KR100479686B1 - A thermally stable polymer containing n-hydroxyphenylmaleimide, and an anti-reflective coating compositon for photolithography comprising the same - Google Patents

A thermally stable polymer containing n-hydroxyphenylmaleimide, and an anti-reflective coating compositon for photolithography comprising the same Download PDF

Info

Publication number
KR100479686B1
KR100479686B1 KR10-2002-0009950A KR20020009950A KR100479686B1 KR 100479686 B1 KR100479686 B1 KR 100479686B1 KR 20020009950 A KR20020009950 A KR 20020009950A KR 100479686 B1 KR100479686 B1 KR 100479686B1
Authority
KR
South Korea
Prior art keywords
monomer
polymer
weight
mol
alkyl
Prior art date
Application number
KR10-2002-0009950A
Other languages
Korean (ko)
Other versions
KR20030070417A (en
Inventor
안광덕
강종희
김준우
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR10-2002-0009950A priority Critical patent/KR100479686B1/en
Publication of KR20030070417A publication Critical patent/KR20030070417A/en
Application granted granted Critical
Publication of KR100479686B1 publication Critical patent/KR100479686B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/36Amides or imides
    • C08F222/40Imides, e.g. cyclic imides
    • C08F222/404Imides, e.g. cyclic imides substituted imides comprising oxygen other than the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • C08F2/06Organic solvent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/12Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an ether radical
    • C08F216/14Monomers containing only one unsaturated aliphatic radical
    • C08F216/1408Monomers containing halogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/12Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an ether radical
    • C08F216/14Monomers containing only one unsaturated aliphatic radical
    • C08F216/1416Monomers containing oxygen in addition to the ether oxygen, e.g. allyl glycidyl ether
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/20Esters of polyhydric alcohols or phenols, e.g. 2-hydroxyethyl (meth)acrylate or glycerol mono-(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/22Esters containing halogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/281Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing only one oxygen, e.g. furfuryl (meth)acrylate or 2-methoxyethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/36Amides or imides
    • C08F222/40Imides, e.g. cyclic imides
    • C08F222/406Imides, e.g. cyclic imides substituted imides comprising nitrogen other than the imide nitrogen
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70025Production of exposure light, i.e. light sources by lasers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Materials For Photolithography (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

본 발명은 반도체 제조에서 미세 패턴 가공 시 노광된 빛의 난반사 억제를 위하여 사용될 수 있으며, 193nm 파장의 원자외선 영역에서 높은 광흡수도를 갖는 N-하이드록시페닐말레이미드 반복 단위 함유 유기 고분자, 이를 포함하는 반사 방지막용 조성물 및 이들의 제조방법에 관한 것이다. 본 발명에 따른 유기 고분자를 포함하는 바닥 반사 방지막은 기가 비트급 디램(Giga-bit DRAM)의 고집적 반도체 소자 제조에 사용되어 회로의 층간 난반사 및 정재파 현상을 대폭 억제할 수 있으므로, 70nm - 120nm 급의 초고해상도 미세회로를 안정적으로 형성하여 반도체 제품의 생산 수율을 증대시킬 수 있다.The present invention can be used to suppress the diffuse reflection of the light exposed during the fine pattern processing in the semiconductor manufacturing, organic polymer containing N -hydroxyphenylmaleimide repeat unit having a high light absorption in the far ultraviolet region of 193nm wavelength, including the same It relates to an antireflection film composition and a method for producing the same. The bottom anti-reflection film containing the organic polymer according to the present invention is used in the manufacture of highly integrated semiconductor devices of Giga-bit DRAMs, which can greatly suppress inter-layer diffuse reflection and standing wave phenomena of circuits, and thus, ultra-70 nm to 120 nm It is possible to stably form high resolution microcircuits to increase the yield of semiconductor products.

Description

N-히드록시페닐말레이미드 함유 내열성 고분자, 및 이를 포함하는 반사 방지막 조성물과 반사 방지막{A THERMALLY STABLE POLYMER CONTAINING N-HYDROXYPHENYLMALEIMIDE, AND AN ANTI-REFLECTIVE COATING COMPOSITON FOR PHOTOLITHOGRAPHY COMPRISING THE SAME}N-hydroxyphenylmaleimide-containing heat resistant polymer, and an anti-reflective coating composition and anti-reflective coating comprising the same {A THERMALLY STABLE POLYMER CONTAINING

본 발명은 200nm 이하의 짧은 파장의 원자외선을 이용하는 고집적 반도체의 미세회로 형성을 위한 노광공정인 광미세 가공기술(photolithography)에서, 포토레지스트 밑의 기질 충에서 일어나는 난반사(reflective notching)를 억제하고, 사용 광원 및 포토레지스트의 두께 변화에 따른 정재파(standing wave) 효과를 제거할 수 있는, 바닥 반사 방지막(bottom antireflective coating layer)용 유기 고분자 감광재료, 이를 함유하는 바닥 반사 방지막 조성물 및 이의 제조방법에 관한 것이다. The present invention, in photolithography, which is an exposure process for forming a microcircuit of a highly integrated semiconductor using short-ultraviolet rays of 200 nm or less, suppresses reflective notching occurring in the filling of a substrate under a photoresist. Regarding the organic polymer photosensitive material for bottom antireflective coating layer, the bottom antireflective coating composition containing the same, and a method of manufacturing the same, which can eliminate standing wave effects due to changes in thickness of the light source and photoresist used. will be.

반사 방지막(antireflective coating = ARC)은 매우 얇은 광흡수 감광재료 층으로서, 기가비트(Gb)급 초고집적 반도체를 생산하는데 필수적으로 이용되며, 보통은 100nm - 200nm 크기의 회로 및 미래의 100nm 이하의 초미세 회로를 안정적으로 형성시키기 위한 광미세회로 가공공정에 사용된다. 따라서, 반사 방지막은 기존의 반도체 생산 공정에 사용되고 있는 고해상도 포토레지스트(photoresist: PR) 재료와 상호 접착계면 및 광 특성이 서로 잘 맞아야 한다. 이러한 반사 방지막은 단파장 원자외선 노광 공정 중 포토레지스트 층을 도포하기 전에 먼저 도포되기 때문에 "바닥 반사 방지막(bottom ARC = BARC)"이라 부른다. 현재의 발달된 고집적 반도체 광미세 가공공정에서는 높은 흡광도를 갖는 유기 바닥 반사 방지막이 일반적으로 사용되고 있는데, 유기 반사 방지막은 특정 노광 파장에 대한 광흡수도가 높아야 하므로 고집적 반도체 미세 가공 기술 공정의 발달에 따른 광원의 단파장화(예를 들면, 430nm G-선, 365nm I-선, 248nm KrF 레이저, 193nm ArF 레이저, 157nm F2레이저 등)에 대응할 수 있어야 한다(M. Padmanaban et al., Proc. SPIE, 3678, 550(1999); G. E. Bailey et al. Proc. SPIE, 3999, 521 (2000); M. Padmanaban et al., Proc. SPIE, 3333, 206 (1998)).An antireflective coating (ARC) is a very thin layer of light-absorbing photoresist that is essential for the production of gigabit (Gb) class ultra-high density semiconductors, typically 100nm to 200nm circuits and future sub-100nm ultrafine It is used in optical microcircuit processing process to stably form a circuit. Therefore, the anti-reflection film should be well matched with the high-resolution photoresist (PR) material used in the existing semiconductor production process and mutual adhesion interface and optical properties. This antireflection film is referred to as " bottom ARC = BARC " because it is first applied before the photoresist layer is applied during the short wavelength ultraviolet exposure process. In the currently developed highly integrated semiconductor optical microfabrication process, an organic bottom antireflection film having high absorbance is generally used. Since the organic antireflection film must have high light absorption at a specific exposure wavelength, the development of a highly integrated semiconductor microfabrication process It should be able to cope with shortening of the light source (e.g., 430 nm G-ray, 365 nm I-ray, 248 nm KrF laser, 193 nm ArF laser, 157 nm F2 laser, etc.) (M. Padmanaban et al ., Proc. SPIE , 3678). , 550 (1999); GE Bailey et al. Proc. SPIE , 3999 , 521 (2000); M. Padmanaban et al ., Proc. SPIE , 3333 , 206 (1998)).

근래에 이르러 초고집적 반도체 제조 공정 분야의 기술이 괄목할 만큼 발전하였지만, 실리콘 웨이퍼 위에 감광재료인 포토레지스트를 회전 도포하여 노광하는 종래의 광미세 가공기술만으로는 70 - 150nm 급의 초미세 회로를 안정적으로 제작하기 불가능하게 되었다. 따라서, 포토레지스트 층을 도포하기 이전에 노광공정에서 반사를 방지하는 특별한 박막의 도포가 필요하게 되었다. 반사 방지막은 노광 시에 포토레지스트 층 내부에서 입사광과 기질로부터의 반사광의 간섭에 의해 발생되는 정재파 효과를 방지하고, 또한 종래의 공정에서 만들어진 회로층으로부터 기인하는 단차(topography)에 따른 반사 또는 모서리에서의 난반사를 방지하거나 또는 현저히 감소시키는 작용을 하게 된다. 그러므로, 원하는 초미세회로 치수(critical dimension = CD)를 정확하게 제어할 수 있도록 하여, 제조공정 조건의 허용도(process latitude)를 크게 해준다. 상기와 같은 목적으로 사용되는 반사 방지막은 그 조성에 따라 회전 도포(spin coating)하는 유기물계 및 화학 기상 증착을 이용하는 무기물계가 있지만, 근래에는 대부분 공정상 편리한 유기물계의 반사 방지막을 사용하고 있다. In recent years, the technology of the ultra-high-density semiconductor manufacturing process has developed remarkably. However, the conventional micro-fine processing technology that rotates and exposes a photoresist, a photoresist material, on a silicon wafer to expose a stable 70-150nm ultrafine circuit It became impossible to produce. Accordingly, it is necessary to apply a special thin film to prevent reflection in the exposure process before applying the photoresist layer. The antireflective film prevents standing wave effects caused by interference of incident light and reflected light from the substrate inside the photoresist layer during exposure, and also at reflections or edges due to topography resulting from circuit layers made in conventional processes. It is to prevent or significantly reduce the diffuse reflection of the. Therefore, it is possible to accurately control the desired critical dimension (CD), thereby increasing the process latitude of the manufacturing process conditions. The anti-reflection film used for the above-mentioned purpose is an organic material system using spin coating according to its composition and an inorganic material system using chemical vapor deposition. However, in recent years, an anti-reflection film of an organic material system which is convenient for the process is used.

특히 193nm 파장의 원자외선과 같은 큰 에너지의 단파장을 사용하는 노광 공정의 필요로 인하여 이와 같은 단파장 영역에서의 높은 광흡수도를 가진 발색단이 필요하게 되었으며, 이에 따라 최근에는 벤젠고리를 포함하는 방향족계 유도체를 이용하는 유기 반사 방지막용 재료의 발명이 주류를 이루고 있다(Shao et al., J. Photopolym. Sci. Technol., 14, 481 (2001); J. Meador et al., Proc. SPIE, 3678, 800 (1999); G. Taylor et al., Proc. SPIE, 3678, 174 (1999); S. -H, Hwang et al., Polymer, 41, 6691 (2000); K. Mizutani et al., Proc. SPIE , 3678, 518 (1999); U.S. Patent, 6,090,531, Fuji Photo Film (Japan), July 18, 2000; U.S. Patent 6,033,830, Shipley Co. (Mass., USA), March 7, 2000; U.S. Patent, 6,080,530, Brewer Science, Inc. (Mo., USA), June 27, 2000; 대한민국특허공개 제2001-003934 (공개일 2001. 1. 15), 현대전자산업(주)).In particular, due to the need for an exposure process using a large energy short wavelength such as far ultraviolet rays having a wavelength of 193 nm, a chromophore having high light absorption in such a short wavelength region has been required. Accordingly, an aromatic system containing a benzene ring has recently been developed. The invention of organic anti-reflective coating materials using derivatives has become mainstream (Shao et al ., J. Photopolym. Sci. Technol ., 14 , 481 (2001); J. Meador et al ., Proc. SPIE , 3678 , 800 (1999); G. Taylor et al ., Proc. SPIE , 3678 , 174 (1999); S.-H, Hwang et al ., Polymer , 41 , 6691 (2000); K. Mizutani et al ., Proc SPIE , 3678 , 518 (1999); US Patent, 6,090,531, Fuji Photo Film (Japan), July 18, 2000; US Patent 6,033,830, Shipley Co. (Mass., USA), March 7, 2000; US Patent, 6,080,530. , Brewer Science , Inc. (Mo., USA), June 27, 2000; Korean Patent Publication No. 2001-003934 (published Jan. 15, 2001), Hyundai Electronics Industry.

단파장 원자외선 중에서 특히 248nm 파장의 크립톤플루오라이드(KrF) 엑시머 레이저를 이용하는 광미세회로 가공 공정이 본격화된 이후에 반사 방지막의 역할이 더욱 중요하게 부각되고 있다. 아울러 초고해상도를 달성하기 위한 193nm 파장의 아르곤플루오라이드(ArF) 엑시머 레이저 미세 가공공정에서 사용되는 유기 바닥 반사 방지막용 조성물은 다음에서 설명하는 것과 같은 요건을 갖출 것이 요구된다(H. Yoshino et al., Proc SPIE, 3333, 655 (1998); P. Trefonas et al., Proc. SPIE, 3678, 701 (1999); W. -B. Kang et al., J. Photopolym. Sci. Technol., 10, 471 (1997)).Among the short wavelength far ultraviolet rays, the role of the anti-reflection film has become more important after the optical microcircuit processing process using a krypton fluoride (KrF) excimer laser having a wavelength of 248 nm has been in full swing. In addition, the composition for organic bottom antireflection film used in the 193 nm wavelength argon fluoride (ArF) excimer laser micromachining process to achieve ultra high resolution is required to meet the requirements as described below (H. Yoshino et al. , Proc SPIE , 3333 , 655 (1998); P. Trefonas et al., Proc. SPIE , 3678 , 701 (1999); W.-B. Kang et al., J. Photopolym. Sci. Technol ., 10 , 471 (1997)).

- 반도체 제조에 사용되는 광원에 대하여 적합한 광학 상수(optical constants) 즉, 적합한 굴절률(n) 및 광흡수 상수(k)를 가져야 한다.-Should have suitable optical constants, i.e. suitable refractive index (n) and light absorption constant (k), for the light source used for semiconductor manufacturing.

- 유기 바닥 반사 방지막은 상부의 포토레지스트에 비하여 플라즈마 건식 에칭 속도에서 높은 선택비를 가져야 하며, 건식 에칭에 따른 화상의 결점이 생기지 않아야 한다.The organic bottom anti-reflection film should have a high selectivity at the plasma dry etch rate compared to the top photoresist, and there should be no image defects due to dry etch.

- 포토레지스트와 바닥 반사 방지막 사이의 상호 섞임(intermixing) 현상이 없어야 하며, 이를 위하여 적절한 가교구조가 형성될 수 있는 반응기가 유기 고분자 사슬 내에 포함되어 있어야 한다.There should be no intermixing between the photoresist and the bottom anti-reflective coating. For this purpose, a reactor must be included in the organic polymer chain to form an appropriate crosslinking structure.

- 유기 바닥 반사 방지막은 노광공정 후의 용액 현상 시, 포토레지스트의 계면 작용에 따른 포토레지스트 미세 패턴의 하단에 언더커팅(undercutting)이나 푸팅(footing) 현상이 발생하지 않아야 한다.The organic bottom anti-reflection film should not have undercutting or footing at the bottom of the photoresist micropattern due to the interfacial action of the photoresist when developing the solution after the exposure process.

- 회전 도포에 의한 막 형성 공정시, 적합한 박막 두께 제어 능력, 우수한 도막 형성능력 및 도막 균일도가 요구된다.In the film forming process by rotating coating, suitable thin film thickness control ability, excellent film forming ability and film uniformity are required.

따라서, 본 발명의 목적은 초고집적 반도체 소자 제조공정 중 193nm 파장의 ArF 엑시머 레이저를 노광원으로 사용하는 초미세회로가공 공정에서 반사 방지막의 재료로 사용될 수 있는 신규한 유기 고분자를 제공하는 것이다.Accordingly, an object of the present invention is to provide a novel organic polymer that can be used as an antireflection film material in an ultrafine circuit processing process using an ArF excimer laser having a wavelength of 193 nm as an exposure source during an ultra-high density semiconductor device manufacturing process.

본 발명의 또 다른 목적은 단파장 노광공정 시 하층으로부터의 난반사를 방지할 수 있는 유기 고분자, 내열성과 우수한 가교결합 성능을 갖는 유기 반사 방지막 조성물 및 이들의 제조방법을 제공하는 것이다. Another object of the present invention is to provide an organic anti-reflective coating composition having excellent heat resistance and excellent crosslinking performance, and a method for producing the same, which can prevent diffuse reflection from an underlayer during a short wavelength exposure process.

본 발명의 또 다른 목적은 이러한 바닥 반사 방지막 조성물을 사용하여 193nm 단파장 노광공정 시에 사용할 수 있는 반사 방지막의 제조방법을 제공하는 것이다.It is still another object of the present invention to provide a method for producing an antireflection film that can be used in a 193 nm short wavelength exposure process using the bottom antireflection film composition.

본 발명에 따른 바닥 반사 방지막용 유기 고분자의 제조에 사용되는 단량체는 그 구조상 193nm 및 그 이하의 짧은 노광 파장에서 광흡수도가 높은 히드록시페닐말레이미드 발색단 및 그 유도체를 필수적으로 포함하며, 반사 방지막을 형성하는 과정에서의 가교를 위하여 히드록시기 및 시아네이트기를 갖는 것이 바람직하다. 또한 본 발명의 유기 고분자는 내열성, 접착성 등의 물성이 요구되므로, 이를 조절하기 위하여 공단량체를 이용하여 3종 또는 4종의 서로 상이한 단량체로부터 제조되는 삼원 공중합체 또는 사원 공중합체를 포함한다. 특히 본 발명의 유기 고분자 제조에 사용되는 히드록시페닐말레이미드 단량체는 상기 고분자 제조상의 용이성을 위하여 적절히 보호된(protected) 화학 구조이거나 가교결합 기능을 갖는 단량체인 것이 바람직하다. 상기와 같은 특성을 모두 만족하는, 본 발명에 따른 바닥 반사 방지막용 유기 고분자는 다음의 화학식 1에 나타낸 것과 같은 구조를 갖는다.Monomers used in the preparation of the organic polymer for a bottom anti-reflective coating according to the present invention essentially include hydroxyphenylmaleimide chromophores and derivatives thereof having high light absorption at short exposure wavelengths of 193 nm and below. It is preferable to have a hydroxyl group and a cyanate group for the crosslinking in the process of forming a. In addition, since the organic polymer of the present invention requires physical properties such as heat resistance and adhesiveness, it includes a terpolymer or quaternary copolymer prepared from three or four different monomers using a comonomer in order to control them. In particular, the hydroxyphenylmaleimide monomer used in the preparation of the organic polymer of the present invention is preferably a monomer having a properly protected chemical structure or crosslinking function for ease of manufacturing the polymer. The organic polymer for a bottom anti-reflection film according to the present invention, which satisfies all the above characteristics, has a structure as shown in the following formula (1).

화학식 1에 있어서, R은 H, 테트라하이드로피라닐, -COOR3, (SiR4)3 또는 t-부틸기를 나타내는데, 여기서 R3와 R4는 각각 메틸, t-부틸 또는 C2-C3 알킬을 나타내며, R1과 R2는 각각 독립적으로 수소, C1-C6 알킬, C1 -C6 알콕시 알킬, C1-C6 히드록시 알킬 또는 C1-C6 할로겐화 알킬을 나타낸다.In Formula 1, R represents H, tetrahydropyranyl, -COOR 3 , (SiR 4 ) 3 or a t-butyl group, where R 3 and R 4 are each methyl, t-butyl or C 2 -C 3 alkyl R 1 and R 2 each independently represent hydrogen, C 1 -C 6 alkyl, C 1 -C 6 alkoxy alkyl, C 1 -C 6 hydroxy alkyl or C 1 -C 6 halogenated alkyl.

각 단량체의 비율은 단량체의 총 몰분율 x+y+z+p를 기준으로 하여 x의 몰분율은 0.1 내지 0.7, y의 몰분율은 0 내지 0.8, z의 몰분율은 0 내지 0.55, p의 몰분율은 0 내지 0.5인 것이 바람직하다. The ratio of each monomer is based on the total mole fraction x + y + z + p of the monomer, and the molar fraction of x is 0.1 to 0.7, the molar fraction of y is 0 to 0.8, the molar fraction of z is 0 to 0.55, and the molar fraction of p is 0 to 0. It is preferable that it is 0.5.

상기 화학식 1에 나타낸 구조를 갖는 본 발명의 유기 고분자는 일반적으로 -(Ma)x-(Mb)y-(Mc)z-(Md)p-와 같이 표시할 수도 있다. 여기서, Ma는 히드록시페닐말레이미드, 정확하게는 N-(4-히드록시페닐)말레이미드 또는 상기 화학식 1에서 R로 표시된 것과 같은 적절한 보호기로 보호된 N-(4-히드록시페닐)말레이미드 구조를 가지며, Mb는 상기 화학식 1에서 R1으로 표시된 것과 같은 적절한 작용기를 갖는 메타아크릴산 에스테르 구조이고, Mc는 상기 화학식 1에서 R2로 표시된 것과 같은 적절한 작용기를 갖는 비닐에테르 구조이며, Md는 내열성과 가교결합 기능을 동시에 갖는 N-(4-시아네이토페닐)말레이미드를 나타낸다.The organic polymer of the present invention having the structure shown in Chemical Formula 1 may be generally represented as-(Ma) x- (Mb) y- (Mc) z- (Md) p-. Wherein Ma is N- (4-hydroxyphenyl) maleimide structure protected with hydroxyphenylmaleimide, precisely N- (4-hydroxyphenyl) maleimide or a suitable protecting group such as represented by R in Formula 1 to have, Mb is a methacrylic acid ester structure having a suitable functional group, such as those indicated by R 1 in the formula 1, Mc is a vinyl ether structure having a suitable functional group, such as those represented by R 2 in formula 1, Md is the thermal resistance N- (4-cyanatophenyl) maleimide having a crosslinking function simultaneously.

상기 화학식 1에 나타낸 구조를 갖는 본 발명에 따른 폴리(히드록시페닐말레이미드) 유도체는 다음의 화학식 2에 나타낸 것과 같은 구조의 말레이미드 단량체를 중합하는 것에 의하여 생성될 수 있다. The poly (hydroxyphenylmaleimide) derivative according to the present invention having the structure shown in Chemical Formula 1 may be produced by polymerizing a maleimide monomer having a structure as shown in the following Chemical Formula 2.

화학식 2에 있어서, R은 상기 화학식 1에서 기술한 것과 동일하다. In Formula 2, R is the same as described in Formula 1 above.

본 발명에 따른 상기 화학식 1의 고분자는 아르곤플루오라이드 엑시머 레이저의 193nm 파장 영역에서 광흡수도가 매우 크고, 히드록시기가 보호된 관능기 특성에 의하여 중합 반응이 용이하고, 반사 방지막 재료의 내열성이 우수하며, 웨이퍼에 대한 접착성이 우수하다. 히드록시페닐말레이미드 유도체를 단량체로 제조한 본 발명의 고분자 재료는 통상의 반사 방지막에 사용되는 메타아크릴레이트 단량체를 이용한 고분자 재료에 비하여 200℃ 이상되는 높은 유리 전이온도 및 300℃ 이상의 높은 열분해 온도를 나타낸다. 즉, 본 발명에 따른 N-히드록시페닐말레이미드 함유 고분자의 유리 전이온도는 215℃이며, 열분해 온도는 350℃로 관찰되었다.The polymer of Chemical Formula 1 according to the present invention has a very high light absorption in the 193 nm wavelength region of the argon fluoride excimer laser, is easy to polymerize due to a hydroxyl group-protected functional group property, and has excellent heat resistance of the antireflection film material. Excellent adhesion to the wafer. The polymer material of the present invention prepared by using a hydroxyphenylmaleimide derivative as a monomer has a high glass transition temperature of 200 ° C. or higher and a high pyrolysis temperature of 300 ° C. or higher, compared to a polymer material using a methacrylate monomer used in a conventional antireflection film. Indicates. That is, the glass transition temperature of the N -hydroxyphenylmaleimide containing polymer which concerns on this invention was 215 degreeC, and the thermal decomposition temperature was observed at 350 degreeC.

다음으로는 상기 화학식 1에 나타낸 것과 같은 본 발명의 고분자의 제조방법에 대하여 설명한다. 상기 화학식 1의 중합체는 통상의 라디칼 중합방법에 따라 앞에서 설명한 것과 같은 단량체를 질소, 아르곤 등과 같은 불활성 기체 분위기 하에서 라디칼 중합 개시제를 사용하여 2시간 내지 24시간 동안 반응시켜 얻을 수 있다. 라디칼 중합 개시제로는 벤조일 퍼옥시드(BPO), 아조비스이소부티로니트릴(AIBN), 디-t-부틸퍼옥시드(DTBP) 등과 같은 알려진 각종의 열중합 개시제 중에서 선택하여 사용할 수 있으며, 반응 온도는 50℃ 내지는 90℃ 범위인 것이 바람직하다. 중합 반응의 용매로는 디옥산, 테트라히드로퓨란, 또는 벤젠 등의 방향족 용제를 사용할 수 있다. 본 발명에서는 단량체와 중합용매 사이의 중량비를 조절하거나 또는 라디칼 개시제의 양을 조절함으로써, 반도체 노광공정에서 요구되는 적절한 분자량의 중합체를 제조할 수 있다. 상기 화학식 1의 중합체의 분자량은 중합 조건을 조절하는 것을 통하여, 겔 투과 크로마토그래피(GPC)를 이용하여 측정한 분자량이 5,000 - 100,000 범위가 되도록 조절한다. 앞에서 설명한 것과 같은 방법에 의하여 얻어지는 중합체 중 적당한 도포 능력을 갖는 분자량의 중합체를 반사 방지막 재료로 사용한다. Next, the manufacturing method of the polymer of the present invention as shown in the general formula (1) will be described. The polymer of Chemical Formula 1 may be obtained by reacting a monomer as described above according to a conventional radical polymerization method for 2 hours to 24 hours using a radical polymerization initiator under an inert gas atmosphere such as nitrogen and argon. The radical polymerization initiator may be selected from various known thermal polymerization initiators such as benzoyl peroxide (BPO), azobisisobutyronitrile (AIBN), di-t-butylperoxide (DTBP), and the reaction temperature. It is preferably in the range of 50 ° C to 90 ° C. As a solvent of a polymerization reaction, aromatic solvents, such as dioxane, tetrahydrofuran, or benzene, can be used. In the present invention, by adjusting the weight ratio between the monomer and the polymerization solvent or by controlling the amount of the radical initiator, it is possible to produce a polymer of the appropriate molecular weight required in the semiconductor exposure step. The molecular weight of the polymer of Chemical Formula 1 is controlled to adjust the polymerization conditions so that the molecular weight measured using gel permeation chromatography (GPC) is in the range of 5,000 to 100,000. Among the polymers obtained by the same method as described above, a polymer having a molecular weight having an appropriate coating ability is used as the antireflection film material.

다음으로는 본 발명에 따른 유기 바닥 반사 방지막용 조성물에 대하여 설명한다. 본 발명의 유기 바닥 반사 방지막 조성물은 상기 화학식 1의 중합체를 반도체 미세회로가공 공정용 용제인 프로필렌글리콜 모노메틸에테르 아세테이트(PGMEA), 에틸 3-에톡시프로피오네이트, 에틸락테이트, 메틸 3-메톡시프로피오네이트 또는 시클로헥산온 등과 같은 도막형성 능력이 뛰어난 유기 용매에 0.2 내지 20중량%로 용해시킨 다음, 이 용액에 다양한 기능성 첨가제를 적절히 부가하여 제조한다. 이때, 각 첨가제의 함량은 사용한 중합체에 대하여 가교결합제 0.1 내지 15중량%, 광산발생제 0.1 내지 20중량%, 안정제 0.1 내지 10중량% 등이다. Next, the composition for organic bottom antireflection films concerning this invention is demonstrated. The organic bottom anti-reflective coating composition of the present invention comprises a polymer of Formula 1 as a solvent for propylene glycol monomethyl ether acetate (PGMEA), ethyl 3-ethoxypropionate, ethyl lactate, methyl 3-meth It is prepared by dissolving 0.2 to 20% by weight in an organic solvent having excellent film forming ability such as oxypropionate or cyclohexanone, and then adding various functional additives to the solution as appropriate. At this time, the content of each additive is 0.1 to 15% by weight of the crosslinking agent, 0.1 to 20% by weight of the photoacid generator, 0.1 to 10% by weight of the stabilizer and the like to the polymer used.

상기와 같은 비율로 혼합된 용액을 미세 입자 여과 장치에서 여과하고, 실리콘 웨이퍼 위에 회전 도포한 다음, 적당한 온도에서 가교반응시켜 원하는 반사 방지막을 얻는다. 이와 같은 방법으로 제조된 반사 방지막은 단파장 원자외선 미세회로 가공의 노광공정에서 빛의 반사에 의해 야기되는 문제점을 제거하는 역할을 하므로 반도체 소자 생산공정을 원활히 수행할 수 있도록 한다. 또한 상기 반사 방지막은 200nm 이하 단파장 원자외선인 ArF 엑시머 레이저의 193nm 노광 파장 영역에서 반도체 미세회로 형성을 위한 유기 바닥 반사방지막으로서 우수한 광흡수도를 나타내었으며, 일반적인 메타아크릴레이트계 고분자를 기초로 한 반사방지막에 비하여 우수한 내열성을 가지므로 반도체 소자 공정 시 70nm - 150nm 선폭의 초미세회로 가공에 유용한 것으로 확인되었다.The mixed solution at the above ratio is filtered in a fine particle filtration apparatus, spun applied on a silicon wafer, and crosslinked at an appropriate temperature to obtain a desired antireflection film. The anti-reflection film prepared in this manner serves to remove the problems caused by the reflection of light in the exposure process of the short-wavelength ultra-ultraviolet microcircuit processing, so that the semiconductor device production process can be performed smoothly. In addition, the anti-reflection film exhibited excellent light absorption as an organic bottom anti-reflection film for forming a semiconductor microcircuit in a 193 nm exposure wavelength region of an ArF excimer laser having a short wavelength far ultraviolet of 200 nm or less, and a reflection based on a general methacrylate-based polymer. As it has superior heat resistance compared to the prevention film, it was found to be useful for processing ultrafine circuits with a line width of 70 nm to 150 nm in semiconductor device processing.

실시예Example

이하에서는 본 발명을 실시예를 통하여 상세히 설명한다. 그러나, 실시예는 본 발명의 예시에 불과할 뿐, 본 발명의 범위가 이에 한정되는 것은 아니다. Hereinafter, the present invention will be described in detail through examples. However, the embodiments are only illustrative of the present invention, and the scope of the present invention is not limited thereto.

실시예 1. Example 1. NN -히드록시페닐말레이미드(HOPMI) 단량체 Hydroxyphenylmaleimide (HOPMI) monomers 1One 의 합성 Synthesis of

환류 냉각기가 장치된 250ml의 둥근 바닥 플라스크에 무수 말레산 (39.20g, 0.40몰)과 4-아미노페놀 (41.40g, 0.38몰)을 넣은 다음, 이를 50ml의 디메틸포름아미드(이하 "DMF"라 한다)에 용해시키고, 상온에서 90분 동안 반응시켰다. 반응 후 생성된 노란색 고체 생성물을 여과하고, 증류수로 3 - 4회 씻은 다음 건조하여, N-히드록시페닐말레암산 N-(4-hydroxyphenyl)maleamic acid, 이하 "HOPMA"라 한다)) 75.40g (수율 96.0%)를 얻었으며, 녹는점은 180℃이었다.In a 250 ml round bottom flask equipped with a reflux condenser, maleic anhydride (39.20 g, 0.40 mol) and 4-aminophenol (41.40 g, 0.38 mol) are added and 50 ml of dimethylformamide (hereinafter referred to as "DMF"). ), And reacted at room temperature for 90 minutes. Filtered and the yellow solid product produced after the reaction, and three with distilled water-washed by four times, and then dried, N-hydroxyphenyl maleamic acid N - (4-hydroxyphenyl) maleamic acid, hereinafter referred to as "HOPMA")) 75.40g ( Yield 96.0%), and melting point was 180 ℃.

이어서, 생성된 HOPMA (75.40g, 0.36몰)를 환류 냉각기가 장치된 250ml 둥근 바닥 플라스크에 넣고, 80℃에서 반응시키면서 오산화인(P2O5, 10.00g, 0.07몰)을 서서히 첨가하여 부반응으로 생성된 물을 제거한 다음, DMF 20ml에 황산 4ml를 희석시킨 용액을 반응 혼합물에 천천히 적가한다. 2시간 동안 반응시켜 생성된 반응물을 과량의 증류수에 침전시켜 단량체 생성물을 얻은 다음 다시 프로판올에서 재결정하여 주황색 결정의 순수한 N-히드록시페닐말레이미드(이하 "HOPMI"라 한다) 단량체 1 을 56.37g (수율 81.9%) 얻었으며, 녹는점은 182℃이었다.Subsequently, the resulting HOPMA (75.40 g, 0.36 mole) was placed in a 250 ml round bottom flask equipped with a reflux condenser, and reacted at 80 ° C. while slowly adding phosphorus pentoxide (P 2 O 5 , 10.00 g, 0.07 mole) as a side reaction. After the resulting water was removed, a solution of 4 ml of sulfuric acid diluted in 20 ml of DMF was slowly added dropwise to the reaction mixture. The reaction product formed by reacting for 2 hours was precipitated in excess distilled water to obtain a monomer product, and then recrystallized from propanol to give 56.37 g of pure N -hydroxyphenylmaleimide (hereinafter referred to as "HOPMI") monomer 1 of orange crystals ( Yield 81.9%), and the melting point was 182 ℃.

실시예 2. Example 2. NN -(4-테트라히드로피라닐옥시페닐)말레이미드(THP-OMPI) 단량체 -(4-tetrahydropyranyloxyphenyl) maleimide (THP-OMPI) monomer 22 의 합성Synthesis of

500ml의 둥근 바닥 플라스크에 단량체 1 (47.30g, 0.25몰)과 디히드로피란 (105.20g, 1.25몰)을 넣고, 150ml의 테트라히드로퓨란(이하 "THF"라 한다)에 용해시켰다. 0.5ml의 진한 황산을 100ml의 THF에 희석시켜 반응물에 천천히 적가한 다음, 상온에서 12시간 동안 교반하여 반응시켰다. 반응 완료 후에 용매를 감압 증류하여 제거하고, 남은 생성물을 과량의 증류수에 침전시켜 생성된 침전물을 여과하여 여러 차례 증류수로 씻어주었다. 생성물을 프로판올에 재결정하여 주황색 결정체의 보호된 단량체인 N-테트라히드로피라닐옥시말레이미드(THP-OPMI) 단량체 2 53.20g (수율 77.9%)을 얻었으며, 녹는점은 120℃이었다.In a 500 ml round bottom flask, monomer 1 (47.30 g, 0.25 mol) and dihydropyran (105.20 g, 1.25 mol) were added and dissolved in 150 ml of tetrahydrofuran (hereinafter referred to as "THF"). 0.5 ml of concentrated sulfuric acid was diluted in 100 ml of THF and slowly added dropwise to the reaction, followed by stirring at room temperature for 12 hours. After completion of the reaction, the solvent was distilled off under reduced pressure, and the remaining product was precipitated in excess distilled water, and the resulting precipitate was filtered and washed with distilled water several times. The product was recrystallized in propanol to give 53.20 g (yield 77.9%) of N -tetrahydropyranyloxymaleimide (THP-OPMI) monomer 2 , a protected monomer of orange crystals, with a melting point of 120 ° C.

실시예 3. Example 3. NN -(4-시아네이토페닐)말레이미드(CyPMI) 단량체 -(4-cyanatophenyl) maleimide (CyPMI) monomer 33 의 합성Synthesis of

250ml의 둥근 바닥 플라스크에 단량체 1 (15.00g, 0.79몰)과 시아노젠브로마이드(10.10g, 0.95몰)를 120ml의 아세톤에 용해시키고, 0℃의 얼음 중탕에서 냉각시키고 트리에틸아민 (9.60g, 0.95몰)을 20분 동안 천천히 떨어뜨린 다음, 4시간 동안 반응시켰다. 생성된 반응물을 여과하여 암모늄염을 제거하고, 여과액을 과량의 증류수에 침전시켜 생성물을 회수하였다. 생성물을 헥산과 아세톤(6:1)의 혼합액에 재결정하여 주황색 결정의 N-시아노토페닐말레이미드(이하 "CyPMI"이라 한다) 단량체 3 을 13.74g (수율 80.9%) 얻었으며, 녹는점은 132℃이었다.In a 250 ml round bottom flask, monomer 1 (15.00 g, 0.79 mol) and cyanozen bromide (10.10 g, 0.95 mol) were dissolved in 120 ml of acetone, cooled in an ice bath at 0 ° C. and triethylamine (9.60 g, 0.95 Mole) was slowly dropped for 20 minutes and then reacted for 4 hours. The resulting reaction was filtered to remove the ammonium salt and the filtrate was precipitated in excess distilled water to recover the product. The product was recrystallized in a mixed solution of hexane and acetone (6: 1) to obtain 13.74 g (yield 80.9%) of N -cyanotophenylmaleimide (hereinafter referred to as "CyPMI") monomer 3 of orange crystals and a melting point of 132 ° C.

실시예 4. Example 4. NN -(4-t-부톡시카르보닐옥시페닐)말레이미드(t-BOCOPMI) 단량체 -(4-t-butoxycarbonyloxyphenyl) maleimide (t-BOCOPMI) monomer 44 의 합성Synthesis of

500mL의 둥근 바닥 플라스크에 단량체 1 (19.76g, 0.104몰)을 40ml의 피리딘과 160ml의 THF에 용해시켰다. 이 반응 혼합물에 디-t-부틸디카르보네이트(DTBDC) (105.20g, 1.25몰)을 넣고, 상온에서 1시간 동안 반응시켰다. 반응 완료 후에 생성물을 여과하여 피리디늄 염을 제거하고, 여과액을 과량의 증류수에 침전시켜 생성물을 회수하였다. 생성물을 헥산과 아세톤의 혼합액(6:1)에서 재결정하여 노란색 결정의 보호된 단량체인 N-t-부톡시카르보닐옥시페닐말레이미드(t-BOCOPMI) 단량체 4 를 27.10g (수율 90.0%) 얻었으며, 녹는점은 142℃이었다.Monomer 1 (19.76 g, 0.104 mol) was dissolved in 40 ml pyridine and 160 ml THF in a 500 mL round bottom flask. Di-t-butyldicarbonate (DTBDC) (105.20 g, 1.25 mol) was added to the reaction mixture, and the mixture was reacted at room temperature for 1 hour. After completion of the reaction, the product was filtered to remove the pyridinium salt, and the filtrate was precipitated in excess distilled water to recover the product. The product was recrystallized from a mixture of hexane and acetone (6: 1) to obtain 27.10 g (yield 90.0%) of N- t-butoxycarbonyloxyphenylmaleimide (t-BOCOPMI) monomer 4 as a protected monomer of yellow crystals. The melting point was 142 ° C.

실시예 5. 단량체 Example 5. Monomers 1One 과 메틸 메타아크릴레이트(MMA) (1:1) 공중합체의 합성Synthesis of Methyl Methacrylate (MMA) (1: 1) Copolymers

20ml의 파이랙스 유리 중합관에 단량체 1 (2.50g, 0.013몰), 메틸 메타아크릴레이트 (1.30g, 0.013몰), 개시제 2,2'-아조비스이소부틸로니트릴(이하 "AIBN"이라 한다) (0.077g, 총 단량체에 대해 3몰%)을 넣고 8.0ml의 디옥산에 용해시킨 다음, 질소 기체를 치환시키며 3 차례의 냉동/해동 순환 후 밀봉하였다. 밀봉된 중합관을 60℃에서 8시간 동안 중합 반응시킨 후 메탄올 300ml에 적가하여 침전된 고분자를 여과하고, 반복하여 두 차례 메탄올에 재침전시켜 여과하여 건조하였다. NMR 스펙트럼을 분석한 결과 얻어진 고분자 P(HOPMI/MMA)의 조성은 단량체 1 과 메틸 메타아크릴레이트의 비율이 36:64로 나타났다. 얻어진 고분자는 THF를 용매로 하여 GPC로 측정한 분자량이 37,000으로 나타났고, 무색의 투명한 필름이 용이하게 형성되었다. 공중합체 P(HOPMI/MMA)의 수율은 3.01g (79.2%)이었다.In a 20 ml pyrex glass polymerization tube, monomer 1 (2.50 g, 0.013 mol), methyl methacrylate (1.30 g, 0.013 mol), initiator 2,2'-azobisisobutylonitrile (hereinafter referred to as "AIBN") (0.077 g, 3 mol% relative to the total monomers) was added, dissolved in 8.0 ml of dioxane, and then replaced with nitrogen gas and sealed after three freeze / thaw cycles. The sealed polymerization tube was polymerized at 60 ° C. for 8 hours, and then added dropwise to 300 ml of methanol to filter the precipitated polymer, followed by reprecipitation twice in methanol, followed by filtration and drying. As a result of analyzing the NMR spectrum, the composition of the obtained polymer P (HOPMI / MMA) showed a ratio of monomer 1: 1 and methyl methacrylate at 36:64. The obtained polymer showed a molecular weight of 37,000 as measured by GPC using THF as a solvent, and a colorless transparent film was easily formed. The yield of copolymer P (HOPMI / MMA) was 3.01 g (79.2%).

실시예 6. 단량체 Example 6. Monomer 1One 과 메틸 메타이크릴레이트(MMA) (1:2) 공중합체의 합성Synthesis of Methyl Methacrylate (MMA) (1: 2) Copolymers

실시예 5에서와 같은 방법으로 단량체 1 (2.50g, 0.013몰)과 메틸 메타아크릴레이트 (2.64g, 0.02몰)를 사용하여 몰비를 1:2로 하여 공중합 반응을 수행하였다. NMR 스펙트럼을 분석한 결과 얻어진 고분자 P(HOPMI/MMA)의 조성은 단량체 1 과 메틸 메타아크릴레이트의 비율이 25:75로 나타났다. 얻어진 고분자는 THF를 용매로 하여 GPC로 측정한 분자량이 41,000으로 나타났고, 무색의 투명한 필름이 용이하게 형성되었다. 공중합체 P(HOPMI/MMA)의 수율은 4.12g (80.2%)이었다.In the same manner as in Example 5, the copolymerization reaction was carried out using a monomer 1 (2.50 g, 0.013 mol) and methyl methacrylate (2.64 g, 0.02 mol) with a molar ratio of 1: 2. As a result of analyzing the NMR spectrum, the composition of the obtained polymer P (HOPMI / MMA) showed 25:75 ratio of monomer 1 and methyl methacrylate. The obtained polymer had a molecular weight of 41,000 as measured by GPC using THF as a solvent, and a colorless transparent film was easily formed. The yield of copolymer P (HOPMI / MMA) was 4.12 g (80.2%).

실시예 7. 단량체 Example 7. Monomer 1One 과 부틸 비닐 에테르(BuVE) (1:1) 공중합체의 합성And Synthesis of Butyl Vinyl Ether (BuVE) (1: 1) Copolymer

실시예 5에서와 동일한 방법으로 단량체 1 (2.50g, 0.013몰)과 BuVE 단량체 (1.30g, 0.013몰)를 사용하여 몰비를 1:1로 하여 공중합 반응을 수행하였다. NMR 스펙트럼을 분석한 결과 얻어진 고분자 P(HOPMI/BuVE)의 조성은 단량체 1 과 부틸 비닐 에테르의 비율이 49:51로 나타났다. 얻어진 고분자는 THF를 용매로 하여 GPC로 측정한 분자량이 43,000으로 나타났고, 무색의 투명한 필름이 용이하게 형성되었다. 공중합체 P(HOPMI/BuVE)의 수율은 3.10g (81.2%)이었다.In the same manner as in Example 5, the copolymerization reaction was performed using a monomer 1 (2.50 g, 0.013 mol) and a BuVE monomer (1.30 g, 0.013 mol) with a molar ratio of 1: 1. As a result of analyzing the NMR spectrum, the composition of the obtained polymer P (HOPMI / BuVE) showed a ratio of 49:51 of monomer 1 and butyl vinyl ether. The obtained polymer showed a molecular weight of 43,000 as measured by GPC using THF as a solvent, and a colorless transparent film was easily formed. The yield of copolymer P (HOPMI / BuVE) was 3.10 g (81.2%).

실시예 8: 단량체 Example 8: Monomer 22 와 메틸 메타이크릴레이트 (1:1) 공중합체의 합성And synthesis of methyl methacrylate (1: 1) copolymer

실시예 5에서와 동일한 방법으로 단량체 2 (2.50g, 0.0091몰)와 메틸 메타아크릴레이트 (0.91g, 0.0091몰)을 사용하여 몰비를 1:1로 하여 공중합 반응을 수행하였다. NMR 스펙트럼을 분석한 결과 얻어진 고분자 P(HOPMI/MMA)의 조성은 단량체 2 와 메틸 메타아크릴레이트의 비율이 48:52로 나타났다. 얻어진 고분자는 THF를 용매로 하여 GPC로 측정한 분자량이 48,000으로 나타났고, 무색의 투명한 필름이 용이하게 형성되었다.In the same manner as in Example 5, the copolymerization reaction was carried out using a monomer 2 (2.50 g, 0.0091 mol) and methyl methacrylate (0.91 g, 0.0091 mol) with a molar ratio of 1: 1. As a result of analyzing the NMR spectrum, the composition of the obtained polymer P (HOPMI / MMA) showed a ratio of 48:52 of monomer 2 and methyl methacrylate. The obtained polymer had a molecular weight of 48,000 as measured by GPC using THF as a solvent, and a colorless transparent film was easily formed.

공중합체 P(HOPMI/MMA)의 수율은 2.85g (83.6%)이었다.The yield of copolymer P (HOPMI / MMA) was 2.85 g (83.6%).

실시예 9: 단량체 Example 9: Monomer 33 과 메틸 메타이크릴레이트 (1:1) 공중합체의 합성And synthesis of methyl methacrylate (1: 1) copolymer

실시예 5에서와 동일한 방법으로 단량체 3 (2.50g, 0.011몰)과 메틸 메타아크릴레이트 1.16g (0.011몰)을 사용하여 몰비를 1:1로 하여 공중합 반응을 수행하였다. NMR 스펙트럼을 분석한 결과 얻어진 고분자 P(CyPMI/MMA)의 조성은 단량체 3 과 메틸 메타아크릴레이트의 비율이 43:57로 나타났다. 얻어진 고분자는 THF를 용매로 하여 GPC로 측정한 분자량이 56,000으로 나타났고, 무색의 투명한 필름이 용이하게 형성되었다. 공중합체 P(CyPMI/MMA)의 수율은 3.12g (85.2%)이었다.In the same manner as in Example 5 using the monomer 3 (2.50g, 0.011 mole) and methyl methacrylate 1.16g (0.011 mol) and the molar ratio 1: 1 was carried out the copolymerization reaction. As a result of analyzing the NMR spectrum, the composition of the obtained polymer P (CyPMI / MMA) was 43:57 in the ratio of monomer 3 and methyl methacrylate. The obtained polymer had a molecular weight of 56,000 as measured by GPC using THF as a solvent, and a colorless transparent film was easily formed. The yield of copolymer P (CyPMI / MMA) was 3.12 g (85.2%).

실시예 10 단량체 Example 10 Monomer 44 와 메틸 메타이크릴레이트 (1:1) 공중합체의 합성And synthesis of methyl methacrylate (1: 1) copolymer

실시예 5에서와 동일한 방법으로 단량체 4 (2.50g, 0.0086몰)와 메틸 메타아크릴레이트 (0.86g, 0.0086몰)을 사용하여 몰비를 1:1로 하여 공중합 반응을 수행하였다. NMR 스펙트럼을 분석한 결과 얻어진 고분자 P(t-BOCOPMI/MMA)의 조성은 단량체 4 와 메틸 메타아크릴레이트의 비율이 41:59로 나타났다. 얻어진 고분자는 THF를 용매로 하여 GPC로 측정한 분자량이 35,000으로 나타났고, 무색의 투명한 필름이 용이하게 형성되었다. 공중합체 P(t-BOCOPMI/MMA)의 수율은 2.56g (76.2%)이었다.In the same manner as in Example 5, copolymerization was carried out using a monomer 4 (2.50 g, 0.0086 mol) and methyl methacrylate (0.86 g, 0.0086 mol) with a molar ratio of 1: 1. As a result of analyzing the NMR spectrum, the composition of the obtained polymer P (t-BOCOPMI / MMA) was 41:59 in the ratio of monomer 4 and methyl methacrylate. The obtained polymer had a molecular weight of 35,000 as measured by GPC using THF as a solvent, and a colorless transparent film was easily formed. The yield of copolymer P (t-BOCOPMI / MMA) was 2.56 g (76.2%).

실시예 11: 단량체 Example 11: Monomer 22 와 단량체 And monomers 33 과 메틸 메타아크릴레이트(1:1:2) 삼원 공중합체의 합성And synthesis of methyl methacrylate (1: 1: 2) terpolymer

100ml 파이랙스 유리 중합관에 단량체 2 (10.0g, 0.037몰), 단량체 3 (7.84g, 0.037몰), 메틸 메타아크릴레이트(7.32g, 0.073몰) 및 개시제 AIBN (0.48g, 총 단량체에 대하여 2몰%)를 넣고, 30ml의 디옥산에 용해시킨 다음, 질소 기체를 치환시키며 3 차례의 냉동/해동 순환한 후에 밀봉하였다. 밀봉된 중합관을 60℃에서 5시간 동안 중합 반응시킨 후에 메탄올 500ml에 적가하여 침전된 고분자를 여과하여 회수하고, 두 차례 반복하여 메탄올에 재침전시킨 후 고분자를 정제시켜 건조하였다. NMR 스펙트럼을 분석한 결과 얻어진 고분자 P(THP-OPMI/CyPMI/MMA) 조성은 단량체 2 : 단량체 3 : 메틸 메타아크릴레이트의 비율이 23:25:52로 나타났다. 얻어진 고분자는 THF를 용매로 하여 GPC로 측정한 분자량이 72,000으로 나타났고, 무색의 투명한 필름이 용이하게 형성되었다. 삼원 공중합체 P(THP-OPMI/CyPMI/MMA)의 수율은 20.90g (83.1%)이었다.In a 100 ml pyrex glass polymerization tube, monomer 2 (10.0 g, 0.037 mol), monomer 3 (7.84 g, 0.037 mol), methyl methacrylate (7.32 g, 0.073 mol) and initiator AIBN (0.48 g, 2 for total monomers) Mole%), dissolved in 30 ml of dioxane, then replaced with nitrogen gas and sealed after three freeze / thaw cycles. After polymerization of the sealed polymer tube at 60 ° C. for 5 hours, the mixture was added dropwise to 500 ml of methanol, and the precipitated polymer was collected by filtration. The mixture was reprecipitated twice with methanol, and the polymer was purified and dried. As a result of analyzing the NMR spectrum, the polymer P (THP-OPMI / CyPMI / MMA) composition obtained had a ratio of monomer 2 : monomer 3 : methyl methacrylate at 23:25:52. The obtained polymer had a molecular weight of 72,000 as measured by GPC using THF as a solvent, and a colorless transparent film was easily formed. The yield of ternary copolymer P (THP-OPMI / CyPMI / MMA) was 20.90 g (83.1%).

실시예 12: 단량체 Example 12 Monomer 22 와 단량체 And monomers 33 과 부틸 비닐 에테르(1:1:2) 삼원 공중합체의 합성And Synthesis of Butyl Vinyl Ether (1: 1: 2) Terpolymer

100ml 파이랙스 유리 중합관에 단량체 2 (10.0g, 0.037몰), 단량체 3 (7.84g, 0.037몰), 부틸 비닐 에테르(7.33g, 0.073몰) 및 개시제 AIBN (0.72g, 총 단량체에 대하여 3몰%)를 넣고, 30ml의 디옥산에 용해시킨 다음, 질소 기체를 치환시키며 3 차례의 냉동/해동 순환한 후에 밀봉하였다. 밀봉된 중합관을 60℃에서 5시간 동안 중합 반응시킨 후에 메탄올 500ml에 적가하여 침전된 고분자를 여과하여 회수하고, 두 차례 반복하여 메탄올에 재침전시킨 후 고분자를 정제시켜 건조하였다. NMR 스펙트럼을 분석한 결과 얻어진 고분자 P(THP-OPMI/CyPMI/BuVE)의 조성은 단량체 2 : 단량체 3 : 부틸 비닐 에테르의 비율이 26:23:51로 나타났다. 얻어진 고분자는 THF를 용매로 하여 GPC로 측정한 분자량이 78,000으로 나타났고, 무색의 투명한 필름이 용이하게 형성되었다. 삼원 공중합체 P(THP-OPMI/CyPMI/BuVE)의 수율은 20.46g (81.3%)이었다.Monomer 2 (10.0 g, 0.037 mole), monomer 3 (7.84 g, 0.037 mole), butyl vinyl ether (7.33 g, 0.073 mole) and initiator AIBN (0.72 g, 3 mole relative to total monomers) in 100 ml pyrex glass polymer tubes %), Dissolved in 30 ml of dioxane and then sealed after 3 freeze / thaw cycles with nitrogen gas substitution. After polymerization of the sealed polymer tube at 60 ° C. for 5 hours, the mixture was added dropwise to 500 ml of methanol, and the precipitated polymer was collected by filtration. The mixture was reprecipitated twice with methanol, and the polymer was purified and dried. As a result of analyzing the NMR spectrum, the composition of the obtained polymer P (THP-OPMI / CyPMI / BuVE) showed 26:23:51 ratio of monomer 2 : monomer 3 : butyl vinyl ether. The obtained polymer had a molecular weight of 78,000 as measured by GPC using THF as a solvent, and a colorless transparent film was easily formed. The yield of ternary copolymer P (THP-OPMI / CyPMI / BuVE) was 20.46 g (81.3%).

실시예 13: 단량체 Example 13: Monomer 22 , 부틸 비닐 에테르, 메텔 메타아크릴레이트 (1:1:2) 삼원 공중합체의 합성Of butyl vinyl ether, metel methacrylate (1: 1: 2) terpolymer

100ml 파이랙스 유리 중합관에 단량체 2 (10.0g, 0.037몰), 부틸 비닐 에테르 (3.66g, 0.037몰), 메틸 메타아크릴레이트 (7.40g, 0.074몰) 및 개시제 AIBN (0.24g, 총 단량체에 대하여 1몰%)를 넣고, 30ml의 디옥산에 용해시킨 다음, 질소 기체를 치환시키며 3 차례의 냉동/해동 순환한 후에 밀봉하였다. 밀봉된 중합관을 60℃에서 6 시간 동안 중합 반응시킨 후에 메탄올 500ml에 적가하여 침전된 고분자를 여과하여 회수하고, 두 차례 반복하여 메탄올에 재침전시킨 후 고분자를 정제시켜 건조하였다. NMR 스펙트럼을 분석한 결과 얻어진 고분자 P(THP-OPMI/BuVE/MMA) 조성은 단량체 2 : 부틸 비닐 에테르 : 메틸 메타아크릴레이트의 비율이 23:21:56으로 나타났다. 얻어진 고분자는 THF를 용매로 하여 GPC로 측정한 분자량이 54,000으로 나타났고, 무색의 투명한 필름이 용이하게 형성되었다. 삼원 공중합체 P(THP-OPMI/BuVE/MMA)의 수율은 16.52g (78.4%)이었다.100 ml pyrex glass polymerization tubes with monomer 2 (10.0 g, 0.037 mol), butyl vinyl ether (3.66 g, 0.037 mol), methyl methacrylate (7.40 g, 0.074 mol) and initiator AIBN (0.24 g, total monomers) 1 mole%), dissolved in 30 ml of dioxane, and then sealed after 3 freeze / thaw cycles with nitrogen gas substitution. After polymerization of the sealed polymer tube at 60 ° C. for 6 hours, the reaction mixture was added dropwise to 500 ml of methanol, and the precipitated polymer was collected by filtration, reprecipitated twice in methanol, and the polymer was purified and dried. As a result of analyzing the NMR spectrum, the polymer P (THP-OPMI / BuVE / MMA) composition obtained had a ratio of monomer 2 : butylene ether: methyl methacrylate at 23:21:56. The obtained polymer showed a molecular weight of 54,000 measured by GPC using THF as a solvent, and a colorless transparent film was easily formed. The yield of ternary copolymer P (THP-OPMI / BuVE / MMA) was 16.52 g (78.4%).

실시예 14: 단량체 Example 14 Monomer 2,2, 단량체  Monomer 33 과 히드록시부틸 비닐 에테르(HOBVE)(1:1:2) 삼원 공중합체의 합성And Synthesis of Hydroxybutyl Vinyl Ether (HOBVE) (1: 1: 2) Terpolymer

100ml 파이랙스 유리 중합관에 단량체 2 (10.0g, 0.037몰), 단량체 3 (7.84g, 0.037몰), 히드록시부틸 비닐 에테르 (12.02g, 0.073몰) 및 개시제 AIBN (0.72g, 총 단량체에 대하여 3몰%)를 넣고, 30ml의 디옥산에 용해시킨 다음, 질소 기체를 치환시키며 3 차례의 냉동/해동 순환한 후에 밀봉하였다. 밀봉된 중합관을 60℃에서 6 시간 동안 중합 반응시킨 후에 메탄올 500ml에 적가하여 침전된 고분자를 여과하여 회수하고, 두 차례 반복하여 메탄올에 재침전시킨 후 고분자를 정제시켜 건조하였다. NMR 스펙트럼을 분석한 결과 얻어진 고분자 P(THP-OPMI/CyPMI/HOBVE)의 조성은 단량체 2 : 단량체 3 : 히드록시부틸 비닐 에테르의 비율이 24:25:51로 나타났다. 얻어진 고분자는 THF를 용매로 하여 GPC로 측정한 분자량이 54,000으로 나타났고, 무색의 투명한 필름이 용이하게 형성되었다. 삼원 공중합체 P(THP-OPMI/CyPMI/HOBVE)의 수율은 23.82g (79.8%)이었다.100 ml pyrex glass polymerization tubes with monomer 2 (10.0 g, 0.037 mole), monomer 3 (7.84 g, 0.037 mole), hydroxybutyl vinyl ether (12.02 g, 0.073 mole) and initiator AIBN (0.72 g, total monomers) 3 mol%), dissolved in 30 ml of dioxane, and then sealed after 3 freeze / thaw cycles with nitrogen gas substitution. After polymerization of the sealed polymer tube at 60 ° C. for 6 hours, the reaction mixture was added dropwise to 500 ml of methanol, and the precipitated polymer was collected by filtration, reprecipitated twice in methanol, and the polymer was purified and dried. As a result of analyzing the NMR spectrum, the composition of the obtained polymer P (THP-OPMI / CyPMI / HOBVE) showed a ratio of monomer 2 : monomer 3 : hydroxybutyl vinyl ether to 24:25:51. The obtained polymer showed a molecular weight of 54,000 measured by GPC using THF as a solvent, and a colorless transparent film was easily formed. The yield of ternary copolymer P (THP-OPMI / CyPMI / HOBVE) was 23.82 g (79.8%).

실시예 15: 단량체 Example 15 Monomer 22 , 단량체 , Monomer 33 과 클로로에틸 비닐 에테르(CEVE)(1:1:2) 삼원 공중합체의 합성And Synthesis of Chloroethyl Vinyl Ether (CEVE) (1: 1: 2) Terpolymer

100ml 파이랙스 유리 중합관에 단량체 2 (10.0g, 0.037몰), 단량체 3 (7.84g, 0.037몰), 클로로에틸 비닐 에테르(7.80g, 0.073몰) 및 개시제 AIBN (0.72g, 총 단량체에 대하여 3몰%)를 넣고, 30ml의 디옥산에 용해시킨 다음, 질소 기체를 치환시키며 3 차례의 냉동/해동 순환한 후에 밀봉하였다. 밀봉된 중합관을 60℃에서 6 시간 동안 중합 반응시킨 후에 메탄올 500ml에 적가하여 침전된 고분자를 여과하여 회수하고, 두 차례 반복하여 메탄올에 재침전시킨 후 고분자를 정제시켜 건조하였다. NMR 스펙트럼을 분석한 결과 얻어진 고분자 P(THP-OPMI/CyPMI/CEVE) 조성은 단량체 2 : 단량체 3 : 클로로에틸 비닐 에테르의 비율이 25:23:52로 나타났다. 얻어진 고분자는 THF를 용매로 하여 GPC로 측정한 분자량이 53,000으로 나타났고, 무색의 투명한 필름이 용이하게 형성되었다. 삼원 공중합체 P(THP-OPMI/CyPMI/CEVE)의 수율은 20.20g (78.4%)이었다.In a 100 ml pyrex glass polymer tube, monomer 2 (10.0 g, 0.037 mol), monomer 3 (7.84 g, 0.037 mol), chloroethyl vinyl ether (7.80 g, 0.073 mol) and initiator AIBN (0.72 g, 3 for total monomers) Mole%), dissolved in 30 ml of dioxane, then replaced with nitrogen gas and sealed after three freeze / thaw cycles. After polymerization of the sealed polymer tube at 60 ° C. for 6 hours, the reaction mixture was added dropwise to 500 ml of methanol, and the precipitated polymer was collected by filtration, reprecipitated twice in methanol, and the polymer was purified and dried. As a result of analyzing the NMR spectrum, the obtained polymer P (THP-OPMI / CyPMI / CEVE) composition showed a ratio of monomer 2 : monomer 3 : chloroethyl vinyl ether in 25:23:52. The obtained polymer showed a molecular weight of 53,000 as measured by GPC using THF as a solvent, and a colorless transparent film was easily formed. The yield of ternary copolymer P (THP-OPMI / CyPMI / CEVE) was 20.20 g (78.4%).

실시예 16: 단량체 Example 16: Monomer 44 , 단량체 , Monomer 33 과 메틸 메타아크릴레이트(2:1:3) 삼원 공중합체의 합성And synthesis of methyl methacrylate (2: 1: 3) terpolymers

100ml 파이랙스 유리 중합관에 단량체 4 (10.0g, 0.035몰), 단량체 3 (3.70g, 0.017몰), 메틸 메타아크릴레이트(5.19g, 0.052몰) 및 개시제 AIBN (0.51g, 총 단량체에 대하여 3몰%)를 넣고, 30ml의 디옥산에 용해시킨 다음, 질소 기체를 치환시키며 3 차례의 냉동/해동 순환한 후에 밀봉하였다. 밀봉된 중합관을 60℃에서 6 시간 동안 중합 반응시킨 후에 메탄올 500ml에 적가하여 침전된 고분자를 여과하여 회수하고, 두 차례 반복하여 메탄올에 재침전시킨 후 고분자를 정제시켜 건조하였다. NMR 스펙트럼을 분석한 결과 얻어진 고분자 P(t-BOCOPMI/CyPMI/MMA)의 조성은 단량체 4 : 단량체 3 : 메틸 메타아크릴레이트의 비율이 32:17:51로 나타났다. 얻어진 고분자는 THF를 용매로 하여 GPC로 측정한 분자량이 36,000으로 나타났고, 무색의 투명한 필름이 용이하게 형성되었다. 삼원 공중합체 P(t-BOCOPMI/CyPMI/MMA)의 수율은 14.91g (78.9%)이었다.In a 100 ml pyrex glass polymerization tube, monomer 4 (10.0 g, 0.035 mol), monomer 3 (3.70 g, 0.017 mol), methyl methacrylate (5.19 g, 0.052 mol) and initiator AIBN (0.51 g, 3 for total monomers) Mole%), dissolved in 30 ml of dioxane, then replaced with nitrogen gas and sealed after three freeze / thaw cycles. After polymerization of the sealed polymer tube at 60 ° C. for 6 hours, the reaction mixture was added dropwise to 500 ml of methanol, and the precipitated polymer was collected by filtration, reprecipitated twice in methanol, and the polymer was purified and dried. As a result of analyzing the NMR spectrum, the composition of the obtained polymer P (t-BOCOPMI / CyPMI / MMA) was 32:17:51 in the ratio of monomer 4 : monomer 3 : methyl methacrylate. The obtained polymer had a molecular weight of 36,000 as measured by GPC using THF as a solvent, and a colorless transparent film was easily formed. The yield of the terpolymer (P-BOCOPMI / CyPMI / MMA) was 14.91 g (78.9%).

실시예 17: 단량체 Example 17 Monomer 1One , 단량체 , Monomer 22 와 메틸 메타아크릴레이트(1:2:3) 삼원 공중합체의 합성And synthesis of methyl methacrylate (1: 2: 3) terpolymer

100ml 파이랙스 유리 중합관에 단량체 1 (10.0g, 0.053몰), 단량체 2 (28.89g, 0.106몰), 메틸 메타아크릴레이트(15.90g, 0.159몰) 및 개시제 AIBN (1.57g, 총 단량체에 대하여 3몰%)를 넣고, 30ml의 디옥산에 용해시킨 다음, 질소 기체를 치환시키며 3 차례의 냉동/해동 순환한 후에 밀봉하였다. 밀봉된 중합관을 60℃에서 6 시간 동안 중합 반응시킨 후에 메탄올 500ml에 적가하여 침전된 고분자를 여과하여 회수하고, 두 차례 반복하여 메탄올에 재침전시킨 후 고분자를 정제시켜 건조하였다. NMR 스펙트럼을 분석한 결과 얻어진 고분자 P(HOPMI/THP-OPMI/MMA)의 조성은 단량체 1 : 단량체 2 : 메틸 메타아크릴레이트의 비율이 14:32:54로 나타났다. 얻어진 고분자는 THF를 용매로 하여 GPC로 측정한 분자량이 38,000으로 나타났고, 무색의 투명한 필름이 용이하게 형성되었다. 삼원 공중합체 P(HOPMI/THP-OPMI/MMA)의 수율은 41.79g (76.3%)이었다.In a 100 ml pyrex glass polymerization tube, monomer 1 (10.0 g, 0.053 mol), monomer 2 (28.89 g, 0.106 mol), methyl methacrylate (15.90 g, 0.159 mol) and initiator AIBN (1.57 g, 3 for total monomers) Mole%), dissolved in 30 ml of dioxane, then replaced with nitrogen gas and sealed after three freeze / thaw cycles. After polymerization of the sealed polymer tube at 60 ° C. for 6 hours, the reaction mixture was added dropwise to 500 ml of methanol, and the precipitated polymer was collected by filtration, reprecipitated twice in methanol, and the polymer was purified and dried. As a result of analyzing the NMR spectrum, the composition of the obtained polymer P (HOPMI / THP-OPMI / MMA) was found to be 14:32:54 in the ratio of monomer 1 : monomer 2 : methyl methacrylate. The obtained polymer had a molecular weight of 38,000 as measured by GPC using THF as a solvent, and a colorless transparent film was easily formed. The yield of ternary copolymer P (HOPMI / THP-OPMI / MMA) was 41.79 g (76.3%).

실시예 18: 단량체 Example 18 Monomer 22 , 단량체 , Monomer 33 , 부틸 비닐 에테르 및 메틸 메타아크릴레이트 (1:1:2:1) 사원 공중합체의 합성Of butyl vinyl ether and methyl methacrylate (1: 1: 2: 1) quaternary copolymers

100ml 파이랙스 유리 중합관에 단량체 2 (10.0g, 0.037몰), 단량체 3 (7.84g, 0.037몰), 부틸 비닐 에테르 (7.33g, 0.073몰), 메틸 메타아크릴레이트 (3.66g, 0.037몰) 및 개시제 AIBN (0.90g, 총 단량체에 대하여 3몰%)를 넣고, 30ml의 디옥산에 용해시킨 다음, 질소 기체를 치환시키며 3 차례의 냉동/해동 순환한 후에 밀봉하였다. 밀봉된 중합관을 60℃에서 6 시간 동안 중합 반응시킨 후에 메탄올 500ml에 적가하여 침전된 고분자를 여과하여 회수하고, 두 차례 반복하여 메탄올에 재침전시킨 후 고분자를 정제시켜 건조하였다. NMR 스펙트럼을 분석한 결과 얻어진 고분자 P(THP-OPMI/CyPMI/BuVE/MMA)의 조성은 단량체 2 : 단량체 3 : 부틸 비닐 에테르 : 메틸 메타아크릴레이트의 비율이 18:16:36:30으로 나타났다. 얻어진 고분자는 THF를 용매로 하여 GPC로 측정한 분자량이 62,000으로 나타났고, 무색의 투명한 필름이 용이하게 형성되었다. 사원 공중합체 P(THP-OPMI/CyPMI/BuVE/MMA)의 수율은 23.22g (80.5%)이었다.Monomer 2 (10.0 g, 0.037 mol), monomer 3 (7.84 g, 0.037 mol), butyl vinyl ether (7.33 g, 0.073 mol), methyl methacrylate (3.66 g, 0.037 mol) Initiator AIBN (0.90 g, 3 mol% relative to total monomers) was added, dissolved in 30 ml of dioxane and then sealed after 3 freeze / thaw cycles with nitrogen gas substitution. After polymerization of the sealed polymer tube at 60 ° C. for 6 hours, the reaction mixture was added dropwise to 500 ml of methanol, and the precipitated polymer was collected by filtration, reprecipitated twice in methanol, and the polymer was purified and dried. As a result of analyzing the NMR spectrum, the composition of the obtained polymer P (THP-OPMI / CyPMI / BuVE / MMA) was found to be 18: 16: 36: 30 in the ratio of monomer 2 : monomer 3 : butyl vinyl ether: methyl methacrylate. The obtained polymer showed a molecular weight of 62,000 as measured by GPC using THF as a solvent, and a colorless transparent film was easily formed. The yield of the employee copolymer P (THP-OPMI / CyPMI / BuVE / MMA) was 23.22 g (80.5%).

실시예 19: 단량체 Example 19 Monomer 22 , 단량체 , Monomer 33 , 에틸 비닐 에테르(EVE) 및 메틸 메타아크릴레이트(1:1:2:1) 사원 공중합체의 합성Of ethyl, ethyl vinyl ether (EVE) and methyl methacrylate (1: 1: 2: 1) quaternary copolymers

100ml 파이랙스 유리 중합관에 단량체 2 (10.0g, 0.037몰), 단량체 3 (7.84g, 0.037몰), 에틸 비닐 에테르 (5.28g, 0.073몰), 메틸 메타아크릴레이트(3.66g, 0.037몰) 및 개시제 AIBN (0.90g, 총 단량체에 대하여 3몰%)를 넣고, 30ml의 디옥산에 용해시킨 다음, 질소 기체를 치환시키며 3 차례의 냉동/해동 순환한 후에 밀봉하였다. 밀봉된 중합관을 60℃에서 6 시간 동안 중합 반응시킨 후에 메탄올 500ml에 적가하여 침전된 고분자를 여과하여 회수하고, 두 차례 반복하여 메탄올에 재침전시킨 후 고분자를 정제시켜 건조하였다. NMR 스펙트럼을 분석한 결과 얻어진 고분자 P(THP-OPMI/CyPMI/EVE/MMA)의 조성은 단량체 2 : 단량체 3 : 에틸 비닐 에테르 : 메틸 메타아크릴레이트의 비율이 17:18:36:29로 나타났다. 얻어진 고분자는 THF를 용매로 하여 GPC로 측정한 분자량이 47,000으로 나타났고, 무색의 투명한 필름이 용이하게 형성되었다. 사원 공중합체 P(THP-OPMI/CyPMI/EVE/MMA)의 수율은 21.61g (80.7%)이었다.Monomer 2 (10.0 g, 0.037 mol), monomer 3 (7.84 g, 0.037 mol), ethyl vinyl ether (5.28 g, 0.073 mol), methyl methacrylate (3.66 g, 0.037 mol) Initiator AIBN (0.90 g, 3 mol% relative to total monomers) was added, dissolved in 30 ml of dioxane and then sealed after 3 freeze / thaw cycles with nitrogen gas substitution. After polymerization of the sealed polymer tube at 60 ° C. for 6 hours, the reaction mixture was added dropwise to 500 ml of methanol, and the precipitated polymer was collected by filtration, reprecipitated twice in methanol, and the polymer was purified and dried. As a result of analyzing the NMR spectrum, the composition of the obtained polymer P (THP-OPMI / CyPMI / EVE / MMA) was found to be 17: 18: 36: 29 in the ratio of monomer 2 : monomer 3 : ethyl vinyl ether: methyl methacrylate. The obtained polymer had a molecular weight of 47,000 as measured by GPC using THF as a solvent, and a colorless transparent film was easily formed. The yield of employee copolymer P (THP-OPMI / CyPMI / EVE / MMA) was 21.61 g (80.7%).

실시예 20: 유기 바닥 반사 방지막 조성물의 제조 및 응용Example 20 Preparation and Application of Organic Bottom Antireflection Film Composition

실시예 5 - 19에서 얻어진 여러 가지 공중합체를 도막형성 능력이 뛰어난 프로필렌글리콜 모노메틸에테르 아세테이트 용매에 0.2 내지 20중량%로 용해시킨 다음, 이 용액에 다양한 기능성 첨가제를 적절히 부가하여 제조한다. 이때, 각 첨가제의 함량은 사용한 중합체에 대하여 가교결합제 0.1 내지 15중량%, 광산발생제 0.1 내지 20중량%, 안정제 0.1 내지 10중량% 등이다. 이 용액을 미세기공 멤브레인 필터로 여과하여 단파장 원자외선 노광용 유기 반사 방지막용 조성물을 제조하였다. 이 용액을 실리콘 웨이퍼 위에 회전 도포하고, 100℃ 내지 250℃에서 10초 내지 120초 동안 가열하여 가교 결합시켜 30 - 80nm 두께로 반사 방지막을 만들었다. 이후 일반적인 반도체 미세회로 가공공정 순서에 따라 상업용 포토레지스트를 반사 방지막 위에 회전 도포한 후에 단파장 원자외선을 노광하여 광미세회로 가공공정을 수행하였다.Various copolymers obtained in Examples 5-19 are dissolved in 0.2 to 20% by weight in a propylene glycol monomethyl ether acetate solvent having excellent film forming ability, and then various functional additives are appropriately added to the solution. At this time, the content of each additive is 0.1 to 15% by weight of the crosslinking agent, 0.1 to 20% by weight of the photoacid generator, 0.1 to 10% by weight of the stabilizer and the like to the polymer used. This solution was filtered with a microporous membrane filter to prepare a composition for an organic antireflection film for short wavelength far ultraviolet exposure. The solution was spun onto a silicon wafer, heated at 100 ° C. to 250 ° C. for 10 to 120 seconds to crosslink to form an antireflection film with a thickness of 30-80 nm. Thereafter, commercial photoresist was applied on the anti-reflective coating layer in a general semiconductor microcircuit processing step, followed by exposure to short wavelength far ultraviolet rays to perform optical microcircuit processing.

이상에서와 같이 본 발명에 따른 히드록시페닐말레이드의 공중합체, 삼원 공중합체 또는 사원 공중합체를 기본으로 하는 고분자를 이용한 유기 반사 방지막은 새로운 고흡광도 발색단을 고분자 사슬내에 공유결합으로 도입함으로써, 고온 열가교를 진행하여도 내열성과 안정성이 뛰어나고, 유기 바닥 반사 방지막이 가져야 할 충분한 흡광도를 가지고 있으므로, 미세회로 노광공정 시 하부막 층에서 일어나는 반사를 억제하고 사용 광원 및 포토레지스트의 두께 변화에 따른 정재파를 제거할 수 있으며, 플라즈마 식각에 대한 높은 에칭 능력으로 인하여 안정적으로 기질에 회로를 전사할 수 있다. 따라서, 본 발명에 의한 히드록시페닐말레이미드 고분자를 기본으로 한 바닥 반사 방지막은 반도체 제조시 193nm 파장 및 단파장의 엑시머 레이저를 사용하는 노광공정에 바닥 반사 방지막으로 이용하는 경우, 1기가비트 디램 이상의 메모리 소자 내지는 70 - 150nm 단위의 시스템 집적 회로의 미세회로 제작을 안정적으로 수행할 수 있으므로, 초고집적 반도체 소자의 생산 수율을 증대시킬 수 있다. As described above, the organic anti-reflection film using a polymer based on the copolymer, ternary copolymer, or quaternary copolymer of hydroxyphenylmaleide according to the present invention has a high temperature by introducing a new high absorbance chromophore covalently into the polymer chain. It has excellent heat resistance and stability even when thermal cross-linking is performed, and it has sufficient absorbance that an organic bottom anti-reflection film should have. Therefore, it suppresses reflection occurring in the lower layer layer during the microcircuit exposure process, and the standing wave due to the change in thickness of the light source and photoresist used. Can be removed and the circuit can be transferred to the substrate stably due to the high etching ability for plasma etching. Accordingly, the bottom anti-reflection film based on the hydroxyphenylmaleimide polymer according to the present invention is a memory device of 1 gigabit DRAM or more when used as a bottom anti-reflection film in an exposure process using an excimer laser having a wavelength of 193 nm and a short wavelength when manufacturing a semiconductor. Since microcircuit fabrication of system integrated circuits in units of 70-150 nm can be stably performed, production yield of ultra-high integration semiconductor devices can be increased.

Claims (6)

다음의 일반식 (I)로 표시되는, 보호된 N-히드록시페닐말레이미드의 중합체:A polymer of protected N -hydroxyphenylmaleimide, represented by the following general formula (I): (I)(I) 식 중, R은 H, 테트라하이드로피라닐, -COOR3, (SiR4)3 또는 t-부틸기를 나타내고, R3와 R4는 각각 메틸, t-부틸 또는 C2-C3 알킬을 나타내며,Wherein R represents H, tetrahydropyranyl, -COOR 3 , (SiR 4 ) 3 or a t-butyl group, R 3 and R 4 each represent methyl, t-butyl or C 2 -C 3 alkyl, R1과 R2는 각각 독립적으로 수소, C1-C6 알킬, C1-C 6 알콕시 알킬, C1-C6 히드록시 알킬 또는 C1-C6 할로겐화 알킬을 나타내며,R 1 and R 2 each independently represent hydrogen, C 1 -C 6 alkyl, C 1 -C 6 alkoxy alkyl, C 1 -C 6 hydroxy alkyl or C 1 -C 6 halogenated alkyl, 각 단량체의 비율은 단량체의 총 몰분율 x+y+z+p를 기준으로 하여 x의 몰분율이 0.1 내지 0.7, y의 몰분율이 0 내지 0.8, z의 몰분율이 0 내지 0.55이고, p의 몰분율이 0 내지 0.5이다.The ratio of each monomer is based on the total mole fraction x + y + z + p of the monomer, the molar fraction of x is 0.1 to 0.7, the molar fraction of y is 0 to 0.8, the molar fraction of z is 0 to 0.55, and the molar fraction of p is 0. To 0.5. 제 1 항에 있어서, 상기 R이 테트라하이드로피라닐, -COOR3, (SiR4)3 또는 t-부틸기를 나타내고, R3와 R4는 각각 메틸, t-부틸 또는 C2-C3 알킬이고, 평균 분자량이 5,000 - 100,000인 중합체.The compound of claim 1, wherein R represents tetrahydropyranyl, -COOR 3 , (SiR 4 ) 3 or a t-butyl group, and R 3 and R 4 are each methyl, t-butyl or C 2 -C 3 alkyl , Polymers having an average molecular weight of 5,000 to 100,000. 프로필렌 글리콜 모노메틸에테르 아세테이트(PGMEA), 에틸 3-에톡시프로피오네이트, 에틸 락테이트, 메틸 3-메톡시프로피오네이트 및 시클로헥산온으로 구성된 군에서 선택되는 유기 용매, Organic solvents selected from the group consisting of propylene glycol monomethylether acetate (PGMEA), ethyl 3-ethoxypropionate, ethyl lactate, methyl 3-methoxypropionate and cyclohexanone, 상기 유기 용매에 대하여 0.2 내지 20중량%의 제 1 항에 따른 중합체, 및 0.2 to 20% by weight of the polymer according to the organic solvent, and 상기 중합체의 중량에 대하여 가교결합제 0.1 내지 15중량%, 광산발생제 0.1 내지 20중량%와 안정제 0.1 내지 10중량%를 포함하는, 0.1 to 15% by weight of crosslinking agent, 0.1 to 20% by weight of photoacid generator and 0.1 to 10% by weight of stabilizer based on the weight of the polymer, 193nm 및 157nm 파장의 엑시머 레이저를 사용하는 반도체 초미세회로 노광공정에서 사용되는 유기 반사 방지막 제조용 조성물.A composition for producing an organic antireflection film used in a semiconductor ultrafine circuit exposure process using an excimer laser having a wavelength of 193 nm and 157 nm. 제 1 항에 따른 N-히드록시페닐말레이미드 공중합체를 포함하는, 193nm 및 157nm 파장의 엑시머 레이저를 사용하는 반도체 초미세회로 제작을 위한 노광공정에 사용되는 유기 반사 방지막.An organic antireflection film for use in an exposure process for fabricating a semiconductor ultrafine circuit using an excimer laser having a wavelength of 193 nm and 157 nm, comprising the N -hydroxyphenylmaleimide copolymer according to claim 1. 삭제delete 삭제delete
KR10-2002-0009950A 2002-02-25 2002-02-25 A thermally stable polymer containing n-hydroxyphenylmaleimide, and an anti-reflective coating compositon for photolithography comprising the same KR100479686B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0009950A KR100479686B1 (en) 2002-02-25 2002-02-25 A thermally stable polymer containing n-hydroxyphenylmaleimide, and an anti-reflective coating compositon for photolithography comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0009950A KR100479686B1 (en) 2002-02-25 2002-02-25 A thermally stable polymer containing n-hydroxyphenylmaleimide, and an anti-reflective coating compositon for photolithography comprising the same

Publications (2)

Publication Number Publication Date
KR20030070417A KR20030070417A (en) 2003-08-30
KR100479686B1 true KR100479686B1 (en) 2005-03-30

Family

ID=32222491

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0009950A KR100479686B1 (en) 2002-02-25 2002-02-25 A thermally stable polymer containing n-hydroxyphenylmaleimide, and an anti-reflective coating compositon for photolithography comprising the same

Country Status (1)

Country Link
KR (1) KR100479686B1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57168944A (en) * 1982-03-15 1982-10-18 Mitsubishi Gas Chem Co Inc Photocurable resin composition
JPS57202312A (en) * 1981-06-09 1982-12-11 Ube Ind Ltd N-substituted maleimide copolymer
JPS63122713A (en) * 1986-11-12 1988-05-26 Asahi Chem Ind Co Ltd Production of heat-resistant halogenated vinylidene copolymer
US5140083A (en) * 1988-12-27 1992-08-18 Nippon Oil And Fats Co., Ltd. Maleimide copolymer and process for preparing same
US5164451A (en) * 1988-11-22 1992-11-17 Nippon Oil And Fats Co., Ltd. Maleimide copolymer, maleimide block copolymer and method for producing maleimide block copolymer
US5274059A (en) * 1988-12-27 1993-12-28 Nippon Oil And Fats Co., Ltd. Maleimide copolymer and process for preparing same
KR20010057923A (en) * 1999-12-23 2001-07-05 박종섭 Anti-reflective coating polymers and preparation thereof
KR20010074653A (en) * 2001-05-30 2001-08-04 박종섭 Organic Anti-reflective coating material and its preparation

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57202312A (en) * 1981-06-09 1982-12-11 Ube Ind Ltd N-substituted maleimide copolymer
JPS57168944A (en) * 1982-03-15 1982-10-18 Mitsubishi Gas Chem Co Inc Photocurable resin composition
JPS63122713A (en) * 1986-11-12 1988-05-26 Asahi Chem Ind Co Ltd Production of heat-resistant halogenated vinylidene copolymer
US5164451A (en) * 1988-11-22 1992-11-17 Nippon Oil And Fats Co., Ltd. Maleimide copolymer, maleimide block copolymer and method for producing maleimide block copolymer
US5140083A (en) * 1988-12-27 1992-08-18 Nippon Oil And Fats Co., Ltd. Maleimide copolymer and process for preparing same
US5274059A (en) * 1988-12-27 1993-12-28 Nippon Oil And Fats Co., Ltd. Maleimide copolymer and process for preparing same
KR20010057923A (en) * 1999-12-23 2001-07-05 박종섭 Anti-reflective coating polymers and preparation thereof
KR20010074653A (en) * 2001-05-30 2001-08-04 박종섭 Organic Anti-reflective coating material and its preparation

Also Published As

Publication number Publication date
KR20030070417A (en) 2003-08-30

Similar Documents

Publication Publication Date Title
KR100436220B1 (en) Organic polymers for bottom antireflective coating, processes for preparing the same, and compositions containing the same
JP3851476B2 (en) Organic antireflection polymer and method for producing the same
JP6100261B2 (en) Developable composition for forming a lower antireflection film
JP3920537B2 (en) Organic antireflection polymer and method for producing the same
KR100549574B1 (en) Organic anti-reflective coating polymers and preparation thereof
KR20010057924A (en) Anti-reflective coating polymers and preparation thereof
KR100550812B1 (en) Light-absorbing polymer, composition forming light-absorbing coatings and light-absorbing coatings
JP4102010B2 (en) Composition for organic antireflection film and method for producing the same
KR101332227B1 (en) Monomer, polymer for forming organic anti-reflective coating layer, and organic composition including the same
US20050142481A1 (en) Cross-linking polymer for organic anti-reflective coating, organic anti-reflective coating composition comprising the same and method for forming photoresist pattern using the same
TWI247969B (en) Organic anti-reflective coating polymer, anti-reflective coating composition comprising the same and methods of preparation thereof
JP2003055408A (en) Photoresist monomer, photoresist polymer, method for manufacturing photoresist polymer, photoresist composition, method for forming photoresist pattern, and semiconductor element
US6797451B2 (en) Reflection-inhibiting resin used in process for forming photoresist pattern
KR100479686B1 (en) A thermally stable polymer containing n-hydroxyphenylmaleimide, and an anti-reflective coating compositon for photolithography comprising the same
KR100889173B1 (en) Organic Copolymer for preparing Organic Antireflective Coating, Method of Preparing the same, and Composition comprising the same
KR100528454B1 (en) A thermally crosslinkable polymer for a bottom anti-reflective coating for photolithography, a composition for preparing a bottom anti-reflective coating using the same, and preparation method thereof
KR100871770B1 (en) Co-polymer comprising antracenyl benzyl group chromophores, preparing method thereof, organic anti-reflective coating composition comprising the co-polymer and organic anti-reflective coating comprising the composition
KR100871771B1 (en) Co-polymer containing piperidine, preparing method thereof, organic anti-reflective coating composition containing the co-polymer and organic anti-reflective coating comprising the composition
KR100557552B1 (en) Photoresist monomer, polymer thereof and photoresist composition containing it
US7198887B2 (en) Organic anti-reflective coating polymer, its preparation method and organic anti-reflective coating composition comprising the same
KR100894403B1 (en) Co-polymer containing alkyl substituted ketoxime protected isocyante-based derivative, preparing method thereof, organic anti-reflective coating composition containing the co-polymer and organic anti-reflective coating using the composition
KR100871772B1 (en) Co-polymer comprising isocyante-based derivative, preparing method thereof, organic anti-reflective coating composition comprising the co-polymer and organic anti-reflective coating comprising the composition
KR100351458B1 (en) Organic Anti-reflective coating material and its preparation
KR100682197B1 (en) Maleimide-photoresist monomer containing halogen and photoresist polymer comprising the same
KR100586543B1 (en) Organic anti-reflective coating polymer, its preparation method and organic anti-reflective coating composition comprising the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20100225

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee