KR101500043B1 - Hot dip zinc alloy plated steel sheet having superior formability and processed part corrosion resistance, and method for manufacturing the same - Google Patents

Hot dip zinc alloy plated steel sheet having superior formability and processed part corrosion resistance, and method for manufacturing the same Download PDF

Info

Publication number
KR101500043B1
KR101500043B1 KR1020120151569A KR20120151569A KR101500043B1 KR 101500043 B1 KR101500043 B1 KR 101500043B1 KR 1020120151569 A KR1020120151569 A KR 1020120151569A KR 20120151569 A KR20120151569 A KR 20120151569A KR 101500043 B1 KR101500043 B1 KR 101500043B1
Authority
KR
South Korea
Prior art keywords
steel sheet
buffer layer
layer
plating
zinc alloy
Prior art date
Application number
KR1020120151569A
Other languages
Korean (ko)
Other versions
KR20140081623A (en
Inventor
오민석
진영술
김상헌
김수영
유봉환
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020120151569A priority Critical patent/KR101500043B1/en
Publication of KR20140081623A publication Critical patent/KR20140081623A/en
Application granted granted Critical
Publication of KR101500043B1 publication Critical patent/KR101500043B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0222Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating in a reactive atmosphere, e.g. oxidising or reducing atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Coating With Molten Metal (AREA)

Abstract

소지강판; 상기 소지강판 상에 형성된 용융아연합금 도금층; 및 상기 소지강판과 상기 용융아연합금 도금층 사이에 형성된 버퍼층을 포함하며, 상기 용융아연합금 도금층은 중량%로, Al: 0.5~5.0%, Mg: 1~5%, 잔부 Zn 및 불가피한 불순물로 이루어지며, 상기 Mg 및 Al의 함량은 [Al+Mg≤7]의 관계를 만족하는, 가공성 및 가공부 내식성이 우수한 용융아연합금 도금강판 및 그의 제조방법이 제공된다.
본 발명에 따르면, 도금소재의 굽힘가공 및 프레스 가공시 도금층 표면에 형성되는 크랙을 저감시킬 수 있다. 또한, 크랙부 Fe 소지강판 노출을 최소화하고, 도금층의 Fe 소지강판에 대한 밀착성을 향상시킴으로써 도금소재의 가공성 향상 및 가공부의 내식성 향상을 도모할 수 있다.
Base steel sheet; A molten zinc alloy plating layer formed on the base steel sheet; And a buffer layer formed between the base steel sheet and the molten zinc alloy plating layer, wherein the molten zinc alloy plating layer is composed of 0.5 to 5.0% of Al, 1 to 5% of Mg, the remainder of Zn, and inevitable impurities, , The content of Mg and Al satisfying the relation of [Al + Mg? 7], and excellent in workability and machined portion corrosion resistance, and a method for producing the same.
According to the present invention, it is possible to reduce the cracks formed on the surface of the plating layer during bending and pressing of the plating material. In addition, exposure of the cracked Fe-coated steel sheet is minimized and the adhesion of the plated layer to the Fe-coated steel sheet is improved, thereby improving the workability of the plated material and improving the corrosion resistance of the processed portion.

Description

가공성 및 가공부 내식성이 우수한 용융아연합금 도금강판 및 그의 제조방법{HOT DIP ZINC ALLOY PLATED STEEL SHEET HAVING SUPERIOR FORMABILITY AND PROCESSED PART CORROSION RESISTANCE, AND METHOD FOR MANUFACTURING THE SAME}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hot dip galvanized steel sheet having excellent workability and corrosion resistance at a machining portion and a method for manufacturing the same, and a hot dip galvanized steel sheet,

본 발명은 가공성 및 가공부 내식성이 우수한 용융아연합금 도금강판 및 그의 제조방법에 관한 것이다.The present invention relates to a hot-dip zinc-alloy coated steel sheet excellent in workability and machined portion corrosion resistance, and a method for manufacturing the same.

음극방식을 통해 철의 부식을 억제하는 아연도금법은 방식성능 및 경제성이 우수하여 고내식 특성을 갖는 강재를 제조하는데 널리 사용되고 있다. 특히, 용융된 아연에 강재를 침지하여 도금층을 형성하는 용융아연 도금강판은 전기아연 도금강판에 비해 제조공정이 단순하고, 제품가격이 저렴하여 자동차, 가전제품 및 건축자재용 등의 산업전반에 걸쳐 그 수요가 증가하고 있다.
The zinc plating method which suppresses the corrosion of iron through the cathode method is widely used for manufacturing a steel material having excellent corrosion resistance and performance and excellent corrosion resistance. Particularly, the hot-dip galvanized steel sheet which forms the coating layer by immersing the steel into the molten zinc has a simpler manufacturing process than that of the electro-galvanized steel sheet and has a low product price, The demand is increasing.

아연이 도금된 용융아연 도금강판은 부식환경에 노출되었을 때 철보다 산화환원전위가 낮은 아연이 먼저 부식되어 강판의 부식이 억제되는 희생방식(Sacrificial Corrosion Protection)의 특성을 가지며, 이와 더불어 도금층의 아연이 산화되면서 강판 표면에 치밀한 부식생성물을 형성시켜 산화분위기로부터 강재를 차단함으로써 강판의 내부식성을 향상시킨다. 그러나, 산업 고도화에 따른 대기오염의 증가 및 부식환경의 악화가 증가하고 있고, 자원 및 에너지 절약에 대한 엄격한 규제로 인해 종래의 아연 도금강판보다 더 우수한 내식성을 갖는 강재 개발의 필요성이 높아지고 있다.
The zinc-plated hot-dip galvanized steel sheet has a characteristic of sacrificial corrosion protection in which corrosion of the steel sheet is firstly inhibited by zinc which is lower in oxidation-reduction potential than iron when exposed to a corrosive environment, Thereby forming a dense corrosion product on the surface of the steel sheet and blocking the steel from the oxidizing atmosphere, thereby improving the corrosion resistance of the steel sheet. However, the increase in the air pollution and deterioration of the corrosive environment due to the industrial advancement are increasing, and due to the strict regulations on the resource and energy saving, there is a growing need for the development of steels having better corrosion resistance than the conventional zinc plated steel sheets.

그 일환으로, 아연도금욕에 알루미늄(Al) 및 마그네슘(Mg) 등의 원소를 첨가하여 강재의 내식성을 향상시키는 아연합금계 도금강판 제조기술의 연구가 다양하게 진행되어왔다.As a part of this research, there have been various researches on manufacturing technology of zinc alloy plating steel which improves the corrosion resistance of steel by adding elements such as aluminum (Al) and magnesium (Mg) to the galvanizing bath.

대표적인 아연합금계 도금재로서 [Zn-55wt%Al-1.6wt%Si] 도금강판이 있으나, 이 경우에는 높은 함량의 Al로 인해 도금층의 희생방식 능력이 저하되어, 절단면 및 절곡부와 같은 모재가 부식환경에 직접 노출된 부위에서 우선적으로 부식이 발생하는 문제가 있다. 또한, 도금욕 내의 Al 함량을 50wt% 이상으로 높게 함유하도록 하는 경우, 도금욕의 온도를 600℃ 이상으로 유지해야 하므로, 모재강판의 침식에 의한 도금욕 내 Fe 합금계 드로스 발생이 심해져, 도금 작업성이 저하되고 싱크롤(sink roll) 등의 도금욕 내부 설비 침식이 가속화되어 설비의 수명이 짧아지는 단점이 있다.
There are [Zn-55wt% Al-1.6wt% Si] plated steel sheet as a typical zinc alloy plating material. However, in this case, the ability of sacrificing the plating layer is deteriorated due to a high content of Al, There is a problem that corrosion occurs preferentially in the area directly exposed to the corrosive environment. In addition, when the Al content in the plating bath is made to be as high as 50 wt% or more, the temperature of the plating bath must be maintained at 600 DEG C or higher, so that the occurrence of iron alloy system dross in the plating bath due to erosion of the base steel sheet becomes serious, The workability is deteriorated and the erosion of facilities in the plating bath such as a sink roll is accelerated, shortening the service life of the equipment.

이러한 문제를 해결하기 위해서, 도금욕 내의 Al 함량을 줄이면서 강재의 내식성 향상을 위한 목적으로, Zn-Al계 도금욕 중에 Mg을 함유시킨 Zn-Al-Mg계 합금도금에 관한 연구가 활발히 진행되고 있다.
In order to solve this problem, researches on Zn-Al-Mg based alloy plating containing Mg in the Zn-Al system plating bath have been actively carried out for the purpose of improving the corrosion resistance of the steel material while reducing the Al content in the plating bath have.

예컨대, 특허문헌 1에서는 3~17wt%의 Al 및 1~5wt%의 Mg을 함유하는 도금욕을 이용하여 제조한 용융아연합금계 도금강판을 제조하는 방법을 제시하고 있으며, 특허문헌 2 내지 4에서는 상기와 동일한 조성을 갖는 도금욕 내에 각종의 첨가원소를 배합하거나 제조조건을 규제하는 것에 의해 내식성 및 제조특성을 개선시킨 도금기술이 제안되었다. 그러나, 도금성분 중에 Al 및 Mg가 포함되면서 도금층 응고시 Zn-Al 및 Zn-Mg계 금속간 화합물이 도금층 전체에 형성되고, 이는 도금층의 경도 증가를 유발하게 된다. 이러한 도금층 경도 증가 현상은 프레스 성형시 금형과 도금층 마찰에 의한 도금층 박리를 억제하여 금형의 오염을 줄이는 장점이 있으나, 90~180도 굽힘가공 및 심한 프레스 가공시 도금층 표면에 크랙을 유발하여, 가공부의 외관 및 내식성을 저하시킨다.
For example, Patent Document 1 discloses a method for producing a molten steel alloy-plated steel sheet produced by using a plating bath containing 3 to 17 wt% of Al and 1 to 5 wt% of Mg, and Patent Documents 2 to 4 A plating technique has been proposed in which corrosion resistance and manufacturing characteristics are improved by compounding various kinds of additive elements in a plating bath having the same composition as the above or regulating the production conditions. However, when Al and Mg are contained in the plating component, Zn-Al and Zn-Mg intermetallic compounds are formed on the entire plating layer upon solidification of the plating layer, which causes increase in hardness of the plating layer. The increase in the hardness of the plating layer is advantageous in reducing the contamination of the mold by suppressing the peeling of the plating layer due to friction between the mold and the plating layer during press forming, but causes cracks on the surface of the plating layer during 90 to 180 degree bending and severe pressing, Thereby deteriorating appearance and corrosion resistance.

따라서, 이러한 Al 및 Mg계 금속간 화합물 형성에 기인된 도금층 경도 증가 및 그에 따른 가공부 크랙발생을 억제할 필요가 있으며, 현재 이에 대한 기술이 몇가지 제시되고 있다.
Therefore, it is necessary to suppress the increase in the hardness of the plating layer attributable to the formation of the Al and Mg based intermetallic compounds and the occurrence of the cracks in the processed portion, and some technologies are currently being proposed.

예컨대, 특허문헌 5에서는 도금층내에 형성된 Mg계 금속간 화합물의 미세조직을 제어하기 위하여 3 wt%이하의 미량원소를 첨가한 후 도금층 냉각속도를 5℃/sec 이상으로 조절하였고 금속간 화합물 조직의 사이즈를 균일하게 분산시킴으로써 가공성을 개선시키는 기술이 제시되고 있다.For example, in Patent Document 5, in order to control the microstructure of the Mg-based intermetallic compound formed in the plating layer, after adding 3 wt% or less of trace elements, the cooling rate of the plating layer was controlled to 5 캜 / sec or more, Is uniformly dispersed to thereby improve workability.

또한, 특허문헌 6에서는 1~60 mass% 및 1~10 mass%를 포함하는 Zn-Al-Mg 합금계 도금강판을 제조함에 있어서,도금층 냉각속도를 0.1×도금욕 온도 - 10 (℃/sec) 이상으로 급냉하여 Zn-Mg계 금속간 화합물상 및 Al-Mg계 금속간 화합물의 사이즈를 10nm ~ 1㎛ 이하로 조절하여 합금도금강판의 가공성 및 가공부 내식성을 향상시키는 기술이 제시되고 있다.
Further, in Patent Document 6, the coating layer cooling rate is set to 0.1 × plating bath temperature-10 (° C./sec) in producing Zn-Al-Mg alloy plated steel sheet containing 1 to 60 mass% and 1 to 10 mass% Or more, so that the size of the Zn-Mg based intermetallic compound phase and the Al-Mg based intermetallic compound is controlled to 10 nm to 1 탆 or less to improve the processability and corrosion resistance of the alloyed plated steel sheet.

그러나 상기 기술의 경우 단순한 도금층 금속간 화합물 분산에 의한 도금층 경도 저감효과를 기대하기 어렵고, 선재 굽힘가공과 같은 비교적 저강도 가공에는 효과가 있으나, 0-T 굽힘가공 및 프레스 가공과 같은 엄격한 심가공에서는 도금층 표면크랙이 명확히 관찰되어 가공성 개선이 불충분했다.
However, in the case of the above-described technique, it is difficult to expect the effect of reducing the hardness of the plating layer by simply dispersing the intermetallic compound in the plating layer, and it is effective for relatively low-strength machining such as wire bending. However, in the case of severe deep machining such as 0-T bending machining and press machining Cracks on the surface of the plated layer were clearly observed and the improvement in workability was insufficient.

또 다른 기술로서, 특허문헌 7에서는 2~19wt%의 Al, 10wt%의 Mg 및 0.01wt%의 Si을 포함하는 Zn-Al-Mg 합금계 도금강판을 제조함에 있어서, 하지층(underlying layer)으로써 합금도금층과 모재 금속 사이에 Ni 도금층을 2g/m2 이하로 형성시켜 가공부에서 Ni-Al-Fe-Zn 화합물을 형성시켜 가공부 내식성을 개선하는 방법이 제안되었다. 그러나, 이 기술의 경우 Ni 도금량이 2g/m2 이하로 한정되어 가공부 내식성 향상 효능 검정이 쉽지 않으며, Ni의 경우 고가의 원소로서 합금도금층을 용융도금하기 전 모재 금속 표면에 형성시키는 방법으로는 전기도금법이 유일하여 설비비 증가를 초래하게 되는 문제점이 있다.
As another technique, in Patent Document 7, a Zn-Al-Mg alloy-based plated steel sheet containing 2 to 19 wt% of Al, 10 wt% of Mg and 0.01 wt% of Si is manufactured as an underlying layer A method has been proposed in which a Ni plating layer is formed between an alloy plating layer and a base metal to 2 g / m 2 or less to form a Ni-Al-Fe-Zn compound in the processed portion to improve the corrosion resistance of the processed portion. However, in the case of this technique, the Ni plating amount is limited to 2 g / m 2 or less so that it is difficult to test the effect of improving the corrosion resistance of the processed part. In the case of Ni, as an expensive element, an alloy plating layer is formed on the surface of the base metal before hot- There is a problem that the electroplating method is unique and the equipment cost is increased.

따라서, 합금도금강재의 가공성 및 가공부 내식성 향상을 위해 Zn, Al 및 Mg계 도금층을 Fe 소지강판 위에 형성함에 있어서, 상기와 같은 문제점을 해결할 수 있는 방안을 모색함이 필요하다.Therefore, in forming the Zn, Al, and Mg-based plating layers on the Fe-coated steel sheet in order to improve the processability and the corrosion resistance of the processed portion of the alloy-plated steel, it is necessary to search for measures to solve the above problems.

미국등록특허 제3,505,043호United States Patent No. 3,505,043 일본공개특허 제2000-104154호Japanese Patent Application Laid-Open No. 2000-104154 일본공개특허 제1999-140615호Japanese Laid-Open Patent Application No. 1999-140615 국제공개특허 WO06/002843호WO06 / 002843 일본등록특허 제3,212,977호Japanese Patent No. 3,212,977 일본등록특허 제3,760,901호Japanese Patent No. 3,760,901 일본등록특허 제3,179,446호Japanese Patent No. 3,179,446

본 발명의 일 측면은 굽힘가공 및 프레스 가공시 도금층 표면에 형성되는 크랙을 저감시키고, 소지강판에 대한 도금층의 밀착성을 향상시킴으로써 합금도금재의 가공성 향상 및 가공부의 내식성을 향상시킬 수 있는 용융아연합금 도금강판 및 그의 제조방법을 제시하고자 한다.
One aspect of the present invention is to provide a method of manufacturing a hot dip galvanized steel sheet which can reduce the cracks formed on the surface of the plating layer during bending and pressing and improve the adhesion of the plating layer to the base steel sheet thereby improving the workability of the alloy plating material and improving the corrosion resistance of the processed portion Steel sheet and a manufacturing method thereof.

그러나, 본 발명이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.However, the problems to be solved by the present invention are not limited to the above-mentioned problems, and other problems not mentioned can be clearly understood by those skilled in the art from the following description.

상기와 같은 목적을 달성하기 위하여, 본 발명의 일 측면은, 소지강판; 상기 소지강판 상에 형성된 용융아연합금 도금층; 및 상기 소지강판과 상기 용융아연합금 도금층 사이에 형성된 버퍼층을 포함하며, 상기 용융아연합금 도금층은 중량%로, Al: 0.5~5.0%, Mg: 1~5%, 잔부 Zn 및 불가피한 불순물로 이루어지며, 상기 Mg 및 Al의 함량은 [Al+Mg≤7]의 관계를 만족하는, 가공성 및 가공부 내식성이 우수한 용융아연합금 도금강판을 제공한다.
According to an aspect of the present invention, A molten zinc alloy plating layer formed on the base steel sheet; And a buffer layer formed between the base steel sheet and the molten zinc alloy plating layer, wherein the molten zinc alloy plating layer is composed of 0.5 to 5.0% of Al, 1 to 5% of Mg, the remainder of Zn, and inevitable impurities, , The content of Mg and Al satisfying the relation of [Al + Mg? 7], and excellent in workability and machined portion corrosion resistance.

본 발명의 다른 측면은, 소지강판에 버퍼층을 형성시키는 단계; 형성된 버퍼층을 진공 분위기, 불활성 분위기 또는 질소 분위기에서 냉각 또는 보관하는 단계; 용융아연합금 도금욕 내에 버퍼층이 형성된 소지강판을 침지하고, 도금을 행하여 도금강판을 제조하는 단계; 및 상기 도금강판을 가스와이핑하여 냉각하는 단계를 포함하며, 상기 용융아연합금 도금욕은 중량%로, Al: 0.5~5.0%, Mg: 1~5%, 잔부 Zn 및 불가피한 불순물을 포함하며, 상기 Mg 및 Al의 함량은 [Al+Mg≤7]의 관계를 만족하는 것인, 가공성 및 가공부 내식성이 우수한 용융아연합금 도금강판의 제조방법을 제공한다.According to another aspect of the present invention, there is provided a method of manufacturing a semiconductor device, comprising: forming a buffer layer on a base steel sheet; Cooling or storing the formed buffer layer in a vacuum atmosphere, an inert atmosphere or a nitrogen atmosphere; Immersing a base steel sheet in which a buffer layer is formed in a molten zinc alloy plating bath and plating the base steel sheet to produce a coated steel sheet; And cooling the plated steel sheet by gas wiping, wherein the molten zinc alloy plating bath contains 0.5 to 5.0% of Al, 1 to 5% of Mg, the remainder of Zn and unavoidable impurities, in weight percent, And the content of Mg and Al satisfies the relationship of [Al + Mg? 7]. The present invention also provides a method for producing a hot-dip galvanized steel sheet excellent in workability and machined portion corrosion resistance.

본 발명에 의하면, 소지강판과 도금층 사이에 버퍼층을 형성시켜 도금소재의 굽힘가공 및 프레스 가공시 도금층 표면에 형성되는 크랙을 저감시킬 수 있다. 또한, 도금층 경도증가에 의한 크랙이 형성되더라도 크랙부 Fe 소지강판 노출을 최소화하고, 도금층의 Fe 소지강판에 대한 밀착성을 향상시킴으로써 도금소재의 가공성 향상 및 가공부의 내식성 향상을 도모할 수 있다.According to the present invention, a buffer layer can be formed between the base steel sheet and the plating layer to reduce the cracks formed on the surface of the plating layer during bending and pressing of the plating material. Further, even when cracks are formed due to an increase in the hardness of the plating layer, exposure of the cracked Fe-base steel sheet is minimized and the adhesion of the plating layer to the Fe-base steel sheet is improved, thereby improving the workability of the plating material and improving the corrosion resistance of the processed portion.

도 1은 본 발명의 일 실시예에 따른 용융아연합금 도금강판의 도금층 단면사진 및 도금층 표면사진이다.
도 2는 본 발명의 일 실시예에 따른 합금 도금층의 0-T 굽힘가공 전 및 0-T 굽힘가공 후의 표면 형상을 나타낸 사진이다.
도 3은 본 발명의 일 실시예에 따른 용융아연합금 도금강판의 제조방법을 설명하는 플로우차트이다.
도 4는 본 발명의 일 실시예에 따른 용융아연합금 도금강판의 단면도이다.
도 5는 합금 도금층 도금량별 0-T 굽힘가공시 버퍼층 도금량에 따른 합금 도금층 표면의 크랙 면적변화를 도시한 그래프이다.
도 6은 합금 도금층 도금량별 0-T 굽힘가공시 버퍼층 도금량에 따른 합금 도금층 표면에 노출된 Fe 소지강판의 면적 변화를 도시한 그래프이다.
도 7은 버퍼층 도금량에 따른 용융아연합금 도금강판의 가공부 적청발생정도(내식성)을 나타낸 사진이다.
BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a cross-sectional photograph of a plated layer of a hot-dip galvanized steel sheet according to an embodiment of the present invention and a photograph of the surface of a plated layer. Fig.
2 is a photograph showing the surface shape of the alloy plating layer according to one embodiment of the present invention before 0-T bending and after 0-T bending.
3 is a flowchart illustrating a method of manufacturing a hot-dip galvanized steel sheet according to an embodiment of the present invention.
4 is a cross-sectional view of a hot-dip galvanized steel sheet according to an embodiment of the present invention.
5 is a graph showing a change in crack area on the surface of the alloy plating layer depending on the amount of buffer layer plating in 0-T bending according to the plating amount of the alloy plating layer.
6 is a graph showing changes in the area of the Fe-coated steel sheet exposed on the surface of the alloy plating layer according to the amount of buffer layer plating during 0-T bending according to the plating amount of the alloy plating layer.
Fig. 7 is a photograph showing the degree of occurrence of redness at the processed portion (corrosion resistance) of the hot-dip galvanized steel sheet according to the buffer layer plating amount.

본 발명은 자동차, 가전제품 및 건축자재 등에 널리 사용되는 용융아연합금 도금강판 및 이를 제조하는 방법에 관한 것이다. 본 발명에서는 용융아연합금 도금강판의 제조를 위해 Zn, Al 및 Mg 용융합금 도금욕을 이용하여, 이때 제조되는 합금도금층과 Fe 소지강판과 사이에 버퍼층을 형성시켜 가공시 발생하는 표면 크랙 형성을 억제함으로써 가공성 및 가공부 내식성을 향상시키고자 한다.
The present invention relates to a hot-dip galvanized steel sheet widely used for automobiles, household appliances and building materials, and a method of manufacturing the same. In the present invention, a Zn, Al and Mg molten alloy plating bath is used for the production of a hot-dip galvanized steel sheet, and a buffer layer is formed between the alloy plating layer and the Fe-bearing steel sheet produced at this time to suppress surface cracking Thereby improving the workability and the corrosion resistance of the processed portion.

이하, 도 3에 도시된 플로우차트를 참조하면서 본 발명에 따른 용융아연합금 도금강판의 제조방법에 대하여 상세히 설명한다.
Hereinafter, a method for manufacturing a hot-dip galvanized steel sheet according to the present invention will be described in detail with reference to the flowchart shown in FIG.

본 발명의 용융아연합금 도금강판의 제조방법은 소지강판에 버퍼층을 형성시키는 단계; 형성된 버퍼층을 진공 분위기, 불활성 분위기 또는 질소 분위기에서 냉각 또는 보관하는 단계; 용융아연합금 도금욕 내에 버퍼층이 형성된 소지강판을 침지하고, 도금을 행하여 도금강판을 제조하는 단계; 및 상기 도금강판을 가스와이핑하여 냉각하는 단계를 포함한다.
A method of manufacturing a hot-dip galvanized steel sheet according to the present invention includes the steps of: forming a buffer layer on a base steel sheet; Cooling or storing the formed buffer layer in a vacuum atmosphere, an inert atmosphere or a nitrogen atmosphere; Immersing a base steel sheet in which a buffer layer is formed in a molten zinc alloy plating bath and plating the base steel sheet to produce a coated steel sheet; And cooling the plated steel sheet by gas wiping.

본 발명에서는 합금도금재의 가공성 및 가공부 내식성을 향상시키기 위하여 소지강판(100)과 합금도금층(120) 사이에 버퍼층(110)을 형성시킨다. 소지강판과 합금도금층 사이에 경도가 낮고 유연한 버퍼층을 삽입함으로써 가공부 크랙면적 저감을 유도하고 크랙부위의 Fe 소지강판의 노출면적을 현저히 감소시켜 합금도금재의 전체적인 가공부 내식특성을 향상시킬 수 있다.
In the present invention, the buffer layer 110 is formed between the base steel sheet 100 and the alloy plating layer 120 to improve the processability and the process corrosion resistance of the alloy plating material. By inserting a buffer layer having a low hardness and a low hardness between the base steel sheet and the alloy plating layer, it is possible to reduce the crack area of the processed portion and significantly reduce the exposed area of the Fe-base steel sheet at the crack portion, thereby improving the overall corrosion resistance of the alloy plating material.

상기 버퍼층은 Zn, In, Ga, Sn, Si, Ca, Na, Al, Cu, Ni, Au 및 Ag 중에서 선택되는 1종 이상 또는 이들의 합금을 상기 소지강판에 코팅함으로써 형성될 수 있으며, 또한 상기 버퍼층은 단층 혹은 다층으로 구성될 수 있다.
The buffer layer may be formed by coating at least one selected from Zn, In, Ga, Sn, Si, Ca, Na, Al, Cu, Ni, Au and Ag or an alloy thereof to the base steel sheet. The buffer layer may be composed of a single layer or multiple layers.

버퍼층의 형성방법으로는 전기도금, 스퍼터링, 열증착기(thermal evaporator), 전자빔 증착기(e-beam evaporator), 펄스 레이저 증착기 또는 용융도금 등 다양한 방법이 사용가능하며, 이에 한정되는 것은 아니다.
The buffer layer may be formed by various methods such as electroplating, sputtering, thermal evaporator, e-beam evaporator, pulsed laser deposition or hot dip coating, but the present invention is not limited thereto.

상기 버퍼층(110) 형성을 완료한 후, 버퍼층이 대기에 노출되지 않도록 유지하는 것이 중요하다. 상기 버퍼층의 성분 모두 산화도가 매우 높은 원소로써 대기에 노출되면 표면에 산화막을 형성시키고, 이는 추후 수행될 용융아연합금 도금시 Fe 소지강판에 대한 용융도금욕의 표면 젖음성을 떨어뜨려 미도금 및 결함을 유발할 수 있기 때문이다. 따라서, 형성된 버퍼층을 산소가 차단된 분위기에서 냉각 또는 보관한다. 버퍼층의 냉각 및 보관 시 사용되는 분위기로는 저산소 분위기, 예를 들어, 진공 분위기, 아르곤, 질소와 같은 불활성 가스 분위기를 이용할 수 있으며, 이 중 진공을 이용함이 보다 바람직하다. 이때, 상기 진공 분위기의 진공도는 10-3 Torr 미만인 것인 것이 바람직하다.
After the formation of the buffer layer 110 is completed, it is important to keep the buffer layer from being exposed to the atmosphere. When all of the components of the buffer layer are exposed to the atmosphere as an element having a high degree of oxidation, an oxide film is formed on the surface of the buffer layer. This results in lowering the surface wettability of the molten steel to Fe- . Thus, the formed buffer layer is cooled or stored in an oxygen-shielded atmosphere. As the atmosphere used for cooling and storing the buffer layer, an inert gas atmosphere such as a low-oxygen atmosphere, for example, a vacuum atmosphere, argon or nitrogen may be used, and a vacuum is more preferably used. At this time, the vacuum degree of the vacuum atmosphere is preferably less than 10 -3 Torr.

이어서, 버퍼층(110)이 형성된 소지강판(100)을 용융아연합금 도금욕에 침지하여 합금도금층(120)을 형성시킨다.
Subsequently, the base steel sheet 100 having the buffer layer 110 formed thereon is dipped in a molten zinc alloy plating bath to form an alloy plating layer 120.

본 발명에 이용되는 용융아연합금 도금욕은 중량%로, Al: 0.5~5.0%, Mg: 1~5%, 잔부 Zn 및 불가피한 불순물을 포함하며, 상기 Mg 및 Al의 함량은 [Al+Mg≤7]의 관계를 만족하는 것이 바람직하다.
The molten zinc alloy plating bath used in the present invention contains 0.5 to 5.0% of Al, 1 to 5% of Mg, the remainder of Zn and unavoidable impurities, and the content of Mg and Al is [Al + Mg 7] is satisfied.

상기 용융아연합금 도금욕 내의 성분 중 Mg은 도금층의 내식성 향상에 매우 주요한 역할을 하는 원소로서, 도금층 내부에 함유된 Mg은 가혹한 부식 환경에서 내식성 향상효과가 적은 아연산화물계 부식생성물의 성장을 억제하고, 치밀하며 내식성 향상효과가 큰 아연수산화물계 부식생성물을 도금층 표면에서 안정화시킨다.
Among the components in the molten zinc alloy plating bath, Mg plays an important role in improving the corrosion resistance of the plating layer. Mg contained in the plating layer inhibits the growth of the zinc oxide corrosion product which is less effective in improving the corrosion resistance in a severe corrosive environment , A zinc hydroxide based corrosion product which is dense and has a large effect of improving the corrosion resistance is stabilized on the surface of the plating layer.

다만, 상기 Mg 함량이 1 중량% 미만일 경우에는 Zn-Mg계 금속간화합물 생성에 의한 내식성 향상효과가 충분치 않고, 그 함량이 5 중량%를 초과할 경우에는 내식성 향상효과가 포화되고, Mg 산화성 드로스가 도금욕 욕면에 급증하는 문제가 있다. 따라서, 본 발명에서는 도금욕 내의 Mg 함량을 1~5 중량%로 제어함이 바람직하다.
However, if the Mg content is less than 1 wt%, the effect of improving the corrosion resistance due to the formation of the Zn-Mg intermetallic compound is not sufficient. If the Mg content exceeds 5 wt%, the corrosion resistance improving effect is saturated, There is a problem in that the plating is rapidly increased on the plating surface. Therefore, in the present invention, the Mg content in the plating bath is preferably controlled to 1 to 5 wt%.

상기 Al은 Mg을 첨가한 용융아연합금 도금욕 내에서 Mg 산화반응에 의해 발생하는 드로스(dross)를 감소시키기 위한 목적으로 첨가하며, Al은 Zn 및 Mg와 조합하여 도금강판의 내부식성을 향상시키는 역할도 한다.The above Al is added for the purpose of reducing the dross generated by the Mg oxidation reaction in the molten zinc alloy plating bath containing Mg and Al is combined with Zn and Mg to improve the corrosion resistance of the coated steel sheet It also plays a role.

이러한 Al의 함량이 0.5 중량% 미만일 경우에는 Mg 첨가에 의한 도금욕 표층부 산화를 방지하는 효과가 미흡하고, 내식성 향상 효과가 적다. 반면, Al의 함량이 5.0 중량%를 초과할 경우에는 도금욕에 침지된 강판의 Fe 용출량이 급증하여 Fe 합금계 드로스가 형성되고, 더욱이 도금층의 용접성이 저하되는 문제가 발생한다. 따라서, 본 발명에서는 도금욕 내의 Al 함량을 0.5~5.0 중량%로 제어함이 바람직하다.
If the content of Al is less than 0.5% by weight, the effect of preventing the oxidation of the surface layer of the plating bath by Mg addition is insufficient and the effect of improving the corrosion resistance is small. On the other hand, when the content of Al exceeds 5.0% by weight, the amount of Fe elution in the steel sheet immersed in the plating bath is rapidly increased, resulting in the formation of Fe alloy system dross, and furthermore, the weldability of the plating layer is lowered. Therefore, in the present invention, it is preferable to control the Al content in the plating bath to 0.5 to 5.0 wt%.

상기 Al과 Mg은 모두 도금층의 내식성을 향상시키는 원소로서 이들 원소의 합이 증가할수록 내식성은 향상될 수 있다. 그러나, 도금욕 중 Al과 Mg의 중량%의 합이 7.0%를 초과하게 되면 내식성 향상 효과가 포화되는 반면, 용접성 및 도장성이 열화되거나 처리방법의 개선을 필요로 하는 등의 문제점이 있다. 따라서, 상기 Mg 및 Al의 함량은 [Al+Mg≤7]의 관계를 만족하는 것이 바람직하다.
The above-mentioned Al and Mg are elements which improve the corrosion resistance of the plating layer. As the sum of these elements increases, the corrosion resistance can be improved. However, if the sum of Al and Mg in the plating bath exceeds 7.0%, the effect of improving the corrosion resistance is saturated, but the weldability and paintability are deteriorated and the treatment method is required to be improved. Therefore, it is preferable that the content of Mg and Al satisfies the relation of [Al + Mg? 7].

상기 용융아연합금 도금욕의 온도는 통상의 용융아연 도금욕 온도를 적용할 수 있으며, 바람직하게는 380~450℃ 범위의 도금욕 내에서 도금을 수행할 수 있다.
The temperature of the molten zinc alloy plating bath can be applied to a conventional hot-dip galvanizing bath temperature, and preferably, the plating can be performed in a plating bath in the range of 380 to 450 ° C.

상기 도금을 완료한 후, 합금도금층이 형성된 강판을 가스와이핑 처리하여 도금 부착량을 조절할 수 있다. 상기 가스와이핑은 도금 부착량을 조정하기 위한 것으로, 그 방법에 대해서는 특별히 한정되는 것은 아니다.상기 가스와이핑의 처리로 도금층의 도금 부착량을 조정한 후, 도금층 냉각을 수행한다.
After completion of the plating, the deposition amount of the plating can be adjusted by gas wiping the steel sheet having the alloy plating layer formed thereon. The gas wiping is for adjusting the amount of plating adhered thereto, and the method thereof is not particularly limited. After the plating adhered amount of the plating layer is adjusted by the treatment of the gas wiping, the plating layer cooling is performed.

상기와 같은 방법으로 제조된 본 발명의 용융아연합금 도금강판은 소지강판; 상기 소지강판 상에 형성된 용융아연합금 도금층; 및 상기 소지강판과 상기 용융아연합금 도금층 사이에 형성된 버퍼층을 포함한다.
The hot-dip zinc-plated steel sheet of the present invention produced by the above-described method has a base steel sheet; A molten zinc alloy plating layer formed on the base steel sheet; And a buffer layer formed between the base steel sheet and the molten zinc alloy plating layer.

상기 소지강판은 Fe계 소지강판으로서 냉연강판, 열연강판 등 제한없이 사용할 수 있다.
The base steel sheet may be used as an Fe-base base steel sheet without limitation, such as a cold rolled steel sheet or a hot rolled steel sheet.

상기 용융아연합금 도금층은 상기 용융아연합금 도금욕 내의 성분이 그대로 도금층을 형성한 것으로서, 상기 용융아연합금 도금층은 중량%로, Al: 0.5~5.0%, Mg: 1~5%, 잔부 Zn 및 불가피한 불순물로 이루어지며, 상기 Mg 및 Al의 함량은 [Al+Mg≤7]의 관계를 만족한다.
Wherein the molten zinc alloy plating layer is formed by directly forming a plating layer on the molten zinc alloy plating bath, wherein the molten zinc alloy plating layer contains 0.5 to 5.0% of Al, 1 to 5% of Mg, And the content of Mg and Al satisfies the relation of [Al + Mg? 7].

또한, 상기 용융아연합금 도금층의 도금 조직은 도 1에 나타낸 바와 같이, Zn-Al-MgZn2 3원 공정조직을 기지조직으로 하여, Zn-MgZn2 2원 공정조직이 분산된 도금조직을 포함하고, Zn-Al 공정조직 및 Zn 단상조직이 균일하게 분포한 결정조직을 포함하고, 잔부 MgZn2 조직을 포함한다. 이렇게 형성된 Zn-Al-Mg계 금속간화합물 조직은 Al 및 Mg 성분에 따라 변하고, 도금층의 경도 변화에 영향을 준다. Al 및 Mg 함량에 따른 도금층의 경도 변화를 표 1에 나타내었다.
Further, as shown in Figure 1 coated tissue is also in the molten zinc alloy plating layer, and a Zn-Al-MgZn 2 3 won process organized in matrix organization, Zn-MgZn 2 2 won process organization and includes a dispersion-coated tissue , A Zn-Al process structure and a crystal structure in which a Zn single phase structure is uniformly distributed, and the remainder includes MgZn 2 structure. The Zn-Al-Mg intermetallic compound structure thus formed varies depending on the Al and Mg components and affects the hardness of the plating layer. Table 1 shows changes in hardness of the plated layer depending on the content of Al and Mg.

구분division 도금층 조성 (중량%)Plating layer composition (% by weight) 경도 (Hv)Hardness (Hv) AlAl MgMg 1회1 time 2회Episode 2 3회3rd time 4회4 times 5회5 times 평균Average 1One 0.20.2 -- 52.152.1 55.455.4 51.451.4 52.752.7 53.153.1 52.952.9 22 0.40.4 -- 64.664.6 72.872.8 77.277.2 67.867.8 73.473.4 71.171.1 33 -- 99 144.9144.9 162.5162.5 146.9146.9 141.3141.3 152.1152.1 149.5149.5 44 1One 1One 119.9119.9 121.7121.7 118.4118.4 115.3115.3 116.7116.7 118.4118.4 55 1.61.6 1.61.6 121.8121.8 131.3131.3 118.8118.8 116.1116.1 114.6114.6 120.5120.5 66 22 33 140.8140.8 114.5114.5 152.3152.3 132.2132.2 128.4128.4 133.6133.6 77 33 44 164.4164.4 154.5154.5 148.5148.5 152.1152.1 163.3163.3 156.5156.5 88 55 1One 138.4138.4 128.5128.5 134.1134.1 129.6129.6 138.2138.2 133.7133.7 99 66 33 156156 149.2149.2 151.8151.8 145.1145.1 159.5159.5 152.3152.3 1010 2323 33 161.1161.1 148148 156.3156.3 134.2134.2 138.1138.1 147.5147.5

상기 표 1에 나타낸 바와 같이, Al 및 Mg의 함량이 증가할수록 도금층의 경도가 증가하고, 도금층의 경도증가에 의하여 용융아연합금 도금강판의 절곡 및 굽힘가공시 도 2에 나타낸 바와 같이 도금층 표면에 크랙이 형성된다. 합금도금층의 내식성 향상을 위해 첨가되는 Al 및 Mg은 Zn와 반응하여 Zn-Al 및 Zn-Mg계 금속간화합물을 형성시키고, 이는 합금도금층의 경도 증가를 초래하여, 결과적으로 도금층이 가공에 취약해진다. 따라서 합금도금층의 굽힘가공, 드로잉 및 절단 등 가공작업시 표면에 크랙이 발생되며, 형성된 크랙은 소지강판까지 수직으로 전파되어 크랙부에 Fe 소지강판이 대기에 노출되게 되고, 이는 합금도금층의 밀착성 및 가공부 내식성의 열화를 초래한다.
As shown in Table 1, as the content of Al and Mg increases, the hardness of the plating layer increases and the hardness of the plating layer increases, so that cracks and bending of the hot-dip zinc- . Al and Mg added to improve the corrosion resistance of the alloy plating layer react with Zn to form Zn-Al and Zn-Mg intermetallic compounds, which leads to an increase in the hardness of the alloy plating layer, and consequently the plating layer becomes vulnerable to processing . Therefore, cracks are generated on the surface during bending work, drawing and cutting of the alloy plating layer, and cracks formed are propagated vertically to the base steel sheet, and the Fe-base steel sheet is exposed to the atmosphere in the crack portion. Resulting in deterioration of the corrosion resistance of the processed portion.

본 발명에서는 상기 용융아연합금 도금층과 상기 소지강판 사이에 경도가 낮고 유연한 버퍼층을 형성시킴으로써 굽힘가공 및 프레스 가공시 도금층 표면에 형성되는 크랙을 저감시킬 수 있다. 또한, 크랙부위의 Fe 소지강판의 노출면적을 현저히 감소시켜 합금도금재의 전체적인 가공부 내식특성을 향상시킬 수 있다.
In the present invention, by forming a flexible buffer layer having a low hardness between the hot dip galvanized layer and the base steel sheet, it is possible to reduce the cracks formed on the surface of the coating layer during bending and press working. In addition, the exposed area of the Fe-bearing steel sheet at the crack site can be significantly reduced to improve the overall corrosion resistance of the alloy plating material.

상기 버퍼층은 용융아연합금 도금층 하부에 편면기준 20~60g/m2의 도금량으로 단층 또는 다층으로 부착됨이 바람직하다. 편면을 기준으로 도금량이 20g/m2 미만일 경우에는 가공부의 방식특성 향상을 기대하기 어려우며, 편면기준 도금량이 60g/m2을 초과하는 경우에는 가공부 방식특성 향상도가 포화되어 경제적인 측면에서 불리하다. 따라서, 용융아연합금 도금강판의 가공부의 내식성을 향상시키기 위해서는 상기 범위의 도금량으로 버퍼층을 형성시키는 것이 바람직하다.
It is preferable that the buffer layer is adhered to the lower part of the molten zinc alloy plating layer as a single layer or multilayer with a plating amount of 20 to 60 g / m 2 on one side basis. When the plating amount is less than 20 g / m < 2 > based on one side, it is difficult to expect improvement in the method characteristics of the processed portion. When the single side reference plating amount exceeds 60 g / m < 2 > Do. Therefore, in order to improve the corrosion resistance of the processed portion of the hot-dip galvanized steel sheet, it is preferable to form the buffer layer in the plating amount within the above range.

상술한 바와 같이, 상기 버퍼층으로는 Zn, In, Ga, Sn, Si, Ca, Na, Al, Cu, Ni, Au 및 Ag 중에서 선택되는 1종 이상 또는 이들의 합금으로 이루어질 수 있다.
As described above, the buffer layer may be formed of at least one selected from Zn, In, Ga, Sn, Si, Ca, Na, Al, Cu, Ni, Au and Ag or an alloy thereof.

이하, 실시예를 통하여 본 발명에 대하여 보다 상세히 설명한다. 다만, 하기 실시예는 본 발명의 이해를 돕기 위한 것이며 이로써 본 발명을 한정하는 것은 아니다.
Hereinafter, the present invention will be described in more detail by way of examples. However, the following examples are provided to aid understanding of the present invention and should not be construed as limiting the present invention.

[[ 실시예Example ]]

강판의 두께 0.8 mm, 폭 120 mm, 길이 200 mm인 냉연강판을 아세톤에 침지시킨 상태로 초음파로 세척하여 표면의 이물질과 기름을 제거하여 시편을 준비하였다. 본 연구를 위한 용융도금 실험은 용융도금 시뮬레이터를 이용하여 소둔 및 도금하였다. 상세하게 설명하면, 소둔조건으로서 분위기 가스는 수소 10% 및 질소 90%로 구성된 환원분위기이고, 소둔온도 700~820℃로 열처리하였다.
A cold-rolled steel sheet having a thickness of 0.8 mm, a width of 120 mm and a length of 200 mm was immersed in acetone and ultrasonically cleaned to remove foreign matter and oil from the surface. The hot - dip test was annealed and plated using a hot - dip simulator. In detail, as the annealing condition, the atmosphere gas is a reducing atmosphere composed of 10% of hydrogen and 90% of nitrogen, and is heat-treated at an annealing temperature of 700 to 820 캜.

합금도금을 하기 전에 버퍼층 형성을 위하여 환원분위기에서 열처리된 시편을 도금욕 온도인 460 ℃로 냉각하고 중량%로 Al: 0.2%, 잔부 Zn으로 구성된 용융아연도금욕에 약 3초간 침적 후 끌어올려 에어 와이퍼(Air Wiper)로 버퍼층 부착량을 조절하였다. Al: 0.2%은 소지강판과 도금욕과의 반응을 줄이기 위하여 첨가한 것이다. 버퍼층 부착량은 편면기준으로 10 ~ 90 g/m2으로 조절하여 테스트하였다. 그 후, 버퍼층이 형성된 강판을 로드 록(load lock) 챔버로 이송 후 용융아연합금 도금욕에 침지되기 전까지 진공상태 (<10-3 Torr)에서 냉각 및 보관하였다. 상기 버퍼층의 경도는 약 50 Hv였다.
Before forming the buffer layer, the specimens annealed in a reducing atmosphere were cooled to a plating bath temperature of 460 ° C. and immersed for about 3 seconds in a hot dip galvanizing bath composed of 0.2% Al and 0.2% Zn, The amount of buffer layer was adjusted with an air wiper. Al: 0.2% is added to reduce the reaction between the steel sheet and the plating bath. The adhesion amount of the buffer layer was adjusted to 10 ~ 90 g / m < 2 &gt; Thereafter, the steel sheet with the buffer layer formed thereon was transferred to a load lock chamber and cooled and stored in a vacuum state (&lt; 10 -3 Torr) until it was immersed in a hot-dip zinc alloy plating bath. The hardness of the buffer layer was about 50 Hv.

냉각이 완료된 상기 강판을 준비된 Al: 2.5% 및 Mg: 3%이 함유된 용융아연합금 도금욕에 약 5초간 침적 후 끌어올려 에어 와이핑하여 용융아연합금 도금층의 부착량을 편면기준 70 g/m2 및 100 g/m2으로 조절하였고 약 10 ℃/초의 냉각속도로 약 350 ℃까지 냉각하여 응고시켰다.
After cooling, the steel sheet was immersed in a hot-dip galvanizing bath containing 2.5% of Al and 3% of Mg for about 5 seconds and air-wiped so that the adhesion amount of the hot-dip zinc alloy coating layer was 70 g / m 2 And 100 g / m &lt; 2 &gt; and cooled to about 350 &lt; 0 &gt; C at a cooling rate of about 10 [deg.] C /

도금이 완료된 강판을 굽힘가공기를 이용하여 0-T(180도) 굽힘가공을 실시하였다.
The coated steel sheet was subjected to 0-T (180 degrees) bending using a bending machine.

도 5는 용융아연합금 도금층 도금량별 0-T 굽힘가공시 버퍼층의 도금량에 따른 용융아연합금 도금층 표면 크랙 면적 변화를 도시한 그래프이다. 도 5을 참조하면, 용융아연합금 도금층 도금량이 70g/m2과 100g/m2 인 경우 모두에서, 버퍼층을 형성시키지 않은 경우에 비하여 버퍼층을 형성시킨 경우가 0-T 굽힘가공시 도금층 표면 크랙면적이 감소하는 것으로 나타났다.FIG. 5 is a graph showing a change in crack area on the surface of a hot-dip zinc alloy plating layer depending on the plating amount of the buffer layer during 0-T bending according to the plating amount of the hot-dip zinc alloy plating layer. 5, in the case where the plating amount of the molten zinc alloy plating layer was 70 g / m 2 and 100 g / m 2 , the case where the buffer layer was formed was compared with the case where the buffer layer was not formed, .

이러한 도금층 표면 가공 크랙 면적 감소는 버퍼층의 도금량이 20g/m2 이상에서 나타났다. 버퍼층의 도금량이 60g/m2 이상에서는 버퍼층의 두께에 의한 도금층 굽힘 곡률이 증가하여 도금층 크랙면적이 오히려 증가하는 경향을 보였다.
The decrease in the surface cracking area of the plating layer was found to be more than 20 g / m 2 of the buffer layer. When the plating amount of the buffer layer is 60 g / m &lt; 2 &gt; or more, the plating layer bending curvature due to the thickness of the buffer layer increases, and the crack area of the plating layer tends to increase.

도 6은 용융아연합금 도금층 도금량별 0-T 굽힘가공시 버퍼층 도금량에 따른 용융아연합금 도금층 표면에 노출된 Fe 소지강판의 면적 변화를 도시한 그래프이다. 도 6을 참조하면, 용융아연합금 도금층과 소지강판 사이에 버퍼층이 없으면, 용융아연합금 도금층의 도금량 70g/m2을 기준으로 크랙면적이 32.3%일 때 Fe 노출량은 31.6%로 나타났다. 이를 통해 0-T 굽힘가공에 의하여 도금층 표면에 크랙이 발생할 때 크랙부의 소지강판이 대부분 대기에 노출됨을 알 수 있다. 또한, 버퍼층의 두께가 증가할수록 상기 크랙부 Fe 노출면적이 줄어듦을 알 수 있다.
6 is a graph showing an area change of the Fe-coated steel sheet exposed on the surface of the hot-dip zinc alloy plating layer according to the amount of the buffer layer plating in the 0-T bending process according to the coating amount of the hot-dip zinc alloy plating layer. Referring to FIG. 6, when there is no buffer layer between the hot-dip galvanized layer and the hot-rolled steel sheet, the Fe exposure amount was 31.6% when the crack area was 32.3% based on the coated amount of the hot-dip galvanized layer of 70 g / m 2 . As a result, when the cracks are generated on the surface of the plating layer by the 0-T bending process, it can be seen that the base steel sheet of the crack portion is mostly exposed to the atmosphere. Also, as the thickness of the buffer layer increases, the exposed area of the cracked Fe decreases.

도 5 및 도 6을 참조하면, 버퍼층 코팅량 60g/m2 이상시 크랙의 면적은 증가하나 크랙부 Fe 노출량은 약 7%로 그 면적이 크게 감소하였으며 이는 버퍼층에 의하여 소지강판이 보호됨을 나타낸다. 이는 실시예에 사용된 Zn 버퍼층의 연성이 높아 0-T 굽힘가공시 크랙이 발생하지 않았기 때문이다. 이렇듯 0-T 굽힘가공과 같은 심가공에서도 버퍼층에 크랙이 발생되지 않아 소지강판을 보호하고 더 나아가 소지강판과 합금도금층 사이에서 응력을 완화시키는 완충역할을 하여 상부 합금도금층의 크랙면적을 감소시킴을 알 수 있다.
Referring to FIGS. 5 and 6, when the buffer layer coating amount is 60 g / m 2 or more, the crack area is increased, but the crack area Fe exposure amount is about 7%, which greatly reduces the area, indicating that the base steel sheet is protected by the buffer layer. This is because the ductility of the Zn buffer layer used in the Examples is high and cracks are not generated during the 0-T bending process. Thus, even in the deep processing such as 0-T bending, cracks are not generated in the buffer layer, thereby protecting the base steel sheet and further reducing the crack area of the upper alloy plating layer by buffering stress between the base steel sheet and the alloy plating layer. Able to know.

도 7은 본 발명의 일 실시예에 따라 제작된 용융아연합금 도금강판의 가공부 내식성을 나타낸 사진이다.7 is a photograph showing the corrosion resistance of a processed hot-dip galvanized steel sheet produced according to an embodiment of the present invention.

용융아연합금 도금층의 도금량은 동일하게 편면기준으로 100g/m2이며 동일한 조건으로 0-T 굽힘가공을 실시했다. 시편을 염수분무시험기에 장입한 후 염수분무시험 공인규격(KS-C-0223)으로 1000 시간 부식촉진시험을 수행한 후 도금층 표면의 적청 발생 경향을 관찰하였다. 도 7을 참조하면, 용융아연합금 도금층과 소지강판 사이의 버퍼층 도금량이 증가함에 따라 가공부 적청 면적이 감소함을 알 수 있다. 이는 앞서 설명한 바와 같이 가공부의 크랙형성 부위의 Fe 소지 노출면을 버퍼층이 보호함으로써 소지강판의 직접적인 부식환경에 대한 노출을 방지하고, 더 나아가 표면에 안정적인 아연함유 부식생성물을 형성시키기 때문인 것으로 판단된다.
The amount of plating of the hot-dip zinc alloy plating layer was 100 g / m 2 on the basis of one side, and 0-T bending was performed under the same conditions. The specimens were charged into a salt spray tester and subjected to a corrosion accelerated test for 1000 hours with a salt spray test standard (KS-C-0223), and the tendency of redness generation on the surface of the coating layer was observed. Referring to FIG. 7, it can be seen that as the amount of buffer layer plating between the hot-dip zinc-plated layer and the base steel sheet increases, the area of the red-hot processed area decreases. This is because as described above, the buffer layer protects the Fe-exposed surface of the crack-forming portion of the machined portion, thereby preventing exposure of the steel sheet directly to the corrosive environment and further forming a stable zinc-containing corrosion product on the surface.

상술한 바와 같이 용융아연합금 도금층의 Al 및 Mg 첨가에 의해 형성되는 Zn-Al 및 Zn-Mg계 금속간화합물에 의한 도금층 경도증가와 그로부터 기인된 도금층 가공부 표면 크랙은 용융아연합금 도금층과 Fe 소지강판 사이에 버퍼층을 형성시킴으로써 저감 및 방지할 수 있다. 경도가 낮고 유연한 버퍼층을 용융아연합금 도금층 하부에 형성시켜 도금소재 가공시 가공부 크랙면적을 저감시킴으로써 크랙부의 Fe 노출량을 현저히 감소시켜 용융아연합금 도금강판의 전체적인 가공부 내식성을 향상시킬 수 있다.
As described above, the increase in the hardness of the plating layer due to the Zn-Al and Zn-Mg intermetallic compounds formed by the addition of Al and Mg in the hot-dip galvanized layer and the surface cracks in the hot- By forming the buffer layer between the steel plates, it is possible to reduce and prevent it. By forming a buffer layer having a low hardness and a softness at the bottom of the hot-dip galvanized layer, the exposed area of the hot-rolled steel sheet can be significantly reduced by reducing the exposed area of the hot rolled steel sheet.

100: 소지강판 110: 버퍼층 120: 합금도금층100: base steel sheet 110: buffer layer 120: alloy plating layer

Claims (7)

소지강판;
상기 소지강판 상에 형성된 용융아연합금 도금층; 및
상기 소지강판과 상기 용융아연합금 도금층 사이에 형성된 버퍼층을 포함하며,
상기 용융아연합금 도금층은 중량%로, Al: 0.5~5.0%, Mg: 1~5%, 잔부 Zn 및 불가피한 불순물로 이루어지며,
상기 도금층의 Mg 및 Al의 함량은 [Al+Mg≤7]의 관계를 만족하고,
상기 버퍼층은 Zn으로 이루어지며,
상기 버퍼층은 총 버퍼층의 도금량이 편면기준 20~60g/m2이 되도록 상기 총 버퍼층의 도금량으로 단층 또는 다층으로 부착된 것인, 가공성 및 가공부 내식성이 우수한 용융아연합금 도금강판.
Base steel sheet;
A molten zinc alloy plating layer formed on the base steel sheet; And
And a buffer layer formed between the base steel sheet and the molten zinc alloy plating layer,
Wherein the molten zinc alloy plating layer comprises, by weight, 0.5 to 5.0% of Al, 1 to 5% of Mg, the remainder Zn and unavoidable impurities,
The content of Mg and Al in the plating layer satisfies the relationship of [Al + Mg? 7]
The buffer layer is made of Zn,
Wherein the buffer layer is adhered as a single layer or a multilayer with a plating amount of the total buffer layer so that the plating amount of the total buffer layer is 20 to 60 g / m 2 on one side basis.
제 1항에 있어서,
상기 용융아연합금 도금층은 Zn-Al-MgZn2 3원 공정조직을 기지조직으로 하여, Zn-MgZn2 2원 공정조직이 분산된 도금조직을 포함하고, Zn-Al 공정조직 및 Zn 단상조직이 균일하게 분포한 결정조직을 포함하고, 잔부 MgZn2 조직을 포함하는 것인, 가공성 및 가공부 내식성이 우수한 용융아연합금 도금강판.
The method according to claim 1,
The molten zinc alloy plating layer to the tissue Zn-Al-MgZn 2 3 won process as base tissue, Zn-MgZn 2 2 won process organization and includes a dispersion-coated tissue, a Zn-Al process organization and Zn single phase tissue uniform And a balance MgZn 2 structure. The hot-dip galvanized steel sheet is excellent in workability and processing part corrosion resistance.
삭제delete 삭제delete 소지강판에 버퍼층을 형성시키는 단계;
형성된 버퍼층을 진공 분위기 또는 불활성 가스 분위기에서 냉각 또는 보관하는 단계;
380~450℃의 용융아연합금 도금욕 내에 버퍼층이 형성된 소지강판을 침지하고, 도금을 행하여 도금강판을 제조하는 단계; 및
상기 도금강판을 가스와이핑하여 냉각하는 단계를 포함하며,
상기 용융아연합금 도금욕은 중량%로, Al: 0.5~5.0%, Mg: 1~5%, 잔부 Zn 및 불가피한 불순물을 포함하며, 상기 Mg 및 Al의 함량은 [Al+Mg≤7]의 관계를 만족하고,
상기 버퍼층은 Zn을 상기 소지강판에 코팅함으로써 형성되고,
상기 버퍼층은 총 버퍼층의 도금량이 편면기준 20~60g/m2이 되도록 상기 총 버퍼층의 도금량으로 단층 또는 다층으로 부착되어 형성된 것인, 가공성 및 가공부 내식성이 우수한 용융아연합금 도금강판의 제조방법.
Forming a buffer layer on a base steel sheet;
Cooling or storing the formed buffer layer in a vacuum atmosphere or an inert gas atmosphere;
Immersing a base steel sheet in which a buffer layer is formed in a hot-dip galvanizing bath at 380 to 450 DEG C, and performing plating to produce a plated steel sheet; And
And cooling the plated steel sheet by gas wiping,
Wherein the molten zinc alloy plating bath comprises 0.5 to 5.0% of Al, 1 to 5% of Mg, and the balance of Zn and unavoidable impurities, wherein the content of Mg and Al is [Al + Mg? 7] Lt; / RTI &gt;
Wherein the buffer layer is formed by coating Zn on the base steel sheet,
Wherein the buffer layer is formed by adhering a single layer or multiple layers with a plating amount of the total buffer layer so that the plating amount of the total buffer layer is 20 to 60 g / m 2 on one side basis.
삭제delete 제 5항에 있어서,
상기 진공 분위기의 진공도는 10-3 Torr 미만인 것인, 가공성 및 가공부 내식성이 우수한 용융아연합금 도금강판의 제조방법.
6. The method of claim 5,
Wherein the degree of vacuum in the vacuum atmosphere is less than 10 -3 Torr.
KR1020120151569A 2012-12-21 2012-12-21 Hot dip zinc alloy plated steel sheet having superior formability and processed part corrosion resistance, and method for manufacturing the same KR101500043B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120151569A KR101500043B1 (en) 2012-12-21 2012-12-21 Hot dip zinc alloy plated steel sheet having superior formability and processed part corrosion resistance, and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120151569A KR101500043B1 (en) 2012-12-21 2012-12-21 Hot dip zinc alloy plated steel sheet having superior formability and processed part corrosion resistance, and method for manufacturing the same

Publications (2)

Publication Number Publication Date
KR20140081623A KR20140081623A (en) 2014-07-01
KR101500043B1 true KR101500043B1 (en) 2015-03-06

Family

ID=51732880

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120151569A KR101500043B1 (en) 2012-12-21 2012-12-21 Hot dip zinc alloy plated steel sheet having superior formability and processed part corrosion resistance, and method for manufacturing the same

Country Status (1)

Country Link
KR (1) KR101500043B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017074030A1 (en) * 2015-10-26 2017-05-04 주식회사 포스코 Zinc alloy plated steel sheet having excellent bending workability and manufacturing method therefor
KR102155605B1 (en) * 2020-05-27 2020-09-14 주식회사 엘아이티씨 LED luminaire with melt aluminum plating heat-radiating plate PCB board
KR102196682B1 (en) * 2020-05-25 2020-12-30 주식회사 네오스라이트 Molten aluminum plating heat dissipation plate PCB substrate for LED luminaire and manufacturing method thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101895197B1 (en) * 2014-08-22 2018-09-07 닛신 세이코 가부시키가이샤 Method for processing galvanized component
KR101867732B1 (en) * 2016-12-22 2018-06-14 주식회사 포스코 Coated steel sheet having multi-layers and method for manufacturing the same
KR101858862B1 (en) * 2016-12-22 2018-05-17 주식회사 포스코 Alloy plated steel having excellent cracking resistance, and method for manufacturing the same
KR101940886B1 (en) * 2016-12-26 2019-01-21 주식회사 포스코 Zinc alloy plated steel material having excellent spot weldability and corrosion resistance
KR102175582B1 (en) * 2018-12-19 2020-11-06 주식회사 포스코 Heterogeneous plated steel sheet having excellent workbility and corrosion resistance, and method for manufacturing the same
KR102297298B1 (en) * 2019-12-06 2021-09-03 주식회사 포스코 Galvanizing steel sheet having excelent bendability and corrosion resistance, and manufacturing method thereof
KR102364899B1 (en) * 2019-12-20 2022-02-18 주식회사 포스코 Steel plated with zinc based alloy having enhanced anti-corrosion property and spot weldability

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04147955A (en) * 1990-10-09 1992-05-21 Nippon Steel Corp Production of hot-dip zn-mg-al coated steel sheet
JPH1112709A (en) * 1997-06-27 1999-01-19 Nippon Steel Corp Dip plating method of steel product
KR100515398B1 (en) * 1999-10-25 2005-09-16 신닛뽄세이테쯔 카부시키카이샤 Metal plated steel wire having excellent resistance to corrosion and workability and method for production thereof
KR20120075235A (en) * 2010-12-28 2012-07-06 주식회사 포스코 Hot dip zn alloy plated steel sheet having excellent anti-corrosion and method for manufacturing the steel sheet using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04147955A (en) * 1990-10-09 1992-05-21 Nippon Steel Corp Production of hot-dip zn-mg-al coated steel sheet
JPH1112709A (en) * 1997-06-27 1999-01-19 Nippon Steel Corp Dip plating method of steel product
KR100515398B1 (en) * 1999-10-25 2005-09-16 신닛뽄세이테쯔 카부시키카이샤 Metal plated steel wire having excellent resistance to corrosion and workability and method for production thereof
KR20120075235A (en) * 2010-12-28 2012-07-06 주식회사 포스코 Hot dip zn alloy plated steel sheet having excellent anti-corrosion and method for manufacturing the steel sheet using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017074030A1 (en) * 2015-10-26 2017-05-04 주식회사 포스코 Zinc alloy plated steel sheet having excellent bending workability and manufacturing method therefor
KR102196682B1 (en) * 2020-05-25 2020-12-30 주식회사 네오스라이트 Molten aluminum plating heat dissipation plate PCB substrate for LED luminaire and manufacturing method thereof
KR102155605B1 (en) * 2020-05-27 2020-09-14 주식회사 엘아이티씨 LED luminaire with melt aluminum plating heat-radiating plate PCB board

Also Published As

Publication number Publication date
KR20140081623A (en) 2014-07-01

Similar Documents

Publication Publication Date Title
KR101500043B1 (en) Hot dip zinc alloy plated steel sheet having superior formability and processed part corrosion resistance, and method for manufacturing the same
US10287647B2 (en) Method for producing a steel component having a metal coating protecting it against corrosion, and steel component
KR101819393B1 (en) Hot dip zinc alloy plated steel material having excellent weldability and press formability and method for manufacturing same
KR101568543B1 (en) Galvanized steel sheet having excellent resistance to crack by liquid metal embrittlement
KR101714935B1 (en) Zn ALLOY PLATED STEEL SHEET HAVING EXCELLENT WELDABILITY AND PROCESSED PART CORROSION RESISTANCE AND METHOD FOR MANUFACTURING SAME
JP5830541B2 (en) Hot-dip galvanized steel sheet excellent in plating property, plating adhesion and spot weldability, and its production method
KR102031465B1 (en) Zinc alloy coated steel having excellent corrosion resistance after forming, and method for manufacturing the same
EP3561138B1 (en) Zinc alloy plated steel material having excellent weldability
KR101665883B1 (en) Zn ALLOY PLATED STEEL SHEET HAVING EXCELLENT CORROSION RESISTANCE AND BENDABILITY AND METHOD FOR MANUFACTURING SAME
KR20130022866A (en) High manganese steel having good adhesiveness of coating layer and method for manufacturing galvanized steel therefrom
KR20170010773A (en) Steel sheet provided with a sacrificial cathodically protected coating comprising lanthane
KR101207767B1 (en) High manganese and aluminium galvanizing steel sheet having excellent galvanizing proprety and method for manufacturing the same
EP4023787A1 (en) Hot stamp molded body
KR102276742B1 (en) Galvanized steel sheet excellent coating adhesion and corrosion resistance properties and method for manufacturing thereof
KR101839253B1 (en) Aluminum alloy plated steel sheet having excellent processed part corrosion resistance
JP4720618B2 (en) Alloyed hot-dip galvanized steel sheet and method for producing the same
KR101657843B1 (en) Zn ALLOY PLATED STEEL SHEET HAVING EXCELLENT WELDABILITY AND PROCESSED PART CORROSION RESISTANCE AND METHOD FOR MANUFACTURING THE SAME
KR101115741B1 (en) Method for manufacturing high manganese hot dip galvanized steel sheet with superior weldability
KR101778440B1 (en) Zn ALLOY PLATED STEEL SHEET HAVING EXCELLENT SCRATCH RESISTANCE AND BENDABILITY AND METHOD FOR MANUFACTURING SAME
KR102305753B1 (en) Zn-Al-Mg BASED HOT DIP ALLOY COATED STEEL MATERIAL HAVING EXCELLENT CORROSION RESISTANCE OF PROCESSED PARTS AND METHOD OF MANUFACTURING THE SAME
KR101746955B1 (en) Zn ALLOY PLATED STEEL SHEET HAVING EXCELLENT SCRATCH RESISTANCE AND BENDABILITY AND METHOD FOR MANUFACTURING SAME
JPH0681099A (en) Galvannealed steel sheet
JP5206114B2 (en) Alloyed hot-dip galvanized steel sheet with excellent workability, plating adhesion, corrosion resistance, and appearance quality
CN114761602A (en) Aluminum-based alloy-plated steel sheet having excellent workability and corrosion resistance, and method for producing same
KR20120041619A (en) Galvanizing steel sheet having good galvanizabilty and adhesion and method for manufacturing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180228

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20200228

Year of fee payment: 6