JPS63317095A - Biosensor - Google Patents

Biosensor

Info

Publication number
JPS63317095A
JPS63317095A JP62153665A JP15366587A JPS63317095A JP S63317095 A JPS63317095 A JP S63317095A JP 62153665 A JP62153665 A JP 62153665A JP 15366587 A JP15366587 A JP 15366587A JP S63317095 A JPS63317095 A JP S63317095A
Authority
JP
Japan
Prior art keywords
electrode
electrode system
porous body
biosensor
electron acceptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62153665A
Other languages
Japanese (ja)
Inventor
Mariko Kawaguri
真理子 河栗
Shiro Nankai
史朗 南海
Sachiko Suetsugu
末次 佐知子
Kiyomi Komatsu
小松 きよみ
Kenichi Morigaki
健一 森垣
Shigeo Kobayashi
茂雄 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62153665A priority Critical patent/JPS63317095A/en
Publication of JPS63317095A publication Critical patent/JPS63317095A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PURPOSE:To obtain a biosensor capable of readily measuring, having high precision and useful in measurement of biopolymer ingredient, etc., by treating surface of a specific electrode system with ozone, coating the surface with a water-absorbing polymer and integrating the electrode system together with a porous body supporting enzyme, etc., and electron acceptor. CONSTITUTION:A counter pole 2, measuring pole 3 and reference pole 4 are subjected to screening printing on an insulating substrate 1 such as polyethylene terephthalate to form electrode system. Then an insulating paste is printed in state left in 2', 3' and 4' part of each electrode to form an insulating layer 5 and then an aqueous solution of water-absorbing high polymer such as CMC is applied to the surface in the 2', 3' and 4' part of each electrode and the applied electrode is dried and then a retaining frame 7 having opening and made of resin is bonded to the insulating layer 5. Then after a porous body 8 consisting of oxidation-reduction enzyme such as glucose oxidase and electron acceptor such as ferricyanide is charged into the opening part of the retaining frame 7, a cover 9 made of resin and having opening of smaller diameter than that of the porous body 8 is bonded to the porous body 8 to integrate the whole.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、種々の微量の生体試料中の特定成分について
、試料液を希釈することなく迅速かつ簡易に定量するこ
とのできるバイオセンサに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a biosensor that can quickly and easily quantify specific components in various minute amounts of biological samples without diluting the sample liquid.

従来の技術 従来、血液などの生体試料中の特定成分について、試料
液の希釈や攪拌などの操作を行うことなく高精度に定量
する方式としては、第3図に示す様なバイオセンサが提
案されている(例えば、特開昭59−166852号公
報)。このバイオセンサは、絶縁性基板10にリード1
3.14をそれぞれ有する白金などからなる測定極11
および対極12を埋設し、これらの電極系の露出部分を
酸化還元酵素および電子受容体を担持した多孔体16で
覆ったものである。試料液を多孔体上へ滴下すると、試
料液に多孔体中の酸化還元酵素と電子受容体が溶解し、
試料液中の基質゛との間で酵素反応が進行し、電子受容
体が還元される。酵素反応終了後、この還元された電子
受容体を電気化学的に酸化し、このとき得られる酸化電
流値から試料液中の基質濃度を求めることがなされてい
た。
Conventional technology In the past, a biosensor as shown in Figure 3 has been proposed as a method for quantifying specific components in biological samples such as blood with high precision without performing operations such as diluting or stirring the sample solution. (For example, Japanese Patent Laid-Open No. 59-166852). This biosensor has a lead 1 on an insulating substrate 10.
Measuring electrodes 11 made of platinum or the like, each having 3.14
and a counter electrode 12 are buried, and the exposed portions of these electrode systems are covered with a porous body 16 carrying an oxidoreductase and an electron acceptor. When the sample solution is dropped onto the porous material, the oxidoreductase and electron acceptor in the porous material are dissolved in the sample solution.
An enzymatic reaction progresses with the substrate in the sample solution, and the electron acceptor is reduced. After the enzymatic reaction is completed, the reduced electron acceptor is electrochemically oxidized, and the substrate concentration in the sample solution is determined from the oxidation current value obtained at this time.

発明が解決しようとする問題点 この様な従来の構成では、多孔体については、測定毎に
取り替えることにより簡易に測定に供することができる
が、電極系については洗浄等の操作が必要である。一方
電極系をも含めて測定毎の使い莱でか可能となれば、測
定操作上、極めて簡易になるものの、白金等の電極材料
や構成等の面から、非常に高価なものにならざるを得な
い。
Problems to be Solved by the Invention In such a conventional configuration, the porous body can be easily used for measurement by replacing it for each measurement, but the electrode system requires operations such as cleaning. On the other hand, if it were possible to use only the electrode system for each measurement, the measurement operation would be extremely simple, but it would be extremely expensive due to the electrode materials such as platinum and the structure. I don't get it.

本発明はこれらの点について種々検討の結果、電極系と
多孔体を一体化することにより、生体試料中の特定成分
を極めて容易に迅速かつ高精度に定量することのできる
安価なディスポーザブルタイプのバイオセンサを提供す
るものである。
As a result of various studies on these points, the present invention has developed an inexpensive disposable type biotechnology that can extremely easily quantify specific components in biological samples quickly and with high precision by integrating an electrode system and a porous body. It provides a sensor.

問題点を解決するための手段 本発明は上記問題点を解決するため、絶縁性基板に少な
くとも測定極と対極からなる電極系を設け、酵素と電子
受容体と試料液の反応に際しての物質濃度変化を電気化
学的に前記電極系で検知し、試料液中の基質濃度を測定
するバイオセンサにおいて、前記電極系の表面をあらか
じめオゾン雰囲気中で曝露して吸水性高分子を塗布し、
さらに酸化還元酵素および電子受容体を担持した多孔体
とともに一体化したものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides an electrode system consisting of at least a measurement electrode and a counter electrode on an insulating substrate, and detects changes in substance concentration during reactions between enzymes, electron acceptors, and sample liquids. In a biosensor that electrochemically detects with the electrode system and measures the substrate concentration in a sample solution, the surface of the electrode system is exposed in advance in an ozone atmosphere and coated with a water-absorbing polymer,
Furthermore, it is integrated with a porous material carrying an oxidoreductase and an electron acceptor.

作用 本発明によれば、電極系をも含めたディスポーザブルタ
イプのバイオセンサを構成することができ、試料液を多
孔体に添加することにより、極めて容易に基質濃度を測
定することができる。
Effects According to the present invention, a disposable type biosensor including an electrode system can be constructed, and the substrate concentration can be extremely easily measured by adding a sample liquid to a porous body.

しかも、電極系の表面を、あらかじめオゾン雰囲気中で
曝露し吸水性高分子を塗布したことにより、電極のぬれ
性が向上し吸水性高分子により試料液中の蛋白質や気泡
などが電極表面へ吸着することを防ぎ、精度の良い測定
が可能となった。
Furthermore, by exposing the surface of the electrode system in advance in an ozone atmosphere and coating it with a water-absorbing polymer, the wettability of the electrode is improved, and the water-absorbing polymer adsorbs proteins and air bubbles in the sample solution to the electrode surface. This enables highly accurate measurements.

実施例 以下、本発明の一実施例について説明する。Example An embodiment of the present invention will be described below.

バイオセンサの一例として、グルコースセンサについて
説明する。第1図は、グルコースセンサの一実施例につ
いて示したもので、構成部分の分解図である。ポリエチ
レンテレフタレートカラする絶縁性基板1に、スクリー
ン印刷により導電性カーボンペーストを印刷し、加熱乾
燥することにより、対極2.測定極3.参照極4からな
る電極系を形成する。次に、電極系を部分的に覆い、各
々の電極の電気化学的に作用する部分となる2′。
A glucose sensor will be described as an example of a biosensor. FIG. 1 shows an embodiment of a glucose sensor, and is an exploded view of the constituent parts. A conductive carbon paste is printed by screen printing on an insulating substrate 1 made of polyethylene terephthalate color, and then heated and dried to form a counter electrode 2. Measuring pole 3. An electrode system consisting of a reference electrode 4 is formed. 2' then partially covers the electrode system and becomes the electrochemically active part of each electrode.

3/ 、  4 /  <各1H)を残す様に、絶縁性
ペーストを前記同様印刷し、加熱処理して絶縁層5を形
成する。
3/, 4/<1H each) is printed in the same manner as described above, and heat-treated to form the insulating layer 5.

この電極系(2/ 、  3/ 、  4/  )の表
面をオゾン雰囲気中で10分間曝露する(以後オゾン処
理という)ことにより、電極表面のよごれを分解し、ぬ
れやすくする。オゾン処理した電極上にセルロース系の
吸水性高分子の1種であるCMC6(カルボキシメチル
セルロース)の水溶液全塗布し、46°Cで1時間乾燥
した。オゾン処理をしない電極にCMGを塗布したもの
は、絶縁性ペーストの部分ではじかれ、46°Cの乾燥
中にCMGの膜がはがれるため、電極上にCMCの膜を
形成することが困難であった。
By exposing the surface of this electrode system (2/, 3/, 4/) in an ozone atmosphere for 10 minutes (hereinafter referred to as ozone treatment), dirt on the electrode surface is decomposed and it becomes easier to wet. An aqueous solution of CMC6 (carboxymethyl cellulose), a type of cellulose-based water-absorbing polymer, was completely applied onto the ozone-treated electrode and dried at 46°C for 1 hour. When CMG is applied to an electrode that is not subjected to ozone treatment, it is difficult to form a CMC film on the electrode because it is repelled by the insulating paste and the CMG film peels off during drying at 46°C. Ta.

次に穴を開けた樹脂製の保持枠7を絶縁層6に接着し、
前記電極系2’t3’、、*’を覆う様に多孔体8を空
間部を介して保持する。さらに多孔体より小さい径の開
孔部を有する樹脂製カバー9を接着し、全体を一体化す
る。この一体化されたバイオセンサについて、測定極3
1C沿った断面図を第2図に示す。上記に用いた多孔体
は、酸化還元酵素としてグルコースオキシダーゼ100
mgと電子受容体としてフェリシアン化カリウム150
vagをPH5・6のリン酸緩衝液1m/に溶解した液
をナイロン不織布に含浸後、減圧乾燥して作製したもの
である。
Next, a resin holding frame 7 with holes is glued to the insulating layer 6,
The porous body 8 is held via the space so as to cover the electrode systems 2't3', , *'. Furthermore, a resin cover 9 having an opening having a diameter smaller than that of the porous body is adhered to integrate the entire body. For this integrated biosensor, measuring electrode 3
A cross-sectional view along line 1C is shown in FIG. The porous body used above contained glucose oxidase 100 as an oxidoreductase.
mg and potassium ferricyanide as electron acceptor 150
It was prepared by impregnating a nylon nonwoven fabric with a solution of vag dissolved in 1 m/ml of phosphate buffer solution of pH 5.6 and then drying it under reduced pressure.

上記の様に構成したグルコースセンサの多孔体へ試料液
としてグルコース標準液を滴下し、滴下2分後に、参照
極を基準にして測定極の電位をアノード方向へ+0・7
vパルス電圧を印加し5秒後の電流を測定する。この場
合、添加されたグルコースは多孔体に担持されたグルコ
−゛スオキシダーゼの作用でフェリシアン化カリウムと
反応してフェロシアン化カリウムを生成する。そこで、
上記のパルス電圧の印加により、生成したフェロシアン
化カリウムの濃度に基づく酸化電流が得られ、この電流
値は基質であるグルコース濃度に対応する。グルコース
の標準液を滴下し応答電流を測定したところ、700 
mll/dlという高濃度まで良好な直線性が得られた
A glucose standard solution is dropped as a sample solution into the porous body of the glucose sensor configured as described above, and after 2 minutes of dropping, the potential of the measurement electrode is changed to +0.7 points toward the anode with reference to the reference electrode.
Apply a v pulse voltage and measure the current after 5 seconds. In this case, the added glucose reacts with potassium ferricyanide by the action of glucose oxidase supported on the porous material to produce potassium ferrocyanide. Therefore,
By applying the pulse voltage described above, an oxidation current based on the concentration of the generated potassium ferrocyanide is obtained, and this current value corresponds to the concentration of glucose, which is the substrate. When a standard solution of glucose was added dropwise and the response current was measured, it was found that 700
Good linearity was obtained up to a high concentration of ml/dl.

上記のグルコースセンサに血液サンプルを20μ1滴下
して2分後の応答電流を測定すると、非常に再現性の良
い応答が得られた。電極表面にCMGを塗布していない
場合は、塗布している電極より血液の応答が低くばらつ
いていた。これは、カーボン電極の表面に血液中の血球
成分やたんばく質が吸着して応答を妨害するためと考え
らnる。オゾン処理することにより電極表面のよごれを
洗浄し、さらに親水処理されているためCMGの層が密
着して形成され血球などが電極表面に吸着されるのを阻
止しているため、再現性の良い応答を得ることができる
。電極表面の親水処理としては界面活性剤も考えられる
が測定の際、溶けた界面活性剤が応答に影響するためば
らつきの1因となった。オゾン処理は、ドライ状態でし
かも短時間で処理できるため、ディスポーザブルタイプ
のセンサを大量に製造する際、非常にメリットがあると
考えられる。電極表面に塗布する吸水性高分子としてC
MCの他にもゼラチンやメチルセルロースなども使用で
きる。デ/プン系、カルボキシメチルセルロース系、ゼ
ラチン系、アクリル酸塩系。
When a drop of 20 μl of a blood sample was added to the above glucose sensor and the response current was measured 2 minutes later, a response with very good reproducibility was obtained. When the electrode surface was not coated with CMG, the blood response was lower and more variable than when CMG was coated on the electrode surface. This is thought to be because blood cell components and proteins in blood are adsorbed to the surface of the carbon electrode and interfere with the response. Ozone treatment cleans dirt on the electrode surface, and hydrophilic treatment forms a CMG layer that adheres to the electrode surface, preventing blood cells from being adsorbed to the electrode surface, resulting in good reproducibility. You can get a response. A surfactant may also be used as a hydrophilic treatment for the electrode surface, but during measurement, the dissolved surfactant affected the response and was a cause of variation. Since ozone treatment can be performed in a dry state and in a short time, it is considered to be very advantageous when manufacturing disposable type sensors in large quantities. C as a water-absorbing polymer applied to the electrode surface
Besides MC, gelatin, methylcellulose, etc. can also be used. De/pun type, carboxymethyl cellulose type, gelatin type, acrylate type.

ビニルアルコール系、ビニルピロリドン系、 無水マレ
イン酸系のものが好ましい。これらの高分子は容易に水
溶液とすることができるので、適当な濃度の水溶液を塗
布、乾燥することにより、必要な厚さの薄膜を電極上に
形成することができる。
Vinyl alcohol-based, vinylpyrrolidone-based, and maleic anhydride-based materials are preferred. Since these polymers can be easily made into an aqueous solution, a thin film of a required thickness can be formed on the electrode by applying an aqueous solution of an appropriate concentration and drying.

電極系を形成する方法としてのスクリーン印刷は、均一
な特性を有するディスポーザブルタイプのバイオセンサ
を安価に製造することができ、特に、価格が安く、しか
も安定した電極材料であるカーボンを用いて電極を形成
するのに好都合な方法である。
Screen printing as a method for forming electrode systems can produce disposable biosensors with uniform characteristics at low cost, and in particular, it is possible to fabricate electrodes using carbon, which is an inexpensive and stable electrode material. This is a convenient way to form.

本発明のバイオセンサにおける一体化の方法としては、
実施例に示した枠体、カバーなどの形や組み合わせに限
定されるものではない。また、用いる多孔体としては、
ナイロン不織以外に、セルロース、レーヨン、セラミッ
ク、ポリカーボネート等からなる多孔体を単独、あるい
は組み合わせて用いることができる。さらに酸化還元酵
素と電子受容体の組み合わせも前記実施例に限定される
ことはなく、本発明の主旨に合致するものであれば用い
ることができる。一方、上記実施例においては、電極系
として3電極刃式の場合について述べたが、対極と測定
極からなる2電極刃式でも測定は可能である。
The method of integration in the biosensor of the present invention is as follows:
The present invention is not limited to the shapes and combinations of frames, covers, etc. shown in the examples. In addition, the porous body used is
In addition to nylon nonwovens, porous bodies made of cellulose, rayon, ceramic, polycarbonate, etc. can be used alone or in combination. Further, the combination of oxidoreductase and electron acceptor is not limited to the above examples, and any combination can be used as long as it meets the gist of the present invention. On the other hand, in the above embodiments, a three-electrode blade type electrode system was described, but measurements can also be made with a two-electrode blade type consisting of a counter electrode and a measurement electrode.

発明の効果 このように本発明のバイオセンサは、絶縁性基板、電極
系および酸化還元酵素と電子受容体を担持した多孔体を
一体化することにより、極めて容易に生体試料液中の基
質濃度を測定することができ、さらに電極表面をオゾン
処理した後吸水性高分子を塗布することでぬれ性を向上
させ妨害物質の電極表面への吸着を防ぎ測定精度を高め
たものである。
Effects of the Invention As described above, the biosensor of the present invention can extremely easily adjust the substrate concentration in a biological sample liquid by integrating an insulating substrate, an electrode system, and a porous body carrying an oxidoreductase and an electron acceptor. Furthermore, the electrode surface is treated with ozone and then coated with a water-absorbing polymer to improve wettability and prevent interfering substances from adsorbing to the electrode surface, increasing measurement accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例であるバイオセンサの分解斜
視図、第2図はその縦断面図、第3図は従来のバイオセ
ンサの縦断面図である。 1・・・・・・基板、2・・・・・・対極、3・・・・
・・測定極、4・・・・・・参照極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名/−
−−J色球・性jを坂 2〜 対極 3−・5x11定極 −DMC 7−保将枠 第2図 乙 第 3 図 /、<
FIG. 1 is an exploded perspective view of a biosensor that is an embodiment of the present invention, FIG. 2 is a longitudinal sectional view thereof, and FIG. 3 is a longitudinal sectional view of a conventional biosensor. 1...Substrate, 2...Counter electrode, 3...
...Measurement pole, 4...Reference pole. Name of agent: Patent attorney Toshio Nakao and 1 other person/-
--J color ball/gender j slope 2 ~ Opposite pole 3-/5x11 fixed pole-DMC 7-Guardian frame Figure 2 Otsu Figure 3/,<

Claims (3)

【特許請求の範囲】[Claims] (1)少なくとも測定極と対極からなる電極系を設けた
絶縁性基板を備え、酵素と電子受容体と試料液の反応に
際しての物質濃度変化を電気化学的に前記電極系で検知
し前記基質濃度を測定するバイオセンサにおいて、前記
電極系の表面をあらかじめオゾン雰囲気中で曝露し吸水
性高分子を塗布し、さらに酸化還元酵素および電子受容
体を担持した多孔体とともに一体化したことを特徴とす
るバイオセンサ。
(1) An insulating substrate is provided with an electrode system consisting of at least a measurement electrode and a counter electrode, and the change in substance concentration during the reaction between an enzyme, an electron acceptor, and a sample liquid is electrochemically detected by the electrode system, and the substrate concentration is A biosensor for measuring , wherein the surface of the electrode system is exposed in advance in an ozone atmosphere, coated with a water-absorbing polymer, and further integrated with a porous body carrying an oxidoreductase and an electron acceptor. biosensor.
(2)電極系の表面に塗布する吸水性高分子が、デンプ
ン系、カルボキシメチルセルロース系、ゼラチン系、ア
クリル酸塩系、ビニルアルコール系、ビニルピロリドン
系、無水マレイン酸系からなる群のいずれかかもしくは
それらの混合物である特許請求の範囲第1項記載のバイ
オセンサ。
(2) The water-absorbing polymer applied to the surface of the electrode system is one of the group consisting of starch, carboxymethylcellulose, gelatin, acrylate, vinyl alcohol, vinylpyrrolidone, and maleic anhydride. The biosensor according to claim 1, which is a mixture thereof.
(3)電極系が、絶縁性基板上にスクリーン印刷で形成
されたカーボンを主体とする材料からなる特許請求の範
囲第1項記載のバイオセンサ。
(3) The biosensor according to claim 1, wherein the electrode system is made of a carbon-based material formed by screen printing on an insulating substrate.
JP62153665A 1987-06-19 1987-06-19 Biosensor Pending JPS63317095A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62153665A JPS63317095A (en) 1987-06-19 1987-06-19 Biosensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62153665A JPS63317095A (en) 1987-06-19 1987-06-19 Biosensor

Publications (1)

Publication Number Publication Date
JPS63317095A true JPS63317095A (en) 1988-12-26

Family

ID=15567502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62153665A Pending JPS63317095A (en) 1987-06-19 1987-06-19 Biosensor

Country Status (1)

Country Link
JP (1) JPS63317095A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2453145A (en) * 2007-09-27 2009-04-01 Timothy Howard Russell Self-wetting electrochemical sensor using a doped substrate
JP2009528515A (en) * 2006-02-27 2009-08-06 エドワーズ ライフサイエンシーズ コーポレイション Method and apparatus using flex circuit technology for reference electrode channel fabrication
DE102019004120A1 (en) * 2019-06-13 2020-12-17 Forschungszentrum Jülich GmbH Sensor arrangement, method for its production and use of the sensor arrangement

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009528515A (en) * 2006-02-27 2009-08-06 エドワーズ ライフサイエンシーズ コーポレイション Method and apparatus using flex circuit technology for reference electrode channel fabrication
GB2453145A (en) * 2007-09-27 2009-04-01 Timothy Howard Russell Self-wetting electrochemical sensor using a doped substrate
DE102019004120A1 (en) * 2019-06-13 2020-12-17 Forschungszentrum Jülich GmbH Sensor arrangement, method for its production and use of the sensor arrangement

Similar Documents

Publication Publication Date Title
US5229282A (en) Preparation of biosensor having a layer containing an enzyme, electron acceptor and hydrophilic polymer on an electrode system
CA2474912C (en) Electrochemical biosensor strip for analysis of liquid samples
EP0359831B2 (en) Biosensor and process for its production
JPH01134244A (en) Biosensor
JPH01291153A (en) Biosensor
JPS6358149A (en) Biosensor
JPS63317757A (en) Glucose sensor
JPH02310457A (en) Biosensor
JPS63128252A (en) Biosensor
JPH01114746A (en) Biosensor
JPH0816664B2 (en) Biosensor and manufacturing method thereof
JPS61294351A (en) Biosensor
JP2502665B2 (en) Biosensor
JP2596017B2 (en) Biosensor
JP2502656B2 (en) Biosensor manufacturing method
JPH043500B2 (en)
JPS63317095A (en) Biosensor
JPH01134246A (en) Biosensor
JPS63317096A (en) Biosensor
JPS62232554A (en) Biosensor
JPS60211350A (en) Biosensor
JPS63144246A (en) Biosensor
JPS63148158A (en) Biosensor
JPS633248A (en) Biosensor
JPH02221855A (en) Biosensor