JPS639843A - Gas detection device - Google Patents

Gas detection device

Info

Publication number
JPS639843A
JPS639843A JP15448786A JP15448786A JPS639843A JP S639843 A JPS639843 A JP S639843A JP 15448786 A JP15448786 A JP 15448786A JP 15448786 A JP15448786 A JP 15448786A JP S639843 A JPS639843 A JP S639843A
Authority
JP
Japan
Prior art keywords
gas
wavelength
semiconductor laser
measured
oscillation wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15448786A
Other languages
Japanese (ja)
Inventor
Akira Sawada
亮 澤田
Shoji Doi
土肥 正二
Iwao Sugiyama
巌 杉山
Hiroyuki Ishizaki
石崎 洋之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP15448786A priority Critical patent/JPS639843A/en
Publication of JPS639843A publication Critical patent/JPS639843A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To stably measure the concentration of gas by providing a means which compares the absolute value of the oscillation wavelength of a semiconductor laser with actual oscillation wavelength and detects the deviation and a means which corrects the deviation. CONSTITUTION:The wavelength of the semiconductor laser 1 which is controlled by a temperature controller 10 to necessary temperature is scanned on a pressure reduction cell 13 where pure gas of the same kind with the gas to be measured is charged to specific pressure. Consequently, an absorption spectrum obtained from a laser detector 15 is compared by a comparator 17 with an absorption spectrum in a reference wavelength band corresponding to the pressure reduction cell 13 stored in a memory device previously to detect the deviation in the oscillation wavelength of the semiconductor laser 1. The deviation in the oscillation wavelength can be compensated by controlling the temperature controller 10 so that the temperature is raised when the wavelength is made short or lowered when the wavelength is made long.

Description

【発明の詳細な説明】 〔概要〕 本発明は半導体レーザ方式のガス検出装置において、レ
ーザの発振波長が変動することによる測定誤差や不安定
性を解決するため、ガス濃度測定の直前に減圧セルの吸
収スペクトルを測定し、記憶装置にあらかじめ記憶させ
た減圧セルの吸収線のテーブルと比較することによりレ
ーザの発振波長帯のずれを求め、このずれを半導体レー
ザの温度を制御することにより補正するものであ−る。
[Detailed Description of the Invention] [Summary] In order to solve measurement errors and instability caused by fluctuations in the oscillation wavelength of the laser in a semiconductor laser type gas detection device, the present invention provides a method for installing a vacuum cell immediately before gas concentration measurement. A device that measures the absorption spectrum and compares it with a table of absorption lines of a decompression cell stored in a storage device in advance to determine the shift in the laser's oscillation wavelength band, and corrects this shift by controlling the temperature of the semiconductor laser. It is.

〔産業上の利用分野〕[Industrial application field]

本発明はガス検出装置に係り、特に半導体レーザ方式の
ガス検出装置(以下ガスセンサと略称する)に関する。
The present invention relates to a gas detection device, and particularly to a semiconductor laser type gas detection device (hereinafter abbreviated as gas sensor).

公害ガスセンサとしては、小型、高速、高精度なものが
要求される。半導体レーザ方式のガスセンサは可搬型で
あり、−望ましい特徴を備えているが、それ故に耐対環
境性能もまた高いことが要求されている。
Pollution gas sensors are required to be small, fast, and highly accurate. Semiconductor laser gas sensors are portable and have desirable features, but are therefore also required to have high environmental resistance.

〔従来の技術〕[Conventional technology]

第4図は従来のガスセンサの基本構成図、第5図はガス
濃度の検出原理を説明するための図を示す、第4図にお
いて、半導体レーザlのレーザ出射光は、レンズ2によ
り平行光線にされる。7”はガス濃度測定系であって被
測定ガス3を通過したレーザ光はレンズ4でレーザ検知
器5に集光される。
FIG. 4 is a basic configuration diagram of a conventional gas sensor, and FIG. 5 is a diagram for explaining the principle of gas concentration detection. In FIG. be done. 7'' is a gas concentration measuring system, in which the laser beam that has passed through the gas to be measured 3 is focused by a lens 4 onto a laser detector 5.

半導体レーザ1はその駆動電流を増加させることにより
出射光の発振波長は短くなり、逆に減少させると長くな
る特性を有し、波長を連続的に走査できるので、被測定
ガス3を通過するレーザ光の透過率を波長走査を行いな
がら測定することにより第5図に示すような被測定ガス
3の吸収スペクトルを得ることができる。以下第5図を
参照しながら第4図の説明を行う。
The semiconductor laser 1 has a characteristic that the oscillation wavelength of the emitted light becomes shorter by increasing the drive current, and becomes longer by decreasing the drive current.Since the wavelength can be continuously scanned, the oscillation wavelength of the emitted light becomes shorter when the drive current is increased. By measuring the light transmittance while scanning the wavelength, an absorption spectrum of the gas to be measured 3 as shown in FIG. 5 can be obtained. FIG. 4 will be explained below with reference to FIG.

第5図は被測定ガス3に例えば亜硫酸ガスSO2を選ん
だ場合の前記吸収スペクトルの一例を示す。
FIG. 5 shows an example of the absorption spectrum when, for example, sulfur dioxide gas SO2 is selected as the gas 3 to be measured.

この図は縦軸にレーザ光の被測定ガス3に対する透過率
をとり、横軸にレーザ光の波長をとって波長を走査した
場合の吸収スペクトル特性を示している。この亜硫酸ガ
スSO8のスペクトル特性は波長りにおいて透過率の最
小点Pがあり、波長々と4においてそれぞれ透過率のピ
ーク点Q、Rが存在する。
This figure shows the absorption spectrum characteristics when the wavelength is scanned, with the vertical axis representing the transmittance of the laser beam to the gas to be measured 3 and the horizontal axis representing the wavelength of the laser beam. The spectral characteristics of this sulfur dioxide gas SO8 have a minimum point P of transmittance at wavelength and peak points Q and R of transmittance at wavelength and 4, respectively.

最小点Pは、被測定ガスの亜硫酸ガスS08が存在する
ためにこれを通過したレーザ光が吸収され、その透過率
が減少したものであって、亜硫酸ガスSO!の存在がな
ければ吸収作用は受けず、スペクトル特性はQ点とR点
を結ぶ直線となる筈である。
At the minimum point P, the laser beam passing through the measured gas S08 is absorbed due to the presence of the sulfur dioxide gas S08, and its transmittance decreases. If there is no absorption effect, the spectral characteristic should be a straight line connecting point Q and point R.

この直線をベースラインと呼称する。This straight line is called a baseline.

第4図の信号処理回路6では、上記2つのピーク点Q、
 Rを結ぶ線上における波長あの位wP゛から前記最小
点Pまでの間の透過率の差りを求める。
In the signal processing circuit 6 of FIG. 4, the two peak points Q,
The difference in transmittance from the wavelength wP' to the minimum point P on the line connecting R is determined.

透過率の差りは被測定ガス3の濃度に比例するから比例
係数を乗算して濃度を算出することができ、その算出値
を表示装置7にて濃度表示を行う。
Since the difference in transmittance is proportional to the concentration of the gas to be measured 3, the concentration can be calculated by multiplying by a proportionality coefficient, and the calculated value is displayed on the display device 7.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の半導体レーザ方式のガスセンサにおいては、半導
体レーザ1はその発振波長の安定化を図るため冷却状態
で使用する0例えばヘリウム循環式冷凍機の冷凍室内に
装着し、冷却温度を絶対温度約80Kに制御して発振さ
せるが、発振波長の絶対値を制御しておらず、制御温度
のドリフトや、半導体レーザそのものの特性変化によっ
て発振波長がずれ、このためガス濃度の測定が安定に行
えない欠点があうた。
In a conventional semiconductor laser type gas sensor, the semiconductor laser 1 is used in a cooled state in order to stabilize its oscillation wavelength.For example, the semiconductor laser 1 is installed in the freezing chamber of a helium circulation type refrigerator, and the cooling temperature is set to an absolute temperature of about 80K. Although the oscillation is controlled, the absolute value of the oscillation wavelength is not controlled, and the oscillation wavelength shifts due to drifts in the control temperature or changes in the characteristics of the semiconductor laser itself, which has the disadvantage that gas concentration cannot be measured stably. Auta.

本発明は上記従来の欠点に鑑みて創作されたもので、半
導体レーザの発振波長の絶対値をとらえ、これと実際の
発振波長を比較してずれを検出する手段と、このずれ量
を補正する手段の提供を目的とする。
The present invention was created in view of the above-mentioned conventional drawbacks, and includes means for detecting a deviation by capturing the absolute value of the oscillation wavelength of a semiconductor laser and comparing this with the actual oscillation wavelength, and a method for correcting the amount of deviation. The purpose is to provide means.

〔問題点を解決するための手段〕[Means for solving problems]

本発明のガス検出装置は第1図の原理図に示すように、
温度制御装置10によって所要温度に制御された半導体
レーザ1の波長を該半導体レーザ1に流す電流の制御に
より走査し、ガス濃度測定系7゛を用いて大気中の被測
定ガス3の吸収スペクトルにより前記被測定ガスの濃度
測定を行うガス検出装置において、 前記半導体レーザlの出射光をハーフミラ11により2
分割し、前記被測定ガス3と同種の純粋ガスを所定の圧
力に封入した減圧セル13と、前記減圧セル13に対応
する基準波長帯における吸収スペクトル特性をあらかじ
め記憶する記憶装置1日とを設けると共に、 前記2分割光の一方による前記減圧セル13の吸収スペ
クトルをレーザ検知器15を介してA/D変換器16で
求め、この吸収スペクトルと、前記記憶装置18の吸収
スペクトルとを比較することにより前記半導体レーザ1
の発振波長帯の前記基準波長帯に対するずれを検出する
比較器17を設け、該比較器17の出力により前記温度
制御装置10を駆動し、前記発振波長帯のずれを補正す
ることをを特徴とする。
As shown in the principle diagram of FIG. 1, the gas detection device of the present invention has the following features:
The wavelength of the semiconductor laser 1 whose temperature is controlled to a required temperature by the temperature control device 10 is scanned by controlling the current flowing through the semiconductor laser 1, and the absorption spectrum of the gas to be measured 3 in the atmosphere is measured using the gas concentration measurement system 7. In the gas detection device for measuring the concentration of the gas to be measured, the emitted light of the semiconductor laser l is divided into two parts by a half mirror 11.
A reduced pressure cell 13 which is divided and filled with a pure gas of the same type as the gas to be measured 3 at a predetermined pressure, and a storage device 1 that stores in advance absorption spectrum characteristics in a reference wavelength band corresponding to the reduced pressure cell 13 are provided. At the same time, an absorption spectrum of the decompression cell 13 due to one of the two divided beams is obtained by an A/D converter 16 via a laser detector 15, and this absorption spectrum is compared with an absorption spectrum of the storage device 18. According to the semiconductor laser 1
A comparator 17 is provided for detecting a deviation of the oscillation wavelength band from the reference wavelength band, and the output of the comparator 17 drives the temperature control device 10 to correct the deviation of the oscillation wavelength band. do.

〔作用〕[Effect]

被測定ガス3と同種の純粋ガスを所定の圧力に封入した
減圧セル13に対して、温度制御装置lOによって所要
温度に制御された半導体レーザ1の波長を走査すること
によりレーザ検知器15から得られる吸収スペクトル〔
第2図中)参照〕と、あらかじめ記憶装置18に格納さ
れた前記減圧セル13に対応する基準波長帯における吸
収スペクトル〔第2図(a)参照〕を比較器17で比較
することにより、半導体レーザ1の発振波長のずれが検
出可能であり(本図の比較では半導体レーザの発振波長
はムの吸収線が欠落しているためム側すなわち波長の長
い方にずれていることが分かる)、このずれに対応して
波長を短(する場合は温度を上昇せしめ、波長を長くす
る場合は温度を下降せしめるように温度制御装置10を
制御することにより発振波長のずれを補正することがで
きる。
The wavelength of the semiconductor laser 1, which is controlled to a required temperature by the temperature control device IO, is scanned by the wavelength of the semiconductor laser 1, which is controlled to a required temperature by the temperature control device 1O, to the decompression cell 13, which is filled with a pure gas of the same type as the gas to be measured 3 at a predetermined pressure. absorption spectrum [
By comparing the absorption spectrum in the reference wavelength band corresponding to the decompression cell 13 stored in the storage device 18 in advance (see FIG. 2(a)) with the comparator 17, the absorption spectrum of the semiconductor It is possible to detect the shift in the oscillation wavelength of laser 1 (in the comparison in this figure, it can be seen that the oscillation wavelength of the semiconductor laser is shifted toward the Mu side, that is, the longer wavelength, because the Mu absorption line is missing), The shift in the oscillation wavelength can be corrected by controlling the temperature control device 10 so that the temperature is increased when the wavelength is shortened (if the wavelength is shortened) and the temperature is decreased when the wavelength is lengthened in response to this shift.

〔実施例〕〔Example〕

以下本発明の実施例を図面によって詳述する。 Embodiments of the present invention will be described in detail below with reference to the drawings.

なお、構成、動作の説明を理解し易くするために全図を
通じて同一部分には同一符号を付してその重複説明を省
略する。
Note that, in order to make the explanation of the configuration and operation easier to understand, the same parts are given the same reference numerals throughout all the figures, and repeated explanation thereof will be omitted.

第3図は本発明実施例の構成図を示す0図において、8
はヘリウム循環式冷凍機であってこの冷凍機内には熱伝
導率の良好な部材例えば銅製の取付台9aと、取付台9
aに巻きつけられたヒータ9bおよび温度センサ9c等
から構成されてなるヒートシンク9が格納され、取付台
9aには半導体レーザ1が装着されている。
FIG. 3 is a diagram showing the configuration of an embodiment of the present invention.
is a helium circulation type refrigerator, and inside this refrigerator there are a mounting base 9a made of a material having good thermal conductivity, such as copper, and a mounting base 9a made of copper.
A heat sink 9 composed of a heater 9b wound around a body, a temperature sensor 9c, etc. is housed, and a semiconductor laser 1 is mounted on a mounting base 9a.

ヒートシンク9は温度側m装置10の制御によって約8
0K(絶対温度)の所要温度に冷却されている。11は
ハーフミラ−であって半導体レーザ1から出射されたレ
ーザ光の平行光を2分割し、その一方は平面鏡21a〜
21Cと集光鏡22a〜22bおよび3つの球面鏡23
a〜23cにて構成される長光路セルを通過してレーザ
検知器5に集光され、その出力から長光路セル中の図示
しない被測定ガス3による吸収スペクトルを測定し、こ
の吸収スペクトルから第4図、第5図で説明したように
信号処理回路6にて透過率の差りを求め、その透過率の
差りから換算により図示しない被測定ガス3の濃度を算
出し、表示装置7に表示する。
The heat sink 9 is controlled by the temperature side m device 10 to a temperature of about 8
It is cooled to the required temperature of 0K (absolute temperature). 11 is a half mirror which divides the parallel light of the laser beam emitted from the semiconductor laser 1 into two, one of which is a plane mirror 21a~
21C, condenser mirrors 22a to 22b, and three spherical mirrors 23
The light passes through a long optical path cell composed of a to 23c and is focused on a laser detector 5, and from the output thereof, an absorption spectrum due to the gas to be measured 3 (not shown) in the long optical path cell is measured. As explained in FIG. 4 and FIG. 5, the difference in transmittance is determined in the signal processing circuit 6, and the concentration of the gas to be measured 3 (not shown) is calculated from the difference in transmittance by conversion, and the concentration is displayed on the display device 7. indicate.

他の一方は平面鏡24と集光鏡25を介して、被測定ガ
スと同種の純粋ガス(以下測定対象ガスと略称する)を
所定の圧力(例えば5〜lQmmHg)に封入した減圧
セル13を通過せしめ、レーザ検知機15に集光する。
The other side passes through a reduced pressure cell 13 in which a pure gas of the same type as the gas to be measured (hereinafter referred to as the gas to be measured) is sealed at a predetermined pressure (for example, 5 to 1Q mmHg) via a plane mirror 24 and a condenser mirror 25. The light is then focused on the laser detector 15.

このように減圧された測定対象ガスの吸収スペクトルは
第2図(b)に示すように複数の吸収線の各波長λ1.
 Jsとその各波長に対応する相対的な吸収強度のパタ
ーン(波長λ1の吸収強度は波長島の吸収強度より小さ
い)が明確に観測できる特徴がある。この吸収スペクト
ルをA/D変換器16を介して比較器17に入力する。
As shown in FIG. 2(b), the absorption spectrum of the gas to be measured, which has been depressurized in this way, has a plurality of absorption lines with wavelengths λ1.
It has a characteristic that a pattern of relative absorption intensity corresponding to Js and its respective wavelengths (the absorption intensity of wavelength λ1 is smaller than the absorption intensity of wavelength islands) can be clearly observed. This absorption spectrum is input to a comparator 17 via an A/D converter 16.

18は記憶装置例えばROMであって、減圧セル13に
対応するあらかじめ精密測定された基準波長帯(半導体
レーザ1に要求される発振波長帯域)における吸収スペ
クトル特性(複数の吸収線の各波長およびその各波長に
対応する相対的な吸収強度のデータ)をテーブルに記憶
しておき、測定対象ガスの種類に対応してそのデータを
比較器17に入力する。
Reference numeral 18 denotes a storage device such as a ROM, which stores absorption spectrum characteristics (each wavelength of a plurality of absorption lines and (relative absorption intensity data corresponding to each wavelength) is stored in a table, and the data is input to the comparator 17 in accordance with the type of gas to be measured.

比較器17に入力された記憶装置18のデータが第2図
(a)に示すパターンとなり、A/D変換器16のデー
タが第2図(blに示すパターンとなった場合両者を比
較すると、A/D変換器16のデータは波長ムに対応す
る吸収線が欠落している。すなわち半導体レーザ1の発
振波長帯域が波長の長い八個の方にずれていることが判
定できる。これを補正するためには温度制御装置10を
高温側に制御することにより半導体レーザ1の発振波長
帯域は短波長帯域側に移動する。発振波長帯域が波長の
短い側にずれているときには、逆に温度制御装置10を
低温側に制御することにより補正が可能となる。
If the data in the storage device 18 input to the comparator 17 becomes the pattern shown in FIG. 2(a), and the data in the A/D converter 16 becomes the pattern shown in FIG. The data from the A/D converter 16 lacks absorption lines corresponding to wavelengths.In other words, it can be determined that the oscillation wavelength band of the semiconductor laser 1 has shifted toward eight longer wavelengths.This can be corrected. In order to do this, the oscillation wavelength band of the semiconductor laser 1 is shifted to the short wavelength side by controlling the temperature control device 10 to the high temperature side.Conversely, when the oscillation wavelength band is shifted to the short wavelength side, the temperature control device 10 is controlled to the high temperature side. Correction is possible by controlling the device 10 to the low temperature side.

なお、従来の1個あたりの半導体レーザが連続して走査
できる波長の帯域幅は狭いものであったため、濃度測定
に利用できる吸収線は半値幅の小さいものに限られ、か
つレーザの発振波長帯域は不連続でしかも各半導体レー
ザに固有であるため装置に使用可能な半導体レーザは測
定対象ガスの吸収線に一致したものにかぎられる制約が
あった。
In addition, since the wavelength bandwidth that a single conventional semiconductor laser can continuously scan is narrow, the absorption lines that can be used for concentration measurement are limited to those with a small half-width, and the oscillation wavelength band of the laser Since this is discontinuous and unique to each semiconductor laser, the semiconductor lasers that can be used in the device are limited to those that match the absorption line of the gas to be measured.

そのため吸収係数の大きな吸収線は測定不可能であった
Therefore, it was impossible to measure absorption lines with large absorption coefficients.

前述のような半導体レーザの温度制御による発振波長の
補正方式を逆用すれば、所望の方向へ発振波長帯域を移
動させることが可能となる。
By reversing the above-mentioned method of correcting the oscillation wavelength by controlling the temperature of the semiconductor laser, it is possible to shift the oscillation wavelength band in a desired direction.

また、固有発振波長帯域が不連続の複数の半導体レーザ
を切換え可能に冷凍機内に格納し、その不連続帯域を発
振波長の絶対値を測定しつつ半導体レーザを切り換える
方式により固有の発振波長帯域を拡大可能なレーザ光源
が実現する。
In addition, multiple semiconductor lasers with discontinuous natural oscillation wavelength bands are stored in a refrigerator in a switchable manner, and the discontinuous band is measured by the absolute value of the oscillation wavelength while switching the semiconductor lasers. A scalable laser light source is realized.

これにより複数の半導体レーザを切換えて広い波長帯域
を走査できるので半値幅の広い吸収線も測定可能となる
。また、従来測定対象ガスの吸収線に一致しないため利
用できなかった半導体レーザの利用価値も向上する効果
がある。
This makes it possible to scan a wide wavelength band by switching between multiple semiconductor lasers, making it possible to measure absorption lines with a wide half-width. Furthermore, it has the effect of improving the utility value of a semiconductor laser, which could not be used conventionally because it does not match the absorption line of the gas to be measured.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように本発明のガスセンサによれば
、半導体レーザの発振波長の変動をヒートシンクの温度
制御により抑圧することができるので、安定に被測定ガ
スのガス濃度を測定することができる。
As described above in detail, according to the gas sensor of the present invention, fluctuations in the oscillation wavelength of the semiconductor laser can be suppressed by controlling the temperature of the heat sink, so that the gas concentration of the gas to be measured can be stably measured.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の原理図、 第2図は第1図の各レーザ検知器から得られる吸収スペ
クトル特性の比較図、 第3図は本発明実施例の構成図、 第4図は従来のガスセンサの基本構成図、第5図は従来
のガス濃度検出原理図を示す。 図において、1は半導体レーザ、3は被測定ガス、10
は温度制御装置、13は減圧セル、17は比較器、18
は記憶装置をそれぞれ示す。 +?/J/1カ’lt>tq果nr:IJ第1図 (Q)*agz1.鯵綱コhTz   (b)51に’
fEt+t、p+3’!’j’l’Zt&TZq ff
A’/2’2f714         ’u’lZ2
’Y7ト1しauqスス771−ルオ斗牛t1ど甑 i2  図 半見g眩胞例6騰吹図 第3図
Figure 1 is a diagram of the principle of the present invention, Figure 2 is a comparison diagram of absorption spectrum characteristics obtained from each laser detector shown in Figure 1, Figure 3 is a configuration diagram of an embodiment of the present invention, and Figure 4 is a diagram of the conventional A basic configuration diagram of a gas sensor, FIG. 5 shows a diagram of the principle of conventional gas concentration detection. In the figure, 1 is a semiconductor laser, 3 is a gas to be measured, and 10
is a temperature control device, 13 is a pressure reducing cell, 17 is a comparator, 18
indicate storage devices, respectively. +? /J/1ka'lt>tq fruit nr:IJFigure 1 (Q)*agz1. Tsunako hTz (b) 51'
fEt+t, p+3'! 'j'l'Zt&TZq ff
A'/2'2f714 'u'lZ2
'Y7 to1 auq susu 771-luo dou t1 do 甑i2 figure half view g glare cell example 6 rising blow figure 3

Claims (1)

【特許請求の範囲】 温度制御装置(10)によって所要温度に制御された半
導体レーザ(1)の波長を走査し、大気中の被測定ガス
(3)の吸収スペクトルにより前記被測定ガスの濃度測
定を行うガス検出装置において、 前記被測定ガス(3)と同種の純粋ガスを所定の圧力に
封入した減圧セル(13)と、 前記減圧セル(13)に対応する基準波長帯における吸
収スペクトル特性をあらかじめ記憶する記憶装置(18
)とを設けると共に、 前記半導体レーザ(1)の波長走査による前記減圧セル
(13)の吸収スペクトルと、前記記憶装置(18)の
吸収スペクトルとを比較することにより前記半導体レー
ザ田の発振波長帯の前記基準波長帯に対するずれを検出
する比較器(17)を設け、 該比較器(17)の出力により前記温度制御装置(10
)を駆動し、前記発振波長帯のずれを補正することを特
徴とするガス検出装置。
[Scope of Claims] The concentration of the gas to be measured (3) in the atmosphere is measured by scanning the wavelength of a semiconductor laser (1) whose temperature is controlled to a required temperature by a temperature control device (10), and based on the absorption spectrum of the gas to be measured (3) in the atmosphere. In a gas detection device that performs Storage device for storing information in advance (18
), and by comparing the absorption spectrum of the decompression cell (13) obtained by wavelength scanning of the semiconductor laser (1) with the absorption spectrum of the storage device (18), the oscillation wavelength band of the semiconductor laser field can be determined. A comparator (17) is provided for detecting a deviation from the reference wavelength band of the temperature control device (10), and the output of the comparator (17)
) to correct a shift in the oscillation wavelength band.
JP15448786A 1986-06-30 1986-06-30 Gas detection device Pending JPS639843A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15448786A JPS639843A (en) 1986-06-30 1986-06-30 Gas detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15448786A JPS639843A (en) 1986-06-30 1986-06-30 Gas detection device

Publications (1)

Publication Number Publication Date
JPS639843A true JPS639843A (en) 1988-01-16

Family

ID=15585318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15448786A Pending JPS639843A (en) 1986-06-30 1986-06-30 Gas detection device

Country Status (1)

Country Link
JP (1) JPS639843A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0348138A (en) * 1989-04-14 1991-03-01 Mitsubishi Heavy Ind Ltd Apparatus for measuring food constituent
JPH03176645A (en) * 1989-12-06 1991-07-31 Mitsubishi Heavy Ind Ltd Component measuring instrument of food
US5202570A (en) * 1990-03-27 1993-04-13 Tokyo Gas Co., Ltd. Gas detection device
JP2008513755A (en) * 2004-09-15 2008-05-01 ヴァイサラ オーワイジェー Method for improving optical measurement of gas concentration
JP2009174920A (en) * 2008-01-22 2009-08-06 Hitachi Cable Ltd Optical combustible gas concentration detection method and optical combustible gas concentration detector
JP2010536042A (en) * 2007-08-15 2010-11-25 ウーハン・チャンホン・インスツルメンツ・カンパニー・リミテッド Long-path atmospheric monitoring and measuring device
CN103439292A (en) * 2013-09-11 2013-12-11 清华大学 Multi-channel laser absorption spectrum measuring system
JP2014206541A (en) * 2014-07-01 2014-10-30 横河電機株式会社 Laser gas analyzer
US9347877B2 (en) 2011-11-28 2016-05-24 Yokogawa Electric Corporation Laser gas analyzer
CN107589084A (en) * 2017-08-15 2018-01-16 中国科学院合肥物质科学研究院 A kind of off-axis integrated chamber absorption spectrum gas detection apparatus based on auto-convergence eyeglass
CN109612965A (en) * 2018-12-25 2019-04-12 杭州电子科技大学 The miniaturization gas-detecting device and detection system of many kinds of parameters compensation

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0348138A (en) * 1989-04-14 1991-03-01 Mitsubishi Heavy Ind Ltd Apparatus for measuring food constituent
JPH03176645A (en) * 1989-12-06 1991-07-31 Mitsubishi Heavy Ind Ltd Component measuring instrument of food
US5202570A (en) * 1990-03-27 1993-04-13 Tokyo Gas Co., Ltd. Gas detection device
JP2008513755A (en) * 2004-09-15 2008-05-01 ヴァイサラ オーワイジェー Method for improving optical measurement of gas concentration
JP2010536042A (en) * 2007-08-15 2010-11-25 ウーハン・チャンホン・インスツルメンツ・カンパニー・リミテッド Long-path atmospheric monitoring and measuring device
JP2009174920A (en) * 2008-01-22 2009-08-06 Hitachi Cable Ltd Optical combustible gas concentration detection method and optical combustible gas concentration detector
US9347877B2 (en) 2011-11-28 2016-05-24 Yokogawa Electric Corporation Laser gas analyzer
US9671333B2 (en) 2011-11-28 2017-06-06 Yokogawa Electric Corporation Laser gas analyzer
CN103439292A (en) * 2013-09-11 2013-12-11 清华大学 Multi-channel laser absorption spectrum measuring system
JP2014206541A (en) * 2014-07-01 2014-10-30 横河電機株式会社 Laser gas analyzer
CN107589084A (en) * 2017-08-15 2018-01-16 中国科学院合肥物质科学研究院 A kind of off-axis integrated chamber absorption spectrum gas detection apparatus based on auto-convergence eyeglass
CN109612965A (en) * 2018-12-25 2019-04-12 杭州电子科技大学 The miniaturization gas-detecting device and detection system of many kinds of parameters compensation

Similar Documents

Publication Publication Date Title
JPS639843A (en) Gas detection device
WO1987007018A1 (en) Oxygen measurement using visible radiation
CA2538554A1 (en) Gas detection method and gas detector device
GB2312743A (en) Analysis of carbon isotopes
JPS608735B2 (en) How to measure contaminated gas
WO2019138795A1 (en) Light source for gas detector, and gas detector
JPH03246428A (en) Infrared video device
US9671290B2 (en) Temperature measurement method for ultraviolet light transmittance member, temperature measurement device for ultraviolet light transmittance member, and light source device
JPH0269639A (en) Laser system gas sensor
US5209567A (en) Apparatus for measuring the radiation capacity of lasers
JPS63182550A (en) Gas sensor
JPH11261146A (en) Laser power stabilizer
JPS6216370B2 (en)
JP2016070687A (en) Concentration measurement device
CN218496762U (en) Trace gas detection device based on quantum cascade laser
JP4629910B2 (en) Optical spectrum detection method, optical spectrum detection program using the same, optical spectrum detection device, spectroscopic device, and laser device
JPH0217429A (en) Concentration measuring method by using laser type gas sensor
JPH01238083A (en) Oscillation wavelength stabilization of semiconductor laser
JPH0273138A (en) Laser type gas sensor
JPS639844A (en) Gas detecting device
CN114441477B (en) Gas concentration detection method and device based on wide absorption spectrum line
JPS639842A (en) Gas detection device
JPH01254841A (en) Signal processing method for gas sensor
JPH0656734U (en) Spectroscopic analyzer
JPS6395343A (en) Gas sensor