JPS63250888A - Wavelength-tunable semiconductor laser - Google Patents

Wavelength-tunable semiconductor laser

Info

Publication number
JPS63250888A
JPS63250888A JP62086258A JP8625887A JPS63250888A JP S63250888 A JPS63250888 A JP S63250888A JP 62086258 A JP62086258 A JP 62086258A JP 8625887 A JP8625887 A JP 8625887A JP S63250888 A JPS63250888 A JP S63250888A
Authority
JP
Japan
Prior art keywords
wavelength
semiconductor laser
laser
mirror
cutouts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62086258A
Other languages
Japanese (ja)
Inventor
Koji Akiyama
浩二 秋山
Akira Ote
明 大手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP62086258A priority Critical patent/JPS63250888A/en
Publication of JPS63250888A publication Critical patent/JPS63250888A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/105Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • H01S5/02212Can-type, e.g. TO-CAN housings with emission along or parallel to symmetry axis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • H01S5/02326Arrangements for relative positioning of laser diodes and optical components, e.g. grooves in the mount to fix optical fibres or lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a wavelength-tunable laser radiation source of a small-sized and simple structure by arranging a semiconductor laser and a mirror through cutouts on a base, altering the interval of cutouts to vary the wavelength of the laser. CONSTITUTION:A semiconductor laser 1 and a mirror 2 for reflecting an irradiat ed beam from the laser 1 are arranged through cutouts 4 on a base 3, and the interval of the cutouts 4 is altered to vary the wavelength of the laser 1. A piezoelectric element 5, such as PZT or the like inserted between the cutouts 4 is provided as means for altering the interval of the cutouts 4. Thus, a small-sized wavelength-tunable laser is obtained in a simple structure in which the mirror 2 is merely placed behind the laser 1.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半う9休レーザの発振波長を変えることがで
きる波長可変半導体レーザ装置の改良に関するらのであ
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an improvement in a wavelength tunable semiconductor laser device capable of changing the oscillation wavelength of a half-nine laser.

(従来の技術) 半導体レーザの発振波長は、第10図に示ずようにレー
ザの利III曲線101と共振器の間隔によって決まる
共振器モード102で決定される(λは波長)。利1q
曲線101が発振閾値103を越えた波長領域内の共振
器モードで発擾七−ド104が現れる。したがって通常
の半導体レーザでは共据器間隔は固定なので、発1辰波
長も固定されている。しかし共振器間隔を変えるために
、半導体レーザの温度や注入電流を変えれば波長が変化
するので、可変波長レーリ“を構成することがぐきる。
(Prior Art) As shown in FIG. 10, the oscillation wavelength of a semiconductor laser is determined by a laser gain III curve 101 and a resonator mode 102 determined by the interval between resonators (λ is wavelength). Interest 1q
An oscillation seventh node 104 appears in the resonator mode within the wavelength region where the curve 101 exceeds the oscillation threshold 103. Therefore, in a normal semiconductor laser, since the co-installation spacing is fixed, the emission wavelength is also fixed. However, in order to change the resonator spacing, the wavelength can be changed by changing the temperature and injection current of the semiconductor laser, making it possible to construct a tunable Rayleigh.

しかしながら温度や注入電流を変えると、利得曲線や共
振器上−ドが共に変化するので、波長変化の途中で第1
1図の111に示すようなモード小ツビングが生じる。
However, if the temperature or injection current is changed, the gain curve and the top of the resonator will both change, so the first phase will change during the wavelength change.
Small mode tsubbing as shown at 111 in FIG. 1 occurs.

このような問題のない可変波長レーザ光源としては次の
ようならのがある。
There are the following tunable wavelength laser light sources that do not have such problems.

イ1回折格子を回転させるもの(第12図)光増幅部1
21の出力光は集光レンズ122を介して回折格子12
3に入射し、1次回折光125が光増幅部121に戻る
。124はO次回折光である。回折格子123を回転す
ると光増幅部121へ戻る1次回折光の波長が変化づる
ので、発振波長を制御することができる。
A1 What rotates the diffraction grating (Figure 12) Optical amplification section 1
The output light of 21 is transmitted to the diffraction grating 12 via a condensing lens 122.
3, and the first-order diffracted light 125 returns to the optical amplification section 121. 124 is O-th order diffracted light. When the diffraction grating 123 is rotated, the wavelength of the first-order diffracted light that returns to the optical amplification section 121 changes, so the oscillation wavelength can be controlled.

口、音響光学素子によるものく第13図)イのように回
折格子を回転する変りに、音響光学素子132で回折格
子133への入射角を変化させて発振波長を制御する。
13) Instead of rotating the diffraction grating as shown in FIG. 13), the acousto-optic element 132 changes the angle of incidence on the diffraction grating 133 to control the oscillation wavelength.

(発明が解決しようとする問題点) しかしながら、上記41口のような構成の可変波長レー
ザ光源の場合、半導体レーザの外側に大きな部品を設置
する必要があり、大型化するという問題がある。
(Problems to be Solved by the Invention) However, in the case of a variable wavelength laser light source having a configuration like the above-mentioned 41 ports, it is necessary to install large parts outside the semiconductor laser, resulting in a problem of increased size.

本発明はこのような問題点を解決するためになされたも
ので、小型で簡単な構造の可変波長レーザ光源を実現す
ることを目的とする。
The present invention was made to solve these problems, and an object of the present invention is to realize a tunable wavelength laser light source that is small and has a simple structure.

(問題点を解決するための手段) 本発明は波長可変半導体レーザ装置に係るもので、その
特徴するところは台上に半導体レーザと、この半導体レ
ーザ゛からの出射光を反射するミラーとを切り欠き部を
介して配設し、前記切り欠き部の間隔を変えることによ
り半導体レーデの波長が変化するように構成した点にあ
る。
(Means for Solving the Problems) The present invention relates to a wavelength tunable semiconductor laser device, and its characteristics include a semiconductor laser and a mirror that reflects the light emitted from the semiconductor laser on the table. The semiconductor radar is arranged through notches, and the wavelength of the semiconductor radar is changed by changing the spacing between the notches.

(実施例) 以下本発明を図面を用いて詳しく説明する。(Example) The present invention will be explained in detail below using the drawings.

第1図は本発明に係る波長可変半導体レーザ装置の一実
施例を示す構成説明図である。1は半導体レー1112
はこの半導体レーザ1の出射光を大剣するミラー、3は
このミラー2および半導体レーザ1をその上に設置する
台(マウントとも呼ぶ)、4はこの台3上の前記半導体
レーザ1とミラー2の間に設けられた切り欠き部、41
はこの切り欠き部4の拡張部、5はこの切り欠き部4の
間隔を変える手段として切り欠き部の間に挿入されたP
ZT等の圧電素子、6は前記台3と一体化した本装置を
支持するためのステム部、7は本装置のパッケージ部、
8はこのパッケージ部7の一部に設けられたレーザ出力
用のガラス窓、9は前記半導体レーザ1や圧電索子4に
接続するリード線である。
FIG. 1 is a configuration explanatory diagram showing an embodiment of a wavelength tunable semiconductor laser device according to the present invention. 1 is a semiconductor relay 1112
3 is a mirror for directing the emitted light of the semiconductor laser 1; 3 is a stand (also called a mount) on which the mirror 2 and the semiconductor laser 1 are installed; 4 is the semiconductor laser 1 and the mirror 2 on the stand 3; a notch provided between 41
5 is an expanded portion of this notch 4, and 5 is a portion P inserted between the notches as a means for changing the interval between the notches 4.
A piezoelectric element such as ZT, 6 a stem portion for supporting the device integrated with the stand 3, 7 a package portion of the device,
Reference numeral 8 is a glass window for laser output provided in a part of this package portion 7, and reference numeral 9 is a lead wire connected to the semiconductor laser 1 and the piezoelectric cable 4.

第2図は第1図の要部を取出した動作説明図である。半
導体レーザ1の外側近傍にミラー2を置いて複合共振器
を構成しているので、わずかに異なる2つの共振器上−
ドができ、半導体レーザ1の共振器長をL+、半導体レ
ーザ1とミラー2の間で構成する共振器長をL2とする
と、実効的な共振器間隔はlL+  121となり、モ
ード間隔が広がる。第3図および第4図はこの様子を示
したもので、31はレーザの利得曲線、33は発振閾値
、32は発振モードである。第4図(a)のように圧電
素子5に電圧を印加して弾性変形により切り欠き部4の
間隔を変化させると、L2すなわちIL+  121が
変ってモードが移動するので、広い範囲に渡ってモード
ホッピング無く波長を可変にできる。また第4図(b)
のようにレーザの温度や電流を変えた場合にもモードホ
ッピングしにくくなる。
FIG. 2 is an explanatory diagram of the operation of the main part of FIG. 1. Since the mirror 2 is placed near the outside of the semiconductor laser 1 to form a composite resonator, two slightly different resonators are
When the resonator length of the semiconductor laser 1 is L+ and the resonator length formed between the semiconductor laser 1 and the mirror 2 is L2, the effective resonator spacing becomes lL+ 121, and the mode spacing increases. FIGS. 3 and 4 show this situation, where 31 is the gain curve of the laser, 33 is the oscillation threshold, and 32 is the oscillation mode. When a voltage is applied to the piezoelectric element 5 and the interval between the notches 4 is changed by elastic deformation as shown in FIG. 4(a), L2, that is, IL+121, changes and the mode moves, so that Wavelength can be made variable without mode hopping. Also, Figure 4(b)
Mode hopping also becomes difficult when the laser temperature and current are changed, as in the case of

このような構成の波長可変半導体レーザ装置によれば、
半導体レーザの後方にミラーを置くだけのf!1lil
ttな構造で小型の可変波長レーザを実現できる。
According to the wavelength tunable semiconductor laser device having such a configuration,
Just put a mirror behind the semiconductor laser f! 1 lil
A compact tunable wavelength laser can be realized with a tt structure.

第5図は本発明に係る波長可変半導体レーザ装置の第2
の実施例を示す要部構成説明図である。
FIG. 5 shows the second wavelength tunable semiconductor laser device according to the present invention.
FIG. 2 is an explanatory diagram of a main part configuration showing an embodiment of the present invention.

切り欠き部42.43によりてこを構成し、圧電素子5
の変形により矢印方向に台31部分を変位させ、てこを
利用して切り欠ぎ部42部分の間隔変化を縮小し安定度
や波長可変分解能を上げている。
The notches 42 and 43 constitute a lever, and the piezoelectric element 5
The platform 31 is displaced in the direction of the arrow by the deformation, and a lever is used to reduce the change in the interval of the notch 42 to improve stability and wavelength variable resolution.

第6図は本発明に係る波長可変半導体レーザ装置の第3
の実施例を示す要部構成説明図である。
FIG. 6 shows the third wavelength tunable semiconductor laser device according to the present invention.
FIG. 2 is an explanatory diagram of a main part configuration showing an embodiment of the present invention.

圧電素子の代りにネジ61.62を用いて切り欠き部4
4の間隔を変化させるもので、半固定とすることもでき
る。
Use screws 61 and 62 instead of the piezoelectric element to attach the notch 4.
The interval between the numbers 4 and 4 can be changed, and it can also be semi-fixed.

第7図゛は本発明に係る波長可変半導体レーザ装置の第
4の実施例を示す要部構成説明図である。;ミラー側の
台部を薄クシて、ミラー2側を動かして切り欠き部45
の間−隔を変えるようにしたもので、71はヒートシン
クどして働いている。
FIG. 7 is an explanatory diagram of the main part configuration of a fourth embodiment of the wavelength tunable semiconductor laser device according to the present invention. ; Thinly comb the base on the mirror side and move the mirror 2 side to make the notch 45
The spacing between the parts is changed, and 71 functions as a heat sink.

第8図は本発明に係る波長可変半導体レーザ装置の第5
の実施例を示す要部構成説明図である。
FIG. 8 shows the fifth wavelength tunable semiconductor laser device according to the present invention.
FIG. 2 is an explanatory diagram of a main part configuration showing an embodiment of the present invention.

第7図装置のミラー2の反射面が傾かないJ:うにミラ
ー側の台部をロバ−パル構造としたしのである。
Figure 7: The reflective surface of the mirror 2 of the device is not tilted J: The base on the mirror side has a donkey-pal structure.

第9図は本発明に係る波長可変半導体レーザ装置の第6
の実施例を示す要部構成説明図である。
FIG. 9 shows a sixth example of the wavelength tunable semiconductor laser device according to the present invention.
FIG. 2 is an explanatory diagram of a main part configuration showing an embodiment of the present invention.

第1図装置においてミラー2をハーフミラ−として半導
体レーザ1からの光パワーをフォトダイオード91でモ
ニタできるようにしたものである。
In the apparatus shown in FIG. 1, the mirror 2 is a half mirror so that the optical power from the semiconductor laser 1 can be monitored by a photodiode 91.

(発明の効果) 以上述べたように本発明によれば、小型で簡単なM!1
造の可変波長レーザ光源を実現することができる。
(Effects of the Invention) As described above, according to the present invention, a small and simple M! 1
It is possible to realize a custom-built tunable wavelength laser light source.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る可変波長レーザ光源の一実施例を
示す構成説明図、第2図、第3図J5よび第4図は第1
図装置の動作を説明するための動作O11vI図、第5
図〜第9図は本発明に係る可変波長レーザ光源の他の実
施例を示′rj要部構成説明図、第10図〜第13図は
可変波長レーザ光源の従来例を説明するための動作説明
図である。 1・・・半導体レーIJ’%2・・・ミラー、3・・・
台、4゜43.44.45.46・・・切り欠き部。 第3図 ゛°゛舶冒パフ″′4          、。 第4図 (a>                 (b)第5
図  第6図  第7図 第8図    第9図 第10図     第1/図
FIG. 1 is a configuration explanatory diagram showing one embodiment of a tunable wavelength laser light source according to the present invention, and FIGS.
Figure 5 Operation O11vI diagram for explaining the operation of the device
9 to 9 show other embodiments of the tunable wavelength laser light source according to the present invention. FIGS. It is an explanatory diagram. 1...Semiconductor relay IJ'%2...Mirror, 3...
Base, 4°43.44.45.46...notch part. Figure 3 ゛°゛Ship Expedition Puff'''4. Figure 4 (a> (b) 5th
Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 1/Figure

Claims (3)

【特許請求の範囲】[Claims] (1)台上に半導体レーザと、この半導体レーザからの
出射光を反射するミラーとを切り欠き部を介して配設し
、前記切り欠き部の間隔を変えることにより半導体レー
ザの波長が変化するように構成したことを特徴とする波
長可変半導体レーザ装置。
(1) A semiconductor laser and a mirror that reflects the light emitted from the semiconductor laser are arranged on a table via a notch, and the wavelength of the semiconductor laser is changed by changing the interval between the notches. A wavelength tunable semiconductor laser device characterized in that it is configured as follows.
(2)切り欠き部の間隔を変える手段として切り欠き部
の間に圧電素子を挿入した特許請求の範囲第1項記載の
波長可変半導体レーザ装置。
(2) The wavelength tunable semiconductor laser device according to claim 1, wherein a piezoelectric element is inserted between the notches as means for changing the interval between the notches.
(3)切り欠き部の間隔を変える手段としてネジを用い
た特許請求の範囲第1項記載の波長可変半導体レーザ装
置。
(3) The wavelength tunable semiconductor laser device according to claim 1, wherein a screw is used as a means for changing the interval between the notches.
JP62086258A 1987-04-08 1987-04-08 Wavelength-tunable semiconductor laser Pending JPS63250888A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62086258A JPS63250888A (en) 1987-04-08 1987-04-08 Wavelength-tunable semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62086258A JPS63250888A (en) 1987-04-08 1987-04-08 Wavelength-tunable semiconductor laser

Publications (1)

Publication Number Publication Date
JPS63250888A true JPS63250888A (en) 1988-10-18

Family

ID=13881794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62086258A Pending JPS63250888A (en) 1987-04-08 1987-04-08 Wavelength-tunable semiconductor laser

Country Status (1)

Country Link
JP (1) JPS63250888A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5629951A (en) * 1995-10-13 1997-05-13 Chang-Hasnain; Constance J. Electrostatically-controlled cantilever apparatus for continuous tuning of the resonance wavelength of a fabry-perot cavity

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59117186A (en) * 1982-12-23 1984-07-06 Nec Corp Semiconductor laser device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59117186A (en) * 1982-12-23 1984-07-06 Nec Corp Semiconductor laser device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5629951A (en) * 1995-10-13 1997-05-13 Chang-Hasnain; Constance J. Electrostatically-controlled cantilever apparatus for continuous tuning of the resonance wavelength of a fabry-perot cavity

Similar Documents

Publication Publication Date Title
US6282213B1 (en) Tunable diode laser with fast digital line selection
US6301274B1 (en) Tunable external cavity laser
JPH11307864A (en) External resonator variable wavelength light source
US7822096B2 (en) Alignment and wavelength selection in external cavity lasers
JPH11330596A (en) Continuously wavelength-tunable monomode laser source
JPH0348480A (en) Light feedback type light-emitting device
US6731661B2 (en) Tuning mechanism for a tunable external-cavity laser
JPS62165985A (en) Laser oscillator stabilized at diverging angle of laser beam
JPH0818167A (en) Variable wavelength light source
JPS63250888A (en) Wavelength-tunable semiconductor laser
JP3069643B2 (en) Tunable light source
JP3391229B2 (en) External cavity type semiconductor laser light source
US5214659A (en) Laser device
JPS622478B2 (en)
JP7398437B2 (en) Laser module with multiple component lasers
US5943349A (en) Variable wavelength laser device
JPH1168248A (en) External resonator type wavelength variable semiconductor laser light source
JPS63137493A (en) Apparatus for narrowing spectral line width of semiconductor
JP2566331B2 (en) Variable wavelength light source device
JP2000183453A (en) External resonator type light source
JP2003069146A (en) External resonator type wavelength variable semiconductor laser
JP2000164980A (en) External resonator type variable wavelength semiconductor laser light source
JPH04105382A (en) Semiconductor laser
JPH03185887A (en) External resonator type semiconductor laser oscillator
JPH0225087A (en) Semiconductor laser device