JPS6343708B2 - - Google Patents

Info

Publication number
JPS6343708B2
JPS6343708B2 JP55159586A JP15958680A JPS6343708B2 JP S6343708 B2 JPS6343708 B2 JP S6343708B2 JP 55159586 A JP55159586 A JP 55159586A JP 15958680 A JP15958680 A JP 15958680A JP S6343708 B2 JPS6343708 B2 JP S6343708B2
Authority
JP
Japan
Prior art keywords
signal
signals
attenuation
ratio
damage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55159586A
Other languages
Japanese (ja)
Other versions
JPS5784353A (en
Inventor
Ken Tsukada
Takashi Suzuki
Jun Oka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP55159586A priority Critical patent/JPS5784353A/en
Publication of JPS5784353A publication Critical patent/JPS5784353A/en
Publication of JPS6343708B2 publication Critical patent/JPS6343708B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4454Signal recognition, e.g. specific values or portions, signal events, signatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/14Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object using acoustic emission techniques

Description

【発明の詳細な説明】 本発明は設備、装置、機械器具等の構成部材に
生ずる亀裂から発生するAE信号(アコースチツ
クエミツシヨン信号)から、該部材の亀裂の有無
や破壊進行度を検出する方法に関するもので、そ
の目的は部材の損傷を早期に発見し、部材の破壊
による事故を未然に防止しうる手段を提供するこ
とにある。
DETAILED DESCRIPTION OF THE INVENTION The present invention detects the presence or absence of cracks in components of equipment, equipment, machinery, etc. and the degree of destruction from the AE signal (acoustic emission signal) generated from the cracks that occur in the components. The purpose is to provide a means for detecting damage to components at an early stage and preventing accidents due to destruction of components.

周知の通り物体が変形または破壊するとき、そ
のエネルギーの1部を音響の形で放出することは
広く知られており、これは応力波放出又は音響放
出と呼ばれている。(それを本発明では以下単に
AEと云う)。
It is widely known that when an object deforms or breaks, it releases part of its energy in the form of sound, which is called stress wave emission or acoustic emission. (In the present invention, this will simply be
(referred to as AE).

而して、塑性変形により発生するAE(以下セン
サーによつて知得されるものであるためAE信号
として取扱う)は連続波であり、亀裂等により発
生するものは不連続な突発波形であることも知ら
れている。本発明においては、センサーから常時
得られる暗雑音よりは大きな振幅を有する不連続
な突発型の信号を対象とするものである。このよ
うなAE信号から種々な部材が破壊する恐れがあ
るかどうかを診断する手段はいろいろ提案され、
1部は実際に実施されている。ところで周知の手
段は部材破壊の危険度を定量的に把握する点にお
いて問題があり、さらに被測定部材が高速で移動
する物体であつたり、回転するものであつた場合
診断が困難で検出不可能であつた。
Therefore, AE generated by plastic deformation (hereinafter treated as an AE signal as it is detected by a sensor) is a continuous wave, whereas AE generated by cracks etc. is a discontinuous sudden waveform. is also known. The present invention is directed to discontinuous sudden signals having a larger amplitude than the background noise constantly obtained from the sensor. Various methods have been proposed for diagnosing whether or not various components are at risk of being destroyed from such AE signals.
One part is actually being implemented. However, the well-known methods have problems in quantitatively grasping the risk of component destruction, and furthermore, if the component to be measured is an object that moves at high speed or rotates, diagnosis is difficult and detection is impossible. It was hot.

本発明者等は静止もしくは固定した機械や部材
のみならず、移動したり高速で回転する機械や部
材についてもその損傷の有無あるいは損傷の進行
度を正確に検出しうる方法即ち本発明の方法を提
供するものであり、その要旨は 被測定物体にとりつけられたAEセンサーから
得られる信号を増幅したのち、該信号をそれぞれ
周波数帯域によつて減衰効果の異なる二系統の回
路に分流させ、ついでそれぞれの回路から得られ
た物体について減衰量比較を行なつたのち、減衰
比率別に該信号を分類蓄積すると共に、その蓄積
傾向から損傷を検出することを特徴とする物体の
損傷検出方法。
The present inventors have developed a method that can accurately detect the presence or absence of damage and the degree of damage to not only stationary or fixed machines and members but also moving and high-speed rotating machines and members, that is, the method of the present invention. The gist is that the signal obtained from the AE sensor attached to the object to be measured is amplified, then the signal is divided into two circuits with different attenuation effects depending on the frequency band, and then each A method for detecting damage to an object, characterized in that after comparing attenuation amounts of objects obtained from the circuit, the signals are classified and accumulated according to attenuation ratio, and damage is detected from the tendency of accumulation.

であり、さらに精度をより高める方法、即ち 被測定物体にとりつけられたAEセンサーから
得られる信号を増幅したのち、該信号をそれぞれ
周波数帯域によつて減衰効果の異なる二形統の回
路に分流させ、ついでそれぞれの回路から得られ
た信号について減衰量比較を行なつたのち、減衰
比率別に信号を分類蓄積すると共に、あらかじめ
設定されている分類基準に従つて該分類中のAE
信号相当分類について前記減衰比率の高低別発生
度数を求め、該発生度数の比率と設定しきい値と
を比較し、その大小判別によつて損傷を検出する
ことを特徴とする物体の損傷検出方法。
A method to further improve accuracy is to amplify the signal obtained from the AE sensor attached to the object to be measured, and then divide the signal into two types of circuits with different attenuation effects depending on the frequency band. Then, after comparing the attenuation amounts of the signals obtained from each circuit, the signals are classified and accumulated according to the attenuation ratio, and the AEs in the classification are classified according to the preset classification criteria.
A method for detecting damage to an object, characterized in that the frequency of occurrence for each level of the attenuation ratio is determined for the signal equivalent classification, the ratio of the frequency of occurrence is compared with a set threshold value, and damage is detected by determining the magnitude of the frequency. .

であつて、さらにまた付加すべき要点は、減衰比
率をコード信号化し、該コード信号を無線回路を
介して送受する方法を必要に応じ前記の方法に組
込み可能とした点にあり、その特徴は静的な荷重
のみならず動的荷重をうける部材全般について適
用可能な手段を提供する点にある。
A further point to be added is that the method of converting the attenuation ratio into a code signal and transmitting and receiving the code signal via a wireless circuit can be incorporated into the above method as necessary, and its characteristics are as follows. The object of the present invention is to provide a means that can be applied not only to static loads but also to all members that are subjected to dynamic loads.

さて一般にAE信号を用いて特にその損傷を知
りたい部材としては、たとえば圧延機のスピンド
ル軸のような大動力伝達部材があるが、これらの
部材は使用中極めて大きな雑音(以下センサーで
知得されるものであるため雑音信号として取扱
う)を発生し、通常極めて微弱な信号であるAE
信号は、その雑音信号のなかに、まぎれこむため
AE信号のみを峻別して取出すには極めて複雑で
高価な装置を用いなければならないと云う技術的
な難点があり、また従来の方法では小さな部材や
複雑な構成を有する部材の損傷を検出する適当な
手段は見当らないのが現状である。
Now, in general, there are large power transmission parts such as the spindle shaft of a rolling mill, which are parts for which it is particularly important to know the damage using the AE signal. AE, which is normally an extremely weak signal, is generated (treated as a noise signal because it is a
The signal gets mixed up in the noise signal.
There is a technical difficulty in that extremely complicated and expensive equipment must be used to clearly separate and extract only the AE signal, and conventional methods are not suitable for detecting damage to small parts or parts with complicated structures. At present, there is no means available.

本発明は比較的簡易な手段で前述の問題点をす
べて解消する手段を提供するものであり、以下図
面に従つてさらに詳細に説明する。
The present invention provides a means for solving all of the above-mentioned problems using relatively simple means, and will be explained in more detail below with reference to the drawings.

AE信号は第1図1a〜1cに示すように突発
波形をしており、1パルス毎に計数することが可
能である。又、その周波数特性は第2図の実線
2,3で示すようにかなりの広帯域(数MHz以
上)にわたつており、亀裂発生の初期(実線2)、
亀裂が進行し部材が破断する末期(実線3)では
後者の方が相対的に高周波域の成分が大きいと云
う傾向を示す。而してAE信号の発生数は部材の
材質や部材にかかる荷重等の条件によつて異なる
ためAE信号の発生数からだけでは部材の損傷の
進行度、換言すると危険度を検出することは困難
である。
The AE signal has a sudden waveform as shown in FIGS. 1a to 1c, and can be counted pulse by pulse. In addition, its frequency characteristics extend over a fairly wide band (several MHz or more), as shown by solid lines 2 and 3 in Figure 2, and at the initial stage of crack generation (solid line 2),
In the final stage (solid line 3) when the crack progresses and the member breaks, the latter tends to have relatively larger components in the high frequency range. Since the number of AE signals generated varies depending on conditions such as the material of the component and the load applied to the component, it is difficult to detect the degree of damage to the component, or in other words, the degree of danger, just from the number of AE signals generated. It is.

また、機械的な雑音信号の周波数特性は第2図
の点線4で示すように一般的に数10KHz以下の低
周波域に主要成分があり、数100KHzの比較的高
い周波数分を含んでいる場合でも高周波成分の比
率は低周波域に較べてはるかに小さい。さらに
AE信号と機械雑音信号の絶対値の強度を比較す
ると機械雑音信号の方が遥かに大きい場合がほと
んどである。そこで、周波数特性の差を利用する
手段たとえば第2図のc2即ちAE信号と機械雑音
信号との概略境界域の周波数で示すカツトオフ周
波数をもつたハイパスフイルターによりAE信号
を弁別しようとしても、第3図bに示す如くc2
でカツトオフされた機械雑音信号5bがAE信号
1aより遥かに大きいかあるいは同程度の出力と
なるためAE信号だけを弁別することは困難であ
る。
In addition, as shown by dotted line 4 in Figure 2, the frequency characteristics of mechanical noise signals generally have main components in the low frequency range of several tens of kilohertz or less, and include relatively high frequency components of several hundred kilohertz. However, the ratio of high-frequency components is much smaller than that of low-frequency components. moreover
When comparing the absolute value strengths of the AE signal and the mechanical noise signal, the mechanical noise signal is often much larger. Therefore, even if an attempt is made to discriminate the AE signal using a means that utilizes the difference in frequency characteristics, for example c 2 in Fig. 2, that is, a high-pass filter with a cutoff frequency indicated by the frequency in the approximate boundary region between the AE signal and the mechanical noise signal, c 2 as shown in Figure 3 b
Since the mechanical noise signal 5b cut off by the AE signal 1a has a much larger output than the AE signal 1a or has an output comparable to that of the AE signal 1a, it is difficult to discriminate only the AE signal.

そこで本発明者等は信号の減衰比率に着目して
前述の技術的問題点の解決に成功したもので、第
4図は本発明の方法にかかる1実施例装置の概略
ブロツク線図である。
The present inventors have succeeded in solving the above-mentioned technical problem by focusing on the signal attenuation ratio. FIG. 4 is a schematic block diagram of an embodiment of the apparatus according to the method of the present invention.

第4図において、図示していない被測定物体に
とりつけられたAEセンサー6から得られた信号
はプリアンプ7で所望のレベルに増幅され、異な
つたカツトオフ周波数たとえばc1を有するハイ
パスフイルター8a、c2を有するハイパスフイ
ルター8bに分流せしめる。前記AEセンサー6
は超音波損傷に用いられるAEセンサーと類似の
ものでも良いが、広帯域(1〜2MHz)にわたつ
て周波数特性の平坦なものが望ましい。さて前記
カツトオフ周波数c1とc2(本実施例ではたとえ
ばc1を50KHz、c2を600KHz付近とした)がc1
<c2とすると、ハイパスフイルター8a,8b
の出力は前述の第3図aおよびbに示す信号5
a,5bのようになる、即ちハイパスフイルター
8a,8bを通る機械雑音信号は低周波域を主成
分とするためここで大きく減衰される。一方広帯
域な成分を有するAE信号は僅かしか減衰しない。
次にハイパスフイルター8a,8bの出力はそれ
ぞれ包絡線検波器9a,9b、ピークホールド回
路10a,10bを経て信号波形のピーク値が保
持され、ついで比率測定回路11に入力される。
該比率測定回路11では前記二系統の回路を通過
した出力信号が比較され、両者の比率が測定され
る。この比率を本発明では減衰比率と云う。即
ち、 ピークホールド回路10bの出力ピーク値/ピークホー
ルド回路10aの出力ピーク値 =減衰比率 而して本発明では信号の絶対値は問題ではなく
比率が要点となる。この比率は各種の信号たとえ
ば電圧、パルス巾、デジタルコード、周波数など
に変換できるが、ここではパルス巾に変換する方
法について述べる。
In FIG. 4, a signal obtained from an AE sensor 6 attached to an object to be measured (not shown) is amplified to a desired level by a preamplifier 7, and is amplified to a desired level by a high-pass filter 8a, c2 having different cutoff frequencies, for example, c1 . The water is diverted to a high-pass filter 8b having a high pass filter 8b. Said AE sensor 6
The sensor may be similar to the AE sensor used for ultrasonic damage, but it is desirable to have flat frequency characteristics over a wide band (1 to 2 MHz). Now, the cutoff frequencies c 1 and c 2 (in this embodiment, for example, c 1 is set to 50 KHz and c 2 is set to around 600 KHz) are c 1
<c 2 , high pass filters 8a, 8b
The output of is the signal 5 shown in Figure 3a and b above.
a, 5b, that is, the mechanical noise signal passing through the high-pass filters 8a, 8b has a low frequency range as its main component, and is therefore greatly attenuated here. On the other hand, AE signals with broadband components are only slightly attenuated.
Next, the outputs of the high-pass filters 8a and 8b pass through envelope detectors 9a and 9b and peak hold circuits 10a and 10b, respectively, to hold the peak value of the signal waveform, and then are input to the ratio measuring circuit 11.
The ratio measuring circuit 11 compares the output signals that have passed through the two circuits and measures the ratio between them. This ratio is referred to as a damping ratio in the present invention. That is, the output peak value of the peak hold circuit 10b/the output peak value of the peak hold circuit 10a = attenuation ratio In the present invention, the absolute value of the signal does not matter, but the ratio matters. Although this ratio can be converted into various signals such as voltage, pulse width, digital code, frequency, etc., a method for converting it into pulse width will be described here.

而して前記比率測定回路11はたとえば第5図
に示すような可変抵抗器23、積分器24、加算
器25、比較器26からなる回路構成によつて所
定の機能を得ることができる。
The ratio measuring circuit 11 can obtain a predetermined function by having a circuit configuration consisting of a variable resistor 23, an integrator 24, an adder 25, and a comparator 26 as shown in FIG. 5, for example.

即ち第6図に示すように横軸に時間、縦軸に入
力レベルをとつた場合、前記ピークホルド回路1
0aと10bからの入力レベル10a′,10b′は
10a′>10b′であるから、入力10b′を適当に
選定したゲインと時定数で積分すると出力は時間
に比例して零から直線的に増加し、該積分器24
の出力と入力10b′を加算器25で加算した出力
は、積分開始時t1には入力10a′より小さいけれ
ども時間と共に増加し遂には入力10a′と同じ大
きさに達し比較器26は時刻t2で出力を発生す
る。積分開始から比較器26が出力する迄の時間
は入力10a′と10b′の差と積分時定数に比例
し、入力10a′の大きさに反比例するから積分時
定数が一定であれば、両入力10a′,10b′の比
率に比列する。即ちこのような回路を用いること
により前記比率はパルス巾に変換できる。これを
変調回路12を介してFM発信器13、送信アン
テナ14を介して伝送し、受信アンテナ15、
FM受信器16、パルス巾復調回路17を介して
パルス巾測定回路18に入力させる。
That is, as shown in FIG. 6, when the horizontal axis represents time and the vertical axis represents input level, the peak hold circuit 1
Since the input levels 10a' and 10b' from 0a and 10b are 10a'>10b', when the input 10b' is integrated with an appropriately selected gain and time constant, the output increases linearly from zero in proportion to time. and the integrator 24
The output obtained by adding the output of and the input 10b' in the adder 25 is smaller than the input 10a' at the start of integration t1 , but increases with time and finally reaches the same size as the input 10a'. 2 generates output. The time from the start of integration to the output of the comparator 26 is proportional to the difference between inputs 10a' and 10b' and the integration time constant, and inversely proportional to the magnitude of input 10a', so if the integration time constant is constant, both inputs It is proportional to the ratio of 10a' and 10b'. That is, by using such a circuit, the ratio can be converted into a pulse width. This is transmitted via a modulation circuit 12, an FM transmitter 13, a transmitting antenna 14, a receiving antenna 15,
The signal is input to a pulse width measurement circuit 18 via an FM receiver 16 and a pulse width demodulation circuit 17.

さて前述のように伝送にあたつてはデジタルコ
ードや周波数などに変換して伝送することも自由
である。またAEセンサー6からFM発信器13、
送信アンテナ14までは極めて小形で容積の小さ
い設備とすることが可能であるので、それを機
械、設備等の移動もしくは回転部材にとりつけ
て、AE信号を容易に得ることが出来る。
Now, as mentioned above, when transmitting data, it is also free to convert it into a digital code, frequency, etc. and transmit it. Also, from the AE sensor 6 to the FM transmitter 13,
Since the equipment up to the transmitting antenna 14 can be extremely small and have a small volume, it is possible to easily obtain an AE signal by attaching it to a moving or rotating member such as a machine or equipment.

パルス巾測定回路18では入力してきたパルス
の巾によつてパルスを分類し、このパルス巾に対
応して計数・記憶回路19a〜19nのいずれか
ひとつに出力信号を発生する。計数・記憶回路1
9a〜19nのうちでこの出力を受けとつたもの
がそのカウント値を1だけ増加させる。このカウ
ント値は所期の測定がすべて終了するまで累積さ
れる。このようにして不連続な突発信号が1つ発
生するごとに計数・記憶回路19a〜19nのう
ちのいずれかひとつのカウント値が1だけ増加す
ることになる。信号のパルス巾は前述の通り減衰
比率に比例しているから分類した結果は、被測定
物体に発生した音つまりAE信号および機械雑音
信号を減衰比率で分類したこととなる。
The pulse width measuring circuit 18 classifies the input pulses according to their width, and generates an output signal to one of the counting/memory circuits 19a to 19n in accordance with the pulse width. Counting/memory circuit 1
The one among 9a to 19n that receives this output increases its count value by one. This count value is accumulated until all desired measurements are completed. In this way, the count value of any one of the counting/memory circuits 19a to 19n increases by 1 every time one discontinuous sudden signal is generated. As described above, the pulse width of the signal is proportional to the attenuation ratio, so the classification result is that the sound generated in the object to be measured, that is, the AE signal and the mechanical noise signal, are classified by the attenuation ratio.

そこでたとえば10個の計数・記憶回路19a〜
19jを設け、19aには減衰比率1.0〜0.9に相
当するパルス巾のものが来たとき積算させること
にし、同じようにして19bには0.9〜0.8のもの
を積算させるなど、遂次19jまで行なうと減衰
比率1.0〜0.0まで0.1刻みで区切つた発生度数が得
られることになる。
Therefore, for example, 10 counting/memory circuits 19a~
19j is provided, and 19a is to integrate when a pulse width corresponding to an attenuation ratio of 1.0 to 0.9 comes, and in the same way, 19b is to integrate a pulse width of 0.9 to 0.8, and so on. The frequency of occurrence divided by 0.1 from attenuation ratio 1.0 to 0.0 is obtained.

計数・記憶回路19a〜19jの内容を、積算
動作とは独立して一定周期で出力回路20からた
とえばアナログ値に変換して読み出させ表示装置
CRT21に表示させると操作者はどのような変
化が被測定物体に生じつつあるかあるいは定常状
態が続いているかを知ることが出来ることにな
る。つまり第7図に示すように部材装置CRTに
はヒストグラムが表示される。第7図の横軸は減
衰比率、縦軸は発生度数である。次に以上の手段
で損傷検出が可能である理由について詳述する。
The contents of the counting/memory circuits 19a to 19j are converted into, for example, analog values and read out from the output circuit 20 at regular intervals independently of the integration operation, and the display device
When displayed on the CRT 21, the operator can know what kind of change is occurring in the object to be measured or whether a steady state continues. That is, as shown in FIG. 7, a histogram is displayed on the component device CRT. The horizontal axis in FIG. 7 is the attenuation ratio, and the vertical axis is the frequency of occurrence. Next, the reason why damage can be detected by the above means will be explained in detail.

以上に述べたような方法によつて一つ一つの信
号について例えば減衰比率が1.0〜0.9の範囲にあ
るものがAE信号であり、それ以外のものが雑音
であるというような判定を行うことは困難であ
る。単に減衰比率が1.0に近いものがよりAE信号
らしく、減衰比率が0.0に近いものほど雑音らし
いということが言えるだけである。そこで本発明
者等は、信号一つ一つがAE信号であるかどうか
によつて被測定物の破壊の危険度を判定するので
はなく、多数の信号の統計的なデータもしくは統
計的なデータの傾向の変化によつて、危険度を判
定する方法を採つたものであり、この点を本発明
は特色としている。
It is not possible to use the method described above to determine for each signal that, for example, signals with an attenuation ratio in the range of 1.0 to 0.9 are AE signals, and signals other than that are noise. Have difficulty. It can simply be said that an attenuation ratio closer to 1.0 is more likely to be an AE signal, and an attenuation ratio closer to 0.0 is more likely to be noise. Therefore, the present inventors did not judge the risk of destruction of the object to be measured based on whether each signal is an AE signal, but based on statistical data of a large number of signals or statistical data. This invention employs a method of determining the degree of risk based on changes in trends, and this is a feature of the present invention.

既に述べたように機械雑音信号は減衰比率が大
きく、例えば減衰比率1.0〜0.3(dBで表示すると
0dB〜−10dB)ぐらいまでを考えると、第8図
において実線27で例示したように減衰比率の値
の小さいものほど多数発生し、ヒストグラムとし
ては右上りに単調増加するものとなることが本発
明者の研究で確認されている。これに対しAE信
号は減衰比率の値が一般に1.0〜0.5程度であるた
め、第8図の点線28に示すような正規分布状の
ヒストグラムが得られ、その中心値は亀裂などの
末期で危険度の高いものほどグラフ上で左寄り
(減衰比率の値の大きい方)即ち実線29で示す
ようなヒストグラム分布となる。こうして得られ
たヒストグラムより、次の算式で評価指数Rを求
める。
As already mentioned, mechanical noise signals have a large attenuation ratio, for example, an attenuation ratio of 1.0 to 0.3 (expressed in dB).
0 dB to -10 dB), the smaller the value of the attenuation ratio, the more occurrences occur, as illustrated by the solid line 27 in Fig. 8, and the histogram increases monotonically upward to the right. This has been confirmed in research by researchers. On the other hand, since the value of the attenuation ratio of the AE signal is generally about 1.0 to 0.5, a histogram with a normal distribution as shown in the dotted line 28 in Figure 8 is obtained, and the central value is the final stage of a crack, etc. The higher the value, the further to the left on the graph (the larger the value of the attenuation ratio), that is, the histogram distribution becomes as shown by the solid line 29. From the histogram thus obtained, the evaluation index R is calculated using the following formula.

評価指数R=減衰比率0〜α間の全度数/減衰比率
α〜β間の全度数 本発明者等は多数の設備の測定結果より経験的
に適当に設定されたα、βに対し評価指数Rがあ
るしきい値Lを越えるものに有害な亀裂などが発
見されることを確認した。前記特定の減衰比率の
α、βは経験値であつてα>βでありかつ、本発
明者等の本実施例による経験では減衰比率で0.9
〜0.5の範囲であつた。
Evaluation index R = total frequency between attenuation ratios 0 and α/total frequency between attenuation ratios α and β The inventors have determined the evaluation index for α and β, which are appropriately set empirically based on the measurement results of a large number of equipment. It has been confirmed that harmful cracks and the like are found when R exceeds a certain threshold value L. α and β of the specific damping ratio are empirical values, and α>β, and according to the experience of the present inventors based on this example, the damping ratio is 0.9.
It was in the range of ~0.5.

また、前記しきい値Lは設備や被測定部材の形
状や材質、負荷条件などに鈍感で、AEセンサー
の特性、ハイパスフイルターのカツトオフ周波
数、減衰比率値α、βなどが一定であれば、ほぼ
一定であることを本発明者等は見出した。以上の
如くして評価指数Rがしきい値L以下であれば有
害な亀裂などが存在しないか、もし存在しても進
展中でない、と判定でき、評価指数Rがしきい値
L以上でしきい値Lより離れる程危険な状態であ
ると判定できる。これを本発明では大小を判別す
ると云う。
In addition, the threshold L is insensitive to the shape and material of the equipment and the member being measured, the load conditions, etc., and if the characteristics of the AE sensor, the cutoff frequency of the high-pass filter, the attenuation ratio values α and β, etc. are constant, it is approximately The present inventors found that it is constant. As described above, if the evaluation index R is less than the threshold L, it can be determined that harmful cracks do not exist, or even if they exist, they are not progressing. The further away from the threshold L, the more dangerous the state can be determined. In the present invention, this is referred to as determining the size.

実施例では鋼の熱間圧延機のスピンドル軸の損
傷検出にあたり、評価指数Rが0.6〜0.8であり、
しきい値L0.2〜0.3で非常に優れた検出結果が得
られ、重大な折損事故を未然に防ぐことに成功し
た。なお前記評価指数Rやしきい値Lについては
これに限定されるものではない。
In the example, when detecting damage to the spindle shaft of a steel hot rolling mill, the evaluation index R is 0.6 to 0.8,
Very good detection results were obtained with a threshold value of L0.2 to 0.3, and we succeeded in preventing serious breakage accidents. Note that the evaluation index R and threshold L are not limited to these.

また以上の説明から明らかなように表示装置
CRTで表示されるヒストグラムの変化を読みと
るのみで、操作者は被測定物体の損傷の有無もし
くは損傷進行度を知得しうる。
Also, as is clear from the above explanation, the display device
By simply reading the changes in the histogram displayed on the CRT, the operator can determine the presence or absence of damage to the object to be measured and the degree of damage progress.

さらに第4図においてX−Yレコーダー22を
出力回路20に接続し、第8図に示したようなグ
ラフを表示記録させることも可能である。
Furthermore, it is also possible to connect the X-Y recorder 22 to the output circuit 20 in FIG. 4 to display and record a graph as shown in FIG. 8.

さて、本発明では前述の如くAE信号をたとえ
ばハイパスフイルター、包絡線検波器、ピークホ
ールド回路から構成される減衰効果の異なる二系
統の回路に分流させ、それぞれの回路から得られ
る信号について減衰量比較を行ない減衰比率別に
信号を分類蓄積することによつて、その蓄積傾向
(たとえばヒストグラム分布)から被測定物体の
損傷の有無もしくは損傷の進行度を検出すること
ができる。以上要約すると設定された分類基準即
ちたとえば前記減衰比率で1.0〜0.5(これは前に
詳述したように経験又は実測によつて容易に決定
できる範囲である)の範囲を占めるAE信号相当
分類中で、減衰比率の高低(0〜α、α〜β)別
発生度数の比(評価指数R)を算出し、該比と設
定しきい値(経験値)に比較し、その大小判別つ
まりその差の大小および差の変化傾向判定によつ
てさらに適確で精密な検出が可能になる。
Now, as described above, in the present invention, the AE signal is divided into two circuits with different attenuation effects, each consisting of a high-pass filter, an envelope detector, and a peak hold circuit, and the attenuation amounts of the signals obtained from each circuit are compared. By classifying and accumulating the signals according to the attenuation ratio, it is possible to detect the presence or absence of damage to the object to be measured or the degree of progress of the damage from the accumulation tendency (for example, histogram distribution). To summarize the above, the classification criteria that have been set, i.e., the attenuation ratio is in the range of 1.0 to 0.5 (as explained in detail earlier, this is a range that can be easily determined by experience or actual measurement). Then, calculate the ratio (evaluation index R) of the frequency of occurrence for each high and low damping ratio (0 to α, α to β), compare the ratio with the set threshold value (empirical value), and determine the magnitude, that is, the difference. More accurate and precise detection becomes possible by determining the magnitude of and the change tendency of the difference.

また、前述の第4図に示した実施例において被
測定物体が固定もしくは静止状態の部材である場
合は、無線による信号の授受関係の装置は不要で
あることは云うまでもないが、被測定物体が移動
もしくは回転するような場合は本発明の無線によ
る信号授受は非常に利点が多い。
Furthermore, in the embodiment shown in FIG. When an object moves or rotates, the wireless signal transmission and reception of the present invention has many advantages.

第9図は鋼の熱間圧延機のスピンドル軸30の
損傷を実測した例の慨略斜視図であつて、6はス
ピンドル軸の接手部30に固着されたAEセンサ
ーで、31は第4図で示したFM発信部13まで
の装置を内蔵した函体で、32は電源となる電
池、33,34はそれらを軸に固定させるための
取付バンドで、35は電導線、36は送信アンテ
ナ、37は図示していない支持装置で支承された
リング状の受信アンテナで、38は第4図におけ
るFM受信部16から表示装置CRT21およびX
−Yレコーダー22までを内蔵したキヤビネツト
を示す。本実施例に示す方法で検出した結果は極
めて優良で、クラツクの有無およびその進行度を
明白に検出することが出来た。
FIG. 9 is a schematic perspective view of an example in which damage to the spindle shaft 30 of a steel hot rolling mill was actually measured, and 6 is an AE sensor fixed to the joint 30 of the spindle shaft, and 31 is the same as shown in FIG. 32 is a battery as a power source, 33 and 34 are mounting bands for fixing them to the shaft, 35 is a conductive wire, 36 is a transmitting antenna, 37 is a ring-shaped receiving antenna supported by a support device (not shown), and 38 is a ring-shaped receiving antenna that is connected from the FM receiving section 16 to the display device CRT 21 and X in FIG.
-Y Shows the cabinet containing up to the recorder 22. The results of detection using the method shown in this example were extremely good, and the presence or absence of a crack and its degree of progression could be clearly detected.

而して本発明の利点はAEセンサーをたとえば
1個だけ被測定部材に取りつけることで短時間に
設備の診断が可能となる点にあり、さらに外部か
らは容易に目視点検できず分解には多大の時間と
労力を要する部材に亀裂などで発生しているかど
うかを発見でき、さらにまたすでに発見された亀
裂などが実際に危険なものかどうかを判定検出す
ることができる。こうした検出を機械が実際に運
転している状況下で行えるので設備休止の必要が
なく、実負荷条件で危険な亀裂などを精度よく発
見できると云う従来になり効果がある。このよう
にして設備部材が破断するに至る以前に危険な損
傷が発見できるから本発明の経済的利益は甚だ大
である。
The advantage of the present invention is that equipment can be diagnosed in a short time by attaching only one AE sensor to a member to be measured.Furthermore, visual inspection is not easily possible from the outside and disassembly takes a lot of effort. It is possible to discover whether cracks have occurred in a member, which requires time and effort, and it is also possible to determine whether or not cracks that have already been discovered are actually dangerous. Since this type of detection can be performed while the machine is actually operating, there is no need to stop the equipment, and dangerous cracks can be detected with high accuracy under actual load conditions. In this way, the economic benefits of the present invention are significant because dangerous damage can be detected before the equipment component breaks.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はAE信号波形概略説明図、第2図はAE
信号および機械雑音信号の周波数分布のグラフ、
第3図はAE信号と機械雑音信号をハイパスフイ
ルターを通した際に得られる波形の概略説明図、
第4図は本発明の方法にかかる1実施例装置の概
略ブロツク線図、第5図は本発明にかかる比率測
定回路の概略説明ブロツク線図、第6図はその出
力原理説明グラフ、第7図は本発明によつて得ら
れた減衰比率別の分類蓄積を示すヒストグラム、
第8図は減衰比率と発生度数を表示するグラフ、
第9図は本発明の方法にかかる実施例の概略斜視
図である。 1a〜1c……AE信号波形、5a,5b……
機械雑音信号波形、6……AEセンサー、7……
プリアンプ、8a,8b……ハイパスフイルタ
ー、9a〜9b……包絡線検波器、10a,10
b……ピークホールド回路、11……比率測定回
路、12……変調回路、13……FM発信器、1
4……送信アンテナ、15……受信アンテナ、1
6……FM受信器、17……パルス巾復調回路、
18……パルス巾側定回路、19a〜19n……
計数・記憶回路、20……出力回路、21……表
示装置CRT、22……X−Yレコーダー、24
……積分器、25……加算器、26……比較器、
30……接手部、32……電池、31……函体
(送信部内蔵)、33,34……取付バンド、36
……送信アンテナ、37……受信アンテナ、38
……キヤビネツト。
Figure 1 is a schematic explanatory diagram of the AE signal waveform, Figure 2 is the AE signal waveform diagram.
Graphs of frequency distribution of signals and mechanical noise signals,
Figure 3 is a schematic diagram of the waveform obtained when the AE signal and mechanical noise signal are passed through a high-pass filter.
FIG. 4 is a schematic block diagram of an embodiment of the apparatus according to the method of the present invention, FIG. 5 is a schematic block diagram explaining the ratio measuring circuit according to the present invention, FIG. 6 is a graph explaining the output principle, and FIG. The figure shows a histogram showing the classification accumulation by attenuation ratio obtained by the present invention.
Figure 8 is a graph showing the attenuation ratio and the frequency of occurrence.
FIG. 9 is a schematic perspective view of an embodiment of the method of the present invention. 1a to 1c...AE signal waveform, 5a, 5b...
Mechanical noise signal waveform, 6...AE sensor, 7...
Preamplifier, 8a, 8b...High pass filter, 9a-9b...Envelope detector, 10a, 10
b...Peak hold circuit, 11...Ratio measurement circuit, 12...Modulation circuit, 13...FM oscillator, 1
4...Transmission antenna, 15...Reception antenna, 1
6...FM receiver, 17...pulse width demodulation circuit,
18... Pulse width side constant circuit, 19a to 19n...
Counting/memory circuit, 20...Output circuit, 21...Display device CRT, 22...X-Y recorder, 24
... Integrator, 25 ... Adder, 26 ... Comparator,
30...Joint part, 32...Battery, 31...Box (with built-in transmitter), 33, 34...Mounting band, 36
...Transmission antenna, 37 ...Reception antenna, 38
... Cabinet.

Claims (1)

【特許請求の範囲】 1 被測定物体にとりつけられたAEセンサーか
ら得られる信号を増幅したのち、該信号をそれぞ
れ周波数帯域によつて減衰効果の異なる二系続の
回路に分流させ、ついでそれぞれの回路から得ら
れた信号について減衰量比較を行い、減衰比率の
大小に応じて複数の計数回路のひとつを選択して
信号の発生毎にカウントし、多数の信号によつて
複数の計数回路にカウントされた数値の傾向から
損傷を検出することを特徴とする物体の損傷検出
方法。 2 被測定物体にとりつけられたAEセンサーか
ら得られる信号を増幅したのち、該信号をそれぞ
れ周波数帯域によつて減衰効果の異なる二系続の
回路に分流させ、ついでそれぞれの回路から得ら
れた信号について減衰量比較を行い、減衰比率の
大小に応じて複数の計数回路のひとつを選択して
信号の発生毎にカウントして多数の信号を測定し
たのち、複数の計数回路の特定の部分にカウント
された信号の数と、これとは別個の特定の部分に
カウントされた数との比をあらかじめ決定してお
いた損傷判別しきい値と比較してその大小判別に
よつて損傷を検出することを特徴とする物体の損
傷検出方法。 3 減衰比率をコード信号化し、該コード信号を
無線回路を介して送受する特許請求の範囲第1項
又は第2項記載の方法。
[Claims] 1. After amplifying the signal obtained from the AE sensor attached to the object to be measured, the signal is divided into two circuits each having a different attenuation effect depending on the frequency band, and then Compare the amount of attenuation for the signals obtained from the circuits, select one of the multiple counting circuits depending on the magnitude of the attenuation ratio, count each time a signal occurs, and count the signals in multiple counting circuits depending on the number of signals. A method for detecting damage to an object, characterized by detecting damage from a trend in numerical values. 2 After amplifying the signal obtained from the AE sensor attached to the object to be measured, the signal is divided into two connected circuits with different attenuation effects depending on the frequency band, and then the signal obtained from each circuit is Compare the amount of attenuation, select one of the multiple counting circuits depending on the magnitude of the attenuation ratio, count each time a signal occurs, measure a large number of signals, and then count the signals in a specific part of the multiple counting circuits. Damage is detected by comparing the ratio of the number of signals detected and the number counted in a separate specific part with a predetermined damage discrimination threshold and determining the size of the number. A method for detecting damage to an object, characterized by: 3. The method according to claim 1 or 2, wherein the attenuation ratio is converted into a code signal and the code signal is transmitted and received via a wireless circuit.
JP55159586A 1980-11-14 1980-11-14 Damage detecting method for object Granted JPS5784353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55159586A JPS5784353A (en) 1980-11-14 1980-11-14 Damage detecting method for object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55159586A JPS5784353A (en) 1980-11-14 1980-11-14 Damage detecting method for object

Publications (2)

Publication Number Publication Date
JPS5784353A JPS5784353A (en) 1982-05-26
JPS6343708B2 true JPS6343708B2 (en) 1988-09-01

Family

ID=15696941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55159586A Granted JPS5784353A (en) 1980-11-14 1980-11-14 Damage detecting method for object

Country Status (1)

Country Link
JP (1) JPS5784353A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH029610A (en) * 1988-06-29 1990-01-12 Inoue Mtp Co Ltd Manufacture of head-rest for automobile

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5088175B2 (en) * 2008-02-29 2012-12-05 Jfeスチール株式会社 Rotation axis abnormality diagnosis device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5542007A (en) * 1978-09-20 1980-03-25 Hitachi Ltd Acoustic emission detecting device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5542007A (en) * 1978-09-20 1980-03-25 Hitachi Ltd Acoustic emission detecting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH029610A (en) * 1988-06-29 1990-01-12 Inoue Mtp Co Ltd Manufacture of head-rest for automobile

Also Published As

Publication number Publication date
JPS5784353A (en) 1982-05-26

Similar Documents

Publication Publication Date Title
US4007630A (en) Device for detecting damage on rotators
EP0227138B1 (en) Means for detecting faults or defects in moving machine parts
EP0087813B1 (en) Method and apparatus for monitoring cracks of a rotatable body
US5425272A (en) Relative resonant frequency shifts to detect cracks
US5408880A (en) Ultrasonic differential measurement
US4738137A (en) Acoustic emission frequency discrimination
EP0366286B1 (en) A method and apparatus for processing electrical signals
GB2310928A (en) Glass breakage detection device
CA1079390A (en) Detection of incipient damage in rolling contact bearings
US4386526A (en) Method for quality control of processes and construction components
JPS6343708B2 (en)
EP0019398A1 (en) Monitoring apparatus for rotating machinery
US3208268A (en) Detection of almost periodic occurrences
JP3121488B2 (en) Bearing diagnostic device and escalator
US4187725A (en) Method for ultrasonic inspection of materials and device for effecting same
JPS61138160A (en) Ultrasonic flaw detector
JPS6110768A (en) Method of suppressing dummy display in automatic type ultrasonic test
JPS5764126A (en) Oscillation detecting apparatus
SU1739242A1 (en) Apparatus for diagnosis of reduction gear
SU676897A1 (en) Device for determining ball bearing rate-of-wear
RU2006806C1 (en) Method for testing product for air tightness
SU1065714A1 (en) Method of finding flaws in plain bearings
SU1548752A1 (en) Device for determining strength of concrete
JP2513013B2 (en) Ultrasonic flaw detection method
SU1552044A1 (en) Method of diagnosis of condition of friction pair