JPS643862B2 - - Google Patents

Info

Publication number
JPS643862B2
JPS643862B2 JP59096795A JP9679584A JPS643862B2 JP S643862 B2 JPS643862 B2 JP S643862B2 JP 59096795 A JP59096795 A JP 59096795A JP 9679584 A JP9679584 A JP 9679584A JP S643862 B2 JPS643862 B2 JP S643862B2
Authority
JP
Japan
Prior art keywords
phenol
cyclohexylamine
nickel
hydrogen
ammonia
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59096795A
Other languages
Japanese (ja)
Other versions
JPS60239444A (en
Inventor
Hidekazu Matsumoto
Koya Hirasaka
Masao Hashiguchi
Hirobumi Arimatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honshu Chemical Industry Co Ltd
Original Assignee
Honshu Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honshu Chemical Industry Co Ltd filed Critical Honshu Chemical Industry Co Ltd
Priority to JP59096795A priority Critical patent/JPS60239444A/en
Publication of JPS60239444A publication Critical patent/JPS60239444A/en
Publication of JPS643862B2 publication Critical patent/JPS643862B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はフエノールを水素及びアンモニアと共
にガス状で常圧下にニツケル系成型触媒固定床を
通して還元アミノ化反応を行つて得られた反応液
を分留することを特徴とするシクロヘキシルアミ
ンの製造法に係るものである。 従来シクロヘキシルアミンの製造法としてはア
ニリンの水素添加による方法並びにシクロヘキサ
ノールのアミノ化による方法等が公知であり、工
業的にもこれらの方法により製造されている。然
し近来フエノールを水素及びアンモニアと反応さ
せて所謂還元アミノ化反応により一段でシクロヘ
キシルアミンを合成する方法が提案されるように
なつた。たとえばBrit1031169(日本特許公告昭41
―15103)はロジウム触媒存在下の加圧液相法で
あり、日本特許公告昭49―34677はルテニウム触
媒存在下の加圧液相法によるものである。又日本
公開公報昭55―51042や浜田等Chemistry
Letters 1980(3)239〜240は共にパラジウム触媒を
用いるものである。即ちフエノールの還元アミノ
化技術としてはRh,Ru,Pd等の貴金属触媒を用
いることが常識となつているのが実状である。本
発明者等はこのような従来技術を逐一検討し詳細
に研究を行つた結果貴金属触媒を使わずとも低廉
なニツケル系成型触媒を用いることにより、フエ
ノールの気相常圧還元アミノ化が可能であること
を発見し本発明に到達した。これは貴金属触媒を
使用しなければ低温、常圧下では不可能であると
考えられていた従来技術の概念からは到底想到出
来なかつた全く新規の発見である。 本発明の特徴とする所は第一に触媒として低廉
なニツケル系成型触媒を使用し、第二に常圧気相
反応であるから高価なオートクレーブを必要とせ
ず、場合によつては分留をも含めて全連続方式に
よりシクロヘキシルアミンを製造し得るという点
であつて、従来技術に比し設備コストが廉価とな
り、工業的に極めて価値あるシクロヘキシルアミ
ンの製造法ということが出来る。 又本発明の方法で得られた反応液はシクロヘキ
シルアミンの外にジシクロヘキシルアミンを主成
分としシクロヘキシルアニリン等より成る高沸点
物を若干含んでいる。これを分留して製品シクロ
ヘキシルアミンを留取することが出来る。高沸点
物として得られたジシクロヘキシルアミンを主成
分とする副生物は後述するようにフエノール適量
を加え過剰のアンモニア、水素と共に同一のニツ
ケル系成型触媒上に通して反応させると、ジシク
ロヘキシルアミンの大部はシクロヘキシルアミン
に転化する。従つて前述のプロセスに此のプロセ
スを組合わせることによりシクロヘキシルアミン
のみを製造することが出来る。 然し必ずしもこれらの両プロセスを別々に行う
必要はなく反応条件を選ぶことによりジシクロヘ
キシルアミンを含む高沸点物を常時適量を反応系
へ仕込むことによりニツケル系成型触媒充填の反
応塔一基のみを運転し分留を経てシクロヘキシル
アミンを製造することが出来る。この場合ジシク
ロヘキシルアミンを含む高沸点物添加量だけフエ
ノール仕込量をへらせばよい。 本発明に使用されるニツケル系成型触媒は担体
として珪藻土、軽石、アルミナ、シリカ等が用い
られ、又ニツケルには場合により助触媒として少
量の他の金属たとえば銅などを加えることもあ
る。然し製造の容易さ、取扱及び価格の点から珪
藻土担体のニツケル成型触媒が最も適している。
よつてこの触媒を用いて本発明の方法を詳細に述
べる。 一般にこのような触媒のニツケルは安定化され
ており、取扱うときは珪藻土担体安定化ニツケル
成型触媒の形で用いる。この触媒を加熱冷却可能
な反応管に充填し、200℃で水素を通しながら数
時間処理して活性化し還元ニツケル成型触媒とす
る。これを充填した固定床にフエノール:水素:
アンモニアのモル比1:(5〜30):(1〜10)好
ましくは1:(8〜20):(1〜6)の混合ガスを
フエノールLSV0.05〜0.2好ましくは0.07〜0.15、
反応温度100―250℃好ましくは130―180℃で常圧
下に反応を行なう。得られる反応液の組成はシク
ロヘキシルアミン30―70%、ジシクロヘキシルア
ミン55―25%、シクロヘキサノール15―5%で未
反応フエノールは反応条件を選ぶことにより殆ど
検出されない。この反応液を分留して高純度のシ
クロヘキシルアミンを得ることが出来る。その分
留残はジシクロヘキシルアミンを主成分としシク
ロヘキシルアニリンその他の副生物を少量含んで
いる。これをそのままか或は蒸留して、フエノー
ルと混合し水素及びアンモニアと共にモル比(分
留残+フエノール):水素:アンモニア=1:(5
―15):(2―6)、ガス状で常圧下に、反応温度
130―180℃で本発明の珪藻土担体還元ニツケル成
型触媒固定床を通すことによりシクロヘキシルア
ミン60―80%の反応液が得られる。これを分留し
て高純度のシクロヘキシルアミンを取得すること
が出来る。従つて両反応を組合せることにより最
終的にフエノールよりシクロヘキシルアミンのみ
を得ることが出来その収率は97〜98%対理論に達
する。 次に実施例により本発明の実施態様を説明する
がこれら実施例により本発明の主旨が限定される
ものではないことを付記する。 実施例 1 SUS304の2吋管に珪藻土担体安定化ニツケル
成型触媒350g(容積330c.c.)を充填する。この外
側はオイルバスになつており、触媒層全体が加熱
又は冷却出来るようになつている。この固定触媒
層に水素を通しつつ200℃に加熱して3時間処理
して活性化を行う。この時約1時間で水の留出が
終り、活性化が殆ど終了している。此処で温度を
160℃に下げフエノール:水素:アンモニア=
1:8:2のモル比とし、フエノールLSV 0.1,
反応温度165℃で常圧下に10時間反応を行つた。
得られた反応液を分留しガスクロ分析を行つた結
果、シクロヘキシルアミン56.5%、ジシクロヘキ
シルアミン37.3%、シクロヘキサノール4.2%、
高沸点物2%であつた。又フエノールの転化率
100%であり、シクロヘキシルアニリンの生成は
微量であつた。 上記反応液を更に分留して得られたシクロヘキ
シルアミンの純度は99.9%であつた。 実施例 2〜6 実施例1の触媒反応管を用い各種の条件で反応
を行つた後、反応液の組成をガスクロにてしらべ
た結果を下表に示す。
The present invention relates to a method for producing cyclohexylamine, which is characterized by carrying out a reductive amination reaction of phenol together with hydrogen and ammonia in a gaseous state under normal pressure through a fixed bed of nickel-based shaped catalyst, and fractionating the resulting reaction liquid. It is something. Conventionally, cyclohexylamine is produced by hydrogenation of aniline, amination of cyclohexanol, etc., and it is produced industrially by these methods. Recently, however, a method has been proposed in which cyclohexylamine is synthesized in one step by reacting phenol with hydrogen and ammonia through a so-called reductive amination reaction. For example, Brit1031169 (Japanese Patent Publication 1977)
-15103) is a pressurized liquid phase method in the presence of a rhodium catalyst, and Japanese Patent Publication No. 49-34677 is a pressurized liquid phase method in the presence of a ruthenium catalyst. Also, Japan Publication No. 55-51042 and Chemistry by Hamada et al.
Letters 1980(3) 239-240 both use palladium catalysts. That is, the reality is that it is common knowledge to use noble metal catalysts such as Rh, Ru, and Pd as a technology for reductive amination of phenol. The inventors of the present invention have examined these conventional techniques one by one and conducted detailed research. As a result, it has been found that gas phase normal pressure reductive amination of phenol is possible by using an inexpensive nickel-based shaped catalyst without using a precious metal catalyst. We discovered something and arrived at the present invention. This is a completely new discovery that could not have been conceived from the concept of conventional technology, which was thought to be impossible at low temperature and normal pressure without the use of a noble metal catalyst. The characteristics of the present invention are firstly that an inexpensive molded nickel catalyst is used as a catalyst, and secondly, the reaction is a normal pressure gas phase reaction, which eliminates the need for an expensive autoclave and may even require fractional distillation in some cases. This method can produce cyclohexylamine in a completely continuous manner, and the equipment cost is lower than that of conventional techniques, making it an industrially extremely valuable method for producing cyclohexylamine. In addition to cyclohexylamine, the reaction solution obtained by the method of the present invention contains dicyclohexylamine as a main component and some high-boiling substances such as cyclohexylaniline. This can be fractionated to collect the product cyclohexylamine. By-products mainly composed of dicyclohexylamine obtained as a high boiling point are reacted by adding an appropriate amount of phenol together with excess ammonia and hydrogen over the same nickel-based molded catalyst as described below. is converted to cyclohexylamine. Therefore, by combining this process with the above-mentioned process, only cyclohexylamine can be produced. However, it is not always necessary to carry out both of these processes separately, and by selecting the reaction conditions, it is possible to operate only one reaction column packed with a nickel-based shaped catalyst by constantly charging an appropriate amount of high-boiling substances including dicyclohexylamine into the reaction system. Cyclohexylamine can be produced via fractional distillation. In this case, the amount of phenol charged may be reduced by the amount of high-boiling substances including dicyclohexylamine added. In the nickel-based shaped catalyst used in the present invention, diatomaceous earth, pumice, alumina, silica, etc. are used as a carrier, and small amounts of other metals such as copper may be added to the nickel as a co-catalyst depending on the case. However, from the viewpoint of ease of production, handling, and cost, a nickel shaped catalyst on a diatomaceous earth carrier is most suitable.
Therefore, the method of the present invention will be described in detail using this catalyst. Generally, the nickel of such catalysts is stabilized and, when handled, is used in the form of diatomaceous earth supported stabilized nickel shaped catalysts. This catalyst is packed into a reaction tube that can be heated and cooled, and treated at 200°C for several hours while passing hydrogen through it to activate it and create a reduced nickel shaped catalyst. A fixed bed packed with phenol:hydrogen:
A mixed gas with a molar ratio of ammonia of 1:(5-30):(1-10), preferably 1:(8-20):(1-6), phenol LSV of 0.05-0.2, preferably 0.07-0.15,
The reaction is carried out at a reaction temperature of 100-250°C, preferably 130-180°C, under normal pressure. The composition of the resulting reaction solution is 30-70% cyclohexylamine, 55-25% dicyclohexylamine, and 15-5% cyclohexanol, and almost no unreacted phenol is detected by selecting the reaction conditions. High purity cyclohexylamine can be obtained by fractional distillation of this reaction solution. The fractional residue mainly contains dicyclohexylamine and contains small amounts of cyclohexylaniline and other by-products. This can be used as it is or by distillation, mixed with phenol and mixed with hydrogen and ammonia in a molar ratio (fractional residue + phenol): hydrogen: ammonia = 1: (5
-15): (2-6), gaseous state under normal pressure, reaction temperature
A reaction solution containing 60-80% cyclohexylamine is obtained by passing the reaction solution through a fixed bed of reduced nickel molded catalyst supported on diatomaceous earth carrier of the present invention at 130-180°C. This can be fractionated to obtain highly pure cyclohexylamine. Therefore, by combining both reactions, it is possible to finally obtain only cyclohexylamine from phenol, and the yield reaches 97 to 98% of theory. Next, embodiments of the present invention will be described with reference to Examples, but it is noted that the gist of the present invention is not limited by these Examples. Example 1 A 2-inch SUS304 tube was filled with 350 g (volume: 330 c.c.) of a diatomaceous earth carrier-stabilized nickel molded catalyst. The outside of this is an oil bath so that the entire catalyst layer can be heated or cooled. This fixed catalyst layer is activated by passing hydrogen through it and heating it to 200°C for 3 hours. At this time, distillation of water was completed in about 1 hour, and activation was almost completed. Check the temperature here
Lower to 160℃ Phenol:Hydrogen:Ammonia=
Molar ratio of 1:8:2, phenol LSV 0.1,
The reaction was carried out at a reaction temperature of 165°C under normal pressure for 10 hours.
The result of fractional distillation of the resulting reaction solution and gas chromatography analysis revealed that cyclohexylamine was 56.5%, dicyclohexylamine was 37.3%, cyclohexanol was 4.2%,
The content was 2% of high boiling point substances. Also, the conversion rate of phenol
100%, and the amount of cyclohexylaniline produced was very small. The purity of cyclohexylamine obtained by further fractional distillation of the above reaction solution was 99.9%. Examples 2 to 6 After carrying out reactions under various conditions using the catalytic reaction tube of Example 1, the composition of the reaction solution was analyzed by gas chromatography, and the results are shown in the table below.

【表】 実施例 7 実施例1の反応液からシクロヘキシルアミン留
去後の残液はジシクロヘキシルアミンを主成分と
しシクロヘキサノール、シクロヘキシルアニリン
及び高沸点分を含む。この残液を再仕込する処方
として例1の触媒反応管に(上記残液+1/2量の
フエノール):水素:アンモニア=1:10:6の
モル比の混合ガスをLSV0.1,反応温度165―175
℃で通し、常圧下に10時間反応を行つて得られた
反応液の組成はシクロヘキシルアミン76.2%、ジ
シクロヘキシルアミン18.3%、シクロヘキシルア
ニリンを含む高沸点分3.5%であつてこれを分留
して容易に99.9%のシクロヘキシルアミンを留取
することが出来た。
[Table] Example 7 The residual liquid after cyclohexylamine was distilled off from the reaction solution of Example 1 contained dicyclohexylamine as a main component and contained cyclohexanol, cyclohexylaniline, and high-boiling components. As a recipe for recharging this residual liquid, a mixed gas with a molar ratio of (above residual liquid + 1/2 amount of phenol): hydrogen: ammonia = 1:10:6 was added to the catalytic reaction tube of Example 1 at an LSV of 0.1 and a reaction temperature. 165-175
The composition of the reaction solution obtained by reacting at ℃ for 10 hours under normal pressure was 76.2% cyclohexylamine, 18.3% dicyclohexylamine, and 3.5% high boiling point components including cyclohexylaniline, which could be easily fractionated. We were able to distill 99.9% of cyclohexylamine.

Claims (1)

【特許請求の範囲】 1 フエノールを水素及びアンモニアと共にガス
状で常圧下にニツケル系成型触媒固定床を通して
還元アミノ化反応を行い、得られた反応液を分留
することを特徴とするシクロヘキシルアミンの製
造法。 2 フエノールを水素及びアンモニアと共にガス
状で常圧下にニツケル系成型触媒固定床を通し還
元アミノ化反応を行つて得られた反応液を分留
し、その際副生するジシクロヘキシルアミンを主
成分とする留分を留取し、これをフエノールと混
合して水素及びアンモニアと共にガス状で常圧下
にニツケル系成型触媒固定床を通して還元アミノ
化反応を行い、得られた反応液を分留することを
特徴とするシクロヘキシルアミンの製造法。
[Claims] 1. A method for producing cyclohexylamine, which is characterized by carrying out a reductive amination reaction of phenol together with hydrogen and ammonia in a gaseous state under normal pressure through a fixed bed of nickel-based shaped catalyst, and fractionating the resulting reaction solution. Manufacturing method. 2. Reductive amination reaction of phenol with hydrogen and ammonia in gaseous state is carried out under normal pressure through a fixed bed of nickel-based shaped catalyst, and the resulting reaction liquid is fractionated, and the main component is dicyclohexylamine, which is produced as a by-product. It is characterized by distilling a fraction, mixing it with phenol, performing a reductive amination reaction together with hydrogen and ammonia in a gaseous state under normal pressure through a fixed bed of nickel-based shaped catalyst, and fractionating the resulting reaction liquid. A method for producing cyclohexylamine.
JP59096795A 1984-05-15 1984-05-15 Preparation of cyclohexylamine Granted JPS60239444A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59096795A JPS60239444A (en) 1984-05-15 1984-05-15 Preparation of cyclohexylamine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59096795A JPS60239444A (en) 1984-05-15 1984-05-15 Preparation of cyclohexylamine

Publications (2)

Publication Number Publication Date
JPS60239444A JPS60239444A (en) 1985-11-28
JPS643862B2 true JPS643862B2 (en) 1989-01-23

Family

ID=14174559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59096795A Granted JPS60239444A (en) 1984-05-15 1984-05-15 Preparation of cyclohexylamine

Country Status (1)

Country Link
JP (1) JPS60239444A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6470446A (en) * 1987-06-24 1989-03-15 New Japan Chem Co Ltd Production of cyclohexylamine
JPH0464226A (en) * 1990-07-04 1992-02-28 Tadahiro Omi Electronic device having metallic fluoride film

Also Published As

Publication number Publication date
JPS60239444A (en) 1985-11-28

Similar Documents

Publication Publication Date Title
JP3380295B2 (en) Method for producing 1,3-propanediol
JPH031305B2 (en)
JP2007070358A (en) Hydrogenation of acetone
US7795466B2 (en) Method for producing saturated nitriles
JP2523753B2 (en) Method for producing 2,3-dichloropyridine
JPS643862B2 (en)
EP0255576A1 (en) Selective preparation of cis-perhydroacenaphthene
JPH10259167A (en) Isomerization of bis(aminomethyl)cyclohexane
JP5215870B2 (en) Method for producing aminoalkanoic acid amide
JP2811065B2 (en) Method for producing benzylamine
JPH02279657A (en) Production of aniline
JP2526611B2 (en) Purification method of dialkylaminoethanol
KR20210136011A (en) Preparation of polyalkylene-polyamines by reductive amination
JPS6260378B2 (en)
JPS643863B2 (en)
KR101072079B1 (en) Process for producing hexamethylenediamine and aminocapronitrile from adiponitrile, wherein the hexamethylenediamine contains less than 200 ppm tetrahydroazepine
US6407275B2 (en) Method for synthesizing 1,3-dihydroxytetramethyldisiloxane
JP2002539083A (en) Method for producing cyclohexanecarboxylic acid using [2 + 4] Diels-Alder reaction
CA1216862A (en) Process for producing aminobenzylamine
JP4200704B2 (en) Method for producing fluorinated benzonitrile
JP4345360B2 (en) Method for separating cis / trans isomer mixture of 4-aminocyclohexanecarboxylic acid alkyl esters
JPS58140030A (en) Preparation of 1,9-nonanediol
US4249028A (en) Selective conversion of d-isolimonene to d-3-menthene
JP2001302650A (en) Method for producing epoxycyclododecane
JPH02121946A (en) Continuous production of succinic acid

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term