JP2930772B2 - High manganese ultra-high strength steel with excellent toughness of weld heat affected zone - Google Patents

High manganese ultra-high strength steel with excellent toughness of weld heat affected zone

Info

Publication number
JP2930772B2
JP2930772B2 JP14408991A JP14408991A JP2930772B2 JP 2930772 B2 JP2930772 B2 JP 2930772B2 JP 14408991 A JP14408991 A JP 14408991A JP 14408991 A JP14408991 A JP 14408991A JP 2930772 B2 JP2930772 B2 JP 2930772B2
Authority
JP
Japan
Prior art keywords
toughness
steel
haz
strength
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14408991A
Other languages
Japanese (ja)
Other versions
JPH04346636A (en
Inventor
俊永 長谷川
周二 粟飯原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP14408991A priority Critical patent/JP2930772B2/en
Publication of JPH04346636A publication Critical patent/JPH04346636A/en
Application granted granted Critical
Publication of JP2930772B2 publication Critical patent/JP2930772B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は引張り強さが100kg
f/mm2以上で、かつ溶接入熱が40kJ/cm〜2
00kJ/cm程度の中入熱から大入熱溶接に至る広範
な入熱の溶接においても良好な溶接熱影響部の低温靱性
を有する溶接熱影響部靱性の優れた高マンガン超高張力
鋼にかかわるものである。
The present invention has a tensile strength of 100 kg.
f / mm 2 or more and welding heat input is 40 kJ / cm to 2
Even in welding of a wide range of heat input from medium heat input of about 00 kJ / cm to large heat input welding, it relates to a high manganese ultra-high tensile steel with excellent toughness in the weld heat affected zone having good low temperature toughness in the weld heat affected zone. Things.

【0002】[0002]

【従来の技術】近年、海洋構造物、造船、貯蔵タンク
等、大型構造物の材質に対する要求は安全性確保の点か
ら厳しさを増している。特に母材に比べて材質が劣化す
る傾向にある溶接熱影響部の低温靱性の向上が望まれて
いる。一般に鋼材をサブマージアーク溶接やエレクトロ
スラグ溶接などの溶接入熱の大きい自動溶接を行うと、
溶接熱影響部(以下、HAZと称する)のオーステナイ
ト結晶粒が粗大化することによりHAZの組織が粗くな
り、HAZ靱性が著しく低下する。HAZ靱性向上のた
めにはHAZ、特に高温にさらされる融合部(フュージ
ョンライン、以下FLと称する)近傍のHAZ組織を微
細化する必要がある。従来、以下に示すような種々のH
AZ組織微細化方法が提案されている。例えば、昭和5
4年6月発行の「鉄と鋼」第65巻第8号1232頁に
おいては、TiNを微細析出させることによりHAZの
オーステナイト粒を微細化して、50kgf/mm2
高張力鋼の大入熱溶接時のHAZ靱性を改善する技術が
開示されている。ごく最近では、オーステナイトの細粒
化によらずに粒内フェライトを生成させることによりH
AZ組織の微細化を図る技術が開発されている。粒内フ
ェライトの生成核としてTi酸化物が有効であり、Ti
酸化物は高温にさらされても溶解することがなく、FL
直近でも粒内フェライトの核として働き、組織微細化が
可能で、TiN等を利用した鋼に比較してFL近傍のH
AZ靱性の著しい向上が可能であることが、例えば特開
昭61−117245号公報に示されている。
2. Description of the Related Art In recent years, requirements for materials of large structures, such as marine structures, shipbuilding, and storage tanks, have become increasingly strict in terms of ensuring safety. In particular, it is desired to improve the low-temperature toughness of the heat-affected zone of the weld, which tends to deteriorate compared to the base metal. Generally, when performing automatic welding with large heat input such as submerged arc welding or electroslag welding to steel materials,
When the austenite crystal grains in the weld heat affected zone (hereinafter, referred to as HAZ) become coarse, the HAZ structure becomes coarse and the HAZ toughness is significantly reduced. In order to improve the HAZ toughness, it is necessary to reduce the size of the HAZ, particularly the HAZ structure near the fusion portion (fusion line, hereinafter referred to as FL) exposed to high temperatures. Conventionally, various types of H
An AZ structure refinement method has been proposed. For example, Showa 5
In “Iron and Steel”, Vol. 65, No. 8, page 1232, issued in June 2004, the austenite grains of HAZ are refined by finely precipitating TiN, and large heat input of 50 kgf / mm 2 class high strength steel is performed. A technique for improving the HAZ toughness during welding is disclosed. More recently, the formation of intragranular ferrites without resorting to austenite refinement has led to the
Techniques for miniaturizing the AZ structure have been developed. Ti oxide is effective as a nucleus for forming intragranular ferrite,
Oxide does not dissolve even when exposed to high temperature, FL
In the immediate vicinity, it acts as a core of intragranular ferrite, and can refine the structure. Compared with steel using TiN or the like, H
It is disclosed, for example, in Japanese Patent Application Laid-Open No. 61-117245 that the AZ toughness can be significantly improved.

【0003】しかしながら以上のHAZ靱性向上技術は
いずれもHAZ組織中に一部なりでもフェライトが生成
するような成分領域についてのみ適用できるものであ
り、母材の引張強さでみればせいぜい60kgf/mm
2級までである。さらに強度レベルの高い鋼においては
上記技術に類似した組織微細化技術は認められず、ほと
んど唯一のHAZ靱性向上方法はNiの多量添加のみで
あった。即ち5〜6%、さらには9%程度に多量のNi
を含有する鋼では極低温、一般的には−100℃以下で
も母材及びそれほど溶接入熱の大きくない溶接部のHA
Z靱性を保証することが可能である。ただし、このよう
な高Ni鋼でも溶接入熱が200kJ/cm程度のいわ
ゆる大入熱溶接におけるHAZ靱性まで容易に保証でき
るまでに至っていない。加えてこのような高Ni鋼は通
常の鋼材に比べて不可避的に非常に高価となるため、構
造物全般に広く使用できるものでなく、廉価でかつ様々
な溶接条件おいても優れたHAZ靱性を有する高張力
鋼、特にフェライトの生成が困難な強度レベルの高張力
鋼の製造技術の確立が望まれる。
However, any of the above HAZ toughness improving techniques can be applied only to a component region in which ferrite is formed even in a part of the HAZ structure, and is at most 60 kgf / mm in view of the tensile strength of the base material.
Up to level 2 . Further, in steel having a higher strength level, a microstructure refining technique similar to the above-mentioned technique was not recognized, and almost the only method of improving the HAZ toughness was to add a large amount of Ni. That is, a large amount of Ni, such as 5 to 6%, and even about 9%
In the case of steel containing, the HA of a base metal and a weld having a not so large welding heat input even at a very low temperature, generally -100 ° C or lower.
It is possible to guarantee Z toughness. However, even with such a high Ni steel, the HAZ toughness in the so-called large heat input welding with welding heat input of about 200 kJ / cm has not yet been easily assured. In addition, such a high Ni steel is inevitably very expensive compared to a normal steel material, so that it cannot be widely used for all structures, and is inexpensive and has excellent HAZ toughness even under various welding conditions. It is desired to establish a manufacturing technique for high-strength steels having high strength, particularly high-strength steels having a strength level at which ferrite generation is difficult.

【0004】[0004]

【発明が解決しようとする課題】Ni等の高価な合金元
素を用いずに高強度化する手段としてはMnの活用が考
えられる。Mnは廉価な上にNiに比較して少量の添加
で焼入性を高めることが可能な元素であることから本発
明者らはその最大限の有効利用を計ることが廉価な高強
度高靱性鋼のひとつの可能性と考え、種々検討を加えた
結果、Mn以外の高価な合金元素を可能な限り用いず
に、母材の引張り強さが100kgf/mm2以上で、
かつ、溶接熱影響部靱性の優れた高マンガン超高張力鋼
を発明するに至ったものである。通常、引張強さ100
kgf/mm2以上の高強度をMn添加のみで得ようと
した場合、必然的に添加量は数%以上を必要とし、その
場合には母材、HAZを問わず粒界破壊感受性が高ま
り、粒界破壊により靱性が大きく劣化するようになるの
が一般的であり、単純にMnを増加させた場合には高強
度化はできても母材及びHAZの靱性向上は非常に困難
となる。低合金鋼ではHAZ靱性と組織との一般的な関
係は非常によく知られており、上部ベイナイト組織のと
きに最もHAZ靱性が劣化することが常識的に知られて
いる。この靱性劣化を抑制するために低強度側では粒内
フェライト変態に代表されるようなフェライト組織の微
細化が一般的であり、高強度側では焼入性の適正化によ
る下部ベイナイト主体組織化が有効な方法である。しか
しながらこの知見は1%前後の比較的少ないMn量の低
合金鋼においてのものであり、例えば2%をはるかに超
えるような高Mn鋼においても従来知見が適用可能かど
うかについては全く不明である。従って、本発明が基本
とする高Mnにおいて母材、HAZともに靱性を向上さ
せるためには最適組織を明確にして、それを得るための
手法と同時に粒界破壊を防止する手段を見いだすことが
課題となる。
As a means for increasing the strength without using expensive alloy elements such as Ni, the use of Mn can be considered. Since Mn is an element that is inexpensive and can increase hardenability with a small amount of addition compared to Ni, the present inventors have attempted to maximize its effective use by inexpensive high strength and toughness. Considering one possibility of steel, as a result of various investigations, the tensile strength of the base material was 100 kgf / mm 2 or more without using expensive alloying elements other than Mn as much as possible.
In addition, the present invention has led to the invention of a high manganese ultra-high tensile steel having excellent toughness of a weld heat affected zone. Usually, tensile strength 100
When a high strength of kgf / mm 2 or more is to be obtained only by the addition of Mn, the addition amount inevitably requires several percent or more. In this case, the susceptibility to grain boundary fracture increases regardless of the base material or HAZ, Generally, toughness is greatly deteriorated due to grain boundary fracture, and when Mn is simply increased, it is very difficult to improve the toughness of the base material and HAZ even if the strength can be increased. The general relationship between HAZ toughness and structure is very well known in low alloy steels, and it is commonly known that HAZ toughness deteriorates most in the case of upper bainite structure. In order to suppress this toughness degradation, it is common to refine the ferrite structure typified by intragranular ferrite transformation on the low-strength side, and to form the lower bainite-based structure by optimizing hardenability on the high-strength side. This is an effective method. However, this finding is for a low alloy steel having a relatively small Mn content of about 1%, and it is not completely clear whether the conventional finding is applicable to a high Mn steel much exceeding 2%, for example. . Therefore, in order to improve the toughness of both the base material and the HAZ at a high Mn, which is the basis of the present invention, it is necessary to clarify the optimum structure and to find a means for obtaining it and a means for preventing grain boundary fracture at the same time. Becomes

【0005】[0005]

【課題を解決するための手段】本発明者らはこれらの課
題を克服すべく詳細な検討を行った結果、高価なNiを
多量に添加する事なく、母材の引張り強さが100kg
f/mm2以上で、母材靱性だけでなく、大入熱溶接を
含む広い入熱範囲において溶接熱影響部の靱性が良好な
超高張力鋼として、重量%でC:0.01〜0.06
%、Si:0.01〜1.0%、Mn:6〜15%、
P:0.01%以下、S:0.01%以下、Al:0.
005〜0.1%、B:0.0003〜0.010%、
N:0.010%以下を含有し、さらに必要に応じてN
i:3.0%以下、Cu:1.5%以下の1種または2
種を含有し、残部はFe及び不可避不純物からなること
を特徴とする高マンガン超高張力鋼を発明するに至っ
た。
The present inventors have conducted detailed studies to overcome these problems, and as a result, have found that the base material has a tensile strength of 100 kg without adding a large amount of expensive Ni.
f / mm 2 or more, not only the base material toughness but also the toughness of the weld heat-affected zone in a wide heat input range including large heat input welding. .06
%, Si: 0.01 to 1.0%, Mn: 6 to 15%,
P: 0.01% or less, S: 0.01% or less, Al: 0.
005 to 0.1%, B: 0.0003 to 0.010%,
N: 0.010% or less, and if necessary, N
i: 3.0% or less, Cu: 1.5% or less 1 or 2
The present invention has led to the invention of a high manganese ultra-high tensile strength steel containing a seed and the balance consisting of Fe and unavoidable impurities.

【0006】以下本発明の要旨を実験結果に基づいて詳
細に説明する。本発明においてはC、Mn、Bが最も重
要な組成である。先ず、溶接熱影響部の靱性についてみ
ると、従来の低温靱性を目的としたCr,Mo,Ni等
を含有した高張力鋼では微細な上部ベイナイトあるいは
下部ベイナイトとマルテンサイト組織となる成分のとき
に靱性が最も良好となることが例えば昭和54年6月発
行の「鉄と鋼」第65巻第8号1223頁に示されてい
る。しかしながら、高価なこれらの合金元素を用いず、
主としてMnだけで強度靱性を確保することを目的とし
た場合はベイナイトが存在する成分範囲では良好な靱性
が得られないことが判明した。即ち、Cが約0.02%
あるいは0.1%、Siが約0.1%、Mnが約1〜2
0%、Alが約0.03%、Nが約0.003%、Bが
無添加あるいは約0.0010%の範囲の小型真空溶解
鋼を用いて大入熱溶接を想定した溶接再現熱サイクル靱
性(最高加熱温度:1400℃、800℃から500℃
までの冷却時間:160秒)を検討した結果、図1に示
すように、ベイナイト組織が存在するMnが4〜5%以
下の成分では、シャルピー試験の吸収エネルギーが7k
gfmとなる温度(vTr70)で靱性を評価した場
合、良好な靱性が得られる範囲が存在せず、むしろB添
加鋼に認められるようにMnが6%程度以上で、ほぼ1
00%マルテンサイト組織となる成分領域において良好
なHAZ靱性が得られ、また、HAZ靱性向上のために
はMn量の適正化と共にC量を低減し、Bを添加する必
要があることを見いだした。なお、微視的には、本発明
鋼の成分範囲における組織は体心正方晶のマルテンサイ
トと成分によっては若干の残留オーステナイト、さらに
は微量のちょう密六方晶のεマルテンサイトを含有する
場合もあるが、量的には正方晶マルテンサイトが主体と
なる。さらに、本発明鋼は焼入性が非常に高く、溶接条
件により冷却速度が大きく変化しても基本的にはいずれ
もマルテンサイト組織のため、靱性変化がほとんど認め
られない。ちなみに、本発明者らは800から500℃
までの冷却時間が30秒、320秒の熱サイクル条件に
おける靱性も調査したが、いずれも図1と類似の結果が
得られた。母材についても同様の理由から本発明鋼にお
いては通常、工業的に得られる冷却速度の範囲内では安
定してマルテンサイト組織が得られるため、製造方法に
よらず、例えば、熱間圧延ままか、焼入れ焼戻し処理に
よるかによらず、強度・靱性の変化は非常に小さい。ま
た、Mn量が6%以上と高いため、C量が0.01%〜
0.06%と低いにもかかわらず、引張り強度は100
kgf/mm2以上が安定して達成可能である。
Hereinafter, the gist of the present invention will be described in detail based on experimental results. In the present invention, C, Mn, and B are the most important compositions. First, regarding the toughness of the weld heat affected zone, in the case of a conventional high-strength steel containing Cr, Mo, Ni, etc. for the purpose of low-temperature toughness, when the composition becomes a fine upper bainite or lower bainite and a martensitic structure. The best toughness is shown, for example, in "Iron and Steel", Vol. 65, No. 8, page 1223, issued in June 1979. However, without using these expensive alloy elements,
It has been found that when aiming to secure the strength toughness mainly with only Mn, good toughness cannot be obtained in the component range where bainite is present. That is, C is about 0.02%
Alternatively, 0.1%, Si is about 0.1%, and Mn is about 1-2.
Welding reproduction thermal cycle assuming large heat input welding using small vacuum melting steel of 0%, Al about 0.03%, N about 0.003%, B added or about 0.0010% Toughness (Maximum heating temperature: 1400 ° C, 800 to 500 ° C
As a result, the absorption energy in the Charpy test was 7 k for a component having Mn of 4 to 5% or less in which a bainite structure exists, as shown in FIG.
gfm become temperature (vTr 7. 0) when evaluating the toughness in, there is no range in which a good toughness is obtained, but rather Mn as found in B-added steel is more than about 6%, about 1
It has been found that good HAZ toughness can be obtained in a component region where a martensitic structure of 00% is obtained, and in order to improve HAZ toughness, it is necessary to reduce the amount of C with the optimization of the amount of Mn and to add B. . In addition, microscopically, the structure in the composition range of the steel of the present invention may contain body-centered tetragonal martensite, some retained austenite depending on the composition, and even a small amount of dense hexagonal ε martensite. However, the quantity is mainly tetragonal martensite. Furthermore, the steel of the present invention has very high hardenability, and even if the cooling rate greatly changes depending on the welding conditions, basically all of them have a martensitic structure, so that little change in toughness is observed. By the way, we have 800-500 ° C
The toughness under heat cycle conditions of 30 seconds and 320 seconds of cooling time was also investigated, and in all cases, results similar to those in FIG. 1 were obtained. For the same reason as for the base metal, the steel of the present invention usually has a martensitic structure stably within the range of an industrially obtainable cooling rate. Regardless of the quenching and tempering treatment, the change in strength and toughness is very small. Further, since the Mn content is as high as 6% or more, the C content is 0.01% or more.
Despite being as low as 0.06%, the tensile strength is 100%.
kgf / mm 2 or more can be stably achieved.

【0007】[0007]

【作用】以上が、本発明の基本要旨であるが、本発明の
目的とする特性を達成するためには各々の構成元素量に
ついても以下に述べるように適正範囲に限定する必要が
ある。まず、Cは強度を向上するために有効な成分であ
るが、本発明者らが詳細に検討した結果によれば、本発
明の如き高Mn鋼においてはC量が増加するにつれて母
材靱性、HAZ靱性が劣化する。Cの悪影響は母材靱性
においてより顕著であり、0.01%の添加あたりvT
70が約10〜15℃上昇する。本発明では母材強度
を確保でき、母材靱性を極端に劣化させない範囲として
Cを0.01%〜0.06%とした。次に、Siは溶鋼
の脱酸を行う上で有効な元素であり、強度上昇にも効果
があるが、多量に添加した場合、粗大な酸化物を生成し
やすく、本発明のような強度の高い鋼では延性や靱性を
大きく損ねるため、0.01〜1.0%の範囲とした。
Mnは本発明の最も重要な構成元素のひとつである。本
発明においては冷却速度の広い範囲でほぼマルテンサイ
ト1相組織となって、安定して母材強度、HAZ靱性を
確保できるに必要な量として下限を6%とした。さらに
Mn量を高めるとHAZ靱性は向上するが、図1の0.
02%C−B添加鋼において認められるように15%を
超えると逆に靱性が劣化しはじめる。母材靱性も同様に
15%を超えるMn量では靱性が劣化する傾向にあり、
その劣化量はHAZ靱性におけるよりも顕著であるた
め、本発明においてはMn量の上限を15%とした。P
は粒界脆化を助長して母材、HAZとも靱性を劣化させ
るため、極力低減することが好ましいが、許容できる量
として0.01%以下とした。SについてもMnSを形
成したり粒界に偏析して延性や靱性を劣化させるため、
極力低減することが好ましいが、許容できる量として
0.01%以下とした。AlはSiと同様、脱酸元素と
して有効であるが、過剰に添加すると、粗大な酸化物を
形成して延性、靱性の劣化要因となるため、0.005
〜0.1%の範囲とした。Bは高Mn鋼における粒界脆
化を抑制するために特に重要な元素であり、その効果を
生じさせるためには0.0003%以上の添加が必要で
ある。しかし、0.010%を超える添加を行うと、析
出物を生成しやすくなり粒界脆化抑制効果が失われると
共に、析出物による靱性劣化を生じるため、0.000
3〜0.010%の範囲とした。NはBNを形成してB
の粒界脆化抑制効果を減ずるため、含有量は少ない方が
好ましいが、許容できる範囲として、上限を0.010
%とした。以上が、本発明鋼の基本成分の各々の限定理
由であるが、母材及びHAZの靱性向上の目的で、必要
に応じてNi、Cuの1種以上を含有することができ
る。Niは含有量が多いほど母材靱性、HAZ靱性共に
遷移温度としては改善されるが、一方で、シェルフエネ
ルギーが低下する傾向にあり、3.0%を超える添加を
しても、靱性改善効果が飽和するため、経済性も考慮し
て3.0%を上限とした。Cuの効果も定性的にはNi
とほぼ同様であるが、1.5%を超える多量の添加は鋳
片の割れや析出脆化の問題等が顕著になるため、上限を
1.5%とした。
The above is the basic gist of the present invention. In order to achieve the desired characteristics of the present invention, it is necessary to limit the amount of each constituent element to an appropriate range as described below. First, C is an effective component for improving the strength. According to the results of detailed studies by the present inventors, in a high Mn steel as in the present invention, as the C content increases, the base material toughness, HAZ toughness deteriorates. The adverse effect of C is more pronounced in base metal toughness, with vT
r 7 . 0 increases by about 10-15 ° C. In the present invention, C is set to 0.01% to 0.06% as a range in which the strength of the base material can be secured and the toughness of the base material is not extremely deteriorated. Next, Si is an element effective in deoxidizing molten steel and is also effective in increasing the strength, but when added in a large amount, coarse oxides are easily generated, and the strength as in the present invention is high. Since high steel greatly impairs ductility and toughness, the range is 0.01 to 1.0%.
Mn is one of the most important constituent elements of the present invention. In the present invention, the lower limit is set to 6% as an amount required to substantially form a martensite single phase structure in a wide range of the cooling rate and to stably secure the base material strength and the HAZ toughness. When the amount of Mn is further increased, the HAZ toughness is improved.
On the other hand, when the content exceeds 15% as observed in the 02% CB added steel, the toughness starts to deteriorate. Similarly, the base material toughness tends to deteriorate when the Mn content exceeds 15%.
Since the deterioration amount is more remarkable than the HAZ toughness, the upper limit of the Mn content is set to 15% in the present invention. P
In order to promote grain boundary embrittlement and deteriorate the toughness of both the base material and the HAZ, it is preferable to reduce as much as possible. However, the allowable amount is set to 0.01% or less. S also forms MnS and segregates at grain boundaries to deteriorate ductility and toughness.
Although it is preferable to reduce as much as possible, the allowable amount is set to 0.01% or less. Al is effective as a deoxidizing element like Si, but when added excessively, it forms a coarse oxide and causes deterioration of ductility and toughness.
-0.1%. B is an element that is particularly important for suppressing grain boundary embrittlement in high Mn steel, and it is necessary to add 0.0003% or more in order to produce the effect. However, when the addition exceeds 0.010%, precipitates are easily formed, the effect of suppressing grain boundary embrittlement is lost, and toughness is deteriorated by the precipitates.
The range was 3 to 0.010%. N forms BN to form B
In order to reduce the effect of suppressing grain boundary embrittlement, it is preferable that the content is small, but as an acceptable range, the upper limit is set to 0.010.
%. The above is the reason for limiting each of the basic components of the steel of the present invention. For the purpose of improving the toughness of the base material and the HAZ, one or more of Ni and Cu can be contained as necessary. As the Ni content increases, both the base material toughness and the HAZ toughness improve as the transition temperature, but on the other hand, the shelf energy tends to decrease, and even if added over 3.0%, the toughness improving effect is obtained. Is saturated, so the upper limit is set at 3.0% in consideration of economy. The effect of Cu is qualitatively Ni
However, the addition of a large amount exceeding 1.5% makes the problem of slab cracking and precipitation embrittlement remarkable, so the upper limit was made 1.5%.

【0008】[0008]

【実施例】表1に本発明に従って試作した鋼板及び比較
鋼板の化学成分、母材強度靭性、HAZの靭性等を示
す。ここで、No.1〜No.12が本発明鋼であり、
No.13〜No.22が比較鋼である。本発明鋼、比
較鋼とも圧延により20mmの鋼板とした。本発明鋼の
No.1〜No.8及び比較鋼については延性後さらに
焼入れ−焼戻し処理を行った後、特性調査を実施した。
また、本発明鋼のNo.9〜No.12については圧延
ままの素材より採取した試験片により特性を調査した。
いずれの試験片も板厚中心部より圧延方向に平行な方向
で採取した。母材の強度は丸棒引張り試験の0.2%耐
力及び引張り強さで評価した、一方、母材靭性はシャル
ピー衝撃試験における−60℃での吸収エネルギーで評
価した。また、HAZ靭性は最高加熱温度1400℃、
800℃から500℃までの冷却時間が160秒である
溶接再現熱サイクルを付与したときのシヤルピー衝撃試
験の−60℃での吸収エネルギーで評価した。ちなみに
本熱サイクル条件は板厚20mmの鋼板を入熱量約10
0kJ/cmサブマージアーク溶接したときのFLでの
熱履歴に相当する。表1から明らかなように、No.1
〜No.12の本発明鋼は比較鋼に比べて優れたHAZ
靭性を有し、−60℃の低温でも構造物の安全性確保に
十分なシャルピー試験の吸収エネルギーを示すことが分
かる。また、母材特性も引張り強さは100kgf/m
以上で、かつ、優れた靭性を示す。即ち、本発明に
よれば非常に高い強度と優れた母材、HAZ靭性を兼ね
備えた鋼が得られることが明らかである。一方、No.
13〜No.22の比較鋼は本発明の要件を満足してお
らず、そのため、母材強度、靭性あるいはHAZ靭性が
本発明鋼に比べて劣ることが同様に表1から明白であ
る。即ち、比較鋼No.13はMn量が不足している上
にBを含有していないため、母材引張り強度が低く、H
AZ靭性も劣る。No.14はMn量は本発明範囲内で
はあるが、B無添加のため特にHAZ靭性の劣化が顕著
であり、No.15はMn量が過剰でかつB無添加によ
り母材靭性、HAZ靭性が共に非常に低い。No.1
6、No.17はBは含有しているものの、Mn量が適
正でないため、母材靭性ないしはHAZ靭性が十分でな
い。また、No.18、No.19はC量が過剰なた
め、強度は高いが、母材靭性、HAZ靭性が非常に低
い。比較鋼No.20〜No.22はP、N、Sのいず
れかが本発明の範囲を逸脱しているため、母材靭性、H
AZ靭性が本発明鋼に比べて大きく劣化している。以上
の実施例から、本発明によれば引張り強さが100kg
f/mm以上で、かつ−60℃程度の低温においても
安全な使用に耐える優れた母材及びHAZ靭性を有する
超高張力鋼が得られることが明白である。
EXAMPLES Table 1 shows the chemical composition, base material strength toughness, HAZ toughness, and the like of the steel sheet and the comparative steel sheet manufactured in accordance with the present invention. Here, No. 1 to No. 12 is the steel of the present invention,
No. 13- No. 22 is a comparative steel. The steel of the present invention and the comparative steel were rolled into 20 mm steel plates. No. of the steel of the present invention. 1 to No. 8 and the comparative steel were further subjected to quenching and tempering after ductility, and then a characteristic investigation was conducted.
In addition, the steel of the present invention has no. 9-No. For No. 12, the characteristics were examined using test pieces taken from the as-rolled material.
All test pieces were taken from the center of the sheet thickness in a direction parallel to the rolling direction. The strength of the base metal was evaluated by the 0.2% proof stress and tensile strength of the round bar tensile test, while the base metal toughness was evaluated by the absorbed energy at −60 ° C. in the Charpy impact test. In addition, the HAZ toughness has a maximum heating temperature of 1400 ° C,
The cooling energy from 800 ° C. to 500 ° C. was evaluated by the absorbed energy at −60 ° C. in the Charpy impact test when a reproduction heat cycle of 160 seconds was applied. By the way, the heat cycle conditions are as follows.
This corresponds to the thermal history in FL at the time of submerged arc welding at 0 kJ / cm. As is clear from Table 1, 1
-No. Twelve inventive steels have a better HAZ than the comparative steels
It can be seen that it has toughness and shows sufficient absorbed energy in Charpy test even at a low temperature of -60 ° C to ensure the safety of the structure. The base material has a tensile strength of 100 kgf / m.
m 2 or more and excellent toughness. That is, according to the present invention, it is apparent that a steel having very high strength, excellent base metal, and HAZ toughness can be obtained. On the other hand, No.
13- No. It is also evident from Table 1 that the comparative steel No. 22 does not satisfy the requirements of the present invention, and therefore, the base metal strength, toughness or HAZ toughness is inferior to the steel of the present invention. That is, the comparative steel No. No. 13 has a low base metal tensile strength and a low H
AZ toughness is also poor. No. In No. 14, although the Mn content was within the range of the present invention, deterioration of HAZ toughness was particularly remarkable because B was not added. In No. 15, both the base material toughness and the HAZ toughness are extremely low due to an excessive amount of Mn and no addition of B. No. 1
6, no. No. 17 contains B, but has an insufficient Mn content, so that the base material toughness or the HAZ toughness is not sufficient. In addition, No. 18, No. No. 19 has a high strength because of an excessive C content, but has very low base metal toughness and HAZ toughness. Comparative steel No. 20-No. No. 22 shows that any one of P, N and S is out of the range of the present invention,
The AZ toughness is greatly deteriorated as compared with the steel of the present invention. From the above examples, according to the present invention, the tensile strength is 100 kg.
It is evident that an ultra-high-strength steel having an HAZ toughness and an excellent base material that can withstand safe use even at f / mm 2 or more and at a low temperature of about −60 ° C. is obtained.

【0009】[0009]

【表1A】 [Table 1A]

【0010】[0010]

【表1B】 [Table 1B]

【0011】[0011]

【発明の効果】本発明は高価なNiなどの合金元素を多
量に含有することなく、非常に高い引張り強さと優れた
母材靱性、及び広い入熱範囲で優れたHAZ靱性を有す
る超高張力鋼を可能としたものであり、本発明による鋼
を用いれば過酷な使用条件に対しても高強度で、かつ安
全性の高い溶接構造物を製造することが可能となり、そ
の効果は極めて顕著である。
According to the present invention, an ultra-high tensile strength having very high tensile strength, excellent base metal toughness, and excellent HAZ toughness over a wide heat input range without containing a large amount of expensive alloying elements such as Ni. The use of steel according to the present invention makes it possible to produce a high-strength, highly safe welded structure even under severe use conditions, and the effect is extremely remarkable. is there.

【図面の簡単な説明】[Brief description of the drawings]

【図1】C量、B量、Mn量を変えた鋼について、最高
加熱温度が1400℃で、800℃から500℃までの
冷却時間が160秒の溶接再現熱サイクルを加えたとき
のMn量とシャルピー特性の関係を示す図である。
FIG. 1 shows the maximum heating temperature of steel with different amounts of C, B, and Mn and the amount of Mn when a welding reproduction heat cycle in which the cooling time from 800 ° C. to 500 ° C. was 160 seconds was applied. FIG. 4 is a diagram showing the relationship between the characteristic and the Charpy characteristic.

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C22C 38/00 302 C22C 38/06 Continuation of front page (58) Field surveyed (Int. Cl. 6 , DB name) C22C 38/00 302 C22C 38/06

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で C :0.01〜0.06% Si:0.01〜1.0% Mn:6〜15% P :0.01%以下 S :0.01%以下 Al:0.005〜0.1% B :0.0003〜0.010% N :0.010%以下 を含有し、残部はFe及び不可避不純物からなることを
特徴とする溶接熱影響部靱性の優れた高マンガン超高張
力鋼。
C: 0.01 to 0.06% in weight% Si: 0.01 to 1.0% Mn: 6 to 15% P: 0.01% or less S: 0.01% or less Al: B: 0.005% to 0.1% B: 0.0003% to 0.010% N: 0.010% or less, with the balance being Fe and unavoidable impurities. High manganese ultra-high tensile steel.
【請求項2】 重量%で C :0.01〜0.06% Si:0.01〜1.0% Mn:6〜15% P :0.01%以下 S :0.01%以下 Al:0.005〜0.1% B :0.0003〜0.010% N :0.010%以下 を含有し、さらに、 Ni:3.0%以下 Cu:1.5%以下 の1種または2種を含有することを特徴とする溶接熱影
響部靱性の優れた高マンガン超高張力鋼。
2. C: 0.01 to 0.06% in weight% Si: 0.01 to 1.0% Mn: 6 to 15% P: 0.01% or less S: 0.01% or less Al: 0.005% to 0.1% B: 0.0003% to 0.010% N: 0.010% or less Ni: 3.0% or less Cu: 1.5% or less High manganese ultra-high tensile steel with excellent toughness in the heat-affected zone of the weld, characterized by containing a seed.
JP14408991A 1991-05-21 1991-05-21 High manganese ultra-high strength steel with excellent toughness of weld heat affected zone Expired - Lifetime JP2930772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14408991A JP2930772B2 (en) 1991-05-21 1991-05-21 High manganese ultra-high strength steel with excellent toughness of weld heat affected zone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14408991A JP2930772B2 (en) 1991-05-21 1991-05-21 High manganese ultra-high strength steel with excellent toughness of weld heat affected zone

Publications (2)

Publication Number Publication Date
JPH04346636A JPH04346636A (en) 1992-12-02
JP2930772B2 true JP2930772B2 (en) 1999-08-03

Family

ID=15353972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14408991A Expired - Lifetime JP2930772B2 (en) 1991-05-21 1991-05-21 High manganese ultra-high strength steel with excellent toughness of weld heat affected zone

Country Status (1)

Country Link
JP (1) JP2930772B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101543898B1 (en) 2013-12-24 2015-08-11 주식회사 포스코 Steel having excellent impact toughness of welding zone and welding property
JP6369414B2 (en) * 2015-07-28 2018-08-08 Jfeスチール株式会社 High-strength thick steel plate for building structures with excellent heat-affected zone toughness
KR101940919B1 (en) * 2017-08-08 2019-01-22 주식회사 포스코 Hot rolled steel sheet having excellent strength and elongation and method of manufacturing the same
JP7306624B2 (en) * 2019-06-19 2023-07-11 日本製鉄株式会社 steel plate
JP7273296B2 (en) * 2019-06-19 2023-05-15 日本製鉄株式会社 steel plate

Also Published As

Publication number Publication date
JPH04346636A (en) 1992-12-02

Similar Documents

Publication Publication Date Title
KR100892385B1 (en) Steel for welded structure excellent in low temperature toughness of heat affected zone of welded part, and method for production thereof
JP3526576B2 (en) Manufacturing method of high-strength steel with excellent weld strength and weld strength
JP5079419B2 (en) Steel for welded structure with excellent toughness of weld heat affected zone, method for producing the same, and method for producing welded structure
JP4926447B2 (en) Manufacturing method of high strength steel with excellent weld crack resistance
US20190352749A1 (en) Steel material for high heat input welding
JP4207334B2 (en) High-strength steel sheet with excellent weldability and stress corrosion cracking resistance and method for producing the same
JP4237904B2 (en) Ferritic heat resistant steel sheet with excellent creep strength and toughness of base metal and welded joint and method for producing the same
JP2930772B2 (en) High manganese ultra-high strength steel with excellent toughness of weld heat affected zone
JPH11256270A (en) High tensile strength steel plate excellent in toughness in base material and large heat input weld heat-affected zone, and its production
JPS626730B2 (en)
JP2005213534A (en) Method for producing steel material excellent in toughness at welding heat affected zone
JPH0873983A (en) Thick steel plate for welded structure, excellent in fatigue strength in weld joint, and its production
JP3599556B2 (en) High-strength steel sheet excellent in toughness of base material and heat-affected zone of large heat input welding and method of manufacturing the same
JPH06128631A (en) Production of high manganese ultrahigh tensile strength steel excellent in low temperature toughness
JPS6352090B2 (en)
JPH10298706A (en) High tensile strength steel excellent in high heat input weldability and weld crack sensitivity and its production
JP2688312B2 (en) High strength and high toughness steel plate
JP3335651B2 (en) Method for producing thick 9% Ni steel with excellent CTOD characteristics of base metal and weld heat affected zone
JPH09194990A (en) High tensile strength steel excellent in toughness in weld heat-affected zone
JPH05195156A (en) High-manganese ultrahigh tensile strength steel excellent in toughness in heat affected zone and its production
JPH11131177A (en) Steel plate for medium-or ordinary-temperature pressure vessel, capable of omitting post weld heat treatment, and its production
JPH11189840A (en) High strength steel plate for line pipe, excellent in hydrogen induced cracking resistance, and its production
JPH093591A (en) Extremely thick high tensile strength steel plate and its production
JPH10158778A (en) High tensile strength steel plate excellent in toughness and weldability, and its production
JP2671732B2 (en) Manufacturing method of high strength steel with excellent weldability

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990511