JPS648686B2 - - Google Patents

Info

Publication number
JPS648686B2
JPS648686B2 JP13079484A JP13079484A JPS648686B2 JP S648686 B2 JPS648686 B2 JP S648686B2 JP 13079484 A JP13079484 A JP 13079484A JP 13079484 A JP13079484 A JP 13079484A JP S648686 B2 JPS648686 B2 JP S648686B2
Authority
JP
Japan
Prior art keywords
steel
less
content
sscc
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13079484A
Other languages
Japanese (ja)
Other versions
JPS619519A (en
Inventor
Teruo Kaneko
Akio Ikeda
Shinya Onoyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP13079484A priority Critical patent/JPS619519A/en
Publication of JPS619519A publication Critical patent/JPS619519A/en
Publication of JPS648686B2 publication Critical patent/JPS648686B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は、油井或いはガス井用鋼管材として
好適な、湿潤硫化水素(H2S)環境下での硫化物
腐食割れ(以下、SSCCと略称する)に対して高
い抵抗性を有する高強度鋼、特に、降伏強度レベ
ル70Kgf/mm2以上の高強度鋼であつて、しかも
SSCC割れ限界応力比(割れ限界応力/降伏強
度)が80%以上と言う優れた耐SSCC性を有する
鋼の製造方法に関するものである。 〔従来の技術〕 SSCCは、硫化水素を含む湿潤環境下で使用さ
れる鋼材に応力が作用して生ずる現象であるが、
一般に、材料強度(例えば降伏強度)が高くなる
ほど耐SSCC性は劣化することが知られている。 そして、従来からの数多くの研究結果や経験等
から、通常の焼入れ・焼戻し処理による高強度鋼
の製造手段では、降伏強度レベルが70Kgf/mm2以上
であつて、しかも良好な耐SSCC性を兼備した鋼
の実現は困難であるとされており、従つて、硫化
水素を含む湿潤環境下での使用に供される鋼材
は、70Kgf/mm2を下回る降伏強度のものに制限され
ざるを得なかつたのである。 しかしながら、近年のエネルギー事情は、地層
深層部の油田やガス田にまで開発の手を伸ばすこ
とを要求しており、このような油井やガス井の深
さ増大傾向に対処するため、これらに使用する油
井管の鋼材強度上昇が切実に叫ばれてもいた。 そこで、これらの要求に応えるため、Ti―B
添加鋼を使用し、これの焼入れに際して急速加熱
を採用したり(特開昭52−52114号公報)、Cr―
Mo鋼を急速加熱して焼入れする手段(特開昭54
−119324号公報)等にて、耐SSCC性に優れた高
強度鋼を製造する方法が提案された。 これらの方法による耐SSCC性改善効果は、結
晶粒の細粒化や析出炭化物等の均一分散化を通じ
てもたらされると考えられており、事実、耐
SSCC性の改善に有効な手段であることは認めら
れるが、従来報告されている限りでは、必ずしも
十分な耐SSCC性向上効果が得られるとは言い難
いものであつた。 一方、油井用鋼製品(例えば油井用鋼管)では
曲りや真円度等の形状に比較的厳しい要求がなさ
れるため、通常、冷間にてストレートナーやプレ
スによる形状矯正が行われる。そして、耐食性用
途に対しては最終熱処理後の冷間加工が禁止され
ているので、上記冷間矯正した後の製品に対して
は応力除去焼鈍が施される。 ところが、このような後処理を施すことは工程
の複雑化やコスト上昇を招くのはもちろんのこ
と、鋼材の耐SSCC性が劣化する傾向が認めら
れ、最終熱処理の際に急速加熱を採用して耐
SSCC性の改善を図つたとしても、その後の工程
で該効果が失われてしまうか或いは減ずること
が、本発明者等の検討によつて明らかとなつたの
である。 〔発明が解決しようとする問題点〕 上述のように、従来の技術によつては、降伏強
度で70Kgf/mm2以上の強度を有するとともに、割れ
限界応力比が80%以上と言う優れた耐SSCC性を
兼ね備えた高強度鋼材を安定して製造することが
できなかつたばかりか、製品形状矯正工程の付加
によつて耐SSCC性が一層劣化し、しかも工程の
複雑化やコスト上昇を余儀なくされると言う問題
を解決することができなかつた。 〔問題点を解決するための手段〕 本発明者等は、このような観点から、70Kgf/mm2
以上の降伏強度と割れ限界比:80%以上で示され
る優れた耐SSCC性とを兼備し、かつ形状精度の
良好な高強度鋼製品を、能率良く、低コストで製
造する方法を見出すべく、長年に亘つて研究を行
つた結果、 鋼の成分組成並びに熱処理条件、特に焼戻し温
度を慎重に調整するとともに、該焼戻し時の冷却
過程で、温間にて形状の矯正を実施すると、冷間
矯正加工及びその後の応力除去焼鈍を行うことな
く、十分に満足できる強度、耐SSCC性並びに形
状寸法を備えた高強度調製品が安定して得られ
る。 との知見を得るに至つたのである。 この発明は、上記知見に基づいてなされたもの
であり、 重量割合にて、 C:0.20〜0.40%、Si:0.05〜0.60%、 Mn:0.30〜0.80%、P:0.015%以下、 S:0.010%以下、 Cr:0.30〜1.50%、 Mo:0.10〜0.70%、 Nb:0.015〜0.050%、 Ti:0.005〜0.025%、 B:0.0005〜0.0025%、 Al:0.01〜0.10% を含むとともに、 Mo/Cr:0.3〜0.6 を満足し、 残部:Fe及びその他の不可避的不純物 から成る成分組成の鋼を、700℃以上の平均加熱
速度を2.5〜50℃/secとして850〜1050℃にまで加
熱した後、該温度から焼入れし、次いで650〜730
℃にて焼戻しするとともに、その冷却過程におけ
る650〜450℃の温度域で加工率:10%以下の矯正
加工を施すことにより、優れた耐SSCC性を備え
るとともに形状寸法の良好な高強度鋼を得る点、 に特徴を有するものである。 次に、この発明において、鋼の成分組成、熱処
理条件及び矯正条件を前記のように限定した理由
を説明する。 A 鋼の化学成分組成 C C成分には、鋼の強度を確保する作用のほ
か、焼入れ性や焼戻し抵抗性を向上すること
により耐SSCC性向上に有効な均一高温焼戻
しマルテンサイト組織を確保する作用をも有
しているが、その含有量が0.20%未満では前
記作用に所望の効果が得られず、他方0.40%
を越えて含有させると靭性の劣化を招くほ
か、熱処理時の曲りや割れを生じ易くなるこ
とから、C含有量を0.20〜0.40%と定めた。 Si Si成分には、鋼の脱酸剤としての作用のほ
か、清浄度を確保する作用があるので0.05%
以上の添加を必要とするものであるが、0.60
%を越えて含有させると靭性や加工性の劣化
を招き、また結晶粒が粗大化して耐SSCC性
の劣化を来たし易くなることから、Si含有量
を0.05〜0.60%と定めた。但し、実用上は
0.20〜0.40%が適当である。 Mn Mn成分には、鋼の焼入れ性を改善して強
度並びに靭性を向上せしめる作用があるが、
その含有量が0.30%未満では前記作用に所望
の効果が得られず、他方0.80%を越えて含有
させると偏析が増大して耐食性の劣化を招く
ことから、Mn含有量を0.30〜0.80%と定め
た。 P Pは鋼中に不可避的に随伴される不純物で
あり少なければ少ない程良好なものである
が、その含有量が特に0.015%を越えると偏
析が助長されて耐食性の劣化を招くことか
ら、P含有量は0.015%以下と定めた。 S Sも鋼中に不可避的に随伴される不純物で
あり、少ないほど良好なものであるが、その
含有量が特に0.010%を越えると非金属介在
物が増加して耐食性の劣化を招くことから、
S含有量は0.010%以下と定めた。但し、望
ましくは0.005%以下とする。 Cr Cr成分には、鋼の焼入れ性を向上すると
ともに強度を増加する作用があるが、その含
有量が0.1%未満では前記作用に所望の効果
を得ることができず、一方1.50%を越えて含
有させると鋼の靭性や加工性の劣化を招くこ
とから、Cr含有量を0.30〜1.50%と定めた。 Mo Mo成分には、鋼の焼入れ性と焼戻し軟化
抵抗性の向上を通じて耐SSCC性を改善する
作用があるが、その含有量が0.10%未満では
前記作用に所望の効果を得ることができず、
一方0.70%を越えて含有させると炭化物の析
出状態が変化し、耐食性の劣化を招くことか
ら、Mo含有量を0.10〜0.70%と定めた。 Nb Nb成分には、鋼の焼入れ性と焼戻し軟化
抵抗性を向上させ、耐SSCC性を改善させる
作用があるが、その含有量が0.015%未満で
は前記作用に所望の効果が得られず、一方
0.050%を越えて含有させると靭性及び加工
性の劣化を招くことから、Nb含有量を0.015
〜0.050%と定めた。 Ti Ti成分は、Bとの複合添加によつて鋼の
焼入れ性を大幅に向上する作用を有している
が、その含有量が0.005%未満では前記作用
に所望の効果が得られず、一方0.025%を越
えて含有させると靭性劣化を招くことから、
Ti含有量を0.005〜0.025%と定めた。 B B成分は、Tiとの複合添加によつて鋼の
焼入れ性を大幅に向上する作用を有している
が、その含有量が0.0005%未満では前記作用
に所望の効果が得られず、一方0.0025%を越
えて含有させてもそれ以上の向上効果が得ら
れないばかりか、靭性劣化を来たすこととな
るので、B含有量を0.0005〜0.0025%と定め
た。 Al Al成分には、鋼の脱酸作用に加えて結晶
粒の細粒化作用があるが、その含有量が0.01
%未満では前記作用に所望の効果が得られ
ず、他方0.10%を越えて含有させると介在物
が増加して鋼の脆化を招くようになることか
ら、Al含有量を0.01〜0.10%と定めた。 Mo/Crの比 Mo及びCrの添加量が上記範囲であつたと
しても、Cr含有量に対するMo含有量の比が
0.3〜0.6の範囲であることが良好な耐SSCC
性を確保する上で不可欠な要件である。即
ち、Mo/Crの値が0.3未満であつても、或い
は前記値が0.6を越えてたとしても、いずれ
も炭化物の析出分布状態に悪影響が及ぼさ
れ、耐食性の劣化を招くからである。 なお、製品肉厚が25mm以上の場合には、先
に述べたようにTi及びBの複合添加は必須
であるが、製品肉厚が25mm未満と薄い場合に
は、Ti及びBの複合添加が行われなくとも
所望の強度と耐SSCC性を確保できることも
確認された。 B 熱処理条件 焼入れ時の加熱速度 耐SSCC性に有効な結晶粒の細粒化は、焼
入れに際して700℃以上の温度域を急速加熱
することにより得られるものであり、700℃
未満の温度域での加熱速度は細粒化に大きな
影響を与えることがない。そして、平均加熱
速度が2.5℃/sec未満では所望の耐SSCC性向
上効果を得ることができず、一方50℃/secを
越える平均加熱速度では混粒を生じて、やは
り所望の耐SSCC性向上効果が得られないこ
とから、焼入れの際の加熱は、700℃以上の
温度域での平均加熱速度が2.5〜50℃/secと
なるものに限定した。 焼入れ時の加熱温度 焼入れ時の加熱温度が850℃未満では鋼の
オーステナイト化が十分になされない恐れが
あり、一方1050℃を越えて加熱すると結晶粒
の粗大化を招くことから、焼入れの際の加熱
温度は850〜1050℃と限定した。 焼戻し温度 焼戻し温度が650℃未満では焼戻し不十分
で炭化物球状化が十分でなく、従つて鋼の耐
SSCC性は劣つたものとなる。一方、焼戻し
温度が730℃を越えると、偏析部で変態が生
じて耐SSCC性の劣化を招くこととなる。 このようなことから、焼戻し温度は650〜
730℃と定めた。 C 矯正条件 矯正温度 この発明では、焼戻し処理における冷却過
程で形状矯正を行うことが1つの特徴になつ
ているが、矯正温度が450℃を下回ると、矯
正による塑性変形部の歪が回復しないで耐
SSCC性の劣化を招く上、残留応力が残つて
耐圧壊強度をも低下させる。一方、650℃を
越える温度域で矯正を行うと、得られる製品
の強度バラツキが大きくなつてしまう。 以上の理由から、矯正温度を650〜450℃と
定めた。 矯正の際の加工率 上記温度域で矯正する際の加工率が10%を
越えると、得られる製品の強度バラツキが増
大することとなるので、矯正時の加工率を10
%以下と定めた。 次に、この発明を実施例により比較例と対比し
ながら説明する。 〔実施例〕 まず、常法によつて第1表に示される如き化学
成分組成の鋼を溶製し、これらを素材として通常
のマンネスマン製管法により、外径127mm、内径
108.6mmの鋼管を製造した。 次いで、誘導加熱によつて25℃/secの加熱速度
で950℃にまで鋼管を加熱後、水焼入れを施した。 続いて、該鋼管を第2表に示される焼戻し温度
にまで加熱して焼戻しを行い、試験番号18及び20
で示されるものはそのまま室温まで冷却したが、
その他のものは、焼戻し後の鋼管温度が第2表に
示す矯正温度に到達した時点で加工率3%のスト
レートナーによる矯正加工を施した。なお、室温
までそのまま冷却した試験番号18及び20の鋼管に
ついては、冷却後に加工率3%の冷間ストレート
ナーによる矯正加工を施し、続いて応力除去焼鈍
を実施した。 このように得られた鋼管製品について降伏強度
及び耐SSCC性能を調べ、その結果を第2表に
[Industrial Application Field] This invention is suitable as a steel pipe material for oil or gas wells, and has high resistance to sulfide corrosion cracking (hereinafter abbreviated as SSCC) in a wet hydrogen sulfide (H 2 S) environment. High-strength steel with resistance, especially high-strength steel with a yield strength level of 70 Kgf/mm 2 or higher, and
This invention relates to a method for manufacturing steel with excellent SSCC resistance, such as an SSCC cracking limit stress ratio (cracking limit stress/yield strength) of 80% or more. [Prior art] SSCC is a phenomenon that occurs when stress is applied to steel materials used in a humid environment containing hydrogen sulfide.
Generally, it is known that the higher the material strength (for example, yield strength), the worse the SSCC resistance. Based on numerous research results and experiences from the past, it has been found that the manufacturing method of high-strength steel using normal quenching and tempering processes has a yield strength level of 70 Kgf/mm 2 or higher and also has good SSCC resistance. Therefore, steel materials used in humid environments containing hydrogen sulfide must be limited to those with a yield strength of less than 70Kgf/ mm2 . It was. However, the energy situation in recent years has required the expansion of development to oil and gas fields located deep underground. There was also an urgent need to increase the strength of steel for oil country tubular goods. Therefore, in order to meet these demands, Ti-B
Additive steel is used and rapid heating is applied during quenching (Japanese Unexamined Patent Publication No. 52-52114), Cr-
Means for rapidly heating and quenching Mo steel (Japanese Patent Application Laid-Open No. 54
A method for manufacturing high-strength steel with excellent SSCC resistance was proposed in Japanese Patent Publication No. 119324). The effect of improving SSCC resistance by these methods is thought to be brought about through the refinement of crystal grains and uniform dispersion of precipitated carbides.
Although it is acknowledged that this is an effective means for improving SSCC resistance, it is difficult to say that it necessarily provides a sufficient effect of improving SSCC resistance based on what has been reported so far. On the other hand, steel products for oil wells (for example, steel pipes for oil wells) have relatively strict requirements for shape such as bending and roundness, so the shape is usually corrected in the cold using a straightener or press. Since cold working after the final heat treatment is prohibited for corrosion-resistant applications, the products after the cold straightening are subjected to stress relief annealing. However, applying such post-treatment not only complicates the process and increases costs, but it has also been observed that the SSCC resistance of the steel material tends to deteriorate, so rapid heating is used during the final heat treatment. Endurance
The inventors' studies have revealed that even if the SSCC property is improved, the effect is lost or reduced in subsequent steps. [Problems to be solved by the invention] As mentioned above, the conventional technology has a yield strength of 70 Kgf/mm 2 or more and an excellent cracking stress ratio of 80% or more. Not only was it not possible to stably manufacture high-strength steel materials with SSCC properties, but the addition of a product shape correction process further deteriorated SSCC resistance, and the process was forced to become more complicated and costs increased. I couldn't solve the problem. [Means for solving the problem] From this perspective, the present inventors have developed a
In order to find a method to efficiently and inexpensively manufacture high-strength steel products that have the above-mentioned yield strength and excellent SSCC resistance shown by a cracking limit ratio of 80% or more and have good shape accuracy, As a result of many years of research, we have found that by carefully adjusting the composition of the steel and the heat treatment conditions, especially the tempering temperature, and by correcting the shape in the warm state during the cooling process during tempering, it is possible to achieve cold straightening. A high-strength preparation with sufficiently satisfactory strength, SSCC resistance, and shape and dimensions can be stably obtained without processing and subsequent stress relief annealing. This led us to the following knowledge. This invention was made based on the above findings, and the weight percentages are as follows: C: 0.20-0.40%, Si: 0.05-0.60%, Mn: 0.30-0.80%, P: 0.015% or less, S: 0.010 % or less, Cr: 0.30-1.50%, Mo: 0.10-0.70%, Nb: 0.015-0.050%, Ti: 0.005-0.025%, B: 0.0005-0.0025%, Al: 0.01-0.10%, and Mo/ After heating a steel whose composition satisfies Cr: 0.3 to 0.6 and the balance consists of Fe and other unavoidable impurities to 850 to 1050℃ at an average heating rate of 2.5 to 50℃/sec over 700℃. , quenched from the temperature, then 650-730
By tempering at ℃ and performing straightening at a processing rate of 10% or less in the temperature range of 650 to 450℃ during the cooling process, high-strength steel with excellent SSCC resistance and good shape and dimensions is produced. It is characterized by the following points. Next, in this invention, the reason why the chemical composition, heat treatment conditions, and straightening conditions of the steel are limited as described above will be explained. A Chemical composition of steel C C component has the effect of ensuring the strength of the steel, as well as the effect of ensuring a uniform high-temperature tempered martensitic structure that is effective in improving SSCC resistance by improving hardenability and tempering resistance. However, if the content is less than 0.20%, the desired effect cannot be obtained, and on the other hand, 0.40%
The C content was set at 0.20 to 0.40% because if the C content exceeds 0.2%, the toughness deteriorates, and bending and cracking are likely to occur during heat treatment. Si In addition to acting as a deoxidizing agent for steel, the Si component also has the effect of ensuring cleanliness, so 0.05%
Although it requires addition of more than 0.60
The Si content was set at 0.05 to 0.60% because Si content exceeding 0.05% causes deterioration of toughness and workability, and also tends to coarsen crystal grains and cause deterioration of SSCC resistance. However, in practice
0.20-0.40% is appropriate. Mn The Mn component has the effect of improving the hardenability of steel and increasing its strength and toughness.
If the Mn content is less than 0.30%, the desired effect cannot be obtained, while if the Mn content exceeds 0.80%, segregation will increase and corrosion resistance will deteriorate. Established. P P is an impurity that inevitably accompanies steel, and the less it is, the better it is, but if its content exceeds 0.015%, segregation will be promoted and corrosion resistance will deteriorate. The content was set at 0.015% or less. S S is also an impurity that inevitably accompanies steel, and the less it is, the better it is, but if its content exceeds 0.010%, nonmetallic inclusions will increase, leading to deterioration of corrosion resistance. ,
The S content was set at 0.010% or less. However, it is desirably 0.005% or less. Cr The Cr component has the effect of improving the hardenability of steel and increasing its strength, but if the content is less than 0.1%, the desired effect cannot be obtained, while if the content exceeds 1.50%, the desired effect cannot be obtained. Since Cr content causes deterioration of steel toughness and workability, the Cr content was set at 0.30 to 1.50%. Mo The Mo component has the effect of improving SSCC resistance by improving the hardenability and temper softening resistance of steel, but if its content is less than 0.10%, the desired effect cannot be obtained.
On the other hand, if Mo content exceeds 0.70%, the precipitation state of carbides changes and corrosion resistance deteriorates, so the Mo content was set at 0.10 to 0.70%. Nb Nb component has the effect of improving the hardenability and temper softening resistance of steel and improving SSCC resistance, but if its content is less than 0.015%, the desired effect cannot be obtained;
If the Nb content exceeds 0.050%, the toughness and workability deteriorate, so the Nb content was reduced to 0.015%.
It was set at ~0.050%. Ti The Ti component has the effect of greatly improving the hardenability of steel when added in combination with B, but if its content is less than 0.005%, the desired effect cannot be obtained; If the content exceeds 0.025%, toughness will deteriorate.
The Ti content was determined to be 0.005% to 0.025%. B The B component has the effect of greatly improving the hardenability of steel when added in combination with Ti, but if its content is less than 0.0005%, the desired effect cannot be obtained; If the B content exceeds 0.0025%, not only will no further improvement effect be obtained, but the toughness will deteriorate, so the B content was set at 0.0005 to 0.0025%. Al The Al component has a grain refining effect in addition to deoxidizing the steel, but its content is 0.01
If the Al content is less than 0.1%, the desired effect cannot be obtained, while if the Al content exceeds 0.10%, inclusions will increase and cause embrittlement of the steel. Established. Mo/Cr ratio Even if the amounts of Mo and Cr added are within the above range, the ratio of Mo content to Cr content is
Good SSCC resistance should be in the range of 0.3~0.6
This is an essential requirement to ensure safety. That is, even if the Mo/Cr value is less than 0.3, or even if the value exceeds 0.6, the carbide precipitation distribution will be adversely affected, leading to deterioration in corrosion resistance. In addition, when the product wall thickness is 25 mm or more, the combined addition of Ti and B is essential as mentioned above, but when the product wall thickness is thin, less than 25 mm, the combined addition of Ti and B is required. It was also confirmed that the desired strength and SSCC resistance could be ensured even without this process. B Heat treatment conditions Heating rate during quenching Refining of crystal grains, which is effective for SSCC resistance, can be achieved by rapid heating in a temperature range of 700℃ or higher during quenching, and 700℃
Heating rates in the temperature range below do not have a significant effect on grain refinement. If the average heating rate is less than 2.5°C/sec, the desired SSCC resistance improvement effect cannot be obtained, while if the average heating rate exceeds 50°C/sec, mixed grains will occur and the desired SSCC resistance improvement will not be achieved. Since no effect could be obtained, heating during quenching was limited to a heating rate of 2.5 to 50°C/sec in the temperature range of 700°C or higher. Heating temperature during quenching If the heating temperature during quenching is less than 850°C, there is a risk that the steel will not be sufficiently austenitized, while heating above 1050°C will result in coarsening of crystal grains. The heating temperature was limited to 850-1050°C. Tempering Temperature If the tempering temperature is less than 650℃, the tempering will be insufficient and carbide spheroidization will not be sufficient, thus reducing the durability of the steel.
SSCC properties will be inferior. On the other hand, if the tempering temperature exceeds 730°C, transformation occurs in the segregated parts, leading to deterioration of SSCC resistance. For this reason, the tempering temperature is 650~
The temperature was set at 730℃. C Straightening conditions Straightening temperature One of the features of this invention is that the shape is straightened during the cooling process in the tempering process, but if the straightening temperature is lower than 450°C, the strain in the plastically deformed part due to straightening will not recover. Endurance
In addition to deteriorating the SSCC property, residual stress remains and reduces the crushing strength. On the other hand, if straightening is performed in a temperature range exceeding 650°C, the strength variation of the resulting product will increase. For the above reasons, the straightening temperature was set at 650 to 450°C. Processing rate during straightening If the processing rate during straightening in the above temperature range exceeds 10%, the strength variation of the obtained product will increase.
% or less. Next, the present invention will be explained using examples and comparing with comparative examples. [Example] First, steel having the chemical composition as shown in Table 1 was melted using a conventional method, and using these as raw materials, a tube with an outer diameter of 127 mm and an inner diameter of 127 mm was produced using the ordinary Mannesmann pipe manufacturing method.
A 108.6mm steel pipe was manufactured. Next, the steel pipe was heated to 950°C by induction heating at a heating rate of 25°C/sec, and then water quenched. Subsequently, the steel pipe was heated and tempered to the tempering temperature shown in Table 2, and test numbers 18 and 20 were obtained.
The material shown in was cooled to room temperature as it is, but
For the other steel pipes, straightening was performed using a straightener at a processing rate of 3% when the temperature of the steel pipe after tempering reached the straightening temperature shown in Table 2. In addition, for the steel pipes of test numbers 18 and 20 that were cooled to room temperature as they were, straightening was performed using a cold straightener at a working rate of 3% after cooling, and then stress relief annealing was performed. The yield strength and SSCC resistance performance of the steel pipe products obtained in this way were investigated, and the results are shown in Table 2.

【表】 (注) *印は、本発明の条件から外れていること
を示す。
[Table] (Note) * indicates that the conditions are outside the conditions of the present invention.

〔総括的な効果〕[Overall effect]

上述のように、この発明によれば、優れた耐
SSCC性を有する形状良好な高強度鋼材を、能率
良く、低コストで製造することができ、苛酷な条
件下に存在する天然資源の開発を一層促進し得る
状況を作り出せるなど、産業上有用な効果がもた
らされるのである。
As described above, according to the present invention, excellent durability is achieved.
Industrially useful effects include the ability to efficiently produce high-strength steel materials with good shape and SSCC properties at low cost, creating a situation that can further promote the development of natural resources that exist under harsh conditions. is brought about.

Claims (1)

【特許請求の範囲】 1 C:0.20〜0.40%、Si:0.05〜0.60%、 Mn:0.30〜0.80%、P:0.015%以下、 S:0.010%以下、 Cr:0.30〜1.50%、 Mo:0.10〜0.70%、 Nb:0.015〜0.050%、 Ti:0.005〜0.025%、 B:0.0005〜0.0025%、 Al:0.01〜0.10% を含むとともに、 Mo/Cr:0.3〜0.6 を満足し、 残部:Fe及びその他の不可避的不純物 からなる成分組成(以上重量%)の鋼を、700℃
以上の平均加熱速度を2.5〜50℃/secとして850〜
1050℃にまで加熱した後、該温度から焼入れし、
次いで650〜730℃にて焼戻しするとともに、その
冷却過程における650〜450℃の温度域で加工率:
10%以下の矯正加工を施すことを特徴とする、耐
硫化物腐食割れ性に優れた高強度鋼の製造方法。
[Claims] 1 C: 0.20-0.40%, Si: 0.05-0.60%, Mn: 0.30-0.80%, P: 0.015% or less, S: 0.010% or less, Cr: 0.30-1.50%, Mo: 0.10 ~0.70%, Nb: 0.015~0.050%, Ti: 0.005~0.025%, B: 0.0005~0.0025%, Al: 0.01~0.10%, and satisfies Mo/Cr: 0.3~0.6, balance: Fe and Steel with a composition (more than % by weight) consisting of other unavoidable impurities is heated to 700℃.
850~ with average heating rate of 2.5~50℃/sec
After heating to 1050℃, quenching from that temperature,
Then, it is tempered at 650 to 730℃, and the processing rate is reduced in the temperature range of 650 to 450℃ during the cooling process:
A method for manufacturing high-strength steel with excellent sulfide corrosion cracking resistance, which is characterized by applying straightening of 10% or less.
JP13079484A 1984-06-25 1984-06-25 Manufacture of high strength steel superior in sulfide corrosion cracking resistance Granted JPS619519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13079484A JPS619519A (en) 1984-06-25 1984-06-25 Manufacture of high strength steel superior in sulfide corrosion cracking resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13079484A JPS619519A (en) 1984-06-25 1984-06-25 Manufacture of high strength steel superior in sulfide corrosion cracking resistance

Publications (2)

Publication Number Publication Date
JPS619519A JPS619519A (en) 1986-01-17
JPS648686B2 true JPS648686B2 (en) 1989-02-15

Family

ID=15042845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13079484A Granted JPS619519A (en) 1984-06-25 1984-06-25 Manufacture of high strength steel superior in sulfide corrosion cracking resistance

Country Status (1)

Country Link
JP (1) JPS619519A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230060928A (en) 2021-10-28 2023-05-08 주식회사 엘지에너지솔루션 Apparatus and method for controling power of dc-dc convertor

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63210236A (en) * 1987-02-25 1988-08-31 Sumitomo Metal Ind Ltd Manufacture of high-collapse oil well pipe having sour resistance
JP2682332B2 (en) * 1992-04-08 1997-11-26 住友金属工業株式会社 Method for producing high strength corrosion resistant steel pipe
EP0828007B1 (en) * 1995-05-15 2001-11-14 Sumitomo Metal Industries, Ltd. Process for producing high-strength seamless steel pipe having excellent sulfide stress cracking resistance
JP2013129879A (en) * 2011-12-22 2013-07-04 Jfe Steel Corp High-strength seamless steel tube for oil well with superior sulfide stress cracking resistance, and method for producing the same
UA117494C2 (en) 2013-07-26 2018-08-10 Ніппон Стіл Енд Сумітомо Метал Корпорейшн HIGH-QUALITY MANGANESE STEEL FOR PETROLEUM AND PIPES FOR PETROLEUM
US10640856B2 (en) 2014-09-08 2020-05-05 Jfe Steel Corporation High-strength seamless steel pipe for oil country tubular goods and method of producing the same
MX2017004258A (en) 2014-10-01 2017-06-06 Nippon Steel & Sumitomo Metal Corp High-strength steel material for oil wells, and oil well pipe.
CN109694993B (en) * 2017-10-20 2020-06-23 鞍钢股份有限公司 Super-thick steel plate for high-pressure heater and manufacturing method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5252114A (en) * 1975-10-24 1977-04-26 Nippon Steel Corp Process for producing steel of excellent sulfide corrosion cracking re sistance
JPS54119324A (en) * 1978-03-08 1979-09-17 Kawasaki Steel Co Production of steel pipe for oil well
JPS5996216A (en) * 1982-11-24 1984-06-02 Sumitomo Metal Ind Ltd Manufacture of high strength steel with superior sulfide cracking resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230060928A (en) 2021-10-28 2023-05-08 주식회사 엘지에너지솔루션 Apparatus and method for controling power of dc-dc convertor

Also Published As

Publication number Publication date
JPS619519A (en) 1986-01-17

Similar Documents

Publication Publication Date Title
JPS6354765B2 (en)
EP2824198A1 (en) Method for producing high-strength steel material having excellent sulfide stress cracking resistance
JPWO2008123422A1 (en) Seamless steel pipe manufacturing method
JP2682332B2 (en) Method for producing high strength corrosion resistant steel pipe
CN110616366B (en) 125ksi steel grade sulfur-resistant oil well pipe and manufacturing method thereof
JPH0967624A (en) Production of high strength oil well steel pipe excellent in sscc resistance
JP2003129190A (en) Martensitic stainless steel and manufacturing method therefor
JP2567150B2 (en) Manufacturing method of high strength low yield ratio line pipe material for low temperature
JPH0741856A (en) Production of high strength steel pipe excellent in sulfide stress corrosion cracking resistance
CN113584407A (en) High-strength high-temperature corrosion resistant martensitic stainless steel and manufacturing method thereof
JPH01259124A (en) Manufacture of high-strength oil well tube excellent in corrosion resistance
WO2015146141A1 (en) Stabilizer steel having high strength and excellent corrosion resistance, vehicle stabilizer employing same, and method for manufacturing same
JPS648686B2 (en)
JPH05105957A (en) Production of heat resistant high strength bolt
JP4801485B2 (en) Cold forged parts, manufacturing method for obtaining the same, and steel materials
CA3139909C (en) Electric-resistance-welded steel pipe or tube for hollow stabilizer
JPH0925518A (en) Production of seamless steel tube with high strength and high corrosion resistance
JP3718369B2 (en) Steel for high strength bolt and method for producing high strength bolt
JPS5920423A (en) Production of 80kgf/mm2 class seamless steel pipe having excellent low temperature toughness
JPH0741855A (en) Production of low yield radio and high toughness seamless steel pipe showing metallic structure essentially consisting of fine-grained ferrite
JPH0526850B2 (en)
JP2541389B2 (en) Method of manufacturing low yield ratio high strength steel
JP2001200313A (en) Method for producing electric resistance welded tube for cold forging excellent in workability
JP2727865B2 (en) Manufacturing method of high strength and high corrosion resistance seamless steel pipe
EP4310217A1 (en) High-strength and heat-resistant casing for heavy oil exploration and manufacturing method therefor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term