KR100889173B1 - Organic Copolymer for preparing Organic Antireflective Coating, Method of Preparing the same, and Composition comprising the same - Google Patents

Organic Copolymer for preparing Organic Antireflective Coating, Method of Preparing the same, and Composition comprising the same Download PDF

Info

Publication number
KR100889173B1
KR100889173B1 KR1020060138682A KR20060138682A KR100889173B1 KR 100889173 B1 KR100889173 B1 KR 100889173B1 KR 1020060138682 A KR1020060138682 A KR 1020060138682A KR 20060138682 A KR20060138682 A KR 20060138682A KR 100889173 B1 KR100889173 B1 KR 100889173B1
Authority
KR
South Korea
Prior art keywords
group
mole fraction
carbon atoms
monomer
organic
Prior art date
Application number
KR1020060138682A
Other languages
Korean (ko)
Other versions
KR20080062645A (en
Inventor
김준우
조인식
Original Assignee
주식회사 효성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 효성 filed Critical 주식회사 효성
Priority to KR1020060138682A priority Critical patent/KR100889173B1/en
Priority to PCT/KR2007/006691 priority patent/WO2008082108A1/en
Publication of KR20080062645A publication Critical patent/KR20080062645A/en
Application granted granted Critical
Publication of KR100889173B1 publication Critical patent/KR100889173B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1092Polysuccinimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D135/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least another carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D135/02Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L35/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical, and containing at least one other carboxyl radical in the molecule, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L35/02Homopolymers or copolymers of esters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Materials For Photolithography (AREA)

Abstract

본 발명은 반도체 소자 제조시 원자외선을 이용한 초미세회로 가공 공정에 사용 가능한 반사방지막용 시아네이토 가교단 함유 공중합체 및 그의 제조방법, 상기 중합체를 함유하는 유기 방사방지막 조성물과 이를 이용한 유기 반사방지막에 관한 것이다.The present invention provides an anti-reflective coating for use in ultrafine circuit processing using ultra-ultraviolet rays in the manufacture of semiconductor devices, and a method for preparing the same, and an organic anti-reflective coating composition containing the polymer It is about.

본 발명에 따른 시아네이토 가교단 함유 공중합체를 이용한 유기 반사방지막은 기가 비트급 디램의 고집적 소자 제조에 사용될 경우, 기판과의 접착력을 개선하고 회로의 층간 난반사 및 정재파 현상을 억제하여 70nm ~ 150nm 급의 고해상도 미세회로를 안정적으로 형성하여 반도체 소자의 생산 수율을 증대시킬 수 있다.When the organic anti-reflective coating using the cyanato crosslinking end-containing copolymer according to the present invention is used in the manufacture of highly integrated devices of gigabit DRAM, the adhesion to the substrate is improved and the interlayer reflection and the standing wave of the circuit are suppressed to improve 70nm to 150nm class. It is possible to stably form a high-resolution microcircuit of to increase the production yield of the semiconductor device.

유기 반사방지막, 시아네이토 가교단 함유 공중합체, 접착력, 말레이미드 Organic antireflection film, cyanaito crosslinked group-containing copolymer, adhesion, maleimide

Description

유기 반사방지막 형성용 유기 공중합체, 그의 제조방법 및 그를 포함하는 조성물{Organic Copolymer for preparing Organic Antireflective Coating, Method of Preparing the same, and Composition comprising the same}Organic Copolymer for preparing an organic antireflection film, a method for preparing the same and a composition comprising the same {Organic Copolymer for preparing Organic Antireflective Coating, Method of Preparing the same, and Composition comprising the same}

본 발명은 짧은 파장의 원자외선을 이용한 고집적 반도체의 미세회로 형성을 위한 노광 공정인 광미세 가공기술(Photolithography)에서, 포토레지스트 밑의 기질층에서 일어나는 난반사(refletive notching)를 억제하고 사용 광원 및 포토레지스트의 두께 변화에 따른 정재파(Standing wave) 효과를 제거할 수 있는 바닥 반사방지막(bottom antireflective coating layer)용 시아네이토 가교단 함유 유기공중합체, 그의 제조방법 및 그를 포함하는 반사방지막 조성물에 관한 것이다.The present invention, in photolithography, which is an exposure process for forming a microcircuit of a highly integrated semiconductor using short-wavelength ultraviolet light, suppresses the reflective notching occurring in the substrate layer under the photoresist, Cyanate crosslinking end-containing organic copolymer for bottom antireflective coating layer capable of removing the standing wave effect due to the change in thickness of the resist, a manufacturing method thereof, and an antireflective coating composition comprising the same .

반사 방지막(antireflective coating = ARC)은 매우 얇은 광흡수 감광재료 층으로서, 기가비트(Gb)급 초고집적 반도체를 생산하는데 필수적인 70nm ~ 150nm 및 그 이하의 초미세회로를 안정적으로 형성시키기 위한 광미세회로 가공공정에 사용된다. 따라서, 반사 방지막은 기존의 반도체 생산 공정에 사용되고 있는 고해상도 포토레지스트(phtoresist: PR) 재료와 상호 접착계면 및 광 특성이 서로 잘 맞 아야 한다. 이와 같은 반사방지막은 원자외선 노광 공정 중 포토레지스트 층의 하단에 먼저 도포되므로 바닥 반사방지막(BARC, bottom ARC)라 부르고, 현재의 발달된 고집적 반도체 광미세가공 공정에서 높은 흡광도의 유기 바닥 반사방지막이 일반적으로 사용되고 있다. 유기 반사 방지막은 특정 노광 파장에 대한 광흡수도가 높아야 하므로 고집적 반도체 미세 가공 기술 공정의 발달에 따른 광원의 단파장화(G-line, I-line, KrF, ArF, F2 등)에 대응할 수 있어야 한다 [M. Padmanaban et al., Proc. SPIE, 3678, 550(1999); G. E. Bailey et al. Proc. SPIE, 3999, 521 (2000); M. Padmanaban et al., Proc. SPIE, 333, 206 (1998)].Antireflective coating (ARC) is a very thin layer of light-absorbing photosensitive material, processing optical microcircuits to reliably form ultrafine circuits of 70nm to 150nm and below, which are essential for producing gigabit (Gb) class ultra-high density semiconductors. Used in the process. Therefore, the anti-reflection film should be well matched with the high-resolution photoresist (PR) materials used in the existing semiconductor production process and mutual adhesion interface and optical properties. Since the anti-reflection film is first applied to the bottom of the photoresist layer during the ultraviolet exposure process, it is called a bottom anti-reflection film (BARC, bottom ARC). It is commonly used. Since the organic antireflection film must have high light absorption at a specific exposure wavelength, it must be able to cope with shortening of the light source (G-line, I-line, KrF, ArF, F2, etc.) according to the development of highly integrated semiconductor micromachining process. [M. Padmanaban et al., Proc. SPIE, 3678, 550 (1999); G. E. Bailey et al. Proc. SPIE, 3999, 521 (2000); M. Padmanaban et al., Proc. SPIE, 333, 206 (1998).

최근 초고집적 반도체 제조 공정 분야의 기술이 괄목할 만큼 발전하였지만, 실리콘 웨이퍼 위에 감광재료인 포토레지스트를 회전 도포하여 노광하는 종래의 광미세 가공기술만으로는 70 ~ 150nm급의 초미세 회로를 안정적으로 제작하기 불가능하게 되었다. 따라서, 포토레지스트 층을 도포하기 이전에 노광 공정에서 반사를 방지하는 특별한 박막의 도포가 필요하게 되었다. 반사 방지막은 노광 시에 포토레지스트 층 내부에서 입사광과 기질로부터 반사광의 간섭에 의해 발생되는 정재파 효과를 방지하고, 또한 종래의 공정에서 만들어진 회로층으로부터 기인하는 단차(topography)에 따른 반사 또는 모서리에서의 난반사를 방지하거나 또는 현저히 감소시키는 작용을 하게 된다. 따라서 원하는 초미세 회로 치수(critical dimension, CD)를 정확하게 제어하게 됨으로써 제조공정 조건의 허용도(process latitude)를 크게 하는 역할을 한다. 반사 방지막은 그 조성에 따라 회전 도포하는 유기물계와 화학 기상 증착을 이용하는 무기물계가 있지만, 근래에는 대부분 공정 상 편리한 유기물계의 반사방지막을 사용하고 있다.Recently, the technology of the ultra-high density semiconductor manufacturing process has developed remarkably, but the conventional optical fine processing technology that rotates and exposes the photoresist, a photoresist material, on the silicon wafer to expose the stable micro-circuit of 70-150nm class It became impossible. Therefore, it is necessary to apply a special thin film to prevent reflection in the exposure process before applying the photoresist layer. The anti-reflection film prevents standing wave effects caused by interference of incident light and reflected light from the substrate inside the photoresist layer during exposure, and also prevents reflection or corners due to topography resulting from circuit layers made in conventional processes. It acts to prevent or significantly reduce diffuse reflection. Therefore, precise control of the desired critical circuit dimensions (CD) serves to increase the process latitude of the manufacturing process conditions. The anti-reflection film has an organic substance based on its composition and an inorganic substance using chemical vapor deposition. However, in recent years, most of the anti-reflective membranes which are convenient for the process are used.

단파장 원자외선 중에서 특히 248nm 파장의 클립톤플루오라이드(KrF) 엑시머 레이저를 이용하는 광 미세회로 가공 공정이 본격화된 이후에 반사 방지막의 역할은 더욱 중요하게 되었고, 150nm 이하, 즉 100nm 급의 초미세 회로 제작을 위해 원자외선 영역의 높은 흡광성을 가진 안트라센 또는 나프탈렌과 같은 발색단 함유 방향족계 유도체를 이용한 유기 고분자 반사 방지막 재료가 널리 사용된다 [J. Meador et al., Proc. SPIE, 3678, 800 (1999); G. Taylor et al., Proc. SPIE, 3678, 174 (1999); X. Shao et al., J. Photopolym. Sci. Techonol., 14, 481 (2001); MyoungSoo Kim et al., Proc. SPIE, 5753, 644 (2005); K. Mizutani et al., Proc. SPIE, 3678, 518 (1999)]. 이러한 기술은 미합중국 특허 제 5693691, 5886102, 5919599, 6033830, 6080530, 6156479 및 6602652호에 개시되어 있다.The role of the anti-reflective film became more important after short-wavelength ultraviolet processing, especially after the process of optical microcircuit processing using a ktnm fluoride (KrF) excimer laser having a wavelength of 248 nm, became more important. For this purpose, organic polymer antireflection film materials using chromophore-containing aromatic derivatives such as anthracene or naphthalene having high absorbance in the far ultraviolet region are widely used [J. Meador et al., Proc. SPIE, 3678, 800 (1999); G. Taylor et al., Proc. SPIE, 3678, 174 (1999); X. Shao et al., J. Photopolym. Sci. Techonol., 14, 481 (2001); Myoung Soo Kim et al., Proc. SPIE, 5753, 644 (2005); K. Mizutani et al., Proc. SPIE, 3678, 518 (1999). Such techniques are disclosed in US Pat. Nos. 5693691, 5886102, 5919599, 6033830, 6080530, 6156479 and 6602652.

초미세 회로 제작을 위하여 원자외선 노광 공정에서 사용되는 유기 바닥 반사 방지막은 다음과 같은 여러 가지 요구 조건을 충족시켜야 한다 [H. Yoshino et al., Proc. SPIE, 3333, 655 (1998); P. Trefonas et al., Proc. SPIE, 3678, 701 (1999); S. Malik et al., J. Photopolym. Sci. Techonol., 14, 489 (2001); R. Huang et al., Proc. SPIE, 5753, 637 (2005); C. Y. Chang et al., Proc. SPIE, 6153, 61530M (2006)].Organic bottom anti-reflective coatings used in the ultra-violet exposure process for the fabrication of ultra-fine circuits must meet several requirements, such as [H. Yoshino et al., Proc. SPIE, 3333, 655 (1998); P. Trefonas et al., Proc. SPIE, 3678, 701 (1999); S. Malik et al., J. Photopolym. Sci. Techonol., 14, 489 (2001); R. Huang et al., Proc. SPIE, 5753, 637 (2005); C. Y. Chang et al., Proc. SPIE, 6153, 61530M (2006).

- 반도체 제조에 사용되는 광원에 대해 적합한 광학 상수(optical constant)인 굴절률(n) 및 광흡수 상수(k)를 가져야 한다.Have a refractive index (n) and a light absorption constant (k), which are optical constants suitable for light sources used in semiconductor manufacturing.

- 상부의 포토레지스트에 비하여 플라즈마 건식 에칭 속도에서 높은 선택비 를 가져야 하며, 건식 에칭에 따른 결점이 생기지 않아야 한다.-It should have a high selectivity at the plasma dry etch rate compared to the upper photoresist and there should be no defects caused by dry etch.

- 포토레지스트 층과 반사방지막 층 사이에 상호 섞임(intermixing)이 일어나지 않아야 하며, 이를 위해서는 유기 고분자 사슬 내에 적절한 가교 구조를 형성할 수 있는 반응기가 포함되어 있어야 한다.No intermixing should occur between the photoresist layer and the antireflective layer, which requires the inclusion of a reactor capable of forming an appropriate crosslinked structure in the organic polymer chain.

- 회전 도포에 의한 막 형성 공정시, 적합한 박막 두께 제어 능력, 우수한 도막 형성 능력 및 도막 균일도가 요구된다.In the film forming process by rotating coating, suitable thin film thickness control ability, excellent film forming ability and film uniformity are required.

본 발명의 목적은 초고집적 반도체 소자 제조공정 중 248nm 파장의 클립톤플루오라이드(KrF) 및 193nm 파장의 아르곤플루오라이드(ArF) 엑시머 레이절르 노광원으로 이용하는 초미세 회로 노광 공정에서 사용될 수 있는 시아네이토 가교단(cyanato cross-linker)을 함유하는 신규의 유기공중합체 및 그의 제조방법을 제공하는 것이다.An object of the present invention is a cyanide which can be used in an ultrafine circuit exposure process that is used as a clipton fluoride (KrF) having a wavelength of 248 nm and an argon fluoride (ArF) excimer laser exposure source having a wavelength of 193 nm in an ultra-high density semiconductor device manufacturing process. It is to provide a novel organic copolymer containing a cyanato cross-linker and a method for producing the same.

본 발명의 다른 목적은 단파장 노광공정 시 하층으로부터의 난반사를 방지할 수 있고 우수한 접착력 및 가교결합 성능을 갖는 유기 고분자 물질 및 그의 제조방법을 제공하는 것이다.Another object of the present invention is to provide an organic polymer material which can prevent diffuse reflection from an underlayer during a short wavelength exposure process and has excellent adhesion and crosslinking performance, and a method of manufacturing the same.

본 발명의 또 다른 목적은 상기 유기 고분자 물질을 이용한 바닥 반사방지막 조성물 및 그에 의한 바닥 반사방지막을 제공하는 것이다.Still another object of the present invention is to provide a bottom antireflective coating composition using the organic polymer material and a bottom antireflection film thereby.

본 발명에 따른 바닥 반사방지막용 유기 고분자는 248nm 및 193nm의 노광 파장에서 높은 광흡수를 일으키는 안트라센 발색단 및 히드록시페닐말레이미드 발색단과 반사방지막 형성시 가교를 위한 시아네이트기를 함유한 단량체 및 중합체의 물성을 조절하기 위한 공단량체 등 3종 또는 4종의 서로 상이한 단량체로부터 제조되는 삼원 공중합체 내지 오원 공중합체를 포함한다. 특히 본 발명의 유기 고분자 제조에 사용되는 히드록시페닐말레이미드 단량체는 상기 고분자 제조상의 용이성을 위하여 적절히 보호된(protected) 화학 구조이거나 가교결합 기능을 갖는 단량체인 것이 바람직하다. 상기와 같은 특성을 모두 만족하는, 본 발명에 따른 바닥 반사 방지막용 유기 고분자는 다음의 화학식 1에 나타낸 것과 같은 구조를 갖는다.The organic polymer for bottom antireflective coating according to the present invention has properties of monomers and polymers containing anthracene chromophore and hydroxyphenylmaleimide chromophore, which cause high light absorption at exposure wavelengths of 248 nm and 193 nm, and cyanate groups for crosslinking when antireflection film is formed. Terpolymers to pentagonal copolymers prepared from three or four different monomers, such as comonomers, to control these compounds. In particular, the hydroxyphenylmaleimide monomer used in the preparation of the organic polymer of the present invention is preferably a monomer having a properly protected chemical structure or crosslinking function for ease of manufacturing the polymer. The organic polymer for a bottom anti-reflection film according to the present invention, which satisfies all the above characteristics, has a structure as shown in the following formula (1).

Figure 112006098500473-pat00001
Figure 112006098500473-pat00001

상기 식에서, R은 H, 테트라하이드로피라닐, -COOR5, -Si(R6)3 또는 t-부틸기이고, 여기서 R5와 R6는 각각 메틸기, t-부틸기 또는 탄소수 2 내지 3의 알킬기이고, Wherein R is H, tetrahydropyranyl, -COOR 5, -Si (R 6) 3 or a t-butyl group, where R 5 and R 6 are each a methyl group, a t-butyl group or an alkyl group having 2 to 3 carbon atoms,

R1 및 R3는 각각 수소, 탄소수 1 내지 6개인 알킬기, 탄소수 1 내지 6개인 알콕시알킬기, 탄소수 1 내지 6개인 히드록시알킬기 또는 할로겐화알킬기이고, R1 and R3 are each hydrogen, an alkyl group having 1 to 6 carbon atoms, an alkoxyalkyl group having 1 to 6 carbon atoms, a hydroxyalkyl group or halogenated alkyl group having 1 to 6 carbon atoms,

R2 및 R4는 각각 수소 또는 메틸기이며,R2 and R4 are each hydrogen or a methyl group,

각 단량체의 비율은 단량체의 총 몰분율 k + l + m + n을 기준으로 하여 k의 몰분율은 0 내지 0.3, l의 몰분율은 0 내지 0.7, m의 몰분율은 0.1 내지 0.5, n의 몰분율은 0.1 내지 0.4이고, 여기서 몰분율이 k로 표시되는 N-페닐말레이미드 단량체가 R에 따라 두 개일 수 있다.The ratio of each monomer is based on the total mole fraction k + l + m + n of the monomer, the mole fraction of k is 0 to 0.3, the mole fraction of l is 0 to 0.7, the mole fraction of m is 0.1 to 0.5, and the mole fraction of n is 0.1 to 0.4, where the mole fraction of k may be two N-phenylmaleimide monomers represented by k.

상기 화학식 1에 나타낸 구조를 갖는 본 발명의 유기 고분자는 일반적으로 (Ma)k-(Mb)l-(Mc)m-(Md)l와 같이 표시할 수도 있다. 여기서 Ma는 히드록시페닐말레이미드, 정확하게는 N-(4-히드록시페닐)말레이미드 또는 상기 화학식 1에서 R로 표시된 것과 같은 적절한 보호기로 보호된 N-(4-히드록시페닐)말레이미드 구조를 가지며, Mb는 상기 화학식 1에서 R1으로 표시된 것과 같은 적절한 작용기를 갖는 메타아크릴산 에스테르 구조이고, Mc는 가교결합 기능을 갖는 N-(4-시아네이토페닐)말레이미드 구조를 가지며, Md는 흡광 기능을 갖는 9-안트라센메틸메타크릴레이트를 나타낸다.The organic polymer of the present invention having the structure shown in Chemical Formula 1 may generally be represented as (Ma) k- (Mb) l- (Mc) m- (Md) l. Wherein Ma represents a N- (4-hydroxyphenyl) maleimide structure protected with hydroxyphenylmaleimide, precisely N- (4-hydroxyphenyl) maleimide or a suitable protecting group such as represented by R in Formula 1 Mb is a methacrylic acid ester structure having a suitable functional group as represented by R1 in Formula 1, Mc has an N- (4-cyanatophenyl) maleimide structure having a crosslinking function, and Md has a light absorption function 9-anthracenemethylmethacrylate having

본 발명에 따른 상기 화학식 1의 시아네이토 가교단 함유 고분자는 종래의 히드록시 계열 가교단 유도체에 비해 웨이퍼에 대한 접착성을 대폭 증가시키고 우수한 가교성으로 포토레지스트 층과의 상호 섞임(intermixing)을 방지하여 향상된 도막 형성 능력을 나타낸다.In comparison with the conventional hydroxy-based cross-linked derivatives, the cyanato-crosslinked cross-linked polymer of Formula 1 according to the present invention significantly increases the adhesion to the wafer and has excellent crosslinkability with the intermixing with the photoresist layer. Prevents an improved coating film forming ability.

다음으로는 상기 화학식 1에 나타낸 것과 같은 본 발명의 고분자의 제조방법에 대하여 설명한다. 상기 화학식 1의 중합체는 통상의 라디칼 중합방법에 따라 질 소, 아르콘 등과 같은 불활성 기체 분위기 하에 라디칼 중합 개시제를 사용하여 2시간 내지 24시간 동안 반응시켜 얻을 수 있다. 라디칼 중합 개시제로는 아조비스이소부티로니트릴(AIBN), 아조비스발레로니트릴(AIVN), 벤조일 퍼옥시드(BPO), 디-t-부틸옥시드(DTBP) 등과 같은 알려진 열중합 개시제 중에서 선택하여 사용할 수 있으며, 반응 온도는 50℃ 내지는 90℃ 범위인 것이 바람직하다. 중합 반응의 용매로는 디옥산, 테트라히드로퓨란, 또는 벤젠 등의 방향족 용제를 사용할 수 있다. 본 발명에서는 단량체와 중합용매 사이의 중량비를 조절하거나 또는 라디칼 개시제의 양을 조절함으로써, 반도체 노광공정에서 요구되는 적절한 분자량의 중합체를 제조할 수 있다. 상기 화학식 1의 중합체의 분자량은 중합 조건을 조절하는 것을 통하여, 겔 투과 크로마토그래피(GPC)를 이용하여 측정한 분자량이 5,000 ~ 100,000 범위가 되도록 조절한다. 앞에서 설명한 것과 같은 방법에 의하여 얻어지는 중합체 중 적당한 도포 능력을 갖는 분자량의 중합체를 반사 방지막 재료로 사용한다.Next, the manufacturing method of the polymer of the present invention as shown in the general formula (1) will be described. The polymer of Chemical Formula 1 may be obtained by reacting for 2 hours to 24 hours using a radical polymerization initiator under an inert gas atmosphere such as nitrogen and arcon according to a conventional radical polymerization method. The radical polymerization initiator may be selected from known thermal polymerization initiators such as azobisisobutyronitrile (AIBN), azobisvaleronitrile (AIVN), benzoyl peroxide (BPO), di-t-butyloxide (DTBP), and the like. It may be used, the reaction temperature is preferably in the range of 50 ℃ to 90 ℃. As a solvent of a polymerization reaction, aromatic solvents, such as dioxane, tetrahydrofuran, or benzene, can be used. In the present invention, by adjusting the weight ratio between the monomer and the polymerization solvent or by controlling the amount of the radical initiator, it is possible to produce a polymer of the appropriate molecular weight required in the semiconductor exposure step. The molecular weight of the polymer of Chemical Formula 1 is controlled by controlling the polymerization conditions, so that the molecular weight measured by gel permeation chromatography (GPC) is in the range of 5,000 to 100,000. Among the polymers obtained by the same method as described above, a polymer having a molecular weight having an appropriate coating ability is used as the antireflection film material.

다음으로는 본 발명에 따른 유기 반사방지막용 조성물에 대하여 설명한다. 본 발명의 유기 반사방지막 조성물은 상기 화학식 1의 중합체를 반도체 미세회로가공 공정용 용제인 프로필렌글리콜 모노메틸에테르 아세테이트(PGMEA), 에틸 3-에톡시프로피오네이트, 에틸락테이트, 메틸 3-메톡시 프로피오네이트 또는 시클로헥사논과 같은 도막형성 능력이 뛰어난 유기 용매에 0.2 내지 20중량%로 용해시킨 다음, 이 용액에 다양한 기능성 첨가제를 적절히 부가하여 제조한다. 이때, 각 첨가제의 함량은 사용한 중합체에 대하여 가교결합제 0.1 내지 10중량 % 등이다.Next, the composition for organic antireflection films concerning this invention is demonstrated. The organic antireflective coating composition of the present invention comprises the polymer of Formula 1 as a solvent for propylene glycol monomethyl ether acetate (PGMEA), ethyl 3-ethoxypropionate, ethyl lactate, methyl 3-methoxy It is prepared by dissolving 0.2 to 20% by weight in an organic solvent having excellent film forming ability such as propionate or cyclohexanone, and then adding various functional additives to the solution as appropriate. At this time, the content of each additive is 0.1 to 10% by weight of the crosslinking agent and the like with respect to the polymer used.

상기와 같은 비율로 혼합된 용액을 미세 입자 여과 장치에서 여과하고, 실리콘 웨이퍼 위에 회전 도포한 다음, 적당한 온도에서 가교반응시켜 원하는 반사방지막을 얻는다. 이와 같은 방법으로 제조된 반사방지막은 단파장 원자외선 미세회로 가공 공정에서 빛의 반사에 의해 야기되는 문제점을 제거하는 역할을 하므로 반도체 소자 생산을 원활히 수행할 수 있도록 한다.The mixed solution at the above ratio is filtered in a fine particle filtration apparatus, spun applied on a silicon wafer, and crosslinked at an appropriate temperature to obtain a desired antireflection film. The anti-reflection film prepared in this manner serves to remove the problems caused by the reflection of light in the short wavelength far ultraviolet microcircuit processing process, so that the semiconductor device can be produced smoothly.

본 발명에 따르는 시아네이토 가교단 함유 반사방지막 고분자는 단파장 원자외선인 248nm, 193nm, 157nm의 노광파장 영역에서 미세회로 형성을 위한 유기 반사방지막으로 우수한 성능을 나타내었으며, 종래 히드록시 가교단을 기초로 하는 반사방지막에 비해 우수한 접착성과 가교성을 가지므로, 반도체 소자 형성 시 초미세회로의 형성에 유용한 것으로 확인되었다.The cyanato-crosslinked end-containing antireflective polymer according to the present invention showed excellent performance as an organic antireflective film for forming a microcircuit in the exposure wavelength region of short wavelength far ultraviolet rays of 248 nm, 193 nm, and 157 nm, and was based on a conventional hydroxy crosslinked end. Since it has excellent adhesiveness and crosslinkability compared to the antireflection film, it has been found to be useful for the formation of ultrafine circuits in the formation of semiconductor devices.

이하에서는 본 발명을 실시예를 통하여 상세히 설명한다. 그러나, 실시예는 본 발명의 예시에 불과할 뿐, 본 발명의 범위가 이에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail through examples. However, the embodiments are only illustrative of the present invention, and the scope of the present invention is not limited thereto.

실시예Example 1. N- 1.N- 히드록시페닐말레이미드Hydroxyphenylmaleimide (( HOPMIHOPMI ) 단량체 1의 합성Synthesis of Monomer 1

Figure 112006098500473-pat00002
Figure 112006098500473-pat00002

환류 냉각기가 장치된 250ml의 둥근 바닥 플라스크에 무수 말레산 (39.20g, 0.40mol)과 4-아미노페놀 (41.40g, 0.38mol)을 넣은 다음, 이를 50ml의 디메틸포름아미드(이하 DMF라 한다)에 용해시키고, 상온에서 90분 동안 반응시켰다. 반응 후, 생성된 노란색 고체 생성물을 여과하고, 증류수로 3-4회 씻은 다음 건조하여, N-히드록시페닐말레암산 (N-(4-hydroxyphenyl)maleamic acid, 이하 HOPMA 라 한다)) 75. 40g (수율 96.0%)를 얻었으며, 녹는점은 180℃이었다.In a 250 ml round bottom flask equipped with a reflux condenser, maleic anhydride (39.20 g, 0.40 mol) and 4-aminophenol (41.40 g, 0.38 mol) were placed in 50 ml of dimethylformamide (hereinafter referred to as DMF). It was dissolved and reacted at room temperature for 90 minutes. After the reaction, the resulting yellow solid product was filtered, washed 3-4 times with distilled water and dried to form N -hydroxyphenylmaleamic acid (hereinafter referred to as N- (4-hydroxyphenyl) maleamic acid, hereinafter referred to as HOPMA) 75. 40 g (Yield 96.0%) was obtained and its melting point was 180 deg.

이어서, 생성된 HOPMA (75.40g, 0.36mol)를 환류 냉각기가 장치된 250ml 둥근 바닥 플라스크에 넣고, 80℃에서 반응시키면서 오산화인(P2O5, 10.0g, 0.07mol)을 서서히 첨가하여 부반응으로 생성된 물을 제거한 다음, DMF 20ml에 환산 4ml를 희석시킨 용액을 반응 혼합물에 천천히 적가한다. 2시간 동안 반응시켜 생성된 반응물을 과량의 증류수에 침전시켜 단량체 생성물을 얻은 다음 다시 프로판올에서 재결정하여 주황색 결정의 순수한 N-히드록시페닐말레이미드(이하 HOPMI라 한다) 단량체 1 을 56.37g (수율 81.9%) 얻었으며, 녹는점은 182℃이었다.Subsequently, the resulting HOPMA (75.40 g, 0.36 mol) was placed in a 250 ml round bottom flask equipped with a reflux condenser and reacted at 80 ° C. while slowly adding phosphorus pentoxide (P 2 O 5, 10.0 g, 0.07 mol) to produce water as a side reaction. After removing the solution, a solution of diluting 4 ml in terms of 20 ml of DMF was slowly added dropwise to the reaction mixture. The reaction product formed by reacting for 2 hours was precipitated in excess distilled water to obtain a monomer product, which was then recrystallized from propanol to obtain 56.37 g of pure N -hydroxyphenylmaleimide (hereinafter referred to as HOPMI) monomer 1 of orange crystals (yield 81.9). %) And the melting point was 182 ° C.

실시예Example 2. N-(4- 2.N- (4- 테트라히드로피라닐옥시페닐Tetrahydropyranyloxyphenyl )) 말레이미드Maleimide (( THPTHP -- OPMIOPMI ) 단량체 2의 합성Synthesis of Monomer 2

Figure 112006098500473-pat00003
Figure 112006098500473-pat00003

500ml의 둥근 바닥 플라스크에 단량체 1 (47.30g, 0.25mol)과 디히드로피란 (105.20g, 1.25mol)을 넣고, 150ml의 테트라히드로퓨란(이하 THF라 한다)에 용해시켰다. 0.5ml의 진한 황산을 100ml의 THF에 희석시켜 반응물에 천천히 적가한 다음, 상온에서 12시간 동안 교반하여 반응시켰다. 반응 완료 후에 용매를 감압 증류하여 제거하고, 남은 생성물을 과량의 증류수에 침전시켜 생성된 침전물을 여과하여 여러 차례 증류수로 씻어주었다. 생성물을 프로판올에 재결정하여 주황색 결정체의 보호된 단량체인 N-테트라히드로피라닐옥시말레이미드(THP-OPMI) 단량체 2 53.20g (수율 77.9%)을 얻었으며, 녹는점은 120℃이었다.In a 500 ml round bottom flask, monomer 1 (47.30 g, 0.25 mol) and dihydropyran (105.20 g, 1.25 mol) were added and dissolved in 150 ml of tetrahydrofuran (hereinafter referred to as THF). 0.5 ml of concentrated sulfuric acid was diluted in 100 ml of THF and slowly added dropwise to the reaction, followed by stirring at room temperature for 12 hours. After completion of the reaction, the solvent was distilled off under reduced pressure, and the remaining product was precipitated in excess distilled water, and the resulting precipitate was filtered and washed with distilled water several times. The product was recrystallized in propanol to give 53.20 g (yield 77.9%) of N -tetrahydropyranyloxymaleimide (THP-OPMI) monomer 2 , a protected monomer of orange crystals, with a melting point of 120 ° C.

실시예Example 3. N-(4- 3.N- (4- 시아네이토페닐Cyanatophenyl )) 말레이미드Maleimide (( CyPMICyPMI ) 단량체 3의 합성Synthesis of Monomer 3

Figure 112006098500473-pat00004
Figure 112006098500473-pat00004

250ml의 둥근 바닥 플라스크에 단량체 1 (15.00g, 0.79mol)과 시아노젠브로마이드(10.10g, 0.95mol)를 120ml의 아세톤에 용해시키고, 0℃의 얼음 중탕에서 냉각시키고 트리에틸아민 (9.60g, 0.95mol)을 20분 동안 천천히 떨어뜨린 다음, 4시간 동안 반응시켰다. 생성된 반응물을 여과하여 암모늄염을 제거하고, 여과액을 과량의 증류수에 침전시켜 생성물을 회수하였다. 생성물을 헥산과 아세톤(6:1)의 혼합액에 재결정하여 주황색 결정의 N-시아네이토페닐말레이미드(이하 CyPMI이라 한다) 단량체 3을 13.74g(수율 80.90%) 얻었으며, 녹는점은 132℃이었다.In a 250 ml round bottom flask, monomer 1 (15.00 g, 0.79 mol) and cyanozen bromide (10.10 g, 0.95 mol) were dissolved in 120 ml of acetone, cooled in an ice bath at 0 ° C. and triethylamine (9.60 g, 0.95 mol) was slowly dropped for 20 minutes and then reacted for 4 hours. The resulting reaction was filtered to remove the ammonium salt and the filtrate was precipitated in excess distilled water to recover the product. The product was recrystallized in a mixture of hexane and acetone (6: 1) to obtain 13.74 g (yield 80.90%) of N -cyanatophenylmaleimide (hereinafter referred to as CyPMI) monomer 3 as an orange crystal, and the melting point was 132 ° C. It was.

실시예Example 4.  4. 단량체3Monomer 3 , 안트라센 , Anthracene 메틸메타크릴레이트Methyl methacrylate , , 메틸methyl 메타아크릴레이트을Methacrylate 사용한  Used 삼원공중합체Terpolymer 합성 synthesis

중합 용기에 단량체 3 (7.84g, 36mmol), 안트라센 메틸메타크릴레이트 (이하 AMMA 로 함, 10.22g, 36mmol), 메틸 메타아크릴레이트 (이하 MMA 로 함, 7.32g, 72mmol) 및 라디칼 개시제인 AIBN 3mol% 넣고 디옥산(50ml)으로 용해시킨 다음, 질소 분위기 하에서 60℃의 중합 온도로 10시간 중합하였다. 중합 반응물을 과량의 메탄올에 침전시킨 다음, 여과 및 건조과정을 거쳐 삼원 공중합체인 P(CyPMI/AMMA/MMA)를 합성하였다. 얻어진 P(CyPMI/AMMA/MMA)의 수율은 86%이며, GPC에 의한 분자량 측정 결과 중량평균 분자량이 43,000 정도로 필름 성형이 용이하였다.In the polymerization vessel, monomer 3 (7.84g, 36mmol), anthracene methylmethacrylate (hereinafter referred to as AMMA, 10.22g, 36mmol), methyl methacrylate (hereinafter referred to as MMA, 7.32g, 72mmol) and AIBN 3mol as a radical initiator % Was dissolved in dioxane (50 ml), and the polymerization was carried out at a polymerization temperature of 60 ° C. for 10 hours under a nitrogen atmosphere. The polymerization reactant was precipitated in excess methanol, and then filtered and dried to synthesize P (CyPMI / AMMA / MMA), a terpolymer. The yield of obtained P (CyPMI / AMMA / MMA) was 86%, and the film shape was easy about 43,000 as a weight average molecular weight as a result of molecular weight measurement by GPC.

실시예Example 5. 단량체 1,  5. Monomer 1, 단량체3Monomer 3 , , AMMAAMMA , , MMAMMA 를 사용한 Using 사원공중합체Employee Copolymer 합성 synthesis

중합용기에 단량체 1 (7.11g, 36mmol), 단량체 3 (7.84g, 36mmol), AMMA (10.22g, 36mmol), MMA (7.32g, 72mmol) 및 라디칼 개시젠인 AIBN 3mol% 넣고 디옥산(50ml)으로 용해시킨 다음, 질소 분위기 하에서 60℃의 중합 온도로 10시간 중합하였다. 중합 반응물을 과량의 메탄올에 침전시킨 다음, 여과 및 건조과정을 거쳐 사원 공중합체인 P(HOPMI/CyPMI/AMMA/MMA)를 합성하였다. 얻어진 P(HOPMI/CyPMI/AMMA/MMA)의 수율은 88%이며, GPC에 의한 분자량 측정 결과 중량평균 분자량이 41,000 정도로 필름 성형이 용이하였다.Into the polymerization vessel, monomer 1 (7.11g, 36mmol), monomer 3 (7.84g, 36mmol), AMMA (10.22g, 36mmol), MMA (7.32g, 72mmol) and 3 mol% of AIBN, a radical initiator, dioxane (50ml) The solution was dissolved in, followed by polymerization at a polymerization temperature of 60 ° C. for 10 hours under a nitrogen atmosphere. The polymerization reactant was precipitated in excess methanol, and then filtered and dried to synthesize P (HOPMI / CyPMI / AMMA / MMA). The yield of obtained P (HOPMI / CyPMI / AMMA / MMA) was 88%, and the film shape was easy about 41,000 as a result of the molecular weight measurement by GPC.

실시예Example 6. 단량체 2,  6. monomer 2, 단량체3Monomer 3 , , AMMAAMMA , , MMAMMA 를 사용한 Using 사원공중합체Employee Copolymer 합성 synthesis

중합용기에 단량체 2 (10.0g, 36mmol), 단량체 3 (7.84g, 36mmol), AMMA (10.22g, 36mmol), MMA (7.32g, 72mmol) 및 라디칼 개시젠인 AIBN 3mol% 넣고 디옥산(50ml)으로 용해시킨 다음, 질소 분위기 하에서 60℃의 중합 온도로 10시간 중합하였다. 중합 반응물을 과량의 메탄올에 침전시킨 다음, 여과 및 건조과정을 거쳐 사원 공중합체인 P(THP-OPMI/CyPMI/AMMA/MMA)를 합성하였다. 얻어진 P(THP-OPMI/CyPMI/AMMA/MMA)의 수율은 91%이며, GPC에 의한 분자량 측정 결과 중량평균 분자량이 42,500 정도로 필름 성형이 용이하였다.Into the polymerization vessel, monomer 2 (10.0g, 36mmol), monomer 3 (7.84g, 36mmol), AMMA (10.22g, 36mmol), MMA (7.32g, 72mmol) and 3 mol% of AIBN, a radical initiator, dioxane (50ml) The solution was dissolved in, followed by polymerization at a polymerization temperature of 60 ° C. for 10 hours under a nitrogen atmosphere. The polymerization reaction was precipitated in excess methanol, and then filtered and dried to synthesize P (THP-OPMI / CyPMI / AMMA / MMA). The yield of obtained P (THP-OPMI / CyPMI / AMMA / MMA) was 91%, and the film shape was easy about 42,500 as a weight average molecular weight as a result of molecular weight measurement by GPC.

실시예Example 7. 단량체 1, 단량체 2,  7. Monomer 1, Monomer 2, 단량체3Monomer 3 , , AMMAAMMA , , MMAMMA 를 사용한 Using 오원공중합체Oone copolymer 합성 synthesis

중합용기에 단량체 1 (7.11g, 36mmol), 단량체 2 (10.0g, 36mmol), 단량체 3 (7.84g, 36mmol), AMMA (10.22g, 36mmol), MMA (7.32g, 72mmol) 및 라디칼 개시젠인 AIBN 3mol% 넣고 디옥산(50ml)으로 용해시킨 다음, 질소 분위기 하에서 60℃의 중합 온도로 10시간 중합하였다. 중합 반응물을 과량의 메탄올에 침전시킨 다음, 여과 및 건조과정을 거쳐 오원 공중합체인 P(HOPMI/THP-OPMI/CyPMI/AMMA/MMA)를 합성하였다. 얻어진 P(HOPMI/THP-OPMI/CyPMI/AMMA/MMA)의 수율은 87%이며, GPC에 의한 분자량 측정 결과 중량평균 분자량이 40,500 정도로 필름 성형이 용이하였다.In the polymerization vessel, monomer 1 (7.11g, 36mmol), monomer 2 (10.0g, 36mmol), monomer 3 (7.84g, 36mmol), AMMA (10.22g, 36mmol), MMA (7.32g, 72mmol) and radical initiator 3 mol% of AIBN was added thereto, dissolved in dioxane (50 ml), and then polymerized under a nitrogen atmosphere at a polymerization temperature of 60 ° C. for 10 hours. The polymerization reactant was precipitated in excess methanol, and then filtered and dried to synthesize P (HOPMI / THP-OPMI / CyPMI / AMMA / MMA). The yield of obtained P (HOPMI / THP-OPMI / CyPMI / AMMA / MMA) was 87%, and the film shape was easy about 40,500 as a weight average molecular weight as a result of molecular weight measurement by GPC.

실시예Example 8. 유기  8. Organic 반사방지막Antireflection film 조성물의 제조 및 응용 Preparation and Application of the Composition

실시예 4내지 7에서 얻어진 공중합체를 도막형성 능력이 뛰어난 프로필렌 글리콜 모노메틸 에테르 아세테이트 용매에 대해 중량비로 1:20 내지 1:50 정도로 용해시킨 다음, 열가교결합제, 안정제와 같은 다양한 첨가제를 부가하여 교반하고, 이 용액을 미세기공 멤브레인 필터로 여과하여 단파장 원자외선 노광용 유기 반사방지막 용액을 제조하였다. 이를 실리콘 웨이퍼 위에 스핀 도포하고 100℃ 내지는 250℃에서 10내지 120초 동안 가교시켜 포토레지스트와의 상호 섞임 현상을 방지한다. 이후 일반적인 공정순서에 따라 상업용 포토레지스트를 반사방지막 위에 스핀 도포하여 광미세회로 가공 공정을 수행하였다. 실시예들로부터 얻어진 공중합체를 이용한 유기 반사방지막 조성물은 노광공정 후 현상 시 포토레지스트와 산평형을 이루어 포토레지스트 미세패턴의 하단에 언더커팅(undercutting)이나 푸팅(footing)이 형성되지 않았으며 난반사에 기인 한 패턴의 미세회로 치수변화 역시 매우 적어 70nm ~ 150nm 급의 고해상도 미세회로 형성이 용이하게 이루어졌다.The copolymers obtained in Examples 4 to 7 were dissolved in a weight ratio of about 1:20 to 1:50 with respect to propylene glycol monomethyl ether acetate solvent having excellent film forming ability, and then various additives such as a thermal crosslinking agent and a stabilizer were added. After stirring, the solution was filtered through a microporous membrane filter to prepare an organic antireflection coating solution for short wavelength far ultraviolet exposure. This is spin coated onto a silicon wafer and crosslinked at 100 ° C. to 250 ° C. for 10 to 120 seconds to prevent intermixing with the photoresist. Thereafter, commercial photoresist was spin-coated on the anti-reflection film in a general process sequence to perform an optical microcircuit processing process. The organic anti-reflective coating composition using the copolymer obtained from the examples formed an acid equilibrium with the photoresist during the development after the exposure process, so that no undercutting or footing was formed at the bottom of the photoresist micropattern, Due to the small size of the microcircuit of the pattern is also very small, it is easy to form a high-resolution microcircuit of 70nm ~ 150nm class.

이상에서와 같이 본 발명에 따른 공중합체를 기본 구조로 하는 고분자를 이용한 유기 반사방지막은 새로운 열가교성 시아네이토 가교단을 고분자 사슬내에 공유결합으로 도입함으로 인하여 고온 열가교를 진행하여도 발생되는 가스가 거의 없어 열에 의한 안전성이 뛰어나고 기판과의 접착력이 우수하며 유기 반사방지막으로서 가져야 할 충분한 흡광도를 가지고 있어 노광공정 시 하부막 층에서 일어나는 반사를 억제하고 사용 광원 및 포토레지스트의 두께 변화에 따른 정재파를 제거할 수 있으며 플라즈마에 대한 높은 에칭 능력으로 인해 안정적으로 기질에 회로를 전사할 수 있다. 따라서 본 발명에 의한 중합체를 반도체 제조시 노광파장 248nm, 193nm, 157nm의 엑시머 레이저를 사용하는 노광 공정에 유기 반사방지막으로 이용하는 경우, 1기가비트 디램 이상의 메모리 소자 내지는 70nm ~ 150nm 단위의 시스템 직접 회로의 미세회로 제작을 안정적으로 수행 할 수 있어 반도체 소자의 생산 수율을 증대시킬 수 있다.As described above, the organic anti-reflection film using the polymer having a copolymer as a base structure according to the present invention is a gas generated even when high temperature thermal crosslinking is performed by introducing a new thermally crosslinkable cyanaito crosslinking group into the polymer chain as a covalent bond. It has almost no thermal stability, excellent adhesion to the substrate, and sufficient absorbance to have as an organic anti-reflective film.It suppresses reflections in the lower layer during the exposure process and prevents standing waves due to changes in the thickness of the light source and photoresist used. It can be removed, and the high etching ability to the plasma ensures stable circuit transfer to the substrate. Therefore, when the polymer according to the present invention is used as an organic anti-reflection film in an exposure process using an excimer laser having an exposure wavelength of 248 nm, 193 nm, and 157 nm in semiconductor manufacturing, the memory element of 1 gigabit DRAM or more or a system integrated circuit of 70 nm to 150 nm unit is fine. Since the circuit fabrication can be performed stably, the production yield of semiconductor devices can be increased.

Claims (7)

하기 화학식 1로 표시되는 N-시아네이토페닐말레이미드 함유 공중합체.N-cyanatophenylmaleimide-containing copolymer represented by the following formula (1). [화학식 1][Formula 1]
Figure 112008072859115-pat00005
Figure 112008072859115-pat00005
상기 식에서, R은 H, 테트라하이드로피라닐, -COOR5, -Si(R6)3 또는 t-부틸기이고, 여기서 R5와 R6는 각각 메틸기, t-부틸기 또는 탄소수 2 내지 3의 알킬기이고, Wherein R is H, tetrahydropyranyl, -COOR 5, -Si (R 6) 3 or a t-butyl group, where R 5 and R 6 are each a methyl group, a t-butyl group or an alkyl group having 2 to 3 carbon atoms, R1 및 R3는 각각 수소, 탄소수 1 내지 6개인 알킬기, 탄소수 1 내지 6개인 알콕시알킬기, 탄소수 1 내지 6개인 히드록시알킬기 또는 할로겐화알킬기이고, R1 and R3 are each hydrogen, an alkyl group having 1 to 6 carbon atoms, an alkoxyalkyl group having 1 to 6 carbon atoms, a hydroxyalkyl group or halogenated alkyl group having 1 to 6 carbon atoms, R2 및 R4는 각각 수소 또는 메틸기이며,R2 and R4 are each hydrogen or a methyl group, 각 단량체의 비율은 단량체의 총 몰분율 k + l + m + n을 기준으로 하여 k의 몰분율은 0 내지 0.3, l의 몰분율은 0 내지 0.7, m의 몰분율은 0.1 내지 0.5, n의 몰분율은 0.1 내지 0.4이고, 여기서 몰분율이 k로 표시되는 N-페닐말레이미드 단량체가 R에 따라 두 개일 수 있다.The ratio of each monomer is based on the total mole fraction k + l + m + n of the monomer, the mole fraction of k is 0 to 0.3, the mole fraction of l is 0 to 0.7, the mole fraction of m is 0.1 to 0.5, and the mole fraction of n is 0.1 to 0.4, where the mole fraction of k may be two N-phenylmaleimide monomers represented by k.
제 1항에 있어서, 공중합체의 중량 평균 분자량이 10,000 내지 100,000인 N-시아네이토페닐말레이미드 함유 공중합체.The N-cyanatophenylmaleimide-containing copolymer according to claim 1, wherein the copolymer has a weight average molecular weight of 10,000 to 100,000. 하기 화학식 1로 표시되는 중합단위를 주쇄에 함유한 공중합체의 제조방법에 있어서, 중합용매로 디옥산, 테트라히드로퓨란, 메틸에틸케톤 또는 방향족 용제로 이루어진 군에서 선택된 것을 사용하고, 중합개시제로 아조비스이소부티로니트릴(AIBN), 디-t-부틸옥시드(DTBP), 벤조일 퍼옥시드(BPO) 또는 아조비스발레로니트릴(AIVN)로 이루어진 군에서 선택된 1종 이상을 사용하여 N-시아네이토페닐말레이미드 함유 공중합체를 제조하는 방법.In the method for producing a copolymer containing the polymerized unit represented by the following formula (1) in the main chain, a polymerization solvent is selected from the group consisting of dioxane, tetrahydrofuran, methyl ethyl ketone or an aromatic solvent, and azo as a polymerization initiator. N-cyanae using one or more selected from the group consisting of bisisobutyronitrile (AIBN), di-t-butyloxide (DTBP), benzoyl peroxide (BPO) or azobisvaleronitrile (AIVN) A process for producing a tophenylmaleimide containing copolymer. [화학식 1][Formula 1]
Figure 112008072859115-pat00006
Figure 112008072859115-pat00006
상기 식에서, R은 H, 테트라하이드로피라닐, -COOR5, -Si(R6)3 또는 t-부틸기이고, 여기서 R5와 R6는 각각 메틸기, t-부틸기 또는 탄소수 2 내지 3의 알킬기이고, Wherein R is H, tetrahydropyranyl, -COOR 5, -Si (R 6) 3 or a t-butyl group, where R 5 and R 6 are each a methyl group, a t-butyl group or an alkyl group having 2 to 3 carbon atoms, R1 및 R3는 각각 수소, 탄소수 1 내지 6개인 알킬기, 탄소수 1 내지 6개인 알콕시알킬기, 탄소수 1 내지 6개인 히드록시알킬기 또는 할로겐화알킬기이고, R1 and R3 are each hydrogen, an alkyl group having 1 to 6 carbon atoms, an alkoxyalkyl group having 1 to 6 carbon atoms, a hydroxyalkyl group or halogenated alkyl group having 1 to 6 carbon atoms, R2 및 R4는 각각 수소 또는 메틸기이며,R2 and R4 are each hydrogen or a methyl group, 각 단량체의 비율은 단량체의 총 몰분율 k + l + m + n을 기준으로 하여 k의 몰분율은 0 내지 0.3, l의 몰분율은 0 내지 0.7, m의 몰분율은 0.1 내지 0.5, n의 몰분율은 0.1 내지 0.4이고, 여기서 몰분율이 k로 표시되는 N-페닐말레이미드 단량체가 R에 따라 두 개일 수 있다.The ratio of each monomer is based on the total mole fraction k + l + m + n of the monomer, the mole fraction of k is 0 to 0.3, the mole fraction of l is 0 to 0.7, the mole fraction of m is 0.1 to 0.5, and the mole fraction of n is 0.1 to 0.4, where the mole fraction of k may be two N-phenylmaleimide monomers represented by k.
하기 화학식 1로 표시되는 중합체, 유기용매, 및 1종 이상의 첨가제를 포함하는 반도체 제조공정용 유기 반사방지막 조성물.An organic antireflective coating composition for a semiconductor manufacturing process comprising a polymer, an organic solvent, and at least one additive represented by the following Chemical Formula 1. [화학식 1][Formula 1]
Figure 112008072859115-pat00007
Figure 112008072859115-pat00007
상기 식에서, R은 H, 테트라하이드로피라닐, -COOR5, -Si(R6)3 또는 t-부틸기이고, 여기서 R5와 R6는 각각 메틸기, t-부틸기 또는 탄소수 2 내지 3의 알킬기이고, Wherein R is H, tetrahydropyranyl, -COOR 5, -Si (R 6) 3 or a t-butyl group, where R 5 and R 6 are each a methyl group, a t-butyl group or an alkyl group having 2 to 3 carbon atoms, R1 및 R3는 각각 수소, 탄소수 1 내지 6개인 알킬기, 탄소수 1 내지 6개인 알콕시알킬기, 탄소수 1 내지 6개인 히드록시알킬기 또는 할로겐화알킬기이고, R1 and R3 are each hydrogen, an alkyl group having 1 to 6 carbon atoms, an alkoxyalkyl group having 1 to 6 carbon atoms, a hydroxyalkyl group or halogenated alkyl group having 1 to 6 carbon atoms, R2 및 R4는 각각 수소 또는 메틸기이며,R2 and R4 are each hydrogen or a methyl group, 각 단량체의 비율은 단량체의 총 몰분율 k + l + m + n을 기준으로 하여 k의 몰분율은 0 내지 0.3, l의 몰분율은 0 내지 0.7, m의 몰분율은 0.1 내지 0.5, n의 몰분율은 0.1 내지 0.4이고, 여기서 몰분율이 k로 표시되는 N-페닐말레이미드 단량체가 R에 따라 두 개일 수 있다.The ratio of each monomer is based on the total mole fraction k + l + m + n of the monomer, the mole fraction of k is 0 to 0.3, the mole fraction of l is 0 to 0.7, the mole fraction of m is 0.1 to 0.5, and the mole fraction of n is 0.1 to 0.4, where the mole fraction of k may be two N-phenylmaleimide monomers represented by k.
제 4항에 있어서, 상기 화학식 1로 표시되는 중합체를 유기용매에 0.2 내지 20중량% 용해하고, 여기에 1종 이상의 첨가제를 상기 중합체 대비 각각 0.1 내지 10 중량% 혼합하여 형성한 반도체 제조공정용 유기 반사방지막 조성물.The method of claim 4, wherein 0.2 to 20% by weight of the polymer represented by Chemical Formula 1 is dissolved in an organic solvent, and 0.1 to 10% by weight of one or more additives are respectively mixed with the organic solvent. Antireflective coating composition. 제 4항에 있어서, 상기 유기용매는 부티롤락톤, 시클로펜타논, 시클로헥사논, 디메틸 아세트아미드, 디메틸 포름아미드, 디메틸설폭사이드, N-메틸 피롤리돈, 프로필렌 글리콜 모노메틸 에테르, 프로필렌 글리콜 모노메틸 에테르 아세테이트, 에틸 락테이트 및 이들의 혼합물로 이루어진 군으로부터 선택되는 반도체 제조공정용 유기 반사방지막 형성용 조성물.The method of claim 4, wherein the organic solvent is butyrolactone, cyclopentanone, cyclohexanone, dimethyl acetamide, dimethyl formamide, dimethyl sulfoxide, N -methyl pyrrolidone, propylene glycol monomethyl ether, propylene glycol mono A composition for forming an organic antireflection film for a semiconductor manufacturing process selected from the group consisting of methyl ether acetate, ethyl lactate and mixtures thereof. 제 4항 내지 제6항 중 어느 한 항에 의해 형성되는 유기 반사방지막.An organic antireflection film formed by any one of claims 4 to 6.
KR1020060138682A 2006-12-29 2006-12-29 Organic Copolymer for preparing Organic Antireflective Coating, Method of Preparing the same, and Composition comprising the same KR100889173B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020060138682A KR100889173B1 (en) 2006-12-29 2006-12-29 Organic Copolymer for preparing Organic Antireflective Coating, Method of Preparing the same, and Composition comprising the same
PCT/KR2007/006691 WO2008082108A1 (en) 2006-12-29 2007-12-20 Organic copolymer for preparing organic antireflective coating, method of preparing the same, and composition comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060138682A KR100889173B1 (en) 2006-12-29 2006-12-29 Organic Copolymer for preparing Organic Antireflective Coating, Method of Preparing the same, and Composition comprising the same

Publications (2)

Publication Number Publication Date
KR20080062645A KR20080062645A (en) 2008-07-03
KR100889173B1 true KR100889173B1 (en) 2009-03-17

Family

ID=39588736

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060138682A KR100889173B1 (en) 2006-12-29 2006-12-29 Organic Copolymer for preparing Organic Antireflective Coating, Method of Preparing the same, and Composition comprising the same

Country Status (2)

Country Link
KR (1) KR100889173B1 (en)
WO (1) WO2008082108A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8702819B2 (en) 2008-09-10 2014-04-22 Poet Research, Inc. Oil composition and method of recovering the same
JP5719514B2 (en) 2009-02-08 2015-05-20 ローム アンド ハース エレクトロニック マテリアルズ エルエルシーRohm and Haas Electronic Materials LLC Coating compositions suitable for use with overcoated photoresist

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6329117B1 (en) * 1997-10-08 2001-12-11 Clariant International, Ltd. Antireflection or light-absorbing coating composition and polymer therefor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5886102A (en) * 1996-06-11 1999-03-23 Shipley Company, L.L.C. Antireflective coating compositions
JP3617878B2 (en) * 1996-08-07 2005-02-09 富士写真フイルム株式会社 Composition for antireflection film material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6329117B1 (en) * 1997-10-08 2001-12-11 Clariant International, Ltd. Antireflection or light-absorbing coating composition and polymer therefor

Also Published As

Publication number Publication date
KR20080062645A (en) 2008-07-03
WO2008082108A1 (en) 2008-07-10

Similar Documents

Publication Publication Date Title
KR100436220B1 (en) Organic polymers for bottom antireflective coating, processes for preparing the same, and compositions containing the same
JP3851476B2 (en) Organic antireflection polymer and method for producing the same
JP6100261B2 (en) Developable composition for forming a lower antireflection film
JP5305744B2 (en) Copolymer and composition for organic antireflection coating
JP2006188681A (en) Organic polymer for forming organic antireflection film
JP3854367B2 (en) Light absorbing polymer, light absorbing film forming composition, light absorbing film and antireflection film using the same
KR101156973B1 (en) Organic polymer for forming organic anti-reflective coating layer, and organic composition including the same
JP4107937B2 (en) Antireflection film composition, method for manufacturing antireflection film, and semiconductor device
WO1999047571A1 (en) Light-absorbing polymers and application thereof to antireflection film
KR101881624B1 (en) Polymer and method for producing same
KR101332227B1 (en) Monomer, polymer for forming organic anti-reflective coating layer, and organic composition including the same
JP2002097231A (en) Composition for organic antireflection film and method for producing the same
KR100889173B1 (en) Organic Copolymer for preparing Organic Antireflective Coating, Method of Preparing the same, and Composition comprising the same
JP3602075B2 (en) Composition of organic antireflection film and method for producing the same
KR100871770B1 (en) Co-polymer comprising antracenyl benzyl group chromophores, preparing method thereof, organic anti-reflective coating composition comprising the co-polymer and organic anti-reflective coating comprising the composition
JP3602076B2 (en) Composition of organic antireflection film and method for producing the same
KR100871771B1 (en) Co-polymer containing piperidine, preparing method thereof, organic anti-reflective coating composition containing the co-polymer and organic anti-reflective coating comprising the composition
KR100479686B1 (en) A thermally stable polymer containing n-hydroxyphenylmaleimide, and an anti-reflective coating compositon for photolithography comprising the same
KR100528454B1 (en) A thermally crosslinkable polymer for a bottom anti-reflective coating for photolithography, a composition for preparing a bottom anti-reflective coating using the same, and preparation method thereof
KR100871772B1 (en) Co-polymer comprising isocyante-based derivative, preparing method thereof, organic anti-reflective coating composition comprising the co-polymer and organic anti-reflective coating comprising the composition
KR100894403B1 (en) Co-polymer containing alkyl substituted ketoxime protected isocyante-based derivative, preparing method thereof, organic anti-reflective coating composition containing the co-polymer and organic anti-reflective coating using the composition
KR102510790B1 (en) A composition of anti-reflective hardmask
KR101259001B1 (en) Composition for coating organic anti-reflective layer and organic anti-reflection film comprising the same
KR101347482B1 (en) Chromophore for organic antireflective layer and composition comprising thereof
KR20240037095A (en) A composition of anti-reflective hardmask

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20121220

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20140206

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20150205

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20180212

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20190212

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20200213

Year of fee payment: 12