JPH01134246A - Biosensor - Google Patents

Biosensor

Info

Publication number
JPH01134246A
JPH01134246A JP62292326A JP29232687A JPH01134246A JP H01134246 A JPH01134246 A JP H01134246A JP 62292326 A JP62292326 A JP 62292326A JP 29232687 A JP29232687 A JP 29232687A JP H01134246 A JPH01134246 A JP H01134246A
Authority
JP
Japan
Prior art keywords
electrode
porous body
electrode system
electron acceptor
biosensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62292326A
Other languages
Japanese (ja)
Inventor
Mariko Kawaguri
真理子 河栗
Mayumi Fujita
真由美 藤田
Shiro Nankai
史朗 南海
Takashi Iijima
孝志 飯島
Sachiko Suetsugu
末次 佐知子
Kiyomi Komatsu
小松 きよみ
Kenichi Morigaki
健一 森垣
Shigeo Kobayashi
茂雄 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62292326A priority Critical patent/JPH01134246A/en
Publication of JPH01134246A publication Critical patent/JPH01134246A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PURPOSE:To easily measure the substrate concentration in an organic body by integrating an insulating substrate, an electrode system, a porous body which carries oxidation reducing enzyme, a porous body film, and a porous body which carries an electron acceptor. CONSTITUTION:The electrode system consisting of a counter electrode 2, a measuring electrode 2, and a reference electrode 4 is formed on the insulating substrate 1 and an insulating layer 5 is formed covering said part partially except electrochemical operating parts 2'-4'. Then a water-absorptive high polymer layer is provided on the surface of electrode systems 2'-4', a groove is formed on the electrode system with both-sided adhesive tapes 7, and tapes of cellulose carrying oxidation reducing enzyme are formed on both sides as guide layers 8. Then a polycarbonate porous material film 9 is adhered as the filter film on a holding frame 10 and fixed with the both-sided adhesive tapes 7 so that the electrode systems 2'-4' are covered. Further, the porous body 11 which carries the electron acceptor is placed at the hole part of the holding frame 10 and a resin-made cover 12 is adhered to integrate the entire body.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、種々の微量の生体試料中の特定成分について
、試料液を希釈することなく迅速かつ簡易に定量するこ
とのできるバイオセンサに関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a biosensor that can quickly and easily quantify specific components in various minute amounts of biological samples without diluting the sample liquid.

従来の技術 従来、血液などの生体試料中の特定成分について、試料
液の希釈や撹拌などの操作を行なうことなく高精度に定
量する方式としては、第6図に示す様なバイオセンサを
提案してきた。(例えば特開昭61−2943151号
公報) このバイオセンサは、絶縁性の基板1に、スレリーン印
刷によシ導電性カーボンペーストヲ印刷し加熱乾燥する
ことにより、対極2.測定極3゜参照極4からなる電極
系を形成する。次に、電極系を部分的に覆い、各々の電
極の電気化学的に作用する部分となる2’ 、 3’ 
、 4’を残す様に絶縁性ペーストを前記同様印刷し、
加熱処理して絶縁層5を形成する。次に、穴をあけた樹
脂製の保持枠9を絶縁層6に接着し、前記電極系2’、
3’、4’を覆う様に多孔体1oを穴の中に保持し、さ
らに多孔体よシ小さい径の開孔部を有する樹脂製カバー
11を接着し、全体を一体化する。上記多孔体には、酸
化還元酵素と電子受容体が担持されておシ、基質を含む
試料液を多孔体に添加すると、酵素反応が進行し、電子
受容体が還元される。酵素反応が終了した後、この還元
された電子受容体を前記電極で電気化学的に酸(1,−
し、この時得られる酸化電流値から試料液中の基質濃度
を求める。
Conventional technology In the past, a biosensor as shown in Figure 6 has been proposed as a method for quantifying specific components in biological samples such as blood with high precision without performing operations such as diluting or stirring the sample solution. Ta. (For example, Japanese Unexamined Patent Application Publication No. 61-2943151) This biosensor is manufactured by printing a conductive carbon paste on an insulating substrate 1 by thread printing and drying it by heating, thereby forming a counter electrode 2. An electrode system consisting of a measurement electrode of 3 degrees and a reference electrode of 4 is formed. 2', 3' then partially cover the electrode system and become the electrochemically active part of each electrode.
, Print the insulating paste in the same way as above so as to leave 4',
The insulating layer 5 is formed by heat treatment. Next, a holding frame 9 made of resin with holes is glued to the insulating layer 6, and the electrode system 2',
A porous body 1o is held in the hole so as to cover 3' and 4', and a resin cover 11 having an opening having a diameter smaller than that of the porous body is bonded to integrate the whole. The porous body carries an oxidoreductase and an electron acceptor, and when a sample solution containing a substrate is added to the porous body, an enzymatic reaction proceeds and the electron acceptor is reduced. After the enzymatic reaction is completed, the reduced electron acceptor is electrochemically treated with acid (1,-
Then, the substrate concentration in the sample solution is determined from the oxidation current value obtained at this time.

発明が解決しようとする問題点 この様な従来の構成では、尿や血清の様な低粘度のサン
プルでは微量を添加するだけで基質濃度が精度よく短時
間で測定できるが、全血のように、血球が混在すると、
電極表面に血球が付着して応答が大きく低下し、さらに
高粘度のため、酵素反応が遅く、5分取上反応終了まで
に時間がかかシ測定値がばらついた。さらに、酸化還元
酵素および電子受容体を同じ多孔体に担持すると、湿度
や光の影響によシ初期特性を維持できない場合があった
Problems to be Solved by the Invention With this conventional configuration, substrate concentration can be measured accurately and in a short time by adding only a trace amount of a sample with low viscosity such as urine or serum; , when blood cells are mixed,
Blood cells adhered to the electrode surface, greatly reducing the response.Furthermore, due to the high viscosity, the enzymatic reaction was slow, and it took a long time to complete the 5-minute collection reaction, resulting in variations in measured values. Furthermore, when an oxidoreductase and an electron acceptor are supported on the same porous material, the initial properties may not be maintained due to the influence of humidity and light.

本発明は、これらの点について種々検討した結果、濾過
膜および電極系の表面に吸水性高分子層を設けて、多孔
体と一体化し、さらに、濾過膜の下に誘導層を設けこれ
に酸化還元酵素を担持させることで、多孔体中の電子受
容体と分離して担持し生体試料中の特定成分を極めて容
易に迅速かつ高精度に定量ができるディスポーザブルタ
イプで長期保存可能なバイオセンサを提供するものであ
る。
As a result of various studies on these points, the present invention has been developed by providing a water-absorbing polymer layer on the surface of the filtration membrane and the electrode system and integrating it with the porous body, and furthermore, providing an induction layer under the filtration membrane and adding oxidation to this layer. By supporting reductase, we provide a disposable biosensor that can be stored for a long period of time and is supported separately from the electron acceptor in the porous material, allowing for extremely easy, rapid, and highly accurate quantification of specific components in biological samples. It is something to do.

問題点を解決するための手段 本発明は上記問題点を解決するため、絶縁性基板に少な
くとも測定極と対極からなる電極系を設け、酵素と電子
受容体と試料液の反応に際しての物質濃度変化を電気化
学的に前記電極系で検知し、試料液中の基質濃度を測定
するバイオセンサにおいて、前記電極系の表面に吸水性
高分子層を設け、電極を前後からはさむ様に酸化還元酵
素を担持した誘導層を配し、電極を覆う様にろ過膜を、
さらにその上に電子受容体を担持した多孔体を配し、各
要素を一体化したものである。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention provides an electrode system consisting of at least a measurement electrode and a counter electrode on an insulating substrate, and detects changes in substance concentration during reactions between enzymes, electron acceptors, and sample liquids. In a biosensor that electrochemically detects substrate concentration in a sample solution by electrochemically detecting it with the electrode system, a water-absorbing polymer layer is provided on the surface of the electrode system, and a redox enzyme is applied so as to sandwich the electrode from the front and back. A supported induction layer is arranged, and a filtration membrane is placed to cover the electrode.
Furthermore, a porous body carrying an electron acceptor is placed on top of the porous body, thereby integrating each element.

作用 本発明によれば、電極系をも含めたディスポーザブルタ
イプのバイオセンサを構成することができ、試料液を多
孔体に添加することによシ、極めて容易に基質濃度を測
定することができる。
According to the present invention, a disposable biosensor including an electrode system can be constructed, and the substrate concentration can be measured very easily by adding a sample liquid to a porous body.

しかも、酵素と電子受容体を分離して担持することによ
シ作成時および保存において、光や湿度の影響をうけず
、長期安定な応答が得られるようになった。さらに、電
極系をはさむように誘導層を設置しているため、濾過膜
を濾過した試料液が確実に電極系上に誘導され、酵素反
応が行なわれるようになった。電極系上の吸水性高分子
によりぬれ性が向上され、試料中の蛋白質の吸着を防ぐ
ことによシ、精度のよい測定が可能となった。さらに、
濾過膜を濾過した低粘度の試料液のみが酵素と反応する
ため、短時間で反応が終了し、しかも酵素の担持量も微
量で足シることかできる。
Furthermore, by carrying the enzyme and electron acceptor separately, it is possible to obtain a long-term stable response without being affected by light or humidity during production and storage. Furthermore, since the guiding layer was installed to sandwich the electrode system, the sample liquid filtered through the filtration membrane was reliably guided onto the electrode system, and the enzyme reaction was carried out. The water-absorbing polymer on the electrode system improves wettability and prevents adsorption of proteins in the sample, allowing highly accurate measurements. moreover,
Since only the low-viscosity sample solution filtered through the filtration membrane reacts with the enzyme, the reaction can be completed in a short time, and the amount of enzyme carried can be small.

実施例 以下、本発明の一実施例について説明する。Example An embodiment of the present invention will be described below.

バイオセンサの一例として、グルコースセンサについて
説明する。第1図は、グルコースセンサの一実施例につ
いて示したもので、構成部分の分解図である。ポリエチ
レンテレフタレートからなる絶縁性基板1に、スクリー
ン印刷により導電性カーボンペーストを印刷し、加熱乾
燥することにより、対極2.測定極3.参照極4からな
る電極系を形成する。次に、この電極系を部分的に覆い
、各々の電極の電気化学的に作用する部分となる2′。
A glucose sensor will be described as an example of a biosensor. FIG. 1 shows an embodiment of a glucose sensor, and is an exploded view of the constituent parts. A conductive carbon paste is printed on an insulating substrate 1 made of polyethylene terephthalate by screen printing and dried by heating to form a counter electrode 2. Measuring pole 3. An electrode system consisting of a reference electrode 4 is formed. 2' then partially covers this electrode system and becomes the electrochemically active part of each electrode.

s’、4’(各1 rtm! )を残す様に、絶縁性ペ
ーストを前記同様印刷し、加熱処理して絶縁層6を形成
する0 この電極系(2/ 、 3/ 、 4/ )の表面をセ
ルロース性の吸水性高分子の1種であるauae<カル
ボキシメチルセルロース)の0.5%水溶液を塗布し4
6℃で30分乾燥した。
An insulating paste is printed in the same manner as above so as to leave s', 4' (1 rtm each!) and heat treated to form an insulating layer 6.0 of this electrode system (2/, 3/, 4/). A 0.5% aqueous solution of auae (carboxymethyl cellulose), a type of cellulosic water-absorbing polymer, was applied to the surface.
It was dried at 6°C for 30 minutes.

次に、第1図に示すように両面接着テープ7で電極系上
に溝を作り、両側に電極を前後からはさむ様に誘導層8
としてセルロースのテープを設置する。このセルロース
のテープには、酸化還元酵素としてグルコースオキシダ
ーゼ10mgをリン酸緩衝液(PHs、e)に溶かした
液を含浸させた後、乾燥している。次に、穴をあけた樹
脂製の保持枠10に濾過膜として孔径1μmのポリカー
ボネート多孔体膜9を接着し、前記電極系2’ 、 3
′、 4’を覆う様に両面接着テープ7で固定する。さ
らに、保持枠10の開孔部に多孔体11を置き、多孔体
より小さい径の開孔部を有する樹脂製カバー12を接着
して全体を一体化する。多孔体11はナイロン不織布に
電子受容体としてフェリシアン化カリウムをPH5,6
のリン酸緩衝液に溶解した液を含浸後、減圧乾燥して作
製したものである。この一体化されたバイオセンサにつ
いて、測定極3に沿った断面図を第2図に示す。
Next, as shown in FIG. 1, grooves are made on the electrode system using double-sided adhesive tape 7, and the guide layer 8 is placed on both sides so as to sandwich the electrodes from the front and back.
Install cellulose tape as a protection. This cellulose tape was impregnated with a solution in which 10 mg of glucose oxidase as an oxidoreductase was dissolved in a phosphate buffer (PHs, e), and then dried. Next, a porous polycarbonate membrane 9 with a pore diameter of 1 μm is adhered as a filtration membrane to the resin holding frame 10 with holes, and the electrode systems 2', 3
′, 4′ are fixed with double-sided adhesive tape 7 so as to cover them. Further, a porous body 11 is placed in the opening of the holding frame 10, and a resin cover 12 having an opening having a diameter smaller than that of the porous body is adhered to integrate the whole. The porous body 11 is a nylon nonwoven fabric containing potassium ferricyanide as an electron acceptor at pH 5.6.
It was prepared by impregnating with a solution dissolved in phosphate buffer and drying under reduced pressure. A cross-sectional view along the measurement electrode 3 of this integrated biosensor is shown in FIG.

上記の様に構成したグルコースセンサの多孔体へ試料液
としてグルコース標準液を滴下し、2分後に参照極4′
を基準にして測定極3′の電位をアノード方向へ+0.
5vパルス電圧を印加し、5秒後の電流を測定する。こ
の場合、添加されたグルコース標準液により多孔体に担
持されたフェリシアン化カリウムが溶解する。ポリカー
ボネート多孔体膜を通過した後、電極系を前後からはさ
むように置かれたセルローステープに誘導されて電極系
上へ液が達する。その際、セルロースのテープ上に担持
されたグルコースオキシダーゼが溶は出てグルコースを
酸化し、フェリシアン化カリウムが同時に還元されてフ
ェロシアン化カリウムが生成する。そこで、上記のパル
ス電圧の印加によシ、生成したフェロシアン化カリウム
の濃度に基づく酸化電流が得られ、これは基質であるグ
ルコース濃度に対応する。酸化電流はグルコース濃度が
−r o o m f/ellまで良好な直線性が得ら
れた。
A glucose standard solution was dropped as a sample solution into the porous body of the glucose sensor configured as described above, and after 2 minutes, the reference electrode 4'
With reference to , the potential of the measuring electrode 3' is set to +0.
Apply a 5v pulse voltage and measure the current after 5 seconds. In this case, potassium ferricyanide supported on the porous body is dissolved by the added glucose standard solution. After passing through the porous polycarbonate membrane, the liquid is guided by cellulose tape placed between the front and back of the electrode system and reaches the top of the electrode system. At this time, glucose oxidase supported on the cellulose tape dissolves and oxidizes glucose, and potassium ferricyanide is simultaneously reduced to produce potassium ferrocyanide. Therefore, by applying the pulse voltage described above, an oxidation current is obtained based on the concentration of the generated potassium ferrocyanide, which corresponds to the concentration of glucose, which is the substrate. Good linearity of the oxidation current was obtained up to a glucose concentration of -r o m f/ell.

上記のグルコースセンサに血液サンプル20μ!を滴下
して2分後の応答電流を測定すると、非常に再現性の良
い応答が得られた。血液の場合は血球が混在しているた
め粘度が高く、酵素反応をすみやかに行なわせるのは非
常に難しく、従来では遠心分離や撹拌するという操作が
不可欠であった。
Blood sample 20μ for the above glucose sensor! When the response current was measured 2 minutes after dropping the solution, a response with very good reproducibility was obtained. In the case of blood, it has a high viscosity due to the presence of blood cells, making it extremely difficult to carry out enzymatic reactions quickly. Conventionally, operations such as centrifugation and stirring were indispensable.

又電極表面に蛋白質が付着して応答がばらつく現象がみ
られた。しかし、孔径1μmのポリカーボネート多孔体
膜を濾過膜として用いると、血球が’f5過されその後
グルコースオキシダーゼと反応するので粘度が低下し、
すみやかに酵素反応を行なうことができた。さらに、ポ
リカーボネート多孔体膜上の液を電極上へ供給するため
誘導層として電極をはさむように設置されたセルロース
のテープにより、迅速に効率よく濾過液を誘導すること
ができ、血液を滴下後30秒で電極系上に反応液を供給
することができた。セルロースのテープがない場合は、
反応液が電極系に達するまでにかかった。溝の高さを低
くすると、反応液は早く達するが、溝が100μmよシ
低くなると気泡が残ったシ、応答電流がポリカーボネー
ト多孔体膜の影響をうけてばらつくという現象がみられ
た。セルロースのテープを電極上にかかる様に置くと、
反応液はすみやかに電極上に達するが、気泡が発生する
場合が見られ、応答も低目にばらついた。セルロースの
テープは、電極上にかからない様に、しかも接近した所
に設置すれば、反応液は有効にすみやかに電極上に供給
され、安定な応答が得られることが判明した。セルロー
スの他にもレーヨン、パルプなど親水性の薄い多孔体が
使用できた。
In addition, a phenomenon in which proteins adhered to the electrode surface caused variations in response was observed. However, when a porous polycarbonate membrane with a pore size of 1 μm is used as a filtration membrane, the viscosity decreases because blood cells are filtered through 'f5 and then react with glucose oxidase.
The enzymatic reaction could be carried out quickly. Furthermore, in order to supply the liquid on the polycarbonate porous membrane onto the electrode, the cellulose tape placed between the electrodes as a guide layer allows the filtrate to be guided quickly and efficiently, and 30 minutes after dropping the blood. The reaction solution could be supplied onto the electrode system in seconds. If you don't have cellulose tape,
It took some time for the reaction solution to reach the electrode system. When the height of the groove was lowered, the reaction solution arrived faster, but when the groove was lowered by 100 μm, air bubbles remained and the response current varied due to the influence of the porous polycarbonate membrane. When a cellulose tape is placed over the electrode,
Although the reaction solution quickly reached the electrode, bubbles were sometimes generated, and the response was low and varied. It has been found that if the cellulose tape is placed close to the electrode so as not to cover it, the reaction solution can be effectively and quickly supplied onto the electrode and a stable response can be obtained. In addition to cellulose, thin hydrophilic porous materials such as rayon and pulp could be used.

ナイロン不織布からなる多孔体11に、グルコースオキ
シダーゼとフェリシアン化カリウムを担持しても測定は
可能であるが、作成および保存の際、グルコースオキシ
ダーゼとフェリシアン化カリウムが湿度や光の影響で反
応することがわかったので、別々に担持した方が簡易に
作成でき、長期保存にも有効と考えられる。さらに、濾
過された液量は、滴下された液の約〃〜晃となるので、
酵素の担持量も微量でよくなった。
Although measurement is possible by supporting glucose oxidase and potassium ferricyanide on the porous body 11 made of nylon nonwoven fabric, it was found that glucose oxidase and potassium ferricyanide react with each other due to the influence of humidity and light during preparation and storage. Therefore, it is considered easier to prepare and more effective for long-term storage if they are supported separately. Furthermore, the amount of filtered liquid is about 〃~Akira of the dropped liquid, so
The amount of enzyme supported was also reduced to a very small amount.

電極表面にCMCを塗布することにより、電極のぬれ性
がよくなり、わずか2〜3μlの反応液でも充分電極系
上を覆うことができた。又、反応液中の蛋白質等が電極
表面へ付着するのを阻止し、再現性の良い応答が得られ
た。吸水性高分子としてはカルボキシメチルセルロース
系、ゼラチン系。
By applying CMC to the electrode surface, the wettability of the electrode was improved, and even only 2 to 3 μl of the reaction solution was able to sufficiently cover the electrode system. In addition, proteins in the reaction solution were prevented from adhering to the electrode surface, and a response with good reproducibility was obtained. Water-absorbing polymers include carboxymethyl cellulose and gelatin.

アクリル酸塩系、ビニルアルコール系、ビニルピロリド
ン系、無水マレイン酸系のものが好ましい。
Acrylate-based, vinyl alcohol-based, vinylpyrrolidone-based, and maleic anhydride-based materials are preferred.

本発明のバイオセンサにおける一体化の方法としては実
施例に示した枠体、カバーなどの形や組み合わせに限定
されるものではない。又、酸化還元酵素と電子受容体の
組み合わせも前記実施例に限定されることはなく、本発
明の主旨に合致するものであれば用いることができる。
The method of integration in the biosensor of the present invention is not limited to the shapes and combinations of the frame, cover, etc. shown in the embodiments. Moreover, the combination of oxidoreductase and electron acceptor is not limited to the above embodiments, and any combination can be used as long as it meets the gist of the present invention.

一方、上記実施例においては、電極系として3電極力式
の場合について述べたが、対極と測定極からなる2電極
力式でも測定は可能である。
On the other hand, in the above embodiment, a three-electrode force type electrode system was described, but measurement can also be performed using a two-electrode force type consisting of a counter electrode and a measurement electrode.

発明の効果 このように本発明のバイオセンサは、絶縁性基板、電極
系、酸化還元酵素を担持した多孔体、多孔体膜および電
子受容体を担持した多孔体を一体化することにより、極
めて容易に生体試料中の基質濃度を測定することができ
、酵素と電子受容体を多孔体膜を介して担持することに
よシ、迅速に測定し長期保存を可能にした。さらに、電
極表面に吸水性高分子を塗布し妨害物質の電極への吸着
を防ぎ、測定精度を高めた。
Effects of the Invention As described above, the biosensor of the present invention can be manufactured very easily by integrating an insulating substrate, an electrode system, a porous body carrying an oxidoreductase, a porous membrane, and a porous body carrying an electron acceptor. It is possible to measure the substrate concentration in biological samples, and by supporting the enzyme and electron acceptor through a porous membrane, it enables rapid measurement and long-term storage. Furthermore, a water-absorbing polymer was applied to the electrode surface to prevent interfering substances from adsorbing to the electrode, increasing measurement accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例であるバイオセンサの分解斜
視図、第2図はその縦断面図、第3図は従来のバイオセ
ンサの分解斜視図である。 1・・・・・・絶縁性基板、2・・・・・・対極、3・
・・・・・測定極、4・・・・・・参照極、6・・・・
・・絶縁層、6・・・・・・CMC17・・・・・・両
面接着テープ、8・・・・・・誘導層、9・・・・・・
p過膜、1o・・・・・・保持枠、11・・・・・・多
孔体、12・・・・・・カバー〇 代理人の氏名 弁理士 中 尾 敏 男 ほか1名!−
1[渣1 @@球婦゛く 貴へ孝迩快
FIG. 1 is an exploded perspective view of a biosensor according to an embodiment of the present invention, FIG. 2 is a vertical sectional view thereof, and FIG. 3 is an exploded perspective view of a conventional biosensor. 1... Insulating substrate, 2... Counter electrode, 3.
...Measuring pole, 4...Reference pole, 6...
...Insulating layer, 6...CMC17...Double-sided adhesive tape, 8...Induction layer, 9...
P membrane, 1o...Holding frame, 11...Porous body, 12...Cover〇Name of agent Patent attorney Toshi Nakao and 1 other person! −
1 [Residence 1

Claims (2)

【特許請求の範囲】[Claims] (1)少なくとも測定極と対極からなる電極系を設けた
絶縁性基板を備え、酵素と電子受容体と試料液の反応に
際しての基質濃度を測定するバイオセンサにおいて、前
記電極系の表面に吸水性高分子層を設け、電極系を前後
からはさんだ位置に酸化還元酵素を担持した誘導層を設
け、電極を覆う様にろ過膜を置き、さらにその上に電子
受容体を担持した多孔体を配し、前記各要素を一体化し
たことを特徴とするバイオセンサ。
(1) In a biosensor that is equipped with an insulating substrate provided with an electrode system consisting of at least a measurement electrode and a counter electrode, and that measures the substrate concentration during the reaction between an enzyme, an electron acceptor, and a sample solution, the surface of the electrode system has a water-absorbing surface. A polymer layer is provided, a dielectric layer supporting an oxidoreductase is provided between the front and back of the electrode system, a filtration membrane is placed to cover the electrode, and a porous material supporting an electron acceptor is placed on top of the filtration membrane. A biosensor characterized in that each of the above-mentioned elements is integrated.
(2)吸水性高分子が、カルボキシメチルセルロース系
、ゼラチン系、アクリル酸系、ビニルアルコール系、ビ
ニルピロリドン系、無水マレイン酸系からなる群のいず
れかもしくはそれらの混合物である特許請求の範囲第1
項記載のバイオセンサ。
(2) Claim 1 in which the water-absorbing polymer is one of the group consisting of carboxymethyl cellulose, gelatin, acrylic acid, vinyl alcohol, vinylpyrrolidone, and maleic anhydride, or a mixture thereof.
Biosensor as described in section.
JP62292326A 1987-11-19 1987-11-19 Biosensor Pending JPH01134246A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62292326A JPH01134246A (en) 1987-11-19 1987-11-19 Biosensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62292326A JPH01134246A (en) 1987-11-19 1987-11-19 Biosensor

Publications (1)

Publication Number Publication Date
JPH01134246A true JPH01134246A (en) 1989-05-26

Family

ID=17780334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62292326A Pending JPH01134246A (en) 1987-11-19 1987-11-19 Biosensor

Country Status (1)

Country Link
JP (1) JPH01134246A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0634488A2 (en) * 1993-07-16 1995-01-18 GOLDSTAR CO. Ltd. Biosensor for measuring gas and the manufacturing method thereof
EP1172649A1 (en) * 2000-01-25 2002-01-16 Matsushita Electric Industrial Co., Ltd. Measuring device using biosensor and biosensor used for it, and dedicated standard liquid
US6723371B2 (en) * 2000-06-01 2004-04-20 Bioptik Technology, Inc. Process for preparing an electrochemical test strip
US6776888B2 (en) 2000-07-31 2004-08-17 Matsushita Electric Industrial Co., Ltd. Biosensor
US9234863B2 (en) 1998-10-08 2016-01-12 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor
US9234864B2 (en) 1997-02-06 2016-01-12 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor
CN108802127A (en) * 2018-05-03 2018-11-13 佛山科学技术学院 A kind of removable electrochemical sensor

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0634488A3 (en) * 1993-07-16 1995-05-03 Gold Star Co Biosensor for measuring gas and the manufacturing method thereof.
EP0634488A2 (en) * 1993-07-16 1995-01-18 GOLDSTAR CO. Ltd. Biosensor for measuring gas and the manufacturing method thereof
US9234864B2 (en) 1997-02-06 2016-01-12 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor
US9891185B2 (en) 1998-10-08 2018-02-13 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor
US9341591B2 (en) 1998-10-08 2016-05-17 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor
US9316609B2 (en) 1998-10-08 2016-04-19 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor
US9291592B2 (en) 1998-10-08 2016-03-22 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor
US9234863B2 (en) 1998-10-08 2016-01-12 Abbott Diabetes Care Inc. Small volume in vitro analyte sensor
EP1172649A4 (en) * 2000-01-25 2002-05-08 Matsushita Electric Ind Co Ltd Measuring device using biosensor and biosensor used for it, and dedicated standard liquid
US6881322B2 (en) 2000-01-25 2005-04-19 Matsushita Electric Industrial Co., Ltd. Measuring device using biosensor and biosenor used for it, and dedicated standard liquid
EP1172649A1 (en) * 2000-01-25 2002-01-16 Matsushita Electric Industrial Co., Ltd. Measuring device using biosensor and biosensor used for it, and dedicated standard liquid
US6723371B2 (en) * 2000-06-01 2004-04-20 Bioptik Technology, Inc. Process for preparing an electrochemical test strip
US6776888B2 (en) 2000-07-31 2004-08-17 Matsushita Electric Industrial Co., Ltd. Biosensor
CN108802127A (en) * 2018-05-03 2018-11-13 佛山科学技术学院 A kind of removable electrochemical sensor
CN108802127B (en) * 2018-05-03 2020-07-07 佛山科学技术学院 Detachable electrochemical sensor

Similar Documents

Publication Publication Date Title
US4897173A (en) Biosensor and method for making the same
US5185256A (en) Method for making a biosensor
US5120420A (en) Biosensor and a process for preparation thereof
JPS63128252A (en) Biosensor
JP2005517181A (en) Electrochemical biosensor strip for analysis of liquid samples
JPS6358149A (en) Biosensor
JPH0640086B2 (en) Biosensor
JPH0430543B2 (en)
JPH0452893B2 (en)
JPH01134244A (en) Biosensor
JPS63139246A (en) Biosensor
JPH01114746A (en) Biosensor
JPH11304748A (en) Biosensor
JP2006337375A (en) Testing system
JPS61294351A (en) Biosensor
JPH01134246A (en) Biosensor
JP2596017B2 (en) Biosensor
JPH043500B2 (en)
JPS60211350A (en) Biosensor
JP2624236B2 (en) Biosensor
JPH01134242A (en) Biosensor
JPS63317095A (en) Biosensor
JPH01134243A (en) Biosensor
JPH0640089B2 (en) Biosensor
JPS63139243A (en) Glucose sensor