JPS63210235A - Manufacture of steel excellent in toughness at low temperature in welding heat affected zone - Google Patents

Manufacture of steel excellent in toughness at low temperature in welding heat affected zone

Info

Publication number
JPS63210235A
JPS63210235A JP4276987A JP4276987A JPS63210235A JP S63210235 A JPS63210235 A JP S63210235A JP 4276987 A JP4276987 A JP 4276987A JP 4276987 A JP4276987 A JP 4276987A JP S63210235 A JPS63210235 A JP S63210235A
Authority
JP
Japan
Prior art keywords
steel
toughness
haz
less
affected zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4276987A
Other languages
Japanese (ja)
Other versions
JPH0694569B2 (en
Inventor
Rikio Chijiiwa
力雄 千々岩
Hiroshi Tamehiro
為広 博
Koichi Yamamoto
広一 山本
Hiroshi Mimura
三村 宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP62042769A priority Critical patent/JPH0694569B2/en
Publication of JPS63210235A publication Critical patent/JPS63210235A/en
Publication of JPH0694569B2 publication Critical patent/JPH0694569B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To improve toughness at low temp. in a welding heat-affected zone, by specifying the relations among Ti, O, and N in a low-alloy steel with a specific composition and by subjecting a slab practically free from Al to reheating at a specific temp. and then to thermomechanical treatment. CONSTITUTION:A steel having a composition which consists of, by weight, 0.01-0.15% C, <=0.5% Si, 0.5-2.0% Mn, <=0.025% P, <=0.005% S, <=0.004% Al, 0.005-0.060% Nb, 0.005-0.030% Ti, 0.0010-0.0065% N, 0.0015-0.0060% O, and the balance Fe with inevitable impurities and in which -0.010%<=[Ti]-2[O]-3.4[N]<=+0.015% is satisfied is cast continuously. The resulting steel slab is reheated at <=1,250 deg.C and then subjected to thermomechanical treatment such as controlled rolling-colling, etc. In this way, the structure in the heat-affected zone up to the vicinity of a fusion line in small-large heat input welding is refined, so that a steel excellent in toughness at low temp. in the welding heat-affected zone can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本溌明は小人熱溶接から大入熱溶接に至るまで熱影響部
(HAZ )  の低温靭性が優れた鋼の製造法に関す
るものである。
[Detailed Description of the Invention] (Field of Industrial Application) This report relates to a method for manufacturing steel with excellent low-temperature toughness in the heat affected zone (HAZ), from dwarf heat welding to large heat input welding. .

(従来の技術) 低合金鋼のHAZ靭性は、(1)結晶粒のサイズ、(2
)高炭素島状マルテンサイト、上部ベイナイ)(Bu)
などの硬化相の分散状態、(3)粒界脆化の有無、(4
)元素のミクロ偏析など種々の冶金学的要因に支配され
る。なかでもHAZの結晶粒のサイズは低温靭性に大き
な影響を与えることが知られており、HAZ組織を微細
化するために数多くの技術が開発実用化されている。
(Prior art) The HAZ toughness of low alloy steel is determined by (1) grain size, (2)
) High carbon island martensite, upper bainii) (Bu)
(3) Presence or absence of grain boundary embrittlement, (4)
) It is controlled by various metallurgical factors such as micro-segregation of elements. In particular, it is known that the grain size of the HAZ has a large effect on low-temperature toughness, and many techniques have been developed and put into practical use to refine the HAZ structure.

TiNなど高温でも比較的に安定な窒化物を鋼中に微細
分散させ、これによってHAZのオーステナイト(γ)
粒の粗大化を抑制する技術は、とくに有名である。しか
しHAZの1400°C以上に加熱される領域では、T
iNは粗大化もしくは溶解し、γ粒の粗大化抑制能力は
消失する。
By finely dispersing nitrides such as TiN, which are relatively stable even at high temperatures, into the steel, the austenite (γ) of the HAZ is
The technique of suppressing grain coarsening is particularly famous. However, in the HAZ area heated above 1400°C, T
iN coarsens or dissolves, and the ability to suppress coarsening of γ grains disappears.

このため溶融線近傍での靭性劣化が大きく、HAZの全
域で安定して高靭性を得ることができない。すなわち溶
融線近傍に切欠を入れたシャルピー試験やCTOD試験
において頻度は少ないが、低い値が出現し溶接鋼構造物
の安全性の観点から好ましくない。
For this reason, the toughness deteriorates significantly near the fusion line, making it impossible to stably obtain high toughness throughout the HAZ. That is, in the Charpy test or CTOD test in which a notch is made near the fusion line, low values appear, although the frequency is low, and this is not preferable from the viewpoint of the safety of welded steel structures.

これに対してT1酸化物(主としてTl2O,)を微細
分散させた鋼(!Pf願59−203099号)は溶融
線近傍でもHAZ組織を/Fさくすることができ、Ti
N 鋼に比較して優れた低温靭性が得られる。しかし、
この鋼においても大入熱溶接HAZの靭性はシャルピー
遷移温度−15〜−35°C程度であり、十分とは言え
彦い。この主な理由は後述するように鋼成分にNbを必
須の元素として含有していないためである。
On the other hand, steel (!Pf Application No. 59-203099) in which T1 oxide (mainly Tl2O,) is finely dispersed can have a /F structure in the HAZ even near the fusion line, and the Ti
Superior low-temperature toughness can be obtained compared to N steel. but,
Even in this steel, the toughness of the high heat input welding HAZ is about -15 to -35°C, which is the Charpy transition temperature, which is not sufficient. The main reason for this is that the steel composition does not contain Nb as an essential element, as will be described later.

このように現在のところ小〜犬人熱溶接において溶融線
近傍までHAZ組織を安定して微細化する技術は存在せ
ず、新知見に基づく新しい鋼の開発が強く望まれている
As described above, there is currently no technology for stably refining the HAZ structure to the vicinity of the fusion line in small to medium heat welding, and there is a strong desire to develop a new steel based on new knowledge.

(発明が解決しようとする問題点) 本発明は小〜犬人熱溶接においてHAZ靭性の極めて優
れた鋼を安価に製造する技術を提供するものである。本
発明法で製造した鋼は、溶接時に溶融線近傍においても
HAZ組織が微細化し、HAZの全域で優れた低温靭性
を示す。
(Problems to be Solved by the Invention) The present invention provides a technique for inexpensively producing steel with extremely excellent HAZ toughness in small to small heat welding. Steel produced by the method of the present invention has a finer HAZ structure even near the fusion line during welding, and exhibits excellent low-temperature toughness throughout the HAZ.

(問題点を解決するための手段作用) 本発明の要旨は、C:0.01−0.15%、Sl:0
.5係以下、Mn : 0.5−2.0 %、 P :
 0.025 q6以下、S:0.005%以下、A悲
:0.004係以下。
(Means for solving the problem) The gist of the present invention is that C: 0.01-0.15%, Sl: 0
.. 5 or less, Mn: 0.5-2.0%, P:
0.025 q6 or less, S: 0.005% or less, A-S: 0.004 or less.

Nb:o、oo5−o、o6o%、 Ti : 0.0
05−0゜030%、N:O,0OIO−0.0065
%、O:0.0015−0.0060%に必要に応じて
v:0゜005−0.10%、 Ni : 0.05−
2.0%、 Cu :0.05−1.0%、 Cr :
 0.05−1.0%、 Mo : 0゜05−0.4
0%、B:O,OOO”3−0.002係。
Nb: o, oo5-o, o6o%, Ti: 0.0
05-0°030%, N:O,0OIO-0.0065
%, O: 0.0015-0.0060% as necessary v: 0°005-0.10%, Ni: 0.05-
2.0%, Cu: 0.05-1.0%, Cr:
0.05-1.0%, Mo: 0°05-0.4
0%, B: O, OOO”3-0.002.

Ca : 0.0005−0.005%、REM: 0
.005−0.051%の一種または二種以上を含有し
、且つ一〇、010%≦〔Ti)−2C○〕−s、4〔
N〕≦+0.015 %を満足し、残部が鉄および不可
避的不純物からなる実質的にAQを含有しない鋼を連続
鋳造法によってスラブとし、これを1250°C以下の
温度で再加熱後、加工熱処理(圧延、冷却)することで
ある。
Ca: 0.0005-0.005%, REM: 0
.. 005-0.051% of one or more kinds, and 10,010%≦[Ti)-2C○]-s,4[
N]≦+0.015%, the balance consists of iron and unavoidable impurities, and the steel is made into a slab by a continuous casting method, which is reheated at a temperature of 1250°C or less, and then processed. Heat treatment (rolling, cooling).

発明者らの研究によれば、HAZ靭性は、l)#の化学
成分、2)組織(結晶粒の大きさと硬化相の分布状態)
に大きく依存し、鋼成分の適正化とこれによる結晶粒の
微細化がHAZO高靭性化に不可欠であると考えられた
。そとで鋼中T1酸化物を微細に分散させ、これによっ
てHAZ組織を微細化する新しい方法を発明した。
According to the inventors' research, HAZ toughness is determined by: l) chemical composition of #, 2) structure (crystal grain size and hardened phase distribution state)
It was thought that optimizing the steel components and thereby refining the grains were essential for increasing the toughness of HAZO. We have invented a new method to finely disperse T1 oxide in steel and thereby refine the HAZ structure.

T1  酸化物(主としてT1203)はγ粒の粗大化
抑制能力は小さいが、r−α変態時にγ粒内に存在する
Ti2O3を核として、放射状に微細なアシキュラーフ
エライ) (AF)  が虫取し、HAZ組織を著しく
微細化する。
Although T1 oxide (mainly T1203) has a small ability to suppress the coarsening of γ grains, it is possible to remove insects by radially fine acicular ferrites (AF) using Ti2O3 present in γ grains as cores during r-α transformation. , the HAZ structure is significantly refined.

Tl2O3は溶融線近傍の1400℃以上の加熱される
領域(粗粒域)でも安定であり、この領域でも組織の微
細化に効果を発揮する。またTi、O。
Tl2O3 is stable even in the region (coarse grain region) heated to 1400° C. or higher near the melting line, and is effective in refining the structure even in this region. Also Ti, O.

Nのバランスが適正であると微細なTiNも生成し、こ
れは1350°C以下に加熱されたHAZ (亜粗粒域
)のγ粒の粗大化を抑制してHAZ組織を微細化する。
When the balance of N is appropriate, fine TiN is also generated, which suppresses the coarsening of γ grains in the HAZ (sub-coarse grain region) heated to 1350° C. or lower and refines the HAZ structure.

その結果、HAZ組織は全域にわたって微細化し、極め
て優れた低温靭性が得られる。
As a result, the HAZ structure is refined over the entire area, and extremely excellent low-temperature toughness is obtained.

特願59−203099号のように製鋼におけるT1添
加時のO,AJSi量を限定せずに、通常の製鋼法にお
いて鋼中にTl2O3+ TiNを微細分散させるため
には、とくにTi、OおよびN量とそのバランスの適正
化が必須である。このためTi。
In order to finely disperse Tl2O3+ TiN in steel in a normal steelmaking method without limiting the amount of O and AJSi when adding T1 in steelmaking as in Japanese Patent Application No. 59-203099, it is necessary to particularly adjust the amounts of Ti, O and N. It is essential to strike a proper balance between the two. For this reason, Ti.

○、N量を、それぞれTi : 0.005−0.03
0%、O: 0.0015−0.0060%、N:0.
0010−0.0065%に限定し、且つそのバランス
を−0.010チ≦〔T1)−z(o) −3,4〔N
〕≦+0.015係とする必要がある。
○, N amount, Ti: 0.005-0.03, respectively
0%, O: 0.0015-0.0060%, N: 0.
0010-0.0065%, and the balance is -0.010chi≦[T1)-z(o)-3,4[N
]≦+0.015.

Ti、O,N 量の下限はT’1203 、 TiNを
生成するための必贋最少量である。T1の上限はTiC
の生成による低温靭性の劣化を防止するためであり、O
の上限は非金属介在物の生成による鋼の清浄度、靭性の
劣化を防止するためである。またN量の上限は、固溶N
によるHAZ靭性の劣化を防止するために0.0065
係とした。
The lower limit of the amount of Ti, O, and N is T'1203, which is the minimum amount required to generate TiN. The upper limit of T1 is TiC
This is to prevent deterioration of low temperature toughness due to the formation of O.
The upper limit is set to prevent deterioration of the cleanliness and toughness of the steel due to the formation of nonmetallic inclusions. In addition, the upper limit of the amount of N is
0.0065 to prevent deterioration of HAZ toughness due to
I was in charge.

しかし単に個々の元素量を限定するだけでは微細なTi
2O3,TiNの両折出物を同時に安定して得ることが
できないので、Ti、O,N 量のバランスを−0.0
10係≦(Til−2〔○〕−3,4〔N)≦+0.0
15%に限定した。Ti、O,N 量が、この範囲にあ
るとHAZ靭性は飛躍的に向上する。
However, simply limiting the amount of each element will result in fine Ti
Since it is not possible to stably obtain both 2O3 and TiN precipitates at the same time, the balance of Ti, O, and N amounts is set to -0.0.
Coefficient 10≦(Til-2[○]-3,4[N)≦+0.0
It was limited to 15%. When the amounts of Ti, O, and N are within this range, HAZ toughness is dramatically improved.

上式はTi2O3、TiNのみが生成すると考えたとき
化学量論的に見たT1の過、不足量を表現したものであ
る。下限はTl量の不足によるTi2O3、TiNの生
成量の不足を防ぐためであり、上限は過剰のT1による
TiCの析出を防止するためである。しかし、たとえば
Ti2O3、TiNが鋼中に微細分散していても基本成
分が適当でないと優れたHAZ靭性は得られない。
The above equation expresses the excess and deficiency of T1 from a stoichiometric perspective when it is assumed that only Ti2O3 and TiN are produced. The lower limit is set to prevent insufficient production of Ti2O3 and TiN due to insufficient Tl, and the upper limit is set to prevent TiC from being precipitated due to excess T1. However, even if Ti2O3 and TiN are finely dispersed in steel, excellent HAZ toughness cannot be obtained unless the basic components are appropriate.

以下、この点について説明する。This point will be explained below.

Cの下限0.01%は、母材および溶接部の強度の確保
ならびにNb、V  などの添加時に、これら−日− の効果を発揮させるための最少量である。しかしC量が
多過ぎると、母材の低温靭性に悪影響をおよぼすだけで
なく溶接性、HAZ靭性も劣化させるので、上限を0.
15%とした。C量が多いとHAZに高炭素島状マルテ
ンサイト、擬似パーライト(P′)が生成して低温靭性
を著しく劣化させる。
The lower limit of 0.01% of C is the minimum amount to ensure the strength of the base metal and the welded part and to exhibit these effects when adding Nb, V, etc. However, if the amount of C is too large, it will not only adversely affect the low-temperature toughness of the base metal but also deteriorate weldability and HAZ toughness, so the upper limit should be set to 0.
It was set at 15%. When the amount of C is large, high carbon island martensite and pseudo pearlite (P') are generated in the HAZ, which significantly deteriorates the low temperature toughness.

Slは脱酸上、鋼に含まれる元素であるが、多く添加す
ると溶接性、HAZ靭性が劣化するため、上限を0.5
優に限定した。鋼の脱酸はTiのみでも十分可能であり
、高炭素島状マルテンサイトの生成を防止してT(AZ
靭性を改善する観点から0.15%以下が望ましい。
Sl is an element contained in steel for deoxidation purposes, but if too much is added, weldability and HAZ toughness deteriorate, so the upper limit is set at 0.5.
Very limited. It is possible to deoxidize steel by using Ti alone, preventing the formation of high carbon island martensite and reducing T(AZ).
From the viewpoint of improving toughness, the content is preferably 0.15% or less.

Mn  は強度、靭性を確保する上で不可欠な元素であ
り、その下限は0.5%である。HAZ靭性を改 、善
するには、γ粒界に生成する粗大な初析フェライトを防
止する必要があるが、Mn添加は、これを抑制する効果
がある。しかしMn量が多過ぎると焼入性が増加して溶
接性、HAZfA性を劣化させるだけでなく、ヌラプの
中心偏析を助長するので上限を2.0係とした。
Mn is an essential element for ensuring strength and toughness, and its lower limit is 0.5%. In order to improve HAZ toughness, it is necessary to prevent coarse pro-eutectoid ferrite from forming at the γ grain boundaries, and the addition of Mn has the effect of suppressing this. However, if the amount of Mn is too large, the hardenability increases and not only the weldability and HAZfA properties are deteriorated, but also the center segregation of the Nurap is promoted, so the upper limit was set to a factor of 2.0.

9一 本発明鋼において不純物であるp、sをそれぞれ0.0
25%以下、0.005%以下とした理由は、母材、溶
接部の低温靭性をより一層向上させるためである。P量
の低減は、HAZにおける粒界破壊を減少させ、s量の
低減は、粒界フェライトの生成を抑制する傾向がある。
91 In the steel of the present invention, the impurities p and s are each 0.0
The reason why it is set to 25% or less and 0.005% or less is to further improve the low-temperature toughness of the base metal and welded part. Reducing the amount of P tends to reduce grain boundary fracture in the HAZ, and reducing the amount of S tends to suppress the formation of grain boundary ferrite.

最も好ましいp、s量は、それぞれo、o 1’% 、
 o、o O2%以下である。
The most preferable amounts of p and s are o and o 1'%, respectively.
o, o O2% or less.

Alは、一般に脱酸上鋼に含まれる元素であるが、本発
明鋼では好捷しくない元素であり、その上限を0.00
4%とした。これはAlが鋼中に含まれていると○と結
合してTl2O3ができないためである。
Al is an element that is generally included in deoxidized steel, but it is not a favorable element in the steel of the present invention, and its upper limit is set at 0.00.
It was set at 4%. This is because if Al is contained in steel, it will combine with ◯ to form Tl2O3.

脱酸はT1だけでも可能であり、本発明においてAn量
は少ないほど良い。
Deoxidation is possible with T1 alone, and in the present invention, the smaller the amount of An, the better.

Nb  は本発明鋼において必須の元素であり、 Nb
を添加すること々く優れたHAZ靭注を得ることは不可
能である。Nbはγ粒界に生成するフェライトを抑制し
、Ti203を核とする微細なAFの生成を促進する働
きがある。この効果を得るためには最低0.005%の
Nb量が必要である。しかしながらNb量が多過ぎると
、逆に微細なAFの生成を妨げAので、その上限を0.
060%とした。
Nb is an essential element in the steel of the present invention, and Nb
It is not possible to obtain excellent HAZ strength without adding . Nb has the function of suppressing ferrite generated at the γ grain boundaries and promoting the generation of fine AF with Ti203 as the nucleus. To obtain this effect, a minimum Nb content of 0.005% is required. However, if the amount of Nb is too large, it will hinder the formation of fine AF, so the upper limit should be set at 0.
060%.

つぎにV、 Ni、 Cu、 Cr、 Mo、 B、 
Ca  REAlを添加する理由について説明する。
Next, V, Ni, Cu, Cr, Mo, B,
The reason for adding Ca REAl will be explained.

基本となる成分にさらに、これらの元素を添加する主た
る目的は、本発明鋼の優れた特徴を損なうことなく、強
度、靭性なと特性の向上をはかるためである。したがっ
て、その添加量は自ら制限されるべき性質のものである
The main purpose of adding these elements to the basic components is to improve the properties such as strength and toughness without impairing the excellent characteristics of the steel of the present invention. Therefore, the amount added should be limited.

VはNbとほぼ同じ効果を持つ元素であるが、0.00
5%以下では効果が少なく、上限は0.10−まで許容
できる。
V is an element that has almost the same effect as Nb, but 0.00
If it is less than 5%, the effect is small, and the upper limit is permissible up to 0.10-.

N1は溶接性、HAZ靭性に悪影響をおよぼすことなく
、母材の強度、靭性を向上させるが、2.0係を超える
と溶接性に好ましくないため上限を2゜0係とした。
N1 improves the strength and toughness of the base metal without adversely affecting weldability and HAZ toughness, but if it exceeds 2.0, it is unfavorable for weldability, so the upper limit was set at 2°0.

CuはN1とほぼ同様の効果とともに耐食性、耐水素誘
起割れ性などにも効果があるが、1.0%を超えると熱
間圧延時にCu−クラックが発生し、製造困難となる。
Cu has almost the same effects as N1, as well as corrosion resistance, hydrogen-induced cracking resistance, etc., but if it exceeds 1.0%, Cu-cracks will occur during hot rolling, making manufacturing difficult.

このため上限を1.0%とした。For this reason, the upper limit was set at 1.0%.

Crは母材、溶接部の強度を高めるが、多過ぎると溶接
性やHAZ靭性を劣化させる。その上限は1.0%であ
る。
Cr increases the strength of the base metal and the welded part, but too much Cr deteriorates weldability and HAZ toughness. Its upper limit is 1.0%.

Mo  は母材の強度、靭性をともに向上させる元素で
あるが、多過ぎるとCrと同様に母材、溶接部の靭性、
溶接性の劣化を招き好ましくない。その上限は0.40
係である。
Mo is an element that improves both the strength and toughness of the base metal, but if it is in too much, it will improve the toughness and toughness of the base metal and welded joint, just like Cr.
This is undesirable as it leads to deterioration of weldability. Its upper limit is 0.40
I am in charge.

なおCr、Moの添加量の下限は、材質上での効果が得
られるための最小量とすべきで、いずれも0.05%で
ある。
Note that the lower limit of the addition amount of Cr and Mo should be the minimum amount for obtaining the effect on the material, and both are 0.05%.

Bは鋼の焼入性を増大させ強度を増加させる元素である
。HAZのγ粒界に偏析した固溶Bはフェライトの生成
を抑制し、Ti2O3からの微細なAFの生成を助ける
。またNと結合したBNはフェライト発生核としての作
用をもちHAZ組織を微細化する。
B is an element that increases the hardenability and strength of steel. The solid solution B segregated at the γ grain boundaries of the HAZ suppresses the formation of ferrite and helps the formation of fine AF from Ti2O3. Further, BN combined with N acts as a ferrite generation nucleus and refines the HAZ structure.

このようなりの効果を得るためには、最低0.0003
係のB量が必要である。しかしB量が多過ぎるとFe2
3 (CB)、  などの粗大な析出物がγ粒界に析出
して低温靭性を劣化させる。このためB量の上限を0.
002%に制限する必要がある。
To obtain this kind of effect, a minimum of 0.0003
The relevant amount of B is required. However, if the amount of B is too large, Fe2
Coarse precipitates such as 3 (CB) and the like precipitate at the γ grain boundaries and deteriorate low temperature toughness. For this reason, the upper limit of the amount of B is set to 0.
It is necessary to limit it to 0.002%.

Ca、REMは硫化物(lvnS)の形態を制御し、低
温靭性を向上(シャルピー吸収エネルギーを増加)させ
るほか、耐水素誘起割れ性の改善にも効果を発揮する。
Ca and REM control the morphology of sulfides (lvnS), improve low-temperature toughness (increase Charpy absorbed energy), and are also effective in improving hydrogen-induced cracking resistance.

しかしCaB量、0005%以下では実用上効果がなく
、また0、005%を超えて添加するとCaO、CaS
が多量に生成して大型介在物となり、鋼の靭性のみなら
ず清浄度も害し、また溶接性にも悪影響を与える。この
ため添加量の範囲を00005〜0.005%に制限し
た。REMについてもCa  と同様の効果をもち、そ
の適正範囲は0.005〜0.005%である。
However, if the amount of CaB is less than 0,005%, it has no practical effect, and if it exceeds 0,005%, CaO and CaS
is produced in large quantities, resulting in large inclusions that impair not only the toughness but also the cleanliness of the steel, and also have an adverse effect on weldability. Therefore, the range of addition amount was limited to 00005% to 0.005%. REM also has the same effect as Ca, and its appropriate range is 0.005 to 0.005%.

鋼の成分を上記のように限定しても、製造法が適切でな
ければ溶接前の鋼中に微細なT1203 + TINを
分散させることはできない。このため製造条件について
も限定する必要がある。
Even if the components of the steel are limited as described above, fine T1203 + TIN cannot be dispersed in the steel before welding unless the manufacturing method is appropriate. For this reason, it is also necessary to limit the manufacturing conditions.

まず、この鋼は工業的には連続鋳造法で製造することが
必須である。この理由は、連続鋳造法では溶鋼の凝固冷
却速度が速くスラブ中に微細なTi2O3、TiNが多
量に得られるためである。大型鋼塊による造塊−分塊法
では、T1□03.T1Nヲスラブ中に微細分散させる
ことは難しい。
First, industrially, it is essential to manufacture this steel using a continuous casting method. The reason for this is that in the continuous casting method, the solidification and cooling rate of molten steel is fast and a large amount of fine Ti2O3 and TiN are obtained in the slab. In the ingot-blowing method using large steel ingots, T1□03. It is difficult to finely disperse T1N in a slab.

13一 連続鋳造法の場合、スラブ厚によって冷却速度が異なる
が、HAZ靭性の観点からその厚みは350フ以下が望
ましい。さらにスラブの再加熱温度を1250℃以下と
する必要がある。これ以上の温度で再加熱するとTiN
が粗大化して、溶接前の鋼中に微細なTiNがなくなり
、HA、Zの亜粗粒域における組織の微細化が不可能に
なるためである。
In the case of the 13-continuous casting method, the cooling rate varies depending on the slab thickness, but from the viewpoint of HAZ toughness, the thickness is preferably 350 degrees or less. Furthermore, the reheating temperature of the slab needs to be 1250°C or lower. If reheated at a temperature higher than this, TiN
This is because the grains become coarse and fine TiN disappears in the steel before welding, making it impossible to refine the structure in the sub-coarse grain regions of HA and Z.

なお本発明においては、スラブの再加熱は必ずしも実施
する必要はなく、ホットチャージ圧延やダイレクト圧延
を行なっても全く問題は彦い。
In the present invention, it is not necessary to reheat the slab, and there is no problem even if hot charge rolling or direct rolling is performed.

つぎにスラブ再加熱後の圧延法については、いわゆる加
工熱処理が必須である。これは、たとえ優れたHAZ靭
性が得られても、母材の靭性が劣っていると鋼材として
は不十分なためである。母材の低温靭性を優れたものと
するには加工熱処理によって鋼の結晶粒を微細化する必
要がある。
Next, regarding the rolling method after reheating the slab, so-called processing heat treatment is essential. This is because even if excellent HAZ toughness is obtained, if the toughness of the base metal is poor, the steel material will be insufficient. In order to improve the low-temperature toughness of the base metal, it is necessary to refine the crystal grains of the steel through heat treatment.

加工熱処理の方法としては、l)制御圧延、2)制御圧
延−加速冷却、 3)圧延直接焼入−焼戻などが挙げら
れるが、最も好ましいのは制御圧延と加速冷却の組み合
わせである。
Examples of the processing heat treatment methods include l) controlled rolling, 2) controlled rolling-accelerated cooling, and 3) rolling direct quenching-tempering, but the most preferred is a combination of controlled rolling and accelerated cooling.

=14− なお、との鋼を製造後、脱水累々どの目的でAc、変態
点以下の温度に再加熱しても、本発明の特徴を損なうも
のではない。
=14- Note that even if the steel is repeatedly dehydrated and reheated to a temperature below the Ac transformation point for any purpose after manufacturing, the characteristics of the present invention will not be impaired.

(実施例) 転炉一連続鋳造−厚板工程で種々の鋼成分の鋼板(厚み
32 rMl)を製造し、溶接熱サイクル再現装置を使
用してHAZ靭性を調査した。
(Example) Steel plates (thickness: 32 rMl) of various steel compositions were manufactured in a converter continuous casting-thick plate process, and HAZ toughness was investigated using a welding thermal cycle reproduction device.

再現熱サイクルは、板厚]/4tから採取した試験片を
用いピーク温度(最高到達温度)工400°Cおよび1
300°C,800−500℃の冷却時間192秒で行
なった。この条件は溶接入熱200に、T/cmにほぼ
相当し、またピーク温度1400°C11300°Cは
、それぞれ実際の溶接HAZの粗粒域(溶融線近傍)、
亜粗粒域に相当する。
The reproducible thermal cycle was performed using a test piece taken from plate thickness]/4t at a peak temperature (maximum temperature reached) of 400°C and 1
The cooling time was 192 seconds at 300°C and 800-500°C. This condition roughly corresponds to welding heat input of 200 and T/cm, and the peak temperatures of 1400°C and 11300°C are respectively in the coarse grain area of the actual welding HAZ (near the fusion line) and
Corresponds to the sub-coarse grain area.

表1に実施例を示す。Examples are shown in Table 1.

本発明法で製造した鋼板(本発明鋼)は全て良好な母材
特性およびHAZ靭性を有するのに対して、本発明法に
よらない比較鋼は母材特性あるいはHAZ靭性が劣り、
厳しい環境下で使用される鋼板として適切でない。
All of the steel plates produced by the method of the present invention (inventive steel) have good base metal properties and HAZ toughness, whereas comparative steels that are not manufactured by the method of the present invention have poor base metal properties or HAZ toughness.
Not suitable for steel plates used in harsh environments.

比較鋼において鋼16はC,Si  量が多過ぎるため
に、とくにピーク温度1400°Cの再現HAZの靭性
が悪い。また鋼17はMn量が高いために低Cにもかか
わらず、再現HAZの靭性が劣る。@A18は本発明の
必須の元素であるNbを含まないために粒界フェライト
が大きく、再現HAZ靭性は著しく悪い。
Among the comparative steels, Steel 16 has too large amounts of C and Si, so its toughness is particularly poor in the reproduced HAZ at a peak temperature of 1400°C. In addition, steel 17 has a high Mn content and therefore has poor toughness in the reproduced HAZ despite its low C content. Since @A18 does not contain Nb, which is an essential element of the present invention, the grain boundary ferrite is large and the reproduced HAZ toughness is extremely poor.

1i119,20の再現HAZ靭性は比較的良好である
が、鋼]9はS量が高いために、また鋼20はTl量、
f(Ti)が高いために本発明鋼におよばない。
The reproduced HAZ toughness of 1i119 and 20 is relatively good, but steel ] 9 has a high S content, and steel 20 has a high Tl content,
Because f(Ti) is high, it is not as good as the steel of the present invention.

鋼21.22はピーク温度1300’cの再現HAZ 
の靭性が十分で々い。これは鋼21ではTl量が、i#
22ではN量が少なく微細なTiN0量が不足している
ためである。
Steel 21.22 is a reproduction HAZ with a peak temperature of 1300'c
The toughness is sufficient. This means that in steel 21, the Tl amount is i#
This is because in No. 22, the amount of N is small and the amount of fine TiN0 is insufficient.

鋼23はA9.量が高く、T1□03が生成しないため
にピーク温度1400℃の再現HAZ靭性が著しく劣る
。鋼24はO量が多過ぎるために再現HAZ靭性がいま
一歩である。また鋼25は鋼成分は適当であるが、スラ
ブ再加熱温度が高過ぎるために、TjNの粗大化が著し
くピーク温度1300°Cの再現HAZ靭性が悪い。
Steel 23 is A9. Since the amount is high and T1□03 is not generated, the reproduced HAZ toughness at a peak temperature of 1400°C is significantly inferior. Steel 24 has too much O content, so the reproduced HAZ toughness is just a step away. Further, although Steel 25 has appropriate steel components, the slab reheating temperature is too high, so the TjN becomes coarse and the reproduced HAZ toughness at the peak temperature of 1300°C is poor.

本発明は厚板ミルに適用することが最も好丑しいが、ホ
ットコイル、形鋼などにも適用可能である。
Although the present invention is most preferably applied to plate mills, it can also be applied to hot coils, shaped steel, etc.

また、この方法で製造した厚鋼板は海洋構造物、圧力容
器、ラインパイプなど厳しい環境下で使用される溶接鋼
構造物に用いることができる。
Moreover, the thick steel plates manufactured by this method can be used for welded steel structures used in harsh environments such as offshore structures, pressure vessels, and line pipes.

(発明の効果) 本発明により、母材はもとより溶接部の全域において優
れた低温靭性を有する鋼を大量、且つ安価に製造するこ
とが可能になった。その結果、極寒地、海上などの厳し
い環境下で使用される溶接鋼構造物の安全性を大きく向
上させることができた。
(Effects of the Invention) According to the present invention, it has become possible to manufacture steel having excellent low-temperature toughness not only in the base material but also in the entire welded area in large quantities and at low cost. As a result, we were able to greatly improve the safety of welded steel structures used in harsh environments such as in extremely cold regions and at sea.

Claims (2)

【特許請求の範囲】[Claims] (1)重量%でC:0.01−0.15%、Si:0.
5%以下、 Mn:0.5%−2.0%、 P:0.025%以下、 S:0.005%以下、 Al:0.004%以下、 Nb:0.005−0.060%、 Ti:0.005−0.030%、 N:0.0010−0.0065%、 O:0.0015−0.0060%を含有し、且つ−0
.010%≦〔Ti〕−2〔O〕−3.4〔N〕≦+0
.015%を満足し、残部が鉄および不可避的不純物か
らなる実質的にAlを含有しない鋼を連続鋳造法によっ
てスラブとし、これを1250℃以下の温度で再加熱後
、加工熱処理することを特徴とする溶接熱影響部の低温
靭性が優れた鋼の製造法。
(1) C: 0.01-0.15%, Si: 0.
5% or less, Mn: 0.5%-2.0%, P: 0.025% or less, S: 0.005% or less, Al: 0.004% or less, Nb: 0.005-0.060% , Ti: 0.005-0.030%, N: 0.0010-0.0065%, O: 0.0015-0.0060%, and -0
.. 010%≦[Ti]-2[O]-3.4[N]≦+0
.. 015% and the balance is iron and unavoidable impurities and is made into a slab by a continuous casting method, which is then reheated at a temperature of 1250°C or less and then subjected to processing heat treatment. A method for manufacturing steel with excellent low-temperature toughness in the weld heat affected zone.
(2)重量%でC:0.01−0.15%、Si:0.
5%以下、 Mn:0.5%−2.0%、 P:0.025%以下、 S:0.005%以下、 Al:0.004%以下、 Nb:0.005−0.060%、 Ti:0.005−0.030%、 N:0.0010−0.0065%、 O:0.0015−0.0060%、 及びV:0.005−0.10%、Ni:0.05−2
.0%、Cu:0.05−1.0%、Cr:0.05−
1.0%、Mo:0.05−0.40%、B:0.00
03−0.002%、Ca:0.0005−0.005
%、REM:0.005−0.05%の一種または二種
以上を含有し、且つ−0.010%≦〔Ti〕−2〔O
〕−3.4〔N〕≦+0.015%を満足し、残部が鉄
および不可避的不純物からなる実質的にAlを含有しな
い鋼を連続鋳造法によってスラブとし、これを1250
℃以下の温度で再加熱後、加工熱処理することを特徴と
する溶接熱影響部の低温靭性が優れた鋼の製造法。
(2) C: 0.01-0.15%, Si: 0.
5% or less, Mn: 0.5%-2.0%, P: 0.025% or less, S: 0.005% or less, Al: 0.004% or less, Nb: 0.005-0.060% , Ti: 0.005-0.030%, N: 0.0010-0.0065%, O: 0.0015-0.0060%, and V: 0.005-0.10%, Ni: 0. 05-2
.. 0%, Cu: 0.05-1.0%, Cr: 0.05-
1.0%, Mo: 0.05-0.40%, B: 0.00
03-0.002%, Ca: 0.0005-0.005
%, REM: 0.005-0.05%, and -0.010%≦[Ti]-2[O
] −3.4 [N]≦+0.015%, the balance is iron and inevitable impurities, and the steel is made into a slab by a continuous casting method and is made into a slab with 1250%
A method for producing steel with excellent low-temperature toughness in the weld heat-affected zone, which is characterized by reheating at a temperature below ℃ and then processing heat treatment.
JP62042769A 1987-02-27 1987-02-27 Manufacturing method of steel with excellent low temperature toughness in the heat affected zone Expired - Lifetime JPH0694569B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62042769A JPH0694569B2 (en) 1987-02-27 1987-02-27 Manufacturing method of steel with excellent low temperature toughness in the heat affected zone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62042769A JPH0694569B2 (en) 1987-02-27 1987-02-27 Manufacturing method of steel with excellent low temperature toughness in the heat affected zone

Publications (2)

Publication Number Publication Date
JPS63210235A true JPS63210235A (en) 1988-08-31
JPH0694569B2 JPH0694569B2 (en) 1994-11-24

Family

ID=12645179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62042769A Expired - Lifetime JPH0694569B2 (en) 1987-02-27 1987-02-27 Manufacturing method of steel with excellent low temperature toughness in the heat affected zone

Country Status (1)

Country Link
JP (1) JPH0694569B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6415321A (en) * 1987-07-08 1989-01-19 Nippon Steel Corp Production of steel for electron beam welding having excellent low-temperature toughness
JPH02254119A (en) * 1989-03-28 1990-10-12 Nippon Steel Corp Production of v-added high toughness and high tensile strength steel plate
JPH02267220A (en) * 1989-04-06 1990-11-01 Nippon Steel Corp Production of steel sheet for flash butt welding excellent in toughness at low temperature
JPH03162522A (en) * 1989-11-22 1991-07-12 Nippon Steel Corp Manufacture of high tension steel plate having superior toughness of high heat input weld heat-affected zone
JPH0448048A (en) * 1990-06-15 1992-02-18 Sumitomo Metal Ind Ltd Steel excellent in toughness in weld heat-affected zone and its manufacture
JP2009127065A (en) * 2007-11-20 2009-06-11 Nippon Steel Corp Low yield ratio high-tensile steel plate excellent in low-temperature toughness of base metal and low-temperature toughness of haz, and method for manufacturing the same
WO2009123292A1 (en) * 2008-03-31 2009-10-08 Jfeスチール株式会社 High-tensile strength steel and manufacturing method thereof
JP2014177672A (en) * 2013-03-14 2014-09-25 Nippon Steel & Sumitomo Metal Steel plate excellent in toughness at plate thickness center part and its manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS601929A (en) * 1983-06-17 1985-01-08 Japanese National Railways<Jnr> Method and device for reducing echo of hybrid circuit
JPS6179745A (en) * 1984-09-28 1986-04-23 Nippon Steel Corp Manufacture of steel material superior in welded joint heat affected zone toughness

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS601929A (en) * 1983-06-17 1985-01-08 Japanese National Railways<Jnr> Method and device for reducing echo of hybrid circuit
JPS6179745A (en) * 1984-09-28 1986-04-23 Nippon Steel Corp Manufacture of steel material superior in welded joint heat affected zone toughness

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6415321A (en) * 1987-07-08 1989-01-19 Nippon Steel Corp Production of steel for electron beam welding having excellent low-temperature toughness
JPH02254119A (en) * 1989-03-28 1990-10-12 Nippon Steel Corp Production of v-added high toughness and high tensile strength steel plate
JPH06104861B2 (en) * 1989-03-28 1994-12-21 新日本製鐵株式会社 Manufacturing method of V added high toughness high strength steel sheet
JPH02267220A (en) * 1989-04-06 1990-11-01 Nippon Steel Corp Production of steel sheet for flash butt welding excellent in toughness at low temperature
JPH03162522A (en) * 1989-11-22 1991-07-12 Nippon Steel Corp Manufacture of high tension steel plate having superior toughness of high heat input weld heat-affected zone
JPH0448048A (en) * 1990-06-15 1992-02-18 Sumitomo Metal Ind Ltd Steel excellent in toughness in weld heat-affected zone and its manufacture
JP2009127065A (en) * 2007-11-20 2009-06-11 Nippon Steel Corp Low yield ratio high-tensile steel plate excellent in low-temperature toughness of base metal and low-temperature toughness of haz, and method for manufacturing the same
WO2009123292A1 (en) * 2008-03-31 2009-10-08 Jfeスチール株式会社 High-tensile strength steel and manufacturing method thereof
JP2009263777A (en) * 2008-03-31 2009-11-12 Jfe Steel Corp High-tensile strength steel and manufacturing method thereof
JP2014177672A (en) * 2013-03-14 2014-09-25 Nippon Steel & Sumitomo Metal Steel plate excellent in toughness at plate thickness center part and its manufacturing method

Also Published As

Publication number Publication date
JPH0694569B2 (en) 1994-11-24

Similar Documents

Publication Publication Date Title
JP3408385B2 (en) Steel with excellent heat-affected zone toughness
JP2009041079A (en) Steel for welded structure having excellent toughness in weld heat-affected zone, method for producing the same, and method for producing welded structure
EP1533392A1 (en) Steel product for high heat input welding and method for production thereof
JPS58171526A (en) Manufacture of steel for extra-low temperature use
JP4891836B2 (en) Steel plate with excellent toughness of weld heat affected zone in high heat input welding
JP2653594B2 (en) Manufacturing method of thick steel plate with excellent toughness of weld heat affected zone
JPS63210235A (en) Manufacture of steel excellent in toughness at low temperature in welding heat affected zone
JPH03236419A (en) Production of thick steel plate excellent in toughness in weld heat-affected zone and lamellar tear resistance
JPH0860292A (en) High tensile strength steel excellent in toughness in weld heat-affected zone
JPH0541683B2 (en)
JPH0527703B2 (en)
JPS626730B2 (en)
JPH02125812A (en) Manufacture of cu added steel having superior toughness of weld heat-affected zone
JPH09194990A (en) High tensile strength steel excellent in toughness in weld heat-affected zone
JPH09296253A (en) Extremely thick high strength steel pipe excellent in low temperature toughness
JP2688312B2 (en) High strength and high toughness steel plate
JP2930772B2 (en) High manganese ultra-high strength steel with excellent toughness of weld heat affected zone
JPH11189840A (en) High strength steel plate for line pipe, excellent in hydrogen induced cracking resistance, and its production
JPH11131177A (en) Steel plate for medium-or ordinary-temperature pressure vessel, capable of omitting post weld heat treatment, and its production
JP3882701B2 (en) Method for producing welded structural steel with excellent low temperature toughness
JPH0525580B2 (en)
JP2653616B2 (en) Manufacturing method of high strength steel for large heat input welding with excellent low temperature toughness
JPH02175815A (en) Manufacture of high tensile steel stock for welded construction excellent in toughness
JPH0578740A (en) Manufacture of steel excellent in low temperature toughness in weld heat affected zone
JP2688067B2 (en) Tensile strength for electron beam welding 60 ▲ kg ▼ f / ▲ mm2 ▼ class Mo-added steel manufacturing method

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term