JP2005213534A - Method for producing steel material excellent in toughness at welding heat affected zone - Google Patents

Method for producing steel material excellent in toughness at welding heat affected zone Download PDF

Info

Publication number
JP2005213534A
JP2005213534A JP2004018730A JP2004018730A JP2005213534A JP 2005213534 A JP2005213534 A JP 2005213534A JP 2004018730 A JP2004018730 A JP 2004018730A JP 2004018730 A JP2004018730 A JP 2004018730A JP 2005213534 A JP2005213534 A JP 2005213534A
Authority
JP
Japan
Prior art keywords
steel material
toughness
less
temperature
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004018730A
Other languages
Japanese (ja)
Inventor
Kenji Oi
健次 大井
Katsuyuki Ichinomiya
克行 一宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004018730A priority Critical patent/JP2005213534A/en
Publication of JP2005213534A publication Critical patent/JP2005213534A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a steel material excellent in the toughness at a welding heat-affected zone. <P>SOLUTION: To a steel blank having composition composed by mass% of 0.01-0.15% C, 0.05-0.70% Si, 0.6-2.5% Mn, ≤0.030% P, ≤0.0060% S, 0.005-0.10% Al and 0.005-0.040% Ti, 0.0015-0.0100% N under condition of satisfying Ti/N: 0.8-4.0, and the balance Fe with inevitable impurities, after heating at a temperature in the range of 1000-1300°C for ≥5 hr, the steel blank treatment for cooling to ≤700°C is applied and thereafter, the hot-working is applied. Thereby, in the whole portion in the plate thickness direction, the toughness as the welding heat affected zone is improved over the wide range of welding heat input. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、造船、橋梁、建築、土木、建設機械、圧力容器等の使途に好適な鋼材の製造方法に係り、とくに溶接が施される使途に好適な鋼材の製造方法に関する。なお、本発明でいう鋼材は、主として厚鋼板を指すが、溶接が施される形鋼、鋼管等をも含むものとする。   The present invention relates to a method for producing steel materials suitable for use in shipbuilding, bridges, architecture, civil engineering, construction machinery, pressure vessels, and the like, and more particularly to a method for producing steel materials suitable for use in which welding is performed. In addition, although the steel materials as used in the field of this invention mainly point to a thick steel plate, they shall also include the shape steel, steel pipe, etc. which are welded.

造船、海洋構造物、橋梁、建築、土木、建設機械、圧力容器等の分野では、一般に、鋼材を溶接接合して、所望の形状の構造物に仕上げている。このような構造物においては、安全性の観点から、使用される鋼材の母材の強度・靭性はもちろんのこと、溶接継手部の特性をも所定レベル以上に確保することが重要となる。近年、開発されたTMCP(Thermo-Mechanical Control Process)技術を駆使して製造された鋼板は、強度・靭性に優れた母材組織を有している。しかし、溶接継手部では、その母材組織が溶接熱サイクルによって再加熱され変態して、特性が劣化した組織となりやすい。強度は、溶接金属と母材との組合せで適切な継手強度とすることができる。しかし、溶接熱影響部(以下、HAZともいう)では、溶接時に溶融点直下の高温にさらされて、オーステナイトの結晶粒が粗大化しやすく、引き続く冷却によって、脆弱な上部ベイナイト組織に変態しやすく、HAZ靭性の劣化が懸念される。また多層盛溶接では、その後の再加熱によりHAZが、2相域へ再加熱され、島状のマルテンサイトの生成や析出脆化などによってHAZ靭性の著しい劣化が起こる。このため、HAZ靭性を所定レベル以上に安定して確保することは難しい問題として残されていた。   In the fields of shipbuilding, offshore structures, bridges, architecture, civil engineering, construction machinery, pressure vessels, etc., steel materials are generally welded to finish a desired shape of the structure. In such a structure, from the viewpoint of safety, it is important to secure not only the strength and toughness of the base material of the steel material used, but also the characteristics of the welded joint part to a predetermined level or more. Steel sheets manufactured using TMCP (Thermo-Mechanical Control Process) technology developed in recent years have a matrix structure with excellent strength and toughness. However, in the welded joint portion, the base material structure tends to be reheated and transformed by the welding heat cycle, resulting in a structure with deteriorated characteristics. The strength can be an appropriate joint strength by a combination of a weld metal and a base material. However, in the weld heat affected zone (hereinafter also referred to as HAZ), it is exposed to a high temperature just below the melting point during welding, the austenite crystal grains tend to coarsen, and the subsequent cooling tends to transform into a fragile upper bainite structure. There is concern about deterioration of HAZ toughness. In multi-layer welding, HAZ is reheated to a two-phase region by subsequent reheating, and the HAZ toughness is significantly deteriorated due to the formation of island martensite and precipitation embrittlement. For this reason, it has been left as a difficult problem to ensure HAZ toughness stably above a predetermined level.

このような問題に対し、古くから研究が進められてきたオーステナイト粒の粗大化抑制技術やフェライト生成の促進技術を利用して、効果的にHAZの靭性を向上させる方法が実用化されている。特にTiNの分散によるオーステナイト粒の粗大化抑制技術は、従来からHAZの組織制御の基本技術として利用されてきたが、さらにこの機能を向上させるために種々の提案がなされている。   In response to such problems, a method for effectively improving the toughness of HAZ has been put into practical use by utilizing the austenite grain coarsening suppression technology and the ferrite formation promotion technology, which have been studied for a long time. In particular, the austenite grain coarsening suppression technology by the dispersion of TiN has been used as a basic technology for HAZ structure control, and various proposals have been made to further improve this function.

例えば、特許文献1には、TiおよびZrの一方または双方0.002〜0.10%、CeおよびLaの一方または双方0.001〜0.1%、CaおよびMgの一方または双方0.004%以下、を含有し、TiとCaやCeとの複合効果を利用して、大入熱溶接での溶接熱影響部、とくにボンド部近傍の靭性を向上させる、大入熱溶接構造用鋼が提案されている。また、特許文献2には、N:0.006%以下とし、B:0.0003〜0.0020%、Ti:0.02%以下を、(N−0.3Ti):5ppm以上、(N−0.5Ti):25ppm以上を満足するように含む、Bを含みTi量とN量とのバランスを配慮した大入熱溶接構造用鋼が提案されている。また、特許文献3には、粒度5μm以下のTiOX (ただし、x:0.65〜1.3)を0.004〜0.06%含む溶接用鋼が提案されている。特許文献3に記載された技術では、TiNよりも高温で安定なTi酸化物のうち、TiOX (ただし、x:0.65〜1.3)が、微細針状フェライトの核生成に有効であり、大入熱溶接部のHAZを高靭性化できるとしている。また、特許文献4には、REM:0.005〜0.015%を含み、N:0.0008〜0.0030%と、Ti:0.001〜0.004%とを、Ti/Nが1.0〜3.4の関係を満たすように含む、溶接ボンド部靭性に優れた大入熱溶接用鋼が提案されている。特許文献4に記載された技術では、REMとTiを複合添加し、 0.0030%以下の低N鋼においては、Tiを0.004%以下とすることが大入熱溶接部の靭性改善に有効であるとしている。 For example, Patent Document 1 contains one or both of Ti and Zr 0.002 to 0.10%, one or both of Ce and La 0.001 to 0.1%, and one or both of Ca and Mg 0.004% or less, and Ti and Ca Steels for high heat input welded structures that improve the toughness in the heat affected zone of high heat input welding, particularly in the vicinity of the bond, have been proposed by utilizing the combined effect of C and Ce. In Patent Document 2, N: 0.006% or less, B: 0.0003 to 0.0020%, Ti: 0.02% or less, (N-0.3Ti): 5 ppm or more, (N-0.5Ti): 25 ppm or more satisfied Thus, a steel for high heat input welded structure containing B and considering the balance between Ti content and N content has been proposed. Patent Document 3 proposes a welding steel containing 0.004 to 0.06% of TiO x (x: 0.65 to 1.3) having a particle size of 5 μm or less. In the technique described in Patent Document 3, among Ti oxides that are stable at a higher temperature than TiN, TiO x (x: 0.65 to 1.3) is effective for nucleation of fine acicular ferrite. It is said that the HAZ of heat welds can be made tough. Patent Document 4 includes welding that includes REM: 0.005 to 0.015%, N: 0.0008 to 0.0030%, and Ti: 0.001 to 0.004% so that Ti / N satisfies the relationship of 1.0 to 3.4. Steels for high heat input welding with excellent bond part toughness have been proposed. In the technique described in Patent Document 4, REM and Ti are added together, and in low N steel of 0.0030% or less, it is effective to improve the toughness of high heat input welds by making Ti 0.004% or less. Yes.

上記した以外にも、大入熱溶接熱影響部の高靭性化については、TiNとTi酸化物やREM酸・硫化物を組み合わせる技術やB添加を同時に行う技術などが数多く提案されている。
特公昭54−43970号公報 特開昭60−204863号公報 特開昭57−51243号公報 特公平4−14180号公報
In addition to the above, many techniques for combining TiN with Ti oxide, REM acid / sulfide, and techniques for simultaneously adding B have been proposed for increasing the toughness of the high heat input welding heat-affected zone.
Japanese Patent Publication No.54-43970 Japanese Unexamined Patent Publication No. 60-204863 JP-A-57-51243 Japanese Examined Patent Publication No. 4-14180

しかしながら、上記した従来技術によれば、HAZの組織微細化は可能であるが、HAZの
靭性向上が十分に得られない場合があるという問題があった。例えば、TiNを分散させてHAZ靭性を向上させようとする場合に、Ti量、N量の厳密な調整に加えて、さらにTi/N比の厳密な制御を行っても、HAZの靭性向上が十分に得られない場合があった。また、Ti、Nの含有に加えてBを含有する場合でも、小入熱溶接では却ってHAZ靭性が劣化する場合があるという問題があった。
However, according to the above-described prior art, it is possible to refine the HAZ structure, but there is a problem that the toughness of the HAZ may not be sufficiently improved. For example, when trying to improve HAZ toughness by dispersing TiN, in addition to strict adjustment of Ti amount and N amount, even if strict control of Ti / N ratio is performed, HAZ toughness can be improved. In some cases, it could not be obtained sufficiently. Further, even when B is contained in addition to the contents of Ti and N, there is a problem that the HAZ toughness may be deteriorated by small heat input welding.

また、TiNと酸化物等と組合せた場合では、HAZの靭性向上が十分に得られないという問題は解消されないうえ、実操業では、酸化物等の十分な微細分散を行うことが難しいため、HAZの組織微細化という観点からも期待した効果が十分に得られないという問題があった。   In addition, when TiN and oxides are combined, the problem that HAZ toughness cannot be sufficiently improved cannot be solved, and in actual operation, it is difficult to sufficiently disperse oxides. There was a problem that the expected effect could not be obtained sufficiently from the viewpoint of refining the structure.

さらに、連続鋳造製スラブを用いた厚鋼板の場合には、一般的に、板厚中央部に中心偏析部が存在し、この中心偏析部にはMn等の元素が濃化して焼入性が向上するため、上記したようなTiN等の分散制御を行っても、このような中心偏析部ではHAZ靭性の著しい低下が生じ、所望のHAZ靭性が得られないという問題もあった。   Furthermore, in the case of a thick steel plate using a continuously cast slab, a central segregation portion generally exists in the central portion of the plate thickness, and elements such as Mn are concentrated in this central segregation portion to provide hardenability. In order to improve, even when the above-described dispersion control of TiN or the like is performed, there is a problem that the HAZ toughness is remarkably lowered in such a central segregation portion, and the desired HAZ toughness cannot be obtained.

このように、上記した従来技術においては、溶接入熱の広い範囲に亘り、板厚方向全ての位置において、組織を安定して微細化し、高いHAZ靭性を得ることは難しい問題として残されていた。   As described above, in the above-described prior art, it has been left as a difficult problem to stably refine the structure and obtain high HAZ toughness at all positions in the thickness direction over a wide range of welding heat input. .

本発明は、上記した従来技術の問題を解決し、Ti、Nを適正量含有し、溶接入熱の広い範囲に亘り、板厚方向全ての位置において高いHAZ靭性を示す、溶接熱影響部靭性に優れた鋼材の製造方法を提案することを目的とする。  The present invention solves the above-mentioned problems of the prior art, contains appropriate amounts of Ti and N, and exhibits high HAZ toughness at all positions in the thickness direction over a wide range of welding heat input. It aims at proposing the manufacturing method of the steel material excellent in.

本発明者らは、上記した課題を達成するために、Ti、Nを含有する鋼材について、小入熱溶接から大入熱溶接までの広い溶接入熱量の範囲で、板厚方向全ての位置において溶接熱影響部靭性におよぼす各種要因について研究、検討を鋭意重ねた。その結果、TiNを分散させてHAZ靭性を向上させようとする場合には、Ti量、N量の厳密な調整に加えて、さらにTi/N比の厳密な制御を行っても、析出分散するTiN粒にはある程度の大きさの分布が存在することに思い至った。TiN粒の大きさの平均値は、Ti量とN量およびTi/N比によってほぼ決定されるが、本発明者らは、鋼素材の凝固形態にもより、TiN粒の大きさの分布に大きな幅があることを見出した。   In order to achieve the above-mentioned problems, the present inventors have made a wide range of welding heat input from small heat input welding to large heat input welding for steel materials containing Ti and N, at all positions in the plate thickness direction. Research and examination of various factors affecting weld heat-affected zone toughness were conducted. As a result, when TiN is dispersed to improve HAZ toughness, precipitation is dispersed even if the Ti / N ratio is further controlled in addition to the strict adjustment of the Ti amount and N amount. It came to mind that TiN grains have a certain size distribution. The average value of the TiN grain size is almost determined by the Ti content, the N content, and the Ti / N ratio. I found that there is a big range.

そして、本発明者らは、非常に微細なTiN粒は溶接時に溶接熱で溶解し固溶N量を増加させ、溶接熱影響部の靭性を著しく低下させるものと推察した。とくに約50nm以下の微細なTiN粒子は小入熱溶接ボンド部近傍のような溶接熱サイクルでも溶解し固溶N量を増加させ、HAZ靭性を劣化させることを見出した。   And the present inventors guessed that very fine TiN grain melt | dissolves with welding heat at the time of welding, increases the amount of solid solution N, and reduces the toughness of a welding heat affected zone remarkably. In particular, it has been found that fine TiN particles of about 50 nm or less dissolve even in a welding heat cycle such as the vicinity of a small heat input weld bond, increase the amount of solute N, and deteriorate the HAZ toughness.

このような溶接熱影響部の固溶N量の増加に対し、Bを添加して固溶NをBNの形で固定することが考えられる。しかし、本発明者らは、溶接入熱量が少ない場合にはBNが析出する時間的余裕がなく固溶Nを固定することできないうえ、添加したBが焼入れ性元素として作用し、溶接熱影響部組織を硬化組織とするため、かえって溶接熱影響部靭性が劣化するものと考えた。   For such an increase in the amount of solute N in the weld heat affected zone, it is conceivable to add B and fix the solute N in the form of BN. However, the present inventors have no time margin for precipitation of BN when the welding heat input is small, and cannot fix solute N, and the added B acts as a hardenable element, and the weld heat affected zone. Since the structure was a hardened structure, it was thought that the weld heat-affected zone toughness deteriorated.

そして、本発明者らは、Ti、Nを含む鋼材の溶接熱影響部靭性を、広い範囲の溶接入熱量に亘り安定して高く維持するためには、溶接時に溶解しやすい、50 nm以下の微細なTiN粒子を、熱間圧延する前の鋼素材の段階で予め除去しておく必要があることを思い付いた。   And in order to maintain the welding heat-affected zone toughness of a steel material containing Ti and N stably and high over a wide range of welding heat input, the present inventors have a melting point of 50 nm or less. I came up with the idea that the fine TiN particles had to be removed beforehand at the stage of the steel material before hot rolling.

本発明者らは、更なる検討を行い、熱間圧延前の鋼素材に特殊な熱処理を施し、微細なTiN粒子を一旦溶解させ、その後の冷却過程で再析出させ適度な大きさのTiNに成長させるか、あるいは未溶解のTiN粒子をオストワルド成長させることにより、基地組織中へTi、Nを固溶させることなく、微細なTiNを消滅させ、溶接熱影響部靭性の向上に最適なTiNの粒子分布を得ることができることを見出した。   The present inventors have conducted further studies, subjecting the steel material before hot rolling to a special heat treatment, once dissolved fine TiN particles, and reprecipitated in the subsequent cooling process to an appropriately sized TiN. By making it grow or Ostwald growth of undissolved TiN particles, the fine TiN disappears without solid-dissolving Ti and N in the base structure, and the optimum TiN for improving the heat affected zone toughness It has been found that a particle distribution can be obtained.

本発明は、上記した知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨は次の通りである。
(1)鋼素材を熱間加工して所定寸法形状の鋼材とするにあたり、前記鋼素材を、mass%で、C:0.01〜0.15%、Si:0.05〜0.70%、Mn:0.6〜2.5%、P:0.030%以下、S:0.0060%以下、Al:0.005〜0.10%、を含み、かつTi:0.005〜0.040%、N:0.0015〜0.0100%を、Ti/N:0.8〜4.0を満足するように含有し、残部がFeおよび不可避的不純物からなる組成を有する鋼素材とし、前記熱間加工に先立ち、前記鋼素材に1000〜1300℃の範囲の温度に5時間以上加熱したのち、700℃以下の温度まで冷却する鋼素材処理を施すことを特徴とする溶接熱影響部靭性に優れた鋼材の製造方法。
(2)鋼素材を熱間圧延して厚鋼板とするにあたり、前記鋼素材を、mass%で、C:0.01〜0.15%、Si:0.05〜0.70%、Mn:0.6〜2.5%、P:0.030%以下、S:0.0060%以下、Al:0.005〜0.10%、を含み、かつTi:0.005〜0.040%、N:0.0015〜0.0100%を、Ti/N:0.8〜4.0を満足するように含有し、残部がFeおよび不可避的不純物からなる組成を有する鋼素材とし、前記熱間圧延に先立ち、前記鋼素材に1000〜1300℃の範囲の温度に5時間以上加熱したのち、700℃以下の温度まで冷却する鋼素材処理を施すことを特徴とする溶接熱影響部靭性に優れた厚鋼板の製造方法。
(3)(2)において、前記熱間圧延を、1000〜1200℃に再加熱したのち、950℃以下の温度域での累積圧下率が20%以上で、仕上圧延終了温度を680℃以上とする制御圧延とすることを特徴とする厚鋼板の製造方法。
(4)(2)または(3)において、前記熱間圧延終了後、冷却速度:1.0℃/s以上で冷却停止温度:600℃以下まで冷却する制御冷却を施すことを特徴とする厚鋼板の製造方法。
(5)(2)または(3)において、前記熱間圧延終了後、直ちに、250℃以下まで急速冷却する直接焼入れ処理とそれに続く焼戻し処理を行うことを特徴とする厚鋼板の製造方法。
(6)(2)ないし(5)のいずれかにおいて、前記熱間圧延終了後、一旦冷却したのち、再加熱し、焼入れ−焼戻し処理を行うことを特徴とする厚鋼板の製造方法。
(7)(2)ないし(6)のいずれかにおいて、前記組成に加えてさらに、mass%で、Cu:0.01〜2.0%、Ni:0.01〜4.0%、Cr:0.01〜2.0%、Mo:0.01〜2.0%、Nb:0.003〜0.1%、V:0.003〜0.5%、B:0.0005〜0.0040%のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする厚鋼板の製造方法。
(8)(2)ないし(7)のいずれかにおいて、前記組成に加えてさらに、mass%で、Ca:0.0001〜0.0060%、Mg:0.0001〜0.0060%、REM:0.0001〜0.0200%のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする厚鋼板の製造方法。
The present invention has been completed based on the above findings and further studies. That is, the gist of the present invention is as follows.
(1) When hot working a steel material to obtain a steel material having a predetermined size and shape, the steel material is mass%, C: 0.01 to 0.15%, Si: 0.05 to 0.70%, Mn: 0.6 to 2.5%, P: 0.030% or less, S: 0.0060% or less, Al: 0.005-0.10%, and Ti: 0.005-0.040%, N: 0.0015-0.0100%, so that Ti / N: 0.8-4.0 is satisfied And a steel material having a composition consisting of Fe and inevitable impurities in the balance, and prior to the hot working, the steel material is heated to a temperature in the range of 1000 to 1300 ° C. for 5 hours or more and then 700 ° C. or less. A method for producing a steel material having excellent weld heat-affected zone toughness, characterized by performing a steel material treatment that cools to a temperature.
(2) When the steel material is hot-rolled into a thick steel plate, the steel material is mass%, C: 0.01 to 0.15%, Si: 0.05 to 0.70%, Mn: 0.6 to 2.5%, P: 0.030. %: S: 0.0060% or less, Al: 0.005-0.10%, and Ti: 0.005-0.040%, N: 0.0015-0.0100%, so as to satisfy Ti / N: 0.8-4.0, The remainder is made of a steel material having a composition consisting of Fe and inevitable impurities. Prior to the hot rolling, the steel material is heated to a temperature in the range of 1000 to 1300 ° C. for 5 hours or more and then cooled to a temperature of 700 ° C. or less. A method for producing a thick steel plate excellent in weld heat-affected zone toughness, characterized by performing a steel material treatment.
(3) In (2), after re-heating the hot rolling to 1000 to 1200 ° C, the cumulative rolling reduction in the temperature range of 950 ° C or lower is 20% or higher, and the finish rolling finish temperature is 680 ° C or higher. A method for producing a thick steel plate, characterized by performing controlled rolling.
(4) In (2) or (3), after completion of the hot rolling, a controlled cooling is performed to cool the cooling rate to 1.0 ° C./s or higher and the cooling stop temperature to 600 ° C. or lower. Production method.
(5) The method for producing a thick steel plate according to (2) or (3), wherein a direct quenching process for rapid cooling to 250 ° C. or less and a subsequent tempering process are performed immediately after completion of the hot rolling.
(6) In any one of (2) to (5), after the hot rolling is finished, the steel plate is once cooled, then reheated and subjected to quenching and tempering treatment.
(7) In any one of (2) to (6), in addition to the above-mentioned composition, it is further mass%, Cu: 0.01 to 2.0%, Ni: 0.01 to 4.0%, Cr: 0.01 to 2.0%, Mo: 0.01 -2.0%, Nb: 0.003-0.1%, V: 0.003-0.5%, B: 0.0005-0.0040% of a thick steel plate characterized by containing one or more selected from Production method.
(8) In any one of (2) to (7), in addition to the above composition, it is further selected in mass% from Ca: 0.0001 to 0.0060%, Mg: 0.0001 to 0.0060%, and REM: 0.0001 to 0.0200% The manufacturing method of the thick steel plate characterized by setting it as the composition containing 1 type, or 2 or more types.

本発明によれば、Ti、Nを含有し、溶接入熱の広い範囲に亘り、板厚方向全ての位置において高いHAZ靭性を示す、溶接熱影響部靭性に優れた厚鋼板等の鋼材を、比較的容易な方法で製造でき、産業上格段の効果を奏する。   According to the present invention, steel materials such as thick steel plates containing Ti and N, exhibiting high HAZ toughness at all positions in the plate thickness direction over a wide range of welding heat input, and excellent in weld heat affected zone toughness, It can be manufactured by a relatively easy method and has a remarkable industrial effect.

まず、本発明で使用する鋼素材の組成限定理由について説明する。なお、以下、組成におけるmass%は単に%と記す。   First, the reasons for limiting the composition of the steel material used in the present invention will be described. Hereinafter, mass% in the composition is simply referred to as%.

C:0.01〜0.15%
Cは、鋼材の強度を増加させる元素であり、構造用鋼として必要な強度を得るために、本発明では0.01%以上の含有を必要とする。一方、0.15%を超える過剰な含有は溶接部の靭性を劣化させる。このため、Cは0.01〜0.15%の範囲に限定した。なお、好ましくは、0.05〜0.11%である。
C: 0.01-0.15%
C is an element that increases the strength of the steel material. In order to obtain the strength necessary for structural steel, C is required to be contained by 0.01% or more in the present invention. On the other hand, an excessive content exceeding 0.15% deteriorates the toughness of the weld. For this reason, C was limited to the range of 0.01 to 0.15%. In addition, Preferably, it is 0.05 to 0.11%.

Si:0.05〜0.70%
Siは、脱酸剤として作用するとともに固溶して鋼材の強度を増加させる元素であり、製鋼上0.05%以上の含有を必要とする。一方、0.70%を超える含有は母材靭性を劣化させる。このため、Siは0.05〜0.70%の範囲に限定した。なお、好ましくは、0.10〜0.30%である。
Si: 0.05-0.70%
Si is an element that acts as a deoxidizing agent and increases the strength of the steel by solid solution, and requires 0.05% or more in steelmaking. On the other hand, the content exceeding 0.70% deteriorates the base material toughness. For this reason, Si was limited to the range of 0.05 to 0.70%. In addition, Preferably, it is 0.10 to 0.30%.

Mn:0.6〜2.5%
Mnは、固溶して鋼材の強度を増加させる元素であり、本発明では母材の強度を確保するために、0.6%以上の含有を必要とする。一方、2.5%を超える含有は、溶接部の靭性を著しく劣化させる。このようなことから、Mnは0.6〜2.5%の範囲に限定した。なお、好ましくは、1.0〜1.8%である。
Mn: 0.6-2.5%
Mn is an element that dissolves to increase the strength of the steel material. In the present invention, the content of 0.6% or more is required to ensure the strength of the base material. On the other hand, the content exceeding 2.5% significantly deteriorates the toughness of the welded portion. For this reason, Mn is limited to a range of 0.6 to 2.5%. In addition, Preferably, it is 1.0 to 1.8%.

P:0.030%以下
Pは、本発明では不純物元素としてできるだけ低減することが好ましい。本発明では0.030%を超える含有は溶接部の靭性を劣化させるため、0.030%を上限とした。なお、好ましくは、0.020%以下である。
P: 0.030% or less P is preferably reduced as much as possible as an impurity element in the present invention. In the present invention, the content exceeding 0.030% degrades the toughness of the welded portion, so 0.030% was made the upper limit. In addition, Preferably, it is 0.020% or less.

S:0.0060%以下
Sは、鋼中では介在物として存在し、鋼の延性、靭性を低下させるため、本発明ではできるだけ低減することが好ましい。0.0060%を超える含有は、母材および溶接部の靭性を劣化させるため0.0060%を上限とした。なお、好ましくは、0.0040%以下である。
S: 0.0060% or less S is present as an inclusion in the steel and lowers the ductility and toughness of the steel. Therefore, in the present invention, S is preferably reduced as much as possible. The content exceeding 0.0060% deteriorates the toughness of the base metal and the welded portion, so 0.0060% was made the upper limit. In addition, Preferably, it is 0.0040% or less.

Al:0.005〜0.10%
Alは、脱酸剤として作用する元素であり、本発明では鋼の脱酸上、0.005%以上の含有を必要とするが、0.10%を超えて含有すると、母材靭性の低下を招く。このため、Alは0.005〜0.10%の範囲に限定した。
Al: 0.005-0.10%
Al is an element that acts as a deoxidizer. In the present invention, it is necessary to contain 0.005% or more in terms of deoxidation of steel, but if it exceeds 0.10%, the toughness of the base metal is lowered. For this reason, Al was limited to 0.005 to 0.10% of range.

Ti:0.005〜0.040%
Tiは、凝固時にNと結合しTiNとして析出し、溶接熱影響部でのオーステナイト粒の粗大化を抑制しあるいはフェライトの変態核となって、組織を微細化し溶接熱影響部の高靭性化に寄与する。このような効果は、0.005%以上の含有で認められる。一方、0.040%を超えて含有すると、TiN粒子が粗大化し、所期した靭性向上効果が得られない。このため、Tiは0.005〜0.040%の範囲に限定した。なお、靭性の観点から、好ましくは、0.008〜0.020%であり、より好ましくは0.010〜0.018%である。
Ti: 0.005-0.040%
Ti combines with N during solidification and precipitates as TiN, suppresses the coarsening of austenite grains in the weld heat affected zone or becomes a transformation nucleus of ferrite to refine the structure and increase the toughness of the weld heat affected zone. Contribute. Such an effect is recognized when the content is 0.005% or more. On the other hand, if the content exceeds 0.040%, the TiN particles become coarse, and the desired toughness improving effect cannot be obtained. For this reason, Ti was limited to 0.005 to 0.040% of range. In addition, from a viewpoint of toughness, Preferably it is 0.008 to 0.020%, More preferably, it is 0.010 to 0.018%.

N:0.0015〜0.0100%
Nは、溶接熱影響部でのオーステナイト粒の粗大化を抑制しあるいはフェライトの変態核となるTiNの必要量を確保するうえで、本発明では0.0015%以上の含有を必要とする。一方、0.0100%を超える含有は、TiN粒子の粗大化を招き、所期した靭性向上効果が期待できなくなる。このため、Nは0.0015〜0.0100%の範囲に限定した。なお、好ましくは0.0025〜0.0070%であり、より好ましくは0.0040〜0.0060%である。
N: 0.0015-0.0100%
In order to suppress the coarsening of austenite grains in the weld heat affected zone or to secure the necessary amount of TiN as a transformation nucleus of ferrite, N is required to be contained in an amount of 0.0015% or more in the present invention. On the other hand, if the content exceeds 0.0100%, TiN particles become coarse, and the expected toughness improvement effect cannot be expected. For this reason, N was limited to the range of 0.0015 to 0.0100%. In addition, Preferably it is 0.0025 to 0.0070%, More preferably, it is 0.0040 to 0.0060%.

Ti/N:0.8〜4.0
Ti、Nは、本発明では、上記各範囲内でかつTi/Nが0.8〜4.0となるように、含有する。Ti/Nが0.8未満では、TiN粒子の平均粒子径が微細となりすぎて、鋼材内での好ましいTiN粒子分布が得られない。一方、Ti/Nが4.0を超えると、TiN粒子が粗大となりすぎて、鋼材内での好ましいTiN粒子分布が得られない。このため、Ti/Nを0.8〜4.0の範囲に限定した。なお、好ましくは1.5〜3.5、より好ましくは2.5〜3.5である。
Ti / N: 0.8-4.0
In the present invention, Ti and N are contained so that Ti / N is 0.8 to 4.0 within the above ranges. When Ti / N is less than 0.8, the average particle diameter of TiN particles becomes too fine, and a preferable TiN particle distribution in the steel material cannot be obtained. On the other hand, when Ti / N exceeds 4.0, TiN particles become too coarse, and a preferable TiN particle distribution in the steel material cannot be obtained. For this reason, Ti / N was limited to the range of 0.8-4.0. In addition, Preferably it is 1.5-3.5, More preferably, it is 2.5-3.5.

上記した基本成分に加えて本発明では、さらに、Cu:0.01〜2.0%、Ni:0.01〜4.0%、Cr:0.01〜2.0%、Mo:0.01〜2.0%、Nb:0.003〜0.1%、V:0.003〜0.5%、B:0.0005〜0.0040%のうちから選ばれた1種または2種以上、および/または、Ca:0.0001〜0.0060%、Mg:0.0001〜0.0060%、REM:0.0001〜0.0200%のうちから選ばれた1種または2種以上を含有できる。   In addition to the basic components described above, in the present invention, Cu: 0.01 to 2.0%, Ni: 0.01 to 4.0%, Cr: 0.01 to 2.0%, Mo: 0.01 to 2.0%, Nb: 0.003 to 0.1%, V: One or more selected from 0.003 to 0.5%, B: 0.0005 to 0.0040%, and / or Ca: 0.0001 to 0.0060%, Mg: 0.0001 to 0.0060%, REM: 0.0001 to 0.0200% 1 type or 2 types or more selected from.

Cu:0.01〜2.0%、Ni:0.01〜4.0%、Cr:0.01〜2.0%、Mo:0.01〜2.0%、Nb:0.003〜0.1%、V:0.003〜0.5%、B:0.0005〜0.0040%のうちから選ばれた1種または2種以上
Cu、Ni、Cr、Mo、Nb、V、Bは、いずれも鋼材の強度を増加させる作用を有する元素であり、必要に応じ1種または2種以上を選択して含有できる。
Cu: 0.01-2.0%, Ni: 0.01-4.0%, Cr: 0.01-2.0%, Mo: 0.01-2.0%, Nb: 0.003-0.1%, V: 0.003-0.5%, B: 0.0005-0.0040% One or more selected from
Cu, Ni, Cr, Mo, Nb, V, and B are all elements that have the effect of increasing the strength of the steel material, and can be selected from one or more as necessary.

Cuは、強度を増加させる作用を有する元素であるが、このような効果は0.01%以上の含有で認められが、2.0%を超える含有は、熱間脆性により鋼板表面の性状を劣化させるとともに母材の靭性を低下させる。このため、Cuは0.01〜2.0%の範囲に限定することが好ましい。より好ましくは、0.20〜1.0%である。   Cu is an element that has the effect of increasing the strength. However, such an effect is recognized at a content of 0.01% or more. However, a content exceeding 2.0% deteriorates the properties of the steel sheet surface due to hot brittleness, and is a matrix. Reduce the toughness of the material. For this reason, it is preferable to limit Cu to 0.01 to 2.0% of range. More preferably, it is 0.20 to 1.0%.

Niは、母材の靭性を低下させることなく強度を増加させることができる元素であり、このような効果は0.01%以上の含有で顕著となるが、4.0%を超えて含有しても、効果が飽和し含有量に見合う効果を期待できなくなり、経済的に不利となる。このため、Niは0.01〜4.0%の範囲に限定することが好ましい。より好ましくは、0.10〜1.50%である。   Ni is an element that can increase the strength without lowering the toughness of the base metal, and such an effect becomes remarkable when the content is 0.01% or more, but even if it exceeds 4.0%, the effect Is saturated and the effect commensurate with the content cannot be expected, which is economically disadvantageous. For this reason, it is preferable to limit Ni to the range of 0.01 to 4.0%. More preferably, it is 0.10 to 1.50%.

Cr、Moは、いずれも、母材の強度を効果的に増加させる元素であり、0.01%以上の含有で効果が顕著となる。一方、いずれも2.0%を超えて含有すると、靭性を著しく低下させる。このため、Cr:0.01〜2.0%、Mo:0.01〜2.0%の範囲に限定することが好ましい。より好ましくは、Crは0.10〜0.50%、Moは0.05〜0.80%である。   Cr and Mo are both elements that effectively increase the strength of the base material, and the effect becomes remarkable when the content is 0.01% or more. On the other hand, if the content exceeds 2.0%, the toughness is remarkably lowered. For this reason, it is preferable to limit to the range of Cr: 0.01-2.0% and Mo: 0.01-2.0%. More preferably, Cr is 0.10 to 0.50%, and Mo is 0.05 to 0.80%.

Nb、Vは、いずれも母材の強度を向上させ、同時に靭性をも向上させる元素であり、いずれも0.003%以上の含有で効果が顕著となる。一方、Nbを0.1%、Vを0.5%をそれぞれ超えて含有すると、かえって靭性が低下する。このため、Nbは0.003〜0.1%、Vは0.003〜0.5%の範囲に限定することが好ましい。より好ましくは、Nbは0.010〜0.060%、Vは0.005〜0.050%である。   Nb and V are both elements that improve the strength of the base material and at the same time improve the toughness, and the effect becomes remarkable when the content is 0.003% or more. On the other hand, if Nb exceeds 0.1% and V exceeds 0.5%, the toughness is lowered. For this reason, it is preferable to limit Nb to 0.003 to 0.1% and V to 0.003 to 0.5%. More preferably, Nb is 0.010 to 0.060% and V is 0.005 to 0.050%.

Bは、焼入れ性の向上を介して鋼材の強度を増加させる元素であり、このような効果は0.0005%以上の含有で顕著になるが、0.0040%を超えて含有しても効果が飽和し、含有量に見合う効果が期待できなくなり、経済的に不利となる。このため、Bは0.0005〜0.0040%の範囲に限定することが好ましい。より好ましくは、0.0008〜0.0020%である。   B is an element that increases the strength of the steel material through the improvement of hardenability. Such an effect becomes significant when the content is 0.0005% or more, but the effect is saturated even if the content exceeds 0.0040%. An effect commensurate with the content cannot be expected, which is economically disadvantageous. For this reason, it is preferable to limit B to 0.0005 to 0.0040% of range. More preferably, it is 0.0008 to 0.0020%.

Ca:0.0001〜0.0060%、Mg:0.0001〜0.0060%、REM:0.0001〜0.0200%のうちから選ばれた1種または2種以上
Ca、Mg、REMは、いずれも鋼中のSを固定して鋼材の靭性を向上させるとともに、微細な酸化物や硫化物あるいはそれらが複合した介在物を形成し、TiNの析出核として作用しTiNの微細分散に効果的に寄与する元素であり、必要に応じ1種または2種以上含有できる。このような効果は、それぞれの0.0001%以上の含有で顕著となるが、Caが0.0060%、Mgが0.0060%、REMが0.0200%をそれぞれ超えて含有すると、効果が飽和するとともに鋼中の介在物が粗大化しかつ介在物量が増加して、かえって靭性を劣化させる。このため、Ca:0.0001〜0.0060%、Mg:0.0001〜0.0060%、REM:0.0001〜0.0200%の範囲にそれぞれ限定することが好ましい。より好ましくは、Ca:0.0010〜0.0030%、Mg:0.0005〜0.0020%、REM:0.0020〜0.0100%である。
Ca: 0.0001 to 0.0060%, Mg: 0.0001 to 0.0060%, REM: One or more selected from 0.0001 to 0.0200%
Ca, Mg, and REM all improve the toughness of the steel by fixing S in the steel and form fine oxides and sulfides or inclusions that combine them, acting as TiN precipitation nuclei. It is an element that effectively contributes to fine dispersion of TiN, and can be contained alone or in combination of two or more as required. Such effects become prominent with each content of 0.0001% or more, but when Ca exceeds 0.0060%, Mg exceeds 0.0060%, and REM exceeds 0.0200%, the effect is saturated and inclusions in steel Is coarsened and the amount of inclusions is increased, and on the contrary, the toughness is deteriorated. For this reason, it is preferable to limit to Ca: 0.0001-0.0060%, Mg: 0.0001-0.0060%, and REM: 0.0001-0.0200%, respectively. More preferably, they are Ca: 0.0010-0.0030%, Mg: 0.0005-0.0020%, REM: 0.0020-0.0100%.

上記した成分以外の残部は、Feおよび不可避的不純物からなる。   The balance other than the components described above consists of Fe and inevitable impurities.

本発明で使用する鋼素材は、上記した組成の溶鋼を、転炉、電気炉、真空溶解炉等の通常の方法で溶製したのち、連続鋳造法、造塊法などの通常公知の鋳造方法で鋳造され、スラブ等の鋼素材とされる。   The steel material used in the present invention is a generally known casting method such as a continuous casting method, an ingot casting method, etc., after melting the molten steel having the above composition by a usual method such as a converter, electric furnace, vacuum melting furnace or the like. And made into steel material such as slab.

このようにして得られた鋼素材を熱間加工して、厚鋼板等の鋼材とする。本発明では、熱間加工の前に、これら鋼素材に、1000〜1300℃の範囲の温度に5時間以上加熱したのち、700℃以下の温度まで冷却する鋼素材処理を施す。   The steel material thus obtained is hot-worked to obtain a steel material such as a thick steel plate. In the present invention, before hot working, these steel materials are heated to a temperature in the range of 1000 to 1300 ° C. for 5 hours or more and then subjected to a steel material treatment for cooling to a temperature of 700 ° C. or less.

この鋼素材処理により、鋼素材中に析出した微細な、好ましくは50nm以下のTiNを溶解させて、オストワルド成長させる。   By this steel material treatment, fine, preferably 50 nm or less TiN precipitated in the steel material is dissolved and Ostwald growth is performed.

鋼素材の加熱温度が、1000℃未満では微細なTiNを溶解することができない。一方、1300℃を超えると、有効なTiNまでも溶解するとともに鋼素材表面が酸化により著しく損なわれる。このため、鋼素材処理温度は1000〜1300℃の範囲に限定した。なお、好ましくは、1150〜1250℃である。   If the heating temperature of the steel material is less than 1000 ° C., fine TiN cannot be dissolved. On the other hand, when the temperature exceeds 1300 ° C., even effective TiN is dissolved and the surface of the steel material is significantly damaged by oxidation. For this reason, the steel material processing temperature was limited to the range of 1000-1300 degreeC. In addition, Preferably, it is 1150-1250 degreeC.

また、本発明の鋼素材処理では、上記した範囲内の温度に5時間以上保持する。保持時間が5時間未満では、溶解したTiNがオストワルド成長するために必要な時間が不足する。なお、40時間を超える長時間の保持は、効果が飽和するうえ、材質上の劣化は認められないが、生産性が低下するなど、経済的に不利となるため、40時間を上限とすることが好ましい。また、本発明における鋼素材処理を施すことにより、連続鋳造製スラブなどで見られる中心偏析部において成分の均質化が進み、従来から問題であった母材および溶接熱影響部の板厚1/2t部での靭性の劣化を改善できる。この中心偏析部の均質化は上記した範囲内のできるだけ高温で長時間であればその効果は増大する。   Moreover, in the steel raw material process of this invention, it hold | maintains at the temperature within an above-described range for 5 hours or more. If the holding time is less than 5 hours, the time required for the Ostwald growth of dissolved TiN is insufficient. In addition, holding for more than 40 hours for a long period of time will saturate the effect and there will be no deterioration in the material, but it will be economically disadvantageous, such as reduced productivity. Is preferred. In addition, by applying the steel material treatment in the present invention, the homogenization of the components proceeds in the central segregation portion found in the continuously cast slab and the like, and the thickness of the base material and the weld heat affected zone, which has been a problem in the past, is 1/1 Degradation of toughness at 2t part can be improved. The effect of homogenization of the center segregation portion increases if the temperature is as high as possible within the above range for a long time.

本発明では、上記した温度、時間で処理したのち、鋼素材を、700℃以下の温度まで冷却する。冷却の停止温度が700℃より高いと、オーステナイト−フェライト変態が完全に完了せず、その後の処理で結晶粒の微細化が達成できない。   In the present invention, after the treatment at the above temperature and time, the steel material is cooled to a temperature of 700 ° C. or lower. When the cooling stop temperature is higher than 700 ° C., the austenite-ferrite transformation is not completely completed, and refinement of crystal grains cannot be achieved by subsequent processing.

上記した鋼素材処理を施されたのち、ついで鋼素材は、再加熱され、通常の厚板圧延、形鋼圧延、穿孔圧延等の熱間加工を施され、所望の寸法形状の厚鋼板、形鋼、シームレス鋼管等の鋼材とされる。以下、厚鋼板の製造を例に、好ましい熱間加工について説明する。   After the steel material treatment described above, the steel material is then reheated and subjected to hot working such as normal thick plate rolling, shape steel rolling, piercing rolling, etc. Steel, seamless steel pipes and other steel materials. Hereinafter, preferable hot working will be described by taking the production of a thick steel plate as an example.

本発明では、厚鋼板の製造における熱間加工の条件、すなわち熱間圧延の条件は、所望の寸法形状が確保できる条件であればとくに限定されないが、高強度・高靭性が要求される場合には、制御圧延および/または制御冷却を施すことが好ましい。   In the present invention, the hot working conditions in the production of the thick steel plate, that is, the hot rolling conditions are not particularly limited as long as the desired dimensional shape can be secured, but when high strength and high toughness are required. Is preferably subjected to controlled rolling and / or controlled cooling.

上記した鋼素材処理を施された鋼素材は、1000〜1200℃に再加熱されたのち、950℃以下の温度域での累積圧下率が20%以上で、仕上圧延終了温度を680℃以上とする制御圧延を施すことが好ましい。加熱温度が、1000℃未満では、鋼板温度が低くなりすぎて変形抵抗が高くなり、圧延負荷が最大となる。一方、1200℃を超えて高くなると、結晶粒が粗大化し靭性が劣化する傾向となる。このようなことから、熱間圧延の加熱温度は1000〜1200℃とすることが好ましい。   The steel material subjected to the above steel material treatment is reheated to 1000 to 1200 ° C, and the cumulative rolling reduction in the temperature range of 950 ° C or less is 20% or more, and the finish rolling finish temperature is 680 ° C or more. It is preferable to perform controlled rolling. When the heating temperature is less than 1000 ° C., the steel plate temperature becomes too low, the deformation resistance becomes high, and the rolling load becomes maximum. On the other hand, if the temperature exceeds 1200 ° C., the crystal grains become coarse and the toughness tends to deteriorate. For this reason, the heating temperature for hot rolling is preferably 1000 to 1200 ° C.

また、950℃以下の温度域での累積圧下率が20%未満では、結晶粒の微細化効果が不足し、所望の強度・靭性を確保することが難しくなる。   If the cumulative rolling reduction in the temperature range of 950 ° C. or less is less than 20%, the effect of crystal grain refinement is insufficient, and it becomes difficult to ensure desired strength and toughness.

また、強度向上のために、熱間圧延後、直ちに冷却速度:1.0℃/s以上で冷却停止温度:600℃以下まで冷却する制御冷却を施すことが好ましい。熱間圧延後の冷却速度が1.0℃/s未満、また、冷却停止温度が600℃を超えて高くなると、組織が粗大となり、強度・靭性を確保することが難しくなる。   In order to improve the strength, it is preferable to perform controlled cooling immediately after hot rolling and cooling to a cooling rate of 1.0 ° C./s or higher and a cooling stop temperature of 600 ° C. or lower. When the cooling rate after hot rolling is less than 1.0 ° C./s and the cooling stop temperature is higher than 600 ° C., the structure becomes coarse and it becomes difficult to ensure strength and toughness.

また、強度・靭性向上のために、熱間圧延後、直ちに急速冷却(急冷)を施して、250℃以下まで冷却する直接焼入れ処理を施してもよい。直接焼入れしたのち、710℃以下の温度で焼戻し処理を施すことが好ましい。これにより強度と靭性を兼ね備えた高強度厚鋼板が安価に製造できる。また、直接焼入れ−焼戻し処理に代えて、再加熱したのち焼入れ焼戻しする再加熱焼入れ焼戻し処理としてもよい。なお、焼入れのための再加熱温度は、強度・靭性の観点から、870〜1000℃の範囲とすることが好ましい。   In addition, in order to improve strength and toughness, a direct quenching process in which rapid cooling (rapid cooling) is performed immediately after hot rolling and cooling to 250 ° C. or less may be performed. It is preferable to perform tempering treatment at a temperature of 710 ° C. or less after direct quenching. Thereby, a high strength thick steel plate having both strength and toughness can be produced at low cost. Further, instead of the direct quenching and tempering treatment, a reheating quenching and tempering treatment in which the reheating and then the quenching and tempering may be performed. In addition, it is preferable to make the reheating temperature for hardening into the range of 870-1000 degreeC from a viewpoint of intensity | strength and toughness.

以下、実施例に基づき、さらに本発明をさらに詳細に説明する。   Hereinafter, based on an Example, this invention is demonstrated further in detail.

表1に示す組成の鋼素材(スラブ;250mm厚)に、表2に示す条件で鋼素材処理を施した。得られた鋼素材に、さらに表3に示す条件で熱間圧延を施し空冷するか、あるいはさらに表3に示す条件で制御冷却、直接焼入れ−焼戻し、再加熱焼入れ焼戻しを施し、板厚25mmtの厚鋼板とした。   The steel material (slab; 250 mm thickness) having the composition shown in Table 1 was subjected to the steel material treatment under the conditions shown in Table 2. The obtained steel material is further subjected to hot rolling under the conditions shown in Table 3 and air-cooled, or further subjected to controlled cooling, direct quenching-tempering, reheating quenching and tempering under the conditions shown in Table 3 to obtain a plate thickness of 25 mmt. A thick steel plate was used.

得られた厚鋼板の板厚位置:1/2t部から、引張試験片(JIS 4号試験片)、シャルピー衝撃試験片(Vノッチ試験片)を採取し、JIS Z 2241の規定に準拠して引張試験、JIS Z 2242の規定に準拠してシャルピー衝撃試験を実施し、母材の強度靭性を評価した。得られた結果を表4に示す。   Tensile test piece (JIS No. 4 test piece) and Charpy impact test piece (V notch test piece) are collected from the thickness position of the obtained thick steel plate: 1/2 t part, in accordance with the provisions of JIS Z 2241 A tensile test and a Charpy impact test were conducted in accordance with the provisions of JIS Z 2242 to evaluate the strength and toughness of the base material. Table 4 shows the obtained results.

また、得られた厚鋼板から、溶接継手作製用試験片(500l×250wmm)を一対採取し開先を加工して、エレクトロガス溶接(入熱:100〜400kJ/cm)、またはガスシールドアーク溶接(シールドガス:20vol.%炭酸ガス−80vol.%Arガス)(入熱:10〜30kJ/cm)を用いて各溶接継手を作製した。エレクトロガス溶接は摺動式水冷銅当て金を用い、溶接ワイヤとしてJIS Z 3319 YFEG-22Cに相当する1.6mmφを用い、1パスの立向き溶接とした。なお、エレクトロガス溶接では、開先のルートギャップを調整することにより、溶接入熱を100〜400kJ/cmに種々変化させた。   Also, from the resulting thick steel plate, a pair of welded joint preparation specimens (500 l x 250 wmm) are collected, the groove is processed, and electrogas welding (heat input: 100 to 400 kJ / cm) or gas shielded arc welding is performed. (Shield gas: 20 vol.% Carbon dioxide gas-80 vol.% Ar gas) (heat input: 10 to 30 kJ / cm) was used to produce each weld joint. For electrogas welding, sliding water-cooled copper plating was used, and 1.6 mmφ corresponding to JIS Z 3319 YFEG-22C was used as the welding wire, and one-pass vertical welding was performed. In electrogas welding, the welding heat input was variously changed to 100 to 400 kJ / cm by adjusting the root gap of the groove.

また、ガスシールドアーク溶接(入熱:10〜30kJ/cm)では、溶接ワイヤはJIS Z 3313 YFW-A502Bに相当を用い、積層:12層の多層盛とした。   In gas shielded arc welding (heat input: 10 to 30 kJ / cm), a welding wire equivalent to JIS Z 3313 YFW-A502B was used, and a multi-layer stack of 12 layers was formed.

得られた溶接継手のボンド部(1/4tあるいは1/2t)から、シャルピー衝撃試験片(Vノッチ試験片)を採取し、JIS Z 3128の規定に準拠してシャルピー衝撃試験を実施し、破面遷移温度vTrsを求め、溶接熱影響部の靭性を評価した。得られた結果を表4に示す。   A Charpy impact test piece (V-notch test piece) is taken from the bond portion (1/4 t or 1/2 t) of the obtained welded joint, and subjected to a Charpy impact test in accordance with the provisions of JIS Z 3128. The surface transition temperature vTrs was obtained and the toughness of the weld heat affected zone was evaluated. Table 4 shows the obtained results.

Figure 2005213534
Figure 2005213534

Figure 2005213534
Figure 2005213534

Figure 2005213534
Figure 2005213534

Figure 2005213534
Figure 2005213534

本発明例はいずれも、母材の強度靭性に優れるうえ、幅広い入熱の溶接を施されても溶接熱影響部靭性に優れた厚鋼板となっている。一方、本発明の範囲を外れる比較例は、溶接熱影響部靭性が劣化している。なお、本発明例では、中心偏析が存在する板厚中央部でも優れた溶接熱影響部靭性を示し、板厚方向各位置での靭性ばらつきが少ない。   Each of the examples of the present invention is a thick steel plate that is excellent in the strength toughness of the base material and excellent in the weld heat affected zone toughness even when subjected to welding with a wide heat input. On the other hand, in the comparative example that is out of the scope of the present invention, the weld heat affected zone toughness is deteriorated. In the examples of the present invention, excellent weld heat affected zone toughness is exhibited even in the central portion of the plate thickness where the center segregation exists, and there is little variation in toughness at each position in the plate thickness direction.

以上のように、鋼素材に本発明の鋼素材処理を施すことにより、その後に通常用いられる、制御圧延・制御冷却、直接焼入れ処理、あるいは再加熱焼入れ焼戻し処理等の、如何なる厚鋼板の製造方法を適用しても、TiNの機能が有効に働き、幅広い入熱の溶接継手の溶接熱影響部を従来に比べて格段に高靭化することができる。   As described above, any steel plate manufacturing method such as controlled rolling / control cooling, direct quenching, or reheating quenching / tempering, which is usually used after the steel material treatment of the present invention is applied to the steel material. Even if is applied, the function of TiN works effectively, and the weld heat affected zone of the welded joint with wide heat input can be made much tougher than before.

Claims (8)

鋼素材を熱間加工して所定寸法形状の鋼材とするにあたり、前記鋼素材を、mass%で、
C:0.01〜0.15%、 Si:0.05〜0.70%、
Mn:0.6〜2.5%、 P:0.030%以下、
S:0.0060%以下、 Al:0.005〜0.10%、
を含み、かつ
Ti:0.005〜0.040%、 N:0.0015〜0.0100%
を、Ti/N:0.8〜4.0を満足するように含有し、残部がFeおよび不可避的不純物からなる組成を有する鋼素材とし、前記熱間加工に先立ち、前記鋼素材に1000〜1300℃の範囲の温度に5時間以上加熱したのち、700℃以下の温度まで冷却する鋼素材処理を施すことを特徴とする溶接熱影響部靭性に優れた鋼材の製造方法。
When the steel material is hot-worked into a steel material of a predetermined size and shape, the steel material is mass%,
C: 0.01 to 0.15%, Si: 0.05 to 0.70%,
Mn: 0.6 to 2.5%, P: 0.030% or less,
S: 0.0060% or less, Al: 0.005-0.10%,
And including
Ti: 0.005-0.040%, N: 0.0015-0.0100%
Is a steel material having a composition consisting of Fe and unavoidable impurities, with the balance being Ti / N: 0.8 to 4.0, and prior to the hot working, the steel material has a range of 1000 to 1300 ° C. A method for producing a steel material excellent in weld heat affected zone toughness, characterized by performing a steel material treatment that is heated to a temperature of 5 hours or more and then cooled to a temperature of 700 ° C. or less.
鋼素材を熱間圧延して厚鋼板とするにあたり、前記鋼素材を、mass%で、
C:0.01〜0.15%、 Si:0.05〜0.70%、
Mn:0.6〜2.5%、 P:0.030%以下、
S:0.0060%以下、 Al:0.005〜0.10%、
を含み、かつ
Ti:0.005〜0.040%、 N:0.0015〜0.0100%
を、Ti/N:0.8〜4.0を満足するように含有し、残部がFeおよび不可避的不純物からなる組成を有する鋼素材とし、前記熱間圧延に先立ち、前記鋼素材に1000〜1300℃の範囲の温度に5時間以上加熱したのち、700℃以下の温度まで冷却する鋼素材処理を施すことを特徴とする溶接熱影響部靭性に優れた厚鋼板の製造方法。
When hot rolling a steel material to make a thick steel plate, the steel material is mass%,
C: 0.01 to 0.15%, Si: 0.05 to 0.70%,
Mn: 0.6 to 2.5%, P: 0.030% or less,
S: 0.0060% or less, Al: 0.005-0.10%,
And including
Ti: 0.005-0.040%, N: 0.0015-0.0100%
Is a steel material having a composition consisting of Fe and unavoidable impurities, with the balance being Ti / N: 0.8 to 4.0, and prior to the hot rolling, the steel material has a range of 1000 to 1300 ° C. A method for producing a thick steel plate having excellent weld heat affected zone toughness, characterized by performing a steel material treatment that is heated to a temperature of 5 hours or more and then cooled to a temperature of 700 ° C. or less.
前記熱間圧延を、1000〜1200℃に再加熱したのち、950℃以下の温度域での累積圧下率が20%以上で、仕上圧延終了温度を680℃以上とする制御圧延とすることを特徴とする請求項2に記載の厚鋼板の製造方法。   The hot rolling is re-heated to 1000 to 1200 ° C, and the cumulative rolling reduction in the temperature range of 950 ° C or lower is 20% or higher, and the finish rolling finish temperature is 680 ° C or higher. The manufacturing method of the thick steel plate of Claim 2. 前記熱間圧延終了後、冷却速度:1.0℃/s以上で冷却停止温度:600℃以下まで冷却する制御冷却を施すことを特徴とする請求項2または3に記載の厚鋼板の製造方法。   The method for producing a thick steel plate according to claim 2 or 3, wherein after the hot rolling is finished, controlled cooling is performed by cooling to a cooling rate of 1.0 ° C / s or higher and a cooling stop temperature of 600 ° C or lower. 前記熱間圧延終了後、直ちに、250℃以下まで急速冷却する直接焼入れ処理とそれに続く焼戻し処理を行うことを特徴とする請求項2または3に記載の厚鋼板の製造方法。   4. The method for producing a thick steel plate according to claim 2, wherein a direct quenching process for rapid cooling to 250 ° C. or less and a subsequent tempering process are performed immediately after completion of the hot rolling. 前記熱間圧延終了後、一旦冷却したのち、再加熱し、焼入れ−焼戻し処理を行うことを特徴とする請求項2ないし5のいずれかに記載の厚鋼板の製造方法。   The method for producing a thick steel plate according to any one of claims 2 to 5, wherein after the hot rolling is finished, the steel plate is once cooled and then re-heated and subjected to quenching and tempering treatment. 前記組成に加えてさらに、mass%で、Cu:0.01〜2.0%、Ni:0.01〜4.0%、Cr:0.01〜2.0%、Mo:0.01〜2.0%、Nb:0.003〜0.1%、V:0.003〜0.5%、B:0.0005〜0.0040%のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする請求項2ないし6のいずれかに記載の厚鋼板の製造方法。   In addition to the above-mentioned composition, it is also mass%, Cu: 0.01 to 2.0%, Ni: 0.01 to 4.0%, Cr: 0.01 to 2.0%, Mo: 0.01 to 2.0%, Nb: 0.003 to 0.1%, V: 0.003 to The method for producing a thick steel plate according to any one of claims 2 to 6, wherein the composition contains one or more selected from 0.5% and B: 0.0005 to 0.0040%. 前記組成に加えてさらに、mass%で、Ca:0.0001〜0.0060%、Mg:0.0001〜0.0060%、REM:0.0001〜0.0200%のうちから選ばれた1種または2種以上を含有する組成とすることを特徴とする請求項2ないし7のいずれかに記載の厚鋼板の製造方法。   In addition to the above composition, the composition further contains at least one selected from mass: Ca: 0.0001-0.0060%, Mg: 0.0001-0.0060%, REM: 0.0001-0.0200%. A method for producing a thick steel plate according to any one of claims 2 to 7.
JP2004018730A 2004-01-27 2004-01-27 Method for producing steel material excellent in toughness at welding heat affected zone Pending JP2005213534A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004018730A JP2005213534A (en) 2004-01-27 2004-01-27 Method for producing steel material excellent in toughness at welding heat affected zone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004018730A JP2005213534A (en) 2004-01-27 2004-01-27 Method for producing steel material excellent in toughness at welding heat affected zone

Publications (1)

Publication Number Publication Date
JP2005213534A true JP2005213534A (en) 2005-08-11

Family

ID=34903162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004018730A Pending JP2005213534A (en) 2004-01-27 2004-01-27 Method for producing steel material excellent in toughness at welding heat affected zone

Country Status (1)

Country Link
JP (1) JP2005213534A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006103894A1 (en) * 2005-03-29 2006-10-05 Sumitomo Metal Industries, Ltd. Thick seamless steel pipe for line pipe and method for production thereof
JP2007197801A (en) * 2006-01-30 2007-08-09 Jfe Steel Kk Hot-rolled non-thermally refined bar steel having excellent toughness and manufacturing method therefor
JP2009221522A (en) * 2008-03-14 2009-10-01 Kobe Steel Ltd Steel sheet having excellent sheet thickness direction toughness of high heat input weld heat affected zone and method for manufacturing the same
JP2009256780A (en) * 2008-03-27 2009-11-05 Kobe Steel Ltd 780 MPa CLASS LOW YIELD RATIO CIRCULAR STEEL PIPE FOR BUILDING STRUCTURE HAVING EXCELLENT EARTHQUAKE RESISTANCE, AND METHOD FOR PRODUCING THE SAME
JP2012158784A (en) * 2011-01-31 2012-08-23 Jfe Steel Corp High strength steel excellent in toughness at welding heat-affected zone
WO2014174845A1 (en) * 2013-04-26 2014-10-30 Jfeスチール株式会社 Accumulator
KR20160075900A (en) * 2014-12-19 2016-06-30 주식회사 포스코 Steel having excellent low temperature toughness and hydrogen induced cracking resistance and manufacturing method thereof
KR20160078573A (en) * 2014-12-24 2016-07-05 주식회사 포스코 Steel having excellent low temperature toughness and hydrogen induced cracking resistance and manufacturing method thereof
CN107164696A (en) * 2017-04-19 2017-09-15 唐山钢铁集团有限责任公司 One kind can the high-strength deck of boat EH40 of Large Heat Input Welding and its production method
CN112853225A (en) * 2021-01-06 2021-05-28 钢铁研究总院 690 MPa-level steel plate for high-rise building large heat input welding and preparation method thereof

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006274350A (en) * 2005-03-29 2006-10-12 Sumitomo Metal Ind Ltd Thick seamless steel pipe for line pipe and its production method
WO2006103894A1 (en) * 2005-03-29 2006-10-05 Sumitomo Metal Industries, Ltd. Thick seamless steel pipe for line pipe and method for production thereof
JP2007197801A (en) * 2006-01-30 2007-08-09 Jfe Steel Kk Hot-rolled non-thermally refined bar steel having excellent toughness and manufacturing method therefor
JP4589242B2 (en) * 2006-01-30 2010-12-01 Jfeスチール株式会社 Hot-rolled non-tempered steel bar excellent in toughness and method for producing the same
JP2009221522A (en) * 2008-03-14 2009-10-01 Kobe Steel Ltd Steel sheet having excellent sheet thickness direction toughness of high heat input weld heat affected zone and method for manufacturing the same
JP2009256780A (en) * 2008-03-27 2009-11-05 Kobe Steel Ltd 780 MPa CLASS LOW YIELD RATIO CIRCULAR STEEL PIPE FOR BUILDING STRUCTURE HAVING EXCELLENT EARTHQUAKE RESISTANCE, AND METHOD FOR PRODUCING THE SAME
JP2012158784A (en) * 2011-01-31 2012-08-23 Jfe Steel Corp High strength steel excellent in toughness at welding heat-affected zone
JP5956602B2 (en) * 2013-04-26 2016-07-27 Jfeスチール株式会社 Accumulator
WO2014174845A1 (en) * 2013-04-26 2014-10-30 Jfeスチール株式会社 Accumulator
US10837602B2 (en) 2013-04-26 2020-11-17 Jfe Steel Corporation Hydrogen storage tank
KR20160075900A (en) * 2014-12-19 2016-06-30 주식회사 포스코 Steel having excellent low temperature toughness and hydrogen induced cracking resistance and manufacturing method thereof
KR101639902B1 (en) 2014-12-19 2016-07-15 주식회사 포스코 Steel having excellent low temperature toughness and hydrogen induced cracking resistance and manufacturing method thereof
KR101657823B1 (en) 2014-12-24 2016-09-20 주식회사 포스코 Steel having excellent low temperature toughness and hydrogen induced cracking resistance and manufacturing method thereof
KR20160078573A (en) * 2014-12-24 2016-07-05 주식회사 포스코 Steel having excellent low temperature toughness and hydrogen induced cracking resistance and manufacturing method thereof
CN107164696A (en) * 2017-04-19 2017-09-15 唐山钢铁集团有限责任公司 One kind can the high-strength deck of boat EH40 of Large Heat Input Welding and its production method
CN112853225A (en) * 2021-01-06 2021-05-28 钢铁研究总院 690 MPa-level steel plate for high-rise building large heat input welding and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5604842B2 (en) Steel material for large heat input welding
JP4946092B2 (en) High-strength steel and manufacturing method thereof
JP5079419B2 (en) Steel for welded structure with excellent toughness of weld heat affected zone, method for producing the same, and method for producing welded structure
JP5076658B2 (en) Steel material for large heat input welding
JP5842314B2 (en) High heat input welding steel
JP6245352B2 (en) High-tensile steel plate and manufacturing method thereof
JP5796636B2 (en) Steel material for large heat input welding
JP6048627B2 (en) Manufacturing method of steel plates for high heat input welding
JP2005213534A (en) Method for producing steel material excellent in toughness at welding heat affected zone
JP4237904B2 (en) Ferritic heat resistant steel sheet with excellent creep strength and toughness of base metal and welded joint and method for producing the same
JP5849892B2 (en) Steel material for large heat input welding
JP2005068478A (en) Method for manufacturing thick steel plate with low yield ratio and high tension superior in toughness at heat-affected zone in super heavy-heat-input welding
JP2006257497A (en) Method for producing low yield ratio steel material for low temperature, excellent in toughness in welded part
US10300564B2 (en) Weld joint
JP5233365B2 (en) Steel material for large heat input welding
JP5233364B2 (en) Steel material for large heat input welding
JP4959402B2 (en) High strength welded structural steel with excellent surface cracking resistance and its manufacturing method
JP2006241510A (en) Steel for high strength welded structure having excellent low temperature toughness in high heat input weld haz and its production method
JP5493658B2 (en) A method for producing non-tempered thick high-strength steel with high heat input heat-affected zone toughness.
JP2688312B2 (en) High strength and high toughness steel plate
JP2002371338A (en) Steel superior in toughness at laser weld
JPH05195156A (en) High-manganese ultrahigh tensile strength steel excellent in toughness in heat affected zone and its production
JP5126375B2 (en) Steel material for large heat input welding
JP5245202B2 (en) High strength welded structural steel with excellent high heat input weld HAZ toughness and method for producing the same
JP4418115B2 (en) High-strength steel with excellent toughness of laser welds

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20061124

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090217

A02 Decision of refusal

Effective date: 20090623

Free format text: JAPANESE INTERMEDIATE CODE: A02