JPS6381940A - Measurenent of thickness of wafer - Google Patents

Measurenent of thickness of wafer

Info

Publication number
JPS6381940A
JPS6381940A JP22596586A JP22596586A JPS6381940A JP S6381940 A JPS6381940 A JP S6381940A JP 22596586 A JP22596586 A JP 22596586A JP 22596586 A JP22596586 A JP 22596586A JP S6381940 A JPS6381940 A JP S6381940A
Authority
JP
Japan
Prior art keywords
wafer
thickness
measuring
movement
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22596586A
Other languages
Japanese (ja)
Inventor
Hajime Yui
肇 油井
Takashi Shimura
俊 志村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP22596586A priority Critical patent/JPS6381940A/en
Publication of JPS6381940A publication Critical patent/JPS6381940A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

PURPOSE:To conduct multipoint thickness measurement at high speed and with high efficiency and high precision by calculating the diameter of a wafer on the basis of movement until the edge of the wafer is detected through a measuring means from a predetermined position and performing the multipoint thickness measurement of the wafer by obtaining movement up to each measuring point on the basis of the calculating value. CONSTITUTION:A semiconductor wafer 1 is set at a prescribed position, and sucked and held by a vacuum chuck 2 from the lower side. The vacuum chuck 2 is moved linearly in the direction of the arrow B. The diameter of the wafer 1 is calculated from the movement of the wafer until the edge of the wafer 1 is detected by edge sensors S1, S2 from a first specified position. Movement until each measurement is acquired on the basis of the calculating value of the diameter, the wafer 1 is shifted by the vacuum chuck 2 at the measureing points, and the thickness of the wafer 1 at the measuring points is measured by a thickness measuring sensor 3. Thickness is measured at multipoints as a plurality of points such as points 6-10. The wafer 1 is returned and transferred in the direction of the arrow B after said measuring point 3, and the thickness of the wafer 1 is also measured at multipoints by the thickness measuring sensor 3 in the same manner as mentioned above during the returning and movement.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はウェハの厚さ測定技術、特に、半導体ウェハの
多点でその厚さを測定するために適用して効果のある技
術に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a technique for measuring the thickness of a wafer, and in particular to a technique that is effective when applied to measure the thickness at multiple points on a semiconductor wafer. be.

〔従来の技術〕[Conventional technology]

半導体ウェハの厚さ測定技術については、株式%式% 「電子材料j 1981年別冊、P70〜P71に記載
されている。
The technology for measuring the thickness of semiconductor wafers is described in "Electronic Materials J, 1981 Special Issue, P70-P71.

ところで、本発明者は、半導体ウェハの多点厚さ測定技
術について検討した。以下は、本発明者によって検討さ
れた技術であり、その概要は次の通りである。
By the way, the present inventor studied a multi-point thickness measurement technique for semiconductor wafers. The following are the techniques studied by the present inventor, and the outline thereof is as follows.

すなわち、半導体ウェハの自動平面度測定操作において
半導体ウェハの多点厚さ測定を行う場合、まず第1の方
式として、半導体ウェハを回転可能な真空チャック上に
吸着保持し、かつ該半導体ウェハの上下に非接触センサ
を配置しておき、該半導体ウェハを回転させながら多点
厚さ、測定を行う方式が考えられる。
That is, when performing multi-point thickness measurement of a semiconductor wafer in an automatic flatness measurement operation of a semiconductor wafer, the first method is to suction and hold the semiconductor wafer on a rotatable vacuum chuck, and then move the top and bottom of the semiconductor wafer. A possible method is to place a non-contact sensor on the semiconductor wafer and measure the thickness at multiple points while rotating the semiconductor wafer.

第2に、半導体ウェハを固定的に保持し、その上方に配
置した複数個の非接触センサによって該センサの個数に
応じた多点厚さ測定を行う方式が考えられる。
Second, a method can be considered in which the semiconductor wafer is fixedly held and a plurality of non-contact sensors arranged above the semiconductor wafer are used to measure the thickness at multiple points according to the number of the sensors.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、前記第1の方式では、特に半導体ウェハ
の中心部の厚み測定を行う時に真空チャックを持ちかえ
てジグザグに走査しながら測定を行う必要があるため、
測定速度が遅く、非能率であるという大きな問題がある
ことを本発明者は見い出した。
However, in the first method, when measuring the thickness of the central part of the semiconductor wafer, it is necessary to change the vacuum chuck and perform the measurement while scanning in a zigzag manner.
The inventors have discovered that there are major problems in that the measurement speed is slow and inefficient.

また、前記第2の方式の場合、測定点が固定化されてし
まい、あまり多くの測定点での測定ができず、しかも厚
さ測定位置精度が悪いなどの問題があることが本発明者
によって見い出された。
In addition, in the case of the second method, the measurement points are fixed, making it impossible to measure at too many measurement points, and the thickness measurement position accuracy is poor. Found out.

本発明の目的は、ウェハの多点厚さ測定を高速で能率良
く行うことのできる技術を提供することにある。
An object of the present invention is to provide a technique that allows multi-point thickness measurement of a wafer to be performed efficiently and at high speed.

本発明の他の目的は、ウェハの多点厚さ測定を精度良く
行うことのできる技術を提供することにある。
Another object of the present invention is to provide a technique that can accurately measure the thickness of a wafer at multiple points.

本発明の前記ならびにその他の目的と新規な特徴は、本
明細書の記述および添付図面から明らかになるであろう
The above and other objects and novel features of the present invention will become apparent from the description of this specification and the accompanying drawings.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本願において開示される発明のうち代表的なものの概要
を簡単に説明すれば、次の通りである。
A brief overview of typical inventions disclosed in this application is as follows.

すなわち、半導体ウェハなどのウェハを所定位置から測
定手段でそのエツジを検出するまでの移動子に基づいて
該ウェハの直径を算出し、その算出値に基づいて各測定
点までの移動量を求めて酸ウェハの多点厚さ測定を行う
ものである。
That is, the diameter of a wafer, such as a semiconductor wafer, is calculated based on the mover used to move the wafer from a predetermined position until its edge is detected by the measuring means, and the amount of movement to each measurement point is determined based on the calculated value. It performs multi-point thickness measurements of acid wafers.

〔作用〕[Effect]

前記した手段によれば、ウェハの直径を求することによ
って該ウェハ内の厚さ測定位ぽを正確に割り出すことが
でき、該ウェハが測定手段に対して移動する間に該測定
手段で多点の厚さ測定を能率良く、高いMrで行うこと
ができる。
According to the above-mentioned means, by determining the diameter of the wafer, the thickness measurement position within the wafer can be accurately determined, and while the wafer is moving relative to the measuring means, the measuring means can measure the thickness at multiple points. can be efficiently measured with a high Mr.

〔実施例〕〔Example〕

第1図は本発明による一実施例である半導体ウェハの厚
さ測定方法を説明するための平面方向の概略説明図であ
る。
FIG. 1 is a schematic plan view for explaining a method for measuring the thickness of a semiconductor wafer according to an embodiment of the present invention.

この実施例において、被測定物である半導体ウェハ1 
(第1図に実線で示す)は矢印六方向から供給され、所
定位置で停止されてその中心点0から外れた位置におい
て真空チャック2で真空吸着される。真空チャック2は
矢印Bで示す如く、矢印六方向に対して直交方向に直線
的に往復移動可能である。本実施例のウェハ1は真空チ
ャック2で吸着保持された状態でそのオリエンテーショ
ンフラン)OFが矢印A方向と平行であり、したがって
、ウェハ1の中心点0を通りかつオリエンテーションフ
ラン)OFの中心と直交する中心線CLは矢印B方向と
平行に延びている。
In this embodiment, a semiconductor wafer 1 which is an object to be measured is
(shown by solid lines in FIG. 1) is supplied from six directions of arrows, stopped at a predetermined position, and vacuum-chucking by a vacuum chuck 2 at a position away from the center point 0. As shown by arrow B, the vacuum chuck 2 is capable of linearly reciprocating in a direction orthogonal to the six directions of arrows. In this embodiment, the wafer 1 is held by the vacuum chuck 2, and its orientation flange (OF) is parallel to the direction of arrow A, so that it passes through the center point 0 of the wafer 1 and is perpendicular to the center of the orientation flange (OF). A center line CL extends parallel to the direction of arrow B.

たとえば、静電容量センサやレーザ式センサなどの非接
触センサよりなる厚さ測定センサ3(測定手段)は、前
記中心線CL上において、半導体ウェハ1のオリエンテ
ーションフラットOFの移動方向側に配置されている。
For example, the thickness measuring sensor 3 (measuring means) made of a non-contact sensor such as a capacitance sensor or a laser sensor is arranged on the center line CL on the moving direction side of the orientation flat OF of the semiconductor wafer 1. There is.

なお、第1図における中心線CL上には、互いに長さり
、だけ離間された半導体ウェハlの外周エツジ測定用の
エツジセンサSt  と82 とが厚さ測定センづ3の
両側に2組配置されている。第1図におけるD2 はエ
ツジセンサS1 から半導体ウェハlのオリエンテーシ
ョンフラットOF tでの距fi、D、はエツジセンサ
S2 と半導体ウェハ1よりも小さい直径の半導体ウェ
ハ1aの外周エツジまでの距離、D、′はエツジセンサ
S2 と半導体ウェハ1の外周エツジまアの距離、D4
  は厚さ測定センサ3とエツジセンサS、との間の距
離である。
In addition, on the center line CL in FIG. 1, two sets of edge sensors St and 82 for measuring the outer circumferential edge of the semiconductor wafer l are arranged on both sides of the thickness measurement sensor 3 and are spaced apart from each other by a length. There is. In FIG. 1, D2 is the distance fi from the edge sensor S1 to the orientation flat OF t of the semiconductor wafer l; Distance between edge sensor S2 and outer edge of semiconductor wafer 1, D4
is the distance between the thickness measurement sensor 3 and the edge sensor S.

なお、第1図の4はウェハ1を真空吸着してその平面内
で90度回動させるための回動チャックである。
Note that 4 in FIG. 1 is a rotary chuck for vacuum suctioning the wafer 1 and rotating it by 90 degrees within its plane.

次に、本実施例の作用について説明するつまず、矢印六
方向から半導体ウェハ1または1aを搬送して所定位置
で停止させ、そのウェハlまたは1aの中心点0から外
れた位置を下側から真空チャック2で吸着保持する。
Next, in order to explain the operation of this embodiment, a semiconductor wafer 1 or 1a is transported from six directions of arrows, stopped at a predetermined position, and a position away from the center point 0 of the wafer l or 1a is moved from below. It is held by vacuum chuck 2.

次いで、真空チャック2を矢印B方向、すなわち厚さ測
定センサ3の方向に直線移動させる。この時、エツジセ
ンサS、およびS2でウェハ1または1aのエツジを検
出する。そして、最初の所定位置からエツジセンサS1
.S2 でウェハ1または1aのエツジを検出するまで
のウェハ移動量からウェハ1または1aの直径を算出す
る。この時におけるウェハ1または1aの直径Diaの
算出はたとえば次式により行う。
Next, the vacuum chuck 2 is moved linearly in the direction of arrow B, that is, in the direction of the thickness measurement sensor 3. At this time, edge sensors S and S2 detect the edge of wafer 1 or 1a. Then, from the first predetermined position, the edge sensor S1
.. In S2, the diameter of wafer 1 or 1a is calculated from the amount of wafer movement until the edge of wafer 1 or 1a is detected. Calculation of the diameter Dia of the wafer 1 or 1a at this time is performed, for example, using the following equation.

まず第1に、たとえば第1図におけるウェハ1aの場合
には、 Dia=D+   (D2   Ds )     ・
・・(1)また、たとえば第1図におけるウェハ1の場
合には、 D+a=D+  + (Ds’  D2 )     
・・・(2)の算出式を用いることができる。
First of all, for example, in the case of the wafer 1a in FIG. 1, Dia=D+ (D2 Ds) ・
...(1) Also, for example, in the case of wafer 1 in FIG. 1, D+a=D+ + (Ds' D2 )
...The calculation formula (2) can be used.

このようにして、ウェハ1または1aの直径を求めた後
には、この直径の算出値に基づいて各測定までの移動量
を求めてその測定点でウェハ1またはlaを真空チャッ
ク2を移動させ、その測定点におけるウェハ1または1
aの厚さを厚さ測定センサ3で測定する。この厚さ測定
センサ3によるウェハ1の厚さ測定は、ウェハ1または
1aが第1図の実線位置からそのエツジが第1図の左側
のエツジセンサS2 で検出されるまでの間にたとえば
6〜10点の如き複数点における多点で行われる。
After determining the diameter of the wafer 1 or 1a in this way, the amount of movement up to each measurement is determined based on the calculated value of the diameter, and the vacuum chuck 2 is moved to move the wafer 1 or la at the measurement point. Wafer 1 or 1 at that measurement point
The thickness of a is measured by the thickness measurement sensor 3. The thickness of the wafer 1 is measured by the thickness measurement sensor 3, for example, for 6 to 10 minutes from the solid line position of the wafer 1 or 1a until its edge is detected by the edge sensor S2 on the left side of FIG. It is performed at multiple points such as points.

ウェハ1または1aが矢印B方向に第1図の左側のエツ
ジセンサS2でエツジを検出される位置に達すると、回
動チャック4でウエノ\1または1aを所定の角度たと
えば90度だけその平面内で回動される。その後、再び
真空チャック2でウェハ1または1aを真空吸着して矢
印B方向に戻り移動させ、その戻り移動中にも前記と同
様に、厚さ測定センサ3によってウェハ1または1aの
厚さを多点で測定する。
When the wafer 1 or 1a reaches the position where the edge is detected by the edge sensor S2 on the left side of FIG. Rotated. After that, the wafer 1 or 1a is again vacuum-chucking with the vacuum chuck 2 and moved back in the direction of arrow B. During the return movement, the thickness of the wafer 1 or 1a is multiplied by the thickness measurement sensor 3 in the same manner as described above. Measure in points.

これらの場合において、ウェハ1または1aの測定点た
とえばエツジセンサS1 から測定点までの真空チャッ
ク2の移動量SP、〜SP1゜の算出はたとえば次の式
にしたがって行うことができる。
In these cases, the amount of movement SP, .about.SP1 DEG of the vacuum chuck 2 from the measurement point of the wafer 1 or 1a, such as the edge sensor S1, to the measurement point can be calculated, for example, according to the following equation.

S P +  = D4  + D TsSPs  =
Da  +DT3S 3 Pg  = D4  + Dia −D 73SS
 P +o ” D4  + Dla   D Tsこ
こで、D T3. D T3sは測定位置を示している
S P + = D4 + D TsSPs =
Da + DT3S 3 Pg = D4 + Dia −D 73SS
P + o ” D4 + Dla D Ts Here, D T3. D T3s indicates the measurement position.

また、SP、からSPs までは1枚のウェハの測定に
おける前半のDia/2、SP、からSP、。
Also, from SP to SPs is the first half of Dia/2 in the measurement of one wafer, from SP to SP.

までは後半のDia/2の範囲における測定点をそれぞ
れ示している。
The figures up to 1 show measurement points in the latter half Dia/2 range, respectively.

以上のように、本実施例によれば、次のような効果が得
られる。
As described above, according to this embodiment, the following effects can be obtained.

(1)、ウェハ1または1aの所定位置からエツジセン
サSt 、  S2 でウェハエツジを検出するまでの
矢印B方向へのウェハ移動量から該ウェハの直径を算出
し、各測定点までの移動量を求めてウェハの厚さを多点
で測定することにより、厚さ測定点を正確に割り出して
、ウェハの一往復移動だけで精度の良い多点厚み測定を
能率良く行うことができる。
(1) Calculate the diameter of the wafer from the amount of movement of the wafer in the direction of arrow B from a predetermined position on the wafer 1 or 1a until the edge sensor St, S2 detects the wafer edge, and calculate the amount of movement to each measurement point. By measuring the thickness of the wafer at multiple points, it is possible to accurately determine the thickness measurement points and efficiently perform highly accurate multi-point thickness measurements with just one reciprocating movement of the wafer.

(2)、前記(1)により、搬送停止時におけるウェハ
1゜1aの位置ずれの影響を受けることなく、常に確実
に測定を行うことができる。
(2) Due to the above (1), measurements can always be carried out reliably without being affected by the displacement of the wafer 1° 1a when the transport is stopped.

以上本発明者によってなされた発明を実施例に基づき具
体的に説明したが、本発明は前記実施例に限定されるも
のではなく、その要旨を逸脱しない範囲で種々変更可能
であることはいうまでもない。
Although the invention made by the present inventor has been specifically explained above based on Examples, it goes without saying that the present invention is not limited to the Examples and can be modified in various ways without departing from the gist thereof. Nor.

たとえば、測定センサ3や回動チャック4さらには真空
チャック2の構造などは前記実施例以外のものとするこ
とができる。
For example, the structure of the measurement sensor 3, rotary chuck 4, and vacuum chuck 2 may be different from those of the embodiments described above.

以上の説明では主として本発明者によってなされた発明
をその利用分野である半導体ウェハの全自動厚さ測定に
適用した場合について説明したが、これに限定されるも
のではなく、たとえばそれ以外の厚さ測定にも適用でき
る。
In the above explanation, the invention made by the present inventor was mainly applied to the field of application, which is fully automatic thickness measurement of semiconductor wafers, but the invention is not limited to this, and for example, it can be used to measure other thicknesses. It can also be applied to measurements.

〔発明の効果〕〔Effect of the invention〕

本願において開示される発明のうち代表的なものによっ
て得られる効果を簡単に説明すれば、下記の通りである
A brief explanation of the effects obtained by typical inventions disclosed in this application is as follows.

すなわち、半導体ウェハなどのウェハを所定位置から測
定手段の方向に移動させるに際して前記所定位置から前
記測定手段でウェハのエツジを検出するまでの移動量に
基づいて該ウェハの直径を算出し、その算出値に基づい
て各測定点までの移動量を求めて該半導体ウェハの厚さ
の測定を多点について行うことにより、ウェハの多点厚
さ測定を任意の位置で能率良く行うことができる。また
、半導体ウェハの多点厚さ測定を正確に行うことができ
る。
That is, when moving a wafer such as a semiconductor wafer from a predetermined position in the direction of the measuring means, the diameter of the wafer is calculated based on the amount of movement from the predetermined position until the edge of the wafer is detected by the measuring means, and the diameter of the wafer is calculated. By determining the amount of movement to each measurement point based on the value and measuring the thickness of the semiconductor wafer at multiple points, it is possible to efficiently measure the thickness of the wafer at multiple points at any position. Further, multi-point thickness measurements of semiconductor wafers can be performed accurately.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による半導体装置の厚さ測定方法を説明
する平面的概略説明図である。 1.1a・・・半導体ウェハ、2・・・真空チャック、
3・・・厚さ測定センサ(測定手段)、4・・・回動チ
ャック、Sl 、St  ・・・エツジ第1図
FIG. 1 is a schematic plan view illustrating a method for measuring the thickness of a semiconductor device according to the present invention. 1.1a... semiconductor wafer, 2... vacuum chuck,
3... Thickness measurement sensor (measuring means), 4... Rotating chuck, Sl, St... Edge Figure 1

Claims (1)

【特許請求の範囲】 1、ウェハを所定位置から測定手段の方向に移動させる
に際して前記所定位置から前記測定手段でウェハのエッ
ジを検出するまでの移動量に基づいて該ウェハの直径を
算出し、その算出値に基づいて各測定点までの移動量を
求めて該ウェハの厚さの測定を多点について行うことを
特徴とするウェハの厚さ測定方法。 2、ウェハの厚さ測定に際してまず最初に該ウェハのオ
リエンテーションフラットに対して直交方向に該ウェハ
を移動させて該直交方向の多点で厚さ測定を行った後、
該ウェハをその平面方向に所定角度回動させ、該ウェハ
を前記移動方向に沿って逆方向に戻しながら該回動方向
について多点で厚さ測定を行うことを特徴とする特許請
求の範囲第1項記載のウェハの厚さ測定方法。
[Claims] 1. When moving the wafer from a predetermined position in the direction of the measuring means, the diameter of the wafer is calculated based on the amount of movement from the predetermined position until the edge of the wafer is detected by the measuring means; A method for measuring the thickness of a wafer, characterized in that the thickness of the wafer is measured at multiple points by determining the amount of movement to each measurement point based on the calculated value. 2. When measuring the thickness of the wafer, first move the wafer in a direction perpendicular to the orientation flat of the wafer and measure the thickness at multiple points in the orthogonal direction, and then
The wafer is rotated by a predetermined angle in its plane direction, and the wafer is returned in the opposite direction along the moving direction, and the thickness is measured at multiple points in the rotating direction. The method for measuring the thickness of a wafer according to item 1.
JP22596586A 1986-09-26 1986-09-26 Measurenent of thickness of wafer Pending JPS6381940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22596586A JPS6381940A (en) 1986-09-26 1986-09-26 Measurenent of thickness of wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22596586A JPS6381940A (en) 1986-09-26 1986-09-26 Measurenent of thickness of wafer

Publications (1)

Publication Number Publication Date
JPS6381940A true JPS6381940A (en) 1988-04-12

Family

ID=16837658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22596586A Pending JPS6381940A (en) 1986-09-26 1986-09-26 Measurenent of thickness of wafer

Country Status (1)

Country Link
JP (1) JPS6381940A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0665576A2 (en) * 1994-01-27 1995-08-02 Tokyo Seimitsu Co.,Ltd. Wafer diameter/sectional shape measuring machine
JP2003344037A (en) * 2002-05-24 2003-12-03 Dainippon Screen Mfg Co Ltd Film thickness measuring apparatus and method, and substrate treating unit and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0665576A2 (en) * 1994-01-27 1995-08-02 Tokyo Seimitsu Co.,Ltd. Wafer diameter/sectional shape measuring machine
EP0665576A3 (en) * 1994-01-27 1997-05-28 Tokyo Seimitsu Co Ltd Wafer diameter/sectional shape measuring machine.
JP2003344037A (en) * 2002-05-24 2003-12-03 Dainippon Screen Mfg Co Ltd Film thickness measuring apparatus and method, and substrate treating unit and method

Similar Documents

Publication Publication Date Title
CN102169822B (en) Method for doubly setting and accurately positioning centre of silicon slice
JPS6238642B2 (en)
JPH03136264A (en) Prepositioning of semiconductor article and its device
CN106989670B (en) A kind of non-contact type high-precision large-scale workpiece tracking measurement method of robot collaboration
CN208026219U (en) A kind of caliberating device based on laser displacement sensor
JP2010067905A (en) Wafer alignment method and equipment
CN110470209A (en) A kind of ultraprecise roundness measurement method and device based on two-step method
CN104197848A (en) Double-frequency differential thickness measurement method and equipment
CN109357653A (en) A kind of imperfect outer arc radius measuring device and measuring method of revolving body workpieces
JPS6381940A (en) Measurenent of thickness of wafer
CN112665477A (en) Detection tool and method for testing plane positioning accuracy of end effector
JP3820278B2 (en) Disk-shaped body center determination device
CN108827214A (en) A kind of detection device and method of super large type bearing ring outer diameter
CN112113517B (en) Method for detecting flatness of sliding plate brick
JPS6130681B2 (en)
JP6757391B2 (en) Measuring method
Kyrinovič et al. Automated measurement system for crane rail geometry determination
CN110763162A (en) Ultra-precise line laser corner sensing method
US10247890B2 (en) Method of adjusting the parallelism of a fiber block with a chip surface
JP5001211B2 (en) Center position detection method and apparatus, and center position alignment method and apparatus
JPS62135711A (en) Measuring instrument for sphere
JP2694468B2 (en) Position detection method and inspection device
JPH0649958U (en) Semiconductor wafer thickness measuring machine
JP2001201335A (en) Measuring method and measuring device for both end positions in width direction of sheet material
JP2000208590A (en) Method and apparatus for detecting position of wafer