JPS63133041A - Light scattering type fine particle meter - Google Patents

Light scattering type fine particle meter

Info

Publication number
JPS63133041A
JPS63133041A JP61280170A JP28017086A JPS63133041A JP S63133041 A JPS63133041 A JP S63133041A JP 61280170 A JP61280170 A JP 61280170A JP 28017086 A JP28017086 A JP 28017086A JP S63133041 A JPS63133041 A JP S63133041A
Authority
JP
Japan
Prior art keywords
light
laser beam
electric field
irradiation laser
slit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61280170A
Other languages
Japanese (ja)
Inventor
Iku Kondo
郁 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rion Co Ltd
Original Assignee
Rion Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rion Co Ltd filed Critical Rion Co Ltd
Priority to JP61280170A priority Critical patent/JPS63133041A/en
Publication of JPS63133041A publication Critical patent/JPS63133041A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To achieve a higher detection sensitivity, by arranging the lens optical axis of a focusing system on a surface orthogonal to an electric field vibrating surface of irradiation laser light including the irradiation laser light to pass through a measuring area while a slit is provided to remove stray light. CONSTITUTION:A sample air current 12 flows out from a nozzle 13 and into a nozzle 14 maintaining a laminar flow state running through an irradiation laser beam 1. On the other hand, the irradiation laser beam 1 has an electric field vibrating surface 9 determined depending on the direction of a slant section of a polarization window 17 of a laser oscillation tube 16. The lens optical axis 11 of a focusing system is so arranged on a plane 10 orthogonal to the electric field vibrating surface 9 of the irradiation laser light including the laser beam 1 to pass through a measuring area. An image in the measuring area is separated from stray light with a slit 7 placed near an imaging position of scattering light by a focusing lens system 6. Scattered beams from fine particles in the sample are focused by the focusing lens system 6 in the direction of maximizing intensity and received with a light receiving element 3 cleared of the stray light with the slit 7 to be converted into an electrical signal, which is amplified and processed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、光散乱式微粒子計に関し、とりわけ、レー
ザを光源とする光散乱式微粒子計に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a light scattering particle meter, and more particularly to a light scattering particle meter using a laser as a light source.

〔従来の技術〕[Conventional technology]

従来、レーザを光源とする光散乱式微粒子計、    
゛特に、散乱光の集光系には、第3図に示すような、楕
円鏡を用いたもの、あるいは第4図に示す放物面鏡によ
るものがあった。すなわち、紙面に垂直な方向に流れる
試料の測定領域(S)に対して、この流れ方向と直角方
向の照射レーザ光(1)を照射し、試料中の微粒子によ
る散乱光を、第3図のものでは楕円鏡(2a)で受光素
子(3)に集光し、第4図の場合は放物面鏡(2b)、
平面鏡(4)、レンズ(5)等を用いて受光素子(3)
に集光するものであった。
Conventionally, a light scattering particle meter uses a laser as a light source,
In particular, the scattered light condensing system used an elliptical mirror as shown in FIG. 3, or a parabolic mirror as shown in FIG. That is, the measurement region (S) of a sample flowing in a direction perpendicular to the plane of the paper is irradiated with laser light (1) in a direction perpendicular to the flow direction, and the scattered light by fine particles in the sample is detected as shown in Fig. 3. In the case of Fig. 4, the light is focused on the light receiving element (3) by an elliptical mirror (2a), and in the case of Fig. 4, a parabolic mirror (2b),
Light receiving element (3) using a plane mirror (4), lens (5), etc.
The light was focused on.

以上の構成になるものは、いずれも集光立体角が大きく
とれるので、大きな集光量を得ることができる利点があ
る反面、試料空気などの分子の散乱光も含めた、いわゆ
る迷光による光学的ノイズ成分も大きくなるという欠点
があった。
All of the configurations described above have the advantage of being able to obtain a large amount of light because they have a large solid angle of light convergence, but on the other hand, optical noise due to so-called stray light, including light scattered by molecules such as sample air, is generated. The disadvantage was that the components were also large.

また、これら非球面鏡を用いたものは、散乱光を正確に
結像させることが困難であることから、迷光除去用にス
リットの使用ができない。
Further, in the case of using these aspherical mirrors, it is difficult to accurately form an image of scattered light, and therefore a slit cannot be used for removing stray light.

これに対し、第5図に示すレンズ(こよる集光系、すな
わち、散乱光を集光レンズ系(6)により受光素子(3
)に集光するものでは、散乱光を正確に結像できるので
、1つまたは複数個のスリット(力を用いて迷光を除く
ことができ、高いS/N比で散乱光を集めることができ
る。
On the other hand, the lens shown in FIG.
), the scattered light can be focused accurately, so the stray light can be removed using one or more slits (force), and the scattered light can be collected with a high S/N ratio. .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上のように、第5図で説明した、レンズによる集光系
を備えた従来の光散乱式微粒子計では、非球面鏡のよう
に大きな集光立体角が得られないため、検出感度が低い
という問題点があった。
As described above, the conventional light-scattering particle meter equipped with a lens-based condensing system, as explained in Figure 5, has low detection sensitivity because it cannot obtain a large solid angle of convergence like an aspherical mirror. There was a problem.

この発明はかかる問題点を解決するためになされたもの
で、集光系にレンズを用いて十分な、感度を得ることが
できる、レーザを光源とする光散乱式微粒子計を提供す
るこ吉を目的とするものである。
This invention was made in order to solve this problem, and Kokichi provides a light scattering particle meter using a laser as a light source, which can obtain sufficient sensitivity by using a lens in the condensing system. This is the purpose.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る光散乱式微粒子計は、照射レーザ光の電
界振動面と直交し、かつ、照射レーザ光を含む面上に、
集光系のレンズ光軸を、測定領域を通るように配置する
とともに、迷光を除くスリットを設けてなるものである
The light scattering type particle meter according to the present invention has the following features:
The optical axis of the lens of the condensing system is arranged so as to pass through the measurement area, and a slit is provided to remove stray light.

〔作用〕[Effect]

この発明においては、散乱光の集光系の光軸が、散乱光
の強度が最も強い面内にあるのに加えて迷光が除かれる
ので、検出感度が著しく向上する。
In this invention, the optical axis of the scattered light condensing system is located in the plane where the intensity of the scattered light is strongest, and stray light is removed, so detection sensitivity is significantly improved.

〔実施例〕〔Example〕

まず、この発明の原理を第2図により説明する。 First, the principle of this invention will be explained with reference to FIG.

レーザ光の特長として、光の電界振動面と磁界振動面は
、カスレーザの場合、レーザ発振管のブリュ−スタ窓の
向きにより、また、半導体のレーザの場合は接合面の向
きにより決まる。
As a feature of laser light, the electric field vibration plane and magnetic field vibration plane of the light are determined by the direction of the Brewster window of the laser oscillation tube in the case of a Cass laser, and by the direction of the junction surface in the case of a semiconductor laser.

第2図に示すように、測定領域(S)の微粒子にレーザ
光(1)を照射した場合に発生する散乱光の強さは、強
a年示すよう1こ、レーザ光(1)の電界振動面(9)
に直交し、かつ、レーザ光(1)を含む平面上で最も太
きい。(10)は磁界振動面を示している。
As shown in Figure 2, the intensity of the scattered light generated when fine particles in the measurement area (S) are irradiated with the laser beam (1) is 1, as shown by the electric field of the laser beam (1). Vibration surface (9)
It is the thickest on the plane that is perpendicular to the plane and includes the laser beam (1). (10) shows the magnetic field vibration plane.

この発明は、以上の性質を利用するもので、第2図に示
すように、照射レーザ光(1)の電界振動面(9)と直
交し、かつ、照射レーザ光(1)の光線を含む面上に、
集光系のレンズ光軸(11)を、測定領域(S)を通る
ように配置する。そうして、散乱光の結像位置近傍に配
置した少なくとも1個のスリット(7)により迷光を取
除き、散乱光の効率のよい集光を行うものである。
This invention makes use of the above-mentioned properties, and as shown in FIG. on the surface,
The lens optical axis (11) of the condensing system is arranged so as to pass through the measurement area (S). Then, stray light is removed by at least one slit (7) placed near the imaging position of the scattered light, and the scattered light is efficiently focused.

第1図は、カスレーザの外部ミラー形レーザを光源とし
て使用した場合の、この発明の一実施例を示し、微粒子
を含んだ試料空気流(12)は、流出ノズル(13)か
ら流出して照射レーザ光け)を貫通したのち、流出ノズ
ル(13)に対向する排気ノズル(14)に層流状態を
維持したまま流入する。(15)は外部ミラーである。
FIG. 1 shows an embodiment of the present invention when an external mirror type laser of a Kass laser is used as a light source, in which a sample air stream (12) containing fine particles flows out from an outflow nozzle (13) and is irradiated. After passing through the laser beam, it flows into the exhaust nozzle (14) opposite the outflow nozzle (13) while maintaining a laminar flow state. (15) is an external mirror.

試料空気流(12)が照射レーザ光(1)を貫通する部
位が測定領域(S)である。この測定領域(S)を通過
するときの試料空気流(12)は層流状態であることが
重要であり、そのため、試料空気流(12)の外周部を
清浄なソースエアで包んで、2つのノズル(13) (
14)間を流れるようにする。
The region where the sample air flow (12) passes through the irradiated laser beam (1) is the measurement region (S). It is important that the sample air flow (12) be in a laminar flow state when passing through this measurement area (S), so the outer periphery of the sample air flow (12) is wrapped with clean source air and the sample air flow (12) is laminar. Two nozzles (13) (
14) Allow for flow between spaces.

一方、照射レーザ光(1)は、レーザ発振管(工6)の
ブリュースタ窓(17)の斜断面の向きによって、その
電界振動面(9)が決まる。一般的には、この斜断面の
中心に立てた垂線と照射レーザ光(1)によって決まる
面が電界振動面となる。この電界振動面(9)と直交し
、かつ、照射レーザ光(1)を含む平面上に、集光系の
レンズ光軸(11)を、測定領域(S)を通るように配
置する。
On the other hand, the electric field vibration plane (9) of the irradiated laser beam (1) is determined by the orientation of the oblique section of the Brewster window (17) of the laser oscillation tube (work 6). Generally, the plane determined by the perpendicular line placed at the center of this oblique section and the irradiated laser beam (1) becomes the electric field vibration plane. On a plane that is orthogonal to this electric field vibration plane (9) and that includes the irradiated laser beam (1), the lens optical axis (11) of the condensing system is arranged so as to pass through the measurement region (S).

集光レンズ系(6)による散乱光の結像位置近傍に置い
たスリット(7)により、測定領域(S)の像と迷光を
分離する。
A slit (7) placed near the imaging position of the scattered light by the condenser lens system (6) separates the image of the measurement area (S) from the stray light.

以上の構成により、試料中の微粒子による散乱光が、そ
の強度が最大の方向で集光レンズ系(6)で集光され、
かつ、スリット(7)により迷光が除かれ、受光素子(
3)により受光されて電気信号に変換後、増幅、処理さ
れる。
With the above configuration, the light scattered by the fine particles in the sample is focused by the condensing lens system (6) in the direction where its intensity is maximum,
In addition, stray light is removed by the slit (7) and the light receiving element (
3), the light is received and converted into an electrical signal, which is then amplified and processed.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、この発明は、照射レー
ザ光の電界振動面と直交し、かつ、照射レーザ光を含む
平面上に、測定領域を通って集光レンズ系のレンズ光軸
が位置するようにしたので、散乱光を効率よく集光する
とともに、スリットにより迷光を除くようにしたので、
検出感度を大幅に向上しうる効果がある。
As is clear from the above description, the present invention has a method in which the lens optical axis of the condenser lens system is positioned through the measurement region on a plane that is perpendicular to the electric field vibration plane of the irradiated laser beam and that includes the irradiated laser beam. This allows us to efficiently collect scattered light and eliminate stray light using slits.
This has the effect of significantly improving detection sensitivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の要部配置を示す斜視図、
第2図はこの発明の詳細な説明するための模式図、第3
図〜第5図はそれぞれ従来の光散乱式微粒子計の要部配
置を示す平断面図である。 (1)・・照射レーザ光、(3)・・・受光素子、(6
)・・集光レンズ系、(7)・・スリンl−,(9)・
電界振動面+ (11)・・・集光レンズ系の光軸、 
(12)・・・試料空気流、(S)・・測定領域。
FIG. 1 is a perspective view showing the arrangement of essential parts of an embodiment of the present invention;
Figure 2 is a schematic diagram for explaining the invention in detail;
5 to 5 are plan cross-sectional views showing the arrangement of main parts of a conventional light scattering type particle meter. (1)...Irradiated laser beam, (3)...Photodetector, (6
)... Condensing lens system, (7)... Surin l-, (9)...
Electric field vibration plane + (11)...Optical axis of condensing lens system,
(12)...Sample air flow, (S)...Measurement area.

Claims (1)

【特許請求の範囲】 レーザ光を光源とし、微粒子による散乱光を集光レンズ
系により受光素子に集光する光散乱式微粒子計において
、 光軸が、照射レーザ光の電界振動面と直交し前記照射レ
ーザ光を含む平面上に前記微粒子の測定領域を通って位
置する前記集光レンズ系と、前記散乱光の結像位置近傍
に配置されたスリットと、 を備えてなることを特徴とする光散乱式微粒子計。
[Scope of Claims] A light scattering particle meter that uses a laser beam as a light source and condenses light scattered by fine particles onto a light-receiving element using a condensing lens system, wherein the optical axis is orthogonal to the electric field vibration plane of the irradiated laser beam. A light source comprising: the condensing lens system located on a plane containing the irradiated laser beam through the measurement area of the fine particles; and a slit disposed near the imaging position of the scattered light. Scattering particle meter.
JP61280170A 1986-11-25 1986-11-25 Light scattering type fine particle meter Pending JPS63133041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61280170A JPS63133041A (en) 1986-11-25 1986-11-25 Light scattering type fine particle meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61280170A JPS63133041A (en) 1986-11-25 1986-11-25 Light scattering type fine particle meter

Publications (1)

Publication Number Publication Date
JPS63133041A true JPS63133041A (en) 1988-06-04

Family

ID=17621276

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61280170A Pending JPS63133041A (en) 1986-11-25 1986-11-25 Light scattering type fine particle meter

Country Status (1)

Country Link
JP (1) JPS63133041A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016151527A (en) * 2015-02-18 2016-08-22 アズビル株式会社 Particle detector

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50104980A (en) * 1974-01-25 1975-08-19
JPS5942432A (en) * 1982-09-01 1984-03-09 Rion Co Ltd Light scattering type floating particle counting apparatus
JPS60214238A (en) * 1984-04-11 1985-10-26 Hitachi Ltd Fine particle detector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50104980A (en) * 1974-01-25 1975-08-19
JPS5942432A (en) * 1982-09-01 1984-03-09 Rion Co Ltd Light scattering type floating particle counting apparatus
JPS60214238A (en) * 1984-04-11 1985-10-26 Hitachi Ltd Fine particle detector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016151527A (en) * 2015-02-18 2016-08-22 アズビル株式会社 Particle detector

Similar Documents

Publication Publication Date Title
JP4050748B2 (en) Particle measuring device
JP3113720B2 (en) Pollen detector
JPS63133041A (en) Light scattering type fine particle meter
JPH0137689B2 (en)
JPH05172732A (en) Method and apparatus for detecting particle in liquid
US20020030815A1 (en) Light scattering type particle detector
JPS5970944A (en) Apparatus for measuring particle diameter
JPS60127540A (en) Objective lens cleaner in reader of optical disc player
JPH0231817B2 (en)
JP2595315B2 (en) Light scattering measuring device
JPH05240770A (en) Particle counter
JPH0565020B2 (en)
JPS6383633A (en) Fine particle measuring instrument
JPS60214238A (en) Fine particle detector
JPH0295241A (en) Method and mechanism for adjusting capillary cell detector
JPS6093944A (en) Light-scattering particle measuring apparatus
JP2552940Y2 (en) Particle measurement device
JPS6029643A (en) Fine particle detector
JPH0498145A (en) Counting device for particulates in fluid
JPH0442621B2 (en)
JP2886691B2 (en) Confocal laser scanning microscope
JPS6237160Y2 (en)
JP3874047B2 (en) Laser diffraction / scattering particle size distribution analyzer
JPS58201005A (en) Device for measuring particle diameter
JPH0434097B2 (en)