JPS63278503A - Filtering adsorption material and its usage - Google Patents

Filtering adsorption material and its usage

Info

Publication number
JPS63278503A
JPS63278503A JP62113314A JP11331487A JPS63278503A JP S63278503 A JPS63278503 A JP S63278503A JP 62113314 A JP62113314 A JP 62113314A JP 11331487 A JP11331487 A JP 11331487A JP S63278503 A JPS63278503 A JP S63278503A
Authority
JP
Japan
Prior art keywords
blood
filtration
adsorbent
inner diameter
hollow fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62113314A
Other languages
Japanese (ja)
Inventor
Tamiyuki Eguchi
江口 民行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP62113314A priority Critical patent/JPS63278503A/en
Publication of JPS63278503A publication Critical patent/JPS63278503A/en
Pending legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)

Abstract

PURPOSE:To produce filtering adsorption material having blood compatibility which can remove specified serum protein from blood without any damage of blood, by using hollow filament-like adsorption material having specified inside diameter and ratio of inside diameter to outside diameter for selective removal of serum protein. CONSTITUTION:Spinning dope such as dimethyl sulfoxide soln. of polysulfone is extruded through a double pipe nozzle with core fluid such as propylene glycol, etc., immersed in a coagulation fluid such as water, etc., after being run in the air, and subjected to heat treatment. Thereby, the hollow filament-like filtering adsorption material having 100-300mum inside diameter and ratio of inside diameter to outside diameter of 0.2-0.6 is produced. When blood is run along inside or outside of the filtering adsorption material, part of serum in blood is filtered and the targeted serum protein is removed by being adsorbed in the wall of the hollow filament.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はすぐれたt濾過特性と吸着特性および血液適合
性を同時に有する肉厚な中空糸状の濾過吸着体およびそ
の使用方法に関する。さらに詳しくは、血液から特定の
血漿蛋白質を血液に損傷を与えることなく除去するため
の濾過吸着体およびその使用方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a thick hollow fiber filter adsorbent having excellent T-filtration properties, adsorption properties and blood compatibility at the same time, and a method for using the same. More specifically, the present invention relates to a filtration adsorbent for removing specific plasma proteins from blood without damaging the blood, and a method for using the same.

[従来の技術およびその問題点] 血液から特定の血漿蛋白質を吸着によって除去するため
に、従来では吸着体として ■血液適合性が比較的すぐれた材料で表面を被覆した粒
状活性炭(たとえばオー・オーツボら(0,0tubo
 et al)、 トランス アクションズ アメリカ
ン ソサイアティ フォア アーティフィシャル イン
ターナル オーガンス(Trans。
[Prior art and its problems] In order to remove specific plasma proteins from blood by adsorption, conventionally, as an adsorbent, ■ granular activated carbon whose surface is coated with a material with relatively good blood compatibility (for example, O-orthots) has been used as an adsorbent. et al (0,0tubo
et al), Trans Actions American Society for Artificial Internal Organs (Trans.

Am、  Soc、  Artif’、  Inter
n、  Organs、)29巻、  480頁(19
83)参照)や、 ■活性炭粉末を高分子材料をバインダーとしてフィルム
状に成型したもの(たとえば、川西ら、人工臓器、10
巻、6号、1037頁(19111)およびピー・ニス
−フルケスキーら(PJ、 Malchesky et
al)、アーティフィシャル オーガンス(Artll
’1clal Organs、)、2巻、4号、387
頁(1978)参照)が用いられている。
Am, Soc, Artif', Inter
n, Organs, ) vol. 29, p. 480 (19
83)), and Activated carbon powder molded into a film using a polymeric material as a binder (for example, Kawanishi et al., Artificial Organs, 10).
Vol. 6, p. 1037 (19111) and PJ, Malchesky et al.
al), Artificial Organs (Artll
'1clal Organs, ), Volume 2, No. 4, 387
(1978)) is used.

■の吸着体では被覆層によって血液適合性は向上するが
、吸着速度が低下するという問題がある。■の吸着体で
はフィルム面と血液との接触面積が粒状のもに比べて小
さくなっているので血液適合性はよりすぐれたものにな
っていると考えられるが1.■と同様にバインダーが吸
着速度を低下させるだけでなく、吸着体中の活性炭の占
める割合を小さくするので一定の吸着能をうるために必
要な体積が大きなものになり、いわゆるプライミングボ
リュームが大きくなるという問題点がある。また、■お
よび■に共通することであるが、吸着性能は活性炭に負
うので、その特性はおのずから制限され、目的の成分以
外の成分をも吸着してしまうという問題点がある。
In the adsorbent (2), the coating layer improves blood compatibility, but there is a problem in that the adsorption rate decreases. With the adsorbent (2), the contact area between the film surface and the blood is smaller than with the granular adsorbent, so it is thought that the blood compatibility is better. Similar to (2), the binder not only reduces the adsorption rate, but also reduces the proportion of activated carbon in the adsorbent, which increases the volume required to obtain a certain adsorption capacity, resulting in a large priming volume. There is a problem. Furthermore, as is common to (1) and (2), since the adsorption performance depends on the activated carbon, its properties are naturally limited, and there is a problem that components other than the target components may also be adsorbed.

前記のような吸着速度が小さい、すなわち吸着に要する
時間が長い、プライミングボリュームが大きい、および
目的の成分以外の成分をも吸着するといった問題点を有
する吸着体は、とくに自己免疫疾患などの治療のために
体外循環システムに適用するばあいには患者に負担を強
いることになり、この種の治療に必要なン濾過特性を満
足させるものではない。
Adsorbents that have the above-mentioned problems of low adsorption speed, that is, long time required for adsorption, large priming volume, and adsorption of components other than the target component, are particularly useful for the treatment of autoimmune diseases. Therefore, when applied to an extracorporeal circulation system, it imposes a burden on the patient, and does not satisfy the filtration characteristics necessary for this type of treatment.

吸着特性だけに着目すれば前記の問題点を改善した吸着
体を多種類の素材の中から選ぶことは可能であるが、そ
のほとんどの素材は一般に血液適合性がわるいという問
題点(たとえば、松山、化学工学、50巻、10号、6
75頁(1986)参照)がある。
If we focus only on adsorption properties, it is possible to select an adsorbent from a wide variety of materials that improves the above-mentioned problems, but most of these materials generally have a problem of poor blood compatibility (for example, Matsuyama et al. , Chemical Engineering, Volume 50, No. 10, 6
75 (1986)).

[発明が解決しようとする問題点] 本発明の目的は、前記の問題点を解消して血液適合性と
吸着特性とを同時に満足させるための新規なン濾過特性
を有する吸着体およびその使用方法を提供することであ
る。
[Problems to be Solved by the Invention] An object of the present invention is to provide an adsorbent having novel filtration properties and a method for using the same, which solves the above-mentioned problems and satisfies blood compatibility and adsorption properties at the same time. The goal is to provide the following.

すなわち本発明者らは、前記素材であっても血液との接
触面積を小さくし、接触面における血液のせん断度を大
きくすれば、血球成分の付着が少なくなり、血液も凝固
しないので血液適合性が向上すること、および吸着は拡
散流れが必須条件ではなく、対流流れ(あるいはボワズ
イユ流れ)の過程中であっても吸着点と被吸着物質が接
触すれば起こることを見出し、これらを組合わすことに
よって、本発明を完成するに至った。
In other words, the present inventors believe that even with the above-mentioned material, if the contact area with blood is reduced and the degree of blood shear is increased at the contact surface, the adhesion of blood cell components will be reduced and the blood will not coagulate, thereby improving blood compatibility. We found that the adsorption can be improved, and that adsorption does not require diffusion flow, but can occur if the adsorption point and the adsorbed substance come into contact even during the process of convective flow (or Boiseuille flow), and we combined these findings. As a result, the present invention was completed.

[問題点を解決するための手段] すなわち、本発明は内径が100〜300虜であって、
外径に対する内径の比が0.2〜0.6である中空糸状
の血漿蛋白質選択除去用濾過吸着体および内径が100
〜300pであって、外径に対する内径の比が0.2〜
0.6である中空糸状の血漿蛋白質選択除去用濾過吸着
体の少なくとも一端を、血液の出入口または該濾過吸着
体によって濾過吸着処理された該血液中の血漿の出口を
有する容器に、血液と該血漿とが直接混合しないように
固定し、該濾過吸着体の内面側を該固定端で開口して該
血漿または該血液の通路とすることを特徴とする血漿蛋
白質選択除去用清適、吸着体の使用方法に関する。
[Means for solving the problems] That is, the present invention has an inner diameter of 100 to 300 mm,
Hollow fiber-shaped filtration adsorbent for selective removal of plasma proteins with a ratio of inner diameter to outer diameter of 0.2 to 0.6 and an inner diameter of 100
~300p, and the ratio of the inner diameter to the outer diameter is 0.2~
At least one end of a hollow fiber-like filtration adsorbent for selective removal of plasma proteins having a molecular weight of 0.6 is placed in a container having an inlet and an inlet for blood or an outlet for plasma in the blood that has been filtered and adsorbed by the filtration adsorbent. A purifier and adsorbent for selectively removing plasma proteins, which is fixed to prevent direct mixing with plasma, and the inner surface of the filtration adsorbent is opened at the fixed end to serve as a passage for the plasma or blood. Concerning how to use.

[作 用] 本発明の中空糸状の血漿蛋白質選択除去用濾過吸着体は
、その内面側または外面側を血液の通路とするとそこを
流れる血液の血漿の一部をt濾過し、血液中の少なくと
も1種類の血漿蛋白質を該中空糸の肉厚部で吸着させて
除去する。
[Function] When the hollow fiber-shaped filtration adsorbent for selectively removing plasma proteins of the present invention uses its inner or outer surface as a blood passageway, it t-filters a part of the plasma of the blood flowing therethrough, and at least One type of plasma protein is adsorbed and removed by the thick part of the hollow fiber.

また、本発明の濾過吸着体の使用方法では、血液は表面
積の小さな表面上を高速で流れながら被吸着成分である
血漿蛋白質を、従来のように拡散流れではなく、吸着点
の近傍まで対流流れによって迅速に運び、濾過吸着させ
る。しかも、中空糸全体が吸着体となっているので、そ
のすべてが有効に濾過吸着体として使用される。
In addition, in the method of using the filtration adsorbent of the present invention, blood flows at high speed on a surface with a small surface area, and plasma proteins, which are adsorbed components, are transported by convection flow to the vicinity of the adsorption point, instead of diffusion flow as in conventional methods. The substance is quickly transported, filtered and adsorbed. Moreover, since the entire hollow fiber serves as an adsorbent, all of the hollow fibers can be effectively used as a filtration adsorbent.

[実施例] 本発明の中空糸状の濾過吸着体は内径が100〜300
fで外径に対する内径の比が0.2〜0.6である。ま
た好ましくは、内径が180〜250腐で、外径に対す
る内径の比が0.35〜0.50である。
[Example] The hollow fiber filtration adsorbent of the present invention has an inner diameter of 100 to 300.
The ratio of the inner diameter to the outer diameter is 0.2 to 0.6 at f. Preferably, the inner diameter is 180 to 250 mm, and the ratio of the inner diameter to the outer diameter is 0.35 to 0.50.

内径がおよそ180 us未満のばあいには血液の通路
として該中空糸の内面側を用いたばあい、中空糸の内径
が小さすぎて血液の圧力損失が大きくなり、血球成分が
破壊され溶血することがあるので、中空糸の外面側を血
液の通路として用いるのが好ましい。また、内径が10
0−未満のばあいには、中空糸の外面側を血液の通路と
して用いてもン濾過された血漿の圧力損失が大きくなり
、必要なン濾過速度をつるためには血液に大きな圧力を
加えなければならないので好ましくない。内径が180
〜300廓のばあいには、中空糸の外面側は内面側に比
べて表面積が大きいので血液との接触時間が長くなり、
血球成分が多量に付着したり、血液が凝固したりするこ
とがあるので、中空糸の内面側を血液の通路として用い
るのが好ましい。しかし、内径が300Iをこえるばあ
いにはプライミングボリュームが大きくなり、好ましく
ない。
If the inner diameter is less than approximately 180 us, if the inner surface of the hollow fiber is used as a blood passage, the inner diameter of the hollow fiber will be too small and the pressure loss of the blood will be large, causing destruction of blood cell components and hemolysis. Therefore, it is preferable to use the outer surface side of the hollow fiber as a blood passage. Also, the inner diameter is 10
If it is less than 0, the pressure loss of the filtered plasma will be large if the outer surface of the hollow fiber is used as a blood passage, and in order to achieve the required filtration rate, a large pressure must be applied to the blood. This is not desirable because it has to be done. Inner diameter is 180
In the case of ~300 km, the outer surface of the hollow fiber has a larger surface area than the inner surface, so the contact time with blood is longer.
Since a large amount of blood cell components may adhere or blood may coagulate, it is preferable to use the inner surface of the hollow fiber as a blood passage. However, if the inner diameter exceeds 300I, the priming volume will increase, which is not preferable.

また、本発明の中空糸状のン濾過吸着体の外径に対する
内径の比が0.2未満のばあいには、内面側の血液ある
いはr濾過された血漿の通路が小さいので圧力損失が大
きくなり、血中成分の破壊などの問題が生ずる。逆に0
.6をこえるばあいには、中空糸の肉厚部の占有体積、
すなわち吸着剤の体積が小さくなり、プライミングボリ
ュームが増大するという問題が生ずる。したがって外径
に対する内径の比は0.2〜0.6の範囲が好ましい。
Furthermore, if the ratio of the inner diameter to the outer diameter of the hollow fiber-like filter adsorbent of the present invention is less than 0.2, the pressure loss will increase because the passage for blood or filtered plasma on the inner surface is small. , problems such as destruction of blood components occur. On the other hand, 0
.. If it exceeds 6, the volume occupied by the thick part of the hollow fiber,
That is, a problem arises in that the volume of the adsorbent decreases and the priming volume increases. Therefore, the ratio of the inner diameter to the outer diameter is preferably in the range of 0.2 to 0.6.

血液の流れが均一になることや残血が少ないことから中
空糸の内面側を血液の通路として用いることが多いが、
そのばあいには内径が180〜250ρで内径に対する
外径の比が0.35〜0.50であれば吸着体積、圧力
損失、接触面積およびプライミングボリュームの間のバ
ランスがよく、とくに好ましい。
The inner surface of the hollow fiber is often used as a blood passageway because the blood flow is uniform and there is little residual blood.
In that case, it is particularly preferable that the inner diameter is 180 to 250 ρ and the ratio of the outer diameter to the inner diameter is 0.35 to 0.50, since this provides a good balance among adsorption volume, pressure loss, contact area, and priming volume.

中空糸の有効長は、必要とされる吸着能力によって定め
られるが圧力損失やプライミングボリュームが過大にな
らないようにおよそ20cm以下にするのが好ましい。
The effective length of the hollow fibers is determined by the required adsorption capacity, but it is preferably about 20 cm or less to avoid excessive pressure loss and priming volume.

また本発明の中空糸状の濾過吸着体の素材は血液適合性
と吸着特性とを同時に有し、必要とされる濾過特性を満
足するように選択す゛るのが好ましい。
Further, the material of the hollow fiber filter adsorbent of the present invention is preferably selected so as to have both blood compatibility and adsorption properties, and to satisfy the required filtration properties.

血液適合性については血球成分の付着性、血液の凝固性
および溶血性のほかに、補体成分の活性化能も重要な因
子である(たとえば、検出、化学工学、50巻、10号
、675頁(198B)参照)。
Regarding blood compatibility, in addition to the adhesion of blood cell components, blood coagulation and hemolysis, the ability to activate complement components is also an important factor (for example, Detection, Chemical Engineering, Vol. 50, No. 10, 675 (See page 198B).

疎水性材料、たとえばポリスチレン、ポリメチルメタク
リレート、ポリブチル−メタクリレート、ポリラウリル
メタクリレート、ポリエチレンテレフタレート、ポリブ
チレンテレフタレート、ポリオレフィン系ポリマーなど
、およびカチオン交換能を有する材料、たとえばスルホ
ン酸基、硫酸エステル基、カルボキシル基などの陽イオ
ン交換基を有する材料は補体の活性化能が小さい材料で
あることが知られている。
Hydrophobic materials, such as polystyrene, polymethyl methacrylate, polybutyl-methacrylate, polylauryl methacrylate, polyethylene terephthalate, polybutylene terephthalate, polyolefinic polymers, etc., and materials with cation exchange ability, such as sulfonic acid groups, sulfate ester groups, carboxyl groups It is known that materials having cation exchange groups such as cation exchange groups have a low ability to activate complement.

蛋白質に対する吸着特性は、一般に、吸着体が親水性の
ものであるより疎水性のものである方が大きいことが知
られている。たとえば、セルロースやポリビニルアルコ
ールなどのようにきわめて親水性の大きな材料には蛋白
質はほとんど吸着されないが、ポリスチレンのような疎
水性の材料にはよく吸着されることが知られている。ま
た、親水性と疎水性の中間の性質を有する材料、たとえ
ばポリアクリロニトリル、ポリスルホン、セルロースア
セテート、セルロースプロピオネート、セルロースブチ
レート、ポリアミドや、疎水性モノマーと親水性七ツマ
−からなるランダム共重合体またはブロック共重合体な
どは特定の蛋白質に対して選択的な吸着特性を示す。
It is generally known that hydrophobic adsorbents have greater adsorption characteristics for proteins than hydrophilic adsorbents. For example, it is known that proteins are hardly adsorbed to extremely hydrophilic materials such as cellulose and polyvinyl alcohol, but are well adsorbed to hydrophobic materials such as polystyrene. In addition, materials with intermediate properties between hydrophilicity and hydrophobicity, such as polyacrylonitrile, polysulfone, cellulose acetate, cellulose propionate, cellulose butyrate, polyamide, and random copolymers consisting of hydrophobic monomers and hydrophilic heptamers are also used. Coalescence or block copolymers exhibit selective adsorption properties for specific proteins.

したがって、これらの特性を組合わせることによって、
血液適合性がよく、しかも特定の血漿蛋白質の選択的吸
着特性を有する素材を選択することが可能である。
Therefore, by combining these characteristics,
It is possible to select a material that has good blood compatibility and also has selective adsorption properties for specific plasma proteins.

さらに本発明のi濾過吸着体は、みずから限外i濾過特
性を有するので、たとえば、いわゆるスキン層を表面に
有する非対称構造にしてt濾過分画分子量を数千から数
百刃ダルトンに調節することができる。
Furthermore, since the i-filtration adsorbent of the present invention has ultra-i filtration characteristics, for example, it can be made into an asymmetric structure having a so-called skin layer on the surface to adjust the t-filtration fraction molecular weight from several thousand to several hundred blade daltons. Can be done.

しかしながら本発明においては、分画分子量は数千ダル
トン以下では濾過速度が小さくなるために濾過分画分子
量が1万ダルトン以上であるのが好ましい。
However, in the present invention, the filtration molecular weight is preferably 10,000 Daltons or more because the filtration rate decreases if the molecular weight is less than several thousand Daltons.

本発明の濾過吸着体は、前記素材を用いて公知の種々の
中空糸膜の製造方法を利用してうろことができる。たと
えば、二重管状ノズルの環状部から前記素材の溶液すな
わち紡糸原液を、内側のノズル孔からこの紡糸原液の凝
固液を押出し、適当な距離空気中を走行させてから外部
凝固液に侵入させたのちに巻き取る。ついで熱処理やプ
ロピレングリコールやグリセリンのような親水性処理剤
に浸す処理を施してから乾燥して中空糸かえられる。
The filtration adsorbent of the present invention can be produced using the above-mentioned materials using various known hollow fiber membrane manufacturing methods. For example, a solution of the material, that is, a spinning dope, is extruded from the annular part of a double tubular nozzle, and a coagulated liquid of this spinning dope is extruded from an inner nozzle hole, and the coagulated liquid of this spinning dope is pushed out through the air for an appropriate distance, and then allowed to enter the external coagulated liquid. Roll it up later. The fibers are then heat treated or soaked in a hydrophilic treatment agent such as propylene glycol or glycerin, dried, and replaced with hollow fibers.

中空糸の内径は主に芯液の流量と紡糸速度によって調整
される。内厚は主に紡糸原液の流量と紡糸速度によって
調整される。
The inner diameter of the hollow fiber is mainly adjusted by the flow rate of the core liquid and the spinning speed. The inner thickness is mainly adjusted by the flow rate of the spinning solution and the spinning speed.

中空糸の内面、外面および断面の構造は種々の方法で変
えることができる。一般に凝固作用の強い芯液を用いる
と内面の孔は小さくなる。
The internal, external and cross-sectional structure of the hollow fibers can be varied in various ways. In general, if a core liquid with strong coagulation effect is used, the inner pores will become smaller.

同様に、凝固作用の強い外部凝固剤を用いると外面の孔
が小さくなる。したがって凝固作用を変えて、内面ある
いは外面の分画分子量を数千から数百刃ダルトンまで調
節することができる。
Similarly, the use of an external coagulant with a strong coagulant effect reduces the pores on the outer surface. Therefore, by changing the coagulation effect, the molecular weight cut-off on the inner or outer surface can be adjusted from a few thousand to a few hundred edge daltons.

また、公知の種々の方法によって断面の構造を変えるこ
とができる。たとえば前記の素材をその良溶媒に溶かし
た溶液からは、一般にマクロボイドを含む、非対称構造
のものかえられ、貧溶媒に溶かした溶液からは、全体が
均一な網状あるいは海綿状のものかえられる。
Further, the cross-sectional structure can be changed by various known methods. For example, a solution of the above-mentioned material dissolved in a good solvent will generally yield an asymmetric structure containing macrovoids, while a solution dissolved in a poor solvent will yield a uniform network or spongy structure.

また、紡糸原液中の素材の濃度を大きくずれば、断面は
全体的に密になる。このようにして吸着容量を変えるこ
とができる。
Furthermore, if the concentration of the material in the spinning dope is varied greatly, the cross section will become denser overall. In this way the adsorption capacity can be varied.

本発明の濾過吸着体の使用方法においては、まず本発明
の濾過吸着体の少なくとも一端を、濾過する血液が該r
濾過吸着体の内面側を通路とするばあいには該濾過吸着
体によって濾過吸着処理された該血液中の血漿の出口を
有する容器に、あるいは濾過する血液が該濾過吸着体の
外面側を通路とするばあいには該血液の出入口を有する
容器に、血液と該血漿とが直接混合しないように固定す
る。
In the method of using the filtration adsorbent of the present invention, first, at least one end of the filtration adsorbent of the present invention is connected to the r
When the inner surface of the filtration adsorbent is used as a passage, the plasma in the blood that has been filtered and adsorbed by the filtration adsorbent is passed through a container having an outlet, or the blood to be filtered is passed through the outer surface of the filtration adsorption object. In this case, the blood and the plasma are fixed in a container having an inlet and an outlet for the blood so that they do not mix directly.

ついで、該濾過吸着体の内面側を該固定端で開口して、
を濾過する血液の通路または濾過する血液が該ン濾過吸
着体の外面側を通路とするばあいには濾過吸着処理され
た該血液中の血漿の通路とする方法によって血液中の血
漿蛋白質を濾過するために該ン濾過吸着体を用いる。
Then, opening the inner surface of the filtration adsorbent at the fixed end,
The plasma proteins in the blood are filtered by a method in which the blood to be filtered is passed through the blood, or when the blood to be filtered is passed through the outer surface of the filtration adsorbent, the plasma in the blood that has been subjected to filtration and adsorption is passed through. In order to do this, a filtration adsorbent is used.

本発明の中空糸状のi濾過吸着体の使用方法は公知の血
漿分離用膜ン濾過装置やン濾過型人工腎臓に類似してい
る。しかしながら、本発明の濾過吸着体使用方法では、
を濾過された血漿は、すでに特定の血漿蛋白質、たとえ
ばβ−2−マイクロプロプリン、ペンスジョーンズ蛋白
質、そのほかの自己免疫疾患の原因になる特殊抗体など
の病因物質を吸着して除いたものであるから、従来の血
漿交換治療のように、これを廃棄しないで再び血液と合
流させて人体に戻すことができる。したがって補液など
の必要がなく、より簡単な回路にすることができる。
The method of using the hollow fiber i-filtration adsorbent of the present invention is similar to known membrane filtration devices for plasma separation and membrane filtration type artificial kidneys. However, in the method of using the filtration adsorbent of the present invention,
The filtered plasma has already adsorbed and removed pathogenic substances such as specific plasma proteins such as β-2-micropropurine, Pence-Jones protein, and other special antibodies that cause autoimmune diseases. This can then be recombined with blood and returned to the human body instead of being discarded, as in traditional plasmapheresis therapy. Therefore, there is no need for fluid replacement, and a simpler circuit can be achieved.

以下に本発明を実施例にもとづいてさらに詳細に説明す
るが、本発明はかがる実施例のみに限定されるものでは
ない。
The present invention will be explained in more detail below based on Examples, but the present invention is not limited to these Examples.

実施例1 ポリスルホン(ユニオンカーバイド■製、P−3500
)を25%(重量%、以下同様)、ジメチルスルホキシ
ドに110℃で溶解し、80℃で芯径150虜、内径2
50ttrn、外径400 mの二重管状ノズルから毎
分6g押出し、同時に芯液として40℃のプロピレング
リコールを毎分1g押出し、15cm空気中を走行させ
てから60℃の水の中に侵入させ、30m/分の速度で
巻き取った。この中空糸を97℃の熱水でよく洗ったの
ち40℃で一昼夜風乾した。
Example 1 Polysulfone (manufactured by Union Carbide ■, P-3500
) was dissolved in dimethyl sulfoxide at 110℃, and at 80℃, the core diameter was 150 mm and the inner diameter was 2 mm.
6 g per minute was extruded from a double tubular nozzle with a diameter of 50 ttrn and an outer diameter of 400 m, and at the same time, 1 g of propylene glycol at 40°C was extruded as a core liquid per minute, and after traveling 15 cm in air, it was introduced into water at 60°C. It was wound up at a speed of 30 m/min. The hollow fibers were thoroughly washed with hot water at 97°C and then air-dried at 40°C overnight.

この中空糸の断面、内面および外面を走査型電子顕微鏡
(日立製作所■製、X−650)を用いて観察したとこ
ろ内径、外径はそれぞれ200虜、430IJmで、外
径に対する内径の比は0.47であった。内面側には、
2万倍の倍率でも孔が見られなかったが、外面には、直
径が0.2道以下の孔が多数観察された。断面は網目の
大きさがおよそ0.6−のほぼ均一な網目状構造であっ
た。
When the cross section, inner surface, and outer surface of this hollow fiber were observed using a scanning electron microscope (manufactured by Hitachi, Ltd., X-650), the inner diameter and outer diameter were 200 IJm and 430 IJm, respectively, and the ratio of the inner diameter to the outer diameter was 0. It was .47. On the inner side,
Although no pores were observed even at 20,000 times magnification, many pores with a diameter of 0.2 mm or less were observed on the outer surface. The cross section had a substantially uniform network structure with a mesh size of approximately 0.6.

この中空糸40本を内径4■■、外径61■のパイレッ
クスガラス製のT字管に入れ、中空糸の両端をウレタン
樹脂で固定したのち、その両端をウレタン樹脂での固定
部分で切断して中空糸の内面側を開口させた。中空糸の
有効長さは約1OC1であった〇 中空糸の内面側から外面側にt言過するように回路を構
成し、まず30容量%のエタノール水溶液を1 cc/
分の流量で全を言過させながら10分間流してから生理
的食塩水を1 cc/分の流量で30分間流して置換し
た。
These 40 hollow fibers were placed in a Pyrex glass T-tube with an inner diameter of 4 mm and an outer diameter of 61 mm, and both ends of the hollow fibers were fixed with urethane resin, and then both ends were cut at the portion fixed with urethane resin. The inner surface of the hollow fiber was opened. The effective length of the hollow fiber was approximately 1OC1. The circuit was constructed so that it ran from the inner surface to the outer surface of the hollow fiber.
After flowing for 10 minutes at a flow rate of 1 cc/min for 10 minutes, physiological saline was replaced by flowing at a flow rate of 1 cc/min for 30 minutes.

つぎに、抗凝固剤としてACD(acid−cltra
tedextrose)液を3cc加え、36℃に保温
した新鮮人血30ccを中空糸の内面側に毎分ice流
し、中空糸の外面側に毎分0.15ccF濾過しながら
3時間濾過された血漿と中空糸を通過した血液を中空糸
の外で混合し循環試験を行なった。このときのン濾過圧
の平均値は70aml1gであった。この間、定期的に
サンプリングして血液中のアルブミン(分子量6364
ダルトン)とりゾチーム(分子量1万4千500ダルト
ン)の濃度を分析した。循環試験終了後の血漿を遠心分
離して溶血の有無を観察した。
Next, ACD (acid-cltra) is used as an anticoagulant.
Add 3 cc of tedextrose solution and 30 cc of fresh human blood kept at 36° C. to flow ice every minute on the inner surface of the hollow fiber, and filter 0.15 ccF per minute on the outer surface of the hollow fiber for 3 hours to collect the filtered plasma and the hollow fiber. A circulation test was performed by mixing the blood that had passed through the thread outside the hollow fiber. The average value of the filtration pressure at this time was 70 aml/g. During this period, regular sampling was performed to detect albumin (molecular weight 6364) in the blood.
Dalton) and the concentration of zozyme (molecular weight 14,500 Daltons) was analyzed. After the circulation test, the plasma was centrifuged and the presence or absence of hemolysis was observed.

最後に以下に示すようにして中空糸の内面上の付着物を
観察した。
Finally, deposits on the inner surface of the hollow fibers were observed as shown below.

循環試験終了後、血液流路に生理的食塩水を毎分1cc
で20分間流してから、中空糸を取り出し、中空糸の内
面側の付着物を固定するためにグルタルアルデヒドの2
5%水溶液9容量部に対し、pH7,2のリン酸緩衝液
を1容量部の割合で調整し、4℃に保存した溶液の中に
一昼夜浸したのち、中空糸を取り出し、4℃の前記のリ
ン酸緩衝液中に入れた。つぎにこの中空糸を50容量%
、70容量%、90容量%、100容量%のエタノール
水溶液にそれぞれ1時間、この順序で入れてから臨界点
乾燥機(日立製作所■製、)ICP−2)を用いて乾燥
し、走査型電子顕微鏡を用いて観察した。
After completing the circulation test, add 1 cc of physiological saline per minute to the blood flow path.
After running it for 20 minutes, take out the hollow fiber and add glutaraldehyde to fix the deposits on the inner surface of the hollow fiber.
A ratio of 1 volume part of a phosphate buffer solution with a pH of 7.2 to 9 parts by volume of a 5% aqueous solution was prepared, and after soaking in the solution stored at 4°C overnight, the hollow fibers were taken out and placed in the solution at 4°C. in phosphate buffer. Next, add this hollow fiber to 50% by volume.
, 70% by volume, 90% by volume, and 100% by volume in ethanol aqueous solutions for 1 hour each, and then dried using a critical point dryer (manufactured by Hitachi, Ltd., ICP-2). Observation was made using a microscope.

測定結果を以下に述べる。The measurement results are described below.

遠心分離血漿の色は、循環前後で変わらず、溶血は認め
られなかった。
The color of the centrifuged plasma remained unchanged before and after circulation, and no hemolysis was observed.

循環後の中空の内面には、従来の吸着体では必ず多量の
血球成分の付着やフィブリンの形成が見られるのに対し
て、付着物が観察されなかった。
After circulation, no deposits were observed on the inner surface of the hollow space, whereas with conventional adsorbents, a large amount of blood cell components and fibrin formation were always observed.

リゾチームの濃度は経時的に減少し、3時間後は初期値
の20%まで低下したが、アルブミンの濃度は変わらな
かった。この結果は、7戸液の出口を有する内径5c■
の円筒容器の中に中空糸を8000本人れ、その有効長
が1ocIになるようにした装置を用いて、中空糸の内
面側に約6gの血液を毎分200cc流し、血漿を毎分
30cctF遇させたのち、再び血液と合流させるよう
にして循環すると3時間後には血液にほとんど損傷を与
えず、かつアルブミンを減少させずに、リゾチームをは
じめの濃度の20%にまで低下させることができるこ゛
とを意味する。
The concentration of lysozyme decreased over time, dropping to 20% of the initial value after 3 hours, but the concentration of albumin remained unchanged. This result shows that the inner diameter is 5 cm with 7 liquid outlets.
Using a device in which 8,000 hollow fibers were placed in a cylindrical container with an effective length of 1ocI, approximately 6 g of blood was flowed at 200 cc/min on the inner surface of the hollow fibers, and plasma was pumped at 30 cc/min. If the lysozyme is then recirculated and recombined with the blood, lysozyme can be reduced to 20% of its initial concentration after 3 hours with little damage to the blood and without decreasing albumin. means.

実施例2 ポリアクリロニトリル(鱒日本エクスラン製)をプロピ
レングリコールとジメチルスルホキシドの32対68(
重量比)混合液に20%となるように110℃で溶解し
、80℃で実施例1と同じノズから毎分6g押出し、同
時に芯液としてジメチルスルホキシドの60%水溶液を
40”Cで毎分1g押出した。つぎに、空気中を15c
*走行させてから80℃の水の中に侵入させ、15a+
/分の速度で巻取った。この中空糸を70℃の温水でよ
く洗ってから30%のプロピレングリコール水溶液に一
昼夜浸したのち40℃で一昼夜風乾した。
Example 2 Polyacrylonitrile (manufactured by Masu Nippon Exlan) was mixed with propylene glycol and dimethyl sulfoxide (32:68).
Weight ratio) Dissolve in a mixed solution at 110°C to a concentration of 20%, extrude 6g per minute from the same nozzle as in Example 1 at 80°C, and at the same time add a 60% aqueous solution of dimethyl sulfoxide as a core liquid at 40"C per minute. 1g was extruded.Next, 15c was extruded in the air.
* After driving, enter water at 80℃, 15a+
It was wound at a speed of /min. The hollow fibers were thoroughly washed with warm water at 70°C, immersed in a 30% aqueous propylene glycol solution for one day and night, and then air-dried at 40°C for one day and night.

別にこの中空糸をメタノールに一昼夜浸してから、真空
乾燥して走査型電子顕微鏡で観察した。内径、外径はそ
れぞれ260 la、 820 amで外径に対する内
径の比は0.42であった。内面には2万倍の倍率でも
孔が見られなかったが外面には直径が0.4ρ以下の孔
が多数見られた。断面には直径が30〜40−のマクロ
ボイドが数個存在したがそのほかの部分はほぼ均一な海
綿状構造で、そのセルの大きさはおよそ0.2〜0.5
ρであった。
Separately, this hollow fiber was soaked in methanol for a day and night, dried under vacuum, and observed with a scanning electron microscope. The inner and outer diameters were 260 la and 820 am, respectively, and the ratio of the inner diameter to the outer diameter was 0.42. No pores were observed on the inner surface even under 20,000x magnification, but many pores with a diameter of 0.4ρ or less were observed on the outer surface. There were several macrovoids with diameters of 30 to 40 mm in the cross section, but the rest had a nearly uniform spongy structure, and the cell size was approximately 0.2 to 0.5 mm.
It was ρ.

プロピレングリコールを含む前述の中空糸20本を用い
て実施例1と同様に回路を構成した。
A circuit was constructed in the same manner as in Example 1 using the aforementioned 20 hollow fibers containing propylene glycol.

30容量%のエタノール水溶液を流さなかった以外実施
例1と同様にして血液の循環試験を行なった。このとき
の濾過圧の平均値は90 ts ts II gであっ
た。その結果は実施例1と同様であった。
A blood circulation test was conducted in the same manner as in Example 1 except that the 30% by volume ethanol aqueous solution was not flowed. The average value of the filtration pressure at this time was 90 ts ts II g. The results were the same as in Example 1.

実施例3 平均分子量が18万ダルトンのポリスチレンをプロピレ
ングリコールとN−メチル−2−ピロリドンの33対8
7 (重量比)混合液に20%溶解し、80℃で実施例
1と同じノズルから毎分6g押出し同時に芯液としてN
−メチル−2−ピロリドンの80%水溶液を40℃で毎
分1g押出した。つぎに15elll空気中を走行させ
てから50℃の温水に侵入させ、30*/分の速度で巻
取った。この中空糸を80℃の温水でよく洗ったのち、
40℃で一昼夜風乾した。
Example 3 Polystyrene with an average molecular weight of 180,000 Daltons was mixed with propylene glycol and N-methyl-2-pyrrolidone in a ratio of 33:8.
7 (Weight ratio) Dissolve 20% in the mixed liquid, extrude 6g/min from the same nozzle as in Example 1 at 80°C, and add N as the core liquid at the same time.
-An 80% aqueous solution of methyl-2-pyrrolidone was extruded at 1 g per minute at 40°C. Next, it was run in air for 15 ells, then entered into 50°C warm water, and wound up at a speed of 30*/min. After washing this hollow fiber thoroughly with warm water at 80℃,
It was air-dried at 40°C for a day and a night.

別にこの中空糸を走査型電子顕微鏡で観察した。内径、
外径はそれぞれ190 am、430ρで外径に対する
内径の比は0..44であった。内面には2万倍の倍率
でも孔が見られなかったが、外面には直径0.3ρ以下
の孔が多数見られた。断面は、はぼ均一な海綿状構造で
、そのセルの大きさはおよそ0.5〜1虜であった。
Separately, this hollow fiber was observed using a scanning electron microscope. inner diameter,
The outer diameters are 190 am and 430 ρ, respectively, and the ratio of the inner diameter to the outer diameter is 0. .. It was 44. Although no pores were observed on the inner surface even under 20,000x magnification, many pores with a diameter of 0.3ρ or less were observed on the outer surface. The cross section showed a nearly uniform spongy structure, and the cell size was approximately 0.5 to 1 cell.

前述の中空糸を用いて実施例1と同様に回路を構成し、
実施例1と同様にして血液の循環試験を行なった。この
ときのン濾過圧の平均値は120−一〇gであった。そ
の結果は実施例1とほぼ同様であったが、中空糸の内面
には白血球および血小板と思われる血°球成分が少量付
着しているのが見られた。
Construct a circuit in the same manner as in Example 1 using the hollow fibers described above,
A blood circulation test was conducted in the same manner as in Example 1. The average value of the filtration pressure at this time was 120-10 g. The results were almost the same as in Example 1, except that a small amount of blood cell components believed to be white blood cells and platelets were observed adhering to the inner surface of the hollow fiber.

実施例4 リン酸緩衝液を加えてpHを7.4にした生理食塩水に
リゾチームを0.2%溶解し、この液38ccを血液の
代わりに用いたほかは実施例1と同じ中空糸を用いて回
路を構成し、同様な循環試験を90分間行なった。
Example 4 The same hollow fiber as in Example 1 was used, except that 0.2% lysozyme was dissolved in physiological saline whose pH was adjusted to 7.4 by adding phosphate buffer, and 38 cc of this solution was used instead of blood. A similar circulation test was conducted for 90 minutes.

濾過圧は試験中40mm11gで一定し、リゾチームは
経時的に減少した。90分後のりゾチームの濃度は0.
11まで低下した。これは、吸着体積100CCあたリ
リゾチームが7g吸着されていることを意味している。
The filtration pressure remained constant at 40 mm and 11 g during the test, and lysozyme decreased over time. After 90 minutes, the concentration of lysozyme was 0.
It dropped to 11. This means that 7 g of lylisozyme was adsorbed per 100 cc of adsorption volume.

参考例1 スチレン−ジビニルベンゼン共重合体からなる市販の吸
着体で粒径がおよそ100〜400刷のものを、内径7
111%長さ70厘のパイレックスガラスの両端に目の
大きさが約70Jaのポリエステル製ネットとポリエチ
レン製の血液出入口をつけた容器に充填したカラムを作
った。
Reference Example 1 A commercially available adsorbent made of styrene-divinylbenzene copolymer with a particle size of approximately 100 to 400 particles was used with an inner diameter of 7.
A column was prepared by filling a container made of 111% Pyrex glass with a length of 70 mm and a polyester net with a mesh size of approximately 70 Ja and a polyethylene blood inlet/outlet attached at both ends.

このカラムに生理食塩水を毎分2.7ccで10分間流
してから、抗凝固剤としてACD液を8cc加えた新鮮
人血80ccを毎分2.7ccで循環した。循環を開始
してから間もなく徐々にカラム入口の血液の圧力が上昇
し、およそ15分後から急に上昇し、30分後には20
0mm11gをこえたので循環を中止した。
Physiological saline was flowed through this column at a rate of 2.7 cc per minute for 10 minutes, and then 80 cc of fresh human blood to which 8 cc of ACD solution was added as an anticoagulant was circulated at a rate of 2.7 cc per minute. Immediately after the start of circulation, the blood pressure at the column inlet gradually rises, and after about 15 minutes it rises suddenly, and after 30 minutes it reaches 20
Since the weight exceeded 0 mm and 11 g, circulation was discontinued.

実施例1と同様にして循環前後の溶血の有無を観察した
ところ、循環後の血漿は明らかに赤く着色しており溶血
が認められた。
When the presence or absence of hemolysis before and after circulation was observed in the same manner as in Example 1, the plasma after circulation was clearly colored red, indicating hemolysis.

循環後のカラムから吸着剤を取出し、生理食塩水100
ccに分散させ、JIS目開き74綱のステンレス鋼製
のふるいで決別した。この生理食塩水を用いた洗浄を再
び繰返した。
After circulation, remove the adsorbent from the column and add 100% physiological saline.
cc and separated using a stainless steel sieve with a JIS mesh size of 74. This washing with saline was repeated again.

この吸着体の表面の付着物を実施例1と同様にしてグル
タルアルデヒドで固定してから電子顕微鏡観察した。そ
の結果、吸着体の表面が見えない程多量のフィブリン網
が形成され、その網の中に多数の赤血球や白血球が埋没
している様子が観察された。
The deposits on the surface of this adsorbent were fixed with glutaraldehyde in the same manner as in Example 1, and then observed under an electron microscope. As a result, a fibrin network was formed so large that the surface of the adsorbent was not visible, and it was observed that a large number of red blood cells and white blood cells were embedded in the network.

[発明の効果] 本発明の血漿蛋白質選択除去用吸着体は、従来の吸着体
に比べてすぐれた血液適合性を有し、吸着速度が大きく
目的の成分のみを吸着するというすぐれた吸着特性を有
し、必要とされる濾過特性を満足させるものであり、し
かもプライミングボリュームが小さいという画期的な効
果を奏する。
[Effects of the Invention] The adsorbent for selective removal of plasma proteins of the present invention has excellent blood compatibility compared to conventional adsorbents, and has excellent adsorption properties such as a high adsorption rate and adsorption of only target components. It has the revolutionary effect of satisfying the required filtration characteristics and having a small priming volume.

また、本発明の濾過吸着体の使用方法を治療のための体
外循環システムなどに適用するばあい、患者に対する負
担をきわめて軽くしうるという効果を奏する。
Furthermore, when the method of using the filtration adsorbent of the present invention is applied to an extracorporeal circulation system for treatment, it has the effect of significantly reducing the burden on the patient.

Claims (1)

【特許請求の範囲】 1 内径が100〜300μmであって、外径に対する
内径の比が0.2〜0.6である中空糸状の血漿蛋白質
選択除去用濾過吸着体。 2 内径が180〜250μmであって、外径に対する
内径の比が0.35〜0.50である特許請求の範囲第
1項記載の濾過吸着体。 3 濾過分画分子量が1万ダルトン以上である特許請求
の範囲第1項または第2項記載の濾過吸着体。 4 内径が100〜300μmであって、外径に対する
内径の比が0.2〜0.6である中空糸状の血漿蛋白質
選択除去用濾過吸着体の少なくとも一端を、血液の出入
口または該濾過吸着体によって濾過吸着処理された該血
液中の血漿の出口を有する容器に、血液と該血漿とが直
接混合しないように固定し、該濾過吸着体の内面側を該
固定端で開口して該血漿または該血液の通路とすること
を特徴とする血漿蛋白質選択除去用濾過吸着体の使用方
法。 5 濾過分画分子量が1万ダルトン以上である特許請求
の範囲第4項載の濾過吸着体の使用方法。
[Scope of Claims] 1. A hollow fiber-shaped filtration adsorbent for selectively removing plasma proteins, having an inner diameter of 100 to 300 μm and a ratio of inner diameter to outer diameter of 0.2 to 0.6. 2. The filtration adsorbent according to claim 1, which has an inner diameter of 180 to 250 μm and a ratio of the inner diameter to the outer diameter of 0.35 to 0.50. 3. The filtration adsorbent according to claim 1 or 2, which has a filtration cutoff molecular weight of 10,000 Daltons or more. 4 At least one end of a hollow fiber-shaped filtration adsorbent for selectively removing plasma proteins having an inner diameter of 100 to 300 μm and a ratio of the inner diameter to the outer diameter of 0.2 to 0.6 is connected to the blood inlet/outlet or the filtration adsorbent. The plasma in the blood, which has been subjected to filtration and adsorption treatment, is fixed in a container having an outlet so that the blood and the plasma do not mix directly, and the inner surface of the filtration and adsorption body is opened at the fixed end to collect the plasma or the plasma. A method of using a filtration adsorbent for selectively removing plasma proteins, which is characterized in that it is used as a passageway for blood. 5. A method of using the filtration adsorbent according to claim 4, wherein the filtration molecular weight is 10,000 Daltons or more.
JP62113314A 1987-05-08 1987-05-08 Filtering adsorption material and its usage Pending JPS63278503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62113314A JPS63278503A (en) 1987-05-08 1987-05-08 Filtering adsorption material and its usage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62113314A JPS63278503A (en) 1987-05-08 1987-05-08 Filtering adsorption material and its usage

Publications (1)

Publication Number Publication Date
JPS63278503A true JPS63278503A (en) 1988-11-16

Family

ID=14609090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62113314A Pending JPS63278503A (en) 1987-05-08 1987-05-08 Filtering adsorption material and its usage

Country Status (1)

Country Link
JP (1) JPS63278503A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997034687A1 (en) * 1996-03-21 1997-09-25 Kaneka Corporation Hollow yarn membrane used for blood purification and blood purifier

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57210010A (en) * 1981-06-19 1982-12-23 Teijin Ltd Production of porous hollow fiber membrane
JPS5876104A (en) * 1981-10-30 1983-05-09 Toray Ind Inc Polymethyl methacrylate separation membrane and preparation thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57210010A (en) * 1981-06-19 1982-12-23 Teijin Ltd Production of porous hollow fiber membrane
JPS5876104A (en) * 1981-10-30 1983-05-09 Toray Ind Inc Polymethyl methacrylate separation membrane and preparation thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997034687A1 (en) * 1996-03-21 1997-09-25 Kaneka Corporation Hollow yarn membrane used for blood purification and blood purifier
US6042783A (en) * 1996-03-21 2000-03-28 Kaneka Corporation Hollow yarn membrane used for blood purification and blood purifier

Similar Documents

Publication Publication Date Title
US5258149A (en) Process of making a membrane for high efficiency removal of low density lipoprotein-cholesterol from whole blood
AU660425B2 (en) High efficiency removal of low density lipoprotein-cholesterol from whole blood
US5187010A (en) Membrane having high affinity for low density lipoprotein-cholesterol from whole blood
KR102455401B1 (en) Porous fibers and adsorption columns
TWI724159B (en) Porous fiber, adsorption material and purification column
TWI406703B (en) Purify blood with hollow fiber membrane and use its blood purifier
KR100424995B1 (en) Selective permeable membrane and manufacturing method thereof
JP2000140589A (en) Porous polysulfone film
WO2013129384A1 (en) Adsorption column
JP6834677B2 (en) Adsorption column
JPS63278503A (en) Filtering adsorption material and its usage
JP4683402B2 (en) Hollow fiber membrane for blood purification, method for producing the same, and blood purifier
JP2000126286A (en) Blood treating device
JP4190361B2 (en) Hollow fiber type body fluid treatment device, hollow fiber bundle used therefor, and method for producing them
JPH0970431A (en) Production of polysulfone hollow fiber type artificial kidney and artificial kidney
JP2888607B2 (en) Composite membrane for artificial lung, method for producing the same, and composite membrane-type artificial lung using the same
JP4381088B2 (en) Blood compatible hollow fiber membrane and method for producing the same
JP4381058B2 (en) Hollow fiber blood purifier with excellent blood compatibility
JP2000325763A (en) Production of hollow-fiber membrane for hemocatheresis, and hollow-fiber membrane thereof
JP2020124273A (en) Blood purification column
JP4587025B2 (en) Polysulfone-based selectively permeable hollow fiber membrane with excellent blood compatibility
JPH0143562B2 (en)
JP4304611B2 (en) Permselective hollow fiber membrane with excellent blood compatibility
JP2855725B2 (en) Porous hollow fiber membrane for plasma separation
JPS60132566A (en) Production of medical hollow yarn mambrane