JP2526611B2 - Purification method of dialkylaminoethanol - Google Patents

Purification method of dialkylaminoethanol

Info

Publication number
JP2526611B2
JP2526611B2 JP62317580A JP31758087A JP2526611B2 JP 2526611 B2 JP2526611 B2 JP 2526611B2 JP 62317580 A JP62317580 A JP 62317580A JP 31758087 A JP31758087 A JP 31758087A JP 2526611 B2 JP2526611 B2 JP 2526611B2
Authority
JP
Japan
Prior art keywords
catalyst
dialkylaminoethanol
dimethylaminoethanol
product
purifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62317580A
Other languages
Japanese (ja)
Other versions
JPH01160947A (en
Inventor
裕司 恩田
正次 上松
貴雄 香西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP62317580A priority Critical patent/JP2526611B2/en
Publication of JPH01160947A publication Critical patent/JPH01160947A/en
Application granted granted Critical
Publication of JP2526611B2 publication Critical patent/JP2526611B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ジアルキルアミノエタノールの精製法に関
する。さらに詳しくは、本発明は経時着色の少ないジア
ルキルアミノエタノール、特にジメチルアミノエタノー
ルを高純度で効率良く得る方法であって、先ずジアルキ
ルアミノエタノールよりも沸点の高い物質を除去し、次
いで水素添加触媒または脱水素触媒存在下、水素加圧下
に処理する方法である。
TECHNICAL FIELD The present invention relates to a method for purifying dialkylaminoethanol. More specifically, the present invention is a method for efficiently obtaining dialkylaminoethanol, which is less colored over time, and particularly dimethylaminoethanol, with high purity, in which a substance having a boiling point higher than that of dialkylaminoethanol is first removed, and then a hydrogenation catalyst or This is a method of treating under a pressure of hydrogen in the presence of a dehydrogenation catalyst.

ジアルキルアミノエタノール、特にジメチルアミノエ
タノールはカチオン系高分子凝集剤の原料として、また
溶剤、界面活性剤、塗料、ガス吸収剤、ウレタン発泡触
媒等の原料として利用されており、工業上有用な物質で
ある。
Dialkylaminoethanol, especially dimethylaminoethanol, is used as a raw material for cationic polymer flocculants and as a raw material for solvents, surfactants, paints, gas absorbents, urethane foaming catalysts, etc., and is an industrially useful substance. is there.

〔従来技術およびその問題点〕[Prior art and its problems]

ジアルキルアミノエタノールとして以下ジメチルアミ
ノエタノールを例に説明する。ジメチルアミノエタノー
ルは、ジメチルアミンと酸化エチレンとの反応により合
成される。一般的には液状無水ジメチルアミンに、酸化
エチレンを液状または気体状で導入することにより容易
に合成される。この時、水や低級脂肪族アルコール類
(例えばメタノール)を反応溶媒として使用すると、そ
の合成反応は著しく促進されることも知られている。ま
た、反応溶媒を使用することなく効率良く合成する方法
も知られている。しかしながら、いずれの方法で得られ
た生成物も目的物質であるジメチルアミノエタノール以
外に例えば、未反応のジメチルアミンや酸化エチレン、
あるいは副反応生成物さらには反応溶媒等が含まれてい
る。
As the dialkylaminoethanol, dimethylaminoethanol will be described below as an example. Dimethylaminoethanol is synthesized by the reaction of dimethylamine and ethylene oxide. Generally, it is easily synthesized by introducing ethylene oxide in a liquid or gaseous form into liquid anhydrous dimethylamine. At this time, it is also known that the use of water or a lower aliphatic alcohol (for example, methanol) as a reaction solvent significantly accelerates the synthetic reaction. Further, a method for efficiently synthesizing without using a reaction solvent is also known. However, in addition to dimethylaminoethanol, which is the target substance, the product obtained by either method is, for example, unreacted dimethylamine or ethylene oxide,
Alternatively, it contains a side reaction product and further a reaction solvent and the like.

この様な合成液は、例えば蒸溜操作等の通常の操作に
より分離精製され製品とされる。しかしながら、この様
な精製操作を厳密に行うことにより純度自体は高められ
るが、製品の経時着色は避けがたい この着色、特に経
時着色を防止する方法としていくつかの方法が提案され
ている。例えば、特公昭49−10648号公報には反応液に
硝酸もしくはそのアンモニウム塩またはアミンの硝酸塩
を加えて熟成し、次いでジアルキルアミノアルカノール
を分離する方法が提案されている。しかしこの方法は製
品中に添加物が残留するおそれがあり高純度の製品を得
るには煩雑な蒸溜、精製の操作が必要となる。また特開
昭54−24807号公報には反応液を180〜280℃の高温で数
時間〜数十時間処理することが提案されているが、この
様な高温で長時間処理するとジメチルアミノエタノール
が分解し目的物の収率が低下する虞れがある。特開昭50
−146406号公報には第三級窒素を含むアミノアルコール
を無機酸、イミダゾール環を持つ化合物の存在下加熱処
理する方法が提案されている。しかしこの場合も製品中
に添加した化合物等が残存する虞れがあり高純度の製品
を得るには煩雑な蒸溜、精製の操作が必要となる。さら
には、特公昭52−28770号公報には、Ni系またはCo系の
水素添加触媒または脱水素触媒を用いて水素加圧下に加
熱処理し、高次のアルカノールアミン類を脱色すること
が提案されている。この特公昭52−28770号公報に記載
の方法の様に目的とする製品を、直接水素添加触媒また
は脱水素触媒を用いて水素加圧下に加熱処理するとジメ
チルアミノエタノールの分解が生じ、あるいは着色成分
の水素化物を製品中に残留させることになり処理後さら
に煩雑な蒸溜等の精製操作が必要となる。例えば、水素
添加触媒または脱水素触媒としてRu系触媒により処理し
た場合はジメチルアミン、エタノール、高沸物質等が生
成する。一方、特公昭52−28770号公報記載の方法か
ら、反応合成液を直接水素添加触媒または脱水素触媒で
処理した後、通常の蒸溜等で十分に分離操作を行うこと
も考えられるが、この場合は目的物であるジメチルアミ
ノエタノールと分離でき得ない化合物が残留し、製品の
純度を向上させることができない。
Such a synthetic solution is separated and purified by a normal operation such as a distillation operation to obtain a product. However, although the purity itself can be increased by rigorously performing such a refining operation, it is inevitable that the product is colored over time. Several methods have been proposed as methods for preventing this coloring, particularly over time coloring. For example, Japanese Patent Publication No. 10648/1974 proposes a method of adding nitric acid or its ammonium salt or a nitrate of amine to the reaction solution for aging, and then separating the dialkylaminoalkanol. However, in this method, additives may remain in the product, and complicated distillation and purification operations are required to obtain a highly pure product. Further, JP-A-54-24807 proposes to treat the reaction solution at a high temperature of 180 to 280 ° C. for several hours to several tens of hours, but dimethylaminoethanol is treated at such a high temperature for a long time. There is a risk that the product may decompose and the yield of the desired product may decrease. JP 50
JP-A-146406 proposes a method of heat-treating an amino alcohol containing tertiary nitrogen in the presence of an inorganic acid and a compound having an imidazole ring. However, in this case as well, the compound added in the product may remain, and complicated distillation and purification operations are required to obtain a highly pure product. Furthermore, Japanese Examined Patent Publication No. 52-28770 proposes to decolorize higher alkanolamines by heat treatment under hydrogen pressure using a Ni-based or Co-based hydrogenation catalyst or dehydrogenation catalyst. ing. When the product of interest as in the method described in JP-B-52-28770 is heat-treated under hydrogen pressure using a direct hydrogenation catalyst or a dehydrogenation catalyst, dimethylaminoethanol is decomposed or a coloring component is produced. The hydride of ## STR3 ## remains in the product, and a more complicated purification operation such as distillation is required after the treatment. For example, when treated with a Ru-based catalyst as a hydrogenation catalyst or a dehydrogenation catalyst, dimethylamine, ethanol, high boiling substances, etc. are produced. On the other hand, according to the method described in JP-B-52-28770, it is considered that the reaction synthesis liquid is directly treated with a hydrogenation catalyst or a dehydrogenation catalyst, and then a sufficient separation operation is performed by ordinary distillation or the like. The compound that cannot be separated from the target product, dimethylaminoethanol, remains and the purity of the product cannot be improved.

近年業界において着色、特に経時着色の少なく高純度
な製品が要求されてきており、上述の如き従来の精製法
では上記の要求を満足することはできず、さらに蒸溜等
の操作を十分行わなければならない。
In recent years, there has been a demand for high-purity products with little coloring, particularly coloring with time, in the industry, and the above-mentioned requirements cannot be satisfied by the conventional refining methods as described above, and if operations such as distillation are not sufficiently performed. I won't.

本発明の目的は上記の如き煩雑な操作を必要とするこ
となく、高純度で、かつ経時着色の少ない製品を効率よ
く得ることにある。
An object of the present invention is to efficiently obtain a product having high purity and little coloring with time, without the need for complicated operations as described above.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者らは、上記の課題を解決すべく、鋭意検討を
重ねた結果、通常の蒸溜等の分離操作では分離が困難な
化合物は、反応合成液中のジメチルアミノエタノールよ
りも高い沸点を有する物質に含まれているある種の化合
物が水素添加反応の操作に伴って生成することが判明
し、本発明に到達した。
As a result of intensive studies to solve the above problems, the present inventors have found that a compound that is difficult to separate by a normal separation operation such as distillation has a boiling point higher than that of dimethylaminoethanol in the reaction synthesis liquid. It has been found that a certain compound contained in the substance is produced along with the operation of the hydrogenation reaction, and the present invention has been completed.

即ち本発明は、ジアルキルアミンと酸化エチレンとか
ら合成されたジアルキルアミノエタノールを精製するに
当たり、先ずジアルキルアミノエタノールよりも沸点の
高い物質を除去し、次いでRu系、Pd系およびPh系貴金属
触媒から運ばれた少なくとも一種の水素添加触媒または
脱水素触媒存在下、水素加圧下に処理することを特徴と
するジアルキルアミノエタノールの精製法である。
That is, in the present invention, when purifying a dialkylaminoethanol synthesized from dialkylamine and ethylene oxide, first, a substance having a higher boiling point than dialkylaminoethanol is removed, and then a Ru-based, Pd-based or Ph-based precious metal catalyst is used. A method for purifying dialkylaminoethanol, which comprises treating under pressure of hydrogen in the presence of at least one selected hydrogenation catalyst or dehydrogenation catalyst.

本発明の方法は特にジメチルアミノエタノールの精製
に効果的であり、従来になくジメチルアミノエタノール
を高純度で効率よく、かつ経時着色の少ない製品を得る
ことが出来るものである。
The method of the present invention is particularly effective for the purification of dimethylaminoethanol, and can obtain a product of dimethylaminoethanol having a high purity and efficiency, which is unprecedented, and less coloring with time.

本発明の方法は、上述した様に先ず反応合成液中の高
沸物質を除去するにあるが、この除去は通常の蒸溜等の
一般的な技術がそのまま適用される。本発明においてこ
の高沸物質の除去率は、反応合成液中の高沸物質の種
類、合成反応の選択率、分離能力等に関連し一概に決め
難いが、一般的には蒸溜に供した被処理液中のジメチル
アミノエタノールの損失量が1〜20重量%以内の範囲に
なる割合で除去すればよい。
As described above, the method of the present invention is to remove the high-boiling substance in the reaction synthesis solution first, but for this removal, general techniques such as ordinary distillation are applied as they are. In the present invention, the removal rate of the high-boiling substance is generally difficult to determine in relation to the type of the high-boiling substance in the reaction synthesis solution, the selectivity of the synthetic reaction, the separation ability, etc. The loss of dimethylaminoethanol in the treatment liquid may be removed at a rate within the range of 1 to 20% by weight.

次に、本発明の方法を実施するのに使用される水素添
加触媒または脱水素触媒は、Ru系、Pd系およびRh系貴金
属触媒である。これらの触媒は各酸化物、あるいは単体
として使用され、また所望に応じてアルミナ、シリカ、
珪藻土、炭素等の通常使用される担体に担持されて使用
される。この場合の担持量は、一般的には担体に対して
金属として10重量%以下、好ましくは0.3〜7重量%で
ある。また、触媒量はジメチルアミノエタノールに対し
て通常0.3〜10重量%、望ましくは0.5〜3重量%であ
る。
The hydrogenation or dehydrogenation catalysts used to carry out the process of the invention are then Ru-based, Pd-based and Rh-based noble metal catalysts. These catalysts are used as oxides or as a simple substance, and if desired, alumina, silica,
It is used by being carried on a commonly used carrier such as diatomaceous earth and carbon. In this case, the supported amount is generally 10% by weight or less, preferably 0.3 to 7% by weight, as a metal, with respect to the carrier. The catalyst amount is usually 0.3 to 10% by weight, preferably 0.5 to 3% by weight, based on dimethylaminoethanol.

触媒との接触時間は、流通式の場合は10〜120分、回
分式の場合は30〜250分で十分である。接触時間が余り
に短いと処理が十分でなく着色性物質が残留し、長過ぎ
ると目的物質の分解が顕著になる等好ましくない。また
水素圧力は3〜50kg/cm2Gで実施されるが、通常は5〜1
5kg/cm2Gである。使用される水素は必ずしも高純度のも
のである必要はなく工業的に汎用されているもので十分
である。
The contact time with the catalyst is 10 to 120 minutes for the flow type, and 30 to 250 minutes for the batch type. If the contact time is too short, the treatment is not sufficient and the coloring substance remains, and if it is too long, the decomposition of the target substance becomes remarkable, which is not preferable. The hydrogen pressure is 3 to 50 kg / cm 2 G, but usually 5 to 1
It is 5 kg / cm 2 G. The hydrogen used does not necessarily have to be of high purity and may be industrially widely used.

触媒と接触させる際の反応温度は、水素圧力、触媒
量、接触効率等により異なるが、一般的には50〜180℃
の範囲で実施されるが、80〜120℃前後の温度で実施す
るのが有利である。この温度が180℃よりも高い様な高
温では目的物であるジメチルアミノエタノールの分解が
生じ易くなり好ましくない。
The reaction temperature at the time of contact with the catalyst varies depending on the hydrogen pressure, the amount of the catalyst, the contact efficiency, etc., but is generally 50 to 180 ° C.
However, it is advantageous to carry out at a temperature of around 80 to 120 ° C. If the temperature is higher than 180 ° C., the desired product, dimethylaminoethanol, is easily decomposed, which is not preferable.

本発明の方法は、回分式あるいは流通式(連続式)何
れの方法も適用できる。
As the method of the present invention, either a batch method or a flow method (continuous method) can be applied.

本発明の方法において、水素添加触媒または脱水素触
媒存在下で水素加圧下に処理した後、被処理液は通常の
蒸溜手段等により低沸分等を除去することにより高純度
で、かつ経時着色が極めて少ない製品が得られる。
In the method of the present invention, after treatment under hydrogen pressure in the presence of a hydrogenation catalyst or a dehydrogenation catalyst, the liquid to be treated is highly pure by removing low boiling components and the like by ordinary distillation means, and colored with time. It is possible to obtain a product with very few

なお、水素添加触媒または脱水素触媒存在下で水素加
圧下に処理した後の被処理液は、固定床触媒層を使用し
たときはそのまま次の工程へ、固定床以外のときは例え
ば濾過等の通常の分離操作により触媒を除去した後、次
の工程へ移行することが望ましい。
The liquid to be treated after being treated under pressure of hydrogen in the presence of a hydrogenation catalyst or a dehydrogenation catalyst is directly subjected to the next step when a fixed bed catalyst layer is used, and when it is other than a fixed bed, for example, such as filtration. After removing the catalyst by a normal separation operation, it is desirable to shift to the next step.

〔発明の効果〕〔The invention's effect〕

上記の如く本発明は煩雑な蒸溜操作を必要とすること
なく、高純度で、かつ経時着色の少ない製品を効率よく
得ることができるものであり、工業的に極めて意義ある
方法である。
As described above, the present invention is an industrially very significant method because it can efficiently obtain a product with high purity and little coloring with time without requiring a complicated distillation operation.

以下に本発明の実施例を記す。 Examples of the present invention will be described below.

実施例 1 回分式反応装置を使用し、ジメチルアミンと酸化エチ
レンとを水溶媒を用いて反応させ、過剰のジメチルアミ
ンを回収し、粗ジメチルアミノエタノールを得た。この
反応合成液の組成は、ジメチルアミン0.1重量%、低沸
分2.0重量%、水17.9重量%、ジメチルアミノエタノー
ル77.0重量%、および高沸分3.0重量%を含有してい
た。
Example 1 Using a batch reactor, dimethylamine and ethylene oxide were reacted with an aqueous solvent to recover excess dimethylamine to obtain crude dimethylaminoethanol. The composition of this reaction synthesis liquid contained 0.1% by weight of dimethylamine, 2.0% by weight of low boiling point, 17.9% by weight of water, 77.0% by weight of dimethylaminoethanol, and 3.0% by weight of high boiling point.

内径35.5mmの筒状塔に1/4インチの大きさのMcMahonパッ
キングを1mの高さに不規則充填した蒸溜塔に上記の反応
合成液500gを供給し、蒸溜塔内を100mmHgに減圧しジメ
チルアミノエタノールを含む低沸分450gを回収した。こ
の回収液には77.8重量%のジメチルアミノエタノールを
含有していた。この回収液に5%Ru炭素担持触媒4.0gを
加え、撹拌下に100℃、水素分圧10kg/cm2Gにて3時間処
理した。冷却後触媒を濾別した処理液300gを前記した蒸
溜塔に仕込み塔内を100mmHgとし、還流比20で水と低沸
点留分として90.4gを採り、その後製品留分として210g
のジメチルアミノエタノールを回収した。この回収液の
純度は99.9%であった。この製品の留出時のAPHAは5以
下であり、1ヶ月保存後の経時着色は全く認められなか
った。
500 g of the above reaction synthesis solution was supplied to a distillation column in which a 1/4 inch size McMahon packing was irregularly packed in a cylindrical column with an inner diameter of 35.5 mm to a height of 1 m, and the pressure in the distillation column was reduced to 100 mmHg. 450 g of a low boiling point component containing aminoethanol was recovered. This recovered liquid contained 77.8% by weight of dimethylaminoethanol. 4.0 g of a 5% Ru carbon-supported catalyst was added to this recovered liquid, and the mixture was treated with stirring at 100 ° C. and a hydrogen partial pressure of 10 kg / cm 2 G for 3 hours. After cooling, the treated liquid obtained by filtering off the catalyst 300 g was charged to the distillation column described above and the inside of the column was set to 100 mmHg, and 90.4 g was taken as water and a low boiling point fraction at a reflux ratio of 20 and then 210 g as a product fraction.
Of dimethylaminoethanol was recovered. The purity of this recovered liquid was 99.9%. The APHA of this product at the time of distilling was 5 or less, and no coloration over time after storage for 1 month was observed.

比較例 1 実施例1に使用したと同様な反応合成液400gに5%Ru
炭素担持触媒3.5gを加え、撹拌下に100℃、水素分圧10k
g/cm2Gにて3時間処理した。冷却後触媒を濾別した処理
液300gを実施例1と同様な蒸溜塔に仕込み塔内を100mmH
gとして先ず還流比20で低沸点留分として90gを採り、そ
の後製品留分として210gのジメチルアミノエタノールを
回収した。この回収液の純度は98.5%であった。
Comparative Example 1 5% Ru was added to 400 g of a reaction synthesis solution similar to that used in Example 1.
Add 3.5g of carbon-supported catalyst, stir at 100 ℃, hydrogen partial pressure of 10k
It was treated with g / cm 2 G for 3 hours. After cooling, 300 g of the treatment liquid obtained by filtering off the catalyst was charged into the same distillation tower as in Example 1 and the inside of the tower was 100 mmH.
First, 90 g was taken as a low boiling point fraction with a reflux ratio of 20 as g, and then 210 g of dimethylaminoethanol was recovered as a product fraction. The purity of this recovered liquid was 98.5%.

比較例 2 実施例1に使用したと同様な反応合成液300gを実施例
1と同様な蒸溜塔に仕込み、塔内を100mmHgに保ち、還
流比20で水と低沸点留分90gを採り、その後210gの製品
留分を回収した。この製品は、留出時のAPHAは5であっ
たが、窒素シール室温保存1日で著しく着色しAPHAは50
以上となった。
Comparative Example 2 300 g of a reaction synthesis liquid similar to that used in Example 1 was charged into a distillation column similar to that of Example 1, the inside of the column was maintained at 100 mmHg, water and a low boiling point fraction of 90 g were taken at a reflux ratio of 20, and then 210 g of product fraction was collected. This product had an APHA of 5 at the time of distilling, but it was markedly colored after 1 day storage at room temperature under a nitrogen blanket, and APHA was 50%.
That's it.

実施例 2 次の組成を有する反応合成液を使用し、実施例1と同
様な蒸溜塔を使用して処理を行った。
Example 2 A reaction synthesis liquid having the following composition was used, and treatment was performed using the same distillation column as in Example 1.

反応合成液組成 DMA :29.8 wt % EO : 1.2 wt % CH3OH :19.5 wt% 低沸分: 0.2 wt % DMOH :48.3 wt % EGMME : 0.1 wt % 高沸分: 0.9 wt % 注) DMA:ジメチルアミン、EO:酸化エチレン、 DMOH:ジメチルアミノエタノール、 EGMME:エチレングリコールモノメチルエーテル 上記組成の合成液500gを蒸溜塔に仕込み常圧で処理し
てジメチルアミン145gを回収した。その後塔内を100mmH
gとしてジメチルアミノエタノールを含む低沸点物33.5g
を回収した。この回収液には69重量%のジメチルアミノ
エタノールを含有していた。この回収液に5%Ru炭素担
持触媒2.5gを加え、撹拌下に100℃、水素分圧10kg/cm2G
にて3時間処理した。冷却後、触媒を濾別した処理液30
0gを前記した蒸溜塔に仕込み常圧にてメタノールを含む
低沸点留分の95gを採りその後100mmHgにて蒸溜し製品ジ
メチルアミノエタノール195gを回収した。この回収液の
純度は99.9%であった。またこの製品の留出時のAPHAは
5以下であり、1ヶ月保存後の経時着色は全く認められ
なかった。
Composition of reaction synthesis liquid DMA: 29.8 wt% EO: 1.2 wt% CH 3 OH: 19.5 wt% Low boiling point: 0.2 wt% DMOH: 48.3 wt% EGMME: 0.1 wt% High boiling point: 0.9 wt% Note) DMA: Dimethyl Amine, EO: ethylene oxide, DMOH: dimethylaminoethanol, EGMME: ethylene glycol monomethyl ether 500 g of the synthetic solution having the above composition was charged into a distillation column and treated at atmospheric pressure to recover 145 g of dimethylamine. After that, 100 mmH in the tower
Low boiling point substance containing dimethylaminoethanol as g 33.5 g
Was recovered. The recovered liquid contained 69% by weight of dimethylaminoethanol. 2.5 g of 5% Ru carbon-supported catalyst was added to this recovered liquid, and the mixture was stirred at 100 ° C. and the hydrogen partial pressure was 10 kg / cm 2 G.
Was treated for 3 hours. After cooling, the treatment liquid obtained by separating the catalyst by filtration 30
0 g was charged into the above-mentioned distillation column and 95 g of a low boiling point fraction containing methanol was taken at normal pressure and then distilled at 100 mmHg to recover 195 g of dimethylaminoethanol product. The purity of this recovered liquid was 99.9%. Further, the APHA of this product at the time of distilling was 5 or less, and no coloring with time after storage for 1 month was observed at all.

実施例 3 触媒として5%Pd炭素担持触媒2.5gを使用した以外
は、実施例1と同様の装置により、同様な合成液の精製
を行った。回収液の純度は99.9%であり、製品の留出時
のAPHAは5以下であった。1ヶ月保存後の経時着色は全
く認められなかった。
Example 3 A similar synthesis solution was purified by the same apparatus as in Example 1 except that 2.5 g of a 5% Pd-carbon-supported catalyst was used as the catalyst. The purity of the recovered liquid was 99.9%, and APHA at the time of distilling the product was 5 or less. No coloration with time after storage for one month was observed.

実施例 4 触媒として5%Pt炭素担持触媒2.5gを使用した以外
は、実施例1と同様の装置により、同様な合成液の精製
を行った。回収液の純度は99.9%であり、製品の留出時
のAPHAは5以下であった。1ヶ月保存後の経時着色は全
く認められなかった。
Example 4 A similar synthesis solution was purified by the same apparatus as in Example 1 except that 2.5 g of a 5% Pt carbon-supported catalyst was used as the catalyst. The purity of the recovered liquid was 99.9%, and APHA at the time of distilling the product was 5 or less. No coloration with time after storage for one month was observed.

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ジアルキルアミンと酸化エチレンとから合
成されたジアルキルアミノエタノールを精製するに当た
り、先ずジアルキルアミノエタノールよりも沸点の高い
物質を除去し、次いでRu系、Pd系およびPh系貴金属触媒
から運ばれた少なくとも一種の水素添加触媒または脱水
素触媒存在下、水素加圧下に処理することを特徴とする
ジアルキルアミノエタノールの精製法。
1. When purifying a dialkylaminoethanol synthesized from a dialkylamine and ethylene oxide, first, a substance having a higher boiling point than that of the dialkylaminoethanol is removed, and then a noble metal catalyst of Ru type, Pd type and Ph type is used. A method for purifying dialkylaminoethanol, which comprises treating under pressure of hydrogen in the presence of at least one selected hydrogenation catalyst or dehydrogenation catalyst.
【請求項2】ジアルキルアミノエタノールがジメチルア
ミノエタノールである特許請求の範囲第1項記載のジア
ルキルアミノエタノールの精製法。
2. The method for purifying dialkylaminoethanol according to claim 1, wherein the dialkylaminoethanol is dimethylaminoethanol.
【請求項3】水素添加触媒または脱水素触媒がアルミ
ナ、シリカ、珪藻土、あるいは炭素に担持された触媒で
ある特許請求の範囲第1項または第2項記載のジアルキ
ルアミノエタノールの精製法。
3. The method for purifying dialkylaminoethanol according to claim 1 or 2, wherein the hydrogenation catalyst or dehydrogenation catalyst is a catalyst supported on alumina, silica, diatomaceous earth, or carbon.
【請求項4】水素圧が3〜50kg/cm2Gである特許請求の
範囲第1〜3項何れか記載のジアルキルアミノエタノー
ルの精製法。
4. The method for purifying dialkylaminoethanol according to claim 1, wherein the hydrogen pressure is 3 to 50 kg / cm 2 G.
JP62317580A 1987-12-17 1987-12-17 Purification method of dialkylaminoethanol Expired - Lifetime JP2526611B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62317580A JP2526611B2 (en) 1987-12-17 1987-12-17 Purification method of dialkylaminoethanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62317580A JP2526611B2 (en) 1987-12-17 1987-12-17 Purification method of dialkylaminoethanol

Publications (2)

Publication Number Publication Date
JPH01160947A JPH01160947A (en) 1989-06-23
JP2526611B2 true JP2526611B2 (en) 1996-08-21

Family

ID=18089823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62317580A Expired - Lifetime JP2526611B2 (en) 1987-12-17 1987-12-17 Purification method of dialkylaminoethanol

Country Status (1)

Country Link
JP (1) JP2526611B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4414879C2 (en) * 1994-04-28 1998-10-29 Basf Ag Process for the preparation of color stable dialkylaminoethanol
DE19942300A1 (en) * 1999-09-04 2001-03-08 Basf Ag Process for the preparation of alkanolamines with improved color quality
US6774264B2 (en) 2002-12-06 2004-08-10 Air Products And Chemicals, Inc. Catalyst to improve the color stability of N,N-dialkylalkanolamines
BR112013012873A2 (en) 2010-12-17 2016-09-06 Basf Se process for preparing an n, n-dialkylethanolamine
US8791302B2 (en) 2010-12-17 2014-07-29 Basf Se Process for preparing an N,N-dialky-ethanolamine having high color stability

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6490157A (en) * 1987-09-30 1989-04-06 Daicel Chem Method for preventing diethanolamine from discoloring

Also Published As

Publication number Publication date
JPH01160947A (en) 1989-06-23

Similar Documents

Publication Publication Date Title
JPH0481978B2 (en)
EP0027022B1 (en) Production of five-membered nitrogen-containing saturated heterocyclic compounds and catalyst suitable therefor
JP2002515474A (en) Method for preparing 4-aminodiphenylamine
EP0476404B1 (en) Process for preparing high-purity aniline
JP2801358B2 (en) Method for producing high-purity aniline
JPH0481979B2 (en)
JP2526611B2 (en) Purification method of dialkylaminoethanol
US4334107A (en) Catalytic purification of phenol
EP3613725B1 (en) Method for producing indancarbaldehyde
US4717774A (en) Process for the preparation of toluene diamines
KR0131203B1 (en) Process for the production of ñò-butyrolactone
JPH02504510A (en) Synthesis of phenylhydroquinone
JPS6362525B2 (en)
JP2811065B2 (en) Method for producing benzylamine
JP4709352B2 (en) Method for purifying 3-aminopropanol
JPH06157461A (en) Production of 5,6,7,8-tetrahydroquinolines
JP2002069032A (en) Method for purifying trans-1,4-cyclohexanedicarboxylic acid
US4285777A (en) Process for the purification of benzaldehyde
JP4248051B2 (en) High purity monochloroacetic acid and process for producing the same
CA1080725A (en) Process for producing phthalide
EP0183160A1 (en) Preparation process of indole
JP2002053535A (en) Method for purifying 3-aminopropanol
JP3159522B2 (en) Method for producing high-purity m-phenylenediamine
JPH01165532A (en) Production of indane
JP3043571B2 (en) Purification method of diaminodiphenyl ether

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080614

Year of fee payment: 12