KR102229764B1 - Method and apparatus for rapid monitoring of unederwater microplastics based on fluorescence tagging and multifunctional photometry - Google Patents

Method and apparatus for rapid monitoring of unederwater microplastics based on fluorescence tagging and multifunctional photometry Download PDF

Info

Publication number
KR102229764B1
KR102229764B1 KR1020200136815A KR20200136815A KR102229764B1 KR 102229764 B1 KR102229764 B1 KR 102229764B1 KR 1020200136815 A KR1020200136815 A KR 1020200136815A KR 20200136815 A KR20200136815 A KR 20200136815A KR 102229764 B1 KR102229764 B1 KR 102229764B1
Authority
KR
South Korea
Prior art keywords
particles
fluorescence
microplastics
microplastic
sample
Prior art date
Application number
KR1020200136815A
Other languages
Korean (ko)
Inventor
이근헌
우화제
이종관
윤영기
Original Assignee
(주)휴마스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)휴마스 filed Critical (주)휴마스
Priority to KR1020200136815A priority Critical patent/KR102229764B1/en
Application granted granted Critical
Publication of KR102229764B1 publication Critical patent/KR102229764B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0205Investigating particle size or size distribution by optical means, e.g. by light scattering, diffraction, holography or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/38Diluting, dispersing or mixing samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/44Resins; rubber; leather
    • G01N33/442Resins, plastics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/10Devices for withdrawing samples in the liquid or fluent state
    • G01N2001/1031Sampling from special places
    • G01N2001/1043Sampling from special places from sewers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N2015/0283Investigating particle size or size distribution using control of suspension concentration

Abstract

The present invention is to provide a method and an apparatus for rapidly distinguishing and quantifying inorganic particles and microplastic particles using inexpensive equipment. The present invention relates to a method and an apparatus for rapidly monitoring underwater microplastics based on fluorescence tagging and multifunctional photometry, wherein the method includes: a step of metering a sample and adding ethanol; a step of performing microplastic dyeing by thermal reaction after adding a dye to the ethanol-added and metered sample; a step of causing the dyed sample to flow into a composite optical system; a step of measuring transmission light, scattering light, and fluorescence at the same time; a step of performing particle counting and size determination using the measured transmission light and scattering light; and a step of determining whether the counted particles are microplastics or inorganic particles using the measured fluorescence.

Description

형광표지 및 복합광계측 기반 수중 미세플라스틱 신속 모니터링 방법 및 장치{METHOD AND APPARATUS FOR RAPID MONITORING OF UNEDERWATER MICROPLASTICS BASED ON FLUORESCENCE TAGGING AND MULTIFUNCTIONAL PHOTOMETRY}A method and apparatus for rapid monitoring of underwater microplastics based on fluorescent labels and complex optical measurement {METHOD AND APPARATUS FOR RAPID MONITORING OF UNEDERWATER MICROPLASTICS BASED ON FLUORESCENCE TAGGING AND MULTIFUNCTIONAL PHOTOMETRY}

본 발명은 형광 염색에 의한 형광표지 및 복합광계측을 이용하여 하천수, 호소수, 하폐수의 방류수 등에 함유되어 있는 미세플라스틱의 개수를 계수하고 미세플라스틱의 크기 및 분포를 측정하는 수중 미세플라스틱 분석방법 및 장치에 관한 것이다. The present invention is an underwater microplastic analysis method and apparatus for counting the number of microplastics contained in river water, lake water, effluent water of sewage, etc., and measuring the size and distribution of microplastics using a fluorescent label by fluorescent dyeing and complex photometric measurement. It is about.

최근 국내외적으로 미세플라스틱의 폐해가 큰 이슈가 되고 있으며 미세플라스틱의 사용 저감, 사용중지 및 모니터링에 대한 노력이 집중되고 있다. 미세플라스틱은 5mm이하의 플라스틱으로 정의되나 일반적으로 하수 방류수, 하천수, 호소수 등에 존재하는 미세플라스틱 크기는 대부분 100~300㎛ 정도로인 것으로 알려져 있다. 향후 적용성 및 다양성을 고려할 때 10~800㎛ 범위의 미세플라스틱을 모니터링할 수 있는 방법이 확보되어야 할 것으로 생각된다.Recently, the damage of microplastics has become a big issue both domestically and internationally, and efforts are being focused on reducing the use of microplastics, stopping their use, and monitoring them. Microplastics are defined as plastics of less than 5mm, but generally, the size of microplastics present in sewage effluent, river water, lake water, etc. is known to be about 100 to 300㎛. Considering the applicability and diversity in the future, it is thought that a method to monitor microplastics in the range of 10 to 800㎛ should be secured.

현재 이용되고 있는 미세플라스틱 분석기술은 대부분 전처리후 현미경으로 관찰하여 계수하고, 성분분석으로 미세플라스틱인지 확인하는 분석법을 활용하고 있다. 성분분석에는 FT-IR이 주로 이용되고 있으나 보다 작은 입자를 분석하기 위하여 최근 Raman spectroscopy도 이용되고 있다. 이러한 분석법은 분석에 소요되는 시간도 매우 길며, 분석기의 가격도 매우 고가여서 분석법 확대가 어려운 편이다.Most of the microplastic analysis technology currently used uses an analysis method that counts by observing with a microscope after pretreatment, and confirms whether it is microplastic by component analysis. FT-IR is mainly used for component analysis, but recently Raman spectroscopy is also used to analyze smaller particles. This analysis method takes a very long time for analysis, and because the price of the analysis method is very expensive, it is difficult to expand the analysis method.

대한민국 등록특허 10-2094373 (미세플라스틱 검출장치)는 펄스광을 이용하여 광원과 일직선상에 검출기를 위치시킨 광학계를 구성하였으며 별도의 전처리 없이 미세플라스틱에서 발생하는 형광을 측정하는 것으로 설명하고 있으나 실제 미세플라스틱의 주종인 PE, PP, PS, 아크릴수지 등은 빛을 조사하여도 재료 자체에서 형광이 발생하지 않아 형광증백제가 함유되지 않은 미세플라스틱은 검출하기 어려운 단점이 있다. 또한 이 방법의 경우 미세플라스틱의 크기 및 분포를 알기 어려운 단점이 있다.Korean Patent Registration 10-2094373 (microplastic detection device) constructed an optical system in which a detector is positioned in a straight line with a light source using pulsed light, and it is described as measuring fluorescence generated from microplastic without separate pretreatment. PE, PP, PS, acrylic resins, which are the main types of plastics, do not generate fluorescence in the material itself even when irradiated with light, so it is difficult to detect microplastics that do not contain an optical brightener. In addition, this method has a disadvantage that it is difficult to know the size and distribution of microplastics.

대한민국 등록특허 10-2135690에서는 방류구 주변의 수질을 모니터링 하는 시스템을 고안하였다. 그중 미세플라스틱을 분석할 수 있는 장치를 구성하였는데 이미지 촬영부와 FT-IR분석부로 구성된다. 전술하였듯이 이와 같은 이미지 분석 및 성분분석으로 구성된 장치의 경우 신속 분석이 어려우며 매우 고가인 단점이 있다. In Korean Patent Registration No. 10-2135690, a system for monitoring the water quality around the outlet was devised. Among them, a device that can analyze microplastics is constructed, which consists of an image capture unit and an FT-IR analysis unit. As described above, in the case of a device composed of such image analysis and component analysis, it is difficult to quickly analyze and has a disadvantage of being very expensive.

대한민국 공개특허 10-2020-0097087의 경우 UV LED를 장착한 미세플라스틱 검출기를 고안하여 음식에 함유된 미세플라스틱을 검출하고자 하였으나 앞에서 설명하였듯이 형광증백제가 함유되지 않은 미세플라스틱의 검출은 어려운 단점이 있다. In the case of Korean Patent Application Laid-Open No. 10-2020-0097087, a microplastic detector equipped with a UV LED was designed to detect microplastics contained in food, but as described above, it is difficult to detect microplastics without a fluorescent whitening agent. .

수질 시료중에 함유된 입자를 계수하는 기술은 주로 정수장, 반도체 용수관리, 제약용수관리 등에 활용되고 있으며 시료의 산란광이나 투과광을 측정하여 입자크기 및 분포를 분석하는 기술이다. 일반적으로 입자가 큰 경우 투과광을 이용하며 입자가 작은 경우 산랑광을 이용하는 것이 보통이다. 산란광 및 투과광을 이용하여 입자를 계수하는 기본원리는 매우 오래된 것으로 정밀성을 높이기 위한 각자의 기술을 가지고 제품을 개발하여 판매하고 있다. 현재 RION사, PAMAS, Malvern, Chemtrac사 등이 입자계수기를 제조하여 판매하고 있다. 이러한 입자계수기를 단순하게 이용하여 미세플라스틱을 분석할 경우 하천수, 호소수, 하폐수의 방류수에 함유되어 있는 무기성 입자도 계수되어 미세플라스틱의 분석에는 이용하기 어렵다. The technology to count particles contained in water quality samples is mainly used in water purification plants, semiconductor water management, pharmaceutical water management, etc. It is a technology that analyzes the particle size and distribution by measuring the scattered or transmitted light of the sample. In general, when the particles are large, transmitted light is used, and when the particles are small, it is common to use scattered light. The basic principle of counting particles using scattered light and transmitted light is very old, and products are developed and sold with their own technology to increase precision. Currently, RION, PAMAS, Malvern, Chemtrac, etc. manufacture and sell particle counters. When analyzing microplastics by simply using such a particle counter, inorganic particles contained in river water, lake water, and effluent water are also counted, making it difficult to use for analysis of microplastics.

최근 미세플라스틱을 형광염료로 염색한 후 광학현미경으로 분석하고자 하는 연구가 활발하다[Karakolis, E.G.; Nguyen, B.; You, J.B.; Rochman, C.M.; Sinton, D.; Fluorescent dyes for visualizing microplastic particles and fibers in laboratory-based studies. Environmental Science and Technology Letters 2019, 6(6), 334-340.]. 이 분석법의 경우 경제성이 높을 것으로 생각되나 신속분석은 어려울 것으로 판단되며 또한 육안으로 계수하므로 사용상의 제약이 있다.Recently, researches to analyze microplastics with fluorescent dyes and then analyze them with an optical microscope are active [Karakolis, E.G.; Nguyen, B.; You, J.B.; Rochman, C.M.; Sinton, D.; Fluorescent dyes for visualizing microplastic particles and fibers in laboratory-based studies. Environmental Science and Technology Letters 2019, 6(6), 334-340.]. In the case of this analysis method, it is thought that the economic feasibility is high, but it is judged that rapid analysis is difficult, and there are restrictions on use because it is counted with the naked eye.

특허문헌 1 : 대한민국 등록특허공보 10-2135690호Patent Document 1: Korean Registered Patent Publication No. 10-2135690 특허문헌 2 : 대한민국 공개특허공보 10-2020-0097087호Patent Document 2: Korean Patent Application Publication No. 10-2020-0097087

비특허문헌 1 : Karakolis, E.G.; Nguyen, B.; You, J.B.; Rochman, C.M.; Sinton, D.; Fluorescent dyes for visualizing microplastic particles and fibers in laboratory-based studies. Environmental Science and Technology Letters 2019, 6(6), 334-340.Non-Patent Document 1: Karakolis, E.G.; Nguyen, B.; You, J.B.; Rochman, C.M.; Sinton, D.; Fluorescent dyes for visualizing microplastic particles and fibers in laboratory-based studies. Environmental Science and Technology Letters 2019, 6(6), 334-340.

본 발명은 상기와 같은 종래기술의 문제점을 해결하기 위하여 발명된 형광표지 및 복합광계측 기반 수중 미세플라스틱 신속 모니터링 방법 및 그 장치에 관한 것으로서, 본 발명의 해결하고자 하는 구체적인 과제는 아래와 같다.The present invention relates to a method and apparatus for rapid monitoring of underwater microplastics based on a fluorescent label and complex optical measurement in order to solve the problems of the prior art as described above, and specific problems to be solved of the present invention are as follows.

즉, 첫째, 본 발명은 무기성 입자와 미세플라스틱 입자를 구분하여 미세플라스틱의 개수 뿐 아니라 입자크기의 분포 또한 정량하는 방법 및 장치를 제공하기 위한 것이다.That is, first, the present invention is to provide a method and apparatus for quantifying not only the number of microplastics but also the distribution of the particle size by dividing inorganic particles and microplastic particles.

둘째, 본 발명은 적용성 및 다양성을 고려하여 10~800㎛ 크기의 미세플라스틱 입자를 구분하여 정량하는 방법 및 장치를 제공하기 위한 것이다.Second, the present invention is to provide a method and apparatus for classifying and quantifying microplastic particles having a size of 10 to 800 μm in consideration of applicability and diversity.

셋째, 본 발명은 수중의 미세플라스틱 입자를 신속하게 구분하여 정량하는 방법 및 장치를 제공하기 위한 것이다.Third, the present invention is to provide a method and apparatus for rapidly classifying and quantifying microplastic particles in water.

넷째, 본 발명은 수중의 미세플라스틱 입자를 인력을 절감할 수 있고 자동화하여 무인 운전도 가능한 저가의 장치를 이용하여 구분하고 정량하는 방법 및 장치를 제공하기 위한 것이다.Fourth, the present invention is to provide a method and apparatus for classifying and quantifying microplastic particles in water using an inexpensive device capable of reducing manpower and enabling unmanned operation by automating.

본 발명자들은 위와 같은 목적을 달성하기 위하여, 다양한 방법을 적용하여 장기간의 연구를 진행한 결과 본 발명에 이르게 된 것인바, 수질시료에 형광표지 염색제를 첨가하고 열을 가하여 미세플라스틱 입자를 염색한 후 투과광, 산란광 및 형광을 동시에 측정할 수 있는 광학계에서 광측정을 함으로써 미세플라스틱 입자를 분석하는 방법 및 장치를 발명한 것이다.In order to achieve the above object, the present inventors have applied various methods to achieve the present invention as a result of conducting a long-term study. After dyeing microplastic particles by adding a fluorescent label dyeing agent to a water sample and applying heat, A method and apparatus for analyzing microplastic particles by performing light measurement in an optical system capable of simultaneously measuring transmitted light, scattered light, and fluorescence was invented.

본 발명에 따른, 형광표지 및 복합광계측 기반 수중 미세플라스틱 신속 모니터링 방법은, 1) 시료를 계량하고 에탄올을 첨가하는 단계; 2) 에탄올이 첨가된 계량된 시료에 염색제를 첨가한 후 열반응시켜 미세플라스틱을 염색하는 단계; 3) 복합광학계에 염색된 시료를 유입시키는 단계; 4) 투과광, 산란광 및 형광을 동시에 측정하는 단계; 5) 측정된 투과광 및 산란광을 이용하여 입자의 개수를 계수하고 크기를 결정하는 단계; 및 6) 측정된 형광을 이용하여 계수된 입자가 미세플라스틱인지 무기성 입자인지 판단하는 단계;를 포함하는 형광표지 및 복합광계측 기반 수중 미세플라스틱 신속 모니터링 방법으로 구성되는 것이다.According to the present invention, a method for rapidly monitoring microplastics in water based on a fluorescent label and a composite photometric includes the steps of: 1) weighing a sample and adding ethanol; 2) adding a dyeing agent to the weighed sample to which ethanol was added, followed by thermal reaction to dye the microplastic; 3) introducing the dyed sample into the composite optical system; 4) simultaneously measuring transmitted light, scattered light, and fluorescence; 5) counting the number of particles and determining the size using the measured transmitted light and scattered light; And 6) determining whether the counted particles are microplastics or inorganic particles using the measured fluorescence; fluorescent labeling and complex photometric-based underwater microplastics rapid monitoring method.

이때, 형광표지 염색제는 여러 가지 시판되고 있는 염색제 중에서 선택된 것으로서, 채택된 형광표지 염색제는 미세플라스틱 입자를 염색시킬 뿐, 모래, 진흙과 같은 무기성 입자는 염색시키지 못하는 것을 채택하는 것으로서, nile red, Pyrromethene567, Squaraine, DID 등 여러 가지 시판되고 있는 염색제를 이용하면 된다. At this time, the fluorescent label dyeing agent is selected from a variety of commercially available dyeing agents, and the adopted fluorescent label dyeing agent only dyes microplastic particles, but does not dye inorganic particles such as sand or mud. You can use various commercially available dyes such as Pyrromethene567, Squaraine, and DID.

가장 널리 이용되고 있는 nile red를 예를 들어 염색하는 과정을 설명하고자 한다. 먼저 염색제를 제조하는 과정을 설명하면 상기 염색제를 계면활성제에 용해시키는 것이다.The most widely used nile red, for example, is described in the process of dyeing. First, the process of preparing the dyeing agent will be described to dissolve the dyeing agent in a surfactant.

계면활성제는 Tween20일 수 있으며, 이러한 경우 먼저, Tween20에 Nile Red를 1 mg/ml 농도가 될 수 있는 양으로 투입한 후 계면활성제와 염색제 혼합액을 초음파분산기를 이용하여 5분간 분산시켜 염색제를 제조하는 것이다.Surfactant may be Tween20, and in this case, first, Nile Red is added to Tween20 in an amount that can be 1 mg/ml, and then the mixture of surfactant and dyeing agent is dispersed for 5 minutes using an ultrasonic disperser to prepare a dyeing agent. will be.

표준용액은 농도가 23.7%인 에탄올에 미세플라스틱 0.1g을 분산시켜 시료-에탄올 혼합액을 100mL가 되도록 에탄올이 첨가된 계량된 시료를 제조한다. The standard solution is prepared by dispersing 0.1 g of microplastics in ethanol having a concentration of 23.7% to prepare a weighed sample to which ethanol is added so that the sample-ethanol mixture becomes 100 mL.

미세플라스틱이 분산되어 있는 시료-에탄올 혼합액100mL(에탄올이 첨가된 계량된 시료)에 염색제 0.25mL를 주입한다. 이 용액을 70 내지 100℃, 바람직하게는 80℃의 온도에서 10 내지 40분 동안, 바람직하게는 20분 동안 가열하여 열반응시킴으로써 미세플라스틱 입자를 염색한다. 이렇게 Nile red로 미세플라스틱 입자를 염색하면 520~550nm의 파장의 빛을 조사할 때 형광이 발생한다. 이러한 염색제는 모래, 진흙과 같은 무기성 입자는 염색시키지 못한다. 염색이 완료되면 도 1과 같은 복합 광학계의 Flowcell로 시료를 이송시키며 광측정을 한다.0.25 mL of a dye is injected into 100 mL of the sample-ethanol mixture in which microplastics are dispersed (a weighed sample to which ethanol is added). The microplastic particles are dyed by heating this solution at a temperature of 70 to 100°C, preferably 80°C for 10 to 40 minutes, preferably for 20 minutes, and reacting with heat. When fine plastic particles are dyed with Nile red like this, fluorescence is generated when irradiating light with a wavelength of 520 to 550 nm. These dyes cannot dye inorganic particles such as sand or mud. When dyeing is completed, the sample is transferred to the flowcell of the composite optical system as shown in FIG. 1 and photometric is performed.

투과광이 감소하거나 산랑광이 증가하면 미세플라스틱 입자 및 무기성 입자의 개수가 증가되는 것으로 결정되는 것이고, 형광이 증가하면 미세플라스틱 입자의 개수가 증가되는 것으로 결정되는 것이다. When transmitted light decreases or scattered light increases, it is determined that the number of microplastic particles and inorganic particles increases, and when fluorescence increases, the number of microplastic particles increases.

본 발명에 따른 형광표지 및 복합광계측 기반 수중 미세플라스틱 신속 모니터링 방법 및 그 장치를 이용하면, 수중에 함유되어 있는 무기성 입자와 미세플라스틱 입자를 구분하여 미세플라스틱의 개수 뿐 아니라 입자크기의 분포 또한 정량할 수 있는 효과를 나타내는 것이며, 10~800㎛ 크기의 미세플라스틱 입자를 구분하여 정량할 수 있어서 적용성 및 다양성이 획기적으로 증대되는 효과를 나타내는 것이다.When using the method and apparatus for rapid underwater microplastic monitoring based on a fluorescent label and complex photometric according to the present invention, the distribution of the particle size as well as the number of microplastics is also performed by distinguishing inorganic particles and microplastic particles contained in water. It shows an effect that can be quantified, and it shows the effect of remarkably increasing applicability and diversity as it can be quantified by classifying and quantifying microplastic particles of 10 to 800㎛ size.

또한, 본 발명에 따른 방법 및 그 장치를 이용하면, 수중에 함유되어 있는 무기성 입자와 미세플라스틱 입자를 신속하게 구분하여 정량할 수 있는 효과를 나타내는 것일 뿐 아니라, 인력을 절감할 수 있고 자동화하여 무인 운전도 가능한 저가의 장치를 이용하여 구분하고 정량하는 방법 및 장치를 제공하는 효과를 나타내는 것이다.In addition, by using the method and the apparatus according to the present invention, the inorganic particles and microplastic particles contained in water are not only exhibited the effect of rapidly classifying and quantifying, but also the manpower can be reduced and automated It shows the effect of providing a method and apparatus for classifying and quantifying using an inexpensive device capable of unmanned operation.

도 1은 본 발명의 형광표지 및 복합광계측 기반 수중 미세플라스틱 신속 모니터링 방법을 구현하기 위한 광학계의 개략도이다.
도 2는 본 발명의 광학계에서 염색된 미세플라스틱에 대한 투과광, 산란광 및 형광을 동시에 측정한 결과 그래프이다.
도 3은 본 발명의 광학계에서 염색된 borosilicate solid glass microsphere에 대한 투과광, 산란광 및 형광을 동시에 측정한 결과 그래프이다.
1 is a schematic diagram of an optical system for implementing a method for rapid monitoring of underwater microplastics based on a fluorescent label and complex optical measurement of the present invention.
2 is a graph showing a result of simultaneously measuring transmitted light, scattered light, and fluorescence of the dyed microplastic in the optical system of the present invention.
3 is a graph showing a result of simultaneously measuring transmitted light, scattered light, and fluorescence of borosilicate solid glass microspheres dyed in the optical system of the present invention.

이하 첨부한 도면을 참조하여 본 발명의 형광표지 및 복합광계측 기반 수중 미세플라스틱 신속 모니터링 방법에 관하여 상세히 설명한다. Hereinafter, a method for rapidly monitoring underwater microplastics based on a fluorescent label and complex optical measurement according to the present invention will be described in detail with reference to the accompanying drawings.

다음에 소개되는 도면은 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다.The drawings introduced below are provided as an example in order to sufficiently convey the spirit of the present invention to those skilled in the art.

따라서 본 발명은 아래에서 제시되는 도면에 한정되지 않고 다른 형태로 구체화될 수도 있으며, 이하 제시되는 도면은 본 발명의 사상을 명확히 하기 위해 과장되어 도시될 수 있다. Accordingly, the present invention is not limited to the drawings presented below and may be embodied in other forms, and the drawings presented below may be exaggerated to clarify the spirit of the present invention.

이때, 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명 및 첨부 도면에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다.At this time, if there is no other definition in the technical and scientific terms used, they have the meanings commonly understood by those of ordinary skill in the technical field to which this invention belongs, and the gist of the present invention is unnecessary in the following description and accompanying drawings Descriptions of known functions and configurations that may be blurred will be omitted.

본 발명의 일 실시예에 따른, 형광표지 및 복합광계측 기반 수중 미세플라스틱 신속 모니터링 방법은,According to an embodiment of the present invention, a method for rapid monitoring of underwater microplastics based on a fluorescent label and a complex photometric,

1) 시료를 계량하고 에탄올을 첨가하는 단계;1) weighing the sample and adding ethanol;

2) 에탄올이 첨가된 계량된 시료에 염색제를 첨가한 후 열반응시켜 미세플라스틱을 염색하는 단계;2) adding a dyeing agent to the weighed sample to which ethanol was added, followed by thermal reaction to dye the microplastic;

3) 복합광학계에 염색된 시료를 유입시키는 단계;3) introducing the dyed sample into the composite optical system;

4) 투과광, 산란광 및 형광을 동시에 측정하는 단계;4) simultaneously measuring transmitted light, scattered light, and fluorescence;

5) 측정된 투과광 및 산란광을 이용하여 입자의 개수를 계수하고 크기를 결정하는 단계; 및5) counting the number of particles and determining the size using the measured transmitted light and scattered light; And

6) 측정된 형광을 이용하여 계수된 입자가 미세플라스틱인지 무기성 입자인지 판단하는 단계;를 포함하는 형광표지 및 복합광계측 기반 수중 미세플라스틱 신속 모니터링 방법으로 구성되는 것이다.6) determining whether the counted particles are microplastics or inorganic particles by using the measured fluorescence; fluorescent labeling and complex photometric-based rapid monitoring of underwater microplastics.

이때, 형광표지 염색제는 여러 가지 시판되고 있는 염색제 중에서 선택된 것으로서, 채택된 형광표지 염색제는 미세플라스틱 입자를 염색시킬 뿐, 모래, 진흙과 같은 무기성 입자는 염색시키지 못하는 것을 채택하는 것으로서, nile red, Pyrromethene567, Squaraine, DID 등 여러 가지 시판되고 있는 염색제를 이용하면 된다. At this time, the fluorescent label dyeing agent is selected from a variety of commercially available dyeing agents, and the adopted fluorescent label dyeing agent only dyes microplastic particles, but does not dye inorganic particles such as sand or mud. You can use various commercially available dyes such as Pyrromethene567, Squaraine, and DID.

가장 널리 이용되고 있는 nile red를 예를 들어 염색하는 과정을 설명하고자 한다. 먼저 염색제를 제조하는 과정을 설명하면 상기 염색제를 계면활성제에 용해시키는 것이다.The most widely used nile red, for example, is described in the process of dyeing. First, the process of preparing the dyeing agent will be described to dissolve the dyeing agent in a surfactant.

계면활성제는 Tween20일 수 있으며, 이러한 경우 먼저, Tween20에 Nile Red를 1 mg/ml 농도가 될 수 있는 양으로 투입한 후 계면활성제와 염색제 혼합액을 초음파분산기를 이용하여 5분간 분산시켜 염색제를 제조하는 것이다.Surfactant may be Tween20, and in this case, first, Nile Red is added to Tween20 in an amount that can be 1 mg/ml, and then the mixture of surfactant and dyeing agent is dispersed for 5 minutes using an ultrasonic disperser to prepare a dyeing agent. will be.

표준용액은 농도가 23.7%인 에탄올에 미세플라스틱 0.1g을 분산시켜 시료-에탄올 혼합액을 100mL가 되도록 에탄올이 첨가된 계량된 시료를 제조한다. The standard solution is prepared by dispersing 0.1 g of microplastics in ethanol having a concentration of 23.7% to prepare a weighed sample to which ethanol is added so that the sample-ethanol mixture becomes 100 mL.

미세플라스틱이 분산되어 있는 시료-에탄올 혼합액100mL(에탄올이 첨가된 계량된 시료)에 염색제 0.25mL를 주입한다. 이 용액을 70 내지 100℃, 바람직하게는 80℃의 온도에서 10 내지 40분 동안, 바람직하게는 20분 동안 가열하여 열반응시킴으로써 미세플라스틱 입자를 염색한다. 이렇게 Nile red로 미세플라스틱 입자를 염색하면 520~550nm의 파장의 빛을 조사할 때 형광이 발생한다. 이러한 염색제는 모래, 진흙과 같은 무기성 입자는 염색시키지 못한다. 염색이 완료되면 도 1과 같은 복합 광학계의 Flowcell로 시료를 이송시키며 광측정을 한다.0.25 mL of a dye is injected into 100 mL of the sample-ethanol mixture in which microplastics are dispersed (a weighed sample to which ethanol is added). The microplastic particles are dyed by heating this solution at a temperature of 70 to 100°C, preferably 80°C for 10 to 40 minutes, preferably for 20 minutes, and reacting with heat. When fine plastic particles are dyed with Nile red like this, fluorescence is generated when irradiating light with a wavelength of 520 to 550 nm. These dyes cannot dye inorganic particles such as sand or mud. When dyeing is completed, the sample is transferred to the flowcell of the composite optical system as shown in FIG. 1 and photometric is performed.

투과광이 감소하거나 산랑광이 증가하면 미세플라스틱 입자 및 무기성 입자의 개수가 증가되는 것으로 결정되는 것이고, 형광이 증가하면 미세플라스틱 입자의 개수가 증가되는 것으로 결정되는 것이다. When transmitted light decreases or scattered light increases, it is determined that the number of microplastic particles and inorganic particles increases, and when fluorescence increases, the number of microplastic particles increases.

복합광학계를 자세히 설명하면 먼저 측정에 이용하는 빛을 생성시키는 램프(1)와 빛을 직선으로 모아주는 Collimator(2)가 장착되어 있으며 Flowcell(3)에 빛이 조사되면 빛은 투과되어 투과광 집광렌즈(10)와 투과광필터(11)를 거쳐 투과광 검지관(12)에서 광량이 측정된다. 투과광 필터(11)는 해당 파장의 밴드패스 필터 또는 Flow cell(3)에서 발생하는 형광을 배제시키는 Short pass filter를 사용한다. 입자가 Flow cell(3)을 지나가면서 빛을 가리게 되면 투과광의 세기가 낮아지게 된다. 또한 입자가 빛과 만나면 산란광을 발생시키는데 산란광은 복합 광학계의 산란광 집광렌즈(7), 산란광 필터(8)를 거쳐 산란광 검지관(9)에서 측정된다. 입자가 Flow cell(3)을 지나갈 때 측정되는 산란광의 세기를 시간에 대해 나타내면 도 2와 같이 정규분포 형태의 피크를 얻을 수 있다. 산란광을 측정할 때 사용되는 산란광 필터(8)도 투과광 필터(11)와 마찬가지로 밴드패스 필터나 long pass filter를 이용한다. 얻어지는 정규분포 형태의 피크의 높이 및 크기를 이용하여 입자를 크기를 결정할 수 있다. To explain the complex optical system in detail, first, a lamp (1) that generates light used for measurement and a collimator (2) that collects light in a straight line are installed. When light is irradiated to the flowcell (3), the light is transmitted through the transmitted light condensing lens ( 10) and the transmitted light filter 11, the amount of light is measured in the transmitted light detecting tube 12. The transmitted light filter 11 uses a band pass filter of a corresponding wavelength or a short pass filter that excludes fluorescence generated from the flow cell 3. When the particles pass through the flow cell (3) and cover the light, the intensity of the transmitted light decreases. In addition, when the particles meet light, scattered light is generated. The scattered light is measured in the scattered light detection tube 9 through the scattered light condensing lens 7 and the scattered light filter 8 of the composite optical system. When the intensity of the scattered light measured when the particles pass through the flow cell 3 is represented with respect to time, a peak in the form of a normal distribution can be obtained as shown in FIG. 2. The scattered light filter 8 used to measure the scattered light uses a band pass filter or a long pass filter like the transmitted light filter 11. The size of the particles can be determined using the height and size of the peak in the form of a normal distribution obtained.

또한 미세플라스틱을 형광염료로 염색한 경우 시료를 flow cell(3)로 흘리면 염색된 미세플라스틱 입자가 빛을 만나 형광을 발생시킨다. 형광은 형광집관렌즈(4) 및 형광 필터(5)를 거쳐 형광검지관(6)에서 측정된다. 형광의 세기를 시간에 따라 측정하면 산란광과 마찬가지로 정규분포 형태의 피크를 얻을 수 있다.In addition, when the microplastic is dyed with a fluorescent dye, the dyed microplastic particles encounter light and generate fluorescence when the sample is flowed through the flow cell (3). Fluorescence is measured in the fluorescence detection tube 6 through the fluorescence collecting lens 4 and the fluorescence filter 5. When the intensity of fluorescence is measured over time, it is possible to obtain a peak in the form of a normal distribution like scattered light.

산란광 및 투과광을 측정하는 광로에는 590nm 부근의 형광을 투과시키지 않는 필터가 장착되어 있어 형광이 측정되지 않는다. The optical path for measuring scattered light and transmitted light is equipped with a filter that does not transmit fluorescence near 590 nm, so that fluorescence cannot be measured.

도 1을 이용하여 미세플라스틱을 분석하는 방법에 대해 자세히 설명하고자 한다. 표준시료는 시판하는 폴리스티렌 분말 NIST 표준을 초순수에 분산시켜 이용하였다. 표준시료에 염색제로 nile red를 첨가하여 폴리에틸렌을 염색시켰다. nile red는 520~550nm 파장의 빛을 조사하면 590nm 전후의 형광이 발생하게 된다. 따라서 520nm 파장의 lamp(1)를 이용하였으며 Collimator(2)를 이용하여 빛을 Flow cell(3)의 내부에 초점이 모이도록 조정하였다. 시료를 pump를 이용하여 Flow Cell(3) 내부로 흘리면서 투과광, 산란광 및 형광의 세기를 측정하였다. 미세플라스틱 입자에 빛이 조사될 때 투과광은 감소하고 산란광과 형광은 세기가 커지는 것을 확인할 있다. 따라서 투과광의 감소, 산란광의 크기 증가 및 형광의 크기 증가가 동시에 일어날 경우 미세플라스틱으로 판별할 수 있다. 또한 투과광의 감소 및 산란광의 증가가 일어나나 형광이 발생하지 않은 경우는 미세플라스틱이 아닌 다른 입자인 것으로 판별할 수 있다. 유입되는 시료의 유속과 유입시간 미세플라스틱이 감지되는 횟수를 알면 단위부피당 몇 개의 미세플라스틱이 함유되어 있는지 계산할 수 있다. A method of analyzing microplastics will be described in detail using FIG. 1. The standard sample was used by dispersing a commercially available polystyrene powder NIST standard in ultrapure water. Polyethylene was dyed by adding nile red as a dye to the standard sample. When nile red is irradiated with light having a wavelength of 520 to 550 nm, fluorescence of around 590 nm is generated. Therefore, a lamp (1) with a wavelength of 520 nm was used, and the light was adjusted to focus inside the flow cell (3) by using a collimator (2). The intensity of transmitted light, scattered light, and fluorescence was measured while flowing the sample into the flow cell 3 using a pump. It can be seen that when light is irradiated to the microplastic particles, the transmitted light decreases and the scattered light and fluorescence intensity increase. Therefore, when the transmitted light decreases, the scattered light increases, and the fluorescence increases at the same time, it can be determined as microplastic. In addition, when a decrease in transmitted light and an increase in scattered light occur, but no fluorescence is generated, it can be determined that the particles are other than microplastics. By knowing the flow rate of the incoming sample and the number of times the microplastics are detected, the number of microplastics per unit volume can be calculated.

또한 부가적으로 미세플라스틱 입자 크기에 따라 투과광의 감소 및 산란광의 증가에 대한 상관관계를 관계식으로 도출하면 미세플라스틱 입자크기의 분포도 얻을 수 있다. 이렇게 하면 단순하게 단위부피당 미세플라스틱 입자의 수만이 아니라 크기 분포도 알 수 있는 장점이 있다. In addition, the distribution of the microplastic particle size can be obtained by deriving the correlation between the decrease in transmitted light and the increase in scattered light according to the microplastic particle size as a relational formula. This has the advantage of simply knowing the size distribution as well as the number of microplastic particles per unit volume.

광검지관에서 측정되는 투과광, 형광 및 산란광 신호는 ㎂~㎁ 수준의 전류값이 측정되므로 이 신호를 연산증폭기로 증폭하여 전압으로 변환한 후 16비트 AD converter를 이용하여 0~65535크기의 디지털 신호로 변환하여 이용한다.Since transmitted light, fluorescence, and scattered light signals measured in a photodetector are measured at a current level of ㎂~㎁, this signal is amplified with an operational amplifier and converted into a voltage. Convert and use.

Nile Red를 1 mg/ml 농도가 될 수 있는 양으로 계면활성제인 Tween20에 투입한 후 계면활성제와 염색제 혼합액을 초음파분산기를 이용하여 5분간 분산시켜 염색제를 제조한다. 농도가 23.7%인 에탄올에 미세플라스틱 0.1g을 분산시켜 시료-에탄올 혼합액을 100mL가 되도록 에탄올이 첨가된 계량된 시료를 제조한다.Nile Red is added to Tween20, a surfactant, in an amount that can be 1 mg/ml, and then the surfactant and dye mixture are dispersed for 5 minutes using an ultrasonic disperser to prepare a dyeing agent. 0.1 g of microplastic is dispersed in ethanol having a concentration of 23.7% to prepare a weighed sample to which ethanol is added so that the sample-ethanol mixture becomes 100 mL.

미세플라스틱이 분산되어 있는 시료-에탄올 혼합액 100mL(에탄올이 첨가된 계량된 시료)에 염색제 0.25mL를 주입한 후, 80℃에서 20분간 열반응시켜 염색을 진행한다. After injecting 0.25 mL of dyeing agent into 100 mL of the sample-ethanol mixture in which microplastics are dispersed (measured sample to which ethanol is added), dyeing is carried out by heat reaction at 80° C. for 20 minutes.

염색된 용액을 도 1의 복합광학계로 투입하여 투과광, 산란광 및 형광을 측정한다. 투과광이 감소하거나 산란광이 증가하면서 형광이 감지되면 미세플라스틱으로 판별하고 일정시간 동안 계수하여 개/㎥ 단위로 계수한다. 또한 산란광 및 투과광 크기를 이용하여 입자크기를 계산한다. The dyed solution was introduced into the composite optical system of FIG. 1 to measure transmitted light, scattered light, and fluorescence. When fluorescence is detected as transmitted light decreases or scattered light increases, it is identified as microplastic, counted for a certain period of time, and counted in units/m3. Also, the size of the particles is calculated using the size of the scattered light and the transmitted light.

입자크기가 10㎛인 NIST 폴리스티렌 표준입자를 이용하여 상기와 같은 시험을 실시한 결과를 표 1에 나타내었다.Table 1 shows the results of the above tests using NIST polystyrene standard particles having a particle size of 10 μm.

입자크기가 100㎛인 NIST 폴리스티렌 표준입자를 이용하여 실시예 1과 동일하게 시험하였으며 그 결과를 표 1에 나타내었다.The test was carried out in the same manner as in Example 1 using NIST polystyrene standard particles having a particle size of 100 μm, and the results are shown in Table 1.

입자크기가 500㎛인 NIST 폴리스티렌 표준입자를 이용하여 실시예 1과 동일하게 시험하였으며 그 결과를 표 1에 나타내었다. The test was performed in the same manner as in Example 1 using NIST polystyrene standard particles having a particle size of 500 μm, and the results are shown in Table 1.

입자크기가 800㎛인 NIST 폴리스티렌 표준입자를 이용하여 실시예 1과 동일하게 시험하였으며 그 결과를 표 1에 나타내었다.The test was performed in the same manner as in Example 1 using NIST polystyrene standard particles having a particle size of 800 μm, and the results are shown in Table 1.

입자크기가 500㎛인 NIST 폴리스티렌 표준입자를 이용하여 실시예 1과 동일한 방법으로 염색하고 복합광학계에서 산란광, 투과광 및 형광을 동시에 시간에 따라 측정한 결과 투과광의 감소, 산란광의 증가, 형광발생이 동시에 발생하였다. 그 결과를 도 2에 나타내었다.Using NIST polystyrene standard particles having a particle size of 500 μm, dyeing in the same manner as in Example 1 and measuring scattered light, transmitted light, and fluorescence simultaneously in a complex optical system resulted in a decrease in transmitted light, an increase in scattered light, and generation of fluorescence at the same time. Occurred. The results are shown in FIG. 2.

입자크기(㎛)Particle size (㎛) No.No. 투과광(AU)Transmitted light (AU) 산란광(AU)Scattered light (AU) 형광(AU)Fluorescence (AU) 0
(미세플라스틱 미함유)
0
(No microplastics)
1One 6448064480 18801880 5454
22 6451564515 18941894 3535 33 6456764567 18751875 4646 44 6442864428 18861886 3232 55 6451364513 18491849 4747 1010 1One 6434264342 25462546 452452 22 6421564215 26482648 463463 33 6428964289 25972597 453453 44 6394663946 25382538 457457 55 6412864128 25432543 461461 100100 1One 6343463434 1094510945 857857 22 6354163541 1089410894 846846 33 6365463654 1093710937 851851 44 6381263812 1094310943 852852 55 6372963729 1093810938 846846 500500 1One 5840658406 2986229862 25462546 22 5862458624 2925429254 25492549 33 5875358753 2955829558 24862486 44 5864258642 2964829648 25532553 55 5839558395 2658326583 25562556 800800 1One 5044450444 4589245892 34163416 22 5024350243 4576245762 34253425 33 4986549865 4583445834 34323432 44 5034650346 4579145791 34263426 55 4985849858 4585245852 34273427

(비교예 1)(Comparative Example 1)

측정하고자 하는 입자를 무기성 입자인 borosilicate solid glass microsphere를 이용하였으며, 입자의 크기 종류는 27~30㎛로 한 것을 제외하고는 실시예 1과 동일하게 시험하였다. 투과광의 감소 및 산란광의 증가가 일어났으나 형광은 관찰되지 않았다. 그 결과를 표 2에 나타내었다.The particles to be measured were tested in the same manner as in Example 1, except that borosilicate solid glass microspheres, which are inorganic particles, were used, and the size of the particles was 27 to 30 μm. A decrease in transmitted light and an increase in scattered light occurred, but no fluorescence was observed. The results are shown in Table 2.

(비교예 2)(Comparative Example 2)

입자의 크기 종류를 250~300㎛로 한 것을 제외하고는 비교예 1과 동일하게 시험하였다. 투과광의 감소 및 산란광의 증가가 일어났으나 형광은 관찰되지 않았다. 그 결과를 표 2에 나타내었다. The test was carried out in the same manner as in Comparative Example 1, except that the size of the particles was set to 250 to 300 μm. A decrease in transmitted light and an increase in scattered light occurred, but no fluorescence was observed. The results are shown in Table 2.

(비교예 3)(Comparative Example 3)

입자의 크기 종류를 710~850㎛로 한 것을 제외하고는 비교예 1과 동일하게 시험하였다. 투과광의 감소 및 산란광의 증가가 일어났으나 형광은 관찰되지 않았다. 그 결과를 표 2에 나타내었다.The test was carried out in the same manner as in Comparative Example 1, except that the size of the particles was 710 to 850 μm. A decrease in transmitted light and an increase in scattered light occurred, but no fluorescence was observed. The results are shown in Table 2.

(비교예 4)(Comparative Example 4)

입자크기가 250~300㎛인 borosilicate solid glass microsphere를 이용하여 실시예 1과 동일한 방법으로 염색하고 복합광학계에서 산란광, 투과광 및 형광을 동시에 시간에 따라 측정한 결과 투과광의 감소 및 산란광의 증가가 일어났으나 형광은 전기적 노이즈 수준으로 측정되었으며 형광이 발생하지 않았다. 그 결과를 도 3에 나타내었다. Using a borosilicate solid glass microsphere having a particle size of 250 to 300㎛, dyeing in the same manner as in Example 1, and measuring scattered light, transmitted light, and fluorescence simultaneously in a complex optical system over time. B Fluorescence was measured at the level of electrical noise and no fluorescence was generated. The results are shown in FIG. 3.

입자크기(㎛)Particle size (㎛) No.No. 투과광(AU)Transmitted light (AU) 산란광(AU)Scattered light (AU) 형광(AU)Fluorescence (AU) 27~3027-30 1One 6387363873 30543054 5555 22 6389463894 61056105 2424 33 6454664546 30683068 3434 44 6435964359 30843084 2424 55 6511265112 30823082 3131 250~300250-300 1One 6149561495 1825618256 5454 22 6158961589 1835418354 2525 33 6135761357 1855918559 3434 44 6195261952 1852718527 2626 55 6207062070 1844818448 2525 710~850710~850 1One 5024850248 4682546825 3636 22 4962749627 4637946379 3434 33 5044650446 4586445864 2828 44 5062450624 4577945779 2626 55 5055250552 4653746537 3535

번호number 설명Explanation 번호number 설명Explanation 1One LampLamp 77 산란광 집광렌즈Scattered light condensing lens 22 CollimatorCollimator 88 산란광 필터Scattered light filter 33 Flow cellFlow cell 99 산란광 검지관Scattered light detector 44 형광 집광렌즈Fluorescent condensing lens 1010 투과광 집광렌즈Transmitted light condensing lens 55 형광 필터Fluorescent filter 1111 투과광 필터Transmitted light filter 66 형광 검지관Fluorescence detector 1212 투과광 검지관Transmitted light detector tube

Claims (6)

1) 시료를 계량하고 에탄올을 첨가하는 단계;
2) 에탄올이 첨가된 계량된 시료에, 계면활성제에 용해된 후 초음파분산기로 분산된 염색제를 첨가한 후, 70 내지 100℃에서 10 내지 40분 동안 열반응시켜 미세플라스틱을 염색하는 단계;
3) 복합광학계에 염색된 시료를 유입시키는 단계;
4) 투과광, 산란광 및 형광을 동시에 측정하는 단계;
5) 투과광이 감소하거나 산란광이 증가하면 미세플라스틱 입자 및 무기성 입자의 개수가 증가되는 것으로 결정되는 것을 특징으로 하는 측정된 투과광 및 산란광을 이용하여 입자의 개수를 계수하고 크기를 결정하는 단계; 및
6) 형광이 증가하면 미세플라스틱 입자의 개수가 증가되는 것으로 결정되는 것을 특징으로 하는 측정된 형광을 이용하여 계수된 입자가 미세플라스틱인지 무기성 입자인지 판단하는 단계;로 이루어지는 형광표지 및 복합광계측 기반 수중 미세플라스틱 신속 모니터링 방법.
1) weighing the sample and adding ethanol;
2) dyeing microplastics by heat-reacting at 70 to 100°C for 10 to 40 minutes after dissolving in a surfactant and adding a dyeing agent dispersed with an ultrasonic disperser to the weighed sample to which ethanol is added;
3) introducing the dyed sample into the composite optical system;
4) simultaneously measuring transmitted light, scattered light, and fluorescence;
5) counting the number of particles and determining the size using the measured transmitted light and scattered light, characterized in that it is determined that the number of microplastic particles and inorganic particles increases when transmitted light decreases or scattered light increases; And
6) determining whether the counted particles are microplastic or inorganic particles using the measured fluorescence, characterized in that it is determined that the number of microplastic particles increases when the fluorescence increases; a fluorescent label and a composite optical measurement consisting of Based underwater microplastics rapid monitoring method.
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete
KR1020200136815A 2020-10-21 2020-10-21 Method and apparatus for rapid monitoring of unederwater microplastics based on fluorescence tagging and multifunctional photometry KR102229764B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200136815A KR102229764B1 (en) 2020-10-21 2020-10-21 Method and apparatus for rapid monitoring of unederwater microplastics based on fluorescence tagging and multifunctional photometry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200136815A KR102229764B1 (en) 2020-10-21 2020-10-21 Method and apparatus for rapid monitoring of unederwater microplastics based on fluorescence tagging and multifunctional photometry

Publications (1)

Publication Number Publication Date
KR102229764B1 true KR102229764B1 (en) 2021-03-19

Family

ID=75262094

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200136815A KR102229764B1 (en) 2020-10-21 2020-10-21 Method and apparatus for rapid monitoring of unederwater microplastics based on fluorescence tagging and multifunctional photometry

Country Status (1)

Country Link
KR (1) KR102229764B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113358623A (en) * 2021-06-18 2021-09-07 佛山市植宝生态科技有限公司 Method for quantitatively analyzing micro-plastics in leaf vegetables
CN113984599A (en) * 2021-10-21 2022-01-28 南通大学 Detection method for determining size of micro plastic by using laser particle analyzer
KR102401716B1 (en) 2021-10-29 2022-05-26 (주)휴마스 Method and appartus for sampling and pretreating of microplastics in water
CN115414279A (en) * 2022-08-31 2022-12-02 吉林化工学院 Method for extracting micro plastic particles from facial cleanser
KR20230020098A (en) * 2021-08-03 2023-02-10 인천대학교 산학협력단 Methods for quantitative detection of microplastic
KR20230027343A (en) * 2021-08-18 2023-02-28 주식회사 자연과기술 Microplastic detection and analysis system
KR102545148B1 (en) * 2023-02-17 2023-06-20 부경대학교 산학협력단 Method for estimating mass of microplastics using fluorescent staining

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10000A (en) * 1853-09-06 Improved paddle-wheel
KR19980042627A (en) * 1997-11-20 1998-08-17 이에츠구히사시 Classification method of glazed leukocyte
KR20100100908A (en) * 2008-02-18 2010-09-15 시스멕스 가부시키가이샤 Platelet measurement reagent, platelet measurement reagent kit, and platelet measurement method
JP2012507288A (en) * 2008-11-03 2012-03-29 ゼネラル・エレクトリック・カンパニイ Method and system for measuring microbial content in aqueous media
KR20150107859A (en) * 2013-02-28 2015-09-23 시스멕스 가부시키가이샤 Urine sample analysis device and urine sample analysis method
KR102135690B1 (en) 2020-02-20 2020-07-20 상림이엔지 주식회사 Waste water quality monitoring system including water treatment rtu with fine plastic detection
KR20200097087A (en) 2019-02-07 2020-08-18 연세대학교 산학협력단 Micro plastic detection device using uv led

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10000A (en) * 1853-09-06 Improved paddle-wheel
KR19980042627A (en) * 1997-11-20 1998-08-17 이에츠구히사시 Classification method of glazed leukocyte
KR20100100908A (en) * 2008-02-18 2010-09-15 시스멕스 가부시키가이샤 Platelet measurement reagent, platelet measurement reagent kit, and platelet measurement method
JP2012507288A (en) * 2008-11-03 2012-03-29 ゼネラル・エレクトリック・カンパニイ Method and system for measuring microbial content in aqueous media
KR20150107859A (en) * 2013-02-28 2015-09-23 시스멕스 가부시키가이샤 Urine sample analysis device and urine sample analysis method
KR20200097087A (en) 2019-02-07 2020-08-18 연세대학교 산학협력단 Micro plastic detection device using uv led
KR102135690B1 (en) 2020-02-20 2020-07-20 상림이엔지 주식회사 Waste water quality monitoring system including water treatment rtu with fine plastic detection

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
비특허문헌 1 : Karakolis, E.G.; Nguyen, B.; You, J.B.; Rochman, C.M.; Sinton, D.; Fluorescent dyes for visualizing microplastic particles and fibers in laboratory-based studies. Environmental Science and Technology Letters 2019, 6(6), 334-340.
생수 속 마이크로 플라스틱 10000개의 진실(현무열, 개인 블로그, April 11, 2018)*

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113358623A (en) * 2021-06-18 2021-09-07 佛山市植宝生态科技有限公司 Method for quantitatively analyzing micro-plastics in leaf vegetables
KR20230020098A (en) * 2021-08-03 2023-02-10 인천대학교 산학협력단 Methods for quantitative detection of microplastic
KR102642338B1 (en) 2021-08-03 2024-02-28 인천대학교 산학협력단 Methods for quantitative detection of microplastic
KR20230027343A (en) * 2021-08-18 2023-02-28 주식회사 자연과기술 Microplastic detection and analysis system
KR102515468B1 (en) 2021-08-18 2023-03-31 주식회사 자연과기술 Microplastic detection and analysis system
CN113984599A (en) * 2021-10-21 2022-01-28 南通大学 Detection method for determining size of micro plastic by using laser particle analyzer
KR102401716B1 (en) 2021-10-29 2022-05-26 (주)휴마스 Method and appartus for sampling and pretreating of microplastics in water
CN115414279A (en) * 2022-08-31 2022-12-02 吉林化工学院 Method for extracting micro plastic particles from facial cleanser
KR102545148B1 (en) * 2023-02-17 2023-06-20 부경대학교 산학협력단 Method for estimating mass of microplastics using fluorescent staining

Similar Documents

Publication Publication Date Title
KR102229764B1 (en) Method and apparatus for rapid monitoring of unederwater microplastics based on fluorescence tagging and multifunctional photometry
US20170038299A1 (en) Online process monitoring
CN104718444A (en) Microparticle measuring device
CN104198388A (en) Online water quality monitoring device based on composite spectrum measurement
CN102213682B (en) Method for measuring transmission of interference-insensitive terahertz wave
US9927417B2 (en) High reflectivity integrating cavity and optical amplification device
CN205229048U (en) Liquid drop micro -fluidic chip based on microlens array
CN206270228U (en) Fluorescence photometer with binary channels light path system
US20120274925A1 (en) Axial light loss sensor system for flow cytometery
CN108387504A (en) Particle collector is closed in cohesion
CN204142624U (en) A kind of online water monitoring device measured based on complex spectrum
CN106680186A (en) Multi-type scattered light detection system of flow cytometer
CN110160978A (en) A kind of detection system and detection method of the comprehensive organoleptic indicator of drinking water
CN111272639B (en) Fluorescent particle detection device and method
CN108279193A (en) Dusty gas concentration detection apparatus based on integrating sphere
US11674877B2 (en) Apparatus and method for cyclic flow cytometry using particularized cell identification
JPH0486546A (en) Specimen inspection device
JP2010286381A (en) Flow cytometer
CN208076357U (en) Particle collector is closed in cohesion
US20150125899A1 (en) Fluorescence-assisted counting apparatus for qualitative and/or quantitative measurement of fluorescently tagged particles
CN105771668A (en) Device for detecting completeness of hollow fibrous membrane component and detection method thereof
JP4580976B2 (en) Biological sample analyzer with quality control function and method for displaying quality control measurement results
Chen et al. Particles small angle forward‐scattered light measurement based on photovoltaic cell microflow cytometer
WO2022239457A1 (en) Information processing device, information processing method, and program
Zhao et al. High gain avalanche photodiode (APD) arrays in flow cytometer opitical system

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant