KR102373714B1 - 멀티포트 투시에 의한 수술 장면의 정량적 3차원 영상화 - Google Patents

멀티포트 투시에 의한 수술 장면의 정량적 3차원 영상화 Download PDF

Info

Publication number
KR102373714B1
KR102373714B1 KR1020167030145A KR20167030145A KR102373714B1 KR 102373714 B1 KR102373714 B1 KR 102373714B1 KR 1020167030145 A KR1020167030145 A KR 1020167030145A KR 20167030145 A KR20167030145 A KR 20167030145A KR 102373714 B1 KR102373714 B1 KR 102373714B1
Authority
KR
South Korea
Prior art keywords
model
endoscope
image
surgical
sensor
Prior art date
Application number
KR1020167030145A
Other languages
English (en)
Other versions
KR20160139017A (ko
Inventor
도린 파네스쿠
대니얼 에이치. 존스
Original Assignee
인튜어티브 서지컬 오퍼레이션즈 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 filed Critical 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드
Publication of KR20160139017A publication Critical patent/KR20160139017A/ko
Application granted granted Critical
Publication of KR102373714B1 publication Critical patent/KR102373714B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/243Image signal generators using stereoscopic image cameras using three or more 2D image sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00009Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
    • A61B1/000094Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope extracting biological structures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00043Operational features of endoscopes provided with output arrangements
    • A61B1/00045Display arrangement
    • A61B1/0005Display arrangement combining images e.g. side-by-side, superimposed or tiled
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00163Optical arrangements
    • A61B1/00194Optical arrangements adapted for three-dimensional imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/37Master-slave robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/332Displays for viewing with the aid of special glasses or head-mounted displays [HMD]
    • H04N13/344Displays for viewing with the aid of special glasses or head-mounted displays [HMD] with head-mounted left-right displays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/56Cameras or camera modules comprising electronic image sensors; Control thereof provided with illuminating means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00017Electrical control of surgical instruments
    • A61B2017/00115Electrical control of surgical instruments with audible or visual output
    • A61B2017/00119Electrical control of surgical instruments with audible or visual output alarm; indicating an abnormal situation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B2090/364Correlation of different images or relation of image positions in respect to the body
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2210/00Indexing scheme for image generation or computer graphics
    • G06T2210/41Medical
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/555Constructional details for picking-up images in sites, inaccessible due to their dimensions or hazardous conditions, e.g. endoscopes or borescopes

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Biophysics (AREA)
  • Multimedia (AREA)
  • Robotics (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Gynecology & Obstetrics (AREA)
  • Geometry (AREA)
  • Computer Graphics (AREA)
  • Software Systems (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

정량적 3차원(Q3D) 내시경으로서, 해부학적 구조부의 제1 부분의 제1 Q3D 영상이 상기 내시경의 투시로부터 취득되는 곳인 체강의 제1 포지션에 대한 접근을 제공하는 제1 포트를 통해 삽입되는 정량적 3차원(Q3D) 내시경을 포함하는 시스템이 제공된다. 제1 Q3D 모델이 취득된 제1 영상에 기초하여 생성된다. 내시경은 해부학적 구조부의 제2 부분의 제2 영상이 취득되는 곳인 체강의 제2 위치에 대한 접근을 제공하는 제2 포트를 통해 삽입된다. 제2 정량적 Q3D 모델이 취득된 제2 영상에 기초하여 생성된다. 제1 Q3D 모델과 제2 Q3D 모델은 해부학적 구조부의 확장된 Q3D 모델을 생성하도록 함께 조합된다. 확장된 Q3D 모델은 추가적인 조작을 위해 저장되거나 입체 즉 3D 방식으로 표시될 수 있다.

Description

멀티포트 투시에 의한 수술 장면의 정량적 3차원 영상화{QUANTITATIVE THREE-DIMENSIONAL IMAGING OF SURGICAL SCENES FROM MULTIPORT PERSPECTIVES}
본 발명은 대체로 관련된 영상 센서를 갖는 수술용 내시경 시스템에 관한 것이며, 보다 상세하게는, 수술용 영상에 표시되는 물리적 구조부의 3차원 좌표를 결정하는 것에 관한 것이다.
정량적 3차원(Q3D) 비전은 실세계 장면(real world scene) 내의 목표점들(target points)의 실제 물리적 (x, y, z) 3D 좌표들에 대한 수치적 정보를 제공한다. 정량적 3차원 비전에 의해, 사람은 실세계 장면의 3차원적 지각을 얻을 수 있을 뿐만 아니라, 장면 내의 물체들의 물리적 치수들과 장면 내의 물체들 간의 물리적 거리들에 관한 수치적 정보도 얻을 수 있다. 과거에, 장면에 대한 3D 정보를 결정하기 위해 비행 시간(time-of-flight) 관련 정보 또는 위상 정보를 이용하는 몇 가지 Q3D 시스템들이 제안되었다. 다른 Q3D 시스템은 장면에 대한 3D 정보를 결정하기 위해 구조광(structured light)을 이용하였다.
비행 시간 정보의 이용이 "CMOS 호환가능 3차원 영상 센서 IC(CMOS-compatible three-dimensional image sensor IC)"라는 명칭으로, CMOS 제조 기술을 사용하여 일반 IC 상에 제작되는 픽셀 광 감지 검출기들(pixel light sensing detectors)로 이루어진 2차원 어레이를 포함하고 있는 3차원 영상 시스템을 개시하고 있는 미국 특허 제6,323,942호에 개시되어 있다. 각각의 검출기는 시스템 방출된 펄스가 물체 지점으로부터 반사되어 그 지점에 초점맞춤된 픽셀 검출기에 의해 검출되기 위한 비행 시간(TOF)에 정비례하는 수치의 클록 펄스들(clock pluses)을 축적하는 관련된 고속 카운터(high speed counter)를 갖는다. TOF 데이터는 특정 픽셀로부터 방출된 광 펄스를 반사시키는 물체 상의 지점까지의 거리의 직접적인 디지털 척도를 제공한다. 제2 실시예에서는, 카운터 및 고속 클록 회로는 제거되고, 대신에 각각의 픽셀 검출기 전하 축적 및 전자 셔터를 구비한다. 셔터는 광 펄스가 방출될 때 개방되고, 그 후에 각각의 픽셀 검출기가 관련된 픽셀 검출기에 도달하는 복귀 광자 에너지의 함수로서 전하를 축적하도록 폐쇄된다. 축적된 전하의 양이 왕복 TOF의 직접적인 척도를 제공한다.
시간 지연 정보의 이용이 "내시경 3D 데이터 수집을 위한 장치 및 방법(Apparatus and method for endoscopic 3D data collection)"이라는 명칭으로, 변조형 측정 빔 및 측정 빔을 관찰될 영역으로 안내하기 위한 광전달 기구를 개시하고 있고, 관찰될 영역으로부터의 신호 빔을 적어도 위상 민감형 영상 센서(phase-sensitive image sensor) 상에 영상화시키기 위한 광 영상화 기구에 더하여, 광전달 기구가 조명 렌즈를 포함하도록 되어 있는 미국 특허 제8,262,559호에 개시되어 있다. mm 범위의 깊이의 차이에 상당할 수 있는 시간 지연이 깊이 및 거리 정보를 나타내는 영상의 생성을 가능하게 해주는 위상 정보를 발생시킨다.
시각 영상 내의 물체들의 물리적 좌표들을 결정하기 위한 구조광의 이용이 "내시경(Endoscope)"이라는 명칭의 미국 특허 출원 공개 제2012/0190923호; 및 학술지 Medical Image Analysis, 16 (2012) 1063-1072에 슈말츠 씨.(C. Schmalz) 등의 이름으로 실린 "구조광에 기초한 내시경 3D 스캐너(An endoscopic 3D scanner based on structured light)"에 개시되어 있다. 삼각 측량법이 표면의 지형을 측정하는 데 사용된다. 일정 범위의 다양한 색상 스펙트럼을 가질 수 있는 투사 광선 형태의 구조광이 표면에 입사되고 반사된다. 반사된 광선은 반사된 색상 스펙트럼 정보를 표면의 3D 좌표들을 결정하는 데 사용하도록 보정되는 카메라에 의해 관찰된다. 더 구체적으로는, 구조광의 이용은 일반적으로 3D 표면 상에 광 패턴을 비추고, 물리적 물체의 윤곽으로 인한 빛의 변형 패턴에 기초하여 물리적 거리를 결정하는 것을 포함한다.
픽셀 어레이 내의 픽셀들에 대해 장면 깊이 정보를 연산하도록 사용될 수 있는 복수의 픽셀 어레이들을 포함하는 이미저 어레이 카메라(imager arrary camera)가 개발되었다. 고해상도(HR) 영상들이 다수의 저해상도(LR) 영상들로부터 생성된다. 참조 시점(reference viewpoint)이 선택되고, 그 시점에서 보여지는 대로 HR 영상이 생성된다. 시차 처리 기술(parallax processing technique)은 참조 영상 픽셀들(reference image pixels)에 대해 비참조 영상(non-reference image)의 픽셀 대응점들을 결정하는 데 에일리어싱 효과(aliasing effect)를 이용한다. 융합 및 초해상도 기법이 다수의 LR 영상으로부터 HR 영상을 발생시키는 데 이용된다. 이것에 대해서는, 예컨대 "이기종 이미저를 가진 모놀리식 카메라 어레이를 사용한 영상 취득 및 처리(Capturing and Processing Images using Monolithic Camera Array with Heterogeneous Imager)"라는 명칭의 미국 특허 제8,514,491호; "가설 융합을 이용한 에일리어싱을 포함하는 장면의 다수 뷰들로부터 깊이를 결정하기 위한 시스템 및 방법(Systems and Methods for Determining Depth from multiple Views of a Scene that Include Aliasing using Hypothesized Fusion)"이라는 명칭의 미국 특허 출원 공개 제2013/0070060호; 및 벤카타라만 케이.(K. Venkataraman) 등에 의한 논문 "PiCam: 극박 고성능 모놀리식 카메라 어레이(PiCam: An ultra-Thin high Performance Monolithic Camera Array)"가 참조된다.
도 1은 일부 실시예에 따른 공지된 이미저 센서(180)의 세부를 도시한 설명도이다. 영상 센서(180)는 센서 배열부(184)를 포함한다. 센서 배열부의 각각의 센서는 각각의 차원에서 적어도 2개의 픽셀을 갖는 2차원 픽셀 배열부를 포함한다. 각각의 센서는 렌즈 스택(186)을 포함한다. 각각의 렌즈 스택(186)은 대응하는 초점면(188)을 갖는다. 각각의 렌즈 스택(186)은 그것의 대응하는 초점면(188) 내에 배치된 대응하는 픽셀 배열부 상에 영상을 해상하는 개별적인 광 채널을 발생시킨다. 픽셀들은 광 센서들로서 작용하고, 다수의 픽셀을 가진 각각의 초점면(188)은 영상 센서로서 작용한다. 그것의 초점면(188)을 가진 각각의 센서는 다른 센서들 및 초점면들에 의해 차지되는 센서 배열부의 영역과 다른 센서 배열부의 일정 영역을 차지한다.
도 2는 센서 S11 내지 S33로 표기된 센서들을 포함하는 도 1의 공지된 센서 배열부(184)의 단순 평면도을 도시한 설명도이다. 이미저 센서 배열부(184)는 복수의 센서(S11 내지 S33)를 포함하도록 반도체 칩 상에 제작된다. 센서(S11 내지 S33)의 각각은 복수의 픽셀(예컨대, 0.32 메가픽셀)을 포함하고, 독립적 판독 제어 및 픽셀 디지털화를 포함하는 주변 회로(도시되지 않음)에 연결된다. 일부 실시예에 있어서, 센서(S11 내지 S33)는 도 2에 도시된 바와 같이 그리드 포맷(grid format)으로 배열된다. 다른 실시예에 있어서는, 센서들은 비 그리드 포맷으로 배열된다. 예를 들어, 센서는 원형 패턴, 지그재그 패턴, 산란형 패턴 또는 서브픽셀 오프셋(sub-pixel offset)을 포함하는 불규칙 패턴으로 배열될 수도 있다.
도 1-2의 센서(180)의 각각의 개별적인 픽셀은 마이크로렌즈 픽셀 스택을 포함한다. 도 3은 도 1-2의 센서들의 공지된 마이크로렌즈 픽셀 스택의 설명도이다. 픽셀 스택(800)은 산화물 층(804) 위에 위치되는 마이크로렌즈(802)를 포함한다. 일반적으로, 산화물 층(804) 아래에는 질화물 층(808) 위에 배치되는 색상 필터(806)가 존재할 수 있고, 질화물 층(808)은 제2 산화물 층(810) 위에 배치되고, 제2 산화물 층(810)은 개별 픽셀의 활성 영역(814)(일반적으로 포토다이오드)을 포함하는 실리콘 층(812) 상부에 배치된다. 마이크로렌즈(802)의 주된 역할은 그것의 표면에 입사된 광을 수집하고, 작은 활성 영역(814) 상에 그 빛을 초점맞춤시키는 것이다. 픽셀 개구부(816)는 마이크로렌즈의 확산에 의해 결정된다.
상술한 공지된 영상 센서 배열 구조에 관한 추가적인 정보는 미국 특허 US 8,514,491 B1(2010년 11월 22일자 출원) 및 미국 특허 출원 공개 US 2013/0070060 A1(2012년 9월 19일자 출원)에서 제공된다.
하나의 양태에 있어서, 정량적 3차원(Q3D) 내시경으로서, 해부학적 구조부의 제1 부분의 제1 Q3D 영상이 상기 내시경의 투시로부터 취득되는 곳인 체강의 제1 포지션에 대한 접근을 제공하는 제1 포트를 통해 삽입되는 정량적 3차원(Q3D) 내시경을 포함하는 시스템 및 방법이 제공된다. 제1 Q3D 모델이 취득된 제1 영상에 기초하여 생성된다. 내시경 즉 제2 내시경이 해부학적 구조부의 제2 부분의 제2 영상이 취득되는 곳인 체강의 제2 위치에 대한 접근을 제공하는 제2 포트를 통해 삽입된다. 제2 정량적 Q3D 모델이 취득된 제2 영상에 기초하여 생성된다. 제1 Q3D 모델과 제2 Q3D 모델은 해부학적 구조부의 확장된 Q3D 모델을 생성하도록 함께 조합된다. 확장된 Q3D 모델은 추가적인 조작을 위해 저장되거나 입체 즉 3D 방식으로 표시될 수 있다. 추가적인 조작은 다른 기기들과의 사이 또는 기기와 해부학적 구조부 사이의 거리의 정량적 측정으로 이루어질 수 있다.
본 발명의 양태는 여기에 간단히 설명되는 첨부도면을 참조하는 하기 상세한 설명으로부터 가장 잘 이해될 것이다. 산업계의 표준적 실시예 따라, 다양한 세부 사항들은 비례척으로 도시되지 않았다는 것에 유의해야 한다. 실상, 다양한 세부 사항들의 치수는 설명의 명료함을 위해 임의적으로 증대되거나 축소될 수 있다. 또한, 본 명세서는 여러 실시예에서 참조부호 및/또는 문자를 반복사용할 수 있다. 이러한 반복사용은 간략함과 명료함을 위한 것으로, 그 자체로 기술되는 여러 실시예 및/또는 구성들 간의 관계에 영향을 미치지는 않는다.
도 1은 공지된 이미저 센서 어레이의 세부를 도시한 설명도이다.
도 2는 도 1의 공지의 이미저 센서의 센서 어레이의 단순 평면도을 도시한 설명도이다.
도 3은 공지된 마이크로렌즈 픽셀 스택의 설명도이다
도 4는 일부 실시예에 따른 뷰어(312)를 통한 수술 장면의 투시 뷰(perspective view)를 도시한 설명도이다.
도 5는 일부 실시예에 따른, 하나 이상의 기계식 암을 사용하여 최소 침습 수술 과정을 실행하기 위한 원격조작 수술 시스템의 예시적인 블록도이다.
도 6은 일부 실시예에 따른 도 5의 시스템의 환자측 시스템의 예시적인 사시도이다.
도 7a는 일부 실시예에 따른 제1 영상 취득 시스템을 포함하는 제1 내시경의 예시적인 도면이다.
도 7b는 일부 실시예에 따른 제2 영상 취득 시스템을 포함하는 제2 내시경의 예시적인 도면이다.
도 8은 일부 실시예에 따른, 도 7a의 제1 영상 취득 시스템을 포함하는 제1 내시경과 관련된 제어 블록들을 도시하고, 작동 중의 시스템을 도시하고 있는 예시적인 블록도이다.
도 9는 일부 실시예에 따른, 물리적 목표의 정량적 3차원 위치를 결정하기 위한 프로세스를 나타낸 예시적인 플로우차트이다.
도 10은 일부 실시예에 따른, 목표를 시스템적으로 선택하기 위한 도 9의 모듈에 대체로 대응되는 프로세스의 특정 세부 사항들을 도시한 예시적인 플로우차트이다.
도 11은 일부 실시예에 따른, 다수의 센서를 포함하고 있고, 3개의 물체를 포함하는 예시적인 3차원 물리적 세계 장면(three dimensional physical world scene)을 포함하는 시계를 가지도록 배치된 예시의 센서 이미저 어레이의 설명도이다.
도 12는 일부 실시예에 따른, 도 11의 다수의 물리적 물체들의 다수의 센서 상으로의 투영을 나타낸 설명도이다.
도 13은 일부 실시예에 따른 실세계 장면(real-world scene) 내로부터의 관심 영역의 선택을 나타낸 설명도이다.
도 14는 일부 실시예에 따른 다수의 센서 내에 투영된 영상들의 상대적인 기하학적 오프셋에 대한 세부 사항을 도시한 설명도이다.
도 15는 일부 실시예에 따른, 관심 영역(ROI) 내의 지정된 참조 센서에 투영된 영상과 정렬되도록 우측으로 시프트된 관심 영역(ROI) 내의 특정예의 센서들에 투영된 영상들을 도시한 설명도이다.
도 16은 일부 실시예에 따른, 선택된 목표점의 다수의 센서 상으로의 투영을 도시한 설명도이다.
도 17은 일부 실시예에 따른, 도 16의 다수의 센서를 포함하는 이미저 어레이의 일부분 및 물리적 공간 내의 위치에 배치된 선택된 모교 지점(T)을 도시한 설명도이다.
도 18은 일부 실시예에 따른, 현재 선택된 목표점(T)의 도 16의 다수의 영상 센서 상으로의 투영을 도시한 예시적인 정면도이다.
도 19는 일부 실시예에 따른, 도 17을 참조하여 상술한 바와 같은 현재 선택된 목표의 다수의 센서에 대한 배치를 도시하고, 또한 각각의 센서 내의 후보 픽셀에 대한 y 방향 픽셀 오프셋들을 도시하고 있는 설명도이다.
도 20은 일부 실시예에 따른, 수술 과정 중에 Q3D 정보를 사용하기 위한 제1 프로세스를 나타낸 예시적인 플로우차트이다.
도 21은 일부 실시예에 따른, 도 20의 프로세스에 따라 디스플레이 스크린 상에 표시되는 메뉴 선택을 도시한 설명도이다.
도 22a-22b는 일부 실시예에 따른, 도 20의 프로세스에 따라 사용자 입력을 수신하는 특정 세부 사항들을 나타낸 설명도들이다.
도 23은 일부 실시예에 따른, 수술 과정 중에 Q3D 정보를 사용하기 위한 제2 프로세서를 나타낸 예시적인 플로우차트이다.
도 24는 일부 실시예에 따른, 도 23의 프로세스에 따라 디스플레이 스크린 상에 표시되는 메뉴 선택을 도시한 설명도이다.
도 25a-25c는 일부 실시예에 따른, 상이한 투시들로부터 해부학적 구조부의 Q3D 모델들의 생성에 사용하기 위한 영상 정보를 취득하기 위해 다수의 상이한 포지션들에 배치된 내시경을 도시한 설명도들이다.
도 26a-26c는 일부 실시예에 따른, 도 25a-25c의 제1, 제2 및 제3 영상 정보를 사용하여 생성된 제1, 제2 및 제3 Q3D 모델을 나타낸 설명도들이다.
도 27은 일부 실시예에 따른, 도 26a-26c의 각각의 Q3D 모델의 예시의 정렬을 도시한 설명도이다.
도 28a-28c는 일부 실시예에 따른, 예시의 제2 및 제3 Q3D 모델들의 예시의 회전(도 28a), 병진운동(도 28b) 및 결과적인 정렬(도 28c)을 나타낸 설명도들이다.
도 29는 일부 실시예에 따른, 도 25a-25c의 다수의 Q3D 모델들이 함께 스티치(stitch)된 예시의 합성 Q3D 모델을 도시한 설명도이다.
도 30a-30c는 일부 실시예에 따른, 목표 영역의 3개의 상이한 영상 시점들(viewpoints)을 취득하기 위한 3개의 상이한 예시의 "지터링(jittering)" 포지션들에서의 내시경을 도시한 설명도들이다.
도 31은 일부 실시예에 따른, 다중 투시 Q3D 모델들을 취득하기 위한 프로세스의 예시적인 플로우차트이다.
도 32는 일부 실시예에 따른, 3D 투시의 Q3D 모델을 3D 디스플레이 상에 표시하는 프로세서의 세부 사항들을 도시한 설명도이다.
이하의 설명은 당업자가 영상 센서들의 시계 내의 물리적 구조부들의 3차원 좌표들을 결정하기 위해, 각각의 센서가 다른 센서들의 픽셀 어레이들과 분리된 픽셀 어레이를 포함하는 다수의 영상 센서들을 가지는 수술 내시경 시스템을 생성하고 사용하는 것을 가능하게 해주도록 제공된다. 실시예들에 대한 다양한 변형들이 당업자에게 명백할 것이며, 여기에 정의되는 일반적인 원리들은 본 발명의 기술사상 및 범위를 벗어나지 않고 다른 실시예들 및 응용예들에 적용될 수 있을 것이다. 또한, 이하의 설명에서, 다수의 세부 사항들은 설명의 목적으로 기술된다. 하지만, 본 발명은 이러한 세부 사항들의 사용 없이도 실시될 수 있을 것임을 인지할 것이다. 경우에 따라서는, 공지된 기계 구성요소, 프로세스 및 데이터 구조들은 불필요한 세부 설명으로 설명을 흐리게 하지 않기 위해 블록도 형태로 도시된다. 동일한 참조 부호가 다른 도면들에서 동일한 항목의 다른 형태의 도시를 표현하는 데 사용될 수 있다. 이하에 참조되는 도면의 플로우차트들은 프로세스들을 표현하는 데 사용된다. 컴퓨터 시스템이 이러한 프로세스들의 일부를 실행시키도록 구성될수 있을 것이다. 컴퓨터 실시 프로세스들을 표현하는 플로우차트들 내의 모듈들(modules)은 이들 모듈들을 참조하여 설명되는 동작들을 실행하기 위한 컴퓨터 프로그램 코드에 따른 컴퓨터 시스템의 구성을 나타낸다. 따라서, 본 발명은 도시된 실시예들에 한정되는 것으로 의도되는 것이 아니라, 여기에 설명되는 원리들과 특징들에 부합하는 가장 넓은 범위가 주어져야 한다.
간략 개요
일부 실시예에 따라, 센서 어레이를 포함하는 이미저(imager)는 내시경과 관련된다. 영상 센서 어레이는 다수의 센서를 포함하고, 각각의 센서는 픽셀 어레이를 포함한다. 내시경의 일부분이 인간의 체강 내로 삽입되고, 영상 센서 어레이의 시계 내의 목표 물체는 광원을 사용하여 조명된다. 목표 물체의 물리적 위치 및/또는 치수들이 어레이의 각각의 센서 상으로 투영된 목표 물체의 영상들에 기초하여 결정된다.
도 4는 일부 실시예에 따른 뷰어(viewer)(312)를 통한 수술 장면의 투시 뷰(perspective view)를 도시한 설명도이다. 2개의 관찰 요소(viewing element)(401R, 401L)를 갖는 관찰 시스템(viewing system)이 양호한 3D 관찰 투시(3D viewing perspective)를 제공할 수 있다. 수술 장면 내의 물리적 구조부에 대한 물리적 치수 및/또는 위치 정보를 표현하는 수치값들이 수술 장면 영상에 오버레이(overlay)되어 표시된다. 예를 들어, 수치적 거리값 "d_Instr_Trgt"이 장면 내에 기기(400)와 목표(410) 사이에 표시되어 보여진다.
원격조작 의료 시스템
원격조작은 일정 거리에서의 기계의 작동을 의미한다. 최소 침습 원격조작 의료 시스템에 있어서, 외과의는 환자의 신체 내의 수술 부위를 관찰하기 위해 카메라를 포함하는 내시경을 사용할 수 있다. 수술 과정 중에 깊이의 지각을 가능하게 해주는 입체 영상이 취득되었다. 일부 실시예에 따라, 내시경 상에 장착되고, 이미저 센서 어레이를 포함하는 카메라 시스템이 정량적 3차원 정보에 더하여 3차원 영상을 생성하기 위해 사용될 수 있는 색상 및 조명 데이터를 제공한다.
도 5는 일부 실시예에 따른, 하나 이상의 기계식 암(158)을 사용하여 최소 침습 수술 과정을 실생하기 위한 원격조작 수술 시스템(100)의 예시적인 블록도이다. 시스템(100)의 양태들은 원격 로봇식 및 자율 작동식 피처(feature)들을 포함한다. 이 기계식 암들은 종종 기기를 지지한다. 예를 들어, 기계식 수술 암(예컨대, 중심 기계식 수술 암(158C))은 예컨대 Q3D 영상 센서 어레이와 관련된 내시경과 같은, 입체식 즉 3차원 수술 영상 취득 장치(101C)를 가진 내시경을 지하위표면은 데 사용될 수 있다. 기계식 수술 암(158C)은 영상 취득 장치(101C)를 포함하는 내시경을 기계식 암에 기계적으로 고정시키기 위한 멸균 어댑터 또는 클램프, 클립, 스크루, 슬롯/그루브 또는 기타 파스너를 포함할 수 있다. 반대로, 영상 취득 장치(101C)를 가진 내시경이 기계식 수술 암(158C)과 견고하게 상호 끼워맞춤되도록 기계식 수술 암(158C)의 물리적 윤곽 및/또는 구조와 상보적인 물리적 윤곽 및/또는 구조를 포함할 수 있다.
사용자 또는 오퍼레이터(O)(일반적으로 외과의)는 마스터 제어 콘솔(150)에서 제어 입력 장치(160)를 조작함으로써 환자(P)에 대한 최소 침습 수술 과정을 실행한다. 오퍼레이터는 도 4를 참조하여 상술한 뷰어(312)를 포함하는 입체 디스플레이 장치(164)를 통해 환자의 신체 내부의 수술 부위의 영상들의 비디오 프레임들을 볼 수 있다. 콘솔(150)의 컴퓨터(151)가 제어 라인(159)을 통해 원격조작식으로 제어되는 내시경 수술 기기(101A-101C)의 운동을 지시하여, 환자측 시스템(152)(환자측 카트라고도 함)을 이용하여 기기들의 운동을 실현한다.
환자측 시스템(152)은 하나 이상의 기계식 암(158)을 포함한다. 일반적으로, 환자측 시스템(152)은 대응되는 포지셔닝 셋업 암(156)에 의해 지지되는 적어도 3개의 기계식 수술 암(158A-158C)(기계식 수술 암(158)이라 통칭됨)을 포함한다. 중심 기계식 수술 암(158C)은 카메라의 시계 내의 영상들에 대한 Q3D 정보의 취득에 적합한 내시경 카메라(101C)를 지원할 수 있다. 중심 좌우의 기계식 수술 암(158A 및 158B)은 조직을 조작할 수 있는 지지 기기(101A 및 101B)를 각각 지지할 수 있다.
도 6은 일부 실시예에 따른 환자측 시스템(152)의 예시적인 사시도이다. 환자측 시스템(152)은 베이스(172)에 의해 지지되는 카트 칼럼(170)을 포함한다. 하나 이상의 기계식 삽입 수술 암/링크(158)가 환자측 시스템(152)의 포지셔닝부의 일부분인 하나 이상의 셋업 암(156)에 각각 부착된다. 베이스(172)의 대략 중심 위치에, 카트 칼럼(170)은 카운터밸런스 서브시스템 및 오염 물질 차단 서브시스템의 구성요소들을 보호하는 보호 커버(180)를 포함한다.
모니터 암(154)을 제외하고는, 각각의 기계식 수술 암(158)은 기기(101A-101C)를 제어하는 데 사용된다. 또한, 각각의 기계식 수술 암(158)은 셋업 암(156)에 연결되고, 셋업 암(156)은 다음으로 본 발명의 하나의 실시예에 있어서 캐리지 하우징(190)에 연결된다. 하나 이상의 기계식 수술 암(158)은 도 6에 도시된 바와 같이 그들 각각의 셋업 암(156)에 의해 각각 지지된다.
기계식 수술 암(158A-158D)은 각각 추적 시스템 및/또는 기기들의 추적에 의한 초기 취득을 돕기 위한 돕기 위한 원시 미보정 기구학 정보(raw uncorrected kinematics information)를 발생시키기 위한 하나 이상의 변위 트랜스듀서, 배향 센서 및/또는 포지션 센서(185)를 포함할 수 있다. 기기들도, 본 발명의 일부 실시예에 있어서, 변위 트랜스듀서, 포지션 선 및/또는 배향 센서(186)를 포함할 수 있다. 또한, 하나 이상의 기기는 기기의 취득 및 추적을 돕기 위한 마커(189)를 포함할 수 있다.
원격조작 의료 시스템에 대한 추가적인 정보는 미국 특허 출원 공개 US 2012/0020547(2011년 9월 30일 출원)에 제공되고 있다.
내시경 이미저 시스템
도 7a는 일부 실시예에 따른 제1 영상 취득 장치(101C)를 가진 제1 내시경의 설명도이다. 영상 취득 장치(101C)는 제1 단부 부분(204), 제2 단부 부분(206) 및 제1 단부 부분(204)의 팁 부분(208)을 포함한 길이부(202)를 포함하고 있는 내시경을 포함한다. 제1 단부 부분(204)은 인간의 체강 내로 삽입되도록 치수결정된다. 다수의 영상 센서를 포함하는 센서 어레이(210)(도시되지 않음)가 제1 단부 부분(204)의 팁 부분(208)에 결합된다. 일부 실시예에 따라, 센서 어레이(210) 내의 각각의 센서는 픽셀 어레이를 포함한다. 길이부(202)는 목표 대상체가 이미저 센서 어레이(210)에 의해 영상화될 수 있도록 팁 부분(208)을 체강 내의 목표 대상체에 충분히 근접하게 포지셔닝시키기에 충분한 길이을 가진다. 일부 실시예에 따라, 제2 단부 부분(206)은 기계식 암(도시되지 않음)과 견고하게 상호 끼워맞춤되도록 상술한 바와 같이 물리적 윤곽 및/또는 구조(도시되지 않음)를 포함할 수 있다. 길이부(202)는 또한 이미저 센서 어레이(210)와 전자적으로 정보를 통신하기 위한 하나 이상의 전자 신호 경로(212)를 포함한다. 광원(214)이 영상화될 대상체를 조명하도록 배치된다. 일부 실시예에 따라, 광원(214)은 예를 들어 비구조광(unstructured light), 백색광, 색상 여과 광 또는 부분 선택 파장의 광일 수 있다. 일부 실시예에 따라, 광원(214)은 팁(208)에 위치되고, 다른 실시예에 있어서는, 선택적으로 내시경(101C)과는 분리되어 배치된다.
도 7b는 일부 실시예에 따른 제2 영상 취득 시스템(101C')을 가진 제2 내시경의 설명도이다. 제1 영상 취득 시스템(101C)을 가진 제1 내시경의 것과 기본적으로 동일한 제2 영상 취득 시스템(101C')의 양태들은 동일한 참조 부호로 지시되고, 다시 설명하지 않는다. 로드 렌즈(rod lens)와 같은 광 파이프 입력부에 대한 입력부가 제1 단부 부분(204)의 팁 부분(208)에 배치된다. 광 파이프 바디는 팁 부분(208)으로부터 물리적으로 변위되어 있는 이미저 센서 어레이(210)로 광 파이프가 입력될 때 수신되는 영상을 전송하도록 길이부(202) 내에 연장된다. 일부 실시예에 있어서, 이미저 센서 어레이(210)는 체강 내의 대상체의 관찰 중에 당해 이미저 센서 어레이(210)가 체강 외부에 배치되도록 팁 부분(208)으로부터 충분히 멀리 변위된다.
도 8은 일부 실시예에 따른, 도 7a의 제1 영상 취득 시스템(101C)을 가진 제1 내시경(101C)과 관련된 제어 블록들을 도시하고, 작동 중의 시스템을 도시하고 있는 예시적인 블록도이다. 이미저 센서 어레이(210)에 의해 취득된 영상들은 데이터 버스(212)를 거쳐 비디오 프로세서(104)로 전송되고, 비디오 프로세서(104)는 버스(105)를 통해 컨트롤러(106)와 통신한다. 비디오 프로세서(104)는 카메라 제어 유닛(CCU) 및 비디오 신호 검출기(VSD) 보드를 포함할 수 있다. CCU는 밝기, 색상 계획(color scheme), 화이트밸런스 등과 같은 영상 센서(210)의 다양한 세팅을 프로그램하거나 제어한다. VSD는 영상 센서로부터 수신된 비디오 신호를 처리한다. 선택적으로, CCU와 VSD는 하나의 기능 블록으로 통합된다.
일부 실시예에 따라, 하나 이상의 프로세서를 포함하는 프로세서 시스템이 프로세서 기능들을 실행하도록 구성된다. 일부 실시예에 있어서, 프로세서 시스템은 여기에 설명되는 프로세서 기능들을 실행하기 위해 함께 작동하도록 구성된 다수의 프로세서를 포함한다. 따라서, 하나 이상의 기능을 실행하도록 구성된 적어도 하나의 프로세서에 대한 참조는 그 기능들이 하나의 프로세서만으로 실행될 수 있거나 함께 작동하는 다수의 프로세서에 의해 실행될 수 있는 프로세서 시스템을 포함한다.
하나의 실시예에 있어서, 프로세서 및 저장 장치(도시되지 않음)를 포함하는 컨트롤러(106)는 길이부(202)의 팁(208)에 인접한 장면 내의 지점들의 물리적 정량적 3D 좌표들을 연산하고, 3D 장면들을 합성하도록 비디오 프로세서(104) 및 3D 디스플레이 드라이버(109) 모두를 구동시키며, 합성된 3D 장면들은 3D 디스플레이(110) 상에 표시될 수 있다. 일부 실시예에 따라, 예를 들어 수술 장면 내의 대상체의 표면 윤곽의 치수의 수치적 표지(numerical indicia) 또는 수술 장면 내의 대상체로부터의 거리와 같은 수술 장면에 대한 Q3D 정보가 생성된다. 아래에 더 상세히 설명되는 바와 같이, 수치적 Q3D 깊이 정보는 수술 장면의 입체 영상에 거리 정보 또는 표면 윤곽 정보로 주석을 다는 데 사용될 수 있다.
데이터 버스(107, 108)는 비디오 프로세서(104), 컨트롤러(106) 및 디스플레이 드라이버(109) 사이에서 정보 및 제어 신호를 교환시킨다. 일부 실시예에 있어서, 이들 요소는 내시경의 바디 내부에서 영상 센서 어레이(210)와 통합될 수 있다. 선택적으로, 이들 요소는 내시경의 내부 및/또는 외부에 분포될 수 있다. 내시경은 목표(120)를 포함하는 수술 장면에 대한 시각적 접근을 제공하기 위해 신체 조직(130)을 침투하도록 캐뉼라(140)를 통해 포지셔닝된다. 선택적으로, 내시경과 하나 이상의 기기가 수술 부위에 도달하도록 단일 개구부(단일 절개부 또는 자연적 체공)를 통과할 수도 있다. 목표(120)는 해부학적 목표, 또 다른 수술 기기 또는 환자의 신체 내부의 수술 장면의 임의의 다른 양태일 수 있다.
입력 시스템(112)은 3D 시각적 표현을 수신하고, 그것을 프로세서(106)에 제공한다. 입력 시스템(112)은 3D 모델을 생성하는 시스템(도시되지 않음)으로부터 CRT 또는 MRI와 같은 3D 모델을 수신하는 전자 통신 버스(도시되지 않음)에 연결되는 저장 장치를 포함할 수 있다. 프로세서(106)는 예를 들어 Q3D 모델과 3차원 시각적 표현 사이에 의도된 정렬을 연산하는 데 사용될 수 있다. 더 구체적으로는, 제한 없이, 입력 시스템(112)은 시스템(152)과 MRI, CT 또는 초음파 영상 시스템과 같은 영상 시스템(도시되지 않음) 사이의 이더넷 통신 연결을 구축하도록 구성된 프로세서를 포함할 수 있다. 다른 영상 시스템이 사용될 수도 있다. 블루투스, 와이파이, 광통신 등의 다른 타입의 통신 연결이 사용될 수도 있다. 선택적으로, 시스템(152) 및 영상 시스템은 하나의 더 큰 시스템 내에 통합될 수도 있다. 외부 장치에 대한 추가적인 조작이 제공되거나 도 25에 도시된 바와 같이 표시된다면, 정렬 프로세스의 결과는 프로세서(106)과 관련된 저장 장치에 저장될 수 있다.
장면의 영상에 추가되는 Q3D 정보의 예
도 4를 다시 참조하면, 도 4는 일부 실시예에 따른, 도 5의 마스터 제어 콘솔(150)의 뷰어(312)의 투시 뷰(perspective view)를 도시한 설명도이다. 일부 실시예에 따라, 3차원 투시(3D perspective)를 제공하기 위해, 뷰어(312)는 각각의 눈에 대한 입체 영상을 포함한다. 도시된 바와 같이, 수술 부위의 좌측 영상(400L) 및 우측 영상(400R)은 좌측 뷰파인더(401L) 및 우측 뷰파인더(401R) 내에 각각 기기(400) 및 목표(410)를 포함한다. 뷰파인더들 내의 영상(400L 및 400R)은 각각 좌측 디스플레이 장치(402L) 및 우측 디스플레이 장치(402R)에 의해 제공될 수 있다. 디스플레이 장치(402L, 402R)는 선택적으로 음극선관(CRT) 모니터, 액정 디스플레이(LCD) 또는 다른 타입의 영상 디스플레이 장치(예컨대, 플라즈마, 디지털 광투사 등)의 쌍일 수 있다. 본 발명의 바람직한 실시예에 있어서, 영상들은 컬러 CRT 또는 컬러 LCD와 같은 한 쌍의 컬러 디스플레이 장치(402L, 402R)에 의해 컬러로 제공된다. 기존 장치들과의 역방향 호환성(backward compatibility)을 지원하기 위해, 입체 디스플레이 장치(402L 및 402R)는 Q3D 시스템과 함께 사용될 수 있다. 선택적으로, Q3D 영상 시스템은 3D 모니터, 3D TV 또는 3D 효과 안경의 사용을 요구하지 않는 디스플레이와 같은 오토스테레오스코픽(autostereoscopic) 디스플레이에 연결될 수 있다.
2개의 관찰 요소(401R, 401L)를 가진 관찰 시스템이 양호한 3D 관찰 투시를 제공할 수 있다. Q3D 영상 시스템은 수술 장면 내의 물리적 구조부에 대한 물리적 인 치수 정보로 이 관찰 투시를 보완한다. Q3D 내시경 시스템과 함께 사용되는 입체 뷰어(312)는 수술 장면의 입체 영상 위에 오버레이되는 Q3D 정보를 표시할 수 있다. 예를 들어, 도 4에 도시된 바와 같이, 기기(400)와 목표(410) 사이의 수치적 Q3D 거리값 "d_Instr_Trgt"이 입체 뷰어(312) 내에 표시될 수 있다.
수술 장면의 3차원 투시 위에 물리적 위치 및 치수 정보를 오버레이시키도록 사용될 수 있은 비디오 입체 관찰 시스템의 설명이 여기에 직접적으로 참조되는 미국 특허 출원 공개 US 2012/0020547(2011년 9월 30일 출원)의 단락 [0043]-[0053] 및 대응 도면에 제공되어 있다.
정량적 3차원 물리적 정보 처리
도 9는 일부 실시예에 따른, 물리적 목표의 정량적 3차원 위치를 결정하기 위한 프로세스를 나타낸 예시적인 플로우차트이다. 이 프로세스는 도 8의 실시예의 영상 취득 시스템(101C)을 가진 내시경을 참조하여 설명된다. 모듈(401)은 영상 센서(Sij)로부터 비디오 데이터를 취득하도록 컨트롤러(106)를 구성한다. 영상 센서 어레이(210)가 전체 시계를 "영상화"하지만, 영상 센서 어레이(210) 중의 상이한 센서들 및 상이한 센서들 내의 상이한 픽셀들은 시계 내의 상이한 대상체 지점들로부터의 영상 투영들에 의해 조명될 수 있다는 것을 이해할 것이다. 비디오 데이터는 예를 들어 색상 및 광 강도 데이터를 포함할 수 있다. 각각의 센서의 각각의 픽셀은 그것에 투영되는 영상의 색상과 강도를 지시하는 하나 이상의 신호를 제공할 수 있다. 모듈(402)은 물리적 세계 뷰(physical world view) 내의 선택된 관심 영역에서 목표들을 체계적으로 선택하도록 컨트롤러를 구성한다. 모듈(403)은 초기 설정값(x0, y0, z0)을 가지고서 목표 3D 좌표(x, y, z)의 연산을 개시하도록 컨트롤러를 구성한다. 이 알고리즘은 다음으로 목표의 투영된 영상을 수신하는 모든 센서(Sij)로부터의 영상 다이버시티 데이터(image diversity data)를 이용함으로써 일관성(consistency)에 대해 좌표들을 점검한다. 좌표 연산은 허용가능한 정밀도에 도달할 때까지 판정 모듈(404)에서 정제(refining)된다. 판정 모듈(404)은 또한 현재 연산된 물리적 위치가 충분히 정확한지의 여부를 판정하도록 컨트롤러를 구성한다. 현재 연산된 위치가 충분히 정확하지 않다는 판정에 응답하여, 제어는 다른 가능한 물리적 위치를 시도하도록 모듈(403)로 되돌아간다. 현재 연산된 위치가 충분히 정확하다는 판정에 응답하여, 모듈(405)은 전체 관심 영역이 스캔되었는지의 여부를 판정하도록 컨트롤러를 구성한다. 전체 관심 영역이 스캔되지 않았다는 판정에 응답하여, 제어는 모듈(402)로 되돌아가고, 다른 목표가 선택된다. 전체 관심 영역이 스캔되었다는 판정에 응답하여, 제어는 모듈(406)로 진행하고, 모듈(406)은 관심 영상 체적의 3차원 모델을 어셈블리하도록 컨트롤러(406)를 구성한다. 목표 구조부들의 물리적 포지션을 지시하는 3차원 정보에 기초한 목표의 3D 영상의 어셈블리는 당업자에게 공지되어 있어 여기서 설명할 필요가 없다. 모듈(407)은 이후의 검토 및 조작을 위해 다수의 목표에 대해 결정된 물리적 포지션 정보를 사용하여 개발된 3차원 모형을 저장하도록 컨트롤러를 구성한다. 예를 들어, 3D 모델은 환자의 기관의 특정 치수에 대해 임플란트의 크기를 결정하는 것과 같은 수술 용처를 위해 나중에 사용될 수 있을 것이다. 또 다른 예에 있어서, 새로운 수술 기기(101)가 로봇 시스템(152)에 설치될 때, 새로운 기기에 대해 이전 수술 장면을 참조하도록 하기 위해 3D 모델을 재호출하여 디스플레이(110) 상에 표시하는 것이 필요할 수 있다. 모듈(407)은 또한 3D 시각적 표현과 Q3D 모델 간의 정렬의 결과를 저장할 수 있다. 모듈(408)은 정량적 3D 뷰를 표시하기 위해 다수의 목표에 대해 결정된 물리적 포지션 정보를 사용하도록 컨트롤러를 구성한다. Q3D 뷰의 한 예는 도 4에 도시된 거리값 "d_Instr_Trgt"이다.
입체 디스플레이는 3차원 환상을 생성한다고 알려져 있다. 하지만, 실제 3D 디스플레이는 홀로그래픽 영상 또는 곡면 상에 투영된 영상과 같은 3차원 영상을 제공한다. 일반적으로, 3D 디스플레이는 뷰가 관찰 투시를 변경시키도록 이동하는 것을 허용한다.
도 10은 일부 실시예에 따른, 대체로 도 9의 모듈(402)에 대응되는 프로세스의 특정 세부 사항을 도시한 예시적인 플로우차트이다. 모듈(402.1)은 센서 어레이(210)의 모든 센서로부터 물리적 세계 장면(physical world scene)의 영상들을 취득하도록 컨트롤러를 구성한다. 모듈(402.2)은 취득된 장면 내로부터 관심 영역을 특정하도록 컨트롤러를 구성한다. 모듈(402.3)은 동일한 목표의 투영에 의해 조명되는 상이한 센서들 내의 픽셀 위치들을 식별하기 위해 관심 영역 내의 장면 영상들 간의 최상의 정합(match)을 탐색하도록 컨트롤러를 구성한다. 후술하는 바와 같이, 최상의 정합은 시프트되는 영상과 참조 영상 간의 2차원 상호 상관 함수(two-dimensional cross-correlation function)를 최대화할 때까지 센서(Sij)로부터의 개별 영상들을 시프트시킴으로써(이에 한정되지 않음) 성취될 수 있다. 참조 영상은 예를 들면 센서(S11)로부터 수신된 장면 영상일 수 있다. 모듈(402.4)은 동일한 목표로부터의 투영에 의해 조명되는 후보 픽셀들을 식별하도록 컨트롤러를 구성한다. 모듈(402.5)은 후보 픽셀들이 동일한 목표로부터의 투영에 의해 조명되는지의 여부를 판정하기 위해 선택된 목표에 대해 2개 이상의 픽셀 좌표(Nx, Ny)를 연산하도록 컨트롤러를 구성한다. 판정 모듈(402.6)은 연산된 2D 픽셀 좌표값들이 후보 픽셀들이 동일한 목표로부터의 투영에 의해 조명된다는 것을 지시하는지의 여부를 판정한다. 다수의 센서(Sij)로 동일한 장면을 관찰하는 것에 의해 발생되는 영상 다이버시티가 다양한 개별 영상(Sij) 내에서의 특정 목표와 관련된 (Nx, Ny)를 정확하게 식별하는 역할을 한다. 예를 들어, 일부 실시예에 따라, 단지 3개의 센서(S11, S12 및 S13)만이 사용되는 단순화된 시나리오를 가정하면, 2D 픽셀 좌표 [(Nx11, Ny11), (Nx12, Ny12), (Nx13, Ny13)]의 트리플릿(triplet)이 [S11, S12 및 S13] 상으로의 동일한 목표의 투영들에 대응되지 않는 경우에는, 양(
Figure 112016104759366-pct00001
Figure 112016104759366-pct00002
)(y 방향의 투영 시프트의 추정값들)이 다른 값들을 획득할 것이다. 아래에 제공되는 방정식에 따라,
Figure 112016104759366-pct00003
Figure 112016104759366-pct00004
는 픽셀 좌표[(Nx11, Ny11), (Nx12, Ny12), (Nx13, Ny13)]가 동일한 목표의 투영들로부터 발생하는 경우에는 동일해야 한다.
Figure 112016104759366-pct00005
Figure 112016104759366-pct00006
Figure 112016104759366-pct00007
가 대략 동일하지 않는 경우에는, 제어는 모듈(402.4)로 되돌아가, 센서 평면(Sij) 상으로의 목표 투영들에 최상인 후보들을 정제(refining)한다. 상술한 바와 같이, 이상은 알고리즘의 단순화된 구현예일 뿐이다. 일반적으로, 도 10의 모듈(402.6)에 나타내진 바와 같이,
Figure 112016104759366-pct00008
Figure 112016104759366-pct00009
간의 차이의 놈(norm)은 모듈(402)이 그것의 반복(iteration)을 완료하기 위해 허용가능한 공차(
Figure 112016104759366-pct00010
)보다 작아야 한다. 유사한 구속조건이 x 축의 대응하는 추정값
Figure 112016104759366-pct00011
Figure 112016104759366-pct00012
에 대해 충족되어야 한다. 연산된 2D 픽셀 후보값(Nx, Ny)이 후보 픽셀들이 동일한 목표로부터의 투영에 의해 조명된다는 것을 지시한다는 판정에 응답하여, 제어는 모듈(403)로 진행한다.
각각의 픽셀은 색상 및 강도 정보를 세계 장면(world scene)으로부터 직접적으로 취득한다는 것이 이해될 것이다. 또한, 상기 프로세스에 따라, 각각의 픽셀은 픽셀 상으로 투영된 세계 뷰(world view) 내의 물리적 대상체의 좌표(x, y, z)와 관련된다. 따라서, 색상 정보, 조도 정보, 물리적 위치 정보 즉 색상 및 조명이 투영된 물리적 대상체의 위치는 비일시성 컴퓨터 판독가능 저장 장치 내의 픽셀과 관련될 수 있다. 아래의 표 1은 이러한 관련성을 설명한다.
픽셀 식별자 색상값 조도값 위치(x, y, z)
Q3D 정보를 결정하는 예
투영 정합(projection matching)의 예
도 11은 일부 실시예에 따른, 3개의 예시적인 대상체를 포함하고 있는 예시적인 3차원 실세계 장면을 포함하는 시계를 가지도록 배치된 센서들(S11-S33)의 어레이를 포함하고 하나의 예시의 센서 어레이(210)의 설명도이다. 전술한 바와 같이, 어레이 내의 각각의 센서(Sij)는 각각의 차원으로 적어도 2개의 픽셀을 갖는 2차원 픽셀 배열부를 포함한다. 각각의 센서는 렌즈 스택을 포함하고, 렌즈 스택은 그것의 초점면 내에 배치된 대응하는 픽셀 배열부 상에 영상을 해상하는 개별적인 광 채널을 발생시킨다. 각각의 픽셀은 광 센서로서 작용하고, 다수의 픽셀을 가진 각각의 초점면은 영상 센서로서 작용한다. 그것의 초점면을 가진 각각의 센서(S11-S33)는 다른 센서들 및 초점면들에 의해 차지되는 센서 어레이의 영역과 다른 센서 어레이의 일정 영역을 차지한다. 적합한 공지의 영상 센서 어레이들이 상술한 미국 특허 US 8,514,491(2010년 11월 22일 출원) 및 미국 특허 출원 공개 US 2013/0070060(2012년 9월 19일 출원)에 개시되어 있다.
일부 실시예에 따라, 센서들은 Nx 및 Ny. 그들의 x 방향 및 y 방향의 픽셀들의 총 개수 및 시계각(field of view angle)(θx 및 θy)에 의해 특징지어진다. 일부 실시예에 있어서, x 축 및 y 축에 대한 센서 특성은 동일할 것으로 예상된다. 하지만, 대안적인 실시예에 있어서, 센서는 비대칭적인 x 축 및 y 축 특성을 갖는다. 마찬가지로, 일부 실시예에 있어서, 모든 센서는 픽셀의 총 개수 및 동일한 시계각을 가질 것이다. 센서들은 양호하게 제어되도록 센서 어레이(210)에 걸쳐 분포된다. 예를 들어, 센서들은 도시된 2차원 격자 상에서 거리(δ)만큼 이격될 수 있다. 센서 배치 피치(δ)는 상기 격자에 결쳐 대칭적이거나 비대칭적일 수 있다.
도 11에 도시된 실시예에 있어서, 센서들은 센서(S11-S13)가 상부 행을 차하위표면고, 센서(S21-S23)가 중간 행을 차하위표면고, 센서(S31-S33)가 하부 행을 차하위표면은 식으로 사격형 격자 내에 배열되어 있다. 각각의 센서는 N열의 픽셀 및 N행의 픽셀을 포함한다. 파선들에 의해 지시된, 광원에 의해 생성된 광선들이 삼각형 제1 대상체, 구형 제2 대상체 및 사각형 제3 대상체의 각각으로부터 이미저 어레이의 각각의 센서로 반사된다. 예시를 목적으로, 상부 행의 센서(S11, S12 및 S13)로의 광선들만이 도시되어 있다. 광원은 예컨대 비구조 백색광(non-structured white light) 또는 주변광일 수 있다. 선택적으로, 광원은 가시광선 또는 적외선 스펙트럼 내와 같은 선택된 파장의 광을 제공할 수 있으며, 또는 광이 예컨대 선택된 파장(예컨대, 색상)이나 파장의 범위(예컨대, 색상의 범위)를 제공하도록 여과되거나 분할될 수 있다. 광선들은 마찬가지로 대상체들의 각각으로부터 센서(S21-S33)로 반사된다는 것을 이해할 것이다. 하지만, 설명을 간단히 하기 위해, 이 다른 광선들은 도시되지 않았다.
모듈(401 및 402.1)에 따라, 센서 어레이(210)의 센서들은 세계 뷰로부터 영상들을 개별적으로 취득한다. 도 12는 일부 실시예에 따른, 3개의 대상체의 센서(Sij)(S11, S12 및 S13만 도시됨) 상으로의 투영들을 나타낸 설명도이다. 당업자는 센서들에 입사하는 반사된 광선들이 시계 내에 있는 대상체들의 영상을 투영한다는 것을 이해할 것이다. 더 구체적으로는, 이미저 어레이의 다수의 상이한 영상 센서에 입사하는 시계 내의 대상체들로부터 반사된 광선들은 3차원에서 2차원에 이르는 대상체들의 다수의 투시 투영(perspective projection) 즉 반사된 광선들을 수취하는 각각의 센서에서의 상이한 투영을 발생시킨다. 특히 대상체들의 투영들의 상대 위치는 S11으로부터 S12로, S13로 진행할 때 좌에서 우로 시프트된다. 입사 광선들에 의해 조명되는 영상 센서 픽셀들은 입사광에 응답하여 전기 신호를 생성한다. 따라서, 각각의 영상 센서마다, 그것의 픽셀들에 의해 영상 센서 내의 영상 투영의 형상 및 위치를 나타내는 반사된 광선들에 응답하여 일정 패턴의 전기 신호들이 생성된다.
모듈(402.2)에 따라, 관심 영역이 세계 장면(world scene)으로부터 선택된다. 도 13은 장면 내에서의 관심 영역의 선택을 나타내는 설명도이다. 이 예에 있어서는, 삼각형 제1 대상체, 구형 제2 대상체 및 사각형 제3 대상체 모두가 선택된 관심 영역 내에 있다. 이 단계는 오퍼레이터로부터 입력을 수취하는 것에 의해 성취될 수 있으며, 또는 소프트웨어에 의해 소정의 방식으로 구성된 컴퓨터를 이용하여 자동적으로 또는 오퍼레이터 입력과 자동 소프트웨어 제어식 선택의 조합에 의해 실행될 수 있다. 예를 들어, 일부 실시예에 있어서, 세계 장면은 인간 해부학적 구조부의 내강(internal cavity)을 보여줄 수 있고, 대상체들은 체내 기관들이나 수술 기기들 또는 그 일부분일 수 있다. 외과의는 내강 내로부터의 실시간 시각 영상을 수취할 수 있으며, 인간 해부학적 구조부의 조직 영역들과 체강 내에서 돌출한 수술 기기의 일부분을 볼 수 있다. 외과의는 텔레스트레이션 비디오 마커(telestration video marker)와 같은 공지된 기술을 통해 그것의 위치 정보가 결정될 시계 내의 대상체들을 특정할 수 있다. 선택적으로 또는 그와 같은 오퍼레이터 요청에 더하여, 에지 검출 알고리즘(edge detection algorithm)과 같은 자동화된 프로세스가 관심 영역(ROI)을 특정하는 데 사용될 수 있다.
모듈(402.3)에 따라, 동일한 목표의 투영들에 의해 조명된 상이한 센서들의 픽셀 위치들을 식별하도록 관심 영역 내의 장면 영상들 사이에서 최상의 정합이 결정된다. 도 14는 일부 실시예에 따른, 센서(S11, S12 및 S13)에 투영된 영상들의 상대적인 기하학적 오프셋 형상에 대한 추가 세부 사항을 도시한 설명도이다. 일부 실시예에 따라, 센서(S13)에서의 영상이 참조 영상(reference image)으로 간주되고, 선택된 ROI 내의 대상체들의 투영들은 센서(S13) 내에서의 그들의 위치에 대해 센서(S12) 내에서 양(σ23) 픽셀만큼 우측으로 오프셋된다. 마찬가지로, 선택된 ROI 내의 대상체들의 투영들은 센서(S13) 내에서의 그들의 위치에 대해 센서(S11) 내에서 양(σ13) 픽셀만큼 우측으로 오프셋된다. 센서(S12, S11)의 FOV 관찰 축들이 각각 센서(S13)의 FOV 관찰 축(센서들의 평면에 수직인 관찰 축들과 같은)의 우측으로 오프셋되기 때문에, ROI에서 투영된 영상들은 센서(S13)에 대해 센서(S12 및 S11)에서 좌측으로 오프셋된다.
도 15는 일부 실시예에 따른, 센서(S13) 내의 ROI 내의 투영된 영상들과 정렬되도록 우측으로 시프트된 센서(S11 및 S12) 내의 ROI 내의 투영된 영상들을 도시한 설명도이다. 현재의 예에 있어서는, 센서(S13)가 참조 센서로서 작용하도록 지정된다. 다른 센서들이 정렬 및 기하학적 치수들을 결정하는 데 사용하기 위해 선택될 수 있다는 것을 이해할 것이다. 선택된 ROI 내의 대상체들의 투영들은 예컨대 센서(S13)와 같은 지정된 센서에서 식별되고, 예컨대 센서(S11 및 S12)와 같은 다른 센서들에서의 투영들은 그들이 지정된 센서에서의 투영과 정렬될 때까지 시프트된다. 이러한 방식으로, 선택된 ROI 내의 대상체들의 대응되는 투영들이 지정된 센서 내에서의 투영들의 위치에 대한 그들의 오프셋들과 함께 다른 센서들 내에서 식별될 수 있다.
구체적으로, 예를 들어, 3개의 예시의 대상체의 투영들이 센서(S12) 내에서 양(σ23) 픽셀만큼 우측으로 시프트되고, 3개의 예시의 대상체의 투영들이 센서(S11) 내에서 양(σ13) 픽셀만큼 우측으로 시프트된다. 이 설명예에 있어서는, 설명을 간단히 하기 위해, 투영들이 y 방향으로만 오프셋되고, x 방향으로는 오프셋되지 않는 것을 가정하였지만, 동일한 원리가 센서들 간의 x 방향 투영 오프셋들에도 적용된다. 또한, 이 예는 선형 오프셋들을 도시하고 있지만, 당업자는 예를 들어 다른 센서들에서 상대적인 오프셋들을 가지는 투영들을 정렬시키기 위한 회전과 같은 다른 변환들에 적용할 수 있다.
예컨대 일부 실시예에 따라, 2차원(2D) 상호 상관 기법(cross-correlation technique)이나 주성분 분석(principal component analysis)(PCA)이 S13 내의 ROI 내의 투영들을 S12 내의 ROI 내의 투영들과 정렬시키고, S13 내의 ROI 내의 투영들을 S11 내의 ROI 내의 투영들과 정렬시키는 데 사용될 수 있다. 일반적으로, 그 의도는 센서(Sij)로부터의 영상들을 참조 센서로서 지정된 센서로부터의 영상과 최상으로 정합시키거나 정렬시키고자 하는 것이다. 더 구체적으로는, 최고 상관 계수가 성취될 때까지, S12 내의 ROI 내의 투영된 영상들이 시프트되고, S13 내의 ROI 내의 투영된 영상들과 상호 상관된다. 마찬가지로, 최고 상관 계수가 성취될 때까지, S11 내의 ROI 내의 투영된 영상들이 시프트되고, S13 내의 ROI 내의 투영된 영상들과 상호 상관된다. 따라서, ROI의 투영들의 정렬은 S13 내의 ROI 내의 투영과 S12 내의 ROI 내의 투영 사이의 오프셋을 결정하고, S13 내의 ROI 내의 투영과 S11 내의 ROI 내의 투영 사이의 오프셋을 결정함으로써, 센서(S11 및 S12) 내의 ROI의 투영들의 위치를 식별하는 데 사용된다.
후보 픽셀 선택 및 정제의 예
모듈(402.4)에 따라, 후보 픽셀들이 최상의 정합 프로세스에 의해 동일한 목표로부터의 투영들에 의해 조명되는 상이한 센서들 내에서 식별된다. 일단 ROI 내의 대상체들의 투영들이 ROI 내의 센서(S11, S12 및 S13)의 각각에서 식별되면, ROI 내의 각각의 목표점들의 물리적 (x, y, z) 투영들이 이미저 어레이에 대해 결정될 수 있다. 일부 실시예에 따라, ROI 내의 다수의 목표점의 각각에 대해, 목표점으로부터의 투영에 의해 조명되는 다수의 센서의 각각의 센서 내의 하나 이상의 픽셀이 식별된다. 이러한 각각의 목표점에 대해, 물리적 (x, y, z) 목표점 위치가 적어도 부분적으로 목표점으로부터의 투영들에 의해 조명되는 것으로 결정된 상이한 센서들 내에 배치된 픽셀들 간의 기하학적 관계들에 기초하여 결정된다.
일정 시퀀스의 목표점들이 ROI를 체계적으로 횡단이동하는 것에 의해(예컨대 일정 단계 크기를 가지고 우측에서 좌측으로 그리고 특정 단계 크기를 가지고 위에서 아래로) 자동적으로 선택될 수 있고, 물리적 (x, y, z) 목표점 위치가 각각의 선택된 목표점에 대해 결정될 수 있다. S11 및 S12가 S13에 대해 최상으로 정합되기 때문에, 횡단이동은 시프트되는 관심 영역 내부에서 실행된다. 목표를 선택하는 것은 목표의 투영에 의해 조명되는 센서(S11, S12 및 S13)의 각각의 센서 내의 픽셀을 식별하는 것을 포함한다. 따라서, 센서(S11, S12 및 S13)의 각각의 센서 내의 후보 픽셀들은 선택된 목표점의 투영에 의해 조명되는 것으로서 식별된다.
다시 말해, 목표점(T)을 선택하기 위해, 목표점(T)의 투영에 의해 조명되는 픽셀이 센서(S11, S12 및 S13)의 각각에서 선택된다. 목표(T)의 (x, y, z) 물리적 위치는 그것의 선택의 순간에는 알려져 있지 않다는 것이 이해될 것이다. 또한, 상술한 정렬 프로세스의 부정확성이 각각의 센서 내의 어느 픽셀들이 선택된 목표(T)의 투영에 의해 조명되는지의 판정에 있어서의 부정확성을 초래할 수 있다. 따라서, 도 17, 18 및 19를 참조하여 설명되는 바와 같이, 현재 선택된 목표(T)의 투영에 의해 조명되는 센서(S11, S12 및 S13)의 각각의 센서 내의 픽셀들에 대한 판정의 정확성에 대한 추가적인 판정이 이루어진다.
상기 예로 설명을 계속하여, 삼각형 제1 대상체가 현재 선택된 목표점이라고 가정하자. 도 16은 일부 실시예에 따른, 선택된 삼각형 목표점의 센서(S11, S12 및 S13) 상으로의 투영들을 도시한 설명도이다. 이러한 투영들로부터, 목표(T)에 대한 2D 픽셀 좌표들[(Nx11, Ny11), (Nx12, Ny12), (Nx13, Ny13)]이 결정된다. 단순화를 위해, 도 16은 단지 y 축 픽셀 좌표들만 도시하고 있다. 이러한 2D 픽셀 좌표들을 사용하여, 식 (402.5-1) 및 (402.5-2)이 적용되고,
Figure 112016104759366-pct00013
Figure 112016104759366-pct00014
가 모듈(402.5)의 일부로서 연산된다. 모듈(402.6)의 일부로서, 놈
Figure 112016104759366-pct00015
이 연산되어, 허용가능한 공차(
Figure 112016104759366-pct00016
)와 비교된다. 마찬가지로, x 축 픽셀 좌표들 및 위치 추정값이 연산되어 허용가능한 공차들과 비교된다. 모듈(402.6)의 조건이 충족되면, 프로세스는 모듈(403)로 진행한다. 그렇지 않으면, 프로세스는 목표 후보들을 정제하기 위해 모듈(402.4)로 되돌아간다.
도 17을 참조하면, 센서(S11, S12 및 S13)를 포함하는 이미저 어레이의 일부분 및 물리적 공간 내의 위치(x, y, z)에 배치된 선택된 삼각형 제1 대상체 목표점(T)이 도시되어 있다. 이미저 어레이 내의 센서들은 그들 사이에 알려진 간격(δij)을 가지고 있다. S11과 S12 사이의 물리적 포지션 간격은 δ12이고, S12과 S13 사이의 물리적 포지션 간격은 δ23이이다. 일부 실시예에 있어서, 모든 센서(Sij) 사이의 간격은 δ로 동일한 구조적 사양이다. 센서(Sij)는 또한 알려진 시계각(θ)을 가지고 있다.
전술한 바와 같이, 일부 실시예에 있어서, 각각의 센서는 사각형 패턴의 행과 열로 배열된 픽셀들을 가진 2D 촬상 소자로서 구성된다. 선택적으로, 픽셀은 예컨대 원형 패턴, 지그재그 패턴, 산란형 패턴 또는 서브픽셀 오프셋(sub-pixel offset)을 포함하는 불규칙 패턴으로 배열될 수 있다. 이러한 소자들의 각도 및 픽셀 특성들은 동일할 수 있으며, 또는 센서마다 상이할 수 있다. 하지만, 이러한 특성들은 알려져 있는 것으로 가정된다. 센서들이 상이할 수도 있지만, 설명을 간단히 하기 위해, 센서들은 동일한 것으로 가정된다.
단순화를 위해, 모든 센서(Sij)는 N×N 픽셀을 가진다고 가정한다. 센서(S11)로부터의 거리(z)에서, 센서의 N 픽셀 폭은 FOV1으로 지시된 센서(S11)의 y 차원 시계로 확장된다. 마찬가지로, 센서(S12)로부터의 거리(z)에서, 센서(S12)의 y 차원 시계는 FOV2로 지시되어 있다. 또한, 센서(S13)로부터의 거리(z)에서, 센서(S13)의 y 차원 시계는 길이(FOV3)로 지시되어 있다. 길이 FOV1, FOV2 및 FOV3는 서로 중첩되어, 센서(S11, S12 및 S13)가 어떤 (알려지지 않은) 거리(z)에 물리적으로 위치된 목표(T)의 3원 표본추출 다이버시티(3-way sampling diversity)를 성취하는 것을 나타낸다. 물론, 이 예에서 가정된 바와 같이 센서들이 동일하게 구성된 경우, 길이 FOV1, FOV2 및 FOV3 역시 동일할 것이다. 3개의 길이 FOV1, FOV2 및 FOV3 모두가 동일한 크기를 가지고, 설명을 목적으로 마치 그들이 서로 인접하여 적층된 것처럼 묘사되어 있지만, 그들이 이미저 어레이로부터 동일한 어떤 (알려지지 않은) 거리(z)에 위치하고 있다는 점에서 동일 평면상에 위치한다는 것이 이해될 것이다.
도 18을 참조하면, 현재 선택된 목표점(T)의 영상 센서(S11, S12 및 S13) 상으로의 투영의 예시적인 정면도가 도시되어 있다. 단순화를 위해, 센서들이 크기 N×N 픽셀의 기하학적 사각형 픽셀 어레이를 포함하는 것으로 가정한다. 또한, 목표(T) 투영의 x 좌표들이 모두 동일한 것으로 가정한다. 다시 말해, 목표(T)의 센서(S11, S12 및 S13) 상으로의 투영들에 대해, nx1 = nx2 = nx3인 것으로 가정한다. 설명을 간단히 하기 위해, 또한 기하학적 시계각(θ)은 수평방향일 때와 수직방향일 때가 동일한 것으로 즉 θx = θy인 것으로 가정한다. 당업자는 상기 가정들 중의 어느 것이 변경되는 경우에 목표(T)의 x, y 및 z 물리적 좌표들를 연산하기 위해 아래에 제공되는 프로세스를 어떻게 변경해야 할지를 알 것이다.
목표(T)의 하나의 영상이 영상 센서(S11)의 평면 내의 기하학적 좌표(nx1, ny1)에 위치한 센서(S11) 내의 하나의 물리적 점에 투영된다. 더 구체적으로는, 목표점(T)의 센서(S11) 상으로의 투영은 원점에서 보았을 때 y 축을 따라 ny1 픽셀에 그리고 x 축을 따라 nx1 픽셀에 위치된다. 목표(T)의 하나의 영상이 영상 센서(S12)의 평면 내의 기하학적 좌표(nx2, ny2)에 위치한 센서(S12) 내의 하나의 물리적 점에 투영된다. 목표(T)의 하나의 영상이 영상 센서(S13)의 평면 내의 기하학적 좌표(nx3, ny3)에 위치한 센서(S13) 내의 하나의 물리적 점에 투영된다. 각각의 센서 내의 픽셀 위치(nxi, nyi)는 센서에 대해 제공된 원점(0, 0) 기준 좌표에 대해 결정된다는 것이 이해될 것이다. 도 17 또는 도 19에 도시된 바와 같이, 전역 좌표계 (x, y, z)가 정의되고, 목표에 대한 기준으로 사용된다. 예를 들어, 이러한 좌표계의 원점은 센서(S11)의 기하학적 중심에 배치될 수 있다(이에 한정되지 않음).
도 16과 도 18을 함께 참조하면, 목표의 투영의 y 픽셀 거리가 각각의 센서에서 상이하다는 것을 알 수 있다. 현재 선택된 목표(T)의 투영은 S11에서 원점의 좌측으로 ny1 픽셀에 위치된다. 현재 선택된 목표(T)의 투영은 S12에서 원점의 좌측으로 ny2 픽셀에 위치된다. 현재 선택된 목표(T)의 투영은 S13에서 원점의 좌측으로 ny3 픽셀에 위치된다. 전술한 바와 같이, 설명을 간단히 하기 위해, 목표의 투영은 모든 3개의 센서에서 원점으로부터 동일한 x 픽셀 거리에 위치하는 것으로 가정한다.
도 19를 참조하면, 도 17을 참조하여 상술한 바와 같은 현재 선택된 목표(T)의 센서(S11, S12 및 S13)에 대한 배치가 도시되어 있고, 또한 각각의 센서 내의 후보 픽셀에 대한 y 방향 픽셀 오프셋들을 도시하고 있다. 도 19의 도면은 선택된 목표점(T)의 (x, y, z) 물리적 좌표들을 결정하기 위한 물리적 구조 및 분석틀을 제공한다. 이미저 어레이 평면으로부터의 (알려지지 않은) 거리(z)에서, 각각의 센서에 대한 y 방향 시계는 FOVi로 표기된 길이에 걸쳐 확장된다. 이 길이 FOVi는 일부 실시예에 있어서 N 픽셀인 센서의 최대 픽셀 폭에 대응된다. 센서가 x 및 y 방향으로 대칭인 시계를 가진다는 작동상의 가정을 고려하면, 그 길이는 x 축을 따라 수직방향으로도 FOVi일 것이다.
후보 픽셀 선택이 적어도 부분적으로 선택된 목표의 물리적 위치의 결정에 있어서의 부정확성을 초래할 수 있는 정도의 불확실성을 가질 수 있는 상관 프로세스에 기초하여 이루어진다는 점을 상기하자. 따라서, 일부 실시예에 따라, 목표 투영 후보 선택의 정확성의 추가적인 점검이 아래와 같이 이루어진다.
목표의 물리적 (x, y) 위치 결정 및 목표 투영 후보 선택의 정확성 점검의 예
모듈(402.5)에 따라, 후보 픽셀들이 실제로 동일한 목표로부터의 투영에 의해 조명되는지의 여부를 판정하기 위해, 2개 이상의 2차원 (Nx, Ny) 좌표값이 선택된 목표에 대해 연산된다. 상술한 가정들에 기초하여, 3D 좌표계의 원점을 센서(S11)의 중심에 두면, 도 19의 예의 이미저 어레이 및 현재 선택된 목표(T)는 다음의 관계들을 가진다.
Figure 112016104759366-pct00017
여기서:
N은 영상 센서들의 픽셀 치수이고;
nx1은 목표점(T)의 S11 평면의 원점으로부터의 픽셀의 개수로 표현되는 x 방향의 포지션이고;
ny1은 목표점(T)의 S11 평면의 원점으로부터의 픽셀의 개수로 표현되는 y 방향의 포지션이고;
nx2는 목표점(T)의 S12 평면의 원점으로부터의 픽셀의 개수로 표현되는 x 방향의 포지션이고;
ny2는 목표점(T)의 S12 평면의 원점으로부터의 픽셀의 개수로 표현되는 y 방향의 포지션이며;
θ는 시계각이다.
또한, 센서(S11 및 S13)를 사용하여 동일 수식을 실행하는 경우, S11과 S13 사이의 간격이 2δ인 것을 고려하면, 다음의 관계식을 얻는다.
Figure 112016104759366-pct00018
여기서:
nx3는 목표점(T)의 S13 평면의 원점으로부터의 픽셀의 개수로 표현되는 x 방향의 포지션이고;
ny3는 목표점(T)의 S13 평면의 원점으로부터의 픽셀의 개수로 표현되는 y 방향의 포지션이다.
따라서, 선택된 목표(T)의 물리적 x 좌표의 결정은 식 (3) 또는 (6)에 기초하여 결정될 수 있다. 선택된 목표(T)의 물리적 y 좌표의 결정은 식 (2) 또는 (5)에 기초하여 결정될 수 있다. 선택된 목표(T)의 물리적 z 좌표의 결정은 식 (1) 또는 (4)에 기초하여 결정될 수 있다.
더 일반적으로는, 모듈(402.6)에 따라, 연산된 2D 좌표값들이 후보 픽셀들이 동일한 목표로부터의 투영에 의해 조명된다는 것을 지시하는지의 여부의 판정이 이루어진다. 목표(T)의 물리적 (x, y, z) 좌표들의 보다 신뢰성 있는 판정은 각각의 좌표에 대한 2개의 수식의 사용을 통해 얻어질 수 있다는 것이 이해될 것이다. 예를 들어, 목표(T)에 대한 y 좌표는 양 수식 (2) 및 (5)를 사용하여 결정될 수 있다. 2개의 수식을 사용하여 연산된 결과의 y 좌표값들이 특정의 허용가능한 공차 값(
Figure 112016104759366-pct00019
y)보다 더 크게 다를 경우에는, 정합 프로세스가 충분한 정밀도로 상이한 센서들 내에서의 투영들 간의 오프셋을 해소하는 데 실패하였고, 그 결과 후보 픽셀들이 동일한 목표(T)로부터의 투영들을 수취하지 못하므로 부합하지 못한다는 판정이 내려질 수 있다. 정합하기 위한 y 연산에 실패한 경우에는, 정합 프로세스의 또 다른 반복이 각각의 후보 픽셀이 선택된 목표에 대응되는 센서들 내의 후보 픽셀들의 개선된 선택을 이루려는 노력의 일환으로 실행될 수 있다. 상이한 센서들 상으로의 상이한 투시 투영들이 예컨대 시차 효과(parallax effect) 등으로 인해 다를 수 있기 때문에, 연산된 y 값들이 동일할 가능성이 적다는 것이 이해될 것이다. 따라서, 허용가능한 공차값이 의도된 적용처에 따라 규정된다. 수술 영상 적용처에 대해서는, 일반적으로 0.1 - 0.3 mm의
Figure 112016104759366-pct00020
가 허용가능한 Q3D 정확도를 제공한다. 당업자는 본 발명의 기술사상에서 벗어나지 않고 다양한 허용가능한 공차 레벨들을 정할 수 있을 것이다.
x 및 y 축 둘레의 센서 대칭성을 상정하면, 당업자는 동종의 판정이 ny1 대신 nx1을 사용하여 수식 (2) 및 (5)와 유사한 수식들을 이용하여 목표(T)의 x 좌표들에 대해 이루어질 수 있다. 수식 (3) 및 (6)은 z 좌표의 지식을 요구하기 때문에 모듈(402.5 및 402.6)의 부분에 사용될 수 없다. 하지만, 모듈(402.5 및 402.6)의 본질은 센서(S11, S12 및 S13)의 평면들로의 정확한 목표 투영들을 판정하는 것이다. 이를 위해, x 및 y 축에 대해 조정된 수식 (2) 및 (5)가 충분하다. 후술하는 바와 같이, 완벽한 세트의 좌표 (x, y, z)는 모듈(403 및 404)의 연산분이다.
목표의 물리적 z 위치 결정의 예
도 19에 도시된 바와 같이, 모듈(403 및 404)에 따라, z 좌표에 대한 초기 추정값 z0가 연산 프로세스를 시작하는 데 사용된다. 이 초기값은 의료 적용처에 따라 자동적으로 정해진다. 의료 적용처는 시각화될 의도된 세계 뷰(intended world view)를 한정한다. 초기값 z0는 내시경에 가정 근접한 시계의 가장자리에서 시작한다. 도 8을 참조하면, 내시경적 절제술을 포함하는 Q3D 적용처에 대해, z0는 예컨대 Q3D 내시경(202)의 원위 단부(208)로부터 1-5mm 떨어진 곳일 수 있다. 이러한 초기 추정값은 일반적으로 임의의 조직이나 수술 기기가 Q3D 내시경에 그와 같이 밀접해 있을 가능성이 적기 때문에 이러한 적용처에 대해 충분하다. 다음으로, 값 z0가 수식 (3) 및 (6)에 대입된다. 목표의 x 좌표가 유일한 것을 고려하면, z0가 목표의 실제의 정확한 z 좌표이면, 수식 (3) 및 (6)은 동일한 값 또는 허용가능한 수준의 공차(
Figure 112016104759366-pct00021
x) 내의 대략 동일한 값을 연산할 것이다.
Figure 112016104759366-pct00022
수식 (3)과 (6)의 연산값이 허용가능한 공차(
Figure 112016104759366-pct00023
x) 밖에 있으면, 반복(iteration)이 이어져, z에 대한 새로운 추정값 z1이 시도된다. 일부 실시예에 따라, 새로운 추정값은 자동적으로 정해진다. 예컨대, z1 = z0 + D, 여기서 Δ는 반복 단계의 크기이다. 일반적으로, k번째 반복에서는 zk = zk-1 + Δ. 이 반복 프로세스는 조건 (7)이 충족될 때 중지된다. Δ가 작을수록 정확한 목표 좌표를 결정함에 있어서의 정확성의 증가를 낳지만, 프로세스를 완료하는 데 더 많은 연산 시간, 그에 따른 증가된 대기 시간도 필요로 할 것이다. 증가된 대기 시간은 수술 기기 운동과 조작하는 외과의에 의한 그것의 시각화 사이에 지연을 초래할 수 있다. 다시 말해, 외과의는 명령에 뒤처져 시스템을 지각할 수 있다. 20-30 cm 깊이의 수술 관찰 공간에 대해서는, 0.1-0.3 mm의 Δ가 충분할 수 있다. 물론, 당업자는 반복 프로세스를 완료하는 데 필요한 연산에 대해 Δ의 크기를 조정할 줄 알 것이다.
상기 설명은 설명을 이유로 단순화되었고, 따라서 3개의 센서(S11, S12 및 S13)만을 포함하였다. 일반적으로는, Q3D 좌표 연산의 정확성을 증가시키면서 또한 전체 반복의 수를 감소시키기 위해 더 많은 센서가 사용될 수 있다. 예를 들어, 3개보다 더 많은 센서, 바람직하게는 3×3 센서 어레이가 사용되면, 최급 구배(steepest gradient)와 같은 방법들이 모듈(402.5 및 403)에 의해 만들어지는 추정값 오차들의 방향성의 추세를 결정하는 데 채용될 수 있다. 그러면, 반복 단계 크기 및 방향이 3D 오차 구배면의 국소적 극단을 향한 진행과 조화되도록 조정될 수 있다.
Q3D 정보에 의한 내시경 수술 가이드
도 20은 일부 실시예에 따른 수술 과정 중에 Q3D 정보를 사용하기 위한 제1 프로세스(2000)를 나타낸 예시적인 플로우차트이다. 컴퓨터 프로그램 코드는 프로세스(2000)를 실행하도록 컴퓨터(151)를 구성한다. 모듈(2002)은 뷰어(312)를 들여다 볼 때의 외과의의 시계 내의 적어도 2개의 대상체를 선택하기 위한 사용자 입력을 수신하도록 컴퓨터를 구성한다. 모듈(2004)은 사용자 선택의 수신에 응답하여 컴퓨터 콘솔 상에 메뉴를 표시하도록 컴퓨터를 구성한다. 판정 모듈(2006)은 메뉴에 대한 사용자 입력이 거리를 표시하기 위해 수신되는지의 여부를 판정하도록 컴퓨터를 구성한다. 사용자 입력이 거리를 표시하기 위해 수신된다는 판정에 응답하여, 모듈(2008)은 외과의의 시계 내의 비디오 영상 내에 수치 거리를 표시하도록 컴퓨터를 구성한다. 판정 모듈(2010)은 거리 표시를 선택하기 위한 사용자 입력의 수신을 위한 규정된 시간 간격 동안 대기하고, "타임 아웃(time out)" 간격 내에서의 사용자 입력의 미수신에 응답하여 판정 모듈(2006)의 동작을 종료하도록 컴퓨터를 구성한다.
판정 모듈(2012)은 메뉴에 대한 사용자 입력이 근접 경보 한계를 입력하기 위해 수신되는지의 여부를 판정하도록 시스템을 구성한다. 사용자 입력이 근접도 임계값을 입력하기 위해 수신된다는 판정에 응답하여, 모듈(2014)은 외과의의 시계 내의 2개 이상의 대상체 사이의 근접도를 모니터하기 위한 Q3D 정보를 사용하도록 컴퓨터를 구성한다. 판정 모듈(2016)은 근접도 임계값이 초과되었는지의 여부를 판정한다. 근접도 임계값이 초과되었다는 판정에 응답하여, 모듈(2018)은 경보를 발동하도록 컴퓨터를 구성한다. 경보는 소리, 깜빡이는 불빛과 같은 시각적 큐(visual queue), 충돌을 회피하기 위한 기기 운동의 잠금 또는 다른 햅틱 피드백(haptic feedback)을 포함할 수 있다. 근접도 임계값이 초과되지 않았다는 판정에 응답하여, 제어는 다시 모니터 모듈(2014)로 되돌아간다. 판정 모듈(2020)은 근접도 임계값을 입력하기 위한 사용자 입력의 수신을 위한 규정된 시간 간격 동안 대기하고, "타임 아웃(time out)" 간격 내에서의 사용자 입력의 미수신에 응답하여 판정 모듈(2012)의 동작을 종료하도록 컴퓨터를 구성한다.
도 21은 일부 실시예에 따른, 도 20의 프로세스에 따라 디스플레이 스크린(2012) 상에 표시되는 메뉴 선택을 도시한 설명도이다. 디스플레이 스크린(2102)은 컴퓨터(151)와 관련된 관찰 모니터를 포함한다. 선택적으로, 디스플레이 스크린(2102)은 뷰어(312)의 관찰 요소(401R, 401L)의 영역을 포함할 수 있다. 사용자 입력에 응답하여, 모듈(2004)은 제1 메뉴 항목 "거리 표시"(2106) 및 제2 메뉴 항목 "근접 경보 설정"(2108)을 포함하는 메뉴(2104)의 표시를 일으킨다. "거리 표시" 메뉴 항목(2106)을 선택하는 사용자 입력에 응답하여, 모듈(2008)은 2개 이상의 대상체 간의 Q3D 거리의 표시를 일으킨다. 도 4를 다시 참조하면, 모듈(2008)을 사용하여 표시된 기기(400)와 목표 사이의 Q3D 거리 "d_Instr_Trgt"의 표시가 도시되어 있다. "근접 경보 설정" 메뉴 항목(2108)을 선택하는 사용자 입력에 응답하여, 그 안에 사용자가 근접도 거리 임계값(예컨대, 1 cm)을 입력할 수 있은 필드를 포함하는 "거리 입력" UI 입력부(2110)가 표시된다. 하나의 대안적인 실시예(도시되지 않음)에 있어서는, 디폴트 근접도 임계값(default proximity threshold)이 모든 기기에 대해 미리 설정될 수 있고, 사용자는 예를 들어 도 21의 메뉴를 사용하여 근접도 임계값를 변경할 수 있다. 이 대안적인 실시예에 있어서, 사용자는 임계값을 입력하는 대신 디폴트 임계값을 고르도록 선택할 수 있다. 일부 실시예에 있어서, 사용자는 거리를 표시하고 근접 경보를 설정하는 것을 모두 선택할 수 있다.
22a-22b는 일부 실시예에 따른, 도 20의 프로세스에 따라 사용자 입력을 수신하는 것의 특정 세부 사항들을 나타낸 설명도들이다. 도 22a는 텔레스트레이션(telestration)과 같은 비디오 마커 툴(video marker tool)을 사용하거나 도 5의 제어 입력 장치(160)를 조작하는 외과의 콘솔을 사용하여 생성될 수 있는, 신체 조직과 같은 목표(410L, 410R)의 예시의 제1 하이라이팅 영역(first highlighting area)(2202L, 2202R)을 도시하고 있다. 도 22b는 비디오 마커 툴(video marker tool)을 사용하여 생성될 수 있는 기기 팁(400L, 400R)의 예시의 제2 하이라이팅 영역(2206L, 2206R)을 도시하고 있다. 일부 실시예에 따른 작동에 있어서, 사용자는 제1 하이라이팅 영역(2202L, 2202R)을 생성한다. 다음으로, 사용자는 비디오 마커 툴를 사용하여 기기 팁(400L, 400R)의 예시의 제2 하이라이팅 영역(2206L, 2206R)을 생성한다. 항목들이 하이라이트되는 순서는 중요하지 않다는 것이 이해될 것이다. 사용자는 다음으로 선택을 입력하기 위한 선택기(selector)(도시 암됨)를 작동시킨다(예컨대, Enter 키를 누른다). 모듈(2002)은 수신된 사용자 입력을 목표 영상(410L, 410R) 및 기기 영상(400L, 400R)의 선택으로서 해석한다.
도 23은 일부 실시예에 따른, 수술 과정 중에 Q3D 정보를 사용하기 위한 제2 프로세스(2300)를 나타낸 예시적인 플로우차트이다. 컴퓨터 프로그램 코드는 프로세스(2300)를 실행하도록 컴퓨터(151)를 구성한다. 모듈(2302)은 뷰어(312)를 들여다 볼 때의 외과의의 시계 내의 적어도 대상체를 선택하기 위한 사용자 입력을 수신하도록 컴퓨터를 구성한다. 예를 들어, 도 22b를 다시 참조하면, 사용자 입력은 비디오 마커 툴을 사용하여 기기 팁(400L, 400R)의 제2 하이라이팅 영역(2206L, 2206R)을 생성하도록 수신된다. 사용자 입력(도시되지 않음)은 기기 팁(400L, 400R)의 영상의 선택을 입력하기 위한 선택기(도시 안됨)를 작동시키도록 수신된다(예컨대, Enter 키를 누른다).
다시 한번 도 23으로 돌아가면, 사용자 선택의 수신에 응답하여, 모듈(2304)은 컴퓨터 콘솔 상에 메뉴를 표시하도록 컴퓨터를 구성한다. 판정 모듈(2306)은 메뉴에 대한 사용자 입력이 선택된 대상체의 영상을 회전시키도록 수신되는지의 여부를 판정하도록 컴퓨터를 구성한다. 사용자 입력이 영상을 회전시키도록 수신된다는 판정에 응답하여, 모듈(2308)은 대상체의 다른 3차원 투시를 보여주기 위해 영상의 회전을 표시하도록 컴퓨터를 구성한다. 판정 모듈(2310)은 영상을 회전시키기 위한 사용자 입력의 수신을 위한 규정된 시간 간격 동안 대기하고, "타임 아웃(time out)" 간격 내에서의 사용자 입력의 미수신에 응답하여 판정 모듈(2306)의 동작을 종료하도록 컴퓨터를 구성한다.
도 24는 일부 실시예에 따른, 도 23의 프로세스에 따라 디스플레이 스크린(2402) 상에 표시되는 메뉴 선택을 도시한 설명도이다. 디스플레이 스크린(2402)은 컴퓨터(151)와 관련된 관찰 모니터를 포함한다. 선택적으로, 디스플레이 스크린(2402)은 뷰어(312)의 관찰 요소(401R, 401L)의 영역을 포함할 수 있다. 사용자 입력에 응답하여, 모듈(2304)은 제3 메뉴 항목 "좌회전"(2406) 및 제4 메뉴 항목 "우회전"(2408)을 포함하는 메뉴(2404)의 표시를 일으킨다. 제3 메뉴 항목 또는 제4 메뉴 항목(2406 또는 2408) 중의 일방 또는 타방을 선택하는 사용자 입력에 응답하여, 모듈(2308)은 도 9의 모듈(407)에 따라 생성되어 저장된 3D 모델의 회전을 일으킨다. 이미저 센서 어레이(210)가 제한된 전체 시계를 가지기 때문에, 회전의 양은 어느 정도의 각도, 예컨대 30도 미만으로 제한될 수 있다는 것을 이해할 것이다.
멀티포트
도 25a-25c는 일부 실시예에 따른, 다수의 상이한 포지션들의 상이한 투시들로부터 해부학적 구조부(2502)의 Q3D 영상 정보를 취득하기 위해 다수의 상이한 포지션들에 배치된 Q3D 영상 센서 어레이와 관련된 내시경(101C)을 도시한 설명도들이다. 도 6을 다시 참조하면, 일부 실시예에 따른 환자측 시스템(152)은 다수의 기계식 수술 암(158A-158D)을 포함한다. 도 5에 도시된 바와 같이, 상이한 기계식 암들이 최소 침습 수술 과정에 참여하도록 환자의 체강의 내부로 상이한 포트들을 통해 삽입될 수 있는 상이한 기기들(101A-101C)과 관련될 수 있다. 여기에 사용되는 "포트(port)"라는 용어는 환자의 체강 내의 수술 부위로의 접근을 제공하는 자연적 개구부 또는 수술 절개부를 의미할 수 있다. 캐뉼러(도시되지 않음)가 체강 내로의 진입 지점에서 기기와 환자의 신체 조직 사이의 보호 장벽으로서 기능하고 체강 내로 삽입되는 수술 기기들을 위한 가이드로서 기능하도록 포트의 윤곽과 정렬되어 삽입될 수 있다. 선택적으로, 캐뉼러는 사용되지 않을 수 있다.
본 발명의 또 다른 양태에 따르면, 영상 센서 어레이(210)와 관련되는, 도 7a-8을 참조하여 설명된 내시경 이미저 시스템은 다수의 수술 암(158A-158D의 각각에 교대로 결합될 수 있다. 각각의 암이 상이한 포트를 통해 내시경을 삽입하는 데 사용될 수 있다. 상이한 포트들이 상이한 위치들에서의 체강 내로의 진입을 제공하고, 내시경은 상이한 수술 암들에 결합될 때 체강 내의 장면의 상이한 투시 뷰들을 가진다. 따라서, 내시경은 그것을 상이한 암들에 교대로 결합시켜 체강 내로 상이한 포트들을 통해 삽입시키는 것에 의해 상이한 투시들로부터의 Q3D 정보를 취득하도록 사용될 수 있다. 이하의 설명은 단일의 내시경을 사용하는 맥락에서 이루어지며, 유사한 선택적인 구현예들이 각각이 상이한 포트들을 통해 진입하거나, 각각이 동일한 포트를 통해 진입하여 공간 내의 상이한 위치들로부터 영상화하는 하나 이상의 내시경을 사용하는 것에 의해 성취될 수 있을 것이을 이해해야 한다.
도 25a를 참조하면, 영상 취득 시스템(101C)(이하 "내시경"이라 함)은 제1 수술 암(158A)에 결합되어, 해부학적 조직 벽(2510)을 통과하여 영상화될 해부학적 구조부(2502)를 포함한 체강(2512)에 대한 접근을 제공하는 제1 포트(2504)를 통해 삽입된다. 제1 수술 암(158A)에 결합되었을 때, 영상 취득 시스템(101C)은 제1 관찰 투시로부터 제1 시계(FOV1) 내의 제1 영상 정보(2514)를 취득한다. 제1 영상 정보(2514)는 비일시성 컴퓨터 판독가능 저장 장치(2516)에 저장되는 제1 Q3D 모델(2515)을 생성하는 데 사용된다. 2517로 표기된 화살표가 도 9-19의 프로세스를 약식으로 지시하고 있고, 제1 영상 정보(2514)는, 일부 실시예에 따라, 수집되어 제1 Q3D 모델(2515)을 생성하는데 사용된다.
도 25b에서, 영상 취득 시스템(101C)은 제2 수술 암(158B)에 결합되어, 제2 포트(2506)를 통해 삽입된다. 제2 수술 암(158B)에 결합되었을 때, 영상 취득 시스템(101C)은 제2 관찰 투시로부터 제2 시계(FOV2) 내의 제2 영상 정보(2524)를 취득한다. 제2 영상 정보(2524)는 비일시성 컴퓨터 판독가능 저장 장치(2516)에 저장되는 제2 Q3D 모델(2525)을 생성하는 데 사용된다. 2517로 표기된 화살표가 도 9-19의 프로세스를 약식으로 지시하고 있고, 제2 영상 정보(2524)는, 일부 실시예에 따라, 수집되어 제2 Q3D 모델(2525)을 생성하는데 사용된다.
도 25c에서, 영상 취득 시스템(101C)은 제3 수술 암(158C)에 결합되어, 제3 포트(2508)를 통해 삽입된다. 제3 수술 암(158C)에 결합되었을 때, 영상 취득 시스템(101C)은 제3 관찰 투시로부터 제3 시계(FOV3) 내의 제3 영상 정보(2534)를 취득한다. 제3 영상 정보(2534)는 비일시성 컴퓨터 판독가능 저장 장치(2516)에 저장되는 제3 Q3D 모델(2535)을 생성하는 데 사용된다. 2517로 표기된 화살표가 도 9-19의 프로세스를 약식으로 지시하고 있고, 제3 영상 정보(2534)는, 일부 실시예에 따라, 수집되어 제3 Q3D 모델(2535)을 생성하는데 사용된다.
도 26a-26c는 일부 실시예에 따른, 도 25a-25c의 제1, 제2 및 제3 영상 정보(2514, 2524 및 2534)를 사용하여 생성된 제1, 제2 및 제3 Q3D 모델(2515, 2525 및 2535)을 나타낸 설명도들이다. 이 예에서, 각각의 고유한 Q3D 모델은 다른 Q3D 모델들에 존재하지 않는 Q3D 구조 정보를 포함하고, 각각의 Q3D 모델은 적어도 하나의 다른 Q3D 모델과 중첩되는 정보를 포함한다는 점에 유의해야 한다. 예를 들어, 도시된 바와 같이 삼각형 구조부(2602)는 제1 Q3D 모델(2515)에만 표시되어 있고, 사각형 구조부(2604)는 제2 Q3D 모델(2525)에만 표시되어 있으며, 원형 구조부(2606)는 제3 Q3D 모델(2535)에만 표시되어 있다. 하지만, 기다란 사각형 구조부(2608-1, 2608-2, 2608-3)는 3개의 Q3D 모델들에 중첩된다. 증가된 Q3D 정확도를 위해, 도 26a-26c의 다중 Q3D 모델들은 아래에 더 상세히 설명되는 바와 같은 제어된 지터링 기술(controlled jittering technique)을 사용하는 것이 필요하다. 제어된 지터링은 로봇 암(158A-158C)을 제어하는 등에 의해 기계적으로 또는 어레이 렌즈의 광학적 특성들을 제어하는 등에 의해 전자적으로 생성될 수 있다.
도 27은 도 26a-26c의 각각의 Q3D 모델의 예시의 정렬을 도시한 설명도이다. 제1, 제2 및 제3 Q3D 모델(2515, 2525 및 2535)이 중첩되는 것에 유의해야 한다. 예를 들어, 기다란 사각형 구조부(2808)의 제1 중첩부(2808-4)가 제1 및 제2 Q3D 모델(2515, 2525) 모두에 포함되어 있다는 것을 볼 수 있다. 또한, 예를 들어, 기다란 사각형 구조부(2808)의 제2 중첩부(2808-5)가 제2 및 제3 Q3D 모델(2525, 2535) 모두에 포함되어 있다는 것을 볼 수 있다.
여기에 그 전체 내용이 직접적으로 참조되는, 니메이어(Niemeyer) 등에 의해 발명된 "최소 침습 수술 장치 내에서의 카메라 참조 제어(Camera Referenced Control in a Minimally Invasive Surgical Apparatus)"라는 명칭의 미국 특허 US 6,424,885 B1(1999년 8월 13일자 출원)(이하 "'885 특허"라 함)는 상대 포지션들이 알려지도록, 상이한 수술 암(158A-158C)에 결합되는 기기(101A-101C)의 상대 포지션들을 매핑(mapping)하기 위해, 여기서 일부 실시예에 따라 사용되는 기구학을 사용하는 시스템 및 방법을 개시하고 있다. 도 25a-25c를 다시 참조하면, 예를 들어, 제1 수술 암(158A)은 제1 카테시안 좌표계(x1, y1, z1)와 관련된다. 제2 수술 암(158B)은 제2 카테시안 좌표계(x2, y2, z2)와 관련된다. 제3 수술 암(158C)은 제3 카테시안 좌표계(x3, y3, z3)와 관련된다. '885 특허에 설명된 바와 같이, 제1, 제2 및 제3 수술 암과 결합된 기기들의 상대 포지션들은 각각의 암과 관련된 좌표계들 간의 공지된 기구학적 관계들에 기초하여 공지되어 있다. 즉, 암들(및 암들에 결합된 기기들) 중의 어느 것의 절대 포지션의 변화는 서로에 대한 암들의 포지션들을 변경시킨다. 하지만, 서로에 대한 암들의 상대 위치들이 '885 특허에 설명된 바와 같이 암들(및 암들에 결합된 기기들) 간의 공지된 기구학적 관계로 인해 공지되어 있다.
Q3D 모델들에 대한 예시적인 정렬에 있어서는, 제2 수술 암(158B)에 결합되어 제2 Q3D 모델(2525)을 생성하는 데 사용되는 제2 영상 정보(2524)를 취득하도록 포지셔닝될 때의 영상 취득 시스템(101C)의 투시 및 대응되는 FOV2가 참조 투시(reference perspective)로서 취해진다. 참조 투시의 결정은 제2 수술 암(158B)과 관련된 제2 카테시안 좌표계(x2, y2, z2)에 대한 영상 취득 시스템(101C)의 배향(ux2, uy2, uz2)의 결정을 포함한다. 즉, 일부 실시예에 따라, 제2 수술 암(158B)의 상대 포지션은 전체 시스템의 기구학에 기초하여 알려지지만, 내시경(101C)이 제2 수술 암(158B)에 결합되어 있을 때의 제2 수술 암(158B)에 대한 내시경(101C)의 배향이 제2 시계(FOV2)의 배향의 결정에 기여한다. 마찬가지로, 영상 취득 시스템(101C)이 제1 수술 암(158A)에 고정되어 제1 Q3D 모델(2515)을 생성하는 사용되는 제1 영상 정보(2514)를 취득하도록 포지셔닝될 때의 영상 취득 시스템(101C)의 제1 작업공간 투시는 제1 수술 암(158A)과 관련된 제1 카테시안 좌표계(x1, y1, z1)에 대한 영상 취득 시스템(101C)의 배향(ux1, uy1, uz1)을 포함한다. 마찬가지로, 영상 취득 시스템(101C)이 제3 수술 암(158C)에 고정되어 제3 Q3D 모델(2535)을 생성하는 사용되는 제3 영상 정보(2534)를 취득하도록 포지셔닝될 때의 영상 취득 시스템(101C)의 제3 작업공간 투시는 제3 수술 암(158C)과 관련된 제3 카테시안 좌표계(x3, y3, z3)에 대한 영상 취득 시스템(101C)의 배향(ux3, uy3, uz3)을 포함한다.
제1 및 제2 수술 암(158A 및 158B) 사이의 공지된 기구학 관계가 FOV1 및 FOV2의 상대 포지션들을 결정하는 데 사용되고, FOV1 및 FOV2의 상대 포지션들이 다음으로 제1 및 제2 Q3D 모델(2515, 2525)에 의해 표현되는 상대 포지션들을 결정한다. 마찬가지로, 제2 및 제3 수술 암(158B 및 158C) 사이의 공지된 기구학 관계가 FOV2 및 FOV3의 상대 포지션들을 결정하는 데 사용되고, FOV2 및 FOV3의 상대 포지션들이 다음으로 제2 및 제3 Q3D 모델(2525, 2535)에 의해 표현되는 상대 포지션들을 결정한다. 일부 실시예에 따라, 상대 시계 포지션 정보가 다음으로 도 27에 도시된 바와 같이 제1 시계(FOV1) 내의 제1 영상 정보(2514)로 생성된 제1 Q3D 모델을 제2 시계(FOV2) 내의 제2 영상 정보(2524)로 생성된 제2 Q3D 모델과 정렬시키는 데 사용될 수 있다. 마찬가지로, 이 상대 시계 포지션 정보가 도 27에 도시된 바와 같이 제3 시계(FOV3) 내의 제3 영상 정보(2534)로 생성된 제3 Q3D 모델을 제2 시계(FOV2) 내의 제2 영상 정보(2524)로 생성된 제2 Q3D 모델과 정렬시키는 데 사용될 수 있다.
상기 예를 계속 설명하면, 선택적으로, 일부 실시예에 따라, 제1, 제2 및 제3 Q3D 모델들의 일부분들 내에서 발견되는 공통의 기준점들과 기하학적 변형(예를 들면, 회전 및 병진운동)이 FOV1, FOV2 및 FOV3의 상대 위치들을 결정하는 데 사용될 수 있다. 도 28a-28c는 일부 실시예에 따른, 예시의 제2 및 제3 Q3D 모델들의 예시의 회전(도 28a), 병진운동(도 28b) 및 결과적인 정렬(도 28c)을 나타낸 설명도들이다. 도 28a를 참조하면, 제2 및 제3 Q3D 모델(2525, 2535)은 약간 오정렬된 것으로 도시되어 있다. 제1 및 제2 기준점(2802, 2804)이 제2 및 제3 Q3D 모델(2525, 2535) 모두에서 발생하는 것으로 식별된다. 이 예로 설명을 계속하면, 일부 실시예에 따라, 제3 Q3D 모델(2535)의 배향의 회전 및 병진운동 변환들이 제3 Q3D 모델(2535) 내의 제1 및 제2 기준점(2804 2802)의 존재를 제2 Q3D 모델(2525) 내의 제1 및 제2 기준점(2804 2802)의 존재와 정렬시키도록 이루어진다.
계속해서 도 28a의 예를 참조하면, 제3 Q3D 모델(2535)은 필요에 따라 회전각(α)에 의해 정의되는 회전 행렬(Mx)을 채용함으로써 x 축 둘레로 회전된다. 제3 Q3D 모델(2535)은 필요에 따라 회전각(β)에 의해 정의되는 회전 행렬(My)을 채용함으로써 y 축 둘레로 회전된다. 마지막으로, 필요에 따라, 제3 Q3D 모델(2535)은 회전각(γ)에 의해 정의되는 회전 행렬(Mz)을 채용함으로써 z 축 둘레로 회전된다. 회전 행렬들의 사용은 당업자에게 잘 알려져 있어, 여기에서 상세히 설명할 필요는 없다. 도 28b에 예시된 바와 같이, 상기의 가상의 회전들의 목적 및 결과는, 일부 실시예에 따라, 변환된 제3 Q3D 모델(2535)이 제2 Q3D 모델(2525)과 회전 정렬되도록 하는 것이다.
그 결과적인 전체 회전 행렬 M은 아래와 같다.
Figure 112016104759366-pct00024
(8)
또는, 삼각법 형식으로는:
Figure 112016104759366-pct00025
이제 도 28b의 예를 참조하면, 제2 및 제3 모델(2525, 2535)의 각각에 독립적으로 발생한 기준점(2802, 2804)이 도 28c에 도시된 바와 같이 이제 중첩되어 모델들이 정렬되어 있는 것을 나타내도록, 가상의 포지션 병진운동이 제3 Q3D 모델(2535)을 제2 Q3D 모델(2525)과 중첩되는 포지션 관계로 이동시키도록 결정된다.기하학적 포지션 병진운동은 도 28b에 도시된 벡터(
Figure 112016104759366-pct00026
, Tv)에 의해 정의된다. 기하학적 병진운동은 당업자에게 잘 알려져 있으며, 여기에서 상세히 설명될 필요는 없다.
상기 설명으로부터 유사한 회전 및 병진운동이 제1 및 제2 Q3D 모델(2515, 2525)을 정렬시키도록 이루어질 수 있다는 것을 이해할 것이다.
도 29는 일부 실시예에 따른, 도 25a-25c의 다수의 Q3D 모델들이 함께 스티치(stitch)된 예시의 합성 Q3D 모델(2902)을 도시한 설명도이다. 여기에 사용되는 "스티치(stitch)"라는 용어는 끊김 없는(seamless) 또는 실질적으로 끊김 없는 합성 Q3D 모델을 생성하도록 정렬된 중첩하는 Q3D 모델들의 결합을 의미한다. 중첩하는 영상 정보를 함께 스티치하는 기술은 잘 알려져 있다. 예컨대, 다수의 Q3D 모델들을 함께 스티치하는 데 사용될 수 있는 영상 정렬 및 영상 스티칭 알고리즘을 개시하고 있는, 2006년 12월 10일 최종 업데이트된 마이크로소프트사의 마이크로 연구소의 Technical Report, MSR-TR-2004-92에 실린 스젤리스키 리처드(Richard Szeliski)의 "영상 정렬 및 스티칭: 사용 지침서(Image Alignment and Stitching: A Tutorial)" 참조.
일부 실시예에 따른 영상 취득 중에, 영상을 취득하기 위해 사용되는 내시경(101C)의 관찰 투시가 제어된 방식으로 "지터링(jittering)"된다. 이 명세서에서, "지터링(jittering)"은 2개 이상의 실 시점들(real viewpoints), 배향들(orientations) 또는 조합된 시점들 및 배향들 사이에서 조정하거나 이동시키는 것을 의미한다. 각각의 이러한 시점 또는 배향에서, Q3D 내시경은 취득된 영상 정보에 기초하여 생성되는 Q3D 모델의 해상도 및 정밀도를 향상시키기 위해, 목표 영역으로부터 영상 정보를 취득한다. 도 30a-30c는 일부 실시예에 따른, 목표 영역의 3개의 상이한 영상 시점들을 취득하기 위한 3개의 상이한 예시의 "지터링(jittering)" 포지션들에서 내시경을 도시한 설명도들이다. 상이한 지터링 포지션들을 성취하기 위해, 내시경(101C)은 상이한 지터링 포지션들 또는 배향들이 서로에 대해 알려지도록 공지된 작은 양만큼 이동된다. 상이한 내시경 포지션들은 예들 들어 5mm 미만과 같은 작은 거리만큼 다르다. 연속적인 배향들 사이의 이 작은 상대 거리들이 대응되는 3D 영상들에서의 충분한 중복성(redundancy)을 보장한다. 이 중복성이 Q3D는 모델의 정확도를 개선하는 데 사용된다.
내시경(101C)의 제어된 지터링은 목표 관심 영역에 대응되는 공간 체적 내의 점들에 대한 좌표들(x, y, z)의 연산의 정확도를 증가시킨다. 이 정확도는 추가적으로 또한 경미하게 변경된 관찰각들로부터의 추가적인 데이터가 도 9-19를 참조하여 상술한 프로세스들에 제공되기 때문에 증가된다. 특히, 제어된 지터링은 단계(402-404)에서 보다 정확하게 목표를 탐색하기 위한 도 9의 프로세스를 돕는다. 이는 도 10의 단계(402.3-402.5)에서 설명한 최상의 정합을 탐색하는 정확성을 향상시키는 것에 의해 성취된다. 내시경(101C)의 지터링이 제어된다는 사실은 경미하게 다른 각도들로부터의 목표 관심 장면의 뷰들을 제공한다. 이는 센서(Sij) 사이의 거리의 가상의 증가에 상당한다. 제어된 지터링은 예컨대 도 5를 참조하여 보여지는 바와 같이 내시경(101C)을 지지하는 로봇 암(158C)을 제어하는 하드웨어에 의해 성취될 수 있다. 선택적으로, 지터링은 Q3D 내시경(101C)이 전자적으로 조정가능한 광학적 특성들을 가진 렌즈들을 사용하여 구성될 경우에는 전자적으로 도입될 수 있다. 예를 들어, 2014년 5월 9일자로 발행된 Proceedings SPIE 9117에 실린 하싼피루지(Hassanfiroozi) 등에 의한 "3차원 내시경을 위한 액정 렌즈 어레이(Liquid crystal lens array for a 3D endoscope)"에 의하여, 액정 렌즈 어레이가 사용될 수 있다. 이러한 렌즈는, 내시경(101C)과 함께 사용될 경우, 제어 전압 신호의 변조에 의해 조절되는 광학적 특성들을 가질 수 있다. 따라서, 광학적 지터링이 알려진 패턴에 기초하여 제어 전압을 변경함으로써 도입될 수 있다. 예를 들어, 이러한 렌즈의 광축이 조절될 수 있다. 이 작용은 101C의 배향을 기계적으로 지터링하는 것과 동등한 효과를 가진다. 제3 수술 암(158C)의 운동을 통한 기계적 지터링이나 액정 렌즈의 제어 전압의 변조를 통한 전자적 지터링의 어느 것이나 목표점들의 좌표들(x, y, z)을 연산함에 있어서의 증가된 정확성의 동일한 결과를 가질 수 있다.
도 31은 일부 실시예에 따른, 다중 투시 Q3D 모델들을 취득하기 위한 프로세스(3100)의 예시적인 플로우차트이다. 시스템(152)은 프로세스(3100)의 블록들 즉 단계들 중의 하나 이상을 구현하도록 구성될 수 있다는 것을 이해할 것이다. 블록(3102)에서, 수술 암이 선택된다. 설명의 편의와 명확성을 위해, 그 원리들은 보다 광범위하게 적용된다는 것이 이해되겠지만, 이하의 설명은 상기 예시의 시스템 및 Q3D 모델을 참조하여 이루어질 것이다. 블록(3104)에서, 영상 취득 시스템(101C)이 선택된 수술 암에 고정된다. 예를 들어, 제1 수술 암(158A)이 먼저 그것에 영상 취득 시스템을 고정시키도록 선택된다고 가정하자. 블록(3106)에서, 선택된 수술 암(158A)에 고정된 영상 취득 시스템이 체강 벽 내의 제1 포트를 통해, 예를 들어 제1 시계(FOV1) 내의 제1 영상 정보(2514)에 기초하여 제1 Q3D 모델(2515)을 생성하도록 내시경을 사용하게 되는 투시를 갖는 포지션으로 삽입된다. 일부 실시예에 따라, 블록(3106)에서, 영상 취득 시스템(101C)의 배향(ux1, uy1, uz1)이 제1 수술 암(158A)과 관련된 제1 카테시안 좌표계(x1, y1, z1)에 대해 결정되고, 그 배향이 컴퓨터 판독가능 저장 장치(도시하지 않음)에 저장된다. 블록(3108)에서, 도 25a에 도시된 바와 같이, 제1 Q3D 모델(2515)을 생성하는 데 사용되는 정보가 제1 시계(FOV1)로부터 취득되어, 컴퓨터 판독가능 저장 장치(도시하지 않음)에 저장된다. 판정 모듈(3110)은 Q3D 모델을 얻기 위한 추가적인 수술 암 및 대응되는 포트가 존재한다고 판정하고, 그에 따라 제어는 다시 단계(3102)로 진행하여 다음번 수술 암이 선택된다.
상기 예로 설명을 계속하면, 블록(3102)을 통한 제2 패스(pass)에서 제2 수술 암(158B)이 선택되는 것을 가정하자.
블록(3104)을 통한 제2 패스에서, 선택된 제2 수술 암(158B)에 고정된 영상 취득 시스템이 체강 벽 내의 제2 포트를 통해, 예를 들어 제2 시계(FOV2) 내의 제2 영상 정보(2524)에 기초하여 제2 Q3D 모델(2525)을 생성하도록 내시경을 사용하게 되는 투시를 갖는 포지션으로 삽입된다.
일부 실시예에 따라, 블록(3106)을 통한 제2 패스에서, 영상 취득 시스템(101C)의 배향(ux2, uy2, uz2)이 제2 수술 암(158B)과 관련된 제2 카테시안 좌표계(x2, y2, z2)에 대해 결정되고, 그 배향이 컴퓨터 판독가능 저장 장치에 저장된다.
블록(3108)을 통한 제2 패스에서, 도 25b에 도시된 바와 같이, 제2 Q3D 모델(2525)을 생성하는 데 사용되는 정보가 제2 시계(FOV2)로부터 취득되어, 컴퓨터 판독가능 저장 장치에 저장된다.
상기 예로 설명을 계속하면, 판정 모듈(3110)은 Q3D 모델을 얻기 위한 또 다른 수술 암 및 대응되는 포트가 존재하는지를 판정하고, 그에 따라 제어는 다시 단계(3102)로 진행하여 다음번 수술 암이 선택된다. 블록(3102)을 통한 제3 패스에서 제3 수술 암(158C)이 선택되는 것을 가정하자. 블록(3104)을 통한 제3 패스에서, 선택된 제3 수술 암(158C)에 고정된 영상 취득 시스템이 체강 벽 내의 제3 포트를 통해, 예를 들어 제3 시계(FOV3) 내의 제3 영상 정보(2534)에 기초하여 제3 Q3D 모델(2535)을 생성하도록 내시경을 사용하게 되는 투시를 갖는 포지션으로 삽입된다. 일부 실시예에 따라, 블록(3106)을 통한 제3 패스에서, 영상 취득 시스템(101C)의 배향(ux3, uy3, uz3)이 제3 수술 암(158C)과 관련된 제3 카테시안 좌표계(x3, y3, z3)에 대해 결정되고, 그 배향이 컴퓨터 판독가능 저장 장치에 저장된다. 블록(3108)을 통한 제3 패스에서, 도 25c에 도시된 바와 같이, 제3 Q3D 모델(2535)을 생성하는 데 사용되는 정보가 제3 시계(FOV3)로부터 취득되어, 컴퓨터 판독가능 저장 장치에 저장된다.
다음으로, 상기 예에 따라, 판정 모듈(3110)은 Q3D 모델을 얻기 위한 어떠한 추가적인 수술 암 및 대응되는 포트도 존재하지 않는다고 판정하고, 그에 따라 제어는 블록(3112)으로 진행한다.
대안적으로, Q3D 내시경은 예컨대 158A와 같은 동일한 암을 사용하지만 동일한 암이 도 25a-25c가 참조되는 상이한 포트들(2504, 2506 또는 2508)에 포지셔닝되도록 조작될 수 있다. 일부 실시예에 따라, 제1 카테시안 좌표계의 내시경(101)의 배향(ux1, uy1, uz1)과 제2 카테시안 좌표계의 내시경(101)의 배향(ux2, uy2, uz2) 사이의 공지된 기구학적 관계가 도 27에 도시된 바와 같이 제1 및 제2 Q3D 모델들을 정렬시키는 데 사용된다. 제2 카테시안 좌표계의 내시경(101)의 배향(ux2, uy2, uz2)과 제3 카테시안 좌표계의 내시경(101)의 배향(ux3, uy3, uz3) 사이의 공지된 기구학적 관계가 도 27에 도시된 바와 같이 제2 및 제3 Q3D 모델들을 정렬시키는 데 사용된다.
대안적으로, 일부 실시예에 따라 도 28a-28c를 참조하여 전술한 바와 같이, 제1, 제2 및 제3 Q3D 모델들의 일부분들에서 또는 모델들의 각각의 쌍에서 발견되는 공통의 기준점들은 모델들을 정렬시키는 데에도 사용될 수 있다. 전술한 바와 같이, 기하학적 변환들이 상이한 Q3D 모델들에 존재하는 공통의 기준점들이 정렬된 최상의 정합을 성취하는 데 사용될 수 있다.
일단 Q3D 모델들이 정렬되면, 블록(3114)은 도 29에 도시된 바와 같이 제1, 제2 및 제3 Q3D 모델들을 함께 스티치한다. 일단 조합되어 확장된 Q3D 모델이 블록(3114)에서 생성되면, 조합되어 확장된 Q3D 모델은 모두가 도 9에서 참조되는 모듈(407)에 의해 저장되거나 모듈(408)에 의해 3D로 표시될 수 있다. 이 Q3D 모델은 도 32에 설명된 프로세스에 기초하여 3D로 표시될 수 있다. 다수의 3D 비디오 알고리즘들과 하드웨어 구현물들이 이 목적을 위해 사용될 수 있다. 3D 표시는 3차원 환상을 생성하는 입체 표시 및 3차원 공간을 차지하는 영상을 생성하는 실사 3D 영상을 모두 포함한다는 것을 이해해야 한다. 이 설명은 입체 3D 표시의 관점에서 이루어지며, 당업자는 필요한 부분만 약간 수정하여 실사 3D 영상을 유사하게 생성하는 방법을 이해할 것이다.
도 32는 일부 실시예에 따른, 3D 투시의 Q3D 모델을 3D 디스플레이 상에 표시하는 프로세서의 세부 사항들을 도시한 설명도이다. 컴퓨터 모듈(3202)은 Q3D 모델을 62-65 mm의 평균적 인간의 동공간 거리(IPD)로 주어지는 우안 뷰(3204R)와 좌완 뷰(3204L)로 분리시키도록, 비디오 프로세서(104), 컨트롤러(106) 및 디스플레이 드라이버(109)를 포함한 도 8의 시스템을 구성한다. 이 동작을 달성하기 위해, 입체시(stereoscopy) 및 인간의 IPD의 세부 사항들이 적용된다. 일부 실시예에 따라, 모듈(3206)은 관찰자에게 3D 장면의 인상을 주기 위해 공지의 프레임 속도로 좌안(3208L)에 비디오 프레임을 제공하는 과정과 우안(3208R)에 비디오 프레임을 제공하는 과정 간을 교대로 전환시키도록 3D 디스플레이 드라이버(109)의 3D 비디오 컨트롤러(106)를 구성한다. 도 32에 설명된 접근법은 도 4-6을 참조하여 설명 된 것과 같은 원격조작 수술 시스템에 등장하는 것과 같은 3D 관찰 고글을 채용한다. 하지만, 다른 3D 비디오 디스플레이 장치가 사용될 수 있다. 예를 들어, 립톤(Lipton)에 허여된 미국 특허 제4,562,463호(1981년 5월 15일 출원) 및 나젤(Nagele) 등에 허여된 미국 특허 제6,008,839호(1995년 11월 27일 출원)가 추가적인 구현예의 세부 내용들을 제공하며, 이들의 전체 개시 내용이 여기에 참조로 편입된다. 표시된 후, 사용자는 도 23 및 24를 참조하여 제공된 설명에 따라 조합된 Q3D 모델을 조작할 수 있다. 추가적인 조작은 다른 기기들 사이 또는 기기들과 해부학적 구조부들 사이의 거리들의 정량적 측정값들로 구성될 수 있다.
본 발명에 따른 실시예들의 전술한 설명 및 도면들은 단지 본 발명의 원리를 예시하는 것이다. 예를 들어, 다수의 상이한 투시들을 얻기 위해 다수의 포트들을 사용하는 대신, 단일의 포트가 상이한 투시들로부터의 정보를 취득하기 위해 동적으로 리포지셔닝(repositioning)되는 단일의 내시경과 함께 사용될 수 있을 것이다. 예를 들어, 수술 암 리스트 기구 상에 장착되는 내시경의 원위 단부 상에 장착된 영상 시스템이 다양한 투시들을 영상화하도록 동적으로 조종될 수 있다. 따라서, 다양한 변형들이 첨부된 청구범위에서 한정되는 본 발명의 기술사상 및 범위를 벗어남이 없이 당업자에 의해 상기 실시예들에 이루어질 수 있음을 이해할 것이다.

Claims (17)

  1. 수술 장면의 3D 영상화를 위한 시스템에 있어서,
    상기 시스템은:
    체강 내의 해부학적 구조부를 영상화하도록 작동가능한 하나 이상의 정량적 3차원(Q3D) 내시경들;
    제1 포트 및 제2 포트의 각각이 상기 체강에 대한 접근을 제공하는 상황에서, 적어도 하나의 Q3D 내시경이 해부학적 구조부에 대응하는 제1 영상 정보를 취득하기 위해 제1 시계를 갖도록 상기 제1 포트를 통해, 그리고 그 이후에 적어도 하나의 Q3D 내시경이 해부학적 구조부에 대응하는 제2 영상 정보를 취득하기 위해 제2 시계를 갖도록 적어도 상기 제2 포트를 통해 상기 Q3D 내시경들 중 적어도 하나를 삽입하도록 구성된 적어도 하나의 매니퓰레이터; 및
    적어도 하나의 프로세서를 포함하고 있고,
    상기 적어도 하나의 프로세서는:
    상기 제1 포트 내의 상기 내시경으로 상기 제1 시계로부터 취득된 상기 해부학적 구조부에 대응하는 상기 제1 영상 정보에 기초하여 해부학적 구조부의 제1 Q3D 모델을 생성하고;
    상기 제2 포트 내의 상기 내시경으로 상기 제2 시계로부터 취득된 상기 해부학적 구조부에 대응하는 상기 제2 영상 정보에 기초하여 해부학적 구조부의 제2 Q3D 모델을 생성하고;
    상기 제2 Q3D 모델에서의 구조 정보와 중첩하는 상기 제1 Q3D 모델에서의 구조 정보를 함께 스티치함으로써 상기 제1 Q3D 모델과 상기 제2 Q3D 모델을 함께 조합하여, 상기 제1 Q3D 모델에 존재하고 상기 제2 Q3D 모델에 존재하지 않는 제1 구조 정보를 포함하고, 상기 제2 Q3D 모델에 존재하고 상기 제1 Q3D 모델에 존재하지 않는 제2 구조 정보를 포함하고, 상기 중첩하는 구조 정보의 결합을 포함하는 구조 정보를 포함하는 상기 해부학적 구조부의 합성 Q3D 모델을 생성하도록 구성되어 있는 것을 특징으로 하는 시스템.
  2. 제 1 항에 있어서,
    상기 함께 조합하는 과정은:
    상기 적어도 하나의 Q3D 내시경이 상기 제1 포트 내에 있을 때, 제1 좌표계에 대한 상기 적어도 하나의 Q3D 내시경의 제1 포지션을 결정하는 과정;
    상기 적어도 하나의 Q3D 내시경이 상기 제2 포트 내에 있을 때, 제2 좌표계에 대한 상기 적어도 하나의 Q3D 내시경의 제2 포지션을 결정하는 과정;
    상기 제1 Q3D 모델과 상기 제2 Q3D 모델을 정렬시키도록, 상기 적어도 하나의 Q3D 내시경의 제1 포지션과 상기 적어도 하나의 Q3D 내시경의 제2 포지션 사이의 기구학적 관계를 사용하는 과정을 포함하는 것을 특징으로 하는 시스템.
  3. 제 1 항에 있어서,
    상기 함께 조합하는 과정은:
    상기 제1 Q3D 모델과 상기 제2 Q3D 모델 내의 공통의 기준점들을 식별하는 과정; 및
    식별된 공통의 기준점들을 정렬시키도록, 상기 제1 Q3D 모델과 상기 제2 Q3D 모델의 서로에 대한 상대 포지션들을 기하학적으로 변환시키는 과정을 포함하는 것을 특징으로 하는 시스템.
  4. 제 1 항에 있어서,
    확장된 Q3D 모델을 표시하도록 구성된 3D 디스플레이를 더 포함하는 것을 특징으로 하는 시스템.
  5. 제 1 항에 있어서,
    Q3D 모델을 조작하기 위한 수단을 더 포함하는 것을 특징으로 하는 시스템.
  6. 제 5 항에 있어서,
    상기 Q3D 모델을 조작하기 위한 수단은 제1 수술 기기와 제2 수술 기기 사이의 또는 수술 기기와 해부학적 구조부 사이의 거리의 정량적 측정을 실행하도록 구성되는 것을 특징으로 하는 시스템.
  7. 제 1 항에 있어서,
    상기 적어도 하나의 Q3D 내시경의 포지션을 연속적인 포지션들로 지터링하도록 상기 적어도 하나의 매니퓰레이터를 제어하기 위한 수단을 더 포함하는 것을 특징으로 하는 시스템.
  8. 수술 장면의 3차원(3D) 영상화를 위한 시스템을 작동하는 방법에 있어서,
    상기 방법은 시스템의 프로세서에 의해 수행되고,
    광원으로 인간의 체강 내의 해부학적 구조부를 조명하는 과정;
    제1 시계로부터 상기 해부학적 구조부의 제1 부분을 영상화하기 위해, 체강에 대한 접근을 제공하는 제1 포트를 통해, 매니퓰레이터에 결합되어 있는 적어도 하나의 정량적 3차원(Q3D) 내시경을 삽입하는 과정;
    제1 시계로부터 제1 영상을 취득하는 과정;
    상기 제1 영상에 기초하여 상기 해부학적 구조부의 제1 Q3D 모델을 생성하는 과정;
    상기 해부학적 구조부를 영상화하기 위해, 동일한 상기 체강에 대한 접근을 제공하는 제2 포트를 통해, 매니퓰레이터에 결합되어 있는 적어도 하나의 Q3D 내시경을 삽입하는 과정;
    제2 시계로부터 제2 영상을 취득하는 과정;
    상기 제2 영상에 기초하여 해부학적 구조부의 제2 Q3D 모델을 생성하는 과정; 및
    상기 제2 Q3D 모델에서의 구조 정보와 중첩하는 상기 제1 Q3D 모델에서의 구조 정보를 함께 스티치함으로써 상기 제1 Q3D 모델과 상기 제2 Q3D 모델을 함께 조합하여, 상기 제1 Q3D 모델에 존재하고 상기 제2 Q3D 모델에 존재하지 않는 제1 구조 정보를 포함하고, 상기 제2 Q3D 모델에 존재하고 상기 제1 Q3D 모델에 존재하지 않는 제2 구조 정보를 포함하고, 상기 중첩하는 구조 정보의 결합을 포함하는 구조 정보를 포함하는 상기 해부학적 구조부의 합성 Q3D 모델을 생성하는 과정을 포함하고 있는 것을 특징으로 하는 방법.
  9. 제 8 항에 있어서,
    상기 조합하는 과정은:
    상기 제1 포트 내에 삽입되었을 때, 제1 좌표계에 대한 상기 적어도 하나의 Q3D 내시경의 제1 포지션을 결정하는 과정;
    상기 제2 포트 내에 삽입되었을 때, 제2 좌표계에 대한 상기 적어도 하나의 Q3D 내시경의 제2 포지션을 결정하는 과정;
    상기 제1 Q3D 모델과 상기 제2 Q3D 모델을 정렬시키도록, 상기 적어도 하나의 Q3D 내시경의 제1 포지션과 상기 적어도 하나의 Q3D 내시경의 제2 포지션 사이의 기구학적 관계를 사용하는 과정을 포함하는 것을 특징으로 하는 방법.
  10. 제 8 항에 있어서,
    상기 조합하는 과정은:
    상기 제1 Q3D 모델과 상기 제2 Q3D 모델 내의 공통의 기준점들을 식별하는 과정; 및
    식별된 공통의 기준점들을 정렬시키도록, 상기 제1 Q3D 모델과 상기 제2 Q3D 모델의 서로에 대한 상대 포지션들을 기하학적으로 변환시키는 과정을 포함하는 것을 특징으로 하는 방법.
  11. 제 8 항에 있어서,
    상기 해부학적 구조부의 제3 부분을 영상화하기 위해, 동일한 체강에 대한 접근을 제공하는 제3 포트 내에, 매니퓰레이터에 결합되어 있는 상기 적어도 하나의 Q3D 내시경을 삽입하는 과정;
    제3 영상을 취득하는 과정;
    상기 제3 영상에 기초하여 제3 정량적 3차원(Q3D) 모델을 생성하는 과정; 및
    확장된 Q3D 모델을 생성하기 위해, 상기 제3 Q3D 모델을 상기 제1 및 제2 Q3D 모델들과 함께 조합하는 과정을 더 포함하는 것을 특징으로 하는 방법.
  12. 삭제
  13. 제 8 항에 있어서,
    상기 시스템에 의한 또는 사용자에 의한 추가적인 조작을 위해 확장된 Q3D 모델을 저장하는 과정을 더 포함하는 것을 특징으로 하는 방법.
  14. 제 13 항에 있어서,
    상기 추가적인 조작의 단계는 다른 기기들 사이의 또는 수술 기기들과 해부학적 구조부들 사이의 거리의 정량적 측정을 포함하는 것을 특징으로 하는 방법.
  15. 제 8 항에 있어서,
    확장된 Q3D 모델을 3D로 표시하는 과정을 더 포함하는 것을 특징으로 하는 방법.
  16. 제 8 항에 있어서,
    상기 적어도 하나의 Q3D 내시경은 먼저 제1 포트를 통해 삽입하기 위한 제1 매니퓰레이터에 결합되고, 그 이후에 상기 적어도 하나의 Q3D 내시경은 제2 포트를 통해 삽입하기 위한 제2 매니퓰레이터에 결합되는 것을 특징으로 하는 방법.
  17. 삭제
KR1020167030145A 2014-03-28 2015-03-28 멀티포트 투시에 의한 수술 장면의 정량적 3차원 영상화 KR102373714B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201461971749P 2014-03-28 2014-03-28
US61/971,749 2014-03-28
US201462096525P 2014-12-23 2014-12-23
US62/096,525 2014-12-23
PCT/US2015/023217 WO2015149046A1 (en) 2014-03-28 2015-03-28 Quantitative three-dimensional imaging of surgical scenes from multiport perspectives

Publications (2)

Publication Number Publication Date
KR20160139017A KR20160139017A (ko) 2016-12-06
KR102373714B1 true KR102373714B1 (ko) 2022-03-15

Family

ID=54196488

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020167030145A KR102373714B1 (ko) 2014-03-28 2015-03-28 멀티포트 투시에 의한 수술 장면의 정량적 3차원 영상화

Country Status (6)

Country Link
US (1) US10334227B2 (ko)
EP (1) EP3125807B1 (ko)
JP (1) JP6609616B2 (ko)
KR (1) KR102373714B1 (ko)
CN (1) CN106535806B (ko)
WO (1) WO2015149046A1 (ko)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111184577A (zh) 2014-03-28 2020-05-22 直观外科手术操作公司 器械在视野中的定量三维可视化
KR102397254B1 (ko) 2014-03-28 2022-05-12 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 수술 장면의 정량적인 3차원 영상
US10555788B2 (en) 2014-03-28 2020-02-11 Intuitive Surgical Operations, Inc. Surgical system with haptic feedback based upon quantitative three-dimensional imaging
US10350009B2 (en) 2014-03-28 2019-07-16 Intuitive Surgical Operations, Inc. Quantitative three-dimensional imaging and printing of surgical implants
JP6323184B2 (ja) * 2014-06-04 2018-05-16 ソニー株式会社 画像処理装置、画像処理方法、並びにプログラム
JP2017099616A (ja) * 2015-12-01 2017-06-08 ソニー株式会社 手術用制御装置、手術用制御方法、およびプログラム、並びに手術システム
WO2017096455A1 (en) 2015-12-09 2017-06-15 Titan Medical Inc. Stereoscopic imaging sensor apparatus and method for fabricating pairs of image sensors used in stereoscopic imaging
WO2018046092A1 (de) * 2016-09-09 2018-03-15 Siemens Aktiengesellschaft Verfahren zum betreiben eines endoskops und endoskop
US10222607B2 (en) * 2016-12-14 2019-03-05 Canon U.S.A., Inc. Three-dimensional endoscope
WO2019006028A1 (en) * 2017-06-28 2019-01-03 Intuitive Surgical Operations, Inc. SYSTEMS AND METHODS FOR PROJECTING AN ENDOSCOPIC IMAGE ON A THREE-DIMENSIONAL VOLUME
US10058396B1 (en) * 2018-04-24 2018-08-28 Titan Medical Inc. System and apparatus for insertion of an instrument into a body cavity for performing a surgical procedure
CN109008909B (zh) * 2018-07-13 2024-01-26 宜宾学院 一种低功耗胶囊内窥镜图像采集及三维重建系统
WO2020060750A1 (en) 2018-09-17 2020-03-26 Auris Health, Inc. Systems and methods for concomitant medical procedures
CN109288591B (zh) * 2018-12-07 2021-12-03 上海微创医疗机器人(集团)股份有限公司 手术机器人系统
US11832996B2 (en) 2019-12-30 2023-12-05 Cilag Gmbh International Analyzing surgical trends by a surgical system
US11759283B2 (en) 2019-12-30 2023-09-19 Cilag Gmbh International Surgical systems for generating three dimensional constructs of anatomical organs and coupling identified anatomical structures thereto
US11284963B2 (en) 2019-12-30 2022-03-29 Cilag Gmbh International Method of using imaging devices in surgery
US11744667B2 (en) 2019-12-30 2023-09-05 Cilag Gmbh International Adaptive visualization by a surgical system
US11896442B2 (en) 2019-12-30 2024-02-13 Cilag Gmbh International Surgical systems for proposing and corroborating organ portion removals
US11776144B2 (en) 2019-12-30 2023-10-03 Cilag Gmbh International System and method for determining, adjusting, and managing resection margin about a subject tissue
US11102381B1 (en) 2021-01-05 2021-08-24 Board Of Regents, The University Of Texas System Clearcam Inc. Methods, systems and controllers for facilitating cleaning of an imaging element of an imaging device
US11812938B2 (en) 2021-03-31 2023-11-14 Moon Surgical Sas Co-manipulation surgical system having a coupling mechanism removeably attachable to surgical instruments
US11844583B2 (en) 2021-03-31 2023-12-19 Moon Surgical Sas Co-manipulation surgical system having an instrument centering mode for automatic scope movements
US11832909B2 (en) 2021-03-31 2023-12-05 Moon Surgical Sas Co-manipulation surgical system having actuatable setup joints
US11819302B2 (en) 2021-03-31 2023-11-21 Moon Surgical Sas Co-manipulation surgical system having user guided stage control
EP4312857A1 (en) 2021-03-31 2024-02-07 Moon Surgical SAS Co-manipulation surgical system for use with surgical instruments for performing laparoscopic surgery
US11986165B1 (en) 2023-01-09 2024-05-21 Moon Surgical Sas Co-manipulation surgical system for use with surgical instruments for performing laparoscopic surgery while estimating hold force
US11839442B1 (en) 2023-01-09 2023-12-12 Moon Surgical Sas Co-manipulation surgical system for use with surgical instruments for performing laparoscopic surgery while estimating hold force
CN116086359B (zh) * 2023-04-07 2023-07-07 杭州键嘉医疗科技股份有限公司 一种手术器械追踪阵列的误差测量装置及方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013073061A1 (ja) * 2011-11-15 2013-05-23 Suzuki Naoki 撮影装置及び撮影システム
US20130197357A1 (en) * 2012-01-30 2013-08-01 Inneroptic Technology, Inc Multiple medical device guidance

Family Cites Families (156)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04176429A (ja) 1990-11-09 1992-06-24 Olympus Optical Co Ltd 内視鏡
JP3217386B2 (ja) 1991-04-24 2001-10-09 オリンパス光学工業株式会社 診断システム
US5417210A (en) 1992-05-27 1995-05-23 International Business Machines Corporation System and method for augmentation of endoscopic surgery
US5603318A (en) * 1992-04-21 1997-02-18 University Of Utah Research Foundation Apparatus and method for photogrammetric surgical localization
AT399647B (de) 1992-07-31 1995-06-26 Truppe Michael Anordnung zur darstellung des inneren von körpern
JPH06160087A (ja) 1992-11-20 1994-06-07 Matsushita Electric Ind Co Ltd 画像を用いた距離測定方法及びその装置
US5860934A (en) 1992-12-21 1999-01-19 Artann Corporation Method and device for mechanical imaging of breast
JPH07240945A (ja) 1994-02-25 1995-09-12 Matsushita Electric Ind Co Ltd 仮想空間生成提示装置
JP3599854B2 (ja) * 1995-10-09 2004-12-08 オリンパス株式会社 医療用顔面装着型映像表示装置
JP3856406B2 (ja) * 1997-02-27 2006-12-13 株式会社東芝 画像処理装置
US6346940B1 (en) * 1997-02-27 2002-02-12 Kabushiki Kaisha Toshiba Virtualized endoscope system
JPH11309A (ja) 1997-06-12 1999-01-06 Hitachi Ltd 画像処理装置
JP2958458B1 (ja) 1998-08-26 1999-10-06 防衛庁技術研究本部長 多眼画像センサ
US6659939B2 (en) 1998-11-20 2003-12-09 Intuitive Surgical, Inc. Cooperative minimally invasive telesurgical system
US6522906B1 (en) 1998-12-08 2003-02-18 Intuitive Surgical, Inc. Devices and methods for presenting and regulating auxiliary information on an image display of a telesurgical system to assist an operator in performing a surgical procedure
US7343195B2 (en) 1999-05-18 2008-03-11 Mediguide Ltd. Method and apparatus for real time quantitative three-dimensional image reconstruction of a moving organ and intra-body navigation
US6503195B1 (en) 1999-05-24 2003-01-07 University Of North Carolina At Chapel Hill Methods and systems for real-time structured light depth extraction and endoscope using real-time structured light depth extraction
US6517478B2 (en) 2000-03-30 2003-02-11 Cbyon, Inc. Apparatus and method for calibrating an endoscope
US6468203B2 (en) * 2000-04-03 2002-10-22 Neoguide Systems, Inc. Steerable endoscope and improved method of insertion
JP2002024807A (ja) 2000-07-07 2002-01-25 National Institute Of Advanced Industrial & Technology 物体運動追跡手法及び記録媒体
JP4451968B2 (ja) 2000-07-11 2010-04-14 Hoya株式会社 3次元画像入力装置
US6650927B1 (en) 2000-08-18 2003-11-18 Biosense, Inc. Rendering of diagnostic imaging data on a three-dimensional map
JP2002171537A (ja) 2000-11-30 2002-06-14 Canon Inc 複眼撮像系、撮像装置および電子機器
DE10138537B4 (de) 2001-08-06 2006-07-06 Siemens Ag Taktiles Feedback zur Darstellung von Gewebeelastizität
US8175680B2 (en) 2001-11-09 2012-05-08 Boston Scientific Scimed, Inc. Systems and methods for guiding catheters using registered images
JP3751568B2 (ja) 2002-02-21 2006-03-01 株式会社サタケ 内視鏡における空気噴流診断装置
US9155544B2 (en) * 2002-03-20 2015-10-13 P Tech, Llc Robotic systems and methods
JP3927487B2 (ja) 2002-12-02 2007-06-06 株式会社大野興業 人工骨モデルの製造方法
CN1771740A (zh) * 2003-01-24 2006-05-10 米科伊公司 立体全景图像捕捉装置
FR2855292B1 (fr) 2003-05-22 2005-12-09 Inst Nat Rech Inf Automat Dispositif et procede de recalage en temps reel de motifs sur des images, notamment pour le guidage par localisation
JP4414682B2 (ja) 2003-06-06 2010-02-10 オリンパス株式会社 超音波内視鏡装置
DE10340546B4 (de) 2003-09-01 2006-04-20 Siemens Ag Verfahren und Vorrichtung zur visuellen Unterstützung einer elektrophysiologischen Katheteranwendung im Herzen
JP2005087468A (ja) 2003-09-17 2005-04-07 Shoji Kawahito 距離画像計測機能を有する撮像装置及び内視鏡装置
JP4229791B2 (ja) 2003-09-19 2009-02-25 真 金子 内視鏡装置
US7746377B2 (en) 2003-11-28 2010-06-29 Topcon Corporation Three-dimensional image display apparatus and method
EP1691666B1 (en) 2003-12-12 2012-05-30 University of Washington Catheterscope 3d guidance and interface system
DE102004008164B3 (de) 2004-02-11 2005-10-13 Karl Storz Gmbh & Co. Kg Verfahren und Vorrichtung zum Erstellen zumindest eines Ausschnitts eines virtuellen 3D-Modells eines Körperinnenraums
US7289106B2 (en) 2004-04-01 2007-10-30 Immersion Medical, Inc. Methods and apparatus for palpation simulation
US20050254720A1 (en) 2004-05-17 2005-11-17 Kar-Han Tan Enhanced surgical visualizations with multi-flash imaging
JP2006109939A (ja) 2004-10-12 2006-04-27 Chinontec Kk 内視鏡装置
EP1832223B1 (en) 2004-12-27 2017-10-25 Olympus Corporation Medical image processing apparatus, and medical image processing method
US20100312129A1 (en) 2005-01-26 2010-12-09 Schecter Stuart O Cardiovascular haptic handle system
WO2006080076A1 (ja) 2005-01-28 2006-08-03 Saga University 三次元画像検出装置
JP2006305332A (ja) 2005-03-28 2006-11-09 Hiroshima Industrial Promotion Organization 画像処理装置およびそれを用いた内視鏡
US7752920B2 (en) 2005-12-30 2010-07-13 Intuitive Surgical Operations, Inc. Modular force sensor
KR101352360B1 (ko) 2005-04-27 2014-01-15 오브듀캇 아베 물체에 패턴을 전사하기 위한 수단
US8108072B2 (en) 2007-09-30 2012-01-31 Intuitive Surgical Operations, Inc. Methods and systems for robotic instrument tool tracking with adaptive fusion of kinematics information and image information
US9789608B2 (en) 2006-06-29 2017-10-17 Intuitive Surgical Operations, Inc. Synthetic representation of a surgical robot
US9492240B2 (en) 2009-06-16 2016-11-15 Intuitive Surgical Operations, Inc. Virtual measurement tool for minimally invasive surgery
US8073528B2 (en) 2007-09-30 2011-12-06 Intuitive Surgical Operations, Inc. Tool tracking systems, methods and computer products for image guided surgery
US9289267B2 (en) 2005-06-14 2016-03-22 Siemens Medical Solutions Usa, Inc. Method and apparatus for minimally invasive surgery using endoscopes
EP1924197B1 (en) 2005-08-24 2017-10-11 Philips Electronics LTD System for navigated flexible endoscopy
EP1931237A2 (en) * 2005-09-14 2008-06-18 Neoguide Systems, Inc. Methods and apparatus for performing transluminal and other procedures
US8079950B2 (en) * 2005-09-29 2011-12-20 Intuitive Surgical Operations, Inc. Autofocus and/or autoscaling in telesurgery
EP3162318B1 (en) 2005-10-20 2019-10-16 Intuitive Surgical Operations, Inc. Auxiliary image display and manipulation on a computer display in a medical robotic system
US7907166B2 (en) 2005-12-30 2011-03-15 Intuitive Surgical Operations, Inc. Stereo telestration for robotic surgery
DE102006002001B4 (de) 2006-01-16 2009-07-23 Sensomotoric Instruments Gmbh Verfahren zur Bestimmung der räumlichen Relation eines Auges einer Person bezüglich einer Kameravorrichtung
IL181470A (en) 2006-02-24 2012-04-30 Visionsense Ltd Method and system for navigation within a flexible organ in the human body
US20070236514A1 (en) 2006-03-29 2007-10-11 Bracco Imaging Spa Methods and Apparatuses for Stereoscopic Image Guided Surgical Navigation
WO2007139949A2 (en) 2006-05-25 2007-12-06 Spinemedica Corporation Patient-specific spinal implants and related systems and methods
US9718190B2 (en) 2006-06-29 2017-08-01 Intuitive Surgical Operations, Inc. Tool position and identification indicator displayed in a boundary area of a computer display screen
GB0613576D0 (en) * 2006-07-10 2006-08-16 Leuven K U Res & Dev Endoscopic vision system
US7728868B2 (en) 2006-08-02 2010-06-01 Inneroptic Technology, Inc. System and method of providing real-time dynamic imagery of a medical procedure site using multiple modalities
US20080058593A1 (en) 2006-08-21 2008-03-06 Sti Medical Systems, Llc Computer aided diagnosis using video from endoscopes
US7824328B2 (en) 2006-09-18 2010-11-02 Stryker Corporation Method and apparatus for tracking a surgical instrument during surgery
US8496575B2 (en) 2006-11-14 2013-07-30 Olympus Corporation Measuring endoscope apparatus, program and recording medium
EP2082351A2 (en) 2006-11-17 2009-07-29 Mark A. Salada Haptic interface device and method for using such
US20100149183A1 (en) 2006-12-15 2010-06-17 Loewke Kevin E Image mosaicing systems and methods
ATE493082T1 (de) 2006-12-15 2011-01-15 Ao Technology Ag Vorrichtung für die computergestützte distale arretierung von marknägeln
US8672836B2 (en) 2007-01-31 2014-03-18 The Penn State Research Foundation Method and apparatus for continuous guidance of endoscopy
EP1952752B2 (de) 2007-01-31 2019-10-16 Richard Wolf GmbH Endoskopsystem
JP2010532681A (ja) * 2007-06-29 2010-10-14 スリーエム イノベイティブ プロパティズ カンパニー 歯科用モデルのための、ビデオ補助境界マーキング
US20090076476A1 (en) 2007-08-15 2009-03-19 Hansen Medical, Inc. Systems and methods employing force sensing for mapping intra-body tissue
FR2920085B1 (fr) 2007-08-24 2012-06-15 Univ Grenoble 1 Systeme d'imagerie pour l'observation tridimensionnelle d'un champ operatoire
US20090133260A1 (en) 2007-11-26 2009-05-28 Ios Technologies, Inc 3D dental shade matching and apparatus
US20100111389A1 (en) * 2007-12-06 2010-05-06 Siemens Medical Solutions Usa, Inc. System and method for planning and guiding percutaneous procedures
US20090157059A1 (en) 2007-12-14 2009-06-18 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Surgical instrument navigation system
JP2009204991A (ja) 2008-02-28 2009-09-10 Funai Electric Co Ltd 複眼撮像装置
US20090221908A1 (en) 2008-03-01 2009-09-03 Neil David Glossop System and Method for Alignment of Instrumentation in Image-Guided Intervention
DE102008018636B4 (de) 2008-04-11 2011-01-05 Storz Endoskop Produktions Gmbh Vorrichtung und Verfahren zur endoskopischen 3D-Datenerfassung
US8866920B2 (en) 2008-05-20 2014-10-21 Pelican Imaging Corporation Capturing and processing of images using monolithic camera array with heterogeneous imagers
WO2009151903A2 (en) 2008-05-20 2009-12-17 Pelican Imaging Corporation Capturing and processing of images using monolithic camera array with hetergeneous imagers
US8636653B2 (en) 2008-06-09 2014-01-28 Capso Vision, Inc. In vivo camera with multiple sources to illuminate tissue at different distances
EP2145575A1 (en) 2008-07-17 2010-01-20 Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO A system, a method and a computer program for inspection of a three-dimensional environment by a user
US8334900B2 (en) * 2008-07-21 2012-12-18 The Hong Kong University Of Science And Technology Apparatus and method of optical imaging for medical diagnosis
JP5435916B2 (ja) 2008-09-18 2014-03-05 富士フイルム株式会社 電子内視鏡システム
JP4702569B2 (ja) 2008-09-30 2011-06-15 マツダ株式会社 車両用画像処理装置
EP2348954A1 (en) 2008-10-20 2011-08-03 Koninklijke Philips Electronics N.V. Image-based localization method and system
US8594841B2 (en) 2008-12-31 2013-11-26 Intuitive Surgical Operations, Inc. Visual force feedback in a minimally invasive surgical procedure
US9978288B2 (en) 2009-02-13 2018-05-22 University Of Florida Research Foundation, Inc. Communication and skills training using interactive virtual humans
US8690776B2 (en) 2009-02-17 2014-04-08 Inneroptic Technology, Inc. Systems, methods, apparatuses, and computer-readable media for image guided surgery
US9017334B2 (en) 2009-02-24 2015-04-28 Microport Orthopedics Holdings Inc. Patient specific surgical guide locator and mount
US10004387B2 (en) 2009-03-26 2018-06-26 Intuitive Surgical Operations, Inc. Method and system for assisting an operator in endoscopic navigation
WO2010118117A1 (en) 2009-04-07 2010-10-14 Regents Of The University Of Minnesota Sensing tissue properties
WO2010122145A1 (en) 2009-04-25 2010-10-28 Siemens Aktiengesellschaft A method and a system for assessing the relative pose of an implant and a bone of a creature
WO2010130056A1 (en) 2009-05-14 2010-11-18 University Health Network Quantitative endoscopy
WO2010140074A1 (en) 2009-06-01 2010-12-09 Koninklijke Philips Electronics N.V. Distance-based position tracking method and system
WO2010144402A2 (en) 2009-06-08 2010-12-16 Surgivision, Inc. Mri-guided surgical systems with preset scan planes
US8396532B2 (en) 2009-06-16 2013-03-12 MRI Interventions, Inc. MRI-guided devices and MRI-guided interventional systems that can track and generate dynamic visualizations of the devices in near real time
US10026016B2 (en) 2009-06-26 2018-07-17 Regents Of The University Of Minnesota Tracking and representation of multi-dimensional organs
ES2353099B1 (es) 2009-07-30 2012-01-02 Fundacion Para Progreso Soft Computing Método y sistema de identificación forense por superposición craneofacial basado en soft computing.
JP5094930B2 (ja) 2009-08-10 2012-12-12 韓國電子通信研究院 イメージに触覚情報を符号化する方法、イメージから触覚情報を復号化する方法、およびこのための触覚情報処理装置
WO2011063347A2 (en) 2009-11-20 2011-05-26 Pelican Imaging Corporation Capturing and processing of images using monolithic camera array with heterogeneous imagers
US11699247B2 (en) 2009-12-24 2023-07-11 Cognex Corporation System and method for runtime determination of camera miscalibration
US9436280B2 (en) 2010-01-07 2016-09-06 Qualcomm Incorporated Simulation of three-dimensional touch sensation using haptics
CN102711650B (zh) 2010-01-13 2015-04-01 皇家飞利浦电子股份有限公司 用于内窥镜手术的基于图像整合的配准和导航
US20120316392A1 (en) 2010-02-01 2012-12-13 Itoua Seraphin Nicaise Spherical capsule video endoscopy
DE102010006741A1 (de) * 2010-02-03 2011-08-04 Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054 Verfahren zum Verarbeiten eines Endoskopiebildes
JP5421828B2 (ja) 2010-03-17 2014-02-19 富士フイルム株式会社 内視鏡観察支援システム、並びに、内視鏡観察支援装置、その作動方法およびプログラム
JP2011200515A (ja) 2010-03-26 2011-10-13 Hoya Corp 触覚センサを備える電子内視鏡及び電子内視鏡システム
JP5432793B2 (ja) 2010-03-29 2014-03-05 オリンパス株式会社 蛍光内視鏡装置
MX337815B (es) 2010-06-11 2016-03-18 Ethicon Llc Herramientas para dispensar suturas para cirugía endoscópica y asistida por robot y métodos.
KR20130108320A (ko) 2010-09-10 2013-10-02 더 존스 홉킨스 유니버시티 관련 애플리케이션들에 대한 일치화된 피하 해부구조 참조의 시각화
WO2012035492A1 (en) 2010-09-15 2012-03-22 Koninklijke Philips Electronics N.V. Robotic control of an endoscope from blood vessel tree images
DE102010050227A1 (de) 2010-11-04 2012-05-10 Siemens Aktiengesellschaft Endoskop mit 3D-Funktionalität
CN103596521B (zh) 2011-04-07 2016-08-31 3形状股份有限公司 用于引导对象的3d系统和方法
US20120265062A1 (en) 2011-04-13 2012-10-18 St. Jude Medical, Inc. Optical coherence tomography catheter for elastographic property mapping of lumens utilizing micropalpation
US8952312B2 (en) 2011-05-12 2015-02-10 Olive Medical Corporation Image sensor for endoscopic use
US8900131B2 (en) 2011-05-13 2014-12-02 Intuitive Surgical Operations, Inc. Medical system providing dynamic registration of a model of an anatomical structure for image-guided surgery
JP5830270B2 (ja) 2011-05-24 2015-12-09 オリンパス株式会社 内視鏡装置および計測方法
KR20130015146A (ko) 2011-08-02 2013-02-13 삼성전자주식회사 의료 영상 처리 방법 및 장치, 영상 유도를 이용한 로봇 수술 시스템
US8784301B2 (en) 2011-08-12 2014-07-22 Intuitive Surgical Operations, Inc. Image capture unit and method with an extended depth of field
US10866783B2 (en) 2011-08-21 2020-12-15 Transenterix Europe S.A.R.L. Vocally activated surgical control system
US10092164B2 (en) 2011-08-21 2018-10-09 M.S.T. Medical Surgery Technologies Ltd Device and method for assisting laparoscopic surgery—rule based approach
US10052157B2 (en) 2011-08-21 2018-08-21 M.S.T. Medical Surgery Technologies Ltd Device and method for assisting laparoscopic surgery—rule based approach
US9204939B2 (en) 2011-08-21 2015-12-08 M.S.T. Medical Surgery Technologies Ltd. Device and method for assisting laparoscopic surgery—rule based approach
WO2013038403A2 (en) 2011-09-13 2013-03-21 Visionsense Ltd. Proximal high definition endoscope
DE102011119608B4 (de) 2011-11-29 2021-07-29 Karl Storz Se & Co. Kg Vorrichtung und Verfahren zur endoskopischen 3D-Datenerfassung
US20150011894A1 (en) 2011-12-19 2015-01-08 The Regents Of The University Of California System for and method of quantifying on-body palpitation for improved medical diagnosis
WO2013095830A1 (en) 2011-12-22 2013-06-27 Mimedx Group Inc. Cross-linked dehydrated placental tissue grafts and methods for making and using the same
JP5918548B2 (ja) * 2012-01-24 2016-05-18 富士フイルム株式会社 内視鏡画像診断支援装置およびその作動方法並びに内視鏡画像診断支援プログラム
US20130211244A1 (en) 2012-01-25 2013-08-15 Surgix Ltd. Methods, Devices, Systems, Circuits and Associated Computer Executable Code for Detecting and Predicting the Position, Orientation and Trajectory of Surgical Tools
US9092996B2 (en) 2012-03-01 2015-07-28 Simquest Llc Microsurgery simulator
US10758209B2 (en) 2012-03-09 2020-09-01 The Johns Hopkins University Photoacoustic tracking and registration in interventional ultrasound
US20130250081A1 (en) * 2012-03-21 2013-09-26 Covidien Lp System and method for determining camera angles by using virtual planes derived from actual images
EP2845184A1 (en) 2012-04-23 2015-03-11 Yissum Research Development Company of the Hebrew University of Jerusalem Ltd. Device for rehabilitating brain mechanism of visual perception using complementary sensual stimulations
EP2844159B1 (en) 2012-05-03 2017-10-11 Synthes GmbH Surgical guide with cut resistant inserts
US10013082B2 (en) 2012-06-05 2018-07-03 Stuart Schecter, LLC Operating system with haptic interface for minimally invasive, hand-held surgical instrument
US9220570B2 (en) 2012-06-29 2015-12-29 Children's National Medical Center Automated surgical and interventional procedures
JP5745178B2 (ja) 2012-06-29 2015-07-08 富士フイルム株式会社 3次元測定方法、装置及びシステム、並びに画像処理装置
CN104582559B (zh) * 2013-03-06 2016-10-12 奥林巴斯株式会社 内窥镜系统和内窥镜系统的工作方法
WO2014160510A2 (en) 2013-03-13 2014-10-02 Massachusetts Institute Of Technology Photometric stereo endoscopy
US9456752B2 (en) * 2013-03-14 2016-10-04 Aperture Diagnostics Ltd. Full-field three-dimensional surface measurement
CN103269430A (zh) 2013-04-16 2013-08-28 上海上安机电设计事务所有限公司 基于bim的三维场景生成方法
US20150062299A1 (en) 2013-08-30 2015-03-05 The Regents Of The University Of California Quantitative 3d-endoscopy using stereo cmos-camera pairs
US10022914B2 (en) 2013-11-12 2018-07-17 Adobe Systems Incorporated Method and apparatus for automatically adding utility holes to printable 3-dimensional models
JP6644466B2 (ja) 2013-12-31 2020-02-12 イマージョン コーポレーションImmersion Corporation 触覚通知を提供するシステム及び方法
CA2936453A1 (en) 2014-01-09 2015-07-16 Axiosonic, Llc Systems and methods using ultrasound for treatment
US10130329B2 (en) 2014-01-28 2018-11-20 General Electric Company Distinct needle display in ultrasonic image
KR102237597B1 (ko) 2014-02-18 2021-04-07 삼성전자주식회사 수술 로봇용 마스터 장치 및 그 제어 방법
US9197885B2 (en) * 2014-03-20 2015-11-24 Gopro, Inc. Target-less auto-alignment of image sensors in a multi-camera system
KR20160138502A (ko) 2014-03-28 2016-12-05 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 정량적인 3차원 모델의 3차원 영상과의 정렬
US10555788B2 (en) 2014-03-28 2020-02-11 Intuitive Surgical Operations, Inc. Surgical system with haptic feedback based upon quantitative three-dimensional imaging
CN111184577A (zh) 2014-03-28 2020-05-22 直观外科手术操作公司 器械在视野中的定量三维可视化
US10350009B2 (en) 2014-03-28 2019-07-16 Intuitive Surgical Operations, Inc. Quantitative three-dimensional imaging and printing of surgical implants
KR102397254B1 (ko) 2014-03-28 2022-05-12 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 수술 장면의 정량적인 3차원 영상

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013073061A1 (ja) * 2011-11-15 2013-05-23 Suzuki Naoki 撮影装置及び撮影システム
US20130197357A1 (en) * 2012-01-30 2013-08-01 Inneroptic Technology, Inc Multiple medical device guidance

Also Published As

Publication number Publication date
EP3125807A4 (en) 2017-11-15
CN106535806A (zh) 2017-03-22
EP3125807B1 (en) 2022-05-04
JP2017518148A (ja) 2017-07-06
CN106535806B (zh) 2019-06-18
WO2015149046A1 (en) 2015-10-01
KR20160139017A (ko) 2016-12-06
US10334227B2 (en) 2019-06-25
US20170180704A1 (en) 2017-06-22
JP6609616B2 (ja) 2019-11-20
EP3125807A1 (en) 2017-02-08

Similar Documents

Publication Publication Date Title
KR102373714B1 (ko) 멀티포트 투시에 의한 수술 장면의 정량적 3차원 영상화
JP7321916B2 (ja) 手術シーンの定量的三次元撮像
US20220241013A1 (en) Quantitative three-dimensional visualization of instruments in a field of view
EP3122232B1 (en) Alignment of q3d models with 3d images
US11304771B2 (en) Surgical system with haptic feedback based upon quantitative three-dimensional imaging

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant