KR100712727B1 - A showerhead using insulator - Google Patents

A showerhead using insulator Download PDF

Info

Publication number
KR100712727B1
KR100712727B1 KR1020060008153A KR20060008153A KR100712727B1 KR 100712727 B1 KR100712727 B1 KR 100712727B1 KR 1020060008153 A KR1020060008153 A KR 1020060008153A KR 20060008153 A KR20060008153 A KR 20060008153A KR 100712727 B1 KR100712727 B1 KR 100712727B1
Authority
KR
South Korea
Prior art keywords
gas
insulator
region
shower head
mixed
Prior art date
Application number
KR1020060008153A
Other languages
Korean (ko)
Inventor
배근학
김경수
김호식
Original Assignee
주식회사 아토
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아토 filed Critical 주식회사 아토
Priority to KR1020060008153A priority Critical patent/KR100712727B1/en
Priority to JP2007001033A priority patent/JP2007191792A/en
Priority to CN2007100012761A priority patent/CN101003033B/en
Priority to TW096101715A priority patent/TWI311073B/en
Priority to US11/624,749 priority patent/US20070163440A1/en
Application granted granted Critical
Publication of KR100712727B1 publication Critical patent/KR100712727B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45568Porous nozzles

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

본 발명은 효율적인 에너지를 인가할 수 있는 샤워헤드에 관한 것으로, 샤워헤드 최하단부를 Al2O3 등과 같은 절연체로 하거나 가스분리모듈과의 사이에 절연체를 삽입하여 기판 근접 위치에서 플라즈마 발생을 억제하고, 플라즈마 발생을 위한 RF 파워는 가스분리모듈 상부에 인가하는 것을 특징으로 한다.The present invention relates to a shower head capable of applying an efficient energy, the lower end of the shower head to an insulator such as Al 2 O 3 or the like is inserted between the gas separation module to suppress the generation of plasma in the vicinity of the substrate, RF power for plasma generation is characterized in that applied to the upper gas separation module.

본 발명에 의한 절연체를 이용한 샤워헤드는 샤워헤드 표면에 플라즈마의 영향이 미미하여 샤워헤드에 근접하여 위치하는 기판 등의 손상을 최소화할 수 있다.The showerhead using the insulator according to the present invention can minimize the damage of the substrate or the like positioned close to the showerhead due to the minimal effect of plasma on the showerhead surface.

샤워헤드, 플라즈마, 증착Showerhead, plasma, deposition

Description

절연체를 이용한 샤워헤드{A showerhead using insulator}Showerhead using insulators {A showerhead using insulator}

도 1a는 종래의 가스 분리형의 다수의 공동 전극을 이용한 샤워헤드를 개략적으로 나타내는 도면.1A schematically illustrates a showerhead using a plurality of cavity electrodes of a conventional gas separation type.

도 1b는 도 1a를 입체적으로 나타내는 도면.FIG. 1B is a diagram three-dimensionally showing FIG. 1A; FIG.

도 2a는 본 발명에 의한 절연체를 이용한 샤워헤드의 일실시예를 개략적으로 나타내는 도면.Figure 2a schematically shows an embodiment of a showerhead using an insulator according to the present invention.

도 2b는 도 2a를 입체적으로 나타내는 도면.FIG. 2B is a diagram three-dimensionally showing FIG. 2A; FIG.

도 3a는 본 발명에 의한 절연체를 이용한 샤워헤드의 다른 일실시예를 나타내는 도면.Figure 3a is a view showing another embodiment of the showerhead using the insulator according to the present invention.

도 3b는 도 3a를 입체적으로 나타내는 도면.FIG. 3B is a three-dimensional view of FIG. 3A;

도 4a 및 도 4b는 도 2a 및 도 3a의 절연체부 및 그라운드부가 샤워헤드를 감싸는 것을 나타내는 도면.4A and 4B illustrate an insulator portion and a ground portion of FIGS. 2A and 3A surrounding a shower head.

<도면의 주요 부분에 대한 부호의 설명><Explanation of symbols for the main parts of the drawings>

110,210 : 가스 공급부 111,211 : 제1 가스 공급부110,210: gas supply unit 111,211: first gas supply unit

112,212 : 제2 가스 공급부 120,220 : 가스 분리 모듈112,212: second gas supply unit 120,220: gas separation module

121,221 : 제1 가스 통로 122,222 : 가스 분배판121,221: first gas passage 122,222: gas distribution plate

123,223 : 제2 가스 분출구 124,224 : 제1 가스 분출구123,223: second gas outlet 124,224: first gas outlet

130,230 : 제1 가스 영역 140,240 : 제2 가스 영역130,230: first gas region 140,240: second gas region

141,241 : 가스 분배판 150,250 : 혼합 분사구141,241: gas distribution plate 150,250: mixing nozzle

160 : 공동 전극 260 : 혼합가스 분사 모듈160: cavity electrode 260: mixed gas injection module

261 : 절연체부 262 : 그라운드부261: insulator portion 262: ground portion

270 : 파워인가부 170,280 : 혼합 영역270: power on 170,280: mixed area

본 발명은 반도체 증착 장치에 포함되는 샤워헤드에 관한 것으로, 더욱 상세하게는 절연층을 이용한 샤워헤드에 관한 것이다.The present invention relates to a showerhead included in a semiconductor deposition apparatus, and more particularly to a showerhead using an insulating layer.

도 1a 및 도 1b는 본 발명의 출원인에 의해 대한민국특허청에 출원되고(출원번호 : 10-2006-5890, 2006.01.19), 아직 공개되지 않은 가스 분리형의 다수의 공동 전극을 이용한 샤워헤드를 나타내는 것이다.1A and 1B show a showerhead using a plurality of gas-separated common electrodes, which have been filed with the Korean Patent Office by the applicant of the present invention (application number: 10-2006-5890, 2006.01.19), which have not been published yet. .

가스 분리형의 다수의 공동 전극을 이용한 샤워헤드는 복수의 이질적인 가스들이 외부 공간인 제1 가스 공급부(111)와 내부 공간인 제2 가스 공급부(112)에 격리되어 공급되는 가스 공급부(110), 가스 공급부에 의해 공급된 가스 중에서 하나의 가스를 제공하는 제1 가스 영역(130), 제1 가스 영역 하부 및 가스 분리 모듈 내부에 위치하며, 가스 공급부에 의해 공급된 가스 중에서 다른 하나의 가스를 제공하는 제2 가스 영역(140), 제1 가스와 제2 가스를 분리하여 분사하도록 하는 가스 분리 모듈(120), 제1, 제2 가스 영역(130,140)으로부터 각각의 가스가 분사될 때 소정의 주파수를 갖는 파워를 인가하여 제1, 제2 가스가 분리 또는 혼합되어 플라즈마 상태가 되도록 하는 공동 전극(160) 및 제1, 제2 가스가 분사되는 혼합 분사구(150)로 구성된다.The shower head using a plurality of gas separation type common electrodes includes a gas supply unit 110 and a gas in which a plurality of heterogeneous gases are isolated and supplied to the first gas supply unit 111 that is an external space and the second gas supply unit 112 that is an internal space. Located in the first gas region 130, the lower portion of the first gas region and the gas separation module to provide one gas from the gas supplied by the supply unit, the other gas from the gas supplied by the gas supply unit When each gas is injected from the second gas region 140, the gas separation module 120 and the first and second gas regions 130 and 140 to separate and inject the first gas and the second gas, It is composed of a common electrode 160 to apply the power having the first and second gases are separated or mixed to a plasma state, and the mixing nozzle 150 is injected with the first and second gases.

또한, 가스 분리 모듈(120)은 제1 가스 영역(130)의 가스를 제1 가스 분출구(124)로 유도하는 다수의 제1 가스 통로(121), 제2 가스 영역(140) 내에 위치하는 가스 분배판(122), 제2 가스 영역(140)의 제2 가스를 분사하는 제2 가스 분출구(123)로 구성된다. 제1 가스 영역(130)의 제1 가스를 분사하는 제1 가스 분출구(124)는 상기 제2 가스 분출구(123)를 둘러싸는 공간이 된다. In addition, the gas separation module 120 is a gas located in the plurality of first gas passage 121, the second gas region 140 to guide the gas of the first gas region 130 to the first gas outlet 124. It is comprised by the distribution plate 122 and the 2nd gas ejection opening 123 which injects the 2nd gas of the 2nd gas area | region 140. As shown in FIG. The first gas ejection opening 124 that injects the first gas in the first gas region 130 may be a space surrounding the second gas ejection opening 123.

도 1a 및 도 1b에 의한 가스 분리형의 다수의 공동 전극을 이용한 샤워헤드는 이질적인 2개 또는 그 이상의 가스들이 필요한 공정 또는 설비에 적용되어 또는 다른 경우에도, 다수의 가스들이 챔버 내의 처리 영역으로 균일하게 공급하는 장점이 있다.The showerhead using a plurality of cavity electrodes of the gas separation type according to FIGS. 1A and 1B is applied to a process or a plant requiring two or more disparate gases or even in other cases, evenly spreading the plurality of gases into the treatment area within the chamber. There is an advantage to supply.

또한 제2 가스 분출구(123)의 위치에 따라 2개 또는 그 이상의 가스들의 혼합 영역(170)의 위치를 선택할 수 있어 가스들의 혼합도 및 플라즈마 반응을 조절할 수 있는 장점이 있다.In addition, since the position of the mixing region 170 of two or more gases can be selected according to the position of the second gas outlet 123, there is an advantage of controlling the mixing degree of the gases and the plasma reaction.

그러나, 플라즈마가 인가되는 공동전극(160)이 샤워헤드 하부 표면에 있어서, 샤워헤드 하부 표면과 근접하여 위치하게 되는 기판이나 웨이퍼에 플라즈마의 영향이 크게 미칠 우려가 있어서 기판이나 웨이퍼가 손상될 염려가 있다.However, there is a risk that the plasma or the substrate may be damaged when the cavity electrode 160 to which the plasma is applied is located on the lower surface of the shower head, and the substrate or wafer is located close to the lower surface of the shower head. have.

본 발명은 상기와 같은 문제점을 해결하기 위하여 제안된 것으로서, 종래의 가스 분리형의 다수의 공동 전극을 이용한 샤워헤드를 개량하여, 종래의 샤워헤드의 효과를 얻으면서도 절연체를 통하여 기판에 플라즈마 영향을 최소화할 수 있는 절연체를 이용한 샤워헤드를 제공하는데 그 목적이 있다.The present invention has been proposed to solve the above problems, by improving the showerhead using a plurality of common electrode of the gas separation type, to minimize the plasma effect on the substrate through the insulator while obtaining the effect of the conventional showerhead. It is an object of the present invention to provide a showerhead using an insulator.

상기 기술적 과제를 이루기 위한 본 발명에 따른 절연체를 이용한 샤워헤드는 제1 가스와 제2 가스가 분리되어 공급되는 가스 공급부; 상기 공급된 제1 가스를 제공하는 제1 가스 영역; 상기 제1 가스 영역 하부에 위치하며, 상기 공급된 제2 가스를 제공하는 제2 가스 영역; 내부에 상기 제2 가스 영역이 위치하며, 상기 제1 가스 영역에 있는 제1 가스와 상기 제2 가스 영역에 있는 제2 가스가 분리되어 분사되는 가스 분리 모듈; 상기 가스 분리 모듈 외부에 위치하며, 상기 가스 분리 모듈 상부에 파워를 인가하여 상기 제1 가스와 제2 가스가 플라즈마 상태가 되도록 하는 파워인가부; 및 상기 가스 분리 모듈 하부에 위치하며, 상기 제1 가스 및 제2 가스가 혼합되어 혼합 가스가 분사되는 다수의 혼합 분사구가 형성되어 있으며, 절연체를 포함하여 상기 파워인가부로부터 발생된 플라즈마의 영향이 차단되는 혼합가스 분사 모듈을 포함하여 이루어진다.Shower head using the insulator according to the present invention for achieving the technical problem is a gas supply unit for supplying the first gas and the second gas is separated; A first gas region providing the supplied first gas; A second gas region positioned below the first gas region and providing the supplied second gas; A gas separation module in which the second gas region is located and in which the first gas in the first gas region and the second gas in the second gas region are separated and injected; A power applying unit positioned outside the gas separation module and configured to apply power to an upper portion of the gas separation module so that the first gas and the second gas are in a plasma state; And a plurality of mixing nozzles disposed under the gas separation module, in which the first gas and the second gas are mixed to inject the mixed gas, and the influence of the plasma generated from the power applying unit including an insulator is formed. It includes a mixed gas injection module is blocked.

이하에서는 본 발명의 구체적인 실시예를 도면을 참조하여 상세히 설명하도록 한다.Hereinafter, specific embodiments of the present invention will be described in detail with reference to the accompanying drawings.

도 2a 및 도 3a는 본 발명에 의한 절연체를 이용한 샤워헤드의 일실시예들을 개략적으로 나타내는 것으로서, 샤워헤드의 최하단부와 분리모듈 사이에 절연체를 삽입한 경우(도 2a)와 샤워헤드의 최하단부를 절연체로 구성한 경우(도 3a)를 나타낸다.2A and 3A schematically illustrate one embodiment of the showerhead using the insulator according to the present invention, in which an insulator is inserted between the bottom end of the showerhead and the separation module (FIG. 2A) and the bottom end of the showerhead. The case of FIG. 3 (a) is shown.

도 2a 및 도 3a에 의하면, 본 발명에 의한 샤워헤드는 가스 공급부(210), 제1 가스 영역(230), 제2 가스 영역(240), 가스 분리 모듈(220), 혼합 분사구(250), 혼합가스 분사 모듈(260), 파워 인가부(270) 및 혼합 영역(280)으로 구성된다.2A and 3A, the shower head according to the present invention includes a gas supply unit 210, a first gas region 230, a second gas region 240, a gas separation module 220, a mixing nozzle 250, The mixed gas injection module 260, the power applying unit 270, and the mixing region 280 are configured.

가스 공급부(210)는 내부 벽면 바깥쪽의 공간으로 제1 가스(A)가 공급되는 제1 가스 공급부(211)와 내부 벽면 안쪽의 공간에 제2 가스(B)가 공급되는 제2 가스 공급부(212)로 구성된다.The gas supply unit 210 may include a first gas supply unit 211 through which the first gas A is supplied to a space outside the inner wall and a second gas supply unit through which the second gas B is supplied into the inner wall surface ( 212).

공급된 제1 가스(A)와 제2 가스(B)는 각각 다른 공간 즉, 제1 가스(A) 및 제2 가스(B)를 분리하여 다수의 가스통로로 주입 또는 분사하는 가스 분리 모듈(220)을 기준으로 제1 가스(A)를 제공하는 제1 가스 영역(230)과 제2 가스(B)를 제공하는 제2 가스 영역(240)에서 격리되어 분포하게 된다.The supplied first gas (A) and the second gas (B) is a gas separation module for injecting or injecting a plurality of gas passages by separating the first space (A) and the second gas (B), respectively. Based on the reference numeral 220, the first gas region 230 providing the first gas A is separated from the second gas region 240 providing the second gas B.

각 가스 영역(230, 240)을 통과하는 각각의 제1 가스(A)와 제2 가스(B)는 가스별로 별도의 분사구를 통하지 않고, 두 가스 모두 혼합 분사구(250)를 통해 공정 목적에 따라 동시에 또는 순차적으로 분사된다.Each of the first gas A and the second gas B passing through the gas regions 230 and 240 does not go through a separate injection hole for each gas, and both gases are mixed through the mixing injection hole 250 according to the process purpose. Sprayed simultaneously or sequentially.

특히, 제2 가스 영역(240)은 제1 가스 영역 하부에 위치하며, 가스 분리 모듈(220) 내부에 위치한다.In particular, the second gas region 240 is located under the first gas region and is located inside the gas separation module 220.

파워인가부(270)는 제1 가스 영역(230)과 제2 가스 영역(240)으로부터 각각 가스가 혼합 분사구(250)로 분사되기 전에, 가스분리모듈(220) 상부에 소정의 파워를 인가하여 분사되는 제1 가스(A)와 제2 가스(B)가 플라즈마 상태가 되도록 한다. 플라즈마 상태의 가스들은 공정 목적에 따라 동시에 또는 순차적으로 분사되며, 혼합 영역(280)에서 혼합되어 챔버로 분사된다.The power applying unit 270 applies predetermined power to the upper portion of the gas separation module 220 before the gas is injected from the first gas region 230 and the second gas region 240 to the mixing injection port 250, respectively. The first gas A and the second gas B to be injected are in a plasma state. The gases in the plasma state are injected simultaneously or sequentially according to the process purpose, are mixed in the mixing region 280 and injected into the chamber.

혼합가스 분사 모듈(260)은 본 발명에 따른 샤워헤드 하단에 도 2b 및 도 3b에서 후술할 제1 가스 분출구(224) 및 제2 가스 분출구(223)를 둘러싸도록 위치하며, 파워인가부(270)로부터 발생된 가스분리모듈(220)에서의 플라즈마의 영향을 차단하여 제1, 제2 가스 분사시 기판 등에 플라즈마의 영향이 미치지 않도록 한다.The mixed gas injection module 260 is positioned at the lower end of the shower head according to the present invention so as to surround the first gas outlet 224 and the second gas outlet 223 which will be described later with reference to FIGS. 2B and 3B. By blocking the influence of the plasma in the gas separation module 220 generated from the) to prevent the influence of the plasma, etc. during the first and second gas injection.

혼합가스 분사 모듈(260)은 2가지 경우로 다시 나눌 수 있다.The mixed gas injection module 260 may be divided into two cases.

도 2a에 나타낸 것과 같이 혼합가스 분사 모듈(260)가 Al2O3와 같은 절연체부(261)와 절연체부(261) 하부에 위치하는 알루미늄 재질의 그라운드부(262)로 구성되는 경우와 도 3a에 나타낸 것과 같이 혼합가스 분사 모듈(260)가 Al2O3와 같은 절연체로만 구성되는 경우이다.As shown in FIG. 2A, the mixed gas injection module 260 includes an insulator part 261 such as Al 2 O 3 and an aluminum ground part 262 positioned under the insulator part 261 and FIG. 3A. As shown in FIG. 2, the mixed gas injection module 260 is composed of only an insulator such as Al 2 O 3 .

도 3a와 같이 그라운드부는 없어도 무방하지만, 도 2a와 같이 그라운드부(262)가 존재하는 경우 절연체부(261)에 의해 차단된 플라즈마의 영향을 더욱 낮도록 하여 제1, 제2 가스 분사시 기판 등에 플라즈마의 영향이 미치지 않도록 한다.As shown in FIG. 3A, the ground portion may not be present. However, when the ground portion 262 is present as shown in FIG. 2A, the influence of the plasma blocked by the insulator portion 261 is further lowered. Avoid the influence of plasma.

본 발명에서 이용되는 절연체는 Al2O3, AlN 등의 세라믹 물질 계열과 테프론(Teflon) 등의 고분자물질 계열을 포함한다. 즉, Al2O3, AlN 등의 세라믹 물질 또는 테프론(Teflon) 등의 고분자 물질 중에서 어느 하나일 수도 있고, 또는 세라믹 물질과 고분자 물질의 복합체일 수도 있다.The insulator used in the present invention includes a ceramic material series such as Al 2 O 3 and AlN and a polymer material series such as Teflon. That is, any one may be a ceramic material such as Al 2 O 3 , AlN or a polymer material such as Teflon, or may be a composite of a ceramic material and a polymer material.

혼합가스 분사 모듈(260)의 모양은 공정 목적에 맞게끔 여러 가지 모양으로 이루어질 수 있어서, 종래 발명의 다수의 공동전극의 다양한 모양에 의한 효과를 그대로 낼 수 있다.The shape of the mixed gas injection module 260 may be made in various shapes to suit the purpose of the process, thereby achieving the effects of various shapes of the plurality of cavity electrodes of the present invention.

도 2b 및 도 3b는 도 2a 및 도 3a의 가스 분리 모듈(220) 및 혼합 가스 분사 모듈(260)의 입체적 단면을 나타내는 것으로서, 가스 분리 모듈(220)은 제2 가스 영역(240), 제2 가스 영역(240)의 외부 공간들인 다수의 제1 가스 통로(221), 그리고 제2 가스 분출구(223)로 구성된다. 제1 가스 분출구(224)는 제2 가스 분출구(223)를 둘러싸는 공간이 된다.2B and 3B illustrate three-dimensional cross sections of the gas separation module 220 and the mixed gas injection module 260 of FIGS. 2A and 3A. The gas separation module 220 includes a second gas region 240 and a second gas. A plurality of first gas passages 221, which are external spaces of the gas region 240, and a second gas outlet 223 are formed. The first gas ejection port 224 becomes a space surrounding the second gas ejection port 223.

제1 가스 영역(230)의 제1 가스(A)는 다수의 제1 가스 통로(221)를 통해 혼합 분사구(250)로 분사되고, 제2 가스 영역(240)은 다수의 제1 가스 통로(221) 사이에 형성되고, 제2 가스(B)는 제2 가스 영역(240)에서 제2 가스 분출구(223)를 통해 분사된다.The first gas A of the first gas region 230 is injected into the mixing nozzle 250 through the plurality of first gas passages 221, and the second gas region 240 includes the plurality of first gas passages ( It is formed between the 221, the second gas (B) is injected through the second gas outlet 223 in the second gas region 240.

도 2b를 참조하면, 제2 가스(B)는 가스 분리 모듈(220) 내에 구성되어 있는 가스 분배판(222)에 의해 다수의 혼합 분사구(250)로 균일하게 유입된다.Referring to FIG. 2B, the second gas B is uniformly introduced into the plurality of mixing nozzles 250 by the gas distribution plate 222 configured in the gas separation module 220.

제1 가스(A)는 제1 가스 영역(230)으로부터 가스 분리 모듈(220)에 있는 공간인 다수의 제1 가스 통로(221)에 의해 혼합가스 분사 모듈(260) 사이에 있는 혼합 분사구(250)로 분사되고, 제2 가스(B)는 제2 가스 영역(240)으로부터 제2 가스 분출구(223)에 의해 전체적으로 균일하게 혼합 분사구(250)로 분사된다.The first gas A is a mixed injection hole 250 between the mixed gas injection module 260 by a plurality of first gas passages 221 which are spaces in the gas separation module 220 from the first gas region 230. ), And the second gas B is injected from the second gas region 240 to the mixing injection port 250 by the second gas ejection port 223 as a whole.

제2 가스 분출구(223)는 혼합가스 분사 모듈(260)의 중앙에 위치하고, 제2 가스 분출구(223)의 끝은 혼합가스 분사 모듈(260)의 상판부터 하판까지 높이가 조절가능하다.The second gas outlet 223 is located at the center of the mixed gas injection module 260, and the height of the end of the second gas outlet 223 is adjustable from the top plate to the bottom plate of the mixed gas injection module 260.

즉, 제2 가스 분출구(223)의 끝단의 조절에 따라서 제1 가스 분출구(224)의 끝단도 조절되어 두개 이상의 가스가 혼합되는 영역, 즉 혼합 영역(280)의 위치를 다르게 할 수 있기 때문에 원하는 조건에 따라 플라즈마 특성을 변화시킬 수 있다.That is, the end of the first gas outlet 224 is also adjusted according to the adjustment of the end of the second gas outlet 223 so that the position of the region where the two or more gases are mixed, that is, the mixing region 280 may be different. The plasma characteristics can be changed depending on the conditions.

따라서, 제1 가스(A)와 제2 가스(B)는 제2 가스 분출구(223) 끝단의 위치에 따라 혼합 영역(280)이 결정되어 종래의 샤워헤드와 마찬가지로 챔버 내의 처리 영역(도면 미표시)으로 전달되게 된다. 즉, 일반적인 플라즈마 공정 조건뿐만 아니라, 제1 가스(A)와 제2 가스(B)의 혼합 영역(280) 조절만으로도 플라즈마 특성 및 챔버 내의 처리 영역에서의 특성을 조절할 수 있다.Accordingly, the mixing region 280 is determined according to the position of the end of the second gas ejection opening 223 in the first gas A and the second gas B, so that the processing region in the chamber is similar to the conventional shower head (not shown). To be delivered. That is, the plasma characteristics and the characteristics in the processing region within the chamber may be adjusted only by adjusting the mixing region 280 of the first gas A and the second gas B, as well as general plasma processing conditions.

파워인가부(270)는 가스 분리 모듈(220) 상부에 소정의 주파수를 가지는 파워를 인가, 즉 전자를 전달하여 플라즈마를 발생시켜 증착 공정시 가스의 이온화율을 높이고, 막의 균일도를 높인다.The power applying unit 270 applies a power having a predetermined frequency to the gas separation module 220, that is, delivers electrons to generate plasma to increase the ionization rate of the gas during the deposition process and to increase the uniformity of the film.

본 발명에 의한 절연체를 이용한 샤워헤드 역시 종래의 다수의 공동 전극을 이용한 샤워헤드와 마찬가지로 제2 가스 분출구(223)의 모양에 따라서 가스의 혼합 형태를 다양하게 변화될 수 있다.The shower head using the insulator according to the present invention may also be changed in various forms of gas mixing according to the shape of the second gas outlet 223, similarly to the shower head using a plurality of common electrodes.

제2 가스 분출구(223) 상단의 폭을 a, 중앙부분의 폭을 b, 하단의 폭을 c라고 하면, a=b=c, a=b<c, a>b=c, a<b=c, a=b>c 등 제2 가스 분출구(223)의 모양을 다양하게 변화시킬 수 있다.A = b = c, a = b <c, a> b = c, a <b = a = b, c = a, b = c The shape of the second gas ejection port 223, such as c and a = b> c, may be variously changed.

마찬가지로 혼합가스 분사 모듈(260)의 모양에 따라서 가스의 혼합 형태가 다양하게 변화될 수 있다.Similarly, the mixed form of the gas may be variously changed according to the shape of the mixed gas injection module 260.

혼합가스 분사 모듈(260) 상단의 폭을 d라 하고, 중앙의 폭을 e라 하고, 하단의 폭을 f로 하면, d=e=f, d>e>f, d<e<f, d=e>f, d<e=f, d=f<e 등의 다양한 모양의 혼합가스 분사 모듈(260)의 모양이 변화될 수 있다. 또한 혼합가스 분사 모듈(260)의 모양은 각이 지게 혹은 각이 없이 부드럽게 라운딩(rounding)되도록 변화될 수도 있다.If the width of the upper end of the mixed gas injection module 260 is d, the width of the center is e and the width of the lower part is f, d = e = f, d> e> f, d <e <f, d The shape of the mixed gas injection module 260 having various shapes such as = e> f, d <e = f, and d = f <e may be changed. In addition, the shape of the mixed gas injection module 260 may be changed so that the angle is smoothly rounded without being raised or lowered.

즉, 제2 가스 분사구(223)의 여러 가지 모양과 혼합가스 분사 모듈(260)의 여러 가지 모양의 조합으로 최적의 플라즈마가 발생될 수 있고, 가스의 혼합을 더욱 균일하게 할 수 있기 때문에 제2 가스 분출구(223)와 혼합가스 분사 모듈(260)을 다양한 공정 특성에 맞게 조합할 수 있다.That is, the combination of various shapes of the second gas injection hole 223 and various shapes of the mixed gas injection module 260 may generate an optimal plasma, and may make the mixing of the gas more uniform. The gas outlet 223 and the mixed gas injection module 260 may be combined to suit various process characteristics.

도 4a 및 도 4b는 도 2a 및 도 3a의 절연체부 및 그라운드부가 샤워헤드를 감싸는 것을 나타내는 것으로서, 절연체부(261) 또는 그라운드부(262)가 샤워헤드를 감싸게 되면 샤워헤드 외부에 위치하게 되는 다른 장치들을 플라즈마의 영향으로부터 차단할 수 있는 효과가 있다.4A and 4B illustrate that the insulator portion and the ground portion of FIGS. 2A and 3A surround the shower head, and the insulator portion 261 or the ground portion 262 is positioned outside the shower head when the shower head surrounds the shower head. There is an effect that can block the devices from the effects of the plasma.

이상에서 본 발명에 대한 기술사상을 첨부 도면과 함께 서술하였지만 이는 본 발명의 바람직한 실시예를 예시적으로 설명한 것이지 본 발명을 한정하는 것은 아니다. 또한 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 누구나 본 발명의 기술적 사상의 범주를 이탈하지 않는 범위 내에서 다양한 변형 및 모방이 가능함은 명백한 사실이다.The technical spirit of the present invention has been described above with reference to the accompanying drawings. However, the present invention has been described by way of example only, and is not intended to limit the present invention. In addition, it is apparent that any person having ordinary knowledge in the technical field to which the present invention belongs may make various modifications and imitations without departing from the scope of the technical idea of the present invention.

본 발명에 의한 가스 분리형의 다수의 공동 전극을 이용한 샤워헤드는 이질적인 2개 또는 그 이상의 가스들이 필요한 공정 또는 설비에 적용되어 또는 다른 경우에도, 다수의 가스들이 챔버 내의 처리 영역으로 균일하게 공급하는 종래의 다수의 공동전극을 이용한 샤워헤드의 장점 이외에도 절연체를 통하여 샤워헤드 표면에 플라즈마의 영향이 미미하여 샤워헤드에 근접하여 위치하는 기판 등의 손상을 최소화할 수 있는 장점이 있다.The showerhead using a plurality of cavity electrodes of the gas separation type according to the present invention is conventionally applied to a process or a facility requiring two or more heterogeneous gases, or in other cases, to uniformly supply a plurality of gases to the processing region in the chamber. In addition to the advantages of the showerhead using a plurality of common electrodes of the shower head through the insulator has a merit that minimizes the damage of the substrate and the like located close to the showerhead due to the influence of the plasma.

또한 본 발명에 의한 절연체를 이용한 샤워헤드는 제2 가스 분출구 및 혼합가스 분사 모듈의 위치 및 모양에 따라 2개 또는 그 이상의 가스들의 혼합 영역의 위치를 선택할 수 있어 가스들의 혼합도 및 플라즈마 반응을 조절할 수 있는 장점이 있다.In addition, the shower head using the insulator according to the present invention can select the location of the mixing region of the two or more gases according to the position and shape of the second gas outlet and the mixed gas injection module to control the gas mixture and the plasma reaction There are advantages to it.

Claims (11)

2개 이상의 가스를 분사하는 샤워헤드에 있어서,In the shower head for injecting two or more gases, 제1 가스와 제2 가스가 분리되어 공급되는 가스 공급부;A gas supply unit configured to supply the first gas and the second gas separately; 상기 공급된 제1 가스를 제공하는 제1 가스 영역;A first gas region providing the supplied first gas; 상기 제1 가스 영역 하부에 위치하며, 상기 공급된 제2 가스를 제공하는 제2 가스 영역;A second gas region positioned below the first gas region and providing the supplied second gas; 내부에 상기 제2 가스 영역이 위치하며, 상기 제1 가스 영역에 있는 제1 가스와 상기 제2 가스 영역에 있는 제2 가스가 분리되어 분사되는 가스 분리 모듈;A gas separation module in which the second gas region is located and in which the first gas in the first gas region and the second gas in the second gas region are separated and injected; 상기 가스 분리 모듈 외부에 위치하며, 상기 가스 분리 모듈 상부에 파워를 인가하여 상기 제1 가스와 제2 가스가 플라즈마 상태가 되도록 하는 파워인가부; 및A power applying unit positioned outside the gas separation module and configured to apply power to an upper portion of the gas separation module so that the first gas and the second gas are in a plasma state; And 상기 가스 분리 모듈 하부에 위치하며, 상기 제1 가스 및 제2 가스가 혼합되어 혼합 가스가 분사되는 다수의 혼합 분사구가 형성되어 있으며, 절연체를 포함하여 상기 파워인가부로부터 발생된 플라즈마의 영향이 차단되는 혼합가스 분사 모듈을 포함하는 것을 특징으로 하는 절연체를 이용한 샤워헤드. Located at the lower part of the gas separation module, a plurality of mixing nozzles are formed in which the first gas and the second gas are mixed to inject the mixed gas, and the influence of the plasma generated from the power applying unit including an insulator is blocked. Shower head using an insulator, characterized in that it comprises a mixed gas injection module. 제1항에 있어서, 상기 혼합가스 분사 모듈은The method of claim 1, wherein the mixed gas injection module 절연체로만 구성되어 내부에 다수의 혼합 분사구를 형성하는 것을 특징으로 하는 절연체를 이용한 샤워헤드.Shower head using an insulator, characterized in that it consists of only an insulator to form a plurality of mixing nozzles therein. 제1항에 있어서, 상기 혼합가스 분사 모듈은The method of claim 1, wherein the mixed gas injection module 절연체부 및 상기 절연체부 아래에 위치하는 알루미늄 재질의 그라운드부를 포함하여 내부에 다수의 혼합 분사구를 형성하는 것을 특징으로 하는 절연체를 이용한 샤워헤드.Shower head using an insulator, characterized in that a plurality of mixing nozzles are formed therein including an insulator portion and a ground portion made of aluminum located below the insulator portion. 제1항에 있어서,The method of claim 1, 상기 제2 가스 영역은 다수의 제2 가스 분출구 각각과 직접 연결되고, The second gas region is directly connected to each of the plurality of second gas outlets, 상기 제1 가스 영역은 상기 가스 분리 모듈에서 제1 가스 통로를 통해 혼합가스 분사 모듈 및 상기 제2 가스 분출구를 둘러싸는 공간인 제1 가스 분출구와 연결되어 있으며, The first gas region is connected to a first gas outlet which is a space surrounding the mixed gas injection module and the second gas outlet through a first gas passage in the gas separation module. 상기 다수의 제2 가스 분출구와 상기 다수의 제1 가스 분출구는 서로 격리되어 있는 것을 특징으로 하는 절연체를 이용한 샤워헤드.And the plurality of second gas outlets and the plurality of first gas outlets are isolated from each other. 제4항에 있어서, 상기 다수의 혼합 분사구는The method of claim 4, wherein the plurality of mixing nozzles 상기 다수의 제2 분출구 각각의 아래에 형성되는 것을 특징으로 하는 절연체를 이용한 샤워헤드. The showerhead using an insulator, characterized in that formed under each of the plurality of second blowing holes. 제1항에 있어서, 상기 가스 분리 모듈은,The method of claim 1, wherein the gas separation module, 상기 제2 가스 영역 내에 위치하여 상기 제2 가스를 고르게 분산시키는 가스 분배판; A gas distribution plate positioned in the second gas region to evenly distribute the second gas; 상기 제2 가스 영역 하부에 결합되어 상기 제2 가스 영역의 제2 가스가 분사되는 다수의 제2 가스 분출구; 및A plurality of second gas outlets coupled to a lower portion of the second gas region and injecting a second gas of the second gas region; And 상기 제1 가스 영역에 분산된 상기 제1 가스를 상기 제2 가스 분출구를 둘러싸는 공간인 다수의 제1 가스 분출구로 유도하는 다수의 제1 가스 통로를 포함하는 것을 특징으로 하는 절연체를 이용한 샤워헤드. And a plurality of first gas passages that guide the first gas dispersed in the first gas region to a plurality of first gas outlets, which are spaces surrounding the second gas outlets. . 제6항에 있어서, 상기 제2 가스 분출구는 The method of claim 6, wherein the second gas outlet is 그 끝의 위치를 상기 혼합가스 분사 모듈의 상판에서부터 하판까지 조절할 수 있고, 그 폭도 조절 할 수 있음을 특징으로 하는 절연체를 이용한 샤워헤드. The position of the end can be adjusted from the upper plate to the lower plate of the mixed gas injection module, the width of the shower head using an insulator, characterized in that the adjustable. 제6항에 있어서, 상기 제2 가스 분출구는 The method of claim 6, wherein the second gas outlet is 상단의 폭 a, 중앙부분의 폭 b, 하단의 폭 c를 비교할 때, a=b=c, a=b<c, a>b=c, a<b=c 및 a=b>c 중에서 어느 하나의 모양을 가지는 것을 특징으로 하는 절연체를 이용한 샤워헤드.When comparing the width a at the top, width b at the center, and width c at the bottom, a = b = c, a = b <c, a> b = c, a <b = c and a = b> c Shower head using an insulator, characterized in that it has one shape. 제1항에 있어서, 상기 혼합가스 분사 모듈은The method of claim 1, wherein the mixed gas injection module 상단의 폭 d, 중앙부분의 폭 e, 하단의 폭 f를 비교할 때, d=e=f, d>e>f, d<e<f, d=e>f, d<e=f 및 d=f<e 중에서 어느 하나의 모양을 갖는 것을 특징으로 하 는 절연체를 이용한 샤워헤드.When comparing the width d at the top, width e at the center, and width f at the bottom, d = e = f, d> e> f, d <e <f, d = e> f, d <e = f and d A showerhead using an insulator, wherein the showerhead has any one of shapes f = e. 제9항에 있어서, 상기 혼합가스 분사 모듈은The method of claim 9, wherein the mixed gas injection module 각이 진 모양 또는 각 없이 라운딩(rounding)된 모양으로 형성되는 것을 특징으로 하는 절연체를 이용한 샤워헤드.Shower head using an insulator, characterized in that formed in an angled shape or a rounded shape without an angle (rounding). 제1항에 있어서, 상기 절연체는The method of claim 1, wherein the insulator is 세라믹 물질 또는 고분자 물질 중에서 어느 하나이거나, 세라믹 물질과 고분자 물질의 복합체인 것을 특징으로 하는 절연체를 이용한 샤워헤드.Shower head using an insulator, characterized in that any one of a ceramic material or a polymer material, or a composite of a ceramic material and a polymer material.
KR1020060008153A 2006-01-19 2006-01-26 A showerhead using insulator KR100712727B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020060008153A KR100712727B1 (en) 2006-01-26 2006-01-26 A showerhead using insulator
JP2007001033A JP2007191792A (en) 2006-01-19 2007-01-09 Gas separation type showerhead
CN2007100012761A CN101003033B (en) 2006-01-19 2007-01-11 Gas separation type showerhead
TW096101715A TWI311073B (en) 2006-01-19 2007-01-17 Gas separation type showerhead
US11/624,749 US20070163440A1 (en) 2006-01-19 2007-01-19 Gas separation type showerhead

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060008153A KR100712727B1 (en) 2006-01-26 2006-01-26 A showerhead using insulator

Publications (1)

Publication Number Publication Date
KR100712727B1 true KR100712727B1 (en) 2007-05-04

Family

ID=38269259

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020060008153A KR100712727B1 (en) 2006-01-19 2006-01-26 A showerhead using insulator

Country Status (1)

Country Link
KR (1) KR100712727B1 (en)

Cited By (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014046864A1 (en) * 2012-09-21 2014-03-27 Applied Materials, Inc. Radical chemistry modulation and control using multiple flow pathways
US9741593B2 (en) 2015-08-06 2017-08-22 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
US9754800B2 (en) 2010-05-27 2017-09-05 Applied Materials, Inc. Selective etch for silicon films
US9768034B1 (en) 2016-11-11 2017-09-19 Applied Materials, Inc. Removal methods for high aspect ratio structures
US9773648B2 (en) 2013-08-30 2017-09-26 Applied Materials, Inc. Dual discharge modes operation for remote plasma
US9773695B2 (en) 2014-07-31 2017-09-26 Applied Materials, Inc. Integrated bit-line airgap formation and gate stack post clean
US9837249B2 (en) 2014-03-20 2017-12-05 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9837284B2 (en) 2014-09-25 2017-12-05 Applied Materials, Inc. Oxide etch selectivity enhancement
US9842744B2 (en) 2011-03-14 2017-12-12 Applied Materials, Inc. Methods for etch of SiN films
US9865484B1 (en) 2016-06-29 2018-01-09 Applied Materials, Inc. Selective etch using material modification and RF pulsing
US9881805B2 (en) 2015-03-02 2018-01-30 Applied Materials, Inc. Silicon selective removal
US9885117B2 (en) 2014-03-31 2018-02-06 Applied Materials, Inc. Conditioned semiconductor system parts
US9934942B1 (en) 2016-10-04 2018-04-03 Applied Materials, Inc. Chamber with flow-through source
US9947549B1 (en) 2016-10-10 2018-04-17 Applied Materials, Inc. Cobalt-containing material removal
US9966240B2 (en) 2014-10-14 2018-05-08 Applied Materials, Inc. Systems and methods for internal surface conditioning assessment in plasma processing equipment
US9978564B2 (en) 2012-09-21 2018-05-22 Applied Materials, Inc. Chemical control features in wafer process equipment
US10026621B2 (en) 2016-11-14 2018-07-17 Applied Materials, Inc. SiN spacer profile patterning
US10032606B2 (en) 2012-08-02 2018-07-24 Applied Materials, Inc. Semiconductor processing with DC assisted RF power for improved control
US10043674B1 (en) 2017-08-04 2018-08-07 Applied Materials, Inc. Germanium etching systems and methods
US10043684B1 (en) 2017-02-06 2018-08-07 Applied Materials, Inc. Self-limiting atomic thermal etching systems and methods
US10049891B1 (en) 2017-05-31 2018-08-14 Applied Materials, Inc. Selective in situ cobalt residue removal
US10062585B2 (en) 2016-10-04 2018-08-28 Applied Materials, Inc. Oxygen compatible plasma source
US10062579B2 (en) 2016-10-07 2018-08-28 Applied Materials, Inc. Selective SiN lateral recess
US10062575B2 (en) 2016-09-09 2018-08-28 Applied Materials, Inc. Poly directional etch by oxidation
US10062578B2 (en) 2011-03-14 2018-08-28 Applied Materials, Inc. Methods for etch of metal and metal-oxide films
US10062587B2 (en) 2012-07-18 2018-08-28 Applied Materials, Inc. Pedestal with multi-zone temperature control and multiple purge capabilities
US10128086B1 (en) 2017-10-24 2018-11-13 Applied Materials, Inc. Silicon pretreatment for nitride removal
US10147620B2 (en) 2015-08-06 2018-12-04 Applied Materials, Inc. Bolted wafer chuck thermal management systems and methods for wafer processing systems
US10163696B2 (en) 2016-11-11 2018-12-25 Applied Materials, Inc. Selective cobalt removal for bottom up gapfill
US10170336B1 (en) 2017-08-04 2019-01-01 Applied Materials, Inc. Methods for anisotropic control of selective silicon removal
US10224210B2 (en) 2014-12-09 2019-03-05 Applied Materials, Inc. Plasma processing system with direct outlet toroidal plasma source
US10242908B2 (en) 2016-11-14 2019-03-26 Applied Materials, Inc. Airgap formation with damage-free copper
US10256079B2 (en) 2013-02-08 2019-04-09 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
US10256112B1 (en) 2017-12-08 2019-04-09 Applied Materials, Inc. Selective tungsten removal
US10283324B1 (en) 2017-10-24 2019-05-07 Applied Materials, Inc. Oxygen treatment for nitride etching
US10283321B2 (en) 2011-01-18 2019-05-07 Applied Materials, Inc. Semiconductor processing system and methods using capacitively coupled plasma
US10297458B2 (en) 2017-08-07 2019-05-21 Applied Materials, Inc. Process window widening using coated parts in plasma etch processes
US10319649B2 (en) 2017-04-11 2019-06-11 Applied Materials, Inc. Optical emission spectroscopy (OES) for remote plasma monitoring
US10319600B1 (en) 2018-03-12 2019-06-11 Applied Materials, Inc. Thermal silicon etch
US10319739B2 (en) 2017-02-08 2019-06-11 Applied Materials, Inc. Accommodating imperfectly aligned memory holes
US10354889B2 (en) 2017-07-17 2019-07-16 Applied Materials, Inc. Non-halogen etching of silicon-containing materials
US10403507B2 (en) 2017-02-03 2019-09-03 Applied Materials, Inc. Shaped etch profile with oxidation
US10424464B2 (en) 2015-08-07 2019-09-24 Applied Materials, Inc. Oxide etch selectivity systems and methods
US10424485B2 (en) 2013-03-01 2019-09-24 Applied Materials, Inc. Enhanced etching processes using remote plasma sources
US10431429B2 (en) 2017-02-03 2019-10-01 Applied Materials, Inc. Systems and methods for radial and azimuthal control of plasma uniformity
US10465294B2 (en) 2014-05-28 2019-11-05 Applied Materials, Inc. Oxide and metal removal
US10468267B2 (en) 2017-05-31 2019-11-05 Applied Materials, Inc. Water-free etching methods
US10468285B2 (en) 2015-02-03 2019-11-05 Applied Materials, Inc. High temperature chuck for plasma processing systems
US10490406B2 (en) 2018-04-10 2019-11-26 Appled Materials, Inc. Systems and methods for material breakthrough
US10497573B2 (en) 2018-03-13 2019-12-03 Applied Materials, Inc. Selective atomic layer etching of semiconductor materials
US10504754B2 (en) 2016-05-19 2019-12-10 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US10504700B2 (en) 2015-08-27 2019-12-10 Applied Materials, Inc. Plasma etching systems and methods with secondary plasma injection
US10522371B2 (en) 2016-05-19 2019-12-31 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US10541246B2 (en) 2017-06-26 2020-01-21 Applied Materials, Inc. 3D flash memory cells which discourage cross-cell electrical tunneling
US10541184B2 (en) 2017-07-11 2020-01-21 Applied Materials, Inc. Optical emission spectroscopic techniques for monitoring etching
US10546729B2 (en) 2016-10-04 2020-01-28 Applied Materials, Inc. Dual-channel showerhead with improved profile
US10566206B2 (en) 2016-12-27 2020-02-18 Applied Materials, Inc. Systems and methods for anisotropic material breakthrough
US10573527B2 (en) 2018-04-06 2020-02-25 Applied Materials, Inc. Gas-phase selective etching systems and methods
US10573496B2 (en) 2014-12-09 2020-02-25 Applied Materials, Inc. Direct outlet toroidal plasma source
US10593523B2 (en) 2014-10-14 2020-03-17 Applied Materials, Inc. Systems and methods for internal surface conditioning in plasma processing equipment
US10593560B2 (en) 2018-03-01 2020-03-17 Applied Materials, Inc. Magnetic induction plasma source for semiconductor processes and equipment
US10615047B2 (en) 2018-02-28 2020-04-07 Applied Materials, Inc. Systems and methods to form airgaps
US10629473B2 (en) 2016-09-09 2020-04-21 Applied Materials, Inc. Footing removal for nitride spacer
US10672642B2 (en) 2018-07-24 2020-06-02 Applied Materials, Inc. Systems and methods for pedestal configuration
US10679870B2 (en) 2018-02-15 2020-06-09 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus
US10699879B2 (en) 2018-04-17 2020-06-30 Applied Materials, Inc. Two piece electrode assembly with gap for plasma control
US10727080B2 (en) 2017-07-07 2020-07-28 Applied Materials, Inc. Tantalum-containing material removal
US10755941B2 (en) 2018-07-06 2020-08-25 Applied Materials, Inc. Self-limiting selective etching systems and methods
US10854426B2 (en) 2018-01-08 2020-12-01 Applied Materials, Inc. Metal recess for semiconductor structures
US10872778B2 (en) 2018-07-06 2020-12-22 Applied Materials, Inc. Systems and methods utilizing solid-phase etchants
US10886137B2 (en) 2018-04-30 2021-01-05 Applied Materials, Inc. Selective nitride removal
US10892198B2 (en) 2018-09-14 2021-01-12 Applied Materials, Inc. Systems and methods for improved performance in semiconductor processing
US10903054B2 (en) 2017-12-19 2021-01-26 Applied Materials, Inc. Multi-zone gas distribution systems and methods
US10920319B2 (en) 2019-01-11 2021-02-16 Applied Materials, Inc. Ceramic showerheads with conductive electrodes
US10920320B2 (en) 2017-06-16 2021-02-16 Applied Materials, Inc. Plasma health determination in semiconductor substrate processing reactors
US10943834B2 (en) 2017-03-13 2021-03-09 Applied Materials, Inc. Replacement contact process
US10964512B2 (en) 2018-02-15 2021-03-30 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus and methods
US11049755B2 (en) 2018-09-14 2021-06-29 Applied Materials, Inc. Semiconductor substrate supports with embedded RF shield
US11062887B2 (en) 2018-09-17 2021-07-13 Applied Materials, Inc. High temperature RF heater pedestals
US11121002B2 (en) 2018-10-24 2021-09-14 Applied Materials, Inc. Systems and methods for etching metals and metal derivatives
US11239061B2 (en) 2014-11-26 2022-02-01 Applied Materials, Inc. Methods and systems to enhance process uniformity
US11257693B2 (en) 2015-01-09 2022-02-22 Applied Materials, Inc. Methods and systems to improve pedestal temperature control
US11276590B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Multi-zone semiconductor substrate supports
US11276559B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Semiconductor processing chamber for multiple precursor flow
US11328909B2 (en) 2017-12-22 2022-05-10 Applied Materials, Inc. Chamber conditioning and removal processes
US11417534B2 (en) 2018-09-21 2022-08-16 Applied Materials, Inc. Selective material removal
US11437242B2 (en) 2018-11-27 2022-09-06 Applied Materials, Inc. Selective removal of silicon-containing materials
US11594428B2 (en) 2015-02-03 2023-02-28 Applied Materials, Inc. Low temperature chuck for plasma processing systems
US11682560B2 (en) 2018-10-11 2023-06-20 Applied Materials, Inc. Systems and methods for hafnium-containing film removal
US11721527B2 (en) 2019-01-07 2023-08-08 Applied Materials, Inc. Processing chamber mixing systems

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040089683A (en) * 2002-02-28 2004-10-21 동경 엘렉트론 주식회사 Shower head structure for processing semiconductor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040089683A (en) * 2002-02-28 2004-10-21 동경 엘렉트론 주식회사 Shower head structure for processing semiconductor

Cited By (123)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9754800B2 (en) 2010-05-27 2017-09-05 Applied Materials, Inc. Selective etch for silicon films
US10283321B2 (en) 2011-01-18 2019-05-07 Applied Materials, Inc. Semiconductor processing system and methods using capacitively coupled plasma
US9842744B2 (en) 2011-03-14 2017-12-12 Applied Materials, Inc. Methods for etch of SiN films
US10062578B2 (en) 2011-03-14 2018-08-28 Applied Materials, Inc. Methods for etch of metal and metal-oxide films
US10062587B2 (en) 2012-07-18 2018-08-28 Applied Materials, Inc. Pedestal with multi-zone temperature control and multiple purge capabilities
US10032606B2 (en) 2012-08-02 2018-07-24 Applied Materials, Inc. Semiconductor processing with DC assisted RF power for improved control
US11264213B2 (en) 2012-09-21 2022-03-01 Applied Materials, Inc. Chemical control features in wafer process equipment
US20140099794A1 (en) * 2012-09-21 2014-04-10 Applied Materials, Inc. Radical chemistry modulation and control using multiple flow pathways
US10354843B2 (en) 2012-09-21 2019-07-16 Applied Materials, Inc. Chemical control features in wafer process equipment
US9978564B2 (en) 2012-09-21 2018-05-22 Applied Materials, Inc. Chemical control features in wafer process equipment
WO2014046864A1 (en) * 2012-09-21 2014-03-27 Applied Materials, Inc. Radical chemistry modulation and control using multiple flow pathways
US10256079B2 (en) 2013-02-08 2019-04-09 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
US11024486B2 (en) 2013-02-08 2021-06-01 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
US10424485B2 (en) 2013-03-01 2019-09-24 Applied Materials, Inc. Enhanced etching processes using remote plasma sources
US9773648B2 (en) 2013-08-30 2017-09-26 Applied Materials, Inc. Dual discharge modes operation for remote plasma
US9837249B2 (en) 2014-03-20 2017-12-05 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9903020B2 (en) 2014-03-31 2018-02-27 Applied Materials, Inc. Generation of compact alumina passivation layers on aluminum plasma equipment components
US9885117B2 (en) 2014-03-31 2018-02-06 Applied Materials, Inc. Conditioned semiconductor system parts
US10465294B2 (en) 2014-05-28 2019-11-05 Applied Materials, Inc. Oxide and metal removal
US9773695B2 (en) 2014-07-31 2017-09-26 Applied Materials, Inc. Integrated bit-line airgap formation and gate stack post clean
US9837284B2 (en) 2014-09-25 2017-12-05 Applied Materials, Inc. Oxide etch selectivity enhancement
US10490418B2 (en) 2014-10-14 2019-11-26 Applied Materials, Inc. Systems and methods for internal surface conditioning assessment in plasma processing equipment
US9966240B2 (en) 2014-10-14 2018-05-08 Applied Materials, Inc. Systems and methods for internal surface conditioning assessment in plasma processing equipment
US10796922B2 (en) 2014-10-14 2020-10-06 Applied Materials, Inc. Systems and methods for internal surface conditioning assessment in plasma processing equipment
US10707061B2 (en) 2014-10-14 2020-07-07 Applied Materials, Inc. Systems and methods for internal surface conditioning in plasma processing equipment
US10593523B2 (en) 2014-10-14 2020-03-17 Applied Materials, Inc. Systems and methods for internal surface conditioning in plasma processing equipment
US11239061B2 (en) 2014-11-26 2022-02-01 Applied Materials, Inc. Methods and systems to enhance process uniformity
US11637002B2 (en) 2014-11-26 2023-04-25 Applied Materials, Inc. Methods and systems to enhance process uniformity
US10224210B2 (en) 2014-12-09 2019-03-05 Applied Materials, Inc. Plasma processing system with direct outlet toroidal plasma source
US10573496B2 (en) 2014-12-09 2020-02-25 Applied Materials, Inc. Direct outlet toroidal plasma source
US11257693B2 (en) 2015-01-09 2022-02-22 Applied Materials, Inc. Methods and systems to improve pedestal temperature control
US11594428B2 (en) 2015-02-03 2023-02-28 Applied Materials, Inc. Low temperature chuck for plasma processing systems
US10468285B2 (en) 2015-02-03 2019-11-05 Applied Materials, Inc. High temperature chuck for plasma processing systems
US9881805B2 (en) 2015-03-02 2018-01-30 Applied Materials, Inc. Silicon selective removal
US10147620B2 (en) 2015-08-06 2018-12-04 Applied Materials, Inc. Bolted wafer chuck thermal management systems and methods for wafer processing systems
US10468276B2 (en) 2015-08-06 2019-11-05 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
US11158527B2 (en) 2015-08-06 2021-10-26 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
US10607867B2 (en) 2015-08-06 2020-03-31 Applied Materials, Inc. Bolted wafer chuck thermal management systems and methods for wafer processing systems
US9741593B2 (en) 2015-08-06 2017-08-22 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
US10424463B2 (en) 2015-08-07 2019-09-24 Applied Materials, Inc. Oxide etch selectivity systems and methods
US10424464B2 (en) 2015-08-07 2019-09-24 Applied Materials, Inc. Oxide etch selectivity systems and methods
US11476093B2 (en) 2015-08-27 2022-10-18 Applied Materials, Inc. Plasma etching systems and methods with secondary plasma injection
US10504700B2 (en) 2015-08-27 2019-12-10 Applied Materials, Inc. Plasma etching systems and methods with secondary plasma injection
US10504754B2 (en) 2016-05-19 2019-12-10 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US11735441B2 (en) 2016-05-19 2023-08-22 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US10522371B2 (en) 2016-05-19 2019-12-31 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US9865484B1 (en) 2016-06-29 2018-01-09 Applied Materials, Inc. Selective etch using material modification and RF pulsing
US10062575B2 (en) 2016-09-09 2018-08-28 Applied Materials, Inc. Poly directional etch by oxidation
US10629473B2 (en) 2016-09-09 2020-04-21 Applied Materials, Inc. Footing removal for nitride spacer
US11049698B2 (en) 2016-10-04 2021-06-29 Applied Materials, Inc. Dual-channel showerhead with improved profile
US9934942B1 (en) 2016-10-04 2018-04-03 Applied Materials, Inc. Chamber with flow-through source
US10224180B2 (en) 2016-10-04 2019-03-05 Applied Materials, Inc. Chamber with flow-through source
US10541113B2 (en) 2016-10-04 2020-01-21 Applied Materials, Inc. Chamber with flow-through source
US10546729B2 (en) 2016-10-04 2020-01-28 Applied Materials, Inc. Dual-channel showerhead with improved profile
US10062585B2 (en) 2016-10-04 2018-08-28 Applied Materials, Inc. Oxygen compatible plasma source
US10319603B2 (en) 2016-10-07 2019-06-11 Applied Materials, Inc. Selective SiN lateral recess
US10062579B2 (en) 2016-10-07 2018-08-28 Applied Materials, Inc. Selective SiN lateral recess
US9947549B1 (en) 2016-10-10 2018-04-17 Applied Materials, Inc. Cobalt-containing material removal
US10163696B2 (en) 2016-11-11 2018-12-25 Applied Materials, Inc. Selective cobalt removal for bottom up gapfill
US10186428B2 (en) 2016-11-11 2019-01-22 Applied Materials, Inc. Removal methods for high aspect ratio structures
US9768034B1 (en) 2016-11-11 2017-09-19 Applied Materials, Inc. Removal methods for high aspect ratio structures
US10770346B2 (en) 2016-11-11 2020-09-08 Applied Materials, Inc. Selective cobalt removal for bottom up gapfill
US10026621B2 (en) 2016-11-14 2018-07-17 Applied Materials, Inc. SiN spacer profile patterning
US10242908B2 (en) 2016-11-14 2019-03-26 Applied Materials, Inc. Airgap formation with damage-free copper
US10600639B2 (en) 2016-11-14 2020-03-24 Applied Materials, Inc. SiN spacer profile patterning
US10566206B2 (en) 2016-12-27 2020-02-18 Applied Materials, Inc. Systems and methods for anisotropic material breakthrough
US10431429B2 (en) 2017-02-03 2019-10-01 Applied Materials, Inc. Systems and methods for radial and azimuthal control of plasma uniformity
US10903052B2 (en) 2017-02-03 2021-01-26 Applied Materials, Inc. Systems and methods for radial and azimuthal control of plasma uniformity
US10403507B2 (en) 2017-02-03 2019-09-03 Applied Materials, Inc. Shaped etch profile with oxidation
US10043684B1 (en) 2017-02-06 2018-08-07 Applied Materials, Inc. Self-limiting atomic thermal etching systems and methods
US10319739B2 (en) 2017-02-08 2019-06-11 Applied Materials, Inc. Accommodating imperfectly aligned memory holes
US10529737B2 (en) 2017-02-08 2020-01-07 Applied Materials, Inc. Accommodating imperfectly aligned memory holes
US10325923B2 (en) 2017-02-08 2019-06-18 Applied Materials, Inc. Accommodating imperfectly aligned memory holes
US10943834B2 (en) 2017-03-13 2021-03-09 Applied Materials, Inc. Replacement contact process
US10319649B2 (en) 2017-04-11 2019-06-11 Applied Materials, Inc. Optical emission spectroscopy (OES) for remote plasma monitoring
US11276590B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Multi-zone semiconductor substrate supports
US11276559B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Semiconductor processing chamber for multiple precursor flow
US11361939B2 (en) 2017-05-17 2022-06-14 Applied Materials, Inc. Semiconductor processing chamber for multiple precursor flow
US11915950B2 (en) 2017-05-17 2024-02-27 Applied Materials, Inc. Multi-zone semiconductor substrate supports
US10497579B2 (en) 2017-05-31 2019-12-03 Applied Materials, Inc. Water-free etching methods
US10468267B2 (en) 2017-05-31 2019-11-05 Applied Materials, Inc. Water-free etching methods
US10049891B1 (en) 2017-05-31 2018-08-14 Applied Materials, Inc. Selective in situ cobalt residue removal
US10920320B2 (en) 2017-06-16 2021-02-16 Applied Materials, Inc. Plasma health determination in semiconductor substrate processing reactors
US10541246B2 (en) 2017-06-26 2020-01-21 Applied Materials, Inc. 3D flash memory cells which discourage cross-cell electrical tunneling
US10727080B2 (en) 2017-07-07 2020-07-28 Applied Materials, Inc. Tantalum-containing material removal
US10541184B2 (en) 2017-07-11 2020-01-21 Applied Materials, Inc. Optical emission spectroscopic techniques for monitoring etching
US10354889B2 (en) 2017-07-17 2019-07-16 Applied Materials, Inc. Non-halogen etching of silicon-containing materials
US10043674B1 (en) 2017-08-04 2018-08-07 Applied Materials, Inc. Germanium etching systems and methods
US10170336B1 (en) 2017-08-04 2019-01-01 Applied Materials, Inc. Methods for anisotropic control of selective silicon removal
US10593553B2 (en) 2017-08-04 2020-03-17 Applied Materials, Inc. Germanium etching systems and methods
US11101136B2 (en) 2017-08-07 2021-08-24 Applied Materials, Inc. Process window widening using coated parts in plasma etch processes
US10297458B2 (en) 2017-08-07 2019-05-21 Applied Materials, Inc. Process window widening using coated parts in plasma etch processes
US10283324B1 (en) 2017-10-24 2019-05-07 Applied Materials, Inc. Oxygen treatment for nitride etching
US10128086B1 (en) 2017-10-24 2018-11-13 Applied Materials, Inc. Silicon pretreatment for nitride removal
US10256112B1 (en) 2017-12-08 2019-04-09 Applied Materials, Inc. Selective tungsten removal
US10903054B2 (en) 2017-12-19 2021-01-26 Applied Materials, Inc. Multi-zone gas distribution systems and methods
US11328909B2 (en) 2017-12-22 2022-05-10 Applied Materials, Inc. Chamber conditioning and removal processes
US10861676B2 (en) 2018-01-08 2020-12-08 Applied Materials, Inc. Metal recess for semiconductor structures
US10854426B2 (en) 2018-01-08 2020-12-01 Applied Materials, Inc. Metal recess for semiconductor structures
US10964512B2 (en) 2018-02-15 2021-03-30 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus and methods
US10679870B2 (en) 2018-02-15 2020-06-09 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus
US10699921B2 (en) 2018-02-15 2020-06-30 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus
US10615047B2 (en) 2018-02-28 2020-04-07 Applied Materials, Inc. Systems and methods to form airgaps
US10593560B2 (en) 2018-03-01 2020-03-17 Applied Materials, Inc. Magnetic induction plasma source for semiconductor processes and equipment
US10319600B1 (en) 2018-03-12 2019-06-11 Applied Materials, Inc. Thermal silicon etch
US11004689B2 (en) 2018-03-12 2021-05-11 Applied Materials, Inc. Thermal silicon etch
US10497573B2 (en) 2018-03-13 2019-12-03 Applied Materials, Inc. Selective atomic layer etching of semiconductor materials
US10573527B2 (en) 2018-04-06 2020-02-25 Applied Materials, Inc. Gas-phase selective etching systems and methods
US10490406B2 (en) 2018-04-10 2019-11-26 Appled Materials, Inc. Systems and methods for material breakthrough
US10699879B2 (en) 2018-04-17 2020-06-30 Applied Materials, Inc. Two piece electrode assembly with gap for plasma control
US10886137B2 (en) 2018-04-30 2021-01-05 Applied Materials, Inc. Selective nitride removal
US10755941B2 (en) 2018-07-06 2020-08-25 Applied Materials, Inc. Self-limiting selective etching systems and methods
US10872778B2 (en) 2018-07-06 2020-12-22 Applied Materials, Inc. Systems and methods utilizing solid-phase etchants
US10672642B2 (en) 2018-07-24 2020-06-02 Applied Materials, Inc. Systems and methods for pedestal configuration
US11049755B2 (en) 2018-09-14 2021-06-29 Applied Materials, Inc. Semiconductor substrate supports with embedded RF shield
US10892198B2 (en) 2018-09-14 2021-01-12 Applied Materials, Inc. Systems and methods for improved performance in semiconductor processing
US11062887B2 (en) 2018-09-17 2021-07-13 Applied Materials, Inc. High temperature RF heater pedestals
US11417534B2 (en) 2018-09-21 2022-08-16 Applied Materials, Inc. Selective material removal
US11682560B2 (en) 2018-10-11 2023-06-20 Applied Materials, Inc. Systems and methods for hafnium-containing film removal
US11121002B2 (en) 2018-10-24 2021-09-14 Applied Materials, Inc. Systems and methods for etching metals and metal derivatives
US11437242B2 (en) 2018-11-27 2022-09-06 Applied Materials, Inc. Selective removal of silicon-containing materials
US11721527B2 (en) 2019-01-07 2023-08-08 Applied Materials, Inc. Processing chamber mixing systems
US10920319B2 (en) 2019-01-11 2021-02-16 Applied Materials, Inc. Ceramic showerheads with conductive electrodes

Similar Documents

Publication Publication Date Title
KR100712727B1 (en) A showerhead using insulator
KR100378871B1 (en) showerhead apparatus for radical assisted deposition
KR100782369B1 (en) Device for making semiconductor
KR100243446B1 (en) Showerhead apparatus having plasma generating portions
KR100646017B1 (en) A showerhead using multi-hollows cathode of a type of gas separation
KR100782291B1 (en) Showerhead having gas separative type and pulsed CVD device using the showerhead
US9472379B2 (en) Method of multiple zone symmetric gas injection for inductively coupled plasma
KR102055370B1 (en) Substrate processing apparatus
KR101227571B1 (en) Gas injection Assembly and apparatus for processing substrate
KR20060107683A (en) Chemical vapor deposition apparatus
KR101253296B1 (en) Plasma Processing Apparatus
KR101151250B1 (en) Apparatus and method for plasma processing
KR20150085904A (en) Controlling gas distributor of plasma genegating system and method for controlling gas distributor
KR101538461B1 (en) Substrate process apparatus
KR20100071604A (en) Apparatus for high density plasma chemical vapor deposition with nozzle capable of controlling spray angle
KR100885625B1 (en) Apparatus for depositing Boro-Phospho Silicate Glass using plasma
KR20220049926A (en) Substrate Processing apparatus
KR101253785B1 (en) Surface processing apparatus for substrate
KR100791995B1 (en) Apparatus for providing gas and apparatus for forming a layer having the same
KR102057447B1 (en) Substrate treating apparatus
KR20080008740A (en) A gas separation-type showerhead applied dual frequency
KR102512209B1 (en) Substrate processing apparatus
KR101114247B1 (en) Manufacturing apparatus for semiconductor device
KR101158289B1 (en) Plasma processing apparatus and method
KR20220129215A (en) Plasma processing apparatus

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130313

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20140401

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee