.16. The method of claim 15, wherein the phase separation is monitored by a conductivity measurement, a dielectric measurement, a viscoelastic measurement, or an ultrasonic measurement. 제1항에 있어서, 미생물을 포함하는 발효 브로쓰를 제공하는 단계는 둘 이상의 발효기에서 일어나는, 방법.The method of claim 1, wherein the step of providing a fermentation broth comprising microorganisms occurs in two or more fermenters. 제1항에 있어서, 생성물 알코올은 에탄올, 프로판올, 부탄올, 펜탄올, 헥산올, 및 퓨젤 알코올로부터 선택되는, 방법.The process of claim 1, wherein the product alcohol is selected from ethanol, propanol, butanol, pentanol, hexanol, and fucel alcohol. 제1항에 있어서, 미생물은 부탄올 생합성 경로를 포함하는, 방법.The method of claim 1, wherein the microorganism comprises a butanol biosynthetic pathway. 제19항에 있어서, 부탄올 생합성 경로는 1-부탄올 생합성 경로, 2-부탄올 생합성 경로, 또는 아이소부탄올 생합성 경로인, 방법.20. The method of claim 19, wherein the butanol biosynthetic pathway is a 1-butanol biosynthetic pathway, a 2-butanol biosynthetic pathway, or an isobutanol biosynthetic pathway. 제19항에 있어서, 미생물은 재조합 미생물인, 방법.20. The method of claim 19, wherein the microorganism is a recombinant microorganism. 제1항에 있어서,
발효가능한 탄소원, 용해되지 않은 고형물, 오일, 및 물을 포함하는 공급원료 슬러리(feedstock slurry)를 제공하는 단계;
공급원료 슬러리를 분리하여, (i) 발효가능한 탄소원을 포함하는 수용액, (ii) 고형물을 포함하는 습윤 케이크(wet cake), 및 (iii) 오일을 형성하는 단계; 및
수용액을 발효 브로쓰에 첨가하는 단계를 추가로 포함하는, 방법.
The method according to claim 1,
Providing a feedstock slurry comprising a fermentable carbon source, undissolved solids, oil, and water;
Separating the feedstock slurry to form an aqueous solution comprising (i) a fermentable carbon source, (ii) a wet cake comprising the solids, and (iii) an oil; And
Further comprising adding an aqueous solution to the fermentation broth.
제22항에 있어서, 오일은 가수분해되어 지방산을 형성하는, 방법.24. The method of claim 22, wherein the oil is hydrolyzed to form a fatty acid. 제23항에 있어서, 발효 브로쓰는 지방산과 접촉되는, 방법.24. The method of claim 23 wherein the fermentation broth is contacted with fatty acids. 제23항에 있어서, 오일은 효소에 의해 가수분해되는, 방법.24. The method of claim 23, wherein the oil is hydrolyzed by an enzyme. 제25항에 있어서, 효소는 하나 이상의 리파아제 또는 포스포리파아제인, 방법.26. The method of claim 25, wherein the enzyme is at least one lipase or phospholipase. 제22항에 있어서, 공급원료 슬러리는 공급원료의 가수분해에 의해 생성되는, 방법.24. The method of claim 22, wherein the feedstock slurry is produced by hydrolysis of the feedstock. 제27항에 있어서, 공급원료는 호밀, 밀, 옥수수, 사탕수수, 보리, 셀룰로오스계 또는 리그노셀룰로오스계 물질, 또는 이들의 조합으로부터 선택되는, 방법.28. The method of claim 27, wherein the feedstock is selected from rye, wheat, corn, sugarcane, barley, cellulosic or lignocellulosic materials, or combinations thereof. 제22항에 있어서, 공급원료 슬러리는 디캔터 보울(decanter bowl) 원심분리, 3상 원심분리, 디스크 스택(disk stack) 원심분리, 여과 원심분리, 디캔터 원심분리, 여과, 진공 여과, 벨트필터(beltfilter), 가압 여과, 스크린을 사용한 여과, 스크린 분리, 그레이팅(grating), 다공성 그레이팅(porous grating), 부유선별(flotation), 하이드로사이클론, 필터 프레스(filter press), 스크류프레스(screwpress), 중력 침강기, 와류형 분리기(vortex separator), 또는 이들의 조합에 의해 분리되는, 방법.23. The method of claim 22 wherein the feed slurry is selected from the group consisting of decanter bowl centrifuge, three phase centrifuge, disk stack centrifuge, filtration centrifuge, decanter centrifuge, filtration, vacuum filtration, beltfilter ), Pressure filtration, screen filtration, screen separation, grating, porous grating, flotation, hydrocyclone, filter press, screw press, gravity settler , A vortex separator, or a combination thereof. 제22항에 있어서, 공급원료를 분리하는 단계는 단일 단계 공정인, 방법.24. The method of claim 22, wherein separating the feedstock is a single step process. 제22항에 있어서, 습윤 케이크는 수용액과 배합되는, 방법.24. The method of claim 22, wherein the wet cake is combined with an aqueous solution. 제22항에 있어서, 수용액을 촉매와 접촉시켜 수용액 중의 오일을 지방산으로 변환하는 단계를 추가로 포함하는, 방법.23. The method of claim 22, further comprising contacting the aqueous solution with a catalyst to convert the oil in the aqueous solution to a fatty acid. 제32항에 있어서, 수용액 및 지방산은 발효 브로쓰에 첨가되는, 방법.33. The method of claim 32, wherein the aqueous solution and the fatty acid are added to the fermentation broth. 제32항에 있어서, 촉매는 비활성화되는, 방법.33. The method of claim 32, wherein the catalyst is deactivated. 공급원료 슬러리를 수용하기 위한 입구, 및
생성물 알코올을 포함하는 발효 브로쓰를 배출하기 위한 출구
를 포함하는 하나 이상의 발효기; 및
발효 브로쓰를 수용하기 위한 제1 입구,
추출제를 수용하기 위한 제2 입구,
희박(lean) 발효 브로쓰를 배출하기 위한 제1 출구, 및
풍부(rich) 추출제를 배출하기 위한 제2 출구
를 포함하는 하나 이상의 추출기
를 포함하는, 시스템.
An inlet for receiving the feed slurry, and
An outlet for discharging the fermentation broth containing the product alcohol
One or more fermenters comprising; And
A first inlet for receiving the fermentation broth,
A second inlet for receiving an extractant,
A first outlet for discharging a lean fermentation broth, and
A second outlet for discharging the rich extractant
Lt; RTI ID = 0.0 &gt;
.
제35항에 있어서,
하나 이상의 액화 유닛;
하나 이상의 분리 수단; 및
선택적으로 하나 이상의 세척 시스템을 추가로 포함하는, 시스템.
36. The method of claim 35,
At least one liquefaction unit;
At least one separating means; And
And optionally one or more cleaning systems.
제36항에 있어서, 분리 수단은 디캔터 원심분리, 3상 원심분리, 디스크 스택 원심분리, 여과 원심분리, 디캔터 원심분리, 여과, 진공 여과, 벨트필터, 가압 여과, 막 여과, 미세여과, 스크린을 사용한 여과, 스크린 분리, 그레이팅, 다공성 그레이팅, 부유선별, 하이드로사이클론, 필터 프레스, 스크류프레스, 중력 침강기, 와류형 분리기, 및 이들의 조합으로부터 선택되는, 시스템.37. The method of claim 36, wherein the separating means is selected from the group consisting of decanter centrifuge, three-phase centrifuge, disk stack centrifuge, filtration centrifuge, decanter centrifuge, filtration, vacuum filtration, belt filtration, pressure filtration, membrane filtration, Wherein the system is selected from the group consisting of filtration, screen separation, grating, porous grating, floating sorting, hydrocyclone, filter press, screw press, gravity settler, eddy separator, and combinations thereof. 제35항에 있어서, 온라인(on-line) 측정 장치를 추가로 포함하는, 시스템.36. The system of claim 35, further comprising an on-line measurement device. 제38항에 있어서, 온라인 측정 장치는 입자 크기 분석기, 푸리에 변환 적외선 분광기, 근적외선 분광기, 라만 분광기(Raman spectroscope), 고압 액체 크로마토그래피, 점도계, 농도계, 장력계, 소적 크기 분석기, pH 측정기, 용존 산소 탐침, 또는 이들의 조합으로부터 선택되는, 시스템.39. The apparatus of claim 38, wherein the on-line measurement device is selected from the group consisting of a particle size analyzer, a Fourier transform infrared spectroscope, a near infrared ray spectroscope, a Raman spectroscope, high pressure liquid chromatography, viscometer, densitometer, tensometer, Probe, or a combination thereof.
KR1020157006300A 2012-09-12 2013-09-12 Processes and systems for the production of fermentation products KR20150054832A (en)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US201261699976P 2012-09-12 2012-09-12
US61/699,976 2012-09-12
US201261712385P 2012-10-11 2012-10-11
US61/712,385 2012-10-11
US13/828,353 US9605281B2 (en) 2012-09-12 2013-03-14 Processes and systems for the fermentative production of alcohols
US13/828,353 2013-03-14
US13/836,115 US20140024064A1 (en) 2012-07-23 2013-03-15 Processes and systems for the production of fermentative alcohols
US13/836,115 2013-03-15
PCT/US2013/059340 WO2014043288A1 (en) 2012-09-12 2013-09-12 Processes and systems for the production of fermentation products

Publications (1)

Publication Number Publication Date
KR20150054832A true KR20150054832A (en) 2015-05-20

Family

ID=52629105

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020157006300A KR20150054832A (en) 2012-09-12 2013-09-12 Processes and systems for the production of fermentation products

Country Status (10)

Country Link
EP (1) EP2895612A1 (en)
JP (2) JP6653576B2 (en)
KR (1) KR20150054832A (en)
CN (1) CN104919050A (en)
AU (2) AU2013315520B2 (en)
BR (1) BR112015005439A8 (en)
CA (1) CA2883627A1 (en)
MX (1) MX2015003073A (en)
NZ (1) NZ705079A (en)
WO (1) WO2014043288A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9752165B2 (en) * 2014-02-10 2017-09-05 Cellulosic Ethanol Technologies, Llc Processes and systems for recovering oil from fermentation products
BR112018001189A2 (en) * 2015-07-20 2019-05-07 Buckman Laboratories Int Inc Measurement, control and automation application in a dry corn milling ethanol production process to maximize ethanol recovery and co-products
MY184848A (en) * 2016-02-04 2021-04-27 Lanzatech New Zealand Ltd Product management in biological conversion processes
GB201603915D0 (en) * 2016-03-07 2016-04-20 Chain Biotechnology Ltd Method and microbes for the production of chiral compounds
EP3378931A1 (en) * 2017-03-21 2018-09-26 Purac Biochem B.V. Fdca-decarboxylating monooxygenase-deficient host cells for producing fdca
CN107446813B (en) * 2017-08-22 2023-10-31 江西省科学院微生物研究所 Device for producing 2-PE through continuous conversion and method for producing 2-PE through continuous conversion
CN109060684B (en) * 2018-07-27 2020-11-06 江南大学 Intelligent measurement method based on computer program microbial fermentation process
CN111254172B (en) * 2019-12-10 2021-09-07 新疆阜丰生物科技有限公司 Method for producing adenosine by fermentation
KR102275630B1 (en) * 2020-04-08 2021-07-12 한국과학기술원 Method for Preparing Primary Amines Using Enzymatic Conversion of Amino Acids
CN112263849B (en) * 2020-09-29 2021-09-28 湖北鑫英泰系统技术股份有限公司 Stirring speed control method and device based on environmental pressure
CN113599867B (en) * 2021-08-25 2022-08-12 北京科技大学 Micro-fine particle viscous material filter-pressing dehydration process detection control device and method
CN114875105A (en) * 2022-03-09 2022-08-09 益水源生物技术(西安)有限公司 Biomass-based efficient carbon source and preparation method thereof
CN115011739B (en) * 2022-08-03 2022-11-01 南京邦康生物技术有限公司 Probiotics production control method and system

Family Cites Families (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06172194A (en) * 1992-12-09 1994-06-21 Sekisui Chem Co Ltd Composition for allergic inflammation-inhibiting agent
JP2972903B2 (en) * 1992-12-25 1999-11-08 農林水産省食品総合研究所長 Dipeptide production method
US5514583A (en) 1994-04-15 1996-05-07 Midwest Research Institute Recombinant zymomonas for pentose fermentation
WO1995028476A1 (en) 1994-04-15 1995-10-26 Midwest Research Institute Recombinant zymomonas for pentose fermentation
US5712133A (en) 1994-04-15 1998-01-27 Midwest Research Institute Pentose fermentation by recombinant zymomonas
US5686276A (en) 1995-05-12 1997-11-11 E. I. Du Pont De Nemours And Company Bioconversion of a fermentable carbon source to 1,3-propanediol by a single microorganism
US5648564A (en) 1995-12-21 1997-07-15 Kemin Industries, Inc. Process for the formation, isolation and purification of comestible xanthophyll crystals from plants
EP1020515A3 (en) 1999-01-18 2002-08-07 DAICEL CHEMICAL INDUSTRIES, Ltd. Amino alcohol dehydrogenase, its production and use
US6169217B1 (en) 1999-10-20 2001-01-02 Board Of Trustees Of The University Of Illinois Method for extracting xanthophylls from corn
US7223575B2 (en) 2000-05-01 2007-05-29 Midwest Research Institute Zymomonas pentose-sugar fermenting strains and uses thereof
US6329557B1 (en) 2000-06-09 2001-12-11 Prodemex, S.A. De C.V. Purification of xanthophylls from marigold extracts that contain high levels of chlorophylls
US7332319B2 (en) 2004-05-27 2008-02-19 Genencor International, Inc. Heterologous alpha amylase expression in Aspergillus
US7413887B2 (en) 2004-05-27 2008-08-19 Genecor International, Inc. Trichoderma reesei glucoamylase and homologs thereof
WO2006110902A1 (en) 2005-04-12 2006-10-19 E. I. Du Pont De Nemours And Company System and process for biomass treatment
US9297028B2 (en) 2005-09-29 2016-03-29 Butamax Advanced Biofuels Llc Fermentive production of four carbon alcohols
JP5276986B2 (en) 2005-10-26 2013-08-28 ビュータマックス・アドバンスド・バイオフューエルズ・エルエルシー Fermentative production of four-carbon alcohol
US8956850B2 (en) 2008-06-05 2015-02-17 Butamax Advanced Biofuels Llc Enhanced pyruvate to acetolactate conversion in yeast
US8945899B2 (en) 2007-12-20 2015-02-03 Butamax Advanced Biofuels Llc Ketol-acid reductoisomerase using NADH
US7666282B2 (en) 2005-12-28 2010-02-23 E.I. Du Pont De Nemours And Company Process for providing ethanol
US8962298B2 (en) 2006-05-02 2015-02-24 Butamax Advanced Biofuels Llc Recombinant host cell comprising a diol dehydratase
US8828704B2 (en) 2006-05-02 2014-09-09 Butamax Advanced Biofuels Llc Fermentive production of four carbon alcohols
US8236929B2 (en) 2006-05-08 2012-08-07 The Board Of Trustees Of The University Of Illinois Method and system for production of zein and/or xanthophylls using chromatography
US7741119B2 (en) 2006-09-28 2010-06-22 E. I. Du Pont De Nemours And Company Xylitol synthesis mutant of xylose-utilizing zymomonas for ethanol production
US9447397B2 (en) 2006-10-10 2016-09-20 Danisco Us Inc. Glucoamylase variants with altered properties
CN101636490B (en) 2007-03-14 2012-05-16 丹尼斯科美国公司 Trichoderma reesei alpha-amylase is a maltogenic enzyme
CN101680007A (en) 2007-04-18 2010-03-24 纳幕尔杜邦公司 Use high reactivity keto-alcohol acid reduction isomerase to come Fermentive production of isobutanol
US8426174B2 (en) 2007-05-02 2013-04-23 Butamax(Tm) Advanced Biofuels Llc Method for the production of 2-butanol
US8592194B2 (en) 2007-10-09 2013-11-26 Danisco Us Inc. Glucoamylase variants with altered properties
CA2704539C (en) 2007-10-30 2014-12-23 E. I. Du Pont De Nemours And Company Zymomonas with improved ethanol production in medium containing concentrated sugars and acetate
US8206966B2 (en) 2007-11-05 2012-06-26 Danisco Us Inc. Alpha-amylase variants with altered properties
AU2008325248B2 (en) 2007-11-05 2013-11-07 Danisco Us Inc. Variants of Bacillus licheniformis alpha-amylase with increased thermostability and/or decreased calcium dependence
AU2008325250B2 (en) 2007-11-05 2013-06-13 Danisco Us Inc. Variants of Bacillus sp. TS-23 alpha-amylase with altered properties
JP5594899B2 (en) 2007-11-20 2014-09-24 ダニスコ・ユーエス・インク Glucoamylase variants with altered properties
ES2553726T3 (en) 2007-12-20 2015-12-11 Butamax (Tm) Advanced Biofuels Llc Cetol-acid reductoisomerase using NADH
DK2245130T3 (en) 2008-02-04 2021-01-18 Danisco Us Inc TS23 -ALPHA AMYLASE VARIANTS WITH CHANGED PROPERTIES
BRPI0906333A2 (en) 2008-03-27 2017-05-23 Alliance Sustainable Energy "recombinant bacterial strain, process for modifying a bacterial strain and process for ethanol production"
US8188250B2 (en) 2008-04-28 2012-05-29 Butamax(Tm) Advanced Biofuels Llc Butanol dehydrogenase enzyme from the bacterium Achromobacter xylosoxidans
US8828695B2 (en) 2008-06-04 2014-09-09 Butamax Advanced Biofuels Llc Method for producing butanol using two-phase extractive fermentation
EP2657344B1 (en) * 2008-06-04 2016-04-27 Butamax (TM) Advanced Biofuels LLC Method for producing butanol using two-phase extractive fermentation
JP5492879B2 (en) 2008-06-06 2014-05-14 ダニスコ・ユーエス・インク Geobacillus stearothermophilus alpha amylase (AmyS) variant with improved properties
CA2729945A1 (en) 2008-07-07 2010-01-14 Mascoma Corporation Heterologous expression of termite cellulases in yeast
MX2011003238A (en) 2008-09-29 2011-04-28 Butamax Tm Advanced Biofuels IDENTIFICATION AND USE OF BACTERIAL [2Fe-2S] DIHYDROXY-ACID DEHYDRATASES.
AU2009320163B2 (en) 2008-10-27 2014-10-02 Butamax(Tm) Advanced Biofuels Llc Carbon pathway optimized production hosts for the production of isobutanol
ES2621181T3 (en) 2008-11-21 2017-07-03 Lallemand Hungary Liquidity Management Llc Yeasts expressing cellulases for simultaneous saccharification and fermentation using cellulose
US8247208B2 (en) 2008-12-22 2012-08-21 Alliance For Sustainable Energy Llc Zymomonas with improved xylose utilization in stress conditions
US9315833B2 (en) 2009-02-20 2016-04-19 Lallemand Hungary Liquidity Management Llc Yeast cells expressing an exogenous cellulosome and methods of using the same
US20110097773A1 (en) 2009-04-13 2011-04-28 Butamax(Tm) Advanced Biofuels Llc Method for producing butanol using extractive fermentation
AU2010242175B2 (en) * 2009-04-29 2012-08-23 Lanzatech Nz, Inc. Improved carbon capture in fermentation
US8968523B2 (en) * 2009-07-15 2015-03-03 Butamax Advanced Biofuels Llc Recovery of butanol isomers from a mixture of butanol isomers, water, and an organic extractant
AU2010300642B2 (en) 2009-09-29 2015-05-14 Butamax(Tm) Advanced Biofuels Llc Fermentive production of isobutanol using highly effective ketol-acid reductoisomerase enzymes
EP2483401B1 (en) 2009-09-29 2017-06-21 Butamax (TM) Advanced Biofuels LLC Improved yeast production host cells
NZ599414A (en) * 2009-11-23 2014-08-29 Butamax Tm Advanced Biofuels Method for producing butanol using extractive fermentation with electrolyte addition
KR20120120203A (en) * 2009-12-15 2012-11-01 스트라틀리 아게 Method for Recovery of Organic Components from Dilute Aqueous Solutions
US8906204B2 (en) 2009-12-21 2014-12-09 Butamax Advanced Biofuels Llc Methods for alcohol recovery and concentration of stillage by-products
JP5947219B2 (en) 2009-12-29 2016-07-06 ビュータマックス・アドバンスド・バイオフューエルズ・エルエルシー Alcohol dehydrogenase (ADH) useful for fermentative production of lower alkyl alcohols
US20130323822A1 (en) 2010-06-03 2013-12-05 Mascoma Corporation Yeast Expressing Saccharolytic Enzymes for Consolidated Bioprocessing Using Starch and Cellulose
US8569028B2 (en) 2010-06-09 2013-10-29 The United States of America, as represented by the Secretary of the Agriculture Method for encapsulation of microparticles
KR20130116858A (en) 2010-06-18 2013-10-24 부타맥스 어드밴스드 바이오퓨얼스 엘엘씨 Extraction solvents derived from oil for alcohol removal in extractive fermentation
CA2823222C (en) 2010-06-18 2019-07-16 Butamax(Tm) Advanced Biofuels Llc Extraction solvents derived from oil for alcohol removal in extractive fermentation
CA3014993A1 (en) * 2010-09-07 2012-03-15 Butamax(Tm) Advanced Biofuels Llc Integration of a polynucleotide encoding a polypeptide that catalyzes pyruvate to acetolactate conversion
MX2013014327A (en) 2011-06-17 2014-01-23 Butamax Tm Advanced Biofuels Co - products from biofuel production processes and methods of making the same.
EP2844730A1 (en) * 2012-05-04 2015-03-11 Butamax Advanced Biofuels LLC Processes and systems for alcohol production and recovery

Also Published As

Publication number Publication date
AU2013315520A1 (en) 2015-03-05
WO2014043288A1 (en) 2014-03-20
EP2895612A1 (en) 2015-07-22
JP2015528309A (en) 2015-09-28
BR112015005439A2 (en) 2017-08-08
CA2883627A1 (en) 2014-03-20
NZ705079A (en) 2017-10-27
MX2015003073A (en) 2015-07-14
JP2018121648A (en) 2018-08-09
BR112015005439A8 (en) 2022-01-11
AU2013315520B2 (en) 2017-03-30
AU2017201207A1 (en) 2017-03-16
JP6653576B2 (en) 2020-02-26
CN104919050A (en) 2015-09-16

Similar Documents

Publication Publication Date Title
KR20150054832A (en) Processes and systems for the production of fermentation products
US9605281B2 (en) Processes and systems for the fermentative production of alcohols
US9109196B2 (en) Processes and systems for the production of fermentation products
US9175315B2 (en) Production of alcohol esters and in situ product removal during alcohol fermentation
US20140024064A1 (en) Processes and systems for the production of fermentative alcohols
US20140106419A1 (en) Processes and systems for the production of fermentation products
US9040263B2 (en) Production of alcohol esters and in situ product removal during alcohol fermentation
KR20150036133A (en) Processes and systems for the production of fermentation products
EP2906706B1 (en) Processes and systems for the production of fermentation products
WO2011160030A2 (en) Methods and systems for removing undissolved solids prior to extractive fermentation in the production of butanol
US20150267225A1 (en) Processes and systems for the production of fermentation products
WO2014197287A1 (en) Fermentative production of alcohols

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid