JPS619519A - Manufacture of high strength steel superior in sulfide corrosion cracking resistance - Google Patents

Manufacture of high strength steel superior in sulfide corrosion cracking resistance

Info

Publication number
JPS619519A
JPS619519A JP13079484A JP13079484A JPS619519A JP S619519 A JPS619519 A JP S619519A JP 13079484 A JP13079484 A JP 13079484A JP 13079484 A JP13079484 A JP 13079484A JP S619519 A JPS619519 A JP S619519A
Authority
JP
Japan
Prior art keywords
steel
resistance
less
5scc
high strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13079484A
Other languages
Japanese (ja)
Other versions
JPS648686B2 (en
Inventor
Teruo Kaneko
金子 輝雄
Akio Ikeda
昭夫 池田
Shinya Onoyama
小野山 伸也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP13079484A priority Critical patent/JPS619519A/en
Publication of JPS619519A publication Critical patent/JPS619519A/en
Publication of JPS648686B2 publication Critical patent/JPS648686B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To obtain the titled high strength steel having good shape and superior SSCC resistance by heting a steel having a prescribed component compsn. by a specified average heating rate, then quenching from said temp., next tempering and applying a suitable working to said material at a prescribed temp. range in the cooling process. CONSTITUTION:The steel contg. by weight % 0.20-0.40 C, 0.05-0.60 Si, 0.30- 0.80 Mn, <=0.015 P, <=0.010 S, 0.30-1.50 Cr, etc. while satisfying 0.3-0.6 Mo/Cr is prepared. Next, the steel is heated to 850-1,050 deg.C from 700 deg.C by 2.5-50 deg.C/sec average heating rate, then quenched from the temp., and tempered at 650-730 deg.C. Next, said steel is sizing worked by <=10% working ratio at 650-450 deg.C temp. range during the cooling process in the tempering treatment. In this way, the high strength steel material having good shape and superior SSCC resistance is obtained efficiently and at low cost.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、油井或いはガス井用鋼管材として好適な、
湿潤硫化水素(H2S)環境下での硫化物腐食割れ(以
下、5sccと略称する)に対して高い抵抗性を有する
高強度鋼、特に、降伏強度レベル70 Kgf /ln
m”以上の高強度鋼であって、しかも5scc割れ限界
応力比(割れ限界応力/降伏強度)が80%以上と言う
優れた耐5SCC性を有する鋼の製造方法に関するもの
である。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a steel pipe material suitable for use in oil wells or gas wells.
High-strength steel with high resistance to sulfide corrosion cracking (hereinafter abbreviated as 5scc) in a wet hydrogen sulfide (H2S) environment, especially yield strength level 70 Kgf/ln
The present invention relates to a method for manufacturing a high-strength steel having a strength of 5SCC or more and having an excellent 5SCC resistance of 80% or more.

〔従来の技術〕[Conventional technology]

5SCCは、□硫化水素を含む湿抽環境下で使用される
鋼材に応力が作用して生ずる現象であるが、一般に、材
料強度(例えば降伏強度)が高くなるほど耐5scc性
は劣化することが知られている。
5SCC is a phenomenon that occurs when stress is applied to steel materials used in a wet extraction environment containing hydrogen sulfide, but it is generally known that the higher the material strength (for example, yield strength), the worse the 5SCC resistance. It is being

そして、従来からの数多くの研究結果や経験等から、通
常の焼入れ・焼戻し処理による高強度鋼の製造手段では
、降伏強度レベルが70 Kgf /mm’以上であっ
て、しかも良好な耐5SCC性を兼備した鋼の実現は困
難であるとされており、従って、硫化水素を含む湿潤環
境下での使用に供される鋼材は、70−に、!iff 
/mWを下回る降伏強度のものに制限されざるを得なか
ったのである。
Based on numerous research results and experiences from the past, it has been found that the manufacturing method of high-strength steel using normal quenching and tempering treatments has a yield strength level of 70 Kgf/mm' or higher and good 5SCC resistance. It is said that it is difficult to create steel that has both of these properties, and therefore, steel materials that can be used in humid environments containing hydrogen sulfide have a 70-! If
Therefore, it was necessary to limit the yield strength to less than /mW.

しかしながら、近年のエネルギー事情は、地層深層部の
油田やガス田にまで開発の手を伸ばすことを要求してお
り、このような油井やガス井の深さ増大傾向に対処する
ため、これらに使用する油井管の鋼材強度上昇が切実に
叫ばれてもいた。
However, the energy situation in recent years has required the expansion of development to oil and gas fields located deep underground. There was also an urgent need to increase the strength of steel for oil country tubular goods.

そこで、これらの要求に応えるため、Ti−B添加鋼を
使用し、これの焼入れに際して急速加熱を採用したり(
特開昭52−52114号公報)、Cr−Mo鋼を急速
加熱して焼入れする手段(特開昭54−119324号
公報)等にて、耐5scc性に優れた高強度鋼を製造す
る方法が提案された。
Therefore, in order to meet these demands, we used Ti-B additive steel and adopted rapid heating during quenching (
There is a method for producing high-strength steel with excellent 5 SCC resistance by rapidly heating and quenching Cr-Mo steel (Japanese Patent Application Laid-open No. 54-119324). was suggested.

これらの方法による耐5scc性改善効果は、結晶粒の
細粒化や析出炭化物等の均一分散化を通じてもたらされ
ると考えられており、事実、耐5SCC性の改善に有効
な手段であることは認められるが、従来報告されている
限りでは、必ずしも十分な耐5SCC性向上効果が得ら
れるとは言い難いものであった。
The effect of improving 5SCC resistance by these methods is thought to be brought about through the refinement of crystal grains and uniform dispersion of precipitated carbides, and in fact, it is acknowledged that they are effective means for improving 5SCC resistance. However, as far as what has been reported so far, it is difficult to say that a sufficient effect of improving 5SCC resistance can be obtained.

一方、油井用鋼製品(例えば油井用鋼管)では曲りや真
円度等の形状に比較的厳しい要求がなされるため、通常
、冷間にてストレートナ−やプレスによる形状矯正が行
われる。そして、耐食性用途に対しては最終熱処理後の
冷間加工が禁止されているので、上記冷間矯正した後の
製品に対しては応力除去焼鈍が施される。
On the other hand, since steel products for oil wells (for example, steel pipes for oil wells) have relatively strict requirements for shape such as bending and roundness, the shape is usually corrected in the cold using a straightener or press. Since cold working after the final heat treatment is prohibited for corrosion-resistant applications, the products after the cold straightening are subjected to stress relief annealing.

ところが、このような後処理を施すことは工程の複雑化
やコスト上昇を招くのはもちろんのこと、鋼材の耐s 
scc性が劣化する傾向が認められ、最終熱処理の際に
急速加熱を採用して耐5scc性の改善を図ったとして
も、そ・の後の工程で該効果が失われてしまうか或いは
減することが、本発明者等の検討によって明らかとなっ
たのである。
However, such post-treatment not only complicates the process and increases cost, but also reduces the steel's resistance to corrosion.
A tendency for SCC resistance to deteriorate has been observed, and even if rapid heating is employed in the final heat treatment to improve 5SCC resistance, the effect is lost or reduced in subsequent steps. This has become clear through studies by the present inventors.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述のように、従来の技術によっては、降伏強度で70
 K、!7f / mm”以上の強度な有するとともに
、割れ限界応力比が80%以上と言う優れた耐5sCC
性を兼ね備えた高強度鋼材を安定して製造することがで
きなかったばかりか、製品形状矯正工程の付加によって
耐s scc性が一層劣化し、しかも工程の複雑化やコ
スト上昇を余儀なくされると言う問題を解決することが
できなかった。
As mentioned above, depending on the conventional technology, the yield strength is 70
K! It has a strength of 7f/mm” or more and an excellent 5sCC resistance with a cracking limit stress ratio of 80% or more.
Not only was it not possible to stably produce high-strength steel materials that had both good properties and properties, but the addition of a product shape correction process further deteriorated the SSC resistance, and further complicated the process and increased costs. Couldn't solve the problem.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等は、このような観点から、70KJf/mm
”以上の降伏強度と割れ限界比=80%以上で示される
優れた耐5scc性とを兼備し、かつ形状精度の良好な
高強度鋼製品を、能率良く、低コストで製造する方法を
見出すべく、長年に亘って研究を行った結果、 鋼の成分組成並びに熱処理条件、特に焼戻し温度を慎重
に調整するとともに、該焼戻し時の冷却過程で、温間に
て形状の矯正を実施すると、冷間矯正加工及びその後の
応力除去焼鈍を行うことなく、十分に満足できる強度、
耐5SCC性並びに形状寸法を備えた高強度調製品が安
定して得られる。
From this point of view, the inventors have determined that 70KJf/mm
``To find a method to efficiently and at low cost manufacture high-strength steel products that have the above yield strength and excellent 5 SCC resistance shown by a cracking limit ratio of 80% or more, and have good shape accuracy. As a result of many years of research, we have found that by carefully adjusting the composition of steel and heat treatment conditions, especially the tempering temperature, and by correcting the shape in the warm during the cooling process during tempering, it is possible to correct the shape in the cold. Achieves sufficient strength without straightening and subsequent stress relief annealing.
High-strength preparations with 5SCC resistance and shape and dimensions can be stably obtained.

との知見を得るに至ったのである。This led us to the following knowledge.

この発明は、上記知見に基づいてなされたものであり、 重量割合にて、 C: 0.20〜0.40%、 Si : 0.05−
0.60%。
This invention was made based on the above knowledge, and in terms of weight percentage, C: 0.20-0.40%, Si: 0.05-
0.60%.

Mn : 0.30〜0.80%、P:0.015%以
下。
Mn: 0.30-0.80%, P: 0.015% or less.

S:0.010%以下。S: 0.010% or less.

Cr: 0.30〜1.50%。Cr: 0.30-1.50%.

Mo : 0.10〜070%。Mo: 0.10-070%.

Nb:0.015〜0.050%。Nb: 0.015-0.050%.

Ti:01005〜0025%。Ti: 01005-0025%.

B:0.0005〜0.0025%。B: 0.0005-0.0025%.

Al:0.01〜0.10 % を含むとともに、 Mo / Cr : 0.3〜0.6 を満足し、 残部二Fe及びその他の不可避的不純物から成る成分組
成の鋼を、700℃以上の平均加熱速度を2.5〜50
℃/ secとして850〜1050℃にまで加熱した
後、該温度から焼入れし、次いで650〜730℃にて
焼戻しするとともに、その冷却過程における650〜4
50℃の温度域で加工率:10%以下の矯正加工を施す
ことにより、優れた耐5scc性を備えるとともに形状
寸法の良好な高強度鋼を得る点、 に特徴を有するものである。
A steel containing Al: 0.01 to 0.10%, satisfying Mo/Cr: 0.3 to 0.6, and the balance consisting of Fe and other unavoidable impurities is heated at 700°C or higher. Average heating rate 2.5-50
After heating to 850 to 1050 °C in terms of °C/sec, quenching from this temperature, then tempering at 650 to 730 °C, and 650 to 4 °C in the cooling process.
It is characterized by the fact that by performing straightening at a processing rate of 10% or less in a temperature range of 50° C., a high-strength steel with excellent 5 SCC resistance and good shape and dimensions can be obtained.

次に、この発朋にお−いて、鋼の成分組成、熱処理条件
及び矯正条件な前記のように限定した理由を説明する。
Next, in this development, the reason why the composition of the steel, heat treatment conditions, and straightening conditions were limited as described above will be explained.

A、鋼の化学成分組成 ■ C C成分には、鋼の強度を確保する作用のほか、焼入れ性
や焼戻し抵抗性を向上することにより耐5scc性向上
に有効な均一高温焼戻しマルテンサイト組織を確保する
作用をも有しているが、その含有量が0.20%未満で
は前記作用に所望の効果が得られず、他方0.40%l
越えて含有させると靭性の劣化を招くほか、熱処理時の
曲りや割れを生じ易くなることから、C含有量を0.2
0〜040%と定めた。
A. Chemical composition of steel ■ C C component has the effect of ensuring the strength of the steel, as well as improving hardenability and tempering resistance, ensuring a uniform high temperature tempered martensitic structure that is effective in improving 5SCC resistance. However, if the content is less than 0.20%, the desired effect cannot be obtained;
If the C content exceeds 0.2, the toughness will deteriorate and bending and cracking will occur more easily during heat treatment.
It was set as 0 to 040%.

■ 5i Si成分には、鋼の脱酸剤としての作用のほか、清浄度
を確保する作用があるので005%以上の添加を必要と
するものであるが、0.60%を越えて含有させると靭
性や加工性の劣化を招き、また結晶粒が粗大化して耐5
SCC性の劣化を来たし易くなることから、Si含有量
を0.05〜0860%と定めた。但し、実用上は0.
20〜040%が適当である。
■ 5i The Si component has the function of deoxidizing the steel as well as ensuring cleanliness, so it is necessary to add 0.05% or more, but it is not allowed to contain more than 0.60%. This leads to deterioration of toughness and workability, and the crystal grains become coarser, resulting in
The Si content was determined to be 0.05 to 0860% since this tends to cause deterioration of SCC properties. However, in practice it is 0.
20-040% is appropriate.

■ Mn Mn成分には、鋼の焼入れ性を改善して強度並びに靭性
を向上せしめる作用があるが、その含有量が0.30%
未満では前記作用に所望の効果が得られず、他方0.8
0%を越えて含有させると偏析が増大して耐食性の劣化
を招くことから、Mn含有量を030〜0.80%と定
めた。
■ Mn The Mn component has the effect of improving the hardenability of steel and increasing its strength and toughness, but its content is 0.30%.
If it is less than 0.8, the desired effect cannot be obtained;
If the Mn content exceeds 0%, segregation increases and corrosion resistance deteriorates, so the Mn content was set at 0.30 to 0.80%.

@ P Pは鋼中に不可避的に随伴される不純物であり少なけれ
ば少ない程良好なものであるが、その含有量が特に00
15%を越えると偏析が助長されて耐食性の劣化を招く
ことから、P含有量は0015%以下と定めた。
@ P P is an impurity that inevitably accompanies steel, and the less it is, the better it is.
If it exceeds 15%, segregation is promoted and corrosion resistance deteriorates, so the P content is set at 0.015% or less.

■ S Sも鋼中に不可避的に随伴される不純物であり、少ない
ほど良好なものであるが、その含有量が特に0010%
を越えると非金属介在物が増加して耐食性の劣化を招く
ことがら、S含有量は0.010係以下と定めた。但し
、望ましくは0.005%以下とする。
■ S S is also an impurity that inevitably accompanies steel, and the less it is, the better it is.
If the S content exceeds 0.010, nonmetallic inclusions increase and corrosion resistance deteriorates, so the S content was set at 0.010 or less. However, it is desirably 0.005% or less.

■ Cr Cr成分には、鋼の焼入れ性を向上するとともに強度を
増加する作用があるが、その含有量が0.1%未満では
前記作用に所望の効果を得ることができず、一方1.5
0%を越えて含有させると鋼の靭性や加工性の劣化を招
くことから、Cr含有量を030〜150%と定めた。
■Cr The Cr component has the effect of improving the hardenability of steel and increasing its strength, but if its content is less than 0.1%, the desired effect cannot be obtained; on the other hand, 1. 5
If the Cr content exceeds 0%, the toughness and workability of the steel will deteriorate, so the Cr content is set at 030% to 150%.

■ M。■ M.

Mo成分には、鋼の焼入れ性と焼戻し軟化抵抗性の向上
を通じて耐5SCC性を改善する作用があるが、その含
有量が010%未満では前記作用に所望の効果を得るこ
とができず、一方0.70%を越えて含有させると炭化
物の析出状態が変化し、耐食性の劣化を招くことから、
 Mc)含有量を0.10〜0,70%と定めた。
The Mo component has the effect of improving the 5SCC resistance by improving the hardenability and temper softening resistance of steel, but if its content is less than 0.1%, the desired effect cannot be obtained; If the content exceeds 0.70%, the precipitation state of carbides will change and corrosion resistance will deteriorate.
Mc) content was determined to be 0.10 to 0.70%.

■ Nb Nb成分には、鋼の焼入れ性と焼戻し軟化抵抗性を向上
させ、耐5scc性を改善させる作用があるが、その含
有量が0015%未満では前記作用に所望の効果が得ら
れず、一方0.050係を越えて含有させると靭性及び
加工性の劣化を招くことから、Nb含有量を0.015
〜0050%と定めた。
■Nb The Nb component has the effect of improving the hardenability and temper softening resistance of steel, and improving the 5scc resistance, but if its content is less than 0.015%, the desired effect cannot be obtained, On the other hand, if the Nb content exceeds 0.050, it will cause deterioration of toughness and workability, so the Nb content should be reduced to 0.015.
~0050%.

■ Ti Ti成分は、Bとの複合添加によって鋼の焼入れ性を大
幅に向上する作用な有して′いるが、その含有量が0.
005%未満では前記作用に所望の効果が得られず、一
方0.025%な越えて含有させると靭性劣化な招くこ
とから、Ti含有量を0.005〜0025%と定めた
■ Ti The Ti component has the effect of greatly improving the hardenability of steel when added in combination with B, but when its content is 0.
If the Ti content is less than 0.005%, the desired effect cannot be obtained, while if the Ti content exceeds 0.025%, the toughness will deteriorate.

■ B B成分は、Tiとの複合添加によって鋼の焼入れ性を大
幅に向上する作用を有しているが、その含有量がo、o
oos%未満では前記作用に所望の効果が得られず、一
方0. OO25%を越えて含有させてもそれ以上の向
上効果が得られないばかりか、靭性劣化を来たすことと
なるので、B含有量を0.0005〜O,OO’25%
と定めた。
■ B The B component has the effect of greatly improving the hardenability of steel when added in combination with Ti, but when its content is o, o
If it is less than 0.00%, the desired effect cannot be obtained; Even if the B content exceeds 0.0005% to OO'25%, not only will no further improvement effect be obtained, but the toughness will deteriorate.
It was determined that

■ Al Ad酸成分は、鋼の脱酸作用に加えて結晶粒の細粒化作
用があるが、その含有量が0.01%未満では前記作用
に所望の効果が得られず、他方0.10%を越えて含有
させると介在物が増加して鋼の脆化を招くようになるこ
とから、AJt’ll10.01〜0.10%と定めた
(2) The Al Ad acid component has a grain refining effect in addition to deoxidizing the steel, but if its content is less than 0.01%, the desired effect cannot be obtained; If the content exceeds 10%, inclusions will increase and the steel will become brittle, so AJt'll is set at 10.01 to 0.10%.

■ Mo/CrO比 Mo及びCrの添加量が上記範囲であったとしても、C
r含有量に対するMo含有量の比p″−03〜0.6の
範囲であることが良好な耐5scc性を確保する上で不
可欠な要件である。即ち、Mo /Crの値が0.3未
満であっても、或いは前記値が06を越えてたとしても
、いずれも炭化物の析出分布状態に悪影響が及ぼされ、
耐食性の劣化を招くからである。゛なお、製品肉厚が2
5龍以上の場合には、先に述べたようにTi及びBの複
合添加は必須であるが、製品肉厚が2511r1L未満
と薄い場合には、T1及びBの複合添加が行われなくと
も所望の強度と耐5SCC性を確保できることも確認さ
れた。
■ Mo/CrO ratio Even if the amounts of Mo and Cr added are within the above range, C
It is essential to ensure good 5scc resistance that the ratio of Mo content to r content is in the range p''-03 to 0.6. That is, the value of Mo/Cr is 0.3. Even if the value is less than 0.06, or even if the value exceeds 0.6, the state of carbide precipitation distribution will be adversely affected,
This is because it leads to deterioration of corrosion resistance.゛Please note that the product wall thickness is 2
In the case of 5 dragons or more, as mentioned earlier, the combined addition of Ti and B is essential, but if the product wall thickness is as thin as less than 2511r1L, the combined addition of T1 and B may not be necessary. It was also confirmed that the strength and 5SCC resistance could be ensured.

B、熱処理条件 ■ 焼入れ時の加熱速度 耐5scc性に有効な結晶粒の細粒化は、焼入れに際し
て700℃以上の温度域を急速加熱することにより得ら
れるものであり、700℃未満の温度域での加熱速度は
細粒化に大きな影響を与えることかない。そして、平均
加熱速度が2.5°C/sec未満では所望の耐s s
cc性向上効果を得ることができす、一方50℃/se
cを越える平均加熱速度では混粒な生じて、やはり所望
の耐5SCC性向上効果が得られないことから、焼入れ
の際の加熱は、700℃以上の温度域での平均加熱速度
が2,5〜50 ”C/ secとなるものに限定した
B. Heat treatment conditions■ Refining of crystal grains, which is effective for 5scc heating rate resistance during quenching, can be achieved by rapid heating in a temperature range of 700°C or higher during quenching, and in a temperature range of less than 700°C. The heating rate at 100° C. does not have a significant effect on grain refinement. If the average heating rate is less than 2.5°C/sec, the desired resistance s s
It is possible to obtain the effect of improving cc property, while at 50℃/se
If the average heating rate exceeds 700℃, the grains will be mixed and the desired 5SCC resistance improvement effect cannot be obtained. ~50''C/sec.

■ 焼入れ時の加熱温度 焼入れ時の加熱温度が850℃未満では鋼のオーステナ
イト化が十分になされない恐れがあり、一方1050℃
を越えて加熱すると結晶粒の粗大化を招くことから、焼
入れの際の加熱温度は850〜1050°Cと限定した
■ Heating temperature during quenching If the heating temperature during quenching is less than 850℃, the steel may not be sufficiently austenitized;
The heating temperature during quenching was limited to 850 to 1050°C, since heating beyond this temperature would result in coarsening of crystal grains.

■ 焼戻し温度 焼戻し温度が650°G未満では焼戻し不十分で炭化物
球状化が十分でなく、従って鋼の耐5SCC性は劣った
ものとなる。一方、焼戻し温度が730℃を越えると、
偏析部で変態が生じて耐5SCC性の劣化を招くことと
なる。
(2) Tempering Temperature If the tempering temperature is less than 650°G, the tempering will be insufficient and carbide spheroidization will not be sufficient, resulting in poor 5SCC resistance of the steel. On the other hand, when the tempering temperature exceeds 730℃,
Transformation occurs in the segregated portion, resulting in deterioration of 5SCC resistance.

このようなことから、焼戻し温度は650〜730℃と
定めた。
For this reason, the tempering temperature was set at 650 to 730°C.

C0矯正条件 ■ 矯正温度 この発明では、焼戻し処理における冷却過程で形状矯正
を行うことが1つの特徴になっているが、矯正温度が4
50℃を下回ると、矯正による塑性変形部の歪が回復し
ないで耐5SCC性の劣化を招く上、残留応力が残って
耐圧壊強度をも低下させる。一方、650℃を越える温
度域で矯正を行うと、得られる製品の強度バラツキが大
きくなってしまう。
C0 Straightening Conditions ■ Straightening Temperature One of the features of this invention is that the shape is straightened during the cooling process in the tempering process.
If the temperature is lower than 50°C, the strain in the plastically deformed portion due to straightening will not recover, leading to deterioration of 5SCC resistance, and residual stress will remain, reducing crushing strength. On the other hand, if straightening is performed in a temperature range exceeding 650°C, the strength variation of the obtained product will increase.

以上の理由から、矯正温度を650〜450 ’Cと定
めた。
For the above reasons, the straightening temperature was set at 650 to 450'C.

■ 矯正の際の加工率 上記温度域で矯正する際の加工率が10%を越えると、
得られる製品の強度バラツキが増大することとなるので
、矯正時の加工率を10%以下と定めた。
■ Processing rate during straightening If the processing rate during straightening in the above temperature range exceeds 10%,
Since the strength variation of the resulting product would increase, the processing rate during straightening was set at 10% or less.

次に、この発明を実施例により比較例と対比しながら説
明する。
Next, the present invention will be explained using examples and comparing with comparative examples.

〔実施例〕〔Example〕

まず、常法によって第1表に示される如き化学成分組成
の鋼を溶製し、これらを素材として通常のマンネスマン
製管法により、外径1271m、内径108.6mmの
鋼管を製造した。
First, steel having the chemical composition shown in Table 1 was melted by a conventional method, and a steel pipe having an outer diameter of 1271 m and an inner diameter of 108.6 mm was manufactured using the steel as raw materials by a conventional Mannesmann pipe manufacturing method.

次いで、誘導加熱によって25℃/secの加熱速度で
950℃にまで鋼管を加熱後、水焼入れを施した。
Next, the steel pipe was heated to 950° C. at a heating rate of 25° C./sec by induction heating, and then water quenched.

続いて、該鋼管な第2表に示される焼戻し温度にまで加
熱して焼戻しを行い、試験番号18及び20で示される
ものはそのまま室温まで冷却したが、その他のものは、
焼戻し後の鋼管温度が第2表に示す矯正温度に到達した
時点で加工率3%のストレートナ−による矯正加工を施
した。なお、室温までそのまま冷却した試験番号18及
び20の鋼管については、冷却後に加工率3%の冷間ス
トレートナ−による矯正加工を施し、続いて応力除去焼
鈍を実施した。
Subsequently, the steel pipes were heated and tempered to the tempering temperature shown in Table 2, and those shown in test numbers 18 and 20 were cooled to room temperature as they were, but the other pipes were
When the temperature of the steel pipe after tempering reached the straightening temperature shown in Table 2, straightening was performed using a straightener at a working rate of 3%. In addition, regarding the steel pipes of test numbers 18 and 20 that were cooled as they were to room temperature, straightening was performed using a cold straightener at a processing rate of 3% after cooling, and subsequently stress relief annealing was performed.

このように得られた鋼管製品について降伏強度及び耐5
scc性能を調べ、その結果を第2表に併せて示した。
The yield strength and resistance 5 of the steel pipe products obtained in this way
The scc performance was investigated and the results are also shown in Table 2.

なお、耐5SCC性能は、各鋼管製品から切り出した平
滑丸棒引張り試験片を用い、H2S飽和の0.5%酢酸
−5%食塩水中にて一定応力を付加して720時間内で
割れを生じない最大応力を求め、これによって割れ限界
応力比を算出して調べた。
In addition, 5SCC resistance performance was measured using a smooth round bar tensile test piece cut from each steel pipe product, and applying a constant stress in 0.5% acetic acid-5% saline solution saturated with H2S until cracking occurred within 720 hours. The maximum stress at which no cracking occurred was determined, and the critical stress ratio for cracking was calculated and investigated.

第2表に示される結果からも、本発明法によれば降伏強
度で70KIIf/mm”以上の高強度を有するととも
に、割れ限界応力比が80%以上と言う優れた耐5SC
C性を有する鋼が得られるのに対して、製造条件(対象
鋼の成分組成をも含む)が本発明の範囲から外れた比較
法や従来法では所望の特性を達成できないことが明らか
である。
From the results shown in Table 2, it is clear that the method of the present invention has a high yield strength of 70KIIf/mm" or more, and has excellent 5SC resistance with a cracking critical stress ratio of 80% or more.
It is clear that the desired properties cannot be achieved using comparative methods or conventional methods in which the manufacturing conditions (including the composition of the target steel) are outside the scope of the present invention, whereas steel with C properties can be obtained. .

〔総括的な効果〕[Overall effect]

上述のように、この発明によれば、優れた耐5SCC性
を有する形状良好な高強度鋼材を、能率良く、低コスト
で製造することができ、苛酷な条件下に存在する天然資
源の開発を一層促進し得る状況を作り出せるなど、産業
上有用な効果がもたらされるのである。
As described above, according to the present invention, high-strength steel materials with excellent 5SCC resistance and good shape can be manufactured efficiently and at low cost, and the development of natural resources that exist under harsh conditions is facilitated. This will bring about industrially useful effects, such as creating conditions that can further promote the process.

Claims (1)

【特許請求の範囲】 C:0.20〜0.40%、Si:0.05〜0.60
%、Mn:0.30〜0.80%、P:0.015%以
下、S:0.010%以下、 Cr:0.30〜1.50%、 Mo:0.10〜0.70%、 Nb:0.015〜0.050%、 Ti:0.005〜0.025%、 B:0.0005〜0.0025%、 Al:0.01〜0.10% を含むとともに、 Mo/Cr:0.3〜0.6 を満足し、 残部:Fe及びその他の不可避的不純物 からなる成分組成(以上重量%)の鋼を、700℃以上
の平均加熱速度を2.5〜50℃/secとして850
〜1050℃にまで加熱した後、該温度から焼入れし、
次いで650〜730℃にて焼戻しするとともに、その
冷却過程における650〜450℃の温度域で加工率:
10%以下の矯正加工を施すことを特徴とする、耐硫化
物腐食割れ性に優れた高強度鋼の製造方法。
[Claims] C: 0.20-0.40%, Si: 0.05-0.60
%, Mn: 0.30-0.80%, P: 0.015% or less, S: 0.010% or less, Cr: 0.30-1.50%, Mo: 0.10-0.70% , Nb: 0.015-0.050%, Ti: 0.005-0.025%, B: 0.0005-0.0025%, Al: 0.01-0.10%, and Mo/ Cr: 0.3 to 0.6, balance: Fe and other unavoidable impurities A steel with a composition (weight %) satisfying Cr: 0.3 to 0.6 is heated at an average heating rate of 2.5 to 50 °C/2.5 to 50 °C/700 °C or higher. 850 as sec
After heating to ~1050°C, quenching from this temperature,
Then, it is tempered at 650 to 730°C, and the processing rate is reduced in the temperature range of 650 to 450°C during the cooling process:
A method for manufacturing high-strength steel with excellent sulfide corrosion cracking resistance, characterized by applying straightening of 10% or less.
JP13079484A 1984-06-25 1984-06-25 Manufacture of high strength steel superior in sulfide corrosion cracking resistance Granted JPS619519A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13079484A JPS619519A (en) 1984-06-25 1984-06-25 Manufacture of high strength steel superior in sulfide corrosion cracking resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13079484A JPS619519A (en) 1984-06-25 1984-06-25 Manufacture of high strength steel superior in sulfide corrosion cracking resistance

Publications (2)

Publication Number Publication Date
JPS619519A true JPS619519A (en) 1986-01-17
JPS648686B2 JPS648686B2 (en) 1989-02-15

Family

ID=15042845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13079484A Granted JPS619519A (en) 1984-06-25 1984-06-25 Manufacture of high strength steel superior in sulfide corrosion cracking resistance

Country Status (1)

Country Link
JP (1) JPS619519A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63210236A (en) * 1987-02-25 1988-08-31 Sumitomo Metal Ind Ltd Manufacture of high-collapse oil well pipe having sour resistance
JPH05287381A (en) * 1992-04-08 1993-11-02 Sumitomo Metal Ind Ltd Manufacture of high strength corrosion resistant steel pipe
US5938865A (en) * 1995-05-15 1999-08-17 Sumitomo Metal Industries, Ltc. Process for producing high-strength seamless steel pipe having excellent sulfide stress cracking resistance
CN104011251A (en) * 2011-12-22 2014-08-27 杰富意钢铁株式会社 High-strength seamless steel pipe with excellent resistance to sulfide stress cracking for oil well, and process for producing same
WO2015012357A1 (en) 2013-07-26 2015-01-29 新日鐵住金株式会社 High-strength steel material for oil well use, and oil well pipe
CN109694993A (en) * 2017-10-20 2019-04-30 鞍钢股份有限公司 A kind of high-pressure heater super-thick steel plate and manufacturing method
US10513761B2 (en) 2014-10-01 2019-12-24 Nippon Steel Corporation High-strength steel material for oil well and oil country tubular goods
US10640856B2 (en) 2014-09-08 2020-05-05 Jfe Steel Corporation High-strength seamless steel pipe for oil country tubular goods and method of producing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230060928A (en) 2021-10-28 2023-05-08 주식회사 엘지에너지솔루션 Apparatus and method for controling power of dc-dc convertor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5252114A (en) * 1975-10-24 1977-04-26 Nippon Steel Corp Process for producing steel of excellent sulfide corrosion cracking re sistance
JPS54119324A (en) * 1978-03-08 1979-09-17 Kawasaki Steel Co Production of steel pipe for oil well
JPS5996216A (en) * 1982-11-24 1984-06-02 Sumitomo Metal Ind Ltd Manufacture of high strength steel with superior sulfide cracking resistance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5252114A (en) * 1975-10-24 1977-04-26 Nippon Steel Corp Process for producing steel of excellent sulfide corrosion cracking re sistance
JPS54119324A (en) * 1978-03-08 1979-09-17 Kawasaki Steel Co Production of steel pipe for oil well
JPS5996216A (en) * 1982-11-24 1984-06-02 Sumitomo Metal Ind Ltd Manufacture of high strength steel with superior sulfide cracking resistance

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63210236A (en) * 1987-02-25 1988-08-31 Sumitomo Metal Ind Ltd Manufacture of high-collapse oil well pipe having sour resistance
JPH05287381A (en) * 1992-04-08 1993-11-02 Sumitomo Metal Ind Ltd Manufacture of high strength corrosion resistant steel pipe
US5938865A (en) * 1995-05-15 1999-08-17 Sumitomo Metal Industries, Ltc. Process for producing high-strength seamless steel pipe having excellent sulfide stress cracking resistance
CN104011251A (en) * 2011-12-22 2014-08-27 杰富意钢铁株式会社 High-strength seamless steel pipe with excellent resistance to sulfide stress cracking for oil well, and process for producing same
EP2796587A1 (en) * 2011-12-22 2014-10-29 JFE Steel Corporation High-strength seamless steel pipe with excellent resistance to sulfide stress cracking for oil well, and process for producing same
EP2796587A4 (en) * 2011-12-22 2015-01-07 Jfe Steel Corp High-strength seamless steel pipe with excellent resistance to sulfide stress cracking for oil well, and process for producing same
WO2015012357A1 (en) 2013-07-26 2015-01-29 新日鐵住金株式会社 High-strength steel material for oil well use, and oil well pipe
US10597760B2 (en) 2013-07-26 2020-03-24 Nippon Steel Corporation High-strength steel material for oil well and oil well pipes
US10640856B2 (en) 2014-09-08 2020-05-05 Jfe Steel Corporation High-strength seamless steel pipe for oil country tubular goods and method of producing the same
US10513761B2 (en) 2014-10-01 2019-12-24 Nippon Steel Corporation High-strength steel material for oil well and oil country tubular goods
CN109694993A (en) * 2017-10-20 2019-04-30 鞍钢股份有限公司 A kind of high-pressure heater super-thick steel plate and manufacturing method

Also Published As

Publication number Publication date
JPS648686B2 (en) 1989-02-15

Similar Documents

Publication Publication Date Title
CN101634001B (en) CT90-class steel for continuous oil pipe and method for manufacturing same
JP2682332B2 (en) Method for producing high strength corrosion resistant steel pipe
JPH06220536A (en) Production of high strength steel pipe excellent in sulfide stress corrosion cracking resistance
JPH01283322A (en) Production of high-strength oil well pipe having excellent corrosion resistance
JPH0741856A (en) Production of high strength steel pipe excellent in sulfide stress corrosion cracking resistance
CN113584407A (en) High-strength high-temperature corrosion resistant martensitic stainless steel and manufacturing method thereof
JPH01259124A (en) Manufacture of high-strength oil well tube excellent in corrosion resistance
US20150226014A1 (en) Ultra-high toughness and high strength drill pipe and manufacturing process thereof
JPS619519A (en) Manufacture of high strength steel superior in sulfide corrosion cracking resistance
JP2003328079A (en) Steel pipe superior in workability for cold forging, and manufacturing method therefor
JPH11124623A (en) Manufacture of boron-containing steel for cold forging
JPH06264189A (en) High strength and high toughness stainless steel excellent in low temperature impact characteristic and its production
JP4975343B2 (en) Steel pipe excellent in cold forging processability and manufacturing method thereof
JPS5920423A (en) Production of 80kgf/mm2 class seamless steel pipe having excellent low temperature toughness
JPS63250418A (en) Manufacture of line pipe combining high strength with low yield ratio
JPS61147812A (en) Production of high strength steel superior in delayed breaking characteristic
JPH07110970B2 (en) Method for producing acicular ferritic stainless steel with excellent resistance to stress corrosion cracking
JP2815028B2 (en) Method for producing steel pipe having yield point elongation, low yield ratio and excellent low temperature toughness
JPS62107023A (en) Working method for welded steel pipe
JPH07113126B2 (en) Method for producing stainless steel with excellent resistance to stress corrosion cracking
JPS6240345A (en) High tension steel pipe for oil well having superior delayed fracture resistance
EP4310217A1 (en) High-strength and heat-resistant casing for heavy oil exploration and manufacturing method therefor
JP2541389B2 (en) Method of manufacturing low yield ratio high strength steel
JPS6210240A (en) Steel for seamless drawn oil well pipe excellent in corrosion resistance and collapsing strength
JPS62120430A (en) Manufacture of ultra-high-strength steel pipe

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term