JPS63192024A - Method and circuit for driving ec glare-proof mirror - Google Patents

Method and circuit for driving ec glare-proof mirror

Info

Publication number
JPS63192024A
JPS63192024A JP2345287A JP2345287A JPS63192024A JP S63192024 A JPS63192024 A JP S63192024A JP 2345287 A JP2345287 A JP 2345287A JP 2345287 A JP2345287 A JP 2345287A JP S63192024 A JPS63192024 A JP S63192024A
Authority
JP
Japan
Prior art keywords
circuit
voltage
coloring
decoloring
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2345287A
Other languages
Japanese (ja)
Other versions
JPH07104530B2 (en
Inventor
Tomoaki Hattori
服部 倫明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murakami Kaimeido Co Ltd
Original Assignee
Murakami Kaimeido Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murakami Kaimeido Co Ltd filed Critical Murakami Kaimeido Co Ltd
Priority to JP2345287A priority Critical patent/JPH07104530B2/en
Publication of JPS63192024A publication Critical patent/JPS63192024A/en
Publication of JPH07104530B2 publication Critical patent/JPH07104530B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

PURPOSE:To prevent the degradation of an electrochromic EC element and related elements by using a staircase square wave voltage and a pulse interrupted voltage as the driving impression voltage for coloring and short-circuiting both terminals of the EC element at the time of achromatizing. CONSTITUTION:In a coloring process Tc, a staircase square wave voltage 1 whose value is reduced from VD to VS after a time tc1 is applied, and the high voltage VD is impressed in the initial stage and the impressed voltage is reduced to VS when coloring advances to a certain degree, and the EC element reaches a prescribed coloring density in the time Tc. After the EC element reaches the prescribed coloring density, a pulse interrupted voltage 2 having a crest value VS, a pulse width TD2, and a pulse interval TD1 is impressed in a coloring holding process. Both terminals of the EC element are short- circuited for a time T2 in the achromatizing process. Thee responsiveness of the element is improved in the coloring process and the pulse interrupted voltage is impressed in the coloring holding process and terminals are short-circuited at the time of achromatizing, thereby minimizing the degradation of the element to extent the life of the EC element.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はエレクトロクロミック素子(以後EC素子と云
う)の着消色の電気化学的現象を外来光による自動車ミ
ラーの眩惑防止に利用したEC防眩ミラー駆動方法と駆
動方法を実施するEC防眩ミラー駆動回路に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention is an EC protection device that utilizes the electrochemical phenomenon of coloring and decoloring of electrochromic elements (hereinafter referred to as EC elements) to prevent dazzling of automobile mirrors caused by external light. The present invention relates to a glare mirror driving method and an EC anti-glare mirror drive circuit that implements the driving method.

詳しくは自動車用防眩ミラーに使用する全固体型EC素
子の駆動方法および該駆動方法を実施するEC防眩ミラ
ーの駆動回路に関するものである。
More specifically, the present invention relates to a method for driving an all-solid-state EC element used in an automotive anti-glare mirror and a drive circuit for an EC anti-glare mirror that implements the driving method.

[従来の技術] 本発明の全回体型EC素子を用いたEC防眩ミラーは、
ガラス基板と、透明電極と、誘電体膜または固体電解膜
からなる絶縁層と、一層以上のEC層と対向電極(Af
反射膜)より形成され、電極間に電圧を印加することに
より電気化学反応がおき、着色または消色する。EC層
に、例えばWO3を用いた場合に於ける着色消色機構は
、次の(11式で表わされる酸化還元反応式により説明
される。
[Prior Art] The EC anti-glare mirror using the full rotation type EC element of the present invention is as follows:
A glass substrate, a transparent electrode, an insulating layer made of a dielectric film or a solid electrolyte film, one or more EC layers, and a counter electrode (Af
When a voltage is applied between the electrodes, an electrochemical reaction occurs, resulting in coloring or decoloring. The coloring and decoloring mechanism when WO3 is used in the EC layer, for example, is explained by the following redox reaction equation (11).

WO3+ x H” 十x e、−t H,X WO3
・==111上記(1)式に見るようにタングステンブ
ロンズHX W O3の形成により着色するが、ついで
印加電圧を逆転すれば潤色状態になる。(1)式のこの
ような反応は全固体型EC素子においては、素子内部の
絶縁層に吸着されているH2OよりプロトンH+が供給
され着色される。
WO3+ x H” 10x e, -t H,X WO3
・==111 As shown in the above equation (1), coloration occurs due to the formation of tungsten bronze HX WO 3 , but if the applied voltage is then reversed, a richly colored state is obtained. In an all-solid-state EC device, such a reaction expressed by equation (1) is caused by the supply of protons H+ from H2O adsorbed on the insulating layer inside the device, resulting in coloration.

EC素子は上記着色の際の絶縁層に於ける電解質の電気
分解によって発生されるH+およびOHの吊が必要a以
上になった場合、ガスの発生を伴い劣化の原因を形成す
ると云われており、また消色時には、H+とOH−の反
応によりl−120が発生し、H2Oは透明電極である
ITOや対向電極であるへ2反射躾を酸化させるため、
電極表面に絶縁膜が形成され、電極のば抗値を上げるこ
とになり、素子の応答性を著しく悪化させる。この現象
はEC素子の駆動印加電圧の連続印加の場合には印加電
圧の電圧値にもよるが、顕著におきるものである。
It is said that when the amount of H+ and OH generated by electrolysis of the electrolyte in the insulating layer during coloring exceeds the required level, gas is generated and causes deterioration of the EC element. Also, when decoloring, l-120 is generated due to the reaction between H+ and OH-, and H2O oxidizes the ITO transparent electrode and the 2-reflection layer that is the counter electrode.
An insulating film is formed on the surface of the electrode, increasing the elasticity of the electrode and significantly deteriorating the response of the element. This phenomenon occurs significantly when the driving voltage of the EC element is continuously applied, although it depends on the voltage value of the applied voltage.

EC素子を用いたEC防眩ミラーの従来の駆動方法は着
色時には駆動最大印加電圧である1、35Vの直流電圧
を所定時間印加し、その後引続きその着色濃度を維持す
るため、着色維持電圧1.2v(反射率約17%に維持
)を連続印加した。また、消色時には着色時の印加電圧
の逆極性の0.5〜1.35VのM流電圧を連続印加し
た。自動車用防眩ミラー、即ちEC防眩ミラー使用の場
合、着色して所定着色濃度に達する時間帯と着色より消
色にする時間帯と着色濃度を維持する時間帯とを比較す
ると着消色維持の時間帯がその大部分を占め、この時間
帯における駆動印加電圧の連続印加が劣化の大きな要素
と考えられる。
The conventional driving method for an EC anti-glare mirror using an EC element is to apply a DC voltage of 1.35V, which is the maximum driving voltage, for a predetermined period of time when coloring, and then to maintain the coloring density, a coloring maintenance voltage of 1.35V is applied for a predetermined period of time. 2V (reflectance maintained at approximately 17%) was continuously applied. Further, when decoloring, an M current voltage of 0.5 to 1.35 V, which has the opposite polarity to the voltage applied during coloring, was continuously applied. When using anti-glare mirrors for automobiles, that is, EC anti-glare mirrors, comparing the time period when coloring reaches the specified color density, the time period when coloring is more decoloring than the time period when coloring density is maintained, and the time period when coloring and decoloring are maintained. Most of the damage occurs during this time period, and the continuous application of the drive voltage during this time period is considered to be a major factor in the deterioration.

また自動車用EC素子防眩ミラーは、その使用状況によ
っては、EC素子を着色から潤色へ、また潤色から着色
へとの一連の反転操作を繰返し行うことが贋々必要であ
る。着色時消色時には夫々印加電圧の極性を反転させて
印加すると云う方式により構成された従来の駆動回路で
は、こうした印加電圧の反転操作により切換時の大きな
立上り電流がその都度電源回路に繰返し流されるため、
電源部トランジスタの発熱劣化をまねくことも考えられ
、したがって使用部品にも容量の大きなものが要求され
、また印加電圧の極性反転用のスイッチング回路等も必
要であり、回路も繁雑であった。
Furthermore, depending on the usage conditions of the EC element anti-glare mirror for automobiles, it is sometimes necessary to repeatedly perform a series of reversal operations of the EC element from coloring to embellishing and from embellishing to tinting. In conventional drive circuits configured in such a way that the polarity of the applied voltage is reversed and applied when coloring and decoloring, a large rising current at the time of switching is repeatedly caused to flow through the power supply circuit each time due to this reversal of the applied voltage. For,
This may lead to heat generation and deterioration of the power supply transistor, so the parts used must have a large capacity, and a switching circuit for reversing the polarity of the applied voltage is also required, making the circuit complicated.

[発明が解決しようとする問題点] 上記したように自動車用防眩ミラーにおいては、EC素
子の劣化および着消色の頻繁なる切換による関連素子特
に電源回路やスイッチング回路のパワートランジスタ等
の発熱劣化等回路保守の点からも問題があった。本発明
の目的はこれら従来の駆動方法によって起きたEC素子
の劣化および関連素子の劣化を防ぎ、その寿命を延ばす
ことにある。
[Problems to be Solved by the Invention] As described above, in anti-glare mirrors for automobiles, the deterioration of the EC element and the heat generation deterioration of related elements, especially the power transistors of the power supply circuit and switching circuit, due to the frequent switching between coloring and decoloring. There were also problems in terms of circuit maintenance. An object of the present invention is to prevent deterioration of the EC element and related elements caused by these conventional driving methods, and to extend its life.

[問題点を解決するための手段] 前記目的を達成するため、本発明においては劣化の発生
過程を、電圧印加より着色までの過程と、着色後の着色
維持の過程および消色後の消色維持の過程とに分け、そ
れぞれの過程における劣化を最少限にとどめる駆動方法
を提供するにある。
[Means for Solving the Problems] In order to achieve the above-mentioned object, in the present invention, the deterioration generation process is defined as a process from voltage application to coloring, a process of maintaining coloring after coloring, and a process of decoloring after decoloring. The object of the present invention is to provide a driving method that minimizes deterioration in each process.

即ち、前者の着色の電圧印加より着色までの過程におけ
る駆動方法としては、応答性を考慮する必要もあり、ま
たEC素子の容沿的性質の為印加当初は大なる印加電流
のため印加電圧が下降することも考慮して、前記通電電
流が飽和値にほぼ近づくまでは梢高い電圧値を持つ段階
矩形波電圧を印加し、消色時はEC素子の両端子を短絡
した。
That is, as for the driving method in the process from voltage application to coloring in the former case, it is necessary to consider responsiveness, and due to the linear nature of the EC element, the applied voltage is large at the beginning of application. Taking into account the drop in the current, a stepped rectangular wave voltage having a high voltage value was applied until the current applied almost approached the saturation value, and both terminals of the EC element were short-circuited when decoloring.

次に着色後の着色維持の過程における駆動方法としては
、前記着色維持電圧と同一・極性を持ら、その波高値は
着色終了時の前記段階矩形波電圧の低い値を持つように
したパルス状断続電圧を印加するようにした。
Next, as a driving method in the process of maintaining coloring after coloring, a pulse-like voltage having the same polarity as the coloring maintaining voltage and whose peak value is lower than the stepwise rectangular wave voltage at the end of coloring is used. An intermittent voltage was applied.

また、上記駆動方法を実施する駆動回路として段階状直
流電圧供給回路と、段階状直流電圧をEC素子に印加し
て着色またはEC素子を印加回路より分離してEC素子
の端子を短絡させることにより、消色させるスイッチン
グ回路と、着色用段階矩形波電圧および着色維持のパル
ス状断続電圧の印加信号および消色用短絡信号とを出方
する着消色切換信号回路と、制御パルス回路と、パルス
発振回路と、NOR回路よりなるEC防眩ミラー駆動回
路を用意した。
Further, as a drive circuit for carrying out the above driving method, a stepwise DC voltage supply circuit is used, and a stepwise DC voltage is applied to the EC element to color it, or the EC element is separated from the application circuit and the terminals of the EC element are short-circuited. , a switching circuit for decoloring, a coloring/decoloring switching signal circuit for outputting a stepped rectangular wave voltage for coloring, a pulsed intermittent voltage application signal for maintaining coloring, and a short circuit signal for decoloring, a control pulse circuit, and a pulse An EC anti-glare mirror drive circuit consisting of an oscillation circuit and a NOR circuit was prepared.

また、段階状直流電圧供給回路として単安定マルチバイ
ブレータとその出力により基準電圧を変更して出力電圧
を規定するオペアンプと直列トランジスタよりなる直列
形定電圧回路を用意した。
In addition, as a stepped DC voltage supply circuit, we prepared a series type voltage regulator circuit consisting of a monostable multivibrator, an operational amplifier that changes the reference voltage using the output of the monostable multivibrator, and a series transistor to define the output voltage.

[作  用] 上記した駆動方法によった場合、電圧印加より着色の過
程においては、素子の応答性を高め、また着色後の着色
維持の過程においては従来の連続印加の代りにパルス状
断続電圧の印加により、更に消色時は短絡することによ
り素子の劣化を最少限にとどめ、EC素子の寿命を長く
することが゛できる。
[Function] When the driving method described above is used, the responsiveness of the element is improved during the coloring process by voltage application, and in the process of maintaining coloring after coloring, a pulsed intermittent voltage is used instead of the conventional continuous application. By applying , the deterioration of the element can be kept to a minimum by short-circuiting when decoloring, and the life of the EC element can be extended.

また従来行なわれてきた消色時の駆動電圧の印加を取り
止めEC素子の端子を一定時間だけ短絡することにより
消色させたため、消色時における従来の駆動電圧印加に
よるEC素子の劣化を防止でき、また潤色切換時の突入
電流はなくなり、EC素子の劣化防止は勿論パワートラ
ンジスタ等の関連素子の過熱劣化を防止できる。
In addition, the conventional application of drive voltage during erasing was stopped and the terminals of the EC element were short-circuited for a certain period of time to erase the color, making it possible to prevent deterioration of the EC element due to the conventional application of drive voltage during erasing. Furthermore, there is no inrush current when switching colors, and it is possible to prevent deterioration of not only the EC element but also related elements such as power transistors due to overheating.

また上記したように駆動回路は安定化電源回路と段階状
直流電圧供給回路とスイッチング回路とE’C素子より
なる主回路と、着消色トリガパルス回路と制御パルス回
路と着消色切換信号回路と着色用段階矩形波電圧の印加
信号回路と消色用短絡信号回路とよりなる補助回路と、
パルス発振回路とNOR回路と、着色維持用のパルス状
断続電圧の印加信号回路とよりなる着色維持用の補助回
路より構成するようにし、特に消色時はEC素子を短絡
することにより従来見られた潤色切換時の突入電流もな
くなり、電源回路素子の劣化防止およびスイッチング回
路の簡素化ができ、確実な作動をする駆動回路を提供す
ることができる。
As mentioned above, the drive circuit includes a main circuit consisting of a stabilized power supply circuit, a stepped DC voltage supply circuit, a switching circuit, an E'C element, a coloring/decoloring trigger pulse circuit, a control pulse circuit, and a coloring/decoloring switching signal circuit. and an auxiliary circuit consisting of a stepwise rectangular wave voltage application signal circuit for coloring and a short-circuit signal circuit for decoloring;
The auxiliary circuit for maintaining coloring consists of a pulse oscillation circuit, a NOR circuit, and a signal circuit for applying a pulsed intermittent voltage for maintaining coloring.Especially when decoloring, the EC element is short-circuited. There is also no inrush current when switching colors, it is possible to prevent deterioration of the power supply circuit elements and to simplify the switching circuit, and it is possible to provide a drive circuit that operates reliably.

また、段階状直流電圧供給回路によりあらかじめ波形成
形した直流電圧を供給することができ、従来の手段によ
る場合よりも回路構成を簡素化できる。
Further, the stepwise DC voltage supply circuit can supply a DC voltage that has been waveform-shaped in advance, and the circuit configuration can be simplified compared to the case using conventional means.

[実施例] 第1図は本発明によるEC防眩ミラーの駆動方法の実施
例を示す駆動印加電圧波形図である。第1図において、
T1は着色期間を指し着信時印加電圧をEC素子に印加
を開始してより、次の消色時にEC素子を短絡する時ま
での時間を指す。
[Example] FIG. 1 is a driving applied voltage waveform diagram showing an example of the method for driving an EC anti-glare mirror according to the present invention. In Figure 1,
T1 refers to the coloring period, which is the time from when the voltage applied at the time of incoming call starts to be applied to the EC element until the time when the EC element is short-circuited at the time of the next color erasure.

tCIは段階矩形波電圧の高い波高値を持つ電圧値を印
加して着色がある程度進み通電電流が減少して飽和値に
ほぼ達するまでの時間を指し、またtC+経過後は印加
電圧をV。よりVSに下降させる。TCは着信時印加電
圧の印加によりEC素子の着色を始め所定着色濃度に達
するまでの着色過程を指す。■、はEC素子が所定着色
濃度に達して次の消色時のEC素子が短絡されるまでの
着色維持過程を指す、T2は消色時EC素子を短絡して
消色するまでの潤色過程を示す。
tCI refers to the time it takes for coloring to progress to a certain extent by applying a voltage value with a high peak value of a stepped rectangular wave voltage, and for the energizing current to decrease until it almost reaches the saturation value, and after tC+ has elapsed, the applied voltage is reduced to V. Lower it to VS. TC refers to the coloring process from when the EC element is colored by the application of voltage at the time of incoming call until it reaches the fixed color density. ■, refers to the coloring maintenance process until the EC element reaches a predetermined color density and the EC element is short-circuited during the next erasing; T2 is the coloring process until the EC element is short-circuited at the time of erasing, and the color is erased. shows.

第1図において、着色過程Tcでは、その印加電圧をj
c+後にV、よりVsに下げる段階矩形波電圧1を印加
し、印加の当初は高い電圧V。を印加し、着色がある過
程進んだ状態でVsに印加電Jモを下げ、TCで所定着
色濃度に達するようにする。
In FIG. 1, in the coloring process Tc, the applied voltage is j
After c+, a stepwise rectangular wave voltage 1 is applied which is lowered to V and then Vs, and the voltage V is high at the beginning of application. is applied, and when the coloring process has progressed, the applied voltage J is lowered to Vs, and the predetermined color density is reached at TC.

次に前記して所定着色濃度に達した後は、波高値Vs、
パルス幅TD2、パルス間隔TO+を持つパルス状断続
電圧2を着色維持過程であるT。の間印加する。
Next, after reaching the predetermined fixed color density as described above, the peak value Vs,
T is a coloring maintenance process of a pulsed intermittent voltage 2 having a pulse width TD2 and a pulse interval TO+. Apply for a period of time.

ついで、潤色過程ではEC素子の両端子をTまたけ短絡
する。
Then, in the embellishing process, both terminals of the EC element are short-circuited across T.

なお、設定は tc+=5sec tc?=5sec Tc=jc+ +tc2=10sec C−T2 1 sec≦tD+ ≦2osec 。In addition, the settings are tc+=5sec tc? =5sec Tc=jc+ +tc2=10sec C-T2 1 sec≦tD+≦2osec.

10< t D+  / t D2  <20yD= 
1.35V VS=1.2V が適当と思われる。
10<tD+/tD2<20yD=
1.35V VS=1.2V seems appropriate.

第2図は本発明のEC防眩ミラーの駆動方法を実施する
駆動回路のブロック図である。
FIG. 2 is a block diagram of a drive circuit that implements the EC anti-glare mirror drive method of the present invention.

図に見るように本発明の駆動回路は、安定化電源回路1
0、段階状直流電圧供給回路11、着消色トリガスパル
ス回路20.制御パルス回路21、着消色切換信号回路
22、着色用段階矩形波電圧の印加信号回路23、消色
用短絡信号回路24、パルス発振回路25、NOR回路
26、パルス状断続電圧の印加信号回路27、スイッチ
ング回路28、EC素子29よりなる。
As shown in the figure, the drive circuit of the present invention includes a stabilized power supply circuit 1
0, stepwise DC voltage supply circuit 11, coloring/decoloring trigger gas pulse circuit 20. Control pulse circuit 21, coloring/decoloring switching signal circuit 22, coloring step rectangular wave voltage application signal circuit 23, color erasing short circuit signal circuit 24, pulse oscillation circuit 25, NOR circuit 26, pulsed intermittent voltage application signal circuit 27, a switching circuit 28, and an EC element 29.

図に見るように本発明の駆動回路は安定化電源回路10
と段階状直流電圧供給回路11とスイッチング回路28
とEC素子29よりなる主回路と、着消色トリガパルス
回路20と制御パルス回路21と着消色切換信号回路2
2と着色用段階矩形波電圧の印加信号回路23と消色短
絡信q回路24とよりなる補助回路とパルス発振回路2
5とNOR回路26と着色維持用のパルス状断続電圧の
印加i号回路27よりなる着色維持用の補助回路より構
成する。
As shown in the figure, the drive circuit of the present invention includes a stabilized power supply circuit 10.
, a stepped DC voltage supply circuit 11 and a switching circuit 28
a main circuit consisting of an EC element 29, a coloring/decoloring trigger pulse circuit 20, a control pulse circuit 21, and a coloring/decoloring switching signal circuit 2.
2, an auxiliary circuit consisting of a stepwise rectangular wave voltage application signal circuit 23 for coloring, and a decoloring short-circuit signal q circuit 24, and a pulse oscillation circuit 2.
5, a NOR circuit 26, and an i-th circuit 27 for applying a pulsed intermittent voltage for maintaining coloring.

段階状直流電圧供給回路11は単安定マルチバイブレー
タ4により所定時間(tC+)だけオペアンプ3を使っ
た直列型定電圧回路の基準電圧を上昇せしめtC+の間
だけ高電圧V。を供給し、tC1経過後は低電圧Vsの
電圧波形をもつ段階状直流電圧を、着消色トリガパルス
により前記単安定マルチバイブレータ4を作動せしめる
ことにより発生させ、スイッチング回路28へ供給する
The stepped DC voltage supply circuit 11 uses the monostable multivibrator 4 to increase the reference voltage of the series type constant voltage circuit using the operational amplifier 3 for a predetermined time (tC+), and produces a high voltage V only during tC+. After tC1 has elapsed, a stepped DC voltage having a voltage waveform of a low voltage Vs is generated by activating the monostable multivibrator 4 using a coloring/decoloring trigger pulse, and is supplied to the switching circuit 28.

制御パルス回路21は単安定マルチバイブレータ5より
なり、着消色1−リガパルス回路20よりのトリガパル
スによりTC=72  (本実施例ではTc=72とす
る)だけパルスを出力し、着色過程の印加時間および消
色時の短絡時間を制定する。
The control pulse circuit 21 is composed of a monostable multivibrator 5, and outputs a pulse of TC=72 (Tc=72 in this embodiment) according to the trigger pulse from the coloring/decoloring 1-rega pulse circuit 20 to apply the coloring process. Establish time and short circuit time when decoloring.

着消色切換信号回路22はR−8−D−FF6よりなり
、着消色トリガパルス回路20よりのトリガパルスによ
りパルスの入力する都度着色又は消色信号を出力する。
The coloring/decoloring switching signal circuit 22 is composed of an R-8-D-FF6, and outputs a coloring or decoloring signal each time a pulse is inputted by a trigger pulse from the coloring/decoloring trigger pulse circuit 20.

パルス発振回路25はオペ7ンプ7による無安定マルチ
バイブレータよりなる。
The pulse oscillation circuit 25 is composed of an astable multivibrator using an operational amplifier 7.

スイッチング回路28はトランジスタによる着色時のE
C素子の駆動印加電圧の印加および消色時のEC素子の
両端子短絡および開放の切換スイッチング回路である。
The switching circuit 28 is E when colored by the transistor.
This is a switching circuit for applying a drive voltage to a C element and shorting and opening both terminals of an EC element during color erasure.

以下本発明の駆動回路の作動につき説明する。The operation of the drive circuit of the present invention will be explained below.

着消色用トリガパルスが着消色トリガパルス回路より出
力されると該トリガパルスは段階状直流電圧供給回路1
1、制御パルス回路21、着消色切換信号回路22に同
時に入力し、段階状直流電圧供給回路11によりtCl
だけ高電圧V、を持つ直流電圧をスイッチング回路28
へ供給する。
When the coloring/decoloring trigger pulse is output from the coloring/decoloring trigger pulse circuit, the trigger pulse is supplied to the stepped DC voltage supply circuit 1.
1. Simultaneously input to the control pulse circuit 21 and the coloring/decoloring switching signal circuit 22, and the stepped DC voltage supply circuit 11 generates tCl.
A DC voltage switching circuit with only a high voltage V, 28
supply to

着色時は制御パルス回路21は同時入力された前記トリ
ガパルスにより、パルス巾TC(TC=T2 )のパル
スを出力し、着消色切換信号回路22より前記トリガパ
ルスにより同時に出力される着色信号により着色用段階
矩形波電圧の印加信号回路23において選択され、着色
用段階矩形波電圧の印加信号をスイッチング回路28へ
出力する。またNOR回路26は発振回路25より出力
されるパルスとルリ御パルス回路21より出力されるパ
ルスと組合せ、パルス状断続電圧の印加信号回路27を
経て着色過程終了模の着色維持過程の印加電圧であるパ
ルス状断続電圧の印加信号をスイッチング回路28へ出
力する。
At the time of coloring, the control pulse circuit 21 outputs a pulse with a pulse width TC (TC=T2) in response to the trigger pulses inputted simultaneously, and the coloring signal circuit 22 outputs a coloring signal simultaneously outputted in response to the trigger pulses. It is selected in the coloring staged rectangular wave voltage application signal circuit 23 and outputs the coloring staged rectangular wave voltage application signal to the switching circuit 28 . Further, the NOR circuit 26 combines the pulses output from the oscillation circuit 25 and the pulses output from the Ruri control pulse circuit 21, and applies the applied voltage during the coloring maintenance process to simulate the completion of the coloring process via the pulsed intermittent voltage application signal circuit 27. An application signal of a certain pulsed intermittent voltage is output to the switching circuit 28.

消色する場合は前記着消色トリガパルス回路20より、
トリガパルスを出力させると、該トリガパルスにより制
御パルス回路21より制御パルスを出力させ、また着消
色切換信号回路22からは潤色信号を出力させ、消色用
短絡信号回路24において選択され、短絡信号をスイッ
チング回路28へ出力する。
When decoloring, from the coloring/decoloring trigger pulse circuit 20,
When a trigger pulse is output, the trigger pulse causes the control pulse circuit 21 to output a control pulse, and the coloring/decoloring switching signal circuit 22 outputs an embellishing signal, which is selected by the decoloring short-circuit signal circuit 24 and short-circuited. The signal is output to the switching circuit 28.

かくして、駆動回路28は内蔵するトランジスタにより
スイッチング作用を行い、EC素子の着色消色を行う。
In this manner, the drive circuit 28 performs a switching action using the built-in transistor, and colors and decolors the EC element.

なお、スイッチング回路28に内蔵するトランジスタ回
路はトランジスタのベースへの前記印加信号がないとき
は、EC素子を回路より開放し、前記着色維持状態や潤
色状態で電圧が印加されないときはEC素子を開放状態
とする構成にしである。
The transistor circuit built into the switching circuit 28 opens the EC element from the circuit when there is no signal applied to the base of the transistor, and opens the EC element when no voltage is applied in the coloring maintenance state or coloring state. The configuration is as follows.

なお、第2図のブロック図の示す駆動回路の置体的な回
路構成を第3図に示す。
Note that FIG. 3 shows a physical circuit configuration of the drive circuit shown in the block diagram of FIG. 2.

11は段階状直流電圧供給回路、20は着消色トリガパ
ルス回路、21は制御パルス回路、22は着消色切換信
号回路、23は着色用段階矩形波電圧の印加信号回路、
24は消色用短絡信号回路、25はパルス発振回路、2
6はNOR回路、27はパルス状断続電圧の印加信号回
路、28はスイッチング回路、29はEC素子である。
11 is a stepped DC voltage supply circuit, 20 is a coloring/decoloring trigger pulse circuit, 21 is a control pulse circuit, 22 is a coloring/decoloring switching signal circuit, 23 is a coloring step rectangular wave voltage application signal circuit,
24 is a decoloring short circuit signal circuit, 25 is a pulse oscillation circuit, 2
6 is a NOR circuit, 27 is a pulsed intermittent voltage application signal circuit, 28 is a switching circuit, and 29 is an EC element.

[発明の効果] 本発明によるEC防眩ミラーの駆動方法は印加当初は梢
高い電圧を持つ段階矩形波電圧とパルス状断続電圧を用
意し、着色時の着色過程(電圧印加より所定着色濃度ま
でに着色する)には前者の段階矩形波電圧をTcだけを
印加し、そのあとの着色維持過程には前者と同じ極性を
持つパルス状断続電圧を印加した。また消色時にはEC
素子の両端子を短絡して消色したのち開放した。
[Effects of the Invention] The method for driving an EC anti-glare mirror according to the present invention prepares a stepped rectangular wave voltage and a pulsed intermittent voltage with a high voltage at the beginning of application, and controls the coloring process (from voltage application to a predetermined color density). For coloring), only Tc of the former stepped rectangular wave voltage was applied, and for the subsequent coloring maintenance process, a pulsed intermittent voltage having the same polarity as the former was applied. Also, when decoloring, use EC.
Both terminals of the element were short-circuited to erase the color, and then opened.

上記したような駆動印加電圧を〔印加する構成としたた
め、電圧印加より着色消色までの過程においては素子の
応答性を高め、また着色維持過程および消色過程の連続
印加による劣化は除去でき、素子の寿命も延ばすことの
できる駆動方法を提供できた。
Since the configuration is such that the driving voltage as described above is applied, the responsiveness of the element is improved in the process from voltage application to coloring and decoloring, and deterioration caused by continuous application in the coloring maintenance process and the decoloring process can be eliminated. We were able to provide a driving method that can also extend the life of the element.

また、駆動回路も上記したようにdljl特色時動電圧
の印加を取り止め、EC素子の端子を一定時間だけ短絡
することにより消色させたため、潤色切換時の突入電流
はなくなり、パワートランジスタ等の関連素子の過熱劣
化を防止できるとともに、スイッチング回路も簡素化で
きた。
In addition, as mentioned above, the drive circuit stopped applying the dynamic voltage during dljl special color, and the color was erased by short-circuiting the terminals of the EC element for a certain period of time, so there was no inrush current when changing the color, and the power transistor, etc. This not only prevents the elements from deteriorating due to overheating, but also simplifies the switching circuit.

また主回路、制御回路、着色維持用補助回路にわけ、面
素な構成としたため確実な作動をする駆動回路を提供で
きた。
In addition, the main circuit, control circuit, and coloring maintenance auxiliary circuit are divided into simple structures, making it possible to provide a drive circuit that operates reliably.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の示す駆動印加電圧波形図、第
2図は本発明のEC防眩ミラー駆動方法を実施する駆動
回路のブロック図、第3図は第2図のブロック図を具体
的に示す駆動回路図である。 1・・・着色用段階矩形波電圧、2・・・着色維持用パ
ルス状断続電圧、3・・・オペアンプ、4.5・・・単
安定マルチバイブレータ、6・・・R−8−D−FF。 7・・・オペアンプ、10・・・安定化電源回路、11
・・・段階状直流電圧供給回路、20・・・着消色トリ
ガパルス回路、21・・・制御パルス回路、22・・・
@潤色切換信号回路、23・・・着色用段階矩形波電圧
の印加信号回路、24・・・消色用短絡信号回路、25
・・・パルス発振回路、26・・・NOR回路、27・
・・パルス状断続電圧の印加信号回路、28・・・スイ
ッチング回路、29・・・EC素子。
FIG. 1 is a drive applied voltage waveform diagram according to an embodiment of the present invention, FIG. 2 is a block diagram of a drive circuit implementing the EC anti-glare mirror driving method of the present invention, and FIG. 3 is a block diagram of the drive circuit shown in FIG. It is a drive circuit diagram specifically shown. DESCRIPTION OF SYMBOLS 1... Stepped rectangular wave voltage for coloring, 2... Pulsed intermittent voltage for maintaining coloring, 3... Operational amplifier, 4.5... Monostable multivibrator, 6... R-8-D- FF. 7... operational amplifier, 10... stabilized power supply circuit, 11
... Stepped DC voltage supply circuit, 20 ... Coloring and decoloring trigger pulse circuit, 21 ... Control pulse circuit, 22 ...
@ Color switching signal circuit, 23... Signal circuit for applying stepwise rectangular wave voltage for coloring, 24... Short-circuit signal circuit for decoloring, 25
...Pulse oscillation circuit, 26...NOR circuit, 27.
... Applied signal circuit for pulsed intermittent voltage, 28... Switching circuit, 29... EC element.

Claims (1)

【特許請求の範囲】 1 エレクトロクロミック素子を用いた防眩ミラーの駆
動方法にあって、印加当初は高い電圧値を持つ段階矩形
波電圧と、該電圧と同じ極性の電圧波高値を持つパルス
状断続電圧とを着色用駆動印加電圧として用意し、消色
時はエレクトロクロミック素子の両端子を短絡すること
を特徴とするEC防眩ミラー駆動方法。 2 段階状直流電圧供給回路と、段階状直流電圧をエレ
クトロクロミック素子に印加して着色しまたはエレクト
ロクロミック素子を回路より分離して両端子を短絡させ
ることにより、消色させるスイッチング回路と、着色用
段階矩形波電圧および着色維持のパルス状断続電圧との
印加信号と消色用短絡信号とを出力する着消色切換信号
回路と制御パルス回路とパルス発振回路とNOR回路よ
りなるEC防眩ミラー駆動回路。 3 段階状直流電圧供給回路を、単安定マルチバイブレ
ータとその出力により基準電圧を変更して出力電圧を規
制するオペアンプと直列トランジスタよりなる直列形定
電圧回路を用意した特許請求の範囲第2項記載のEC防
眩ミラー駆動回路。
[Claims] 1. In a method for driving an anti-glare mirror using an electrochromic element, a stepwise rectangular wave voltage having a high voltage value at the beginning of application and a pulse-like voltage having a voltage peak value of the same polarity as the voltage are applied. An EC anti-glare mirror driving method characterized in that an intermittent voltage is prepared as a coloring drive applied voltage, and when decoloring, both terminals of an electrochromic element are short-circuited. 2. A stepped DC voltage supply circuit, a switching circuit that applies a stepped DC voltage to the electrochromic element to color it, or separates the electrochromic element from the circuit and short-circuits both terminals to decolorize it, and a switching circuit for coloring. An EC anti-glare mirror drive consisting of a coloring/decoloring switching signal circuit, a control pulse circuit, a pulse oscillation circuit, and a NOR circuit that outputs applied signals of a stepped rectangular wave voltage and a pulsed intermittent voltage for maintaining coloring, and a short circuit signal for decoloring. circuit. 3. Claim 2 provides that the stepped DC voltage supply circuit includes a series type voltage regulating circuit consisting of a monostable multivibrator, an operational amplifier that changes the reference voltage by the output of the monostable multivibrator, and a series transistor, and a series transistor. EC anti-glare mirror drive circuit.
JP2345287A 1987-02-05 1987-02-05 EC antiglare mirror driving method and driving circuit thereof Expired - Fee Related JPH07104530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2345287A JPH07104530B2 (en) 1987-02-05 1987-02-05 EC antiglare mirror driving method and driving circuit thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2345287A JPH07104530B2 (en) 1987-02-05 1987-02-05 EC antiglare mirror driving method and driving circuit thereof

Publications (2)

Publication Number Publication Date
JPS63192024A true JPS63192024A (en) 1988-08-09
JPH07104530B2 JPH07104530B2 (en) 1995-11-13

Family

ID=12110891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2345287A Expired - Fee Related JPH07104530B2 (en) 1987-02-05 1987-02-05 EC antiglare mirror driving method and driving circuit thereof

Country Status (1)

Country Link
JP (1) JPH07104530B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63208830A (en) * 1987-02-25 1988-08-30 Nikon Corp Driving method for electrochromic device
JPH0483233A (en) * 1990-07-26 1992-03-17 Sankyo Seiki Mfg Co Ltd Electrochromic display
JP2005530201A (en) * 2002-06-13 2005-10-06 イー−インク コーポレイション Method for driving electro-optic display device
JP2007532940A (en) * 2004-04-09 2007-11-15 サン−ゴバン グラス フランス Method for powering electrically controlled devices with variable optical and / or energy characteristics
US10319314B2 (en) 1999-04-30 2019-06-11 E Ink Corporation Methods for driving electro-optic displays, and apparatus for use therein
US11250794B2 (en) 2004-07-27 2022-02-15 E Ink Corporation Methods for driving electrophoretic displays using dielectrophoretic forces

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63208830A (en) * 1987-02-25 1988-08-30 Nikon Corp Driving method for electrochromic device
JPH0483233A (en) * 1990-07-26 1992-03-17 Sankyo Seiki Mfg Co Ltd Electrochromic display
US10319314B2 (en) 1999-04-30 2019-06-11 E Ink Corporation Methods for driving electro-optic displays, and apparatus for use therein
JP2005530201A (en) * 2002-06-13 2005-10-06 イー−インク コーポレイション Method for driving electro-optic display device
JP4651383B2 (en) * 2002-06-13 2011-03-16 イー インク コーポレイション Method for driving electro-optic display device
JP2007532940A (en) * 2004-04-09 2007-11-15 サン−ゴバン グラス フランス Method for powering electrically controlled devices with variable optical and / or energy characteristics
US11250794B2 (en) 2004-07-27 2022-02-15 E Ink Corporation Methods for driving electrophoretic displays using dielectrophoretic forces

Also Published As

Publication number Publication date
JPH07104530B2 (en) 1995-11-13

Similar Documents

Publication Publication Date Title
JP2600862B2 (en) Control circuit for electrochromic device
US5801873A (en) Variable reflectance automobile mirror
US5128799A (en) Variable reflectance motor vehicle mirror
CN107402488B (en) Method for driving electrochromic element and method for determining fading voltage
US4205903A (en) Writing/erasing technique for an electrochromic display cell
JPS5922949B2 (en) Display device drive method
KR20230153987A (en) Electrochromic device
JPS63192024A (en) Method and circuit for driving ec glare-proof mirror
JPH05147983A (en) Light transmittance variable glass
US4150362A (en) Regeneration of a memory state in electrochromic displays
JPS59109B2 (en) Drive circuit for electrochromic display device
JPS592907B2 (en) Hiyojisouchinokudouhouhou
JPS63192025A (en) Method and circuit for driving ec glare-proof mirror
JPS63115139A (en) Driving system for electrochromic element
Knowles Optical regeneration of aged WO3 electrochromic cells
US4166676A (en) Method of turning off the display in electrochromic display devices
JPH0523409B2 (en)
US5290930A (en) Triphenazinoxazines
US4209770A (en) Driving technique for electrochromic displays of the segmented type driving uncommon segment electrodes only
JPS63239424A (en) System for driving electrochromic element
JPS6115410B2 (en)
JPS623783Y2 (en)
JPS59108B2 (en) Drive circuit for electrochromic display device
JPH0633450Y2 (en) Driving circuit for ECD anti-glare mirror
JPS61167929A (en) Driving device of electrochemical display element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees