JPS63165736A - Biochemical analyser - Google Patents

Biochemical analyser

Info

Publication number
JPS63165736A
JPS63165736A JP30906386A JP30906386A JPS63165736A JP S63165736 A JPS63165736 A JP S63165736A JP 30906386 A JP30906386 A JP 30906386A JP 30906386 A JP30906386 A JP 30906386A JP S63165736 A JPS63165736 A JP S63165736A
Authority
JP
Japan
Prior art keywords
light
path length
reaction tube
light path
specimen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30906386A
Other languages
Japanese (ja)
Inventor
Akira Uchida
亮 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP30906386A priority Critical patent/JPS63165736A/en
Publication of JPS63165736A publication Critical patent/JPS63165736A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/0303Optical path conditioning in cuvettes, e.g. windows; adapted optical elements or systems; path modifying or adjustment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/066Modifiable path; multiple paths in one sample

Abstract

PURPOSE:To smoothen the flow of a series of inspections, by making the length of a light path at the time of the measurement of absorbancy variable. CONSTITUTION:The light from a light source 1 is transmitted to an optical fiber 2 to irradiate the specimen 5 in a reaction tube 3 from a light transmitting part 2a. This light passes the light path length L formed by the reaction tube 4 to be incident to a light receiving part 7a while absorbed by a specimen 5 and transmits through an optical fiber 7 to be sent to a light detector 8. The detector 8 converts said light to the analogue signal corresponding to the intensity of the incident light to subject the same to each processing on and after through an A/D converter 9. At this time, when the output signal of the converter 9 is out of a range, CPU 10 sends a control signal to positioning mechanisms 3, 6 on the basis of said signal, and the light transmitting part 2a and the light receiving part 7a are altered to a position P1 to measure the absorbancy of the specimen 5 over a light path length L1. At this time, when the over-range of the output signal of said converter 9 is again generated, CPU 10 again sends the control signal to the mechanism parts 3, 6 to change over the light path length to a light path length L2. As mentioned above, since the optimum light path length corresponding to the specimen is selected, re-measurement or dilution is unnecessary and the smoothening of inspection is achieved.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、反応に供する試料の吸光度を測定する際に光
路長を可変できる測光系を具備した生化学分析装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a biochemical analyzer equipped with a photometric system that can vary the optical path length when measuring the absorbance of a sample subjected to a reaction.

(従来の技術) 従来の生化学分析装置では、反応試料の吸光度を測定す
る際に、第2図に示す如く反応管20に収納した試料5
に対する光路長しは前記反応管20の形状が画一化され
ているので一定不変である。このため、吸光度の高い試
料5については光源1からの光が光検出器8まで十分に
届かず吸光度の測定が不可能となったり、または再測定
やこの試料5に対する希釈の必要性が生じたりして、こ
の装置における一連の検査の円滑な流れを妨げるという
問題があった。尚、一般に試料5の吸光度は測光時の光
路長りに比例することはよく知られているところである
(Prior Art) In conventional biochemical analyzers, when measuring the absorbance of a reaction sample, the sample 5 housed in a reaction tube 20 as shown in FIG.
Since the shape of the reaction tube 20 is standardized, the optical path length is constant. For this reason, for the sample 5 with high absorbance, the light from the light source 1 may not reach the photodetector 8 sufficiently, making it impossible to measure the absorbance, or remeasuring or diluting the sample 5 may be necessary. Therefore, there was a problem in that the smooth flow of a series of tests in this device was hindered. It is well known that the absorbance of the sample 5 is generally proportional to the optical path length during photometry.

(発明が解決しようとする問題点) 上述したように従来の生化学分析装置では、試料に対す
る光路長が一定であることに基づいて再測定や希釈等の
必要性が生じ、この装置における検査の流れを妨げると
いう問題があった。
(Problems to be Solved by the Invention) As mentioned above, in the conventional biochemical analyzer, the optical path length for the sample is constant, which necessitates re-measurement, dilution, etc. There was a problem with the flow being obstructed.

そこで本発明は、再測定や希釈等の必要性がなく、かつ
、測定範囲も広くて検査の円滑な流れを確保できる測光
系を有する生化学分析装置を提供することを目的とする
ものである。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a biochemical analyzer having a photometric system that does not require remeasurement or dilution, has a wide measurement range, and can ensure a smooth flow of testing. .

[発明の構成] (問題点を解決するための手段) 本発明の生化学分析装置は、光の通過幅が異なる任意数
の光通過領域を形成した反応管並びに試料を収容した反
応管に対し前記各光通過領域にそれぞれ送光部及び受光
部を対面させつつ位置変更可能に構成された送受光手段
とからなる光学系を有し、前記試料に対する光路長を可
変しつつ吸光度測定を行うようにしたものである。
[Structure of the Invention] (Means for Solving the Problems) The biochemical analyzer of the present invention can be applied to a reaction tube in which an arbitrary number of light passage regions with different light passage widths are formed, and a reaction tube containing a sample. The optical system includes a light transmitting/receiving means that is configured to have a light transmitting section and a light receiving section facing each other in each of the light passing regions and whose position can be changed, so as to perform absorbance measurement while varying the optical path length with respect to the sample. This is what I did.

(作 用) 上記構成の装置の作用を以下に説明する。送受光手段は
、その送光部及び受光部を、光の通過幅が異なる任意の
光通過領域を形成した反応管に対面させた状態で、この
反応管内に収納された試料に対する送光及び受光を行う
(Function) The function of the device having the above configuration will be explained below. The light transmitting/receiving means transmits and receives light to and from the sample housed in the reaction tube, with its light transmitting section and light receiving section facing a reaction tube in which arbitrary light passing regions with different light passing widths are formed. I do.

このとき、前配送光部及び受光部の各光通過領域に対す
る対面位置を変更できるので、前記試料の吸光度の大小
に対応して最も適切な光路長となる状態で吸光度測定が
可能となる。
At this time, since the facing positions of the pre-delivery light section and the light receiving section with respect to each light passing region can be changed, absorbance measurement can be performed with the most appropriate optical path length corresponding to the magnitude of the absorbance of the sample.

(実施例) 以下に本発明の実施例を第1図を参照して説明する。(Example) Embodiments of the present invention will be described below with reference to FIG.

同図に示す装置は、光学系15と、測光データ処理部1
6とを有して構成されている。
The device shown in the figure includes an optical system 15 and a photometric data processing section 1.
6.

前記光学系15は、光源1と、この光源1で発光される
光を外部に送光する送光部2aを有する第1の光ファイ
バ2と、この第1の光ファイバ2の送光部2aの近傍を
支持して前配送光部2aを所定の位置に位置決めする第
1の位置決め機構部3と、前配送光部2aから照射され
る光を受光する受光部7aを有する第2の光ファイバ7
と、この第2の光ファイバ7を前配送光部2aに対面す
る位置に位置決めする第2の位置決め機構部6と、この
第2の光ファイバ7により伝送される光を受光して電気
信号に変換する光検出器(例えば光電変換素子)と、前
記送光部2a、受光部7a間に配置される反応管4とを
有して構成されている。
The optical system 15 includes a light source 1, a first optical fiber 2 having a light transmitting section 2a for transmitting light emitted from the light source 1 to the outside, and a light transmitting section 2a of the first optical fiber 2. A second optical fiber having a first positioning mechanism section 3 that supports the vicinity of the front delivery light section 2a to position the front delivery light section 2a at a predetermined position, and a light receiving section 7a that receives light emitted from the front delivery light section 2a. 7
and a second positioning mechanism section 6 that positions the second optical fiber 7 at a position facing the pre-distribution light section 2a, and a second positioning mechanism section 6 that receives the light transmitted by the second optical fiber 7 and converts it into an electrical signal. It is configured to include a photodetector (for example, a photoelectric conversion element) for conversion, and a reaction tube 4 arranged between the light transmitting section 2a and the light receiving section 7a.

そして、前記第1.第2の位置決め機構部3,6は、第
1図に示すように前記送光部2a、受光部6aを互いに
連動する状態で位@Po 、 Pl 。
And the above-mentioned 1. The second positioning mechanism parts 3 and 6 position the light transmitting part 2a and the light receiving part 6a in a mutually interlocking state @Po, Pl as shown in FIG.

P2に位置決めできるようになっている。この第1、第
2の位置決め機構部3,6の詳細は図示していないが、
例えば、平行配置におかれた一対の支持板にそれぞれ光
フアイバ挿入孔を設けると共にこの両支持板をそれぞれ
モータ駆動により平行して移動する一対のラック・ピニ
オン機構に連結することにより構成できる。
It is now possible to position at P2. Although details of the first and second positioning mechanism sections 3 and 6 are not shown,
For example, it can be constructed by providing an optical fiber insertion hole in a pair of support plates placed in parallel, and connecting these support plates to a pair of rack and pinion mechanisms that are moved in parallel by motor drive.

また、上述した一対の支持板にそれぞれ各光ファイバ3
,7を手動操作で挿入するようにしてもよい。
In addition, each optical fiber 3 is attached to the pair of support plates described above.
, 7 may be inserted manually.

前記反応管4は、第1図に示すように試料5を収納可能
な収納スペース4Cを内部に有し、かつ、その一方の側
壁4aに他方の側壁4bからの光の通過幅が段階的に異
なる段部4d、4eが形成されて、これにより、この反
応管4を送光部2a。
As shown in FIG. 1, the reaction tube 4 has an internal storage space 4C in which a sample 5 can be stored, and one side wall 4a has a stepwise width of passage of light from the other side wall 4b. Different step portions 4d and 4e are formed to connect this reaction tube 4 to the light transmitting portion 2a.

受光部78間に垂直状態に配置したとき、三種類の光路
長Lo 、Ll 、L2  (LO>Ll>12 )を
形成するようになっている。
When placed vertically between the light receiving sections 78, three types of optical path lengths Lo, Ll, and L2 (LO>Ll>12) are formed.

前記測光データ9B、連部16は、前記光検出器8の出
力信号をデジタル信号に変換するA/Dコンバータ9と
、このA/Dコンバータ9の制御及び前記第1.第2の
位置決め機構部3,6の位置決め制御を行うCPU10
とを有して構成され、A/Dコンバータ9の変換結果を
図示しない演算処理部やプリンタ、CRT等の表示部へ
転送するようになっている。
The photometric data 9B and the connecting section 16 include an A/D converter 9 that converts the output signal of the photodetector 8 into a digital signal, control of this A/D converter 9, and the first . CPU 10 that performs positioning control of the second positioning mechanism sections 3 and 6
The conversion result of the A/D converter 9 is transferred to an arithmetic processing section (not shown), a printer, a display section such as a CRT, etc.

次に、上記構成の装置の作用を説明する。Next, the operation of the apparatus having the above configuration will be explained.

まず、吸光度を測定すべき試料を反応管4の収納スペー
ス4Cに収納し、この反応管4を第1図に示す位置に配
置する。尚、このとき前記第1゜第2の光ファイバ2,
7の送光部2a、受光部7aは位置Poに位置決めされ
ているものとする。
First, a sample whose absorbance is to be measured is stored in the storage space 4C of the reaction tube 4, and the reaction tube 4 is placed at the position shown in FIG. Incidentally, at this time, the first and second optical fibers 2,
It is assumed that the light transmitting section 2a and the light receiving section 7a of No. 7 are positioned at a position Po.

この状態で光源1を点灯すると、その光は第1の光フア
イバ2内を伝送し送光部2aから反応管4内の試料5に
照射される。そして、この光は反応管4により形成され
る光路長L(Iを通り試料5でその一部が吸光されつつ
受光部7aに入射し第2の光ファイバ7を伝送して光検
出器8に送られる。
When the light source 1 is turned on in this state, the light is transmitted through the first optical fiber 2 and is irradiated onto the sample 5 in the reaction tube 4 from the light transmitting section 2a. Then, this light passes through an optical path length L (I) formed by the reaction tube 4, enters the light receiving section 7a while being partially absorbed by the sample 5, is transmitted through the second optical fiber 7, and is sent to the photodetector 8. Sent.

光検出器8は、入射した光の強弱に対応したアナログ信
号に変換してこれをA/Dコンバータ9に送る。A/D
コンバータ9はこのアナログ信号をデジタル信号に変換
しこれを以後の各処理に供するが、このとき、このデジ
タル信号が例えばオーバレンジ(予め設定したレンジよ
りレベルが大きいこと)していると、CPU10はこの
デジタル信号に基づいて第1.第2の位置決め機構部3
゜6に制御信号を送り、第1.第2の光ファイバ2゜7
の送光部2a、受光部7aを同時に位@P1に位置変更
する。すると、今度は光路長L1の状態で上述した場合
と同様な作用の基に試料5の吸光度測定が実行される。
The photodetector 8 converts the incident light into an analog signal corresponding to the intensity of the light and sends this to the A/D converter 9. A/D
The converter 9 converts this analog signal into a digital signal and uses it for each subsequent process. At this time, if this digital signal is, for example, overranged (the level is higher than a preset range), the CPU 10 Based on this digital signal, the first . Second positioning mechanism section 3
A control signal is sent to the 1st. Second optical fiber 2゜7
The light transmitting section 2a and the light receiving section 7a are simultaneously moved to position @P1. Then, the absorbance of the sample 5 is measured based on the same effect as in the case described above in the state of the optical path length L1.

そして、この場合においてもオーバレンジの状態が生じ
ると、CPU’IOは再度第1.第2の位置決め機構部
3,6に制御信号を送り、上述した場合と同様にして光
路長を12に切替えた状態で試料5の吸光度測定を行う
In this case as well, if an overrange condition occurs, the CPU'IO will be executed once again. A control signal is sent to the second positioning mechanism sections 3 and 6, and the absorbance of the sample 5 is measured with the optical path length switched to 12 in the same manner as in the case described above.

この装置によれば試料5の吸光度を測定する際に、その
試料に応じた最も適切な光路長が選択されるので、従来
装置の場合のような再測定や希釈の必要がないと共に測
定可能範囲も拡がり、一連の検査を円滑に実行すること
が可能となる。
According to this device, when measuring the absorbance of sample 5, the most appropriate optical path length is selected according to the sample, so there is no need for remeasurement or dilution as with conventional devices, and the measurable range This also expands the scope of the test, making it possible to smoothly perform a series of tests.

本発明は上述した実施例に限定されるものではなく、そ
の要旨の範囲内で種々の変形が可能である。例えば、上
述した実施例では3段階の光路長を設けた場合について
説明したが、2段階、4段階、5段階等の光路長を形成
するような反応管を用いても実施できる。
The present invention is not limited to the embodiments described above, and various modifications can be made within the scope of the invention. For example, in the above-mentioned embodiment, a case was explained in which three stages of optical path length were provided, but it can also be carried out using a reaction tube that forms optical path lengths of two stages, four stages, five stages, etc.

[発明の効果] 以上詳述した本発明によれば、吸光度測定の際の光路長
を可変できるので、試料の再検や希釈の必要がなくなる
と共に測定可能範囲が広がり、この装置における一連の
検査の流れを円滑化することができる生化学分析装置を
提供することができる。
[Effects of the Invention] According to the present invention detailed above, since the optical path length during absorbance measurement can be varied, there is no need to retest or dilute the sample, the measurable range is expanded, and a series of tests using this device can be performed. A biochemical analyzer capable of smoothing the flow can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例装置を示す概略ブロック図、第
2図は従来装置における測光系を示す説明図である。 2・・・第1の光ファイバ、2a・・・送光部、4・・
・反応管、5・・・試料、7・・・第2の光フフイバ、
7a・・・受光部、15・・・測光系。
FIG. 1 is a schematic block diagram showing a device according to an embodiment of the present invention, and FIG. 2 is an explanatory diagram showing a photometry system in a conventional device. 2... First optical fiber, 2a... Light transmitting section, 4...
・Reaction tube, 5...sample, 7...second optical fiber,
7a... Light receiving section, 15... Photometry system.

Claims (1)

【特許請求の範囲】[Claims] 光の通過幅が異なる任意数の光通過領域を形成した反応
管と、試料を収容した反応管に対し前記各光通過領域に
それぞれ送光部及び受光部を対面させつつ位置変更可能
に構成された送受光手段とからなる光学系を有し、前記
試料に対する光路長を可変しつつ吸光度測定を行うよう
にしたことを特徴とする生化学分析装置。
A reaction tube is provided with an arbitrary number of light passage regions having different light passage widths, and a reaction tube containing a sample is configured such that a light transmitting section and a light receiving section are faced to each of the light passing regions and can be repositioned. 1. A biochemical analysis device comprising an optical system comprising a light transmitting/receiving means, and measuring absorbance while varying the optical path length with respect to the sample.
JP30906386A 1986-12-27 1986-12-27 Biochemical analyser Pending JPS63165736A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30906386A JPS63165736A (en) 1986-12-27 1986-12-27 Biochemical analyser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30906386A JPS63165736A (en) 1986-12-27 1986-12-27 Biochemical analyser

Publications (1)

Publication Number Publication Date
JPS63165736A true JPS63165736A (en) 1988-07-09

Family

ID=17988432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30906386A Pending JPS63165736A (en) 1986-12-27 1986-12-27 Biochemical analyser

Country Status (1)

Country Link
JP (1) JPS63165736A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0217364A (en) * 1988-07-01 1990-01-22 Daikin Ind Ltd Heat pump system
US5602647A (en) * 1993-07-14 1997-02-11 Kyoto Daiichi Kagaku Co., Ltd. Apparatus and method for optically measuring concentrations of components
CN108169140A (en) * 2016-12-07 2018-06-15 恩德莱斯和豪瑟尔分析仪表两合公司 For determining measured method relevant with delustring and corresponding sensor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0217364A (en) * 1988-07-01 1990-01-22 Daikin Ind Ltd Heat pump system
US5602647A (en) * 1993-07-14 1997-02-11 Kyoto Daiichi Kagaku Co., Ltd. Apparatus and method for optically measuring concentrations of components
CN108169140A (en) * 2016-12-07 2018-06-15 恩德莱斯和豪瑟尔分析仪表两合公司 For determining measured method relevant with delustring and corresponding sensor device
CN108169140B (en) * 2016-12-07 2021-09-21 恩德莱斯和豪瑟尔分析仪表两合公司 Method for determining a measurement quantity related to extinction and corresponding sensor device

Similar Documents

Publication Publication Date Title
EP0531468B1 (en) On-line process control monitoring system
US4549809A (en) Method for photometric measurement of light absorption of liquid samples in cuvettes
JP4791625B2 (en) Spectrophotometric / turbidimetric detection unit
US5083283A (en) Method of determining calibration curve and apparatus using calibaration curve
US6882425B1 (en) Method and apparatus for examining fluids of biological origin
DE58908485D1 (en) Calibration device for a non-dispersive infrared photometer.
JPS63165736A (en) Biochemical analyser
JPS63111446A (en) Analyzing device
CN212133867U (en) Double-beam photometric device for optimizing repeatability
EP0096160A1 (en) A testing method using spectroscopic photometry with three wavelengths of light and a device for carrying out the method
CA1247398A (en) Automatic monochromator-testing system
JPH01284758A (en) Automatic chemical analysis apparatus
US4417812A (en) Circuit arrangement for determining the characteristics of liquids and/or gases, in particular the hemoglobin content of the blood
Lipson et al. Multifiber, multiwavelength, fiber optic fluorescence spectrophotometer
JP2006098228A (en) Spectrophotometer, biochemical analyzer and measuring method
JPS59107223A (en) Spectrochemical analyzer
CN106932340A (en) Optical detection system based on integrating sphere
JPS594258Y2 (en) double beam spectrophotometer
RU2695889C1 (en) Device for determining characteristics of gas and liquid samples
JPH02280033A (en) Colorimetry inspecting device
SU1704042A1 (en) Method of checking two-beam photometer with synchronous detection
JP2005274143A (en) Method for analyzing multicomponent aqueous solution
CN114216883A (en) Method for measuring material transmittance by integrating sphere method and integrating sphere measuring device
JP2508604B2 (en) X-ray fluorescence analyzer
JPH02184740A (en) Absorbancy measuring instrument