KR101765060B1 - On-die termination circuit, data output buffer, semiconductor memory device - Google Patents

On-die termination circuit, data output buffer, semiconductor memory device Download PDF

Info

Publication number
KR101765060B1
KR101765060B1 KR1020100087872A KR20100087872A KR101765060B1 KR 101765060 B1 KR101765060 B1 KR 101765060B1 KR 1020100087872 A KR1020100087872 A KR 1020100087872A KR 20100087872 A KR20100087872 A KR 20100087872A KR 101765060 B1 KR101765060 B1 KR 101765060B1
Authority
KR
South Korea
Prior art keywords
termination
data
external pin
driver
pull
Prior art date
Application number
KR1020100087872A
Other languages
Korean (ko)
Other versions
KR20110111218A (en
Inventor
손영수
설호석
김동민
이진일
박광일
배승준
곽상협
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to US13/048,219 priority Critical patent/US8531898B2/en
Publication of KR20110111218A publication Critical patent/KR20110111218A/en
Application granted granted Critical
Publication of KR101765060B1 publication Critical patent/KR101765060B1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1051Data output circuits, e.g. read-out amplifiers, data output buffers, data output registers, data output level conversion circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1051Data output circuits, e.g. read-out amplifiers, data output buffers, data output registers, data output level conversion circuits
    • G11C7/1057Data output buffers, e.g. comprising level conversion circuits, circuits for adapting load
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/22Read-write [R-W] timing or clocking circuits; Read-write [R-W] control signal generators or management 
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0005Modifications of input or output impedance

Abstract

반도체 메모리 장치의 온-다이 터미네이션(on-die termination, ODT) 회로는 종단 저항부 및 종단 제어부를 포함한다. 상기 종단 저항부는 외부 핀에 연결되고, 상기 외부 핀에 연결된 전송선에 종단 저항을 제공한다. 상기 종단 제어부는 상기 종단 저항부에 연결되고, 데이터 레이트를 반영하는 복수비트의 스트렝쓰 코드에 응답하여 상기 종단 저항의 저항값을 가변한다.An on-die termination (ODT) circuit of a semiconductor memory device includes a termination resistor portion and a termination control portion. The termination resistor portion is connected to an external pin and provides a termination resistance to a transmission line connected to the external pin. The termination control unit is connected to the termination resistance unit and varies a resistance value of the termination resistance in response to a plurality of bit length code reflecting the data rate.

Description

온-다이 터미네이션 회로, 데이터 출력 버퍼 및 반도체 메모리 장치{ON-DIE TERMINATION CIRCUIT, DATA OUTPUT BUFFER, SEMICONDUCTOR MEMORY DEVICE}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an on-die termination circuit, a data output buffer, and a semiconductor memory device,

본 발명은 온-다이 터미네이션에 관한 것으로서, 더욱 상세하게는 온-다이 터미네이션 회로, 데이터 출력 버퍼, 반도체 메모리 장치에 관한 것이다.The present invention relates to on-die termination, and more particularly, to an on-die termination circuit, a data output buffer, and a semiconductor memory device.

온-다이 터미네이션(on-die termination, ODT)은 메모리 컨트롤러와 반도체 메모리 장치간의 인터페이스에서 신호 반사(signal reflection)를 최소화함으로써 신호 충실도(signal integrity)를 향상시키기 위하여 도입되었다. ODT 회로는 전송선의 임피던스와 매칭된 터미네이션 저항(termination resistor, RTT)을 제공함으로써 신호 반사를 억제할 수 있다.On-die termination (ODT) has been introduced to improve signal integrity by minimizing signal reflection at the interface between the memory controller and the semiconductor memory device. The ODT circuit can suppress signal reflections by providing a termination resistor (RTT) matched to the impedance of the transmission line.

동작 전압이 감소함에 따라 이러한 ODT 회로에서 전력 소모를 감소시킬 필요성이 대두되었다.As the operating voltage decreases, there is a need to reduce power consumption in such ODT circuits.

상기와 같은 문제점을 해결하기 위하여 본 발명의 일 목적은 전력 소모를 감소시킬 수 있는 온-다이 터미네이션 회로를 제공하는 것이다.In order to solve the above problems, it is an object of the present invention to provide an on-die termination circuit capable of reducing power consumption.

본 발명의 다른 목적은 전력 소모를 감소시킬 수 있는 데이터 출력 버퍼를 제공하는 것이다.Another object of the present invention is to provide a data output buffer capable of reducing power consumption.

본 발명의 또 다른 목적은 상기 데이터 출력 버퍼를 포함하는 반도체 메모리 장치를 제공하는 것이다.Still another object of the present invention is to provide a semiconductor memory device including the data output buffer.

상기 일 목적을 달성하기 위하여 반도체 메모리 장치의 온-다이 터미네이션(on-die termination, ODT) 회로는 종단 저항부 및 종단 제어부를 포함한다. 상기 종단 저항부는 외부 핀에 연결되고, 상기 외부 핀에 연결된 전송선에 종단 저항을 제공한다. 상기 종단 제어부는 상기 종단 저항부에 연결되고, 데이터 레이트를 반영하는 복수비트의 스트렝쓰 코드에 응답하여 상기 종단 저항의 저항값을 가변한다.To achieve the above object, an on-die termination (ODT) circuit of a semiconductor memory device includes a termination resistor portion and a termination control portion. The termination resistor portion is connected to an external pin and provides a termination resistance to a transmission line connected to the external pin. The termination control unit is connected to the termination resistance unit and varies a resistance value of the termination resistance in response to a plurality of bit length code reflecting the data rate.

일 실시예에서, 상기 종단 제어부는 상기 데이터 레이트가 높아질수록 상기 종단 저항의 저항값을 감소시키고, 상기 데이터 레이트가 낮아질수록 상기 종단 저항의 저항값을 증가시킬 수 있다.In one embodiment, the termination controller may decrease the resistance value of the termination resistance as the data rate increases, and may increase the resistance value of the termination resistance as the data rate decreases.

일 실시예에서, 상기 종단 제어부는, 상기 스트렝쓰 코드와 출력 인에이블 신호에 응답하여 활성화되는 복수 비트의 터미네이션 제어 신호를 생성할 수 있다. 상기 종단 저항부는 각각이 전원 전압에 연결되고 상기 터미네이션 제어 신호의 각 비트에 응답하여 턴-온되는 복수의 트랜지스터들; 및 상기 복수의 트랜지스터들 각각과 상기 외부 핀 사이에 연결되는 복수의 저항들을 포함할 수 있다.In one embodiment, the termination control unit may generate a plurality of bits of termination control signal that are activated in response to the length code and the output enable signal. A plurality of transistors each of which is connected to a power supply voltage and is turned on in response to each bit of the termination control signal; And a plurality of resistors coupled between each of the plurality of transistors and the external pin.

상기 목적을 달성하기 위한 본 발명의 다른 실시예에 따른 온-다이 터미네이션 회로는 종단부 및 조정부를 포함한다. 상기 종단부는 고정된 전압 레벨을 가지는 전원 전압과 외부 핀에 연결되는 조정 노드 사이에 연결되고, 복수 비트의 디지털 제어 코드에 응답하여 상기 외부 핀에 연결된 채널에 종단 저항을 제공한다. 상기 조정부는 상기 조정 노드에 연결되고, 상기 조정 노드의 전압과 기준 전압을 비교한 결과에 기초하여 상기 디지털 제어 코드를 각 비트값을 변경하여 상기 종단 저항이 상기 외부 핀에 연결된 외부 저항과 매칭되도록 한다.According to another aspect of the present invention, there is provided an on-die termination circuit including a termination part and an adjustment part. The termination is coupled between a power supply voltage having a fixed voltage level and an adjustment node coupled to the external pin and provides a termination resistance to the channel coupled to the external pin in response to the plurality of bits of the digital control code. Wherein the adjustment unit is connected to the adjustment node and changes the bit value of the digital control code based on a result of comparing the voltage of the adjustment node with the reference voltage so that the termination resistance is matched with the external resistance connected to the external pin do.

일 실시예에서, 상기 종단부는 상기 전원 전압과 상기 조정 노드 사이에 연결되는 복수의 피모스 트랜지스터를 포함하고, 상기 피모스 트랜지스터들의 게이트에는 상기 디지털 제어 코드의 각 비트가 인가될 수 있다.In one embodiment, the termination includes a plurality of PMOS transistors coupled between the power supply voltage and the tuning node, and each bit of the digital control code may be applied to a gate of the PMOS transistors.

상기 다른 목적을 달성하기 위해, 반도체 메모리 장치의 데이터 출력 버퍼는 구동부 및 제어부를 포함한다. 상기 구동부는 외부 핀에 연결되고, 상기 외부 핀에 연결된 전송선을 통하여 메모리 컨트롤러에 독출 데이터를 제공하는 드라이버 동작을 수행하면서 상기 전송선에 드라이버 임피던스를 제공한다. 상기 제어부는 상기 구동부에 연결되고, 출력 인에이블 신호에 응답하여 상기 구동부가 상기 드라이버 동작을 수행하도록 제어하며, 상기 독출 데이터와 데이터 레이트가 반영된 스트렝쓰 코드를 결합하여 상기 구동부를 제어하는 드라이빙 제어 신호를 생성한다. 상기 드라이버 임피던스는 상기 스트렝쓰 코드에 따라 가변된다.In order to achieve the other object, the data output buffer of the semiconductor memory device includes a driver and a control unit. The driving unit is connected to an external pin and provides a driver impedance to the transmission line while performing a driver operation to supply read data to a memory controller through a transmission line connected to the external pin. The control unit is connected to the driving unit and controls the driving unit to perform the driver operation in response to an output enable signal. The driving unit controls the driving unit by combining the read data with the data code, . The driver impedance is varied according to the length code.

일 실시예에서, 상기 출력 인에이블 신호는 독출 모드에서 활성화되고, 상기 제어부는 상기 독출 데이터와 상기 스트렝스 코드를 결합하여 풀-업 드라이빙 제어 신호 및 풀-다운 드라이빙 제어 신호를 생성하고, 상기 출력 인에이블 신호에 응답하여 상기 구동부에 상기 풀-업 드라이빙 제어 신호 및 상기 풀-다운 드라이빙 제어 신호를 제공할 수 있다.In one embodiment, the output enable signal is activated in a read mode, and the control unit combines the read data with the strength code to generate a pull-up driving control signal and a pull-down driving control signal, And may provide the pull-up driving control signal and the pull-down driving control signal to the driving unit in response to an enable signal.

상기 구동부는 전원 전압과 상기 외부 핀 사이에 연결되고, 상기 제어부로부터 상기 풀-업 드라이빙 제어 신호를 수신하는 풀-업 구동기; 및 접지 전압과 상기 외부 핀 사이에 연결되고, 상기 제어부로부터 상기 풀-다운 드라이빙 제어 신호를 수신하는 풀-다운 구동기를 포함할 수 있다.A pull-up driver connected between the power supply voltage and the external pin and receiving the pull-up driving control signal from the control unit; And a pull-down driver connected between the ground voltage and the external pin and receiving the pull-down driving control signal from the control unit.

상기 전원 전압은 0.2V일 수 있다.The power supply voltage may be 0.2V.

상기 또 다른 목적을 달성하기 위해, 반도체 메모리 장치는 메모리 코어 및 데이터 출력 버퍼를 포함한다. 상기 메모리 코어는 데이터를 저장하고, 상기 저장된 데이터에 기초하여 독출 데이터를 생성한다. 상기 데이터 출력 버퍼는 상기 메모리 코어로부터 제공된 상기 독출 데이터를 외부 핀을 통하여 메모리 컨트롤러로 출력하고 독출 모드에서 상기 전송선에 데이터 레이트를 반영하는 복수 비트의 스트렝쓰 코드에 응답하여 가변되는 드라이버 임피던스를 제공한다.According to another aspect of the present invention, a semiconductor memory device includes a memory core and a data output buffer. The memory core stores data and generates read data based on the stored data. The data output buffer outputs the read data provided from the memory core to the memory controller via an external pin and provides a variable driver impedance in response to a plurality of bit string codes reflecting a data rate on the transmission line in a read mode .

본 발명의 실시예들에 따르면 데이터 레이트에 따라서 가변되는 터미네이션 저항 또는 드라이버 임피던스를 제공하여 전류 소모를 감소시킬 수 있다.According to embodiments of the present invention, current consumption can be reduced by providing a termination resistance or driver impedance that varies according to the data rate.

도 1은 본 발명의 일 실시예에 따른 온-다이 터미네이션(on-die termination, ODT) 회로를 나타내는 블록도이다.
도 2a 및 도 2b는 본 발명의 실시예들에 따른 스트렝쓰 코드 제공 회로를 나타낸다.
도 3은 도 1의 ODT 회로의 일 예를 나타내는 회로도이다.
도 4는 본 발명의 일 실시예에 따른 데이터 출력 버퍼를 나타내는 블록도이다.
도 5는 도 4의 데이터 출력 버퍼를 나타내는 블록도이다.
도 6은 도 5의 데이터 출력 버퍼를 나타내는 회로도이다.
도 7은 본 발명의 일 실시예에 따른 반도체 메모리 장치를 나타내는 블록도이다.
도 8은 본 발명의 다른 실시예에 따른 ODT 회로를 나타내는 블록도이다.
도 9는 도 8의 ODT 회로를 나타내는 회로도이다.
도 10은 본 발명의 일 실시예에 따른 오프-칩 드라이버(Off-chip driver, OCD)를 나타내는 블록도이다.
도 11은 도 10의 OCD를 나타내는 회로도이다.
도 12는 본 발명의 일 실시예에 따른 메모리 모듈을 나타내는 블록도이다.
도 13a 내지 도 13f는 본 발명의 실시예들에 따른 메모리 모듈의 예들을 나타내는 도면이다.
도 14는 본 발명의 일 실시예에 따른 메모리 시스템을 나타내는 도면이다.
1 is a block diagram illustrating an on-die termination (ODT) circuit in accordance with an embodiment of the present invention.
FIGs. 2A and 2B show a string code providing circuit according to embodiments of the present invention. FIG.
3 is a circuit diagram showing an example of the ODT circuit of Fig.
4 is a block diagram illustrating a data output buffer according to an embodiment of the present invention.
5 is a block diagram showing the data output buffer of Fig.
6 is a circuit diagram showing the data output buffer of FIG.
7 is a block diagram illustrating a semiconductor memory device according to an embodiment of the present invention.
8 is a block diagram illustrating an ODT circuit according to another embodiment of the present invention.
9 is a circuit diagram showing the ODT circuit of Fig.
10 is a block diagram illustrating an off-chip driver (OCD) according to an embodiment of the present invention.
11 is a circuit diagram showing the OCD of FIG.
12 is a block diagram illustrating a memory module according to an embodiment of the present invention.
13A-13F illustrate examples of memory modules according to embodiments of the present invention.
Figure 14 is a diagram illustrating a memory system in accordance with one embodiment of the present invention.

본문에 개시되어 있는 본 발명의 실시예들에 대해서, 특정한 구조적 내지 기능적 설명들은 단지 본 발명의 실시예를 설명하기 위한 목적으로 예시된 것으로, 본 발명의 실시예들은 다양한 형태로 실시될 수 있으며 본문에 설명된 실시예들에 한정되는 것으로 해석되어서는 아니 된다.For the embodiments of the invention disclosed herein, specific structural and functional descriptions are set forth for the purpose of describing an embodiment of the invention only, and it is to be understood that the embodiments of the invention may be practiced in various forms, The present invention should not be construed as limited to the embodiments described in Figs.

본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 구성요소에 대해 사용하였다.The present invention is capable of various modifications and various forms, and specific embodiments are illustrated in the drawings and described in detail in the text. It should be understood, however, that the invention is not intended to be limited to the particular forms disclosed, but includes all modifications, equivalents, and alternatives falling within the spirit and scope of the invention. Similar reference numerals have been used for the components in describing each drawing.

제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위로부터 이탈되지 않은 채 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다.The terms first, second, etc. may be used to describe various elements, but the elements should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another. For example, without departing from the scope of the present invention, the first component may be referred to as a second component, and similarly, the second component may also be referred to as a first component.

어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다. 구성요소들 간의 관계를 설명하는 다른 표현들, 즉 "~사이에"와 "바로 ~사이에" 또는 "~에 이웃하는"과 "~에 직접 이웃하는" 등도 마찬가지로 해석되어야 한다.It is to be understood that when an element is referred to as being "connected" or "connected" to another element, it may be directly connected or connected to the other element, . On the other hand, when an element is referred to as being "directly connected" or "directly connected" to another element, it should be understood that there are no other elements in between. Other expressions that describe the relationship between components, such as "between" and "between" or "neighboring to" and "directly adjacent to" should be interpreted as well.

본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 설시된 특징, 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used in this application is used only to describe a specific embodiment and is not intended to limit the invention. The singular expressions include plural expressions unless the context clearly dictates otherwise. In the present application, the terms "comprise", "having", and the like are intended to specify the presence of stated features, integers, steps, operations, elements, components, or combinations thereof, , Steps, operations, components, parts, or combinations thereof, as a matter of principle.

다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Terms such as those defined in commonly used dictionaries are to be interpreted as having a meaning consistent with the contextual meaning of the related art and are to be interpreted as either ideal or overly formal in the sense of the present application Do not.

이하, 첨부한 도면들을 참조하여, 본 발명의 바람직한 실시예를 보다 상세하게 설명하고자 한다. 도면상의 동일한 구성요소에 대해서는 동일하거나 유사한 참조부호를 사용하고 동일한 구성요소에 대해서 중복된 설명은 생략한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The same or similar reference numerals are used for the same constituent elements in the drawings and redundant explanations for the same constituent elements are omitted.

도 1은 본 발명의 일 실시예에 따른 온-다이 터미네이션(on-die termination, ODT) 회로를 나타내는 블록도이다.1 is a block diagram illustrating an on-die termination (ODT) circuit in accordance with an embodiment of the present invention.

도 1을 참조하면, ODT 회로(100)는 종단 제어부(110) 및 종단 저항부(120)를 포함한다.Referring to FIG. 1, the ODT circuit 100 includes a termination control unit 110 and a termination resistance unit 120.

종단 저항부(120)는 외부 핀(210)에 연결된다. 종단 저항부(120)는 외부 핀(210)에 연결된 전송선에 종단 저항을 제공한다. 외부 핀(210)은 데이터 입출력(data input/output) 핀, 데이터 스트로브(data strobe) 핀, 데이터 마스크(data mask) 핀, 종단 데이터 스트로브(termination data strobe) 핀 등 일 수 있다. 여기서, “핀”이라는 용어는 집적 회로에 대한 전기적 상호접속을 폭넓게 가리키는 것으로서, 예를 들어 패드 또는 집적 회로 상의 다른 전기적 접촉점을 포함한다.The termination resistance portion 120 is connected to the external pin 210. The termination resistance portion 120 provides a termination resistance to a transmission line connected to the external fin 210. [ The external pin 210 may be a data input / output pin, a data strobe pin, a data mask pin, a termination data strobe pin, or the like. As used herein, the term " pin " refers broadly to electrical interconnections to an integrated circuit, including for example a pad or other electrical contact on an integrated circuit.

종단 저항부(120)는 전원 전압과 외부 핀(210) 사이에 연결된 상기 종단 저항을 제공하는 풀-업 터미네이션 동작을 수행할 수 있다. 종단 저항부(120)가 상기 풀-업 터미네이션 동작을 수행하는 경우, 상기 외부 핀에 연결된 상기 전송선의 전압이 전원 전압으로 유지될 수 있다. 이에 따라, 상기 전송선에 로우 레벨을 가진 데이터가 전송될 때에만 종단 저항부(120) 및 상기 전송선에 전류가 흐르므로, 상기 풀-업 터미네이션 동작을 수행하는 종단 저항부(120)는, ODT 회로에서 전류 경로가 형성되어 DC 전류가 소모되는 종래의 센터 터미네이션 동작을 수행할 때에 비하여, 전력 소모를 감소시킬 수 있다.The termination resistor portion 120 may perform a pull-up termination operation that provides the termination resistor connected between the power supply voltage and the external pin 210. When the terminating resistor unit 120 performs the pull-up termination operation, the voltage of the transmission line connected to the external pin can be maintained at the power supply voltage. Accordingly, since the current flows in the terminating resistor unit 120 and the transmission line only when data having a low level is transmitted to the transmission line, the terminating resistor unit 120 performing the pull- The power consumption can be reduced as compared with the conventional center termination operation in which the current path is formed and the DC current is consumed.

종단 제어부(110)는 종단 저항부(120)에 연결된다. 종단 제어부(110)는 데이터 레이트(data rate)를 반영하는 복수 비트의 스트렝쓰(strength) 코드(SCD)에 응답하여 상기 종단 저항의 저항값을 가변한다. 여기서 데이터 레이트는 상기 ODT 회로(100)가 포함되는 반도체 메모리 장치의 동작 주파수(opreating frequemcy) 또는 외부 핀(210)을 통하여 반도체 메모리 장치로 입력되는 데이터의 토글 레이트를 의미한다. 또한 여기서 복수 비트의 스트렝Tm(strength) 코드(SCD)는 메모리 컨트롤러로부터 제어 핀을 통하여 입력될 수 있다. 예를 들어 상기 제어 핀은 ODT 핀일 수 있다. 또한 상기 스트렝스 코드(CD)는 상기 ODT 회로(100)가 포함되는 반도체 메모리 장치 내부(예를 들어 EMRS등)에서 생성될 수 있다.The termination control unit 110 is connected to the termination resistance unit 120. The termination control unit 110 varies the resistance value of the termination resistance in response to a plurality of bits of strength code (SCD) reflecting the data rate. Here, the data rate refers to the operating frequency (opreating frequency) of the semiconductor memory device in which the ODT circuit 100 is included, or the toggle rate of data input to the semiconductor memory device via the external pin 210. Also, a plurality of bit string Tm (strength) codes (SCD) may be input from the memory controller via the control pin. For example, the control pin may be an ODT pin. The CD may be generated in a semiconductor memory device including the ODT circuit 100 (for example, EMRS, etc.).

종단 제어부(110)는 스트렝쓰 코드(SCD) 및 출력 인에이블 신호(OEN)에 기초하여 종단 저항부(120)를 제어하는 종단 제어 신호(TCS)를 생성할 수 있다. 출력 인에이블 신호(OEN)는 외부 핀(210)에 연결된 전송선을 통하여 데이터가 출력되는 독출 모드(read mode)에서 활성화될 수 있다. 출력 인에이블 신호(OEN)가 활성화된 경우, 종단 제어부(110)는 상기 종단 저항을 제공하지 않도록 종단 저항부(120)를 제어하는 종단 제어 신호(TCS)를 생성할 수 있다. 예를 들어, 종단 제어부(110)는 활성화된 출력 인에이블 신호(OEN)에 응답하여 소정의 로직 레벨을 가진 종단 제어 신호(TCS)를 생성하고, 종단 저항부(120)는 상기 소정의 로직 레벨을 가진 종단 제어 신호(TCS)에 응답하여 상기 종단 저항과 외부 핀(210)의 연결을 끊을 수 있다.The termination control unit 110 may generate the termination control signal TCS that controls the termination resistance unit 120 based on the string code SCD and the output enable signal OEN. The output enable signal OEN may be activated in a read mode in which data is output through a transmission line connected to the external pin 210. When the output enable signal OEN is activated, the termination control unit 110 may generate a termination control signal TCS that controls the termination resistance unit 120 so as not to provide the termination resistance. For example, the termination control unit 110 generates a termination control signal TCS having a predetermined logic level in response to the activated output enable signal OEN, and the termination resistance unit 120 generates the termination control signal TCS having the predetermined logic level The termination resistor and the external pin 210 may be disconnected in response to a termination control signal TCS having a terminal control signal TCS.

출력 인에이블 신호(OEN)가 비활성화된 경우, 종단 제어부(110)는 상기 종단 저항을 제공하도록 종단 저항부(120)를 제어하는 종단 제어 신호(TCS)를 생성할 수 있다. 또한, 종단 제어부(110)는 스트렝쓰 코드(TCS)에 응답하여 상기 종단 저항의 저항 값을 가변하도록 종단 제어 신호(TCS)의 로직 레벨을 변경할 수 있다. 예를 들어 스트렝쓰 코드(TCS)가 동작 주파수가 제1 레인지에 있음을 나타내는 경우 종단 제어 신호(TCS)에 응답하여 종단 저항부(120)는 제1 저항 값을 가지는 종단 저항을 제공하도록 제어될 수 있다. 또한 스트렝쓰 코드(TCS)가 동작 주파수가 제1 레인지에 있음을 나타내는 경우 종단 제어 신호(TCS)에 응답하여 종단 저항부(120)는 제2 저항 값을 가지는 종단 저항을 제공하도록 제어될 수 있다. 여기서 제1 레인지가 제2 레인지보다 빠른 경우 제1 저항 값은 제2 저항 값보다 작을 수 있다.When the output enable signal OEN is deactivated, the termination control unit 110 may generate a termination control signal TCS that controls the termination resistance unit 120 to provide the termination resistance. In addition, the termination control unit 110 can change the logic level of the termination control signal TCS so as to vary the resistance value of the terminating resistor in response to the length code TCS. In response to the termination control signal TCS, for example, when the length code TCS indicates that the operating frequency is in the first range, the termination resistance section 120 is controlled to provide a termination resistance having a first resistance value . In addition, in response to the termination control signal TCS, the termination resistance portion 120 can be controlled to provide a termination resistance having a second resistance value when the stringency code TCS indicates that the operating frequency is in the first range . Here, if the first range is faster than the second range, the first resistance value may be smaller than the second resistance value.

도 2a 및 도 2b는 본 발명의 실시예들에 따른 스트렝쓰 코드 제공 회로를 나타낸다.FIGs. 2A and 2B show a string code providing circuit according to embodiments of the present invention. FIG.

도 2a를 참조하면, 스트렝쓰 코드 제공 회로(10)는 EMRS(Extended mode register set)로 구현될 수 있다. EMRS(10)는 데이터 레이트 정보(DRI) 즉 동작 주파수(FOP)를 제공받고 이 동작 주파수(FOP)에 따른 복수 비트의 스트렝쓰 코드(SCD)를 제공한다. 이러한 EMRS(10)는 반도체 메모리 장치 내부에 포함될 수도 있고, 반도체 메모리 장치 외부의 메모리 컨트롤러에 포함될 수도 있다.Referring to FIG. 2A, the streaming code providing circuit 10 may be implemented with an extended mode register set (EMRS). The EMRS 10 is provided with data rate information (DRI), that is, an operating frequency (FOP), and provides a plurality of bits of the scale code (SCD) according to the operating frequency (FOP). The EMRS 10 may be included in the semiconductor memory device or may be included in the memory controller outside the semiconductor memory device.

도 2b를 참조하면, 스트렝쓰 코드 제공 회로(20)는 복수의 비교기들(21, 22, 23)을 포함할 수 있다. 비교기(21)는 동작 주파수(FOP)와 제1 기준 주파수(FR1)를 비교하여 그 결과에 따라 제1 스트렝쓰 코드(SCD1)를 출력한다. 비교기(22)는 동작 주파수(FOP)와 제2 기준 주파수(FR2)를 비교하여 그 결과에 따라 제2 스트렝쓰 코드(SCD2)를 출력한다. 비교기(23)는 동작 주파수(FOP)와 제3 기준 주파수(FR3)를 비교하여 그 결과에 따라 제3 스트렝쓰 코드(SCD3)를 출력한다. 예를 들어 제1 기준 주파수(FR1)가 제2 기준 주파수(FR2)보다 낮고 제2 기준 주파수(FR2)가 제3 주파수(FR3)보다 낮은 경우에 동작 주파수(FOP)가 제1 기준 주파수(FR1)와 제2 기준 주파수(FR2) 사이이면, SCD1은 로우 레벨, SCD2는 하이 레벨, SCD3는 하이 레벨일 수 있다. 즉 스트렝쓰 코드(SCD)는 [011]이 될 수 있다. 또한 동작 주파수(FOP)가 제2 기준 주파수(FR2)와 제3 기준 주파수(FR3) 사이이면 스트렝쓰 코드(SCD)는 [001]이 될 수 있다. 또한 동작 주파수가 제3 기준 주파수(FR3)보다 높으면 스트렝쓰 코드(SCD)는 [000]이 될 수 있다.Referring to FIG. 2B, the string code providing circuit 20 may include a plurality of comparators 21, 22, and 23. The comparator 21 compares the operating frequency FOP with the first reference frequency FR1 and outputs a first length code SCD1 according to the comparison result. The comparator 22 compares the operating frequency FOP with the second reference frequency FR2 and outputs a second length code SCD2 according to the comparison result. The comparator 23 compares the operating frequency FOP with the third reference frequency FR3 and outputs the third string code SCD3 according to the result. For example, when the first reference frequency FR1 is lower than the second reference frequency FR2 and the second reference frequency FR2 is lower than the third frequency FR3, the operating frequency FOP is lower than the first reference frequency FR1 ) And the second reference frequency FR2, SCD1 may be a low level, SCD2 may be a high level, and SCD3 may be a high level. That is, the string code (SCD) can be [011]. If the operating frequency FOP is between the second reference frequency FR2 and the third reference frequency FR3, the string code SCD may be [001]. Also, if the operating frequency is higher than the third reference frequency FR3, the length code SCD may be [000].

도 3은 도 1의 ODT 회로의 일 예를 나타내는 회로도이다.3 is a circuit diagram showing an example of the ODT circuit of Fig.

도 3을 참조하면, 종단 제어부(110)는 제1 선택기(111), 제2 선택기(112) 및 제3 선택기(113)를 포함할 수 있다. 제1 선택기(111), 제2 선택기(112) 및 제3 선택기(113)는 각각 멀티플렉서(multiplexer)로 구현될 수 있다. 종단 저항부(120)는 외부 핀(210)에 연결되고 제1 트랜지스터(121), 제1 저항(R1), 제2 트랜지스터(122), 제2 저항(R2), 제3 트랜지스터(123) 및 제3 저항(R3)을 포함할 수 있다.3, the termination controller 110 may include a first selector 111, a second selector 112, and a third selector 113. Each of the first selector 111, the second selector 112 and the third selector 113 may be implemented as a multiplexer. The termination resistance part 120 is connected to the external fin 210 and includes a first transistor 121, a first resistor Rl, a second transistor 122, a second resistor R 2, a third transistor 123, And a third resistor R3.

제1 선택기(111)는 전원 전압(VDDQ)에 연결된 제1 입력 단자, 접지 전압(VSSQ)에 연결된 제2 입력 단자, 출력 인에이블 신호(OEN)가 인가되는 선택 단자, 및 제1 종단 제어 신호(TCS1)가 출력되는 출력 단자를 가질 수 있다. 제1 선택기(111)는 출력 인에이블 신호(OEN)에 응답하여 제1 종단 제어 신호(TCS1)로서 전원 전압(VDDQ) 또는 제1 스트렝스 코드(SCD1)를 선택적으로 출력할 수 있다.The first selector 111 includes a first input terminal connected to the power supply voltage VDDQ, a second input terminal connected to the ground voltage VSSQ, a selection terminal to which the output enable signal OEN is applied, (TCS1) is output. The first selector 111 may selectively output the power supply voltage VDDQ or the first power code SCD1 as the first termination control signal TCS1 in response to the output enable signal OEN.

제1 트랜지스터(121)는 전원 전압(VDDQ)에 연결된 소스, 제1 선택기(111)의 출력 단자에 연결된 게이트, 및 제1 저항(R1)에 연결된 드레인을 가질 수 있다. 제1 저항(R1)은 제1 트랜지스터(121)와 외부 핀(210) 사이에 연결될 수 있다. 제1 트랜지스터(121)는 제1 종단 제어 신호(TCS1)에 응답하여 온/오프될 수 있고, 제1 저항(R1)은 제1 트랜지스터(121)의 온/오프 상태에 따라 외부 핀(210)에 전기적으로 연결 또는 차단될 수 있다.The first transistor 121 may have a source coupled to the power supply voltage VDDQ, a gate coupled to the output terminal of the first selector 111, and a drain coupled to the first resistor R1. The first resistor Rl may be connected between the first transistor 121 and the external pin 210. The first transistor 121 may be turned on or off in response to the first terminal control signal TCS1 and the first resistor R1 may be turned on or off according to the ON / OFF state of the first transistor 121. [ As shown in Fig.

제2 선택기(112)는 전원 전압(VDDQ)에 연결된 제1 입력 단자, 접지 전압(VSSQ)에 연결된 제2 입력 단자, 출력 인에이블 신호(OEN)가 인가되는 선택 단자, 및 제2 종단 제어 신호(TCS2)가 출력되는 출력 단자를 가질 수 있다. 제3 선택기(112)는 출력 인에이블 신호(OEN)에 응답하여 제2 종단 제어 신호(TCS2)로서 전원 전압(VDDQ) 또는 제2 스트렝스 코드(SCD2)를 선택적으로 출력할 수 있다.The second selector 112 includes a first input terminal connected to the power supply voltage VDDQ, a second input terminal connected to the ground voltage VSSQ, a selection terminal to which the output enable signal OEN is applied, And the output terminal TCS2 is output. The third selector 112 may selectively output the power supply voltage VDDQ or the second strength code SCD2 as the second terminal control signal TCS2 in response to the output enable signal OEN.

제2 트랜지스터(122)는 전원 전압(VDDQ)에 연결된 소스, 제2 선택기(112)의 출력 단자에 연결된 게이트, 및 제2 저항(R2)에 연결된 드레인을 가질 수 있다. 제2 저항(R2)은 제2 트랜지스터(122)와 외부 핀(210) 사이에 연결될 수 있다. 제2 트랜지스터(122)는 제2 종단 제어 신호(TCS2)에 응답하여 온/오프될 수 있고, 제2 저항(R2)은 제2 트랜지스터(122)의 온/오프 상태에 따라 외부 핀(210)에 전기적으로 연결 또는 차단될 수 있다.The second transistor 122 may have a source coupled to the power supply voltage VDDQ, a gate coupled to the output terminal of the second selector 112, and a drain coupled to the second resistor R2. The second resistor R2 may be connected between the second transistor 122 and the external pin 210. [ The second transistor 122 may be turned on / off in response to the second terminal control signal TCS2 and the second resistor R2 may be turned on / off in response to the ON / OFF state of the second transistor 122, As shown in Fig.

제3 선택기(113)는 전원 전압(VDDQ)에 연결된 제1 입력 단자, 접지 전압(VSSQ)에 연결된 제2 입력 단자, 출력 인에이블 신호(OEN)가 인가되는 선택 단자, 및 제3 종단 제어 신호(TCS3)가 출력되는 출력 단자를 가질 수 있다. 제3 선택기(113)는 출력 인에이블 신호(OEN)에 응답하여 제3 종단 제어 신호(TCS3)로서 전원 전압(VDDQ) 또는 제3 스트렝스 코드(SCD3)를 선택적으로 출력할 수 있다.The third selector 113 includes a first input terminal connected to the power supply voltage VDDQ, a second input terminal connected to the ground voltage VSSQ, a selection terminal to which the output enable signal OEN is applied, And an output terminal to which the output terminal TCS3 is output. The third selector 113 may selectively output the power source voltage VDDQ or the third power source code SCD3 as the third terminal control signal TCS3 in response to the output enable signal OEN.

제3 트랜지스터(123)는 전원 전압(VDDQ)에 연결된 소스, 제3 선택기(113)의 출력 단자에 연결된 게이트, 및 제2 저항(R2)에 연결된 드레인을 가질 수 있다. 제3 저항(R3)은 제3 트랜지스터(123)와 외부 핀(210) 사이에 연결될 수 있다. 제3 트랜지스터(123)는 제3 종단 제어 신호(TCS3)에 응답하여 온/오프될 수 있고, 제3 저항(R3)은 제3 트랜지스터(123)의 온/오프 상태에 따라 외부 핀(210)에 전기적으로 연결 또는 차단될 수 있다.The third transistor 123 may have a source coupled to the power supply voltage VDDQ, a gate coupled to the output terminal of the third selector 113, and a drain coupled to the second resistor R2. The third resistor R3 may be connected between the third transistor 123 and the external pin 210. The third transistor 123 may be turned on and off in response to the third terminal control signal TCS3 and the third resistor R3 may be turned on or off in response to the on / As shown in Fig.

외부 핀(210)에 연결된 전송선을 통하여 데이터가 출력되는 독출 모드(read mode)에서 출력 인에이블 신호(OEN)가 활성화되면, 제1 선택기(111)는 제1 종단 제어 신호(TCS1)로서 전원 전압(VDDQ)을 출력하고, 제2 선택기(112)는 제2 종단 제어 신호(TCS2)로서 전원 전압(VDDQ)을 출력하고, 제3 선택기(113)는 제3 종단 제어 신호(TCS2)로서 전원 전압(VDDQ)를 출력한다. 제1 내지 제3 트랜지스터들(121, 122, 123)은 각각 로직 하이 레벨을 가진 제1 내지 제3 종단 제어 신호들(TCS1, TCS2, TCS3)에 응답하여 턴-오프된다. 제1 내지 제3 저항들(R1, R2, R3)은 각각 턴-오프된 제1 내지 제3 트랜지스터들(121, 122, 123)에 의하여 외부 핀(210)으로부터 전기적으로 차단될 수 있다. 이에 따라, ODT 회로(100)는 상기 독출 모드에서 터미네이션 동작을 수행하지 않을 수 있다.When the output enable signal OEN is activated in a read mode in which data is output through a transmission line connected to the external pin 210, the first selector 111 selects the power supply voltage VCC as the first terminal control signal TCS1, The second selector 112 outputs the power supply voltage VDDQ as the second terminal control signal TCS2 and the third selector 113 outputs the power supply voltage VDDQ as the third terminal control signal TCS2, (VDDQ). The first to third transistors 121, 122 and 123 are turned off in response to the first to third termination control signals TCS1, TCS2 and TCS3 having logic high levels, respectively. The first to third resistors R1, R2 and R3 may be electrically disconnected from the external pin 210 by the first through third transistors 121, 122 and 123 turned off, respectively. Accordingly, the ODT circuit 100 may not perform the termination operation in the read mode.

출력 인에이블 신호(OEN)가 비활성화되면, 제1 내지 제3 선택기들(111, 112, 113)은 각각 제1 내지 제3 종단 제어 신호(TCS1, TCS2, TCS3)로서 제1 내지 제3 스트렝쓰 코드들(SCD1, SCD2, SCD3)을 출력한다. 제1 내지 제3 트랜지스터들(121, 122, 123)은 각각 제1 내지 제3 스트렝쓰 코드들(SCD1, SCD2, SCD3)의 논리 레벨에 따라 턴-온/오프된다. 제1 내지 제3 저항들(R1, R2, R3)은 각각 턴-온/오프된 제1 내지 제3 트랜지스터들(121, 122, 123)에 의하여 외부 핀(210)과/으로부터 전기적으로 연결/차단될 수 있다.When the output enable signal OEN is inactivated, the first to third selectors 111, 112 and 113 output the first to third longitudinal control signals TCS1, TCS2 and TCS3, respectively, And outputs the codes SCD1, SCD2 and SCD3. The first to third transistors 121, 122 and 123 are turned on / off according to the logic levels of the first to third string codes SCD1, SCD2 and SCD3, respectively. The first to third resistors R1, R2 and R3 are electrically connected / disconnected from the external pin 210 by the first to third transistors 121, 122 and 123 turned on / off, respectively. Can be blocked.

예를 들어 스트렝쓰 코드(SCD)가 [011]이면, 제1 트랜지스터(121)만 턴-온되고 제1 저항(R1)만이 외부 핀(210)에 전기적으로 연결된다. 이에 따라 종단 저항부(120)는 제1 저항(R1)으로 구성된 종단 저항을 제공할 수 있다. 예를 들어 스트렝쓰 코드가 [001]이면 제1 트랜지스터(121)와 제2 트랜지스터(122)가 턴-온 되고 제1 저항(R1)과 제2 저항(R2)이 외부 핀(210)에 전기적으로 연결된다. 이에 따라 종단 저항부(120)는 병렬 연결된 제1 저항(R1)과 제2 저항(R2)으로 구성된 종단 저항을 제공할 수 있다. 예를 들어 스트렝쓰 코드가 [000]이면 제1 내지 제3 트랜지스터(121, 122, 123)가 턴-온되고 제1 내지 제3 저항(R1, R2, R3)이 외부 핀(210)에 전기적으로 연결된다. 이에 따라 종단 저항부(120)는 병렬 연결된 제1 내지 제3 저항(R1, R2, R3)으로 구성된 종단 저항을 제공할 수 있다. 여기서 제1 및 제2 저항(R1, R2)은 실질적으로 동일한 저항값을 가질 수 있고, 제3 저항(R3)은 제2 저항의 반이 되는 저항값을 가질 수 있다. 예를 들어 제1 저항(R1) 및 제2 저항(R2) 각각은 약 200 Ω의 저항 값을 가질 수 있고, 제3 저항(R3)은 약 100 200 Ω의 저항 값을 가질 수 있다. 이 경우 스트렝쓰 코드(SCD)가 [011]인 경우 종단 저항은 약 200 Ω의 저항 값을 가질 수 있고, 스트렝쓰 코드(SCD)가 [001]인 경우 종단 저항은 약 100 Ω의 저항 값을 가질 수 있고, 스트렝쓰 코드(SCD)가 [000]인 경우 종단 저항은 약 50 Ω의 저항 값을 가질 수 있다.For example, when the length code SCD is [011], only the first transistor 121 is turned on and only the first resistor R1 is electrically connected to the external pin 210. [ Accordingly, the termination resistance portion 120 can provide a termination resistance composed of the first resistor R1. The first transistor 121 and the second transistor 122 are turned on and the first resistor R1 and the second resistor R2 are electrically connected to the external pin 210. [ Lt; / RTI > Accordingly, the termination resistance portion 120 may provide a termination resistance composed of a first resistor R1 and a second resistor R2 connected in parallel. For example, if the length code is [000], the first to third transistors 121, 122 and 123 are turned on and the first to third resistors R1, R2 and R3 are electrically connected to the external pin 210 Lt; / RTI > Accordingly, the termination resistance portion 120 may provide a termination resistance composed of first to third resistors R1, R2, and R3 connected in parallel. Here, the first and second resistors R1 and R2 may have substantially the same resistance value, and the third resistor R3 may have a resistance value that is half of the second resistance. For example, each of the first resistor R1 and the second resistor R2 may have a resistance value of about 200 OMEGA, and the third resistor R3 may have a resistance value of about 100 200 OMEGA. In this case, if the lengthwise code (SCD) is [011], the termination resistance may have a resistance value of about 200 Ω, and when the lengthwise code (SCD) is [001], the termination resistance may have a resistance value of about 100 Ω And when the lengthwise code (SCD) is [000], the termination resistance may have a resistance value of about 50 [Omega].

도 2에서 제1 내지 제3 저항들(R1, R2, R3)은 각각 하나의 저항으로 도시되어 있으나, 실시예에 따라 제1 내지 제3 저항들(R1, R2, R3) 각각은 병렬 연결된 복수의 저항들 및 상기 저항들의 연결을 제어하기 위한 트랜지스터들로 구현될 수 있다.Although the first to third resistors R1, R2 and R3 are shown as one resistor in FIG. 2, each of the first to third resistors R1, R2, and R3 may include a plurality And transistors for controlling the connection of the resistors.

전술한 바와 같이 스트렝쓰 코드(SCD)는 데이터 레이트(data rate) 또는 동작 주파수(FOP, 데이터의 토글 레이트)를 반영하므로 데이터 레이트가 높은 경우(즉 스트렝쓰 코드(SCD)가 [000]인 경우)에는 종단 저항을 낮게 하여 빠른 시간에 채널을 충방전 시킬 수 있다. 또한 데이터 레이트가 낮은 경우(즉 스트렝쓰 코드(SCD)가 [011]인 경우)에는 종단 저항을 증가시켜 채널을 따라 흐르는 DC 전류를 감소시켜 전류 소모를 감소시킬 수 있다.As described above, the length code SCD reflects the data rate or the operating frequency (FOP, toggle rate of data), and therefore, when the data rate is high (that is, when the length code SCD is [000] ), It is possible to charge and discharge the channel in a short time by lowering the termination resistance. In addition, when the data rate is low (ie, when the length code (SCD) is [011]), the termination resistance can be increased to reduce the DC current flowing along the channel to reduce current consumption.

도 4는 본 발명의 일 실시예에 따른 데이터 출력 버퍼를 나타내는 블록도이다.4 is a block diagram illustrating a data output buffer according to an embodiment of the present invention.

도 4를 참조하면, 데이터 출력 버퍼(300)는 제어부(310) 및 구동부(350)를 포함한다.Referring to FIG. 4, the data output buffer 300 includes a controller 310 and a driver 350.

구동부(350)는 외부 핀(210)에 연결된다. 구동부(350)는 외부 핀(210)에 연결된 전송선을 통하여 메모리 컨트롤러에 독출 데이터(DOUT)를 제공하는 드라이버 동작을 수행하면서 상기 전송선에 드라이버 임피던스를 제공한다. 외부 핀(210)은 입력 및 출력이 가능한 데이터 입출력 핀, 데이터 스트로브 핀 등 일 수 있다. 구동부(1120)는 상기 터미네이션 동작으로서 풀-업 터미네이션 동작을 수행할 수 있다.The driving unit 350 is connected to the external pin 210. The driving unit 350 provides a driver impedance to the transmission line while performing a driver operation to supply read data DOUT to the memory controller through a transmission line connected to the external pin 210. The external pin 210 may be a data input / output pin, a data strobe pin, or the like, which can be input and output. The driver 1120 may perform the pull-up termination operation as the termination operation.

제어부(310)는 구동부(350)에 연결된다. 제어부(310)는 출력 인에이블 신호(OEN)에 응답하여 구동부(350)가 상기 드라이빙 동작을 수행하도록 제어하며 독출 데이터(DOUT)와 데이터 레이트가 반영된 스트렝쓰 코드(SCDI)를 결합하여 구동부(350)를 제어하기 위한 드라이빙 제어 신호(DCS)를 생성한다. 상기 드라이버 임피던스는 스트렝쓰 코드(SCDI)에 따라 가변된다.The control unit 310 is connected to the driving unit 350. The control unit 310 controls the driving unit 350 to perform the driving operation in response to the output enable signal OEN and combines the read data DOUT with the data code SCDI reflecting the data rate, And a driving control signal DCS for controlling the driving control signal DCS. The driver impedance is varied according to the length code SCDI.

도 5는 도 4의 데이터 출력 버퍼를 나타내는 블록도이다.5 is a block diagram showing the data output buffer of Fig.

도 5를 참조하면, 데이터 출력 버퍼(300)는 제어부(310) 및 구동부(320)를 포함한다. 제어부(310)는 프리-드라이버(320) 및 드라이빙 제어부(330)를 포함한다. 구동부(350)는 풀-업 구동기(360) 및 풀-다운 구동기(370)를 포함한다.Referring to FIG. 5, the data output buffer 300 includes a controller 310 and a driver 320. The control unit 310 includes a pre-driver 320 and a driving control unit 330. The driver 350 includes a pull-up driver 360 and a pull-down driver 370.

프리-드라이버(320)는 메모리 코어로부터 독출 데이터(DOUT)를 수신하고, 독출 데이터(DOUT)를 반전시켜 반전 독출 데이터(DOUTB)를 드라이빙 제어부(330)에 제공할 수 있다. 드라이빙 제어부(330)는 독출 데이터(DOUT)와 스트렝쓰 코드(SCDI)와 독출 데이터(DOUT)를 결합하여 풀-업 드라이빙 제어 신호(PUDCS)를 생성하고 반전 독출 데이터(DOUTB)와 스트렝쓰 코드(SCDI)를 결합하여 풀-다운 드라이빙 제어 신호(PDDCS)를 생성하고, 출력 인에이블 신호(OEN)에 응답하여 풀-업 드라이빙 제어 신호(PUDCS) 및 풀-다운 드라이빙 제어 신호(PDDCS)를 구동부(350)에 제공할 수 있다.The pre-driver 320 receives the read data DOUT from the memory core, inverts the read data DOUT, and provides the inverted readout data DOUTB to the driving control unit 330. [ The driving control unit 330 generates the pull-up driving control signal PUDCS by combining the read data DOUT with the string of the data SCDI and the readout data DOUT and outputs the inverted readout data DOUTB and the string of length codes Up driving control signal PUDCS and the pull-down driving control signal PDDCS in response to an output enable signal OEN to a driving unit (not shown) 350).

풀-업 구동기(360)는 풀-업 드라이빙 제어 신호(PUDCS)에 응답하여 드라이빙 동작을 수행하면서 외부 핀(201)과 연결된 전송선에 풀-업 드라이빙 제어 신호(PUDCS)에 따라 저항값이 가변되는 풀-업 드라이버 임피던스를 제공한다. 풀-다운 구동기(370)는 풀-다운 드라이빙 제어 신호(PDDCS)에 응답하여 드라이빙 동작을 수행하면서 외부 핀(210)과 연결된 전송선에 풀-다운 드라이빙 제어 신호(PDDCS)에 따라 저항값이 가변되는 풀-다운 드라이버 임피던스를 제공한다.The pull-up driver 360 performs a driving operation in response to the pull-up driving control signal PUDCS while varying the resistance value of the transmission line connected to the external pin 201 according to the pull-up driving control signal PUDCS Provides a pull-up driver impedance. The pull-down driver 370 performs driving operation in response to the pull-down driving control signal PDDCS while varying the resistance value according to the pull-down driving control signal PDDCS to the transmission line connected to the external pin 210 Provides full-down driver impedance.

도 6은 도 5의 데이터 출력 버퍼를 나타내는 회로도이다.6 is a circuit diagram showing the data output buffer of FIG.

도 6을 참조하면, 프리-드라이버(320)는 인버터(321)를 포함할 수 있다. 드라이빙 제어부(330)는 제1 내지 제3 낸드 게이트들(331~333), 제1 내지 제3 선택기들(334~336), 제1 내지 제3 앤드 게이트들(341~343) 및 제4 내지 제6 선택기들(344~346)을 포함할 수 있다. 풀-업 구동기(360)는 제1 내지 제3 피모스 트랜지스터들(361~363) 및 제1 내지 제3 저항들(R1, R2, R3)을 포함할 수 있다. 제1 내지 제3 피모스 트랜지스터들(361~363)은 전원 전압(VDDQ)에 연결되고 제1 내지 제3 저항들(R1, R2, R3)은 각각 제1 내지 제3 피모스 트랜지스터들(361~363) 각각과 외부 핀(210) 사이에 연결된다. 풀-다운 구동기(370)는 제1 내지 제3 엔모스 트랜지스터들(371~373) 및 제4 내지 제6 저항들(R4, R5, R6)을 포함할 수 있다. 제1 내지 제3 엔모스 트랜지스터들(371~373)은 각각 접지 전압(VSSQ)에 연결되고 제1 내지 제3 엔모스 트랜지스터들(371~373)은 제1 내지 제3 엔모스 트랜지스터들(371~373) 각각과 외부 핀(210) 사이에 연결된다.Referring to FIG. 6, the pre-driver 320 may include an inverter 321. The driving control unit 330 includes first to third NAND gates 331 to 333, first to third selectors 334 to 336, first to third AND gates 341 to 343, And sixth selectors 344-346. The pull-up driver 360 may include first to third PMOS transistors 361 to 363 and first to third resistors R 1, R 2, and R 3. The first to third PMOS transistors 361 to 363 are connected to the power supply voltage VDDQ and the first to third resistors R1 to R3 are connected to the first to third PMOS transistors 361 To 363 and the external pin 210, respectively. The pull-down driver 370 may include first through third emmos transistors 371 through 373 and fourth through sixth resistors R4, R5 and R6. The first to third NMOS transistors 371 to 373 are respectively connected to the ground voltage VSSQ and the first to third NMOS transistors 371 to 373 are connected to the first to third NMOS transistors 371 to 373. [ To 373 and the external pin 210, respectively.

인버터(321)는 메모리 코어로부터 수신된 독출 데이터(DOUT)를 반전시켜 반전 독출 데이터(DOUTB)를 출력할 수 있다. 제1 내지 제3 낸드 게이트들(331~333)은 독출 데이터(DOUT)와 제1 내지 제3 스트렝쓰 코드들(SCDI1, SCDI2, SCDI3) 각각을 낸드 연산한다. 제1 내지 제3 앤드 게이트들(341~343)은 반전 독출 데이터(DOUTB)와 제1 내지 제3 스트렝쓰 코드들(SCDI1, SCDI2, SCDI3) 각각을 앤드 연산한다. 제1 내지 제3 선택기들(334~336) 각각은 선택 신호로서 출력 인에이블 신호(OEN)를 수신하고, 전원 전압(VDDQ)을 제1 입력 신호로서 수신하고, 제1 내지 제3 낸드 게이트들(331~333) 각각의 출력을 제2 입력 신호로서 수신할 수 있다. 제4 내지 제6 선택기들(344~346) 각각은 선택 신호로서 출력 인에이블 신호(OEN)를 수신하고, 접지 전압(VSSQ)을 제1 입력 신호로서 수신하고, 제1 내지 제3 앤드 게이트들(341~343) 각각의 출력을 제2 입력 신호로서 수신할 수 있다.The inverter 321 can output the inverted readout data DOUTB by inverting the readout data DOUT received from the memory core. The first to third NAND gates 331 to 333 perform the NAND operation on the read data DOUT and the first to third string codes SCDI1, SCDI2 and SCDI3, respectively. The first to third AND gates 341 to 343 end AND the inverted readout data DOUTB and the first to third stringent codes SCDI1, SCDI2 and SCDI3, respectively. Each of the first to third selectors 334 to 336 receives the output enable signal OEN as a selection signal, receives the power supply voltage VDDQ as a first input signal, (331 to 333) as the second input signal. Each of the fourth to sixth selectors 344 to 346 receives the output enable signal OEN as a selection signal, receives the ground voltage VSSQ as a first input signal, And can receive the output of each of the first to fourth input terminals 341 to 343 as the second input signal.

출력 인에이블 신호(OEN)가 비활성화되면, 제1 내지 제3 선택기들(334~336) 각각은 하이 레벨의 풀-업 드라이빙 제어 신호(PUDCS)를 출력하고, 제4 내지 제6 선택기들(344~346) 각각은 로우 레벨의 풀-다운 드라이빙 제어 신호(PDDCS)를 출력할 수 있다. 따라서 하이 레벨의 풀-업 드라이빙 제어 신호(PUDCS)에 의하여 제1 내지 제3 피모스 트랜지스터들(361~363)이 턴-오프되고, 로우 레벨의 풀-다운 드라이빙 제어 신호(PNDCS)에 의하여 제1 내지 제3 엔모스 트랜지스터들(371~373)이 턴-오프된다. 이에 따라 제1 내지 제3 저항들(R1, R2, R3)은 각각 외부 핀(210)으로부터 전기적으로 차단되고, 제4 내지 제6 저항들(R4, R5, R6)은 각각 외부 핀(210)으로부터 전기적으로 차단된다.When the output enable signal OEN is inactivated, each of the first to third selectors 334 to 336 outputs a pull-up driving control signal PUDCS of a high level, and the fourth to sixth selectors 344 To 346 may each output a low-level pull-down driving control signal PDDCS. Therefore, the first to third PMOS transistors 361 to 363 are turned off by the high level pull-up driving control signal PUDCS, and the pull-down driving control signal PNDCS 1 to the third NMOS transistors 371 to 373 are turned off. The first through third resistors R1, R2 and R3 are electrically isolated from the external pin 210 and the fourth through sixth resistors R4, R5 and R6 are electrically isolated from the external pin 210, As shown in Fig.

독출 모드에서 출력 인에이블 신호(OEN)가 활성화되면, 제1 내지 제3 선택기들(334~336) 각각은 제1 내지 제3 낸드 게이트들(331~333) 각각의 출력을 풀-업 드라이빙 제어 신호(PUDCS)로서 풀-업 구동기(360)에 출력할 수 있고, 제4 내지 제6 선택기들(344~346) 각각은 제1 내지 제3 앤드 게이트들(341~343) 각각의 출력을 풀-다운 드라이빙 제어 신호(PNDCS)로서 풀-다운 구동기(370)에 출력할 수 있다.When the output enable signal OEN is activated in the read mode, each of the first to third selectors 334 to 336 outputs the output of each of the first to third NAND gates 331 to 333 to the pull- Up driver 360 as the signal PUDCS and each of the fourth to sixth selectors 344 to 346 outputs the output of each of the first to third AND gates 341 to 343 to the pull- Down driver 370 as the down driving control signal PNDCS.

상기 독출 모두에서 풀-업 구동기(360) 및 풀-다운 구동기(370)는 독출 데이터(DOUT)에 기초하여 드라이빙 동작을 수행하면서 드라이버 임피던스를 제공할 수 있다. 예들 들어, 독출 데이터(DOUT)가 로직 하이 레벨을 가지는 경우, 반전 독출 데이터(DOUTB)는 로직 로우 레벨을 가지므로 제1 내지 제3 앤드 게이트들(341~343)의 출력은 제1 내지 제3 스트렝쓰 코드들(SCDI1, SCDI2, SCDI3)에 관계없이 모두 로직 로우 레벨이 된다. 따라서 제4 내지 제6 선택기들(344~346) 각각은 로우 레벨의 풀-다운 드라이빙 제어 신호(PDDCS)를 출력할 수 있다. 이에 따라 1 내지 제3 엔모스 트랜지스터들(371~373)은 턴/오프되고 제4 내지 제6 저항들(R4, R5, R6)은 각각 외부 핀(210)으로부터 전기적으로 차단된다. 독출 데이터(DOUT)가 로직 하이 레벨을 가지므로 낸드 게이트들(334, 335, 336)의 출력은 제1 내지 제3 스트렝쓰 코드들(SCDI1, SCDI2, SCDI3) 각각의 논리 레벨과 반대의 논리 레벨을 가지게 된다. 예를 들어 스트렝쓰 코드(SCDI)가 [100]이면 낸드 게이트들(334, 335, 336)의 출력은 [011]이 된다. 따라서 [011]의 풀-업 드라이빙 제어 신호(PUDCS)가 풀-업 구동기(360)에 인가된다. 이에 따라 제1 피모스 트랜지스터(361)가 턴 온되고, 제2 및 제3 피모스 트랜지스터들(362, 363)은 턴-오프되어 제1 저항(R1)은 외부 핀(210)과 전기적으로 연결되고 제2 및 제3 저항들(R2, R3)은 외부 핀(210)으로부터 전기적으로 차단된다. 그러므로 제1 저항(R1)으로 구성되는 풀-업 드라이버 임피던스가 외부 핀(210)과 연결된 전송선에 제공되면서 상기 전송선을 통하여 로직 하이 레벨을 가지는 데이터가 전송될 수 있다.In both of the readout operations, the pull-up driver 360 and the pull-down driver 370 can provide the driver impedance while performing a driving operation based on the read data DOUT. For example, when the read data DOUT has a logic high level, since the inverted readout data DOUTB has a logic low level, the outputs of the first to third AND gates 341 to 343 are the first to third All become logic low levels regardless of the string codes (SCDI1, SCDI2, SCDI3). Thus, each of the fourth to sixth selectors 344 to 346 can output a pull-down driving control signal PDDCS of low level. Accordingly, the first to third NMOS transistors 371 to 373 are turned on / off and the fourth to sixth resistors R4, R5 and R6 are electrically isolated from the external pin 210, respectively. Since the read data DOUT has a logic high level, the outputs of the NAND gates 334, 335 and 336 are logic levels opposite to those of the first to third string codes SCDI1, SCDI2 and SCDI3, . For example, if the length code SCDI is [100], the output of the NAND gates 334, 335, and 336 becomes [011]. Thus, the pull-up driving control signal PUDCS of [011] is applied to the pull-up driver 360. The first and second PMOS transistors 362 and 363 are turned off so that the first resistor R1 is electrically connected to the external pin 210 And the second and third resistors (R2, R3) are electrically disconnected from the external pin (210). Therefore, a data having a logic high level can be transmitted through the transmission line while the pull-up driver impedance composed of the first resistor R1 is provided to the transmission line connected with the external pin 210. [

예를 들어 독출 데이터(DOUT)가 로직 로우 레벨을 가지는 경우 제1 내지 제3 낸드 게이트들(331~333)의 출력은 제1 내지 제3 스트렝쓰 코드들(SCDI1, SCDI2, SCDI3)에 관계없이 모두 로직 하이 레벨이 된다. 따라서 제1 내지 제3 선택기들(334~336) 각각은 하이 레벨의 풀-업 드라이빙 제어 신호(PUDCS)를 출력할 수 있다. 이에 따라 1 내지 제3 피모스 트랜지스터들(361~363)은 턴/오프되고 제1 내지 제3 저항들(R1, R2, R3)은 각각 외부 핀(210)으로부터 전기적으로 차단된다. 독출 데이터(DOUT)가 로직 로우 레벨을 가지므로 앤드 게이트들(344, 345, 346)의 출력은 제1 내지 제3 스트렝쓰 코드들(SCD1, SCD2, SCD3) 각각의 논리 레벨과 동일한 논리 레벨을 가지게 된다. 예를 들어 스트렝쓰 코드(SCDI)가 [100]이면 앤드 게이트들(334, 335, 336)의 출력은 [100]이 된다. 따라서 [100]의 풀-다운 드라이빙 제어 신호(PDDCS)가 풀-다운 구동기(370)에 인가된다. 이에 따라 제1 엔모스 트랜지스터(371)가 턴 온되고, 제2 및 제3 엔모스 트랜지스터들(372, 373)은 턴-오프되어 제4 저항(R4)은 외부 핀(210)과 전기적으로 연결되고 제5 및 제6 저항들(R5, R6)은 외부 핀(210)으로부터 전기적으로 차단된다. 그러므로 제4 저항(R4)으로 구성되는 풀-다운 드라이버 임피던스가 외부 핀(210)과 연결된 전송선에 제공되면서 상기 전송선을 통하여 로직 로우 레벨을 가지는 데이터가 전송될 수 있다.For example, when the read data DOUT has a logic low level, the outputs of the first to third NAND gates 331 to 333 are output regardless of the first to third string codes SCDI1, SCDI2 and SCDI3 All become logic high levels. Thus, each of the first to third selectors 334 to 336 can output a pull-up driving control signal PUDCS of a high level. Accordingly, the first to third PMOS transistors 361 to 363 are turned on / off and the first to third resistors R1, R2, and R3 are electrically disconnected from the external pin 210, respectively. Since the read data DOUT has a logic low level, the outputs of the AND gates 344, 345 and 346 have the same logic level as the logic level of each of the first to third string codes SCD1, SCD2 and SCD3 I have. For example, if the length code SCDI is [100], the outputs of the AND gates 334, 335, and 336 are [100]. Thus, the pull-down driving control signal PDDCS of [100] is applied to the pull-down driver 370. The second and third NMOS transistors 372 and 373 are turned off so that the fourth resistor R4 is electrically connected to the external pin 210 And the fifth and sixth resistors R5 and R6 are electrically disconnected from the external pin 210. [ Therefore, a data having a logic low level can be transmitted through the transmission line while the pull-down driver impedance composed of the fourth resistor R4 is provided to the transmission line connected with the external pin 210. [

도 4를 참조하여 설명한 바와 같이, 스트렝쓰 코드(SCDI)는 데이터 레이트(data rate) 또는 동작 주파수(FOP, 데이터의 토글 레이트)를 반영하므로 데이터 레이트가 높은 경우(즉 스트렝쓰 코드(SCDI)가 [111]인 경우)에는 종단 저항을 작게 하여 빠른 시간에 채널을 충방전 시킬 수 있다. 또한 데이터 레이트가 낮은 경우(즉 스트렝쓰 코드(SCDI)가 [100]인 경우)에는 종단 저항을 증가시켜 채널을 따라 흐르는 DC 전류를 감소시켜 전류 소모를 감소시킬 수 있다.As described with reference to FIG. 4, when the data rate is high (that is, when the length code SCDI is smaller than the threshold value SCDI), the length code SCDI reflects the data rate or the operating frequency (FOP, [111]), it is possible to charge and discharge the channel in a short time by reducing the termination resistance. In addition, when the data rate is low (ie, when the length of the SCDI is [100]), the termination resistance may be increased to reduce the DC current flowing along the channel to reduce current consumption.

즉, 스트렝쓰 코드(SCDI)가 [111]이고 독출 데이터(DOUT)가 로직 하이 레벨이면, 풀-업 드라이빙 제어 신호(PUDCS)는 [000]이 되므로 병렬 연결된 제1 내지 제3 저항들(R1~R3)로 구성되는 풀-업 드라이버 임피던스가 외부 핀(210)과 연결된 전송선에 제공되면서 상기 전송선을 통하여 로직 하이 레벨을 가지는 데이터가 전송될 수 있다. 또한 스트렝쓰 코드(SCDI)가 [111]이고 독출 데이터(DOUT)가 로직 로우 레벨이면, 풀-다운 드라이빙 제어 신호(PDDCS)는 [111]이 되므로 병렬 연결된 제4 내지 제6 저항들(R4~R6)로 구성되는 풀-다운 드라이버 임피던스가 외부 핀(210)과 연결된 전송선에 제공되면서 상기 전송선을 통하여 로직 로우 레벨을 가지는 데이터가 전송될 수 있다. 또한 스트렝쓰 코드(SCDI)가 [100]이고 독출 데이터(DOUT)가 로직 하이 레벨이면, 풀-업 드라이빙 제어 신호(PUDCS)는 [011]이 되므로 제1 저항(R1)으로 구성되는 풀-업 드라이버 임피던스가 외부 핀(210)과 연결된 전송선에 제공되면서 상기 전송선을 통하여 로직 하이 레벨을 가지는 데이터가 전송될 수 있다. 또한 스트렝쓰 코드(SCDI)가 [100]이고 독출 데이터(DOUT)가 로직 로우 레벨이면, 풀-다운 드라이빙 제어 신호(PDDCS)는 [100]이 되므로 제4 저항(R4)으로 구성되는 풀-다운 드라이버 임피던스가 외부 핀(210)과 연결된 전송선에 제공되면서 상기 전송선을 통하여 로직 로우 레벨을 가지는 데이터가 전송될 수 있다.That is, when the length code SCDI is [111] and the read data DOUT is logic high level, the pull-up driving control signal PUDCS becomes [000] so that the first through third resistors R1 To R3 may be provided to a transmission line connected to the external pin 210 so that data having a logic high level can be transmitted through the transmission line. The pull-down driving control signal PDDCS becomes [111] when the length code SCDI is [111] and the read data DOUT is at the logic low level, so that the fourth through sixth resistors R4- R6 may be provided to a transmission line connected to the external pin 210 so that data having a logic low level can be transmitted through the transmission line. In addition, since the pull-up driving control signal PUDCS is [011] when the length code SCDI is [100] and the read data DOUT is a logic high level, the pull- Data having a logic high level can be transmitted through the transmission line while a driver impedance is provided to a transmission line connected to the external pin 210. [ Down drive control signal PDDCS becomes [100] if the intensity code SCDI is [100] and the read data DOUT is at the logic low level, so that the pull- A driver impedance may be provided to a transmission line connected to the external pin 210, and data having a logic low level may be transmitted through the transmission line.

여기서 제1 및 제2 저항(R1, R2)은 실질적으로 동일한 저항값을 가질 수 있고, 제3 저항(R3)은 제2 저항의 반이 되는 저항값을 가질 수 있다. 또한 제4 내지 제6 저항들(R4~R6)은 각각 제1 내지 제3 저항들(R1~R3)와 실질적으로 동일한 저항값을 가질 수 있다. 예를 들어 제1 저항(R1) 및 제2 저항(R2) 각각은 약 200 Ω의 저항 값을 가질 수 있고, 제3 저항(R3)은 약 100 200 Ω의 저항 값을 가질 수 있다. 이 경우 독출 데이터(DOIT)가 로직 하이 레벨이고 스트렝쓰 코드(SCDI)가 [100]인 경우 풀-업 드라이버 임피던스는 약 200 Ω의 저항 값을 가질 수 있고, 스트렝쓰 코드(SCDI)가 [110]인 경우 풀-업 드라이버 임피던스는 약 100 Ω의 저항 값을 가질 수 있고, 스트렝쓰 코드(SCDI)가 [111]인 경우 풀-업 드라이버 임피던스는 약 50 Ω의 저항 값을 가질 수 있다.Here, the first and second resistors R1 and R2 may have substantially the same resistance value, and the third resistor R3 may have a resistance value that is half of the second resistance. The fourth to sixth resistors R4 to R6 may have substantially the same resistance value as the first to third resistors R1 to R3, respectively. For example, each of the first resistor R1 and the second resistor R2 may have a resistance value of about 200 OMEGA, and the third resistor R3 may have a resistance value of about 100 200 OMEGA. In this case, the full-up driver impedance may have a resistance value of about 200 OMEGA when the read data DOIT is a logic high level and the string code SCDI is [100] ], The pull-up driver impedance can have a resistance value of about 100 [Omega], and the full-up driver impedance can have a resistance value of about 50 [Omega] when the lengthwise code (SCDI) is [111].

도 6에서 제1 내지 제6 저항들(R1~R6)은 각각 하나의 저항으로 도시되어 있으나, 실시예에 따라 제1 내지 제6 저항들(R1~R6) 각각은 병렬 연결된 복수의 저항들 및 상기 저항들의 연결을 제어하기 위한 트랜지스터들로 구현될 수 있다.Although the first to sixth resistors R1 to R6 are shown as one resistor in FIG. 6, each of the first to sixth resistors R1 to R6 may include a plurality of resistors connected in parallel, And transistors for controlling the connection of the resistors.

도 7은 본 발명의 일 실시예에 따른 반도체 메모리 장치를 나타내는 블록도이다. 도 7의 반도체 메모리 장치(400)는 도 1의 ODT 회로(100)와 도 4의 데이터 출력 버퍼(400)를 포함할 수 있다.7 is a block diagram illustrating a semiconductor memory device according to an embodiment of the present invention. The semiconductor memory device 400 of FIG. 7 may include the ODT circuit 100 of FIG. 1 and the data output buffer 400 of FIG.

도 7을 참조하면, 반도체 메모리 장치(400)는 메모리 코어(410), 데이터 출력 버퍼(300), 데이터 입력 버퍼(420), 어드레스 버퍼(430), ODT 버퍼(440), 커맨드 디코더(450), 레이턴시 회로(460), 클록 동기 회로(470), 인버터(480) 및 ODT 회로(100)를 포함한다.7, the semiconductor memory device 400 includes a memory core 410, a data output buffer 300, a data input buffer 420, an address buffer 430, an ODT buffer 440, a command decoder 450, A latency circuit 460, a clock synchronization circuit 470, an inverter 480 and an ODT circuit 100. [

메모리 코어(410)는 데이터 입력 버퍼(420)로부터 제공된 기입 데이터를 저장하고, 독출 데이터를 생성하여 데이터 출력 버퍼(300)에 제공한다. 메모리 코어(410)는 데이터를 저장하는 복수의 메모리 셀들을 포함하는 메모리 셀 어레이(411), 어드레스 버퍼(430)로부터 수신된 로우 어드레스(RA)를 디코딩하여 메모리 셀 어레이(411)의 워드 라인을 선택하기 위한 로우 디코더(412), 어드레스 버퍼(430)로부터 수신된 컬럼 어드레스(CA)를 디코딩하여 메모리 셀 어레이(411)의 적어도 하나의 비트 라인을 선택하기 위한 컬럼 디코더(413), 및 선택된 메모리 셀들에 저장된 데이터를 감지하여 상기 독출 데이터를 생성하기 위한 감지 증폭기(414)를 포함할 수 있다.The memory core 410 stores write data provided from the data input buffer 420, generates read data, and provides the read data to the data output buffer 300. The memory core 410 includes a memory cell array 411 including a plurality of memory cells for storing data, a memory cell array 411 for decoding the row address RA received from the address buffer 430 and storing the word line of the memory cell array 411 A column decoder 413 for decoding the column address CA received from the address buffer 430 to select at least one bit line of the memory cell array 411, And a sense amplifier 414 for sensing the data stored in the cells and generating the read data.

어드레스 버퍼(430)는 메모리 컨트롤러부터 어드레스 핀(240)을 통하여 수신된 어드레스 신호(ADDR)에 기초하여 로우 디코더(412)에 로우 어드레스(RA)를 제공하고, 컬럼 디코더(413)에 컬럼 어드레스(CA)를 제공할 수 있다. 커맨드 디코더(450)는 상기 메모리 컨트롤러로부터 커맨드 핀(230)을 통하여 수신된 커맨드 신호(CMD), 예를 들어, 기입 인에이블 신호, 로우 어드레스 스트로브 신호, 컬럼 어드레스 스트로브 신호, 칩 선택 신호 등을 디코딩하여 커맨드 신호(CMD)에 상응하는 제어 신호를 생성할 수 있다. 반도체 메모리 장치(400)는 모드 레지스터 셋과 확장 모드 레지스터 셋을 위한 모드 레지스터를 더 포함할 수 있다. 클록 동기 회로(471)는 클록 핀(250)을 통하여 외부 클록 신호(CLK)를 수신하고, 외부 클록 신호(CLK)에 동기된 내부 클록 신호를 레이턴시 회로(460)에 제공할 수 있다. 클록 동기 회로(470)는 지연 동기 루프(DLL) 또는 위상 고정 루프를 포함할 수 있다.The address buffer 430 provides the row address RA to the row decoder 412 based on the address signal ADDR received from the memory controller via the address pin 240 and provides the column decoder 413 with the column address CA). The command decoder 450 decodes the command signal CMD received via the command pin 230 from the memory controller, for example, a write enable signal, a row address strobe signal, a column address strobe signal, a chip select signal, Thereby generating a control signal corresponding to the command signal CMD. The semiconductor memory device 400 may further include a mode register set for the mode register set and an extended mode register set. The clock synchronizing circuit 471 can receive the external clock signal CLK via the clock pin 250 and provide the internal clock signal synchronized with the external clock signal CLK to the latency circuit 460. [ Clock synchronization circuit 470 may include a delay locked loop (DLL) or phase locked loop.

데이터 출력 버퍼(300) 및 데이터 입력 버퍼(420)는 외부 데이터 입/출력 핀(210)에 연결된다. 데이터 출력 버퍼(300)는 상기 메모리 컨트롤러에 데이터 입/출력 핀(210)을 통하여 상기 독출 데이터를 전송하고, 데이터 입력 버퍼(420)는 상기 메모리 컨트롤러로부터 데이터 입/출력 핀(210)을 통하여 상기 기입 데이터를 수신할 수 있다. 설명의 편의상, 도 7에는 데이터 입/출력 핀(210), 데이터 출력 버퍼(300) 및 데이터 입력 버퍼(420)가 각각 하나씩 도시되어 있지만, 반도체 메모리 장치(400)는 복수의 데이터 입/출력 핀들, 데이터 입력 버퍼들 및 데이터 출력 버퍼들을 포함한다. 또한, 반도체 메모리 장치(400)는 복수의 어드레스 핀들 및 커맨드 핀들을 포함할 수 있다.The data output buffer 300 and the data input buffer 420 are connected to the external data input / output pin 210. The data output buffer 300 transmits the read data to the memory controller via the data input / output pin 210 and the data input buffer 420 receives the data from the memory controller via the data input / It is possible to receive the write data. 7 shows only one data input / output pin 210, a data output buffer 300 and a data input buffer 420 in FIG. 7, the semiconductor memory device 400 includes a plurality of data input / Data input buffers, and data output buffers. In addition, the semiconductor memory device 400 may include a plurality of address pins and command pins.

ODT 회로(100)는 데이터 출력 버퍼(300) 및 데이터 입력 버퍼(420)와 함께 데이터 입/출력 핀(210)에 연결된다. 설명의 편의상, 도 7에는 데이터 입/출력 핀(210) 및 ODT 회로(100)가 하나씩 도시되어 있으나, 반도체 메모리 장치(400)는 복수의 데이터 입/출력 핀들 및 이에 각각 연결된 복수의 ODT 회로들을 포함할 수 있다. 또한, 반도체 메모리 장치(400)는 데이터 스트로브 핀, 데이터 마스크 핀, 종단 데이터 스트로브 핀 등을 더 포함할 수 있고, 이들에 각각 연결된 ODT 회로들을 더 포함할 수 있다.The ODT circuit 100 is connected to the data input / output pin 210 together with the data output buffer 300 and the data input buffer 420. 7, the semiconductor memory device 400 includes a plurality of data input / output pins and a plurality of ODT circuits connected to the data input / output pins 210 and the ODT circuits 100, respectively, for convenience of description. . In addition, the semiconductor memory device 400 may further include data strobe pins, data mask pins, termination data strobe pins, and the like, and may further include ODT circuits respectively connected to the data strobe pins, data mask pins, and termination data strobe pins.

ODT 회로(100)는 ODT 버퍼(440)로부터 수신된 스트렝쓰 코드(SCD)에 응답하여 종단 저항의 저항 값을 가변할 수 있다. ODT 버퍼(440)는 상기 메모리 컨트롤러로부터 ODT 핀(220)을 통하여 스트렝쓰 코드(SCD)를 수신하고, 스트렝쓰 코드(SCD)를 버퍼링하여 ODT 회로(100)에 제공할 수 있다.The ODT circuit 100 may vary the resistance value of the termination resistor in response to the received length code SCD from the ODT buffer 440. [ The ODT buffer 440 receives the texture code SCD from the memory controller via the ODT pin 220 and buffers the texture code SCD to the ODT circuit 100.

ODT 회로(100)는 레이턴시 회로(460)로부터 수신된 출력 인에이블 신호(OEN)에 응답하여 데이터 입/출력 핀(210)으로부터 전기적으로 차단될 수 있다. 커맨드 디코더(450)가 상기 메모리 장치로부터 커맨드 핀(230)을 통하여 독출 커맨드를 수신하면, 커맨드 디코더(450)는 독출 모드 신호(RDMS)를 생성할 수 있다. 레이턴시 회로(460)는 커맨드 디코더(460)로부터 독출 모드 신호(RDMS)를 수신하고, 클록 동기 회로(470)로부터 외부 클록 신호(CLK)에 동기된 내부 클록 신호를 수신하여, 데이터 입/출력 핀(210)을 통하여 상기 독출 데이터가 전송되는 동안 로직 하이 레벨을 가지는 출력 인에이블 신호(OEN)를 생성할 수 있다.The ODT circuit 100 may be electrically disconnected from the data input / output pin 210 in response to the output enable signal OEN received from the latency circuit 460. When the command decoder 450 receives the read command from the memory device via the command pin 230, the command decoder 450 can generate the read mode signal RDMS. The latency circuit 460 receives the read mode signal RDMS from the command decoder 460 and receives the internal clock signal synchronized with the external clock signal CLK from the clock synchronizing circuit 470, (OEN) having a logic high level during the transmission of the read data through the write enable signal line 210.

ODT 회로(100)는 데이터 입/출력 핀(210)을 통하여 상기 독출 데이터가 전송되는 독출 모드에서 출력 인에이블 신호(OEN)에 응답하여 데이터 입/출력 핀(210)으로부터 전기적으로 차단될 수 있다. ODT 회로(100)는 데이터 입/출력 핀(210)을 통하여 상기 기입 데이터가 수신되는 기입 모드에서 스트렝쓰 코드(SCD)에 응답하여 스트렝쓰 코드(SCD)에 따라 가변되는 종단 저항을 상기 데이터 전송선에 제공할 수 있다.The ODT circuit 100 may be electrically disconnected from the data input / output pin 210 in response to the output enable signal OEN in the read mode in which the read data is transmitted through the data input / output pin 210 . The ODT circuit 100 outputs a termination resistance which varies in accordance with a length code (SCD) in response to a length code (SCD) in a writing mode in which the writing data is received via the data input / output pin 210, As shown in FIG.

데이터 출력 버퍼(300)는 레이턴시 회로(460)로부터 수신된 출력 인에이블 신호(OEN)에 응답하여(출력 인에이블 신호(OEN)가 디스에이블되는 경우) 데이터 입/출력 핀(210)으로부터 전기적으로 차단될 수 있다. 또한 데이터 출력 버퍼(300)는 데이터 입/출력 핀(210)을 통하여 상기 독출 데이터가 전송되는 독출 모드에서 독출 데이터와 반전 스트렝쓰 코드(SCDI)에 응답하여 상기 독출 데이터를 상기 데이터를 전송하면서 반전 스트렝쓰 코드(SCDI)에 따라 가변되는 드라이버 임피던스를 상기 데이터 전송선에 제공할 수 있다. 반전 스트렝쓰 코드(SCDI)는 스트렝쓰 코드(SCD)가 인버터(480)에 의하여 반전된 것이다. 따라서 스트렝쓰 코드(SCD)와 반전 스트렝쓰 코드(SCDI)는 데이터 레이트(data rate) 즉 또는 동작 주파수를 반영할 수 있다.The data output buffer 300 is electrically coupled to the data input / output pin 210 in response to an output enable signal OEN received from the latency circuit 460 (if the output enable signal OEN is disabled) Can be blocked. In addition, the data output buffer 300 transmits the read data in response to the read data and the inverted description code (SCDI) in the read mode in which the read data is transmitted through the data input / output pin 210, And can provide a driver impedance that varies according to the length code SCDI to the data transmission line. The inverted length code (SCDI) is that the length code (SCD) is inverted by the inverter (480). Thus, the length code (SCD) and the inverted length code (SCDI) can reflect the data rate, or the operating frequency.

즉 도 7의 반도체 메모리 장치에서는 기입 모드에서는 ODT 회로(100)가 동작 주파수에 따라 가변되는 종단 저항을 데이터 전송선에 제공하여 전류 소모를 감소시킬 수 있고 독출 모드에서는 데이터 출력 버퍼(300)가 동작 주파수에 따라 가변되는 드라이버 임피던스를 데이터 전송선에 제공하면서 독출 데이터를 제공하여 전류 소모를 감소시킬 수 있다.That is, in the semiconductor memory device of FIG. 7, in the write mode, the ODT circuit 100 provides the data transfer line with a termination resistance that varies according to the operating frequency to reduce the current consumption. In the read mode, It is possible to reduce current consumption by providing read data while providing a variable driver impedance to the data transmission line.

도 8은 본 발명의 다른 실시예에 따른 ODT 회로를 나타내는 블록도이다.8 is a block diagram illustrating an ODT circuit according to another embodiment of the present invention.

도 8을 참조하면, ODT 회로(500)는 종단부(510)와 조정부(520)를 포함한다. 종단부(510)는 고정된 전압 레벨을 가지는 전원 전압(Vs)에 연결된다. 종단부(510)와 조정부(520)는 조정 노드(CN)에서 외부 핀(505)에 연결된다. 외부 핀(505)은 채널을 통하여 외부 저항(R)에 연결된다. 종단부(510)는 디지털 제어 코드(DCC)에 응답하여 외부 핀(505)에 연결된 채널에 외부 저항(R)과 매칭되는 종단 저항을 제공한다. 조정부(520)는 조정 노드(CN)의 전압과 기준 전압(Vref)에 기초하여 디지털 제어 코드(DCC)를 생성하여 종단부(510)에 제공하여 종단부(510)에서 제공되는 종단저항이 채널을 통하여 연결된 외부 저항(R)과 매칭되도록 한다. 외부 핀(505)은 데이터 입출력(data input/output) 핀, 데이터 스트로브(data strobe) 핀, 데이터 마스크(data mask) 핀, 종단 데이터 스트로브(termination data strobe) 핀 등 일 수 있다. 여기서, “핀”이라는 용어는 집적 회로에 대한 전기적 상호접속을 폭넓게 가리키는 것으로서, 예를 들어 패드 또는 집적 회로 상의 다른 전기적 접촉점을 포함한다.Referring to FIG. 8, the ODT circuit 500 includes a terminating portion 510 and an adjusting portion 520. The termination 510 is connected to a supply voltage Vs having a fixed voltage level. The terminating portion 510 and the adjusting portion 520 are connected to the external pin 505 at the adjusting node CN. The external pin 505 is connected to the external resistor R through a channel. Termination 510 provides termination resistors that match the external resistor R in the channel coupled to the external pin 505 in response to the digital control code DCC. The adjusting unit 520 generates and provides a digital control code DCC to the terminating unit 510 based on the voltage of the adjusting node CN and the reference voltage Vref so that the terminating resistor provided at the terminating end 510 To match the external resistor (R) connected thereto. The external pin 505 may be a data input / output pin, a data strobe pin, a data mask pin, a termination data strobe pin, or the like. As used herein, the term " pin " refers broadly to electrical interconnections to an integrated circuit, including for example a pad or other electrical contact on an integrated circuit.

도 8의 ODT 회로(500)는 조정 노드(CN)의 전압 레벨이 기준 전압(Vref)의 레벨과 실질적으로 동일해지도록 디지털 제어 코드(DCC)를 통하여 종단부(510)의 종단 저항을 변화시켜 외부 저항(R)과 종단부(510)의 종단 저항을 매칭시킨다.The ODT circuit 500 of Figure 8 changes the termination resistance of the termination 510 through the digital control code DCC such that the voltage level of the tuning node CN is substantially equal to the level of the reference voltage Vref And matches the external resistance R and the terminating resistance of the terminating end 510.

도 9는 도 8의 ODT 회로를 나타내는 회로도이다.9 is a circuit diagram showing the ODT circuit of Fig.

도 9를 참조하면, 종단부(510)는 고정된 전압 레벨을 가지는 전원 전압(Vs)과 조정 노드(CN) 사이에 연결되는 복수의 피모스 트랜지스터들(511, 512, 513)을 포함한다. 피모스 트랜지스터들(511, 512, 513) 각각은 디지털 제어 코드(DCC)의 각 비트를 게이트에 인가받아 턴-온/오프된다. 피모스 트랜지스터들(511, 512, 513)의 턴-온/오프됨에 따라 조정 노드(CN)의 전압 레벨이 달라진다. 피모스 트랜지스터들(511, 512, 513)은 서로 다른 크기를 갖을 수 있다. 예를 들어 피모스 트랜지스터들(511, 512, 513) 각각은 4:2:1의 크기 비를 갖을 수 있다.9, the termination 510 includes a plurality of PMOS transistors 511, 512, and 513 connected between a power supply voltage Vs having a fixed voltage level and an adjustment node CN. Each of the PMOS transistors 511, 512, and 513 is turned on / off by applying each bit of the digital control code DCC to the gate. As the PMOS transistors 511, 512 and 513 are turned on / off, the voltage level of the tuning node CN changes. The PMOS transistors 511, 512, and 513 may have different sizes. For example, each of the PMOS transistors 511, 512, and 513 may have a size ratio of 4: 2: 1.

조정부(520)는 비교기(521), 카운터(522) 및 레지스터(523)를 포함하여 구성될 수 있다. 비교기(521)는 조정 노드(CN)의 전압과 기준 전압(Vref)을 비교하여 그 비교 결과를 매칭 신호(MS)로서 카운터(522)에 제공한다. 조정 노드(CN)의 전압 레벨이 기준 전압(Vref)보다 높으면 양(positive)의 매칭 신호(MS)가 카운터(522)에 제공된다. 조정 노드(CN)의 전압 레벨이 기준 전압(Vref)보다 낮으면 음(negative) 매칭 신호(MS)가 카운터(522)에 제공된다. 조정 노드(CN)의 전압 레벨이 기준 전압(Vref) 같으면 "0"의 매칭 신호(MS)가 카운터(522)에 제공된다. 여기서 기준 전압(Vref)은 전원전압(Vs)의 1/2일 수 있다.The adjustment unit 520 may include a comparator 521, a counter 522, and a register 523. [ The comparator 521 compares the voltage of the adjustment node CN with the reference voltage Vref and provides the comparison result to the counter 522 as the matching signal MS. A positive matching signal MS is provided to the counter 522 if the voltage level of the tuning node CN is higher than the reference voltage Vref. A negative matching signal MS is provided to the counter 522 if the voltage level of the tuning node CN is lower than the reference voltage Vref. A matching signal MS of "0" is provided to the counter 522 if the voltage level of the tuning node CN is equal to the reference voltage Vref. Here, the reference voltage Vref may be 1/2 of the power source voltage Vs.

카운터(522)는 매칭 신호(MS)에 따라 증감하는 카운팅 값(CV)을 레지스터(523)에 출력한다. 예를 들어, 양(positive)의 매칭 신호(MS)가 카운터(522)에 제공되면 카운터(522)는 증가된 카운팅 값(CV)을 출력한다. 예를 들어, 음(negative) 매칭 신호(MS)가 카운터(522)에 제공되면 카운터(522)는 감소된 카운팅 값(CV)을 출력한다. 또한 예를 들어, "0"의 매칭 신호(MS)가 카운터(522)에 제공되면 카운터(522)는 카운팅 값(CV)을 유지한다.The counter 522 outputs to the register 523 a count value CV which is increased or decreased in accordance with the matching signal MS. For example, if a positive matching signal MS is provided to the counter 522, the counter 522 outputs an incremented count value CV. For example, when a negative matching signal MS is provided to the counter 522, the counter 522 outputs a reduced count value CV. Also, for example, if a match signal MS of "0" is provided to the counter 522, the counter 522 maintains the count value CV.

레지스터(523)는 카운팅 값(CV)을 저장하여 디지털 제어 코드(DCC)로서 종단부(510)에 제공한다. 예를 들어, 양(positive)의 매칭 신호(MS)가 카운터(522)에 제공되면 카운터(522)는 증가된 카운팅 값(CV)을 출력하므로 디지털 제어 코드(DCC)가 한 비트 증가된다. 즉 디지털 제어 코드(DCC) 중 하이 레벨을 갖는 비트가 증가하게 된다. 따라서 종단부(510)에서 턴-오프되는 피모스 트랜지스터가 하나 더 증가하게 되므로 조정 노드(CN)의 전압 레벨이 낮아지게 된다. 즉 종단부(510)에서 외부 핀(505)에 제공되는 종단저항이 증가하게 된다. 예를 들어, 음(negative)의 매칭 신호(MS)가 카운터(522)에 제공되면 카운터(522)는 감소된 카운팅 값(CV)을 출력하므로 디지털 제어 코드(DCC)가 한 비트 감소된다. 즉 디지털 제어 코드(DCC) 중 하이 레벨을 갖는 비트가 감소하게 된다. 따라서 종단부(510)에서 턴-온되는 피모스 트랜지스터가 하나 더 증가하게 되므로 조정 노드(CN)의 전압 레벨이 높아지게 된다.The register 523 stores the count value CV and provides it to the terminal 510 as a digital control code DCC. For example, when a positive matching signal MS is provided to the counter 522, the counter 522 outputs an incremented count value CV, so that the digital control code DCC is incremented by one bit. That is, a bit having a high level in the digital control code DCC is increased. As a result, the voltage level of the tuning node CN is lowered because one more PMOS transistor is turned off at the terminal 510. That is, the termination resistance provided to the external pin 505 at the terminal end portion 510 increases. For example, if a negative matching signal MS is provided to the counter 522, the counter 522 outputs a reduced count value CV so that the digital control code DCC is reduced by one bit. That is, a bit having a high level in the digital control code DCC is reduced. As a result, the voltage level of the tuning node CN becomes higher because the number of the PMOS transistors that are turned on at the terminal 510 increases.

이와 같은 방법으로 도 9의 ODT 회로(500)에서는 온 다이 터미네이션 동작을 수행할 때, 조정 노드(CN)의 전압 레벨과 기준 전압(Vref)을 비교하여 외부 핀(505)에 연결된 외부 저항(R)과 매칭시킨다. 따라서 피모스 트랜지스터들(511, 512, 513)의 게이트에 인가되는 전압의 레벨을 조절하지 않아도 되고 단순히 피모스 트랜지스터들(511, 512, 513)을 디지털 제어 코드(DCC)에 따라 턴-온/오프 시키면 되므로 회로 구현이 간단하고 또한 피모스 트랜지스터들(511, 512, 513) 중 전압 레벨 조절에 필요한 피모스 트랜지스터만 턴-온 시키면 되므로 전류 소모를 감소시킬 수 있다.9, the ODT circuit 500 of FIG. 9 compares the voltage level of the adjustment node CN with the reference voltage Vref to determine the external resistance R ). Therefore, it is unnecessary to adjust the level of the voltage applied to the gates of the PMOS transistors 511, 512, and 513 and simply turns on the PMOS transistors 511, 512, and 513 according to the digital control code DCC. It is possible to simplify the circuit implementation and to turn on only the PMOS transistors necessary for the voltage level control among the PMOS transistors 511, 512 and 513, thereby reducing current consumption.

또한 이러한 온 다이 터미네이션 동작을 각 핀마다 별도로 수행할 수있다.This on-die termination operation can be performed separately for each pin.

도 10은 본 발명의 일 실시예에 따른 오프-칩 드라이버(Off-chip driver, OCD)를 나타내는 블록도이다.10 is a block diagram illustrating an off-chip driver (OCD) according to an embodiment of the present invention.

도 10을 참조하면, OCD(500)는 종단부(560)와 조정부(570)를 포함한다. 종단부(560)는 외부핀(555)에 연결된 조정 노드(CN)에 연결된다. 외부 핀(555)은 채널을 통하여 외부 저항(R)에 연결된다. 종단부(560)는 디지털 제어 코드(DCC)에 응답하여 외부 핀(555)에 연결되는 채널에 외부 저항(R)과 매칭되는 드라이버 임피던스를 제공한다. 조정부(570)도 외부핀(555)에 연결된 조정 노드(CN)에 연결된다. 즉 종단부(560)와 조정부(570)는 조정 노드(CN)에 서로 병렬로 연결된다. 조정부(570)는 조정 노드(CN) 전압과 기준 전압(Vref)에 기초하여 디지털 제어 코드(DCC)를 생성하여 종단부(560)에 제공하여 종단부(510)에서 제공되는 드라이버 임피던스가 채널을 통하여 연결된 외부 저항(R)과 매칭되도록 한다. 외부 핀(555)은 데이터 입출력(data input/output) 핀, 데이터 스트로브(data strobe) 핀, 데이터 마스크(data mask) 핀, 종단 데이터 스트로브(termination data strobe) 핀 등 일 수 있다. 여기서, “핀”이라는 용어는 집적 회로에 대한 전기적 상호접속을 폭넓게 가리키는 것으로서, 예를 들어 패드 또는 집적 회로 상의 다른 전기적 접촉점을 포함한다.10, the OCD 500 includes a terminating unit 560 and an adjusting unit 570. The terminating end 560 is connected to an adjustment node (CN) connected to the external pin (555). The external pin 555 is connected to the external resistor R through the channel. Termination 560 provides a driver impedance that matches the external resistor R to the channel coupled to the external pin 555 in response to the digital control code DCC. The adjustment unit 570 is also connected to the adjustment node CN connected to the external pin 555. That is, the terminating unit 560 and the adjusting unit 570 are connected to the adjusting node CN in parallel with each other. The adjusting unit 570 generates and provides a digital control code DCC to the terminating unit 560 based on the adjusting node CN voltage and the reference voltage Vref so that the driver impedance provided at the terminating unit 510 To match the external resistor (R) connected thereto. The external pin 555 may be a data input / output pin, a data strobe pin, a data mask pin, a termination data strobe pin, or the like. As used herein, the term " pin " refers broadly to electrical interconnections to an integrated circuit, including for example a pad or other electrical contact on an integrated circuit.

도 10의 OCD(550)는 디지털 제어 코드(DCC)를 통하여 종단부(560)의 드라이버 임피던스를 변화시켜 외부 저항(R)과 드라이버 임피던스를 매칭시킨다. 또한 도 10의 OCD(550)는 독출 데이터를 외부 핀을 통하여 출력하는 데이터 출력 버퍼와는 별도로 외부 핀(555)에 연결되어 독출 데이터가 외부 핀을 통하여 전송될 때 드라이버 임피던스를 매칭시킬 수 있다. 즉 도 10의 OCD(550)는 도 7의 데이터 출력 버퍼(300)에 포함되거나 데이터 출력 버퍼(300)와 병렬로 외부 핀(210)에 연결되어 외부 저항에 매칭되는 드라이버 임피던스를 제공할 수 있다. 이 경우에 도 7의 데이터 출력 버퍼(300)는 드라이버 임피던스를 제공하지 않을 수 있다.The OCD 550 of FIG. 10 changes the driver impedance of the termination portion 560 through the digital control code DCC to match the external resistance R and the driver impedance. In addition, the OCD 550 of FIG. 10 is connected to the external pin 555 separately from the data output buffer for outputting the read data through the external pin, so that the driver impedance can be matched when the read data is transmitted through the external pin. 10 may be included in the data output buffer 300 of FIG. 7 or may be connected to the external pin 210 in parallel with the data output buffer 300 to provide a driver impedance that matches the external resistor . In this case, the data output buffer 300 of FIG. 7 may not provide the driver impedance.

도 11은 도 10의 OCD를 나타내는 회로도이다.11 is a circuit diagram showing the OCD of FIG.

도 11을 참조하면, 종단부(560)는 조정 노드(CN)와 접지 전압 사이에 연결되는 복수의 엔모스 트랜지스터들(561, 562, 563)을 포함한다. 엔모스 트랜지스터들(561, 562, 563) 각각은 디지털 제어 코드(DCC)의 각 비트를 게이트에 인가받아 턴-온/오프된다. 엔모스 트랜지스터들(561, 562, 553)의 턴-온/오프됨에 외부 핀(555)에 연결된 채널에 제공되는 드라이버 임피던스가 달라진다. 엔모스 트랜지스터들(561, 562, 563)은 서로 다른 크기를 갖을 수 있다. 예를 들어 엔모스 트랜지스터들(561, 562, 563) 각각은 4:2:1의 크기 비를 갖을 수 있다.Referring to FIG. 11, the termination portion 560 includes a plurality of the NMOS transistors 561, 562, 563 connected between the tuning node CN and the ground voltage. Each of the NMOS transistors 561, 562, and 563 is turned on / off by applying each bit of the digital control code DCC to the gate. The driver impedance provided to the channel connected to the external pin 555 is changed in turning on / off the emmos transistors 561, 562, and 553. The NMOS transistors 561, 562, and 563 may have different sizes. For example, each of the NMOS transistors 561, 562, and 563 may have a size ratio of 4: 2: 1.

조정부(570)는 비교기(571), 카운터(572) 및 레지스터(573)를 포함하여 구성될 수 있다. 비교기(571)는 조정 노드(CN)의 전압과 기준 전압(Vref)을 비교하여 그 비교 결과를 매칭 신호(MS)로서 카운터(572)에 제공한다. 종단부(560) 전압 레벨이 기준 전압(Vref)보다 높으면 양(positive)의 매칭 신호(MS)가 카운터(572)에 제공된다. 종단부(560) 전압 레벨이 기준 전압(Vref)보다 낮으면 음(negative) 매칭 신호(MS)가 카운터(572)에 제공된다. 종단부(560)의 전압 레벨이 기준 전압(Vref) 같으면 "0"의 매칭 신호(MS)가 카운터(562)에 제공된다. 여기서 종단부(560)의 전압 레벨은 종단부(560)에서 제공되는 드라이버 임피던스와 반비례한다. 즉 종단부(560)에서 제공되는 드라이버 임피던스가 크면 종단부(560)의 전압 레벨이 낮고, 종단부(560)에서 제공되는 드라이버 임피던스가 작으면 종단부(560)의 전압 레벨이 높다.The adjustment unit 570 may include a comparator 571, a counter 572, and a register 573. The comparator 571 compares the voltage of the adjustment node CN with the reference voltage Vref and provides the comparison result to the counter 572 as the matching signal MS. A positive matching signal MS is provided to the counter 572 if the voltage level of the terminal 560 is higher than the reference voltage Vref. A negative matching signal MS is provided to the counter 572 if the voltage level of the terminal 560 is lower than the reference voltage Vref. A matching signal MS of "0" is provided to the counter 562 if the voltage level of the terminal 560 is equal to the reference voltage Vref. Where the voltage level of the terminating end 560 is inversely proportional to the driver impedance provided at the terminating end 560. That is, if the driver impedance provided at the terminal end portion 560 is large, the voltage level of the terminal end portion 560 is low, and if the driver impedance provided at the terminal portion 560 is low, the voltage level of the terminal end portion 560 is high.

카운터(572)는 매칭 신호(MS)에 따라 증감하는 카운팅 값(CV)을 레지스터(573)에 출력한다. 예를 들어, 양(positive)의 매칭 신호(MS)가 카운터(572)에 제공되면 카운터(522)는 감소된 카운팅 값(CV)을 출력한다. 예를 들어, 음(negative) 매칭 신호(MS)가 카운터(572)에 제공되면 카운터(572)는 증가된 카운팅 값(CV)을 출력한다. 또한 예를 들어, "0"의 매칭 신호(MS)가 카운터(572)에 제공되면 카운터(572)는 카운팅 값(CV)을 유지한다.The counter 572 outputs to the register 573 a count value CV that increases or decreases in accordance with the matching signal MS. For example, if a positive matching signal MS is provided to the counter 572, the counter 522 outputs a reduced count value CV. For example, when a negative matching signal MS is provided to the counter 572, the counter 572 outputs an incremented count value CV. Also, for example, if a match signal MS of "0" is provided to the counter 572, the counter 572 maintains the count value CV.

레지스터(573)는 카운팅 값(CV)을 저장하여 디지털 제어 코드(DCC)로서 종단부(560)에 제공한다. 예를 들어, 양(positive)의 매칭 신호(MS)가 카운터(572)에 제공되면 카운터(572)는 감소된 카운팅 값(CV)을 출력하므로 디지털 제어 코드(DCC)가 한 비트 감소된다. 즉 디지털 제어 코드(DCC) 중 하이 레벨을 갖는 비트가 감소하게 된다. 따라서 종단부(560)에서 턴-오프되는 엔모스 트랜지스터가 하나 더 증가하게 되므로 종단부(560)의 전압 레벨이 낮아지게 된다. 즉 종단부(560)에서 외부 핀(505)에 제공되는 드라이버 임피던스가 증가하게 된다. 예를 들어, 음(negative)의 매칭 신호(MS)가 카운터(572)에 제공되면 카운터(572)는 증가된 카운팅 값(CV)을 출력하므로 디지털 제어 코드(DCC)가 한 비트 증가된다. 즉 디지털 제어 코드(DCC) 중 하이 레벨을 갖는 비트가 증가하게 된다. 따라서 종단부(560)에서 턴-온되는 엔모스 트랜지스터가 하나 더 증가하게 되므로 조정 노드(CN)의 전압 레벨이 높아지게 된다. 즉 종단부(560)에서 외부 핀(505)에 제공되는 드라이버 임피던스가 감소하게 된다.The register 573 stores the count value CV and provides it to the terminal 560 as a digital control code DCC. For example, if a positive matching signal MS is provided to the counter 572, the counter 572 outputs a reduced count value CV, so that the digital control code DCC is reduced by one bit. That is, a bit having a high level in the digital control code DCC is reduced. Therefore, the voltage level of the terminating part 560 becomes lower because the number of the NMOS transistors turned off at the terminating part 560 increases. That is, the driver impedance provided to the external pin 505 at the terminal end portion 560 increases. For example, if a negative matching signal MS is provided to the counter 572, the counter 572 outputs an incremented count value CV, so that the digital control code DCC is incremented by one bit. That is, a bit having a high level in the digital control code DCC is increased. Therefore, the voltage level of the tuning node CN becomes higher because the number of the NMOS transistors turned on at the terminating end 560 increases. That is, the driver impedance provided to the external pin 505 at the terminal end portion 560 is reduced.

이와 같은 방법으로 도 11의 OCD(500)에서는 드라이버 동작을 수행할 때, 외부 핀(555)과 조정부(570) 사이에 연결되는 엔모스 트랜지스터들(561, 562, 563)을 선택적으로 턴-온 시켜 외부 핀(555)과 연결되는 외부 저항(R)과 종단부(560)에서 제공되는 드라이버 임피던스를 매칭시킨다. 따라서 엔모스 트랜지스터들(561, 562, 563)의 게이트에 인가되는 전압의 레벨을 조절하지 않아도 되고 단순히 엔모스 트랜지스터들(561, 562, 563)을 디지털 제어 코드(DCC)에 따라 턴-온/오프 시키면 되므로 회로 구현이 간단하고 또한 엔모스 트랜지스터들(561, 562, 563) 중 전압 레벨 조절에 필요한 엔모스 트랜지스터만 턴-온 시키면 되므로 전류 소모를 감소시킬 수 있다.The OCD 500 of FIG. 11 selectively turns on the NMOS transistors 561, 562, and 563 connected between the external pin 555 and the adjusting unit 570, (R) connected to the external pin (555) and the driver impedance provided at the terminal (560). Therefore, it is unnecessary to adjust the level of the voltage applied to the gates of the NMOS transistors 561, 562, and 563 and simply turns the NMOS transistors 561, 562, and 563 in accordance with the digital control code DCC, The circuit is simple to implement and the NMOS transistors 561, 562 and 563, which are necessary for adjusting the voltage level, are turned on only, so that current consumption can be reduced.

또한 이러한 드라이버 임피던스 캘리브레이션을 각 핀마다 별도로 수행할 수 있다.This driver impedance calibration can also be done separately for each pin.

도 12는 본 발명의 일 실시예에 따른 메모리 모듈을 나타내는 블록도이다.12 is a block diagram illustrating a memory module according to an embodiment of the present invention.

도 12를 참조하면, 메모리 모듈(600)은 제1 메모리 랭크(610) 및 제2 메모리 랭크(620)를 포함한다.Referring to FIG. 12, the memory module 600 includes a first memory rank 610 and a second memory rank 620.

제1 메모리 랭크(610) 및 제2 메모리 랭크(620)는 제1 칩 선택 신호(CS1) 및 제2 칩 선택 신호(CS2)를 각각 수신하고, 제1 칩 선택 신호(CS1) 및 제2 칩 선택 신호(CS2)에 응답하여 선택적으로 구동될 수 있다. 제1 메모리 랭크(610) 및 제2 메모리 랭크(620)는 메모리 모듈(600)의 동일한 면에 배치될 수 있고, 서로 다른 면에 배치될 수 있다. 도 10에는 두개의 메모리 랭크들(610, 620)을 포함하는 메모리 모듈(600)이 도시되어 있으나, 메모리 모듈(600)은 하나 이상의 메모리 랭크를 포함할 수 있다.The first memory rank 610 and the second memory rank 620 receive the first chip select signal CS1 and the second chip select signal CS2 respectively and output the first chip select signal CS1 and the second chip select signal CS2, And may be selectively driven in response to the selection signal CS2. The first memory rank 610 and the second memory rank 620 may be disposed on the same side of the memory module 600 and may be disposed on different sides. Although FIG. 10 illustrates a memory module 600 that includes two memory ranks 610 and 620, the memory module 600 may include one or more memory ranks.

제1 메모리 랭크(610) 및 제2 메모리 랭크(620) 각각은 복수의 반도체 메모리 장치들을 포함할 수 있다. 상기 복수의 반도체 메모리 장치들은 메모리 컨트롤러로부터 ODT 핀을 통하여 스트렝쓰 코드(SCD)를 수신하는 도 7의 반도체 메모리 장치(400) 일 수 있다.Each of the first memory rank 610 and the second memory rank 620 may comprise a plurality of semiconductor memory devices. The plurality of semiconductor memory devices may be the semiconductor memory device 400 of FIG. 7 receiving a texture code (SCD) from the memory controller via the ODT pin.

도 13a 내지 도 13f는 본 발명의 실시예들에 따른 메모리 모듈의 예들을 나타내는 도면이다.13A-13F illustrate examples of memory modules according to embodiments of the present invention.

도 13a를 참조하면, 메모리 모듈(700a)은 UDIMM(Unbuffered Dual In-line Memory Module)일 수 있다. 메모리 모듈(700a)은 데이터 전송선들(DQ)에 ODT 또는 드라이버 임피던스를 제공하는 복수의 반도체 메모리 장치들을 포함할 수 있다. 상기 반도체 메모리 장치들은 데이터 전송선들(DQ)에 각각 연결될 수 있다. 또한, 상기 반도체 메모리 장치들은 커맨드/어드레스 전송선들(CA)에 트리 구조로 연결될 수 있다. 일 실시예에서, 데이터 전송 및 커맨드/어드레스 전송에 있어서, 메모리 컨트롤러 또는 메모리 모듈 내의 소정의 전원 전압으로부터 기준 데이터 전압 및 기준 커맨드/어드레스 전압을 이용하는 의사-차동 시그널링(pseudo-differential signaling)이 활용될 수 있다.Referring to FIG. 13A, the memory module 700a may be an unbuffered dual in-line memory module (UDIMM). Memory module 700a may include a plurality of semiconductor memory devices that provide ODT or driver impedance to data transmission lines DQ. The semiconductor memory devices may be connected to the data transmission lines DQ, respectively. In addition, the semiconductor memory devices may be connected in a tree structure to the command / address transmission lines CA. In one embodiment, pseudo-differential signaling using a reference data voltage and a reference command / address voltage from a given supply voltage in a memory controller or memory module is utilized for data transfer and command / address transfer .

도 13b를 참조하면, 메모리 모듈(700b)은 UDIMM일 수 있다. 메모리 모듈(700b)은 데이터 전송선들(DQ)에 ODT 또는 드라이버 임피던스를 제공하는 복수의 반도체 메모리 장치들, 및 커맨드/어드레스 전송선들(CA)의 일단에 연결된 모듈 종단 저항부(701)를 포함할 수 있다. 커맨드/어드레스 전송선들(CA)은 상기 반도체 메모리 장치들과 플라이-바이 데이지-체인 방식(fly-by daisy-chain topology)으로 연결될 수 있다. 메모리 모듈(700b)에서는 독출/기입 레벨링(read/write leveling)이 수행될 수 있다.Referring to FIG. 13B, the memory module 700b may be a UDIMM. Memory module 700b includes a plurality of semiconductor memory devices that provide ODT or driver impedance to data transmission lines DQ and a module termination resistor portion 701 coupled to one end of command / address transmission lines CA . The command / address transmission lines CA may be connected to the semiconductor memory devices in a fly-by daisy-chain topology. In the memory module 700b, read / write leveling can be performed.

도 13c를 참조하면, 메모리 모듈(700c)은 RDIMM(Registered Dual In-line Memory Module)일 수 있다. 메모리 모듈(700c)은 데이터 전송선들(DQ)에 ODT 또는 드라이버 임피던스를 제공하는 복수의 반도체 메모리 장치들, 커맨드/어드레스 전송선들(CA)에 연결되고 상기 반도체 메모리 장치들에 커맨드/어드레스 신호를 제공하는 커맨드/어드레스 레지스터(711) 및 커맨드/어드레스 전송선들(CA)의 양단에 연결된 모듈 종단 저항부들(712, 713)을 포함할 수 있다. 커맨드/어드레스 레지스터(711)는 상기 반도체 메모리 장치들과 데이지-체인 방식으로 연결될 수 있다.Referring to FIG. 13C, the memory module 700c may be a Registered Dual In-line Memory Module (RDIMM). Memory module 700c is coupled to a plurality of semiconductor memory devices, command / address transmission lines CA and provides command / address signals to the semiconductor memory devices to provide ODT or driver impedances to data transmission lines DQ. And a module termination resistors 712 and 713 connected to both ends of the command / address register 711 and the command / address transmission lines CA. The command / address register 711 may be daisy-chained with the semiconductor memory devices.

도 13d를 참조하면, 메모리 모듈(700d)은 RDIMM일 수 있다. 메모리 모듈(700d)은 데이터 전송선들(DQ)에 ODT 또는 드라이버 임피던스를 제공하는 복수의 반도체 메모리 장치들, 커맨드/어드레스 전송선들(CA)에 연결되고 상기 반도체 메모리 장치들에 커맨드/어드레스 신호를 제공하는 커맨드/어드레스 레지스터(721) 및 커맨드/어드레스 전송선들(CA)의 일단에 연결된 모듈 종단 저항부(722)를 포함할 수 있다. 커맨드/어드레스 레지스터(721)는 상기 반도체 메모리 장치들과 플라이-바이 데이지-체인 방식으로 연결될 수 있다. 메모리 모듈(700d)에서는 독출/기입 레벨링(read/write leveling)이 수행될 수 있다.13D, the memory module 700d may be an RDIMM. Memory module 700d is coupled to a plurality of semiconductor memory devices, command / address transmission lines CA and provides command / address signals to the semiconductor memory devices to provide ODT or driver impedances to data transmission lines DQ. And a module termination resistor portion 722 connected to one end of the command / address transmission lines CA. The command / address register 721 may be connected to the semiconductor memory devices in a fly-by-daisy-chain manner. In the memory module 700d, read / write leveling can be performed.

도 13e를 참조하면, 메모리 모듈(700e)은 FBDIMM(Fully Buffered Dual In-line Memory Module)일 수 있다. 메모리 모듈(700e)은 데이터 전송선들에 ODT 또는 드라이버 임피던스를 제공하는 복수의 반도체 메모리 장치들, 및 메모리 컨트롤러로부터 고속의 패킷을 수신하고, 상기 패킷을 커맨드/어드레스 신호 및 데이터로 변환하여 상기 반도체 메모리 장치들에 제공하는 허브(731)를 포함할 수 있다. 예를 들어, 허브(731)는 AMB(Advanced Memory Buffer)일 수 있다.Referring to FIG. 13E, the memory module 700e may be a Fully Buffered Dual In-line Memory Module (FBDIMM). Memory module 700e includes a plurality of semiconductor memory devices for providing ODT or driver impedances to the data transmission lines and a memory module for receiving high speed packets from the memory controller and converting the packets into command / And a hub 731 for providing to the devices. For example, the hub 731 may be an Advanced Memory Buffer (AMB).

도 13f를 참조하면, 메모리 모듈(700f)은 LRDIMM(Load Reduced Dual In-line Memory Module)일 수 있다. 메모리 모듈(700f)은 데이터 전송선들에 ODT 또는 드라이버 임피던스를 제공하는 복수의 반도체 메모리 장치들, 및 메모리 컨트롤러로부터 복수의 신호선들을 통하여 커맨드/어드레스 신호 및 데이터를 수신하고, 상기 커맨드/어드레스 신호 및 상기 데이터를 버퍼링하여 상기 반도체 메모리 장치들에 제공하는 버퍼(741)를 포함할 수 있다. 버퍼(741)와 상기 복수의 반도체 메모리 장치들 사이의 데이터 전송선들은 포인트-투-포인트 방식으로 연결될 수 있다. 또한, 버퍼(741)와 상기 복수의 반도체 메모리 장치들 사이의 커맨드/어드레스 전송선들은 멀티-드롭 방식, 데이지-체인 방식, 또는 플라이-바이 데이지-체인 방식으로 연결될 수 있다. 버퍼(741)가 상기 커맨드/어드레스 신호 및 상기 데이터를 모두 버퍼링하므로, 메모리 컨트롤러는 버퍼(741)의 로드만을 구동함으로써 메모리 모듈(700f)과 인터페이스 할 수 있다. 이에 따라, 메모리 모듈(700f)은 보다 많은 수의 메모리 장치들 및 메모리 랭크들을 포함할 수 있고, 메모리 시스템은 보다 많은 수의 메모리 모듈들을 포함할 수 있다.Referring to FIG. 13F, the memory module 700f may be a Load Reduced Dual In-line Memory Module (LRDIMM). Memory module 700f includes a plurality of semiconductor memory devices for providing ODT or driver impedances to data transmission lines and command / address signals and data from a memory controller via a plurality of signal lines, And a buffer 741 for buffering and providing data to the semiconductor memory devices. The data transfer lines between the buffer 741 and the plurality of semiconductor memory devices may be connected in a point-to-point manner. Also, the command / address transmission lines between the buffer 741 and the plurality of semiconductor memory devices may be connected in a multi-drop scheme, a daisy-chain scheme, or a fly-by-daisy-chain scheme. Since the buffer 741 buffers both the command / address signal and the data, the memory controller can interface with the memory module 700f by driving only the load of the buffer 741. [ Accordingly, memory module 700f may include a greater number of memory devices and memory ranks, and the memory system may include a greater number of memory modules.

도 14는 본 발명의 일 실시예에 따른 메모리 시스템을 나타내는 도면이다.Figure 14 is a diagram illustrating a memory system in accordance with one embodiment of the present invention.

도 14를 참조하면, 메모리 시스템(800)은 메모리 컨트롤러(810), 및 적어도 하나의 메모리 모듈(820, 830)을 포함한다.14, a memory system 800 includes a memory controller 810, and at least one memory module 820, 830.

제1 메모리 모듈(820) 및 제2 메모리 모듈(830)은 버스(840)를 통하여 메모리 컨트롤러(810)에 연결된다. 제1 메모리 모듈(820) 및 제2 메모리 모듈(830) 각각은 도 10의 메모리 모듈(600) 또는 도 11a 내지 도 11f의 메모리 모듈(700a, 700b, 700c, 700d, 700e, 700f)일 수 있다.The first memory module 820 and the second memory module 830 are connected to the memory controller 810 via a bus 840. Each of the first memory module 820 and the second memory module 830 may be the memory module 600 of Figure 10 or the memory modules 700a, 700b, 700c, 700d, 700e, 700f of Figures 11a-11f .

제1 메모리 모듈(820)은 적어도 하나의 메모리 랭크(R1, R2)를 포함하고, 제2 메모리 모듈(830)은 적어도 하나의 메모리 랭크(R3, R4)를 포함한다. 일 실시예에서, 메모리 랭크들(R1, R2, R3, R4)은 동일한 전송선을 통하여 데이터 및/또는 어드레스 신호를 송수신하는 멀티-드롭 방식으로 연결될 수 있다. 메모리 랭크들(R1, R2, R3, R4) 각각(즉, 메모리 랭크에 포함된 반도체 메모리 장치들 각각)은 데이터 전송선에 종단 저항 또는 드라이버 임피던스를 제공함으로써, 신호 충실도를 향상시킬 수 있다. 일 실시예에서, 메모리 컨트롤러(810)도 ODT를 수행할 수 있고, 전원 전압(VDDQ)과 전송선 사이에 연결된 풀-업 저항(RTT)을 이용하여 풀-업 터미네이션 동작을 수행할 수 있다.The first memory module 820 includes at least one memory rank R1 and R2 and the second memory module 830 includes at least one memory rank R3 and R4. In one embodiment, memory ranks R1, R2, R3, R4 may be connected in a multi-drop manner to transmit and receive data and / or address signals over the same transmission line. Each of the memory ranks R1, R2, R3, R4 (i. E., Each of the semiconductor memory devices included in the memory rank) may provide a termination resistance or driver impedance to the data transmission line, thereby improving signal fidelity. In one embodiment, the memory controller 810 may also perform ODT and perform a pull-up termination operation using a pull-up resistor (RTT) connected between the power supply voltage VDDQ and the transmission line.

이와 같이, 본 발명의 실시예들에 따른 온-다이 터미네이션 회로, 데이터 출력 버퍼, 반도체 메모리 장치는 데이터 레이트를 반영하는 스트렝쓰 코드에 따라 데이터 전송선에 제공되는 터미네이션 저항 또는 드라이버 임피던스를 가변함으로써 전류 소모를 감소시킬 수 있고 신호 충실도를 향상시킬 수 있다.As described above, the on-die termination circuit, the data output buffer, and the semiconductor memory device according to the embodiments of the present invention vary the termination resistance or the driver impedance provided to the data transmission line according to the length code reflecting the data rate, Can be reduced and the signal fidelity can be improved.

본 발명은 임의의 반도체 메모리 장치, 메모리 모듈 및 메모리 시스템에 유용하게 이용될 수 있다.The present invention can be usefully used in any semiconductor memory device, memory module, and memory system.

상술한 바와 같이, 본 발명의 바람직한 실시예를 참조하여 설명하였지만 해당 기술 분야에서 통상의 지식을 가진 자라면 하기의 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although the preferred embodiments of the present invention have been disclosed for illustrative purposes, those skilled in the art will appreciate that various modifications, additions and substitutions are possible, without departing from the scope and spirit of the invention as disclosed in the accompanying claims. It will be understood that the invention may be modified and varied without departing from the scope of the invention.

Claims (10)

외부 핀에 연결되고, 상기 외부 핀에 연결된 전송선에 종단 저항을 제공하는 종단 저항부; 및
상기 종단 저항부에 연결되고, 데이터 레이트를 반영하는 복수비트의 스트렝쓰 코드에 응답하여 상기 종단 저항의 저항값을 가변하는 종단 제어부를 포함하고,
상기 종단 제어부는 상기 데이터 레이트가 높아질수록 상기 종단 저항의 저항값을 감소시키고, 상기 데이터 레이트가 낮아질수록 상기 종단 저항의 저항값을 증가시키는 반도체 메모리 장치의 온-다이 터미네이션 회로.
A terminating resistor connected to the external pin and providing a terminating resistor to the transmission line connected to the external pin; And
And a termination control section connected to the termination resistance section and varying a resistance value of the termination resistance in response to a plurality of bit string codes reflecting a data rate,
Wherein the termination control section decreases the resistance value of the termination resistance as the data rate increases and increases the resistance value of the termination resistance as the data rate decreases.
삭제delete 제1항에 있어서, 상기 종단 제어부는, 상기 스트렝쓰 코드와 출력 인에이블 신호에 응답하여 활성화되는 복수 비트의 터미네이션 제어 신호를 생성하고,
상기 종단 저항부는,
각각이 전원 전압에 연결되고 상기 터미네이션 제어 신호의 각 비트에 응답하여 턴-온되는 복수의 트랜지스터들; 및
상기 복수의 트랜지스터들 각각과 상기 외부 핀 사이에 연결되는 복수의 저항들을 포함하는 것을 특징으로 하는 반도체 메모리 장치의 온-다이 터미네이션 회로.
The semiconductor memory device according to claim 1, wherein the termination control unit generates a plurality of termination control signals activated in response to the length code and the output enable signal,
The termination resistor section,
A plurality of transistors each connected to a supply voltage and turned on in response to each bit of the termination control signal; And
And a plurality of resistors connected between each of the plurality of transistors and the external pin.
고정된 전압 레벨을 가지는 전원 전압과 외부 핀에 연결되는 조정 노드 사이에 연결되고, 복수 비트의 디지털 제어 코드에 응답하여 상기 외부 핀에 연결된 채널에 종단 저항을 제공하는 종단부; 및
상기 조정 노드에 연결되고, 상기 조정 노드의 전압과 기준 전압을 비교한 결과에 기초하여 상기 디지털 제어 코드의 각 비트값을 변경하여 상기 종단 저항이 상기 외부 핀에 연결된 외부 저항과 매칭되도록 하는 조정부를 포함하는 반도체 메모리 장치의 온-다이 터미네이션 회로.
A termination coupled between a power supply voltage having a fixed voltage level and an adjustment node coupled to the external pin and providing a termination resistance to a channel coupled to the external pin in response to the plurality of bits of the digital control code; And
And an adjustment unit connected to the adjustment node for changing each bit value of the digital control code based on a result of comparing the voltage of the adjustment node with a reference voltage to match the termination resistance with an external resistance connected to the external pin On termination circuit of a semiconductor memory device.
제4항에 있어서, 상기 종단부는 상기 전원 전압과 상기 조정 노드 사이에 연결되는 복수의 피모스 트랜지스터를 포함하고, 상기 피모스 트랜지스터들의 게이트에는 상기 디지털 제어 코드의 각 비트가 인가되는 것을 특징으로 하는 반도체 메모리 장치의 온-다이 터미네이션 회로. 5. The method of claim 4, wherein the termination comprises a plurality of PMOS transistors coupled between the power supply voltage and the tuning node, wherein each bit of the digital control code is applied to a gate of the PMOS transistors On-die termination circuit of a semiconductor memory device. 외부 핀에 연결되고, 상기 외부 핀에 연결된 전송선을 통하여 메모리 컨트롤러에 독출 데이터를 제공하는 드라이버 동작을 수행하면서 상기 전송선에 드라이버 임피던스를 제공하는 구동부; 및
상기 구동부에 연결되고, 출력 인에이블 신호에 응답하여 상기 구동부가 상기 드라이버 동작을 수행하도록 제어하며, 상기 독출 데이터와 데이터 레이트가 반영된 스트렝쓰 코드를 결합하여 상기 구동부를 제어하는 드라이빙 제어 신호를 생성하는 제어부를 포함하고, 상기 드라이버 임피던스는 상기 스트렝쓰 코드에 따라 가변되는 반도체 메모리 장치의 데이터 출력 버퍼.
A driver connected to an external pin and providing a driver impedance to the transmission line while performing a driver operation for providing read data to a memory controller through a transmission line connected to the external pin; And
A driving unit connected to the driving unit and controlling the driving unit to perform the driver operation in response to an output enable signal and generating a driving control signal for controlling the driving unit by combining the read data with a data code reflecting the data rate Wherein the driver impedance is varied according to the length code.
제6항에 있어서, 상기 출력 인에이블 신호는 독출 모드에서 활성화되고,
상기 제어부는 상기 독출 데이터와 상기 스트렝쓰 코드를 결합하여 풀-업 드라이빙 제어 신호 및 풀-다운 드라이빙 제어 신호를 생성하고, 상기 출력 인에이블 신호에 응답하여 상기 구동부에 상기 풀-업 드라이빙 제어 신호 및 상기 풀-다운 드라이빙 제어 신호를 제공하는 것을 특징으로 하는 반도체 메모리 장치의 데이터 출력 버퍼.
7. The method of claim 6, wherein the output enable signal is activated in a read mode,
Up driving control signal and a pull-down driving control signal by combining the read data and the length code to generate a pull-up driving control signal and a pull-down driving control signal in response to the output enable signal, And provides the pull-down driving control signal.
제7항에 있어서, 상기 구동부는
전원 전압과 상기 외부 핀 사이에 연결되고, 상기 제어부로부터 상기 풀-업 드라이빙 제어 신호를 수신하는 풀-업 구동기; 및
접지 전압과 상기 외부 핀 사이에 연결되고, 상기 제어부로부터 상기 풀-다운 드라이빙 제어 신호를 수신하는 풀-다운 구동기를 포함하는 것을 특징으로 하는 반도체 메모리 장치의 데이터 출력 버퍼.
8. The apparatus of claim 7, wherein the driving unit
A pull-up driver, connected between the power supply voltage and the external pin, for receiving the pull-up driving control signal from the control unit; And
And a pull-down driver connected between the ground voltage and the external pin for receiving the pull-down driving control signal from the control unit.
제8항에 있어서,
상기 전원전압은 0.2V인 것을 특징으로 하는 반도체 메모리 장치의 데이터 출력 버퍼.
9. The method of claim 8,
Wherein the power supply voltage is 0.2V.
데이터를 저장하고, 상기 저장된 데이터에 기초하여 독출 데이터를 생성하는 메모리 코어; 및
상기 메모리 코어로부터 제공된 상기 독출 데이터를 외부 핀에 연결된 전송선을 통하여 메모리 컨트롤러로 출력하고 독출 모드에서 상기 전송선에 데이터 레이트를 반영하는 복수 비트의 스트렝쓰 코드에 응답하여 가변되는 드라이버 임피던스를 제공하는 데이터 출력 버퍼를 포함하고,
상기 데이터 출력 버퍼는
상기 외부 핀에 연결되고, 상기 메모리 컨트롤러에 상기 독출 데이터를 제공하는 드라이버 동작을 수행하면서 상기 전송선에 상기 드라이버 임피던스를 제공하는 구동부; 및
상기 구동부에 연결되고, 출력 인에이블 신호에 응답하여 상기 구동부가 상기 드라이버 동작을 수행하도록 제어하며, 상기 독출 데이터와 데이터 레이트가 반영된 스트렝쓰 코드를 결합하여 상기 구동부를 제어하는 드라이빙 제어 신호를 생성하는 제어부를 포함하는 반도체 메모리 장치.
A memory core for storing data and generating readout data based on the stored data; And
A data output circuit for outputting the read data provided from the memory core to a memory controller through a transmission line connected to an external pin and providing a variable driver impedance in response to a plurality of bit string codes reflecting a data rate in the transmission line in a read mode, Buffer,
The data output buffer
A driver connected to the external pin and providing the driver impedance to the transmission line while performing a driver operation for providing the read data to the memory controller; And
A driving unit connected to the driving unit and controlling the driving unit to perform the driver operation in response to an output enable signal and generating a driving control signal for controlling the driving unit by combining the read data with a data code reflecting the data rate And a control section.
KR1020100087872A 2010-04-02 2010-09-08 On-die termination circuit, data output buffer, semiconductor memory device KR101765060B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/048,219 US8531898B2 (en) 2010-04-02 2011-03-15 On-die termination circuit, data output buffer and semiconductor memory device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US32056710P 2010-04-02 2010-04-02
US61/320,567 2010-04-02

Publications (2)

Publication Number Publication Date
KR20110111218A KR20110111218A (en) 2011-10-10
KR101765060B1 true KR101765060B1 (en) 2017-08-07

Family

ID=45027478

Family Applications (4)

Application Number Title Priority Date Filing Date
KR1020100087872A KR101765060B1 (en) 2010-04-02 2010-09-08 On-die termination circuit, data output buffer, semiconductor memory device
KR1020100087753A KR20110111217A (en) 2010-04-02 2010-09-08 Memory system
KR1020100089397A KR101761188B1 (en) 2010-04-02 2010-09-13 semiconductor memory device and method of controlling the same
KR1020100098054A KR101747176B1 (en) 2010-04-02 2010-10-08 A method of tuning phase of a clock signal, a memory controller and a memory system

Family Applications After (3)

Application Number Title Priority Date Filing Date
KR1020100087753A KR20110111217A (en) 2010-04-02 2010-09-08 Memory system
KR1020100089397A KR101761188B1 (en) 2010-04-02 2010-09-13 semiconductor memory device and method of controlling the same
KR1020100098054A KR101747176B1 (en) 2010-04-02 2010-10-08 A method of tuning phase of a clock signal, a memory controller and a memory system

Country Status (1)

Country Link
KR (4) KR101765060B1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9396771B2 (en) 2012-05-07 2016-07-19 Samsung Electronics Co., Ltd. Memory device for performing multi-core access to bank groups
KR101984902B1 (en) 2012-09-14 2019-05-31 삼성전자 주식회사 EMBEDDED MULTIMEDIA CARD(eMMC) USING UNIDIRECTIONAL RETURN CLOCK SIGNAL, HOST FOR CONTROLLING THE eMMC, AND METHOD FOR OPERATING eMMC SYSTEM INCLUDING THE eMMC AND THE HOST
KR102118214B1 (en) 2013-08-16 2020-06-02 에스케이하이닉스 주식회사 Semiconductor device and semiconductor system
KR20150040058A (en) 2013-10-04 2015-04-14 에스케이하이닉스 주식회사 Semiconductor integrated circuit
KR102100984B1 (en) * 2013-11-19 2020-04-14 에스케이하이닉스 주식회사 Method for detecting phase and phase detecting system
US9818462B1 (en) * 2017-01-19 2017-11-14 Micron Technology, Inc. Apparatuses and methods for providing internal clock signals of different clock frequencies in a memory device
KR102371264B1 (en) * 2017-04-21 2022-03-07 에스케이하이닉스 주식회사 Memory system
KR102513454B1 (en) * 2018-02-28 2023-03-24 에스케이하이닉스 주식회사 Semiconductor device
US10372330B1 (en) 2018-06-28 2019-08-06 Micron Technology, Inc. Apparatuses and methods for configurable memory array bank architectures
KR20230046355A (en) 2021-09-29 2023-04-06 삼성전자주식회사 High resolution phase correcting circuit and phase interpolating device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7602208B2 (en) * 2007-06-29 2009-10-13 Hynix Semiconductor Inc. On die termination device that can control terminal resistance

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6766429B1 (en) * 2000-08-31 2004-07-20 International Business Machines Corporation Low cost and high RAS mirrored memory
KR100618870B1 (en) * 2004-10-23 2006-08-31 삼성전자주식회사 A method for data training

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7602208B2 (en) * 2007-06-29 2009-10-13 Hynix Semiconductor Inc. On die termination device that can control terminal resistance

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Dong Uk Lee et al.,'Multi-Slew-Rate Output Driver and Optimized Impedance-Calibration Circuit for 66nm 3.0Gb/s/pin DRAM Interface', ISSCC 2008, pages 280-281 & 613, 2008*

Also Published As

Publication number Publication date
KR20110111218A (en) 2011-10-10
KR20110111219A (en) 2011-10-10
KR101747176B1 (en) 2017-06-15
KR101761188B1 (en) 2017-08-07
KR20110111217A (en) 2011-10-10
KR20110111223A (en) 2011-10-10

Similar Documents

Publication Publication Date Title
KR101765060B1 (en) On-die termination circuit, data output buffer, semiconductor memory device
US8531898B2 (en) On-die termination circuit, data output buffer and semiconductor memory device
US7961001B1 (en) Impedance adjusting device
US8619492B2 (en) On-die termination circuit, memory device, memory module, and method of operating and training an on-die termination
JP4326919B2 (en) ODT circuit and ODT method capable of minimizing on-chip DC current consumption, and memory system employing memory device including the same
US8508251B2 (en) Semiconductor devices having on-die termination structures for reducing current consumption and termination methods performed in the semiconductor devices
US10878886B2 (en) Memory device write circuitry
US20150042379A1 (en) Semiconductor device having impedance calibration function to data output buffer and semiconductor module having the same
US20120099383A1 (en) Data output buffer and memory device
KR20120049735A (en) Pseudo-open drain type output driver having de-emphasis function and semiconductor memory device, and control method thereof
US8035412B2 (en) On-die termination latency clock control circuit and method of controlling the on-die termination latency clock
US11209994B2 (en) Systems and methods for data path power savings in DDR5 memory devices
CN111418019A (en) System and method for improving input signal quality in a memory device
US20130082737A1 (en) Semiconductor device having serializer converting parallel data into serial data to output serial data from output buffer circuit
US11257538B2 (en) Systems and methods for improved reliability of components in dynamic random access memory (DRAM)
CN113223575B (en) High speed level shifter
CN111418017A (en) System and method for saving power in signal quality operation of memory devices
US10157659B1 (en) Power reduction technique during read/write bursts
CN111406285A (en) System and method for generating staggered delays in a memory device
US8225417B2 (en) Circuit for controlling signal line transmitting data and method of controlling the same
US11276468B2 (en) High-speed efficient level shifter
US11417391B2 (en) Systems and methods for level down shifting drivers
US11936377B2 (en) Impedance control for input/output circuits
JP2014127894A (en) Semiconductor device
CN114189231A (en) Delay circuit with reduced instability

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right